

Caution

These documents refer to an obsolete way of installing and running FALCON. They will remain up for historical context and for individuals still using the older version of FALCON/FALCON_unzip.

Attention

The current PacBio Assembly suite documentation which includes new bioconda instructions for installing FALCON, FALCON_unzip and their associated dependencies can be found here pb_assembly [http://github.com/PacificBiosciences/pb-assembly]

[image: Falcon Assembler]

FALCON Assembler

FALCON [http://github.com/PacificBiosciences/FALCON] is a diploid aware genome assembler designed for Pacific Biosciences long read data.

	About - About FALCON

	Quick Start - Want to start using FALCON immediately?

	Tutorial - Follow an example on how to run FALCON

	Pipeline - How does a FALCON job work?

	Commands - Information on the different commands used

	Parameters - Descriptions of parameters found in fc_run.cfg

	Glossary - Glossary of FALCON jargon

	Frequently Asked Questions - Frequently asked questions

	Changelog - Changes

	Resources - Talks and slides about PacBio

	Running Unzip on HGAP4 output - How to run apply Unzip on finished HGAP4 jobs?

Caution

These documents refer to an obsolete way of installing and running FALCON. They will remain up for historical context and for individuals still using the older version of FALCON/FALCON_unzip.

Attention

The current PacBio Assembly suite documentation which includes new bioconda instructions for installing FALCON, FALCON_unzip and their associated dependencies can be found here pb_assembly [http://github.com/PacificBiosciences/pb-assembly]

[image: FALCON Assembler]

About FALCON

Overview

FALCON and FALCON-Unzip are de novo genome assemblers for PacBio long reads, also known as
single-molecule real-time (SMRT) sequences. FALCON is a diploid-aware assembler
which follows the hierarchical genome assembly process (HGAP [http://www.nature.com/nmeth/journal/v10/n6/full/nmeth.2474.html]) and is optimized for
large genome assembly (e.g. non-microbial). FALCON produces a set of primary contigs (a-contigs),
which represent divergent allelic variants. Each a-contig is associated with a homologous
genomic region on an p-contig.

FALCON-Unzip is a true diploid assembler. It takes the contigs from
FALCON and phases the reads based on heterozygous SNPs identified in the initial
assembly. It then produces a set of partially phased primary contigs and fully phased
haplotigs which represent divergent haplotyes.

Detailed Description

The hierarchical genome assembly process proceeds in two rounds. The first round of assembly involves the selection of seed reads,
or the longest reads in the dataset (user-defined length_cutoff). All shorter reads are aligned to
the seed reads, in
order to generate consensus sequences with high accuracy. We refer to these as pre-assembled reads but they can also be
thought of as
“error corrected” reads. During the pre-assembly process, seed reads may be split or trimmed at regions of low read
coverage (user-defined min_cov for falcon_sense_option). The performance of the pre-assembly
process is captured in the pre-assembly stats file. [http://pb-falcon.readthedocs.io/en/latest/tutorial.html#raw-and-pread-coverage-and-quality]

In the next round of HGAP, the preads, are aligned to each other and assembled into
genomic contigs.

[image: _images/HGAP.png]
[image: _images/Fig1.png]
For more complex genomes assembled with FALCON,
“bubbles” in the contig-assembly graph that result from structural variation between haplotypes may be resolved as associate
and primary contigs. The unzip process will extend haplotype phasing beyond “bubble” regions, increasing the amount of phased
contig sequence. It is important to note that
while individual haplotype blocks are phased, phasing does not extend between haplotigs. Thus, in part C) of the
figure above, haplotig_1 and haplotig_2 may originate from different parental haplotypes. Additional information is
needed to phase the haplotype blocks with each other.

Associate contig IDs contain the name of their primary contig but the precise location of alignment must be determined with third party
tools such as NUCmer [http://mummer.sourceforge.net/manual/#nucmer]. For example, in a FALCON assembly, 000123F-010-01 is an associated contig to primary contig
000123F. In a FALCON-Unzip assembly, 000123F_001 is a haplotig of primary contig 000123F.

Below are examples of alignments between associate and primary contigs from FALCON, and haplotigs and primary contigs
from FALCON-Unzip. Alignments were built with NUCmer [http://mummer.sourceforge.net/manual/#nucmer] and visualized with Assemblytics [http://qb.cshl.edu/assemblytics/]. Precise coordinates
may be obtained with the show-coords [http://mummer.sourceforge.net/manual/#coords] utilty from MUMmer [http://mummer.sourceforge.net/manual/].

[image: _images/dotplots.png]

Choosing an Assembler: HGAP4 vs FALCON vs FALCON-Unzip

HGAP4

We recommend HGAP4, part of the SMRT Link web-based analysis suite, for genomes of known complexity, no larger than
human (3Gb or
smaller),
although underlying
compute resources for your SMRT Link instance will influence performance and feasibility. The assembly
process for HGAP4 in the SMRT Link GUI (graphical user interface) is identical to FALCON at the command line, besides
differences in
compute resource configuration and minor differences in directory structure. The HGAP4 pipeline by default includes a round of
genome “polishing”
which employs the resequencing pipeline.

HGAP4 RESULTS ARE NOT COMPATIBLE WITH FALCON-Unzip AT THIS TIME!

HGAP4 inputs are a PacBio subread BAM [http://pacbiofileformats.readthedocs.io/en/3.0/BAM.html] dataset, either Sequel or RSII. The FASTA and FASTQ files output from HGAP4 are a concatenation of the primary
and associate contigs, which are output from FALCON as separate files.

Command Line

Users more comfortable at the command line may use FALCON for genomes of any size
or complexity. Command line inputs are FASTA files of Sequel or RSII subreads. Command-line FALCON does not automatically polish the assembly. If a user
wishes, assembly polishing may
be run using the resequencing pipeline of pbsmrtpipe [http://pbsmrtpipe.readthedocs.io/en/master/getting_started.html] (available for command-line installation using the SMRT_Link [http://www.pacb.com/support/software-downloads/] download, see
SMRT_Tools_Reference_Guide [http://programs.pacificbiosciences.com/l/1652/2017-02-01/3rzxn6/184345/SMRT_Tools_Reference_Guide__v4.0.0_.pdf] for
installation instructions). Resequencing requires PacBio subread BAM [http://pacbiofileformats.readthedocs.io/en/3.0/BAM.html] inputs.

We recommend the FALCON-Unzip module for heterozygous or outbred organisms that are diploid or higher ploidy. Users wishing to run
FALCON-Unzip must do so only after running FALCON on the
command line. HGAP4 IS NOT COMPATIBLE WITH FALCON-UNZIP! The FALCON-Unzip module requires both FASTA and PacBio BAM [http://pacbiofileformats.readthedocs.io/en/3.0/BAM.html] inputs for subreads.

References

Chin et al. (2016). Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods. 13(12), 1050. [http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.4035.html]

Chin, et al. (2013). Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods. 10(6), 563. [http://www.nature.com/nmeth/journal/v10/n6/full/nmeth.2474.html]

Caution

These documents refer to an obsolete way of installing and running FALCON. They will remain up for historical context and for individuals still using the older version of FALCON/FALCON_unzip.

Attention

The current PacBio Assembly suite documentation which includes new bioconda instructions for installing FALCON, FALCON_unzip and their associated dependencies can be found here pb_assembly [http://github.com/PacificBiosciences/pb-assembly]

Quick Start Guide

Installation

The quickest way to install FALCON + FALCON_unzip is to download and run this install script:

	Install script

	Tarball date

	Status

	install_unzip.sh

	3/12/2018

	

	install_unzip.sh

	8/08/2018

	Beta

$ bash -ex install_unzip.sh /path/to/your/install/dir

Note

This will clone the FALCON-integrate repository, FALCON_unzip binaries, build a virtualenv and launch a small test case assembly to ensure successful installation.

samtools [http://www.htslib.org/download/] and minimap2 [https://github.com/lh3/minimap2] must be installed separately and in your $PATH.

If you don’t see any errors, you will have installed FALCON/FALCON_unzip and successfully assembled and unzipped a small test dataset. At this point you should be ready to confidently launch a larger genome assembly.

To activate your FALCON_unzip virtualenv in the future:

$ source /path/to/your/install/dir/fc_env/bin/activate

Caution

These documents refer to an obsolete way of installing and running FALCON. They will remain up for historical context and for individuals still using the older version of FALCON/FALCON_unzip.

Attention

The current PacBio Assembly suite documentation which includes new bioconda instructions for installing FALCON, FALCON_unzip and their associated dependencies can be found here pb_assembly [http://github.com/PacificBiosciences/pb-assembly]

[image: Falcon Assembler]

Pipeline

FALCON

A FALCON job can be broken down into 3 steps:

	Overlap detection and error correction of rawreads

	Overlap detection between corrected reads

	String Graph assembly of corrected reads

Each step is performed in it’s own subdirectory within the FALCON job

falcon_job/
 ├── 0-rawreads/ # Raw read error correction directory
 ├── 1-preads_ovl/ # Corrected read overlap detection
 ├── 2-asm-falcon/ # String Graph Assembly
 ├── mypwatcher/ # Job scheduler logs
 ├── scripts/
 └── sge_log/ # deprecated

The assembly process is driven by the script fc_run.py which should be sent to the scheduler or run on a head node
as it needs to persist throughout the entire assembly process.
It takes as input a single config file typically named fc_run.cfg, which references a list
of fasta input files. The config file can be configured to
run locally, or submit to a job scheduler. However, if your dataset is anything larger than a bacterial sized
genome and unless you’ve tuned your system specifically for the organism you’re trying to assemble, then most likely you
should be running on a cluster in order to more effectively leverage your computational resources.

The configuration file also allows you to control other aspects of your job such as how your compute resources are
distributed as well as set many parameters to help you reach an “optimized” assembly according to the nature of
your input data. Unfortunately at this point there is no “magic” way to auto-tune the parameters so you should
probably spend some time in the Configuration section to understand what options are available to you.
Some example configuration files can be found here

Step 1: Overlap detection and error correction of raw reads

The first step of the pipeline is to identify all overlaps in the raw reads. Currently this is performed with
a modified version of Gene Myers’ DALIGNER [http://dazzlerblog.wordpress.com].

In order to identify overlaps, your raw reads must first be converted from fasta format into a dazzler
database. This is a very I/O intensive process and will be run from the node where fc_run.py was executed. If this
is an issue, you should submit the command with a wrapper script to your grid directly.

Once the database has been created and partitioned according to the parameters set in your
fc_run.cfg, an all vs all comparison of the reads must be performed. Accordingly, due to the
all vs all nature of the search this is the most time consuming step in the assembly process. To walk through the
actual steps of this part of the pipeline you should take a look at 0-rawreads/prepare_rdb.sub.sh.
Essentially it consists of running:

	fasta2DB to format the database

	DBsplit to partition the database

	HPC.daligner to generate the daligner commands necessary for all-vs-all comparison

After overlaps have been detected, you will be left with many job_* directories full of alignment files *.las
containing the information about the overlaps. After merging the alignment files (see m_* directories), the
next step is to error correct the reads leveraging the overlap information. In the 0-rawreads/preads directory you
will find a series of scripts for
performing the error correction. The process basically consists of using LA4Falcon with a length cutoff and piping the
output to fc_consensus.py to generate a fasta file with corrected reads.

0-rawreads/
 ├── job_* # dirs for all of the daligner jobs
 ├── m_*/ # dirs for all of the LA4Merge jobs
 ├── preads/ # sub-dir for preads generation
 ├── report/ # pre-assembly stats
 ├── cns-scatter/ # dir of scripts for falcon-consensus jobs
 ├── daligner-scatter/ # dir of scripts for daligner jobs
 ├── merge-scatter/ # dir of scripts for LAMerge jobs
 ├── merge-gather/ # dir of scripts for gathering LAMerge inputs
 ├── raw-gather/ # dir of scripts for gathering daligner jobs for merging
 ├── input.fofn # list if your input *.fasta files
 ├── length_cutoff # text file with length cutoff for seed reads
 ├── pwatcher.dir # dir of individual pipeline jobs stderr and stdout
 ├── prepare_rdb.sh # env wrapper script
 ├── raw_reads.db # dazzler DB file
 ├── raw-fofn-abs # dir of scripts for gathering raw reads inputs
 ├── rdb_build_done # database construction sentinel file
 ├── run_jobs.sh # listing of all overlap step commands
 ├── run.sh # masker job script
 ├── run.sh.done # sentinel file for all jobs
 ├── task.json # json file specifying inputs, outputs, and params
 └── task.sh # script to run json file

The following parameters affect this step directly:

	sge_option_da

	sge_option_la

	pa_concurrent_jobs

	cns_concurrent_jobs

	pa_DBsplit_option

	falcon_sense_option

Step 2: Overlap detection of corrected reads

The only conceptual difference between the first and second overlap steps is that consensus calling is
not performed in the second step. After pread overlap detection, it’s simply a
matter of extracting the information from the corrected reads database with DB2Falcon -U preads.

Depending on how well the error-correction step proceeded as well as the how much
initial coverage was fed into the pipeline (e.g. length_cutoff), the input data for this
step should be significantly reduced and thus, the second overlap detection step
will proceed significantly faster.

The commands in this step of the pipeline are very similar to before albeit with different parameter settings to account
for the reduced error-rate of the preads. See the driver script prepare_pdb.sub.sh for
details on actual parameter settings used.

1-preads_ovl/
 ├── job_*/ # directories for daligner jobs
 ├── m_*/ # directories for LA4Merge jobs
 ├── db2falcon/ # dir of scripts for formatting preads for falcon
 ├── gathered-las/ # dir of scripts for gathering daligner jobs
 ├── merge-gather/ # dir of scripts for gathering LAMerge inputs
 ├── merge-scatter/ # dir of scripts for LAMerge jobs
 ├── daligner-scatter/ # dir of scripts for daligner jobs
 ├── pdb_build_done # sentinel file for pread DB building
 ├── preads.db # preads dazzler DB
 ├── prepare_pdb.sh # env wrapper script
 ├── pwatcher.dir # dir of individual pipeline jobs stderr and stdout
 ├── run_jobs.sh # listing of all pread overlap job commands
 ├── run.sh # masker job script
 ├── run.sh.done # sentinel file for all jobs
 ├── task.json # json file specifying inputs, outputs, and params
 └── task.sh # script to run json file

The following parameters affect this step directly:

	sge_option_pda

	sge_option_pla

	ovlp_concurrent_jobs

	ovlp_DBsplit_option

	ovlp_HPCdaligner_option

Step 3: String Graph assembly

The final step of the FALCON Assembly pipeline is generation of the final String Graph assembly and
output of contig sequences in fasta format. Four commands are run in the final phase of FALCON:

	fc_ovlp_filter - Filters overlaps based on the criteria provided in fc_run.cfg

	fc_ovlp_to_graph - Constructs an overlap graph of reads larger than the length cutoff

	fc_graph_to_contig - Generates fasta files for contigs from the overlap graph.

	fc_dedup_a_tigs - Removes duplicate associated contigs

You can see the details on the parameters used by inspecting 2-asm_falcon/run_falcon_asm.sub.sh
This step of the pipeline is very fast relative to the overlap detection steps. Sometimes it may be useful to run
several iterations of this step with different parameter settings in order to identify a “best” assembly.

The final output of this step is a fasta file of all of the primary contigs, p_ctg.fa as well as an associated contig
fasta file, a_ctg.fa that consists of all of the structural variants from the primary contig assembly.

2-asm-falcon/
 ├── a_ctg_all.fa # all associated contigs, including duplicates
 ├── a_ctg_base.fa #
 ├── a_ctg_base_tiling_path #
 ├── a_ctg.fa # De-duplicated associated fasta file
 ├── a_ctg_tiling_path # tiling path informaiton for each associated contig
 ├── falcon_asm_done # FALCON Assembly sentinal file
 ├── p_ctg.fa # Fasta file of all primary contigs
 ├── p_ctg_tiling_path # Tiling path of preads through each primary contig
 ├── c_path #
 ├── ctg_paths # corrected read paths for each contig
 ├── fc_ovlp_to_graph.log # logfile for process of converting overlaps to assembly graph
 ├── utg_data #
 ├── sg_edges_list # list of all edges
 ├── chimers_nodes #
 ├── preads.ovl # List of all overlaps between preads
 ├── run_falcon_asm.sh # env wrapper script
 ├── task.json # json file specifying inputs, outputs, and params
 ├── task.sh # script to run json file
 ├── run.sh.done # sentinel file for all jobs
 └── run.sh # Assembly driver script

The following parameters affect this step directly:

	sge_option_fc

	overlap_filtering_setting

	length_cutoff_pr

FALCON_unzip

FALCON_unzip operates from a completed FALCON job directory. After tracking the raw reads to contig,
A FALCON_unzip job can be broken down into 3 steps

	Identify SNPs and assign phases

	Annotate Assembly graph with Phases

	Graph building

3-unzip/
├── 0-phasing/ # Contig phasing jobs
├── 1-hasm/ # Contig Graph assembly information
├── read_maps/ # rawread_to_contigs; read_to_contig_map
├── reads/ # raw read fastas for each contig
├── all_p_ctg.fa # partially phased primary contigs
├── all_h_ctg.fa # phased haplotigs
├── all_p_ctg_edges # primary contig edge list
├── all_h_ctg_edges # haplotig edge list
├── all_h_ctg_ids # haplotig id index
└── all_phased_reads # table of all phased raw reads

Step 1: Identify SNPs and assign phases

Inside of 0-phasing/ you vill find a number of directories for each contig. Each contains the scripts
to map the raw reads to the contigs and subsequently identify SNPs. The generated SNP tables can
subsequently be used to assign phases to reads.

Step 2: Graph annotation and haplotig

Inside of 1-hasm/ you can find the driver script hasm.sh which contains the commands necessary to
filter overlaps and traverse the assembly graph paths and subsequently output phased contig sequence.
Assembly Graphs for each contig as well as fasta files for the partially phased primary contigs and fully phased
haplotigs can be found in each 1-hasm/XXXXXXF directory.

Step 3: Call Consensus (Optional)

Finally, the FALCON_unzip pipeline can optionally be used to run quiver and call high quality consensus. This step
takes as input the primary contig and haplotig sequences output in the previous step. For convenience, these files
have all been concatenated together into 3-unzip/all_p_ctg.fa and 3-unzip/all_h_ctg.fa respectively.
The final consensus output can be found in falcon_jobdir/4-quiver/cns_output/*.fast[a|q].
In order to run the consensus step as part of the FALCON_unzip pipeline, You need to provide the input_bam_fofn
fc_unzip.cfg option in order for this to work.

Caution

These documents refer to an obsolete way of installing and running FALCON. They will remain up for historical context and for individuals still using the older version of FALCON/FALCON_unzip.

Attention

The current PacBio Assembly suite documentation which includes new bioconda instructions for installing FALCON, FALCON_unzip and their associated dependencies can be found here pb_assembly [http://github.com/PacificBiosciences/pb-assembly]

Commands

FALCON Commands

	DB2Falcon

	Used to dump dazzler preads.db into FASTA format for subsequent String Graph assembly

	fc_run.py

	This script drives the entire assembly process

	fc_consensus.py

	fc_consensus has many options. You can use the parameter falcon_sense_option to control it.
In most cases, the --min_cov and --max_n_read are the most important options. --min_cov controls
when a seed read gets trimmed or broken due to low coverage. --max_n_read puts a cap on the number of reads
used for error correction. In highly repetitive genome, you will need to make the value for --max_n_read
smaller to make sure the consensus code does not waste time aligning repeats. The longest proper overlaps are used
for correction to reduce the probability of collapsed repeats.

	fc_dedup_a_tigs.py

	remove duplicated associated contigs, mostly induced by tandem repeat alignment
uncertainty

	fc_graph_to_contig.py

	Generate contigs based on assembly graph

	fc_ovlp_to_graph.py

	Generate an assembly graph given a list of overlapping preads.

	fc_ovlp_filter.py

	Filter overlaps based on given criteria

FALCON_unzip commands

	fc_get_read_hctg_map.py

	Generate a read-to-contig map

fc_dedup_h_tigs.py

fc_graphs_to_h_tigs.py

fc_ovlp_filter_with_phase.py

fc_phased_ovlp_to_graph.py

fc_phasing.py

fc_phasing_readmap.py

fc_quiver.py

fc_rr_hctg_track.py

fc_select_reads_from_bam.py

fc_track_reads_htigs.py

fc_unzip.py

Dazzler commands

These commands are part of Gene Meyer’s Dazzler Suite of tools Dazzler Blog [http://dazzlerblog.wordpress.com]

FALCON relies on a slightly modified version of Gene Meyer’s code that can be found
here [https://github.com/cschin/DALIGNER], but is also bundled with the
FALCON-integrate [https://github.com/PacificBiosciences/FALCON-integrate.git] github repository.

	daligner [https://dazzlerblog.wordpress.com/command-guides/daligner-command-reference-guide]:

	Compare subject sequences to target sequences
daligner is controlled by pa_HPCdaligner_option and
ovlp_HPCdaligner_option.

To limit memory, one can use the -M option. For human assembly, we’ve tested with -M 32 for using 32G RAM for
each daligner. Other possibilities are under investigation.

For more details on daligner options, see the Dazzler Blog [http://dazzlerblog.wordpress.com]

	DB2fasta [https://dazzlerblog.wordpress.com/command-guides/dazz_db-command-guide]:

	The set of .fasta files for the given DB are recreated from the DB exactly as they were input.

	DBdump [https://dazzlerblog.wordpress.com/command-guides/dazz_db-command-guide]:

	Like DBshow, DBdump allows one to display a subset of the reads in the DB and select which information to show
about them including any mask tracks.

	DBdust [https://dazzlerblog.wordpress.com/command-guides/dazz_db-command-guide]:

	Runs the symmetric DUST algorithm over the reads in the untrimmed DB

	DBsplit [https://dazzlerblog.wordpress.com/command-guides/dazz_db-command-guide]:

	The total number of jobs that are run is determined by how one “splits” the sequence database. You should read
Gene Myers’s blog Dazzler Blog <http://dazzlerblog.wordpress.com> carefully to understand how the tuning options,
pa_DBsplit_option and pa_HPCdaligner_option work. Generally, for large genomes, you should use
-s400 (400Mb sequence per block) in pa_DBsplit_option. This will make a smaller number of jobs but each
job will run longer. However, if you have a job scheduler which limits how long a job can run, it might be
desirable to have a smaller number for the -s option.

	DBstats [https://dazzlerblog.wordpress.com/command-guides/dazz_db-command-guide]:

	Show overview statistics for all the reads in the trimmed data base <path>.db

	fasta2DB [https://dazzlerblog.wordpress.com/command-guides/dazz_db-command-guide]:

	Convert a fasta to a dazzler DB.

	HPC.daligner [https://dazzlerblog.wordpress.com/command-guides/daligner-command-reference-guide]:

	Generates overlap script to run all necessary daligner, LAsort and LAmerge commands

	LA4Falcon:

	Output data from a Dazzler DB into fasta format for FALCON. You can supply the argument -H with an integer value
to filter reads below a given threshold.

	LAcheck [https://dazzlerblog.wordpress.com/command-guides/daligner-command-reference-guide]:

	Check integrity of alignment files.

	LAmerge [https://dazzlerblog.wordpress.com/command-guides/daligner-command-reference-guide]:

	Merge the .las files <parts> into a singled sorted file

	LAsort [https://dazzlerblog.wordpress.com/command-guides/daligner-command-reference-guide]:

	Sort alignment files

Caution

These documents refer to an obsolete way of installing and running FALCON. They will remain up for historical context and for individuals still using the older version of FALCON/FALCON_unzip.

Attention

The current PacBio Assembly suite documentation which includes new bioconda instructions for installing FALCON, FALCON_unzip and their associated dependencies can be found here pb_assembly [http://github.com/PacificBiosciences/pb-assembly]

[image: FALCON Assembler]

Tutorial

In this section we will run the FALCON pipeline on an E. coli dataset.
We will work through the commands and results and give you ideas of how to assess
the perfomance of FALCON on your dataset so you can modify parameters and trouble-shoot more
effectively. This tutorial is a beginners guide to FALCON but assumes bioinformatics fluency.

Input Files

You will need three types of files to get started, your PacBio data in fasta format (can be one or many files), a
text file telling FALCON where to find your fasta files, and a configuration file.
All files except the fasta files must be in your job directory.

1. Download E. coli dataset

An example E. coli dataset can be download from here [https://downloads.pacbcloud.com/public/data/git-sym/]. and then unpacked. e.g.:

$ wget https://downloads.pacbcloud.com/public/data/git-sym/ecoli.m140913_050931_42139_c100713652400000001823152404301535_s1_p0.subreads.tar.gz
$ tar -xvzf ecoli.m140913_050931_42139_c100713652400000001823152404301535_s1_p0.subreads.tar.gz

You should find three fasta files of ~350 Mb each in the newly created subdirectory.

2. Create FOFN

Next, create a “file-of-file-names”, (“fofn”) with the full path of each fasta file, one per line.

/my/path/to/data/ecoli.1.subreads.fasta
/my/path/to/data/ecoli.2.subreads.fasta
/my/path/to/data/ecoli.3.subreads.fasta

3. Download configuration file

If you are running on a cluster with a scheduler use this a starting point:
fc_run_ecoli.cfg
If you are running your job locally, try this file:
fc_run_ecoli_local.cfg

These config files are meant to be starting points only! You will need to make adjustments according
to your particular compute setup. Please refer to these config files as you plan your run.

Note that I have manually specified a seed read length cutoff of
15kb rather than using an automated cut off (length_cutoff = -1, with calculated
length cut off = 22486). The
raw read coverage is very high (>200X); by reducing the seed read length cutoff, we avoid enriching
our seed reads for erroneous chimeric (and very long) reads. Try running the assembly using
the automated seed read length cut off, you should get a fragmented (28 contigs) and
incomplete assembly (< 900Mb).

Running FALCON

I send all of my FALCON jobs to the scheduler for ease of tracking job progress. Here is an example
bash script run_falcon.sh that submits to an SGE [http://gridscheduler.sourceforge.net/htmlman/manuals.html] cluster:

#!/bin/bash
#$ -S /bin/bash
#$ -N myJob
#$ -cwd
#$ -q myqueue

load dependencies
module load python/2.7.9 gcc/4.9.2

source build
cd /path_to_build/src/FALCON-integrate/
source env.sh

navigate to job directory, directory containing input.fofn
cd /path/to/my/job_dir

run it!
fc_run fc_run.cfg

To initiate the FALCON run, I just submit my job to the scheduler with a qsub command:

$ qsub run_falcon.sh

Alternatively, you can add the fc_env/bin directory to your
$PATH and invoke fc_run at the command line with your fc_run.cfg as the argument.
Note that this shell needs to persist through the entire assembly process so you may need
to use a window manager like screen [https://www.gnu.org/software/screen/manual/screen.html] to maintain your connection.

falcon_jobdir$ export PYTHONUSERBASE=/path_to_build/fc_env/
falcon_jobdir$ export PATH=$PYTHONUSERBASE/bin:$PATH
falcon_jobdir$ fc_run fc_run.cfg

Assessing Run Progress

Refer to the pipeline document for detailed summary of FALCON job directory structure,
sequence of commands, and output files created.

Counting Completed Jobs

The majority of run-time is spent during the daligner phases, performing the alignments and
then sorting and merging them. To determine how many jobs are performed for each step, refer to 0-rawreads/run_jobs.sh.

$ grep '^#' 0-rawreads/run_jobs.sh

 # Daligner jobs (60)
 # Initial sort jobs (400)
 # Check initial .las files jobs (80) (optional but recommended)
 # Remove initial .las files
 # Level 1 merge jobs (20)
 # Check level 2 .las files jobs (20) (optional but recommended)
 # Remove level 1 .las files (optional)

To determine how many jobs have completed, count the sentinel files that indicate a job is complete.
For example:

$ find 0-rawreads/ -name "job*done" | wc -l
60

$ find 0-rawreads/ -name "m_*done" | wc -l
20

Assessing Run Performance

Raw and Pread Coverage and Quality

The E. coli subreads
are a total of 1.01 Gb of data in 105,451 reads. countFasta.pl
is a useful script by Joseph Fass and Brad Sickler at UC Davis for calculating total sequence
length and other assembly metrics).

You can confirm that your dazzler database was correctly constructed using a utility from the dazzler [https://dazzlerblog.wordpress.com/command-guides/dazz_db-command-guide/] suite:

$ DBstats raw_reads.db > raw_reads.stats
$ head raw_reads.stats -n 17

Statistics for all reads of length 500 bases or more

 90,747 reads out of 105,451 (86.1%)
 964,281,429 base pairs out of 1,013,118,375 (95.2%)

 10,626 average read length
 6,805 standard deviation

Base composition: 0.248(A) 0.242(C) 0.263(G) 0.246(T)

Distribution of Read Lengths (Bin size = 1,000)

 Bin: Count % Reads % Bases Average
 45,000: 1 0.0 0.0 45611

You can see that we discarded 13.9% of the raw bases and 4.8% of the reads by employing a
raw read length cut off of 500bp in the DBsplit options. This file can
also be used to plot a histogram of raw read lengths.

The genome of this E. coli strain is 4.65 Mb long for a raw read coverage of ~207 fold.
Confirm this with the preassembly report:

$ cat 0-rawreads/report/pre_assembly_stats.json

"genome_length": 4652500,
"length_cutoff": 15000,
"preassembled_bases": 350302363,
"preassembled_coverage": 75.293,
"preassembled_mean": 10730.33,
"preassembled_n50": 16120,
"preassembled_p95": 22741,
"preassembled_reads": 32646,
"preassembled_seed_fragmentation": 1.451, # number split preads / seed reads
"preassembled_seed_truncation": 4453.782, # ave bp lost per pread due to low cov
"preassembled_yield": 0.758, # total pread bp / seed read bp
"raw_bases": 964281429,
"raw_coverage": 207.261,
"raw_mean": 10626.042,
"raw_n50": 14591,
"raw_p95": 23194,
"raw_reads": 90747,
"seed_bases": 461851093,
"seed_coverage": 99.269, # raw base coverage depth on seed reads
"seed_mean": 20029.103,
"seed_n50": 19855,
"seed_p95": 28307,
"seed_reads": 23059

A note on these statistics: in the process of created preads, seeds reads with insufficient
raw read coverage (usually due to base errors) will be split or truncated. The preassembled seed
fragmentation, truncation, and yield stats summarize the quality of pread assembly.
A good preassembled yield should be greater than 50%. Note that if an automated seed read length
is used for this data (22486), preassembled seed read truncation is ~6kb, indicating that many of the longest
raw reads are not supported by the rest of the data.

You can similarly summarize the contents of the dazzler database for preads using DBstats
and plotting in R.

Contig Stats

When your run is complete, you can summarize your assembly stats using the countFasta.pl
script:

$ countFasta.pl p_ctg.fa > p_ctg.stats
$ countFasta.pl a_ctg.fa > a_ctg.stats
$ tail p_ctg.stats

Total length of sequence: 4635395 bp
Total number of sequences: 1
N25 stats: 25% of total sequence length is contained in the 1 sequences >= 4635395 bp
N50 stats: 50% of total sequence length is contained in the 1 sequences >= 4635395 bp
N75 stats: 75% of total sequence length is contained in the 1 sequences >= 4635395 bp
Total GC count: 2352187 bp
GC %: 50.74 %

Assembly Graph and Pread Overlaps

Assembly contiguity can be enhanced by adjusting a few parameters in the last stage of the
assembly process. You can try a grid of pread length cut offs for
the filtering of the final overlaps in the assembly graph. In a general sense, longer pread length cut offs will increase the
contiguity (contig N50) in your assembly, but may result in shorter over all assembly length.
To try different length cut off, rename your 2-asm-falcon dir,
modify the config file, rename the log and mypwatcher directory, and restart FALCON:

$ mv 2-asm-falcon 2-asm-falcon_12kb
$ mv mypwatcher/ mypwatcher0/
$ mv all.log all0.log
$ qsub run_falcon.sh

The other parameter to adjust is the number of overlaps in the assembly graph. First, look
at a histogram of the number of overlaps on the 5’ and 3’ end of each read. Run the falcon utility:

make sure utility is in $PATH
$ export PYTHONUSERBASE=/path_to_build/fc_env/
$ export PATH=$PYTHONUSERBASE/bin:$PATH

navigate to directory
$ cd 2-asm-falcon
$ fc_ovlp_stats --fofn ../1-preads_ovl/merge-gather/las.fofn > ovlp.stats

Then plot histograms of the number of 5’ and 3’ overlaps between preads in R.
This can inform your parameters for sge_option_fc where min_cov and max_cov
should flank the bulk of the distribution. For repetative genomes, a second mode in the distribution
may appear, containing preads ending or begining in repetative material. It is best to choose a max_cov
to the left of the repeat mode that removes these repetative overlaps.

Troubleshooting Run

If you find your run has died here are some suggestions of how to restart,
in order of increasing difficulty:

Simple Restart

Simply rename your log file and mypwatcher directory and restart the pipeline. Renaming these
files preserves them for you reference, and by removing the original mypwatcher directory
the pipeline, when restarted, will scan your job directory for completed jobs and pick up where it left off:

$ mv mypwatcher/ mypwatcher0/
$ mv all.log all0.log
$ qsub run_falcon.sh

Directory Cleanup and Restart

First, determine which job caused the run to fail. For example:

$ grep 'ERROR' all.log

2016-11-21 03:21:39,482 - pypeflow.simple_pwatcher_bridge - ERROR - Task Node(0-rawreads/m_00210) failed with exit-code=99
2016-11-21 03:21:39,482 - pypeflow.simple_pwatcher_bridge - ERROR - Failed to clean-up FakeThread: jobid=Pcfbdb8b3c50d5e status='EXIT '

Delete all directories that failed, then rename the log file and mypwatcher as above:

$ rm -rf 0-rawreads/m_00210
$ mv mypwatcher/ mypwatcher0/
$ mv all.log all0.log
$ qsub run_falcon.sh

You can find out more details about the failed jobs in mypwatcher/ to diagnose the problem.

$ less mypwatcher/jobs/Pcfbdb8b3c50d5e/stderr
$ less mypwatcher/jobs/Pcfbdb8b3c50d5e/stdout

Manual Running of Failed Jobs

If your job still fails, try manually running the problematic jobs. Search in the job
directory for the shell script containing the individual tasks and try manually running
the shell script or individual tasks:

$ ls job_0000

job_0000_done L1.19.5.las L1.19.7.las L1.5.19.las L1.7.19.las raw_reads.db run.sh task.json
L1.19.4.las L1.19.6.las L1.4.19.las L1.6.19.las pwatcher.dir rj_0000.sh run.sh.done task.sh

$ head job_0000/rj_0000.sh -n 12

#!/bin/bash
set -vex

db_dir=/lustre/hpcprod/skingan/FALCON_tutorial/ecoli/0-rawreads
ln -sf ${db_dir}/.raw_reads.bps .
ln -sf ${db_dir}/.raw_reads.idx .
ln -sf ${db_dir}/raw_reads.db .
ln -sf ${db_dir}/.raw_reads.dust.anno .
ln -sf ${db_dir}/.raw_reads.dust.data .
daligner -v -t16 -H22486 -e0.7 -s1000 raw_reads.19 raw_reads.4 raw_reads.5 raw_reads.6 raw_reads.7
LAcheck -v raw_reads *.las
LAsort -v raw_reads.4.raw_reads.19.C0 raw_reads.4.raw_reads.19.N0 raw_reads.4.raw_reads.19.C1 raw_reads.4.raw_reads.19.N1 raw_reads.4.raw_reads.19.C2 raw_reads.4.raw_reads.19.N2 raw_reads.4.raw_reads.19.C3 raw_reads.4.raw_reads.19.N3 && LAmerge -v L1.4.19 raw_reads.4.raw_reads.19.C0.S raw_reads.4.raw_reads.19.N0.S raw_reads.4.raw_reads.19.C1.S raw_reads.4.raw_reads.19.N1.S raw_reads.4.raw_reads.19.C2.S raw_reads.4.raw_reads.19.N2.S raw_reads.4.raw_reads.19.C3.S raw_reads.4.raw_reads.19.N3.S

Once these jobs have run to completion, you can try restarting the pipeline.

Caution

These documents refer to an obsolete way of installing and running FALCON. They will remain up for historical context and for individuals still using the older version of FALCON/FALCON_unzip.

Attention

The current PacBio Assembly suite documentation which includes new bioconda instructions for installing FALCON, FALCON_unzip and their associated dependencies can be found here pb_assembly [http://github.com/PacificBiosciences/pb-assembly]

[image: Falcon Assembler]

Parameters

Configuration

Here are some example fc_run.cfg and fc_unzip.cfg files. We make no guarantee that they will work with your
dataset and cluster configuration. We merely provide them as starting points that have proven themselves on internal
datasets. A lot of your success will depend purely on the quality of the input data prior to even engaging the FALCON
pipeline. Also, these particular configs were designed to work in our SGE compute cluster, so some tuning will likely
be necessary on your part. You should consult with your HPC administrator to assist in tuning to your cluster.

FALCON Parameter sets

fc_run_fungal.cfg - Has worked well on a 40Mb fungal genome

fc_run_human.cfg - Has worked well on at least one human dataset

fc_run_bird.cfg - Has worked well on at least one avian dataset

fc_run_yeast.cfg - Has worked well on at least one yeast dataset

fc_run_dipteran.cfg - Has worked well on at least one dipteran (insect) dataset

fc_run_mammal.cfg - Has worked well on at least one mammalian dataset

fc_run_mammalSequel.cfg - Has worked well on at least one mammalian Sequel dataset

fc_run_plant.cfg - Has worked well on at least one plant (Ranunculales) dataset

fc_run_arabidopsis.cfg - Configuration for arabidopsis assembly in Chin et al.
2016

fc_run_ecoli.cfg - Configuration for test E. coli dataset

fc_run_ecoli_local.cfg - Configuration for test E. coli dataset run locally

FALCON_unzip Parameter sets

fc_unzip.cfg - General all purpose unzip config

Available Parameters

fc_run.cfg

	input_fofn <str>

	filename for the file-of-filenames (fofn)
Each line is fasta filename.
Any relative paths are relative to the location of the input_fofn.

	input_type <str>

	“raw” or “preads”

	genome_size <int>

	estimated number of base-pairs in haplotype

	seed-coverage <int>

	requested coverage for auto-calculated cutoff

	length_cutoff <int>

	Raw reads shorter than this cutoff won’t be considered in the assembly process.
If ‘-1’, then auto-calculate the cutoff based on genome_size and seed_coverage.

	length_cutoff_pr <int>

	minimum length of seed-reads used after pre-assembly, for the “overlap” stage

	target <str>

	“assembly” or “preads”
If “preads”, then pre-assembly stage is skipped and input is assumed to be preads.

	default_concurrent_jobs <int>

	maximum concurrency
This applies even to “local” (non-distributed) jobs.

	pa_concurrent_jobs <str>

	Concurrency settings for pre-assembly

	cns_concurrent_jobs <str>

	Concurrency settings for consensus calling

One can use cns_concurrent_jobs to control the maximum number of concurrent consensus jobs submitted to the
job management system. The out.XXXXX.fasta files produced are used as input for the next step in the pipeline.

	ovlp_concurrent_jobs <str>

	Concurrency settings for Overlap detection

	job_type <str>

	grid submission system, or “local”
Supported types include: “sge”, “lsf”, “pbs”, “torque”, “slurm”, “local”
case-insensitive

	job_queue <str>

	grid job-queue name
Can be overridden with section-specific sge_option_*

	sge_option_da <str>

	Grid concurrency settings for initial daligner steps 0-rawreads/

	sge_option_la <str>

	Grid concurrency settings for initial las-merging 0-rawreads/

	sge_option_cns <str>

	Grid concurrency settings for error correction consensus calling

	sge_option_pda <str>

	Grid concurrency settings for daligner on preads 1-preads_ovl/

	sge_option_pla <str>

	Grid concurrency settings for las-merging on preads in 1-preads_ovl/

	sge_option_fc <str>

	Grid concurrency settings for stage 2 in 2-asm-falcon/

	pa_DBdust_option <str>

	Passed to DBdust. Used only if dust = true.

	pa_DBsplit_option <str>

	Passed to DBsplit during pre-assembly stage.

	pa_HPCdaligner_option <str>

	Passed to HPC.daligner during pre-assembly stage.
We will add -H based on``length_cutoff``.

The -dal option also controls the number of jobs being spawned. The number
for the -dal option determines how many blocks are compared to each in single jobs. Having a larger number
will spawn a fewer number of larger jobs, while the opposite will give you a larger number of small jobs. This
will depend on your on your compute resources available.

In this workflow, the trace point generated by daligner is not used. (Well, to be efficient, one should use the trace
points but one have to know how to pull them out correctly first.) The -s1000 argument makes the trace points
sparse to save some disk space (not much though). We can also ignore all reads below a certain
threshold by specifying a length cutoff with -l1000.

The biggest difference between this parameter and the ovlp_HPCdaligner_option parameter is that the latter needs
to have a relaxed error rate switch -e as the alignment is being performed on uncorrected reads.

	pa_dazcon_option <str>

	Passed to dazcon. Used only if dazcon = true.

	falcon_sense_option <str>

	Passed to fc_consensus.
Ignored if dazcon = true.

	falcon_sense_skip_contained <str>

	Causes -s to be passed to LA4Falcon. Rarely needed.

	ovlp_DBsplit_option <str>

	Passed to DBsplit during overlap stage.

	ovlp_HPCdaligner_option <str>

	Passed to HPC.daligner during overlap stage.

	overlap_filtering_setting <str>

	Passed to fc_ovlp_filter during assembly stage.

	fc_ovlp_to_graph_option <str>

	Passed to fc_ovlp_to_graph.

	skip_check <bool>

	If “true”, then skip LAcheck during LAmerge/LAsort.
(Actually, LAcheck is run, but failures are ignored.)
When daligner bugs are finally fixed, this will be unnecessary.

	dust <bool>

	If true, then run DBdust before pre-assembly.

	dazcon <bool>

	If true, then use dazcon (from pbdagcon repo).

	stop_all_jobs_on_failure <bool>

	DEPRECATED
This was used for the old pypeFLOW refresh-loop, used by run0.py.
(This is not the option to let jobs currently in SGE (etc) to keep running, which is still TODO.)

	use_tmpdir <bool>

	(boolean string) whether to run each job in TMPDIR and copy results back to nfs
If “true”, use TMPDIR. (Actually, tempfile.tmpdir. See standard Python docs: https://docs.python.org/2/library/tempfile.html)
If the value looks like a path, then it is used instead of TMPDIR.

fc_unzip.cfg

	job_type <str>

	same as above.
grid submission system, or “local”
Supported types include: “sge”, “lsf”, “pbs”, “torque”, “slurm”, “local”
case-insensitive

	input_fofn <str>

	This will be the same input file you used in your fc_run.cfg

	input_bam_fofn <str>

	List of movie bam files. Only necessary if performing consensus calling step at the end.

	smrt_bin <str>

	path to bin directory containing samtools, blasr, and various GenomicConsensus utilities

	jobqueue <str>

	Queue to submit SGE jobs to.

	sge_phasing <str>

	Phasing grid settings. Example: -pe smp 12 -q %(jobqueue)s

	sge_quiver <str>

	Consensus calling grid settings. Example -pe smp 24 -q %(jobqueue)s

	sge_track_reads <str>

	Read tracking grid settings. Example -pe smp 12 -q %(jobqueue)s

	sge_blasr_aln <str>

	blasr alignment grid settings. Example -pe smp 24 -q %(jobqueue)s

	sge_hasm <str>

	Final haplotyped assemble grid settings Example -pe smp 48 -q %(jobqueue)s

	unzip_concurrent_jobs <int>

	Number of concurrent unzip jobs to run at a time

	quiver_concurrent_jobs <int>

	Number of concurrent consensus calling jobs to run

Caution

These documents refer to an obsolete way of installing and running FALCON. They will remain up for historical context and for individuals still using the older version of FALCON/FALCON_unzip.

Attention

The current PacBio Assembly suite documentation which includes new bioconda instructions for installing FALCON, FALCON_unzip and their associated dependencies can be found here pb_assembly [http://github.com/PacificBiosciences/pb-assembly]

[image: Falcon Assembler]

Glossary

	associated contig

	Alternate configuration (phase) of a portion of a primary contig*. See this
discussion on primary vs associated contigs

	compound path

	multi-paths from a single source to a single sink in a graph

	contig

	contiguous sequence output from a genome assembler

	error correction

	The process of combining data from multiple raw sequences with random error profile
together to eliminate the errors.

	full-pass subread

	A subread that begins at one adapter sequence and ends at another adapter sequence. A
full-pass subread does not begin or end in the middle of an insert sequence.

	haplotig

	Contig from specific haplotype

	pread

	Pre-assembled Reads, error corrected reads through the pre-assembly process.

	pre-assembly

	Error correction process assembling raw sequences to generate high qualityy consensus for the
final step of assembly.

	primary contig

	contig which captures a contiguous part of a genome regardless the variations due to the
variation between haplotypes associated contig generated by alternative paths from a portion
in the primary contig

	proper overlap

	read overlaps without unaligned overhangs:

	Quiver

	A highly accurate consensus and variant caller that can generate 99.999% accurate consensus
sequences using local realignment and the full range of quality scores associated with
Pacific Biosciences reads. Part of the SMRT® Analysis suite.

	rawreads

	Uncorrected raw SMRTcell movie data

	simple path

	a path without any branches in the assembly graph

	string graph

	see The fragment assembly string graph [http://bioinformatics.oxfordjournals.org/content/21/suppl_2/ii79.abstract]
by Eugene W. Myers, 2005

	subread

	Each polymerase read is partitioned to form one or more subreads, which contain sequence
from a single pass of a polymerase on a single strand of an insert within a SMRTbell™
template and no adapter sequences. The subreads contain the full set of quality values and
kinetic measurements. Subreads are useful for applications like de novo assembly,
resequencing, base modification analysis, and so on.

Caution

These documents refer to an obsolete way of installing and running FALCON. They will remain up for historical context and for individuals still using the older version of FALCON/FALCON_unzip.

Attention

The current PacBio Assembly suite documentation which includes new bioconda instructions for installing FALCON, FALCON_unzip and their associated dependencies can be found here pb_assembly [http://github.com/PacificBiosciences/pb-assembly]

Frequently Asked Questions

General

Can I start from corrected reads?

Yes. The option input_type can be set to either raw or preads. In the case of the latter,
fc_run.py will assume the fasta files in input_fofn are all error-corrected reads and it
will ignore any error correction step and go directly into the final assembly overlapping step.

How do I select a length cutoff?

The option length_cutoff controls the read length cutoff used during the
error correction process and length_cutoff_pr controls the cutoff used for the
final assembly overlapping steps. In the final assembly, more reads may not lead to a better assembly due to the
fact that some of the reads can be noisy and create false links in the assembly graph. Sometimes you might want
to re-run the final steps of the assembly pipeline in 2-asm-falcon with different values for --min_len
in run_falcon_asm.sub.sh as this step is quick relative to the overlap detection steps in the earlier stages
of the pipeline.

If you’re not sure, and you are not compute resource limited, one strategy is to choose a smaller
length_cutoff and do the computation once. Later, one can use a different
length_cutoff_pr to achieve a more contiguous assembly

In general we recommend that you tune the cutoff so that you’re left with roughly 15x to 20x for final genome assembly.
If you set length_cutoff equal to -1, FALCON will attempt to autocalculate this cutoff
for you.

What’s the difference between a Primary and an Associated contig?

Primary contigs can be thought of as the longest continuous stretches of contiguously
assembled sequence, while associate contigs can be thought of mostly as structural
variants that occur over the length of the primary contigs. Thus, each alternate primary contig configuration
(associated contig) can be “associated” with it’s primary based on it’s XXXXXXF prefix.

Some basic information about how the associated contigs are generated can be found
in this speakerdeck [https://speakerdeck.com/jchin/string-graph-assembly-for-diploid-genomes-with-long-reads] (pg.14)
, here [https://speakerdeck.com/jchin/learning-genome-structrues-from-de-novo-assembly-and-long-read-mapping]
(pg.14-15) and here [https://speakerdeck.com/jchin/learning-genome-structrues-from-de-novo-assembly-and-long-read-mapping].

Conceptually, if a genome is haploid, then all contigs should be primary contigs. However, in general there will usually
still be some associated contigs generated. This is likely due to:

	Sequencing errors

	Segmental duplications.

For the first case, Quiver should help by filtering out low quality contigs. Since there is more sequence in
the set of primary contigs for blasr to anchor reads and there is no true unique region in the erroneous
associated contigs, the raw read coverage on them should be low. We can thus filter low quality
associated contig consensus as there won’t be much raw read data to support them.

For the second case, one could potentially partition the reads into different haplotype groups and construct
an assembly graph for each haplotype and generate contigs accordingly.

If a genome is a diploid genome, then most of the associated contigs will be locally alternative alleles.
Typically, when there are big structural variations between homologous chromosomes, there will be alternative
paths in the assembly graph and the alternative paths correspond to the associated contigs. In such case,
the primary contigs are “fused contigs” from both haplotypes.

FALCON_unzip is currently being developed to resolve the haplotypes so haplotigs can
be generated. Two videos illustrating the concept - (Video 1 [https://youtu.be/yC1ujdLUT7Q] ,
Video 2 [https://youtu.be/vwSyD31eahI])

A slide [https://twitter.com/infoecho/status/604070162656985088] illustrating the method on a synthetic genome.

What are the differences between a_ctg.fasta and a_ctg_base.fasta

The file a_ctg_base.fasta contains the sequences in the primary contigs fasta that correspond to the associated
contigs inside a_ctg.fasta. Namely, each sequence of a_ctg_base.fasta is a contiguous sub-sequence of a primary
contig. For each sequence inside `a_ctg_base.fasta, there are one or more associated contigs in a_ctg.fasta.

For a given contig in a_ctg.fa, how can I find it’s primary contig map coordinates?

The 2nd field and the 3rd field of the sequence header inside a_ctg.fa indicate the begin node and the end node of
the contig. For example, if we have a header like

>000000F-001-01 000941458:E 000486369:E 15593 47559 5 0.9969 0.8447

It means the associated contig 000000F-001-01 starts from node 000941458:E and ends at 000486369:E. Thsee two nodes
should be also in the path of the corresponding primary contig. The path of the primary contig is fully specified in
the file p_ctg_tiling_path, you can find exact beginning and ending points where the associated contig are attached
to the primary contigs. However, the coordinates are not conserved after the Quiver consensus step,
it might be necessary to do some quite alignment to recalibrate the attaching points after quiver consensus.
In some case, you can even just do quick sequence alignment to find the homologous region in the primary contig of
an associated contigs.

How does FALCON avoid chimeras given homologous repeat regions on different chromosomes?

Such repeats are typically called as “segmental duplications”. Yes, Falcon will collapse these regions if the
overlapper can not distinguish the repeats. As discussed above in some case, it is just
like the case of a diploid genome, we can potentially resolve the two distinct haplotypes. In other cases,
the repeat is more complicated, such as if there are more than 2 copies, (e.g. the middle part of contigs 4006 in
page 21 of
this slide deck [https://speakerdeck.com/jchin/learning-genome-structrues-from-de-novo-assembly-and-long-read-mapping].
To resolve these regions, we’ll need to do more investigation to separate the reads into more than two groups
to resolve them.

Can Falcon handle X-ploid genome data?

Falcon, in its current form, is a “diploid or polyploid aware assembler”. I believe there is no fully specific
definition what a “diploid or polyploid assembler” should deliver yet at the moment of this writing.
From the point of the genome assembly research field, it is still quite new. There were a couple of papers published
before for diploid assemblies. However, the general strategy is the phasing adding reads on top on earlier assembly
step.

To some degree, the current Falcon assembler provides a better way to build that foundation for a full diploid /
polyploid assembler. Please refer to this slide deck
https://speakerdeck.com/jchin/string-graph-assembly-for-diploid-genomes-with-long-reads for some detail. Some
technical details of the deck are already obsoleted for a little bit, but the general concept is still applied to
most recent code in Falcon.

For a tetraploid genome, depending on the genome structure, I would argue one will get better continuity from
the primary contigs if you use Falcon for assembling the genome. However, you will need to do good analysis
on both primary and associated contigs (or better, the assembly graph directly) after running Falcon to
interpret the results correctly. The primary contigs will be “fused” contigs from all haplotypes unless
the differences between haplotypes are big such that the assembler’s overlap segregate them apart already.

There are some prototype work to fully segregate the “fused primary contigs” for diploid case. I just
presented the ideas in #SFAF2015 conference. For tetraploid case, it will need some hard-code non-trivial
mathematics research work to get it work right.

Why don’t I have two perfectly phased haplotypes after FALCON_unzip?

It’s useful to first understand that not all genomes are alike. Haploid genomes are the holy grail of genome assembly
as there is only one haplotype phase present and assembly is trivial if you have reads long enough to span repeats.
Diploid and (allo/auto)polyploid genomes become difficult as there are two or more haplotype phases present. This fact,
coupled with widely varying levels of heterozygosity and structural variation lead to complications during the assembly
process. To understand your FALCON output, it’s useful to look at this supplemental figure from the FALCON_unzip [http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.4035.html] paper:

[image: _images/heterozygosity.jpg]
Consider the first line as a cartoon illustrating 3 ranges of heterozygosity (low/medium/high).
In general, all genomes will have regions that fall into each of these three categories depending on organismal
biology. During the first step of the FALCON assembly process, a diploid aware assembly graph is generated.
At this point, in medium heterozygosity regions structural variation information is captured as bubbles or
alternative pathways in the assembly graph whereas at high levels of heterozygosity the haplotype phases assemble into
distinct primary assembly graphs.

The FALCON_unzip add-on module to the FALCON pipeline is an attempt to leverage the heterozygous SNP information to
phase the medium level heterozygosity regions of the genome. Low heterozygosity regions have insufficient SNP
density for phasing, while high heterozygosity regions will likely have already been assembled as distinct haplotypes
in the primary contigs.

FALCON_unzip yields two fasta files. One containing primary contigs, and one containing haplotigs. The primary contigs
fasta file is the main output that most people consider first and should consist of the majority of your genome. Primary
contigs are considered partially-phased. What this means is that even after the unzipping process, certain regions
with insufficient SNP density are unable to be phased and are thus represented as collapsed haplotypes. The presence
of these regions of low heterozygosity makes it impossible to maintain phase across the entire primary contig. Thus
primary contigs may contain phase-switches between unzipped regions. The haplotigs file will consist of the unzippapble
or phaseable regions of the genome and are considered fully phased. This means there should be no phase switching within
a haplotig and each haplotig should represent only one phase. See this figure for reference:

[image: _images/phaseswitch.png]
It’s also important to note that in high heterozygosity situations, we often see the primary contig fasta file
approaching 1.5X+ the expected haploid genome size, due to the assembly of both phases of certain chromosomes or
chromosomal regions in the primary assembly.

Also, one needs to consider that FALCON_unzip was designed to phase the plant and fungal genomes in the 2016 Nature Methods
paper above, but many people have successfully used it to help phase their genome of interest. But as always with
free software on the internet, your mileage may vary.

How much haplotype divergence can FALCON-Unzip handle?

The magnitude of haplotype divergence determines the structure of the resulting FALCON-Unzip assembly. Genomic regions with low
heterozygisty will be assembled as collapsed haplotype on a single primary contig. Haplotypes up to ~5% diverged will be Unzipped,
while highly divergent haplotypes will be assembled on different primary contigs. In the latter case, it is up to the user to
identify these contigs as homologous using gene annotation or sequence alignment.

For a variety of FALCON-Unzip assemblies, here is the distribution of haplotype divergence for unzipped regions. Each haplotig
was aligned to the corresponding primary contig with nucmer [https://github.com/mummer4/mummer], filtered with delta-filter and
divergence was estimated with show-choords. (Data credits to John Williams, Tim Smith, Paolo Ajmone-Marsan, David Hume, Erich Jarvis,
John Henning, Dave Hendrix, Carlos Machado, and Iago Hale).

[image: _images/unzippedHapDiv.png]

Why does FALCON have trouble assembling my amplicon data?

FALCON was designed for whole genome shot gun assembly rather than amplicon assembly. In whole genome shotgun
assembly we suppress repetitive high copy regions to assemble less repetitive regions first.
When you assemble PCR product of a short region in a genome, FALCON sees the whole thing as a high copy repeat
and filters alot of the data out.

You can try to down sample your data and make the daligner block size even smaller (reduce -s50 in
pa_DBsplit_option and ovlp_concurrent_jobs) and increase the overlap filter thresholds (–max_diff 100
–max_cov 100 in overlap_filtering_setting) to try to make it work, however it’s not really within the scope of
the FALCON algorithm.

Workflow

How do I restart a failed workflow?

Often times restarting a FALCON job due to unexplained failure is an easy process. It’s typically just a matter
of removing any sentinel files and re-invoking fc_run.py fc_run.cfg from the FALCON root directory. Read
this [https://github.com/PacificBiosciences/FALCON/wiki/Tips] section of the wiki for details.
If your job failed due to
quota or other disk full issues [https://github.com/PacificBiosciences/FALCON/wiki/Contrib#disk-quotas]
, you may need to wipe the directory and start over again due to corrupt DB’s

How do I turn on logging?

See this [https://github.com/PacificBiosciences/FALCON/issues/139] github issue.

In short, you should pass logging.ini as the 2nd argument to fc_run.py

$ fc_run.py fc_run.cfg logging.ini

Caution

These documents refer to an obsolete way of installing and running FALCON. They will remain up for historical context and for individuals still using the older version of FALCON/FALCON_unzip.

Attention

The current PacBio Assembly suite documentation which includes new bioconda instructions for installing FALCON, FALCON_unzip and their associated dependencies can be found here pb_assembly [http://github.com/PacificBiosciences/pb-assembly]

Changelog

3/12/2018

8/08/2018

FALCON Updates:

Repeat Masking

	Integration of DAMASKER: Tandem repeat masking (done) and general repeat masking (in progress)

Improved default settings for microbial assembly

	Use one longest read per ZMW: reduced chimerism, coverage bias

	Retuned parameters to increase contiguity

New! GFA-2 support

	Assembly graphs now written in both GFA-1 and GFA-2 formats

	Placement coordinates of associate contigs now available in a new “contig.gfa2” file

Performance Improvements

	General workflow and resource specification improvements

	Easier integration of future features with Pbsmrtpipe

FALCON-Unzip Updates:

Improved Haplotig Extraction

	Algorithm and data structure improvements reduce haplotype switching and improve extraction (resolved nested and overlapping haplotigs)

	Can now handle circular contigs!

New! Placement Files

	Haplotig placement (PAF format) generated after Unzip

	Easier integration with FALCON-Phase

Performance Improvements

	Use of Minimap2 instead of BLASR for phasing in Unzip reduces time requirements

	Significantly reduced memory consumption of the final stage of Unzip (preads no longer have to be loaded in memory)

	Unzipping and polishing are now combined in the same workflow and run consecutively.

Relevant Talks and Poster Presentations

Sequencing, Finishing and Analysis in the Future

May 23rd 2018, Sante Fe, NM

FALCON-Phase talk by Sarah Kingan

FALCON-Phase

SMRT Informatics Developers Conference

Jan 17th 2018, San Diego, CA

Agenda

Keynote by Tim Smith

TimSmith_The_evolution_of_reference_assembly

Software Updates from PacBio

JimDrakePacBio_SMRTAnalysisUpdates

Lightning Talks

ZevKronenberg_PhaseGenomics_HighQualityGenomesPacBioHiC

SKoren_NHGRI_TrioBinning

ETseng_PacBio_IsoPhase

AConesa_UF-PF_IsoSeq_SQUANTI_TAPPAS

BBowman_PacBio_RepeatAnalysisNoAmp

AWenger_PacBio_PBSV

PAGXXVI in San Diego, January 2018

PacBio Presented Posters

Concepcion-PAG-2018-Maize_Soy_SV.pdf

Concepcion-PAG-2018-S.californicum_de novo_assembly.pdf

Kingan-PAG-2018-BestPracticesforDiploidAssemblyofComplexGenomesUsingPacBioHops.pdf

Tseng-PAG-2018-Haplotyping-of-full-length-transcripts.pdf

Talks

Zev Kronenberg (Phase Genomics, fmr Eichler Lab, UW) work on great ape genomes
ZKronenberg_GreatApeComparativeGenomics_PAG2018.pdf

Lloyd Low (Williams Lab, Adelaide) work on waterbuffalo, includes issue of haplotype switching and scaffolding
LLow_WaterBuffalo_PAG2018.pdf

Tools for Polyploids Meeting

San Diego Botanical Garden, Jan 12th, 2018

KinganPacBio_ToolsForPolyploidsPAG2018.pdf

PacBio East Coast User Group Meeting

Baltimore, June 27th, 2017

Kingan_DiploidGenome_ECUGM2017_BFX.pdf

Fritz_Sedlazeck_SVswithPacB.pdf

Ghurye_PacBHiC_Asm.pdf

Wenger_pbsv_BFXwrkshop.pdf

Goodwin_SamplePrep_ExtraLongLibraries.pdf

Smith_SamplePrep_BestPracLargeInsertLib.pdf

HamidAshrafi_BlueberryAsmIsoSeq.pdf

Caution

These documents refer to an obsolete way of installing and running FALCON. They will remain up for historical context and for individuals still using the older version of FALCON/FALCON_unzip.

Attention

The current PacBio Assembly suite documentation which includes new bioconda instructions for installing FALCON, FALCON_unzip and their associated dependencies can be found here pb_assembly [http://github.com/PacificBiosciences/pb-assembly]

Running Unzip on HGAP4 output

Overview

HGAP4 is a FALCON-based assembly pipeline, available through the SMRT Link interface. The pipeline itself encapsulates de novo assembly and polishing of the resulting contigs, but not the FALCON-unzip process as well. FALCON-unzip is currently available as a standalone tool, runnable only via command line.

Although HGAP4 runs FALCON under the hood, the folder structure it generates is different than that of FALCON. The FALCON-unzip, however, requires the assembly folders to be formatted in the FALCON-style.

This tutorial describes the necessary steps required to adjust the HGAP4 output to be compatible with a form required by FALCON-unzip.

In brief, the majority of work required to adjust the HGAP4 output to a FALCON-compatible directory structure is implemented in a script called hgap4_adapt. This script lives in the FALCON repository.

The complete process is composed of the following steps:

	Installing FALCON and FALCON-unzip.

	Running hgap4_adapt.

	Creating the fc_unzip.cfg configuration file for FALCON-unzip.

	Creating the input.fofn and input_bam.fofn.

	Running FALCON-unzip.

IMPORTANT: FALCON-unzip can only be run on HGAP4 jobs which had the Save Output for Unzip option turned on. It is not possible to run FALCON-unzip otherwise, because critical files will be missing from your job’s output.

1. Installing FALCON and FALCON-unzip

The latest versions of FALCON and FALCON-unzip are available as precompiled Linux binaries. The easiest approach to installing them is through a wrapper script, described here:

Quick Start

Follow this approach to set-up the environment before moving on to step 2.

Alternatively, one can install the binaries manually by following the instructions here:
https://github.com/PacificBiosciences/FALCON_unzip/wiki/Binaries

2. Running hgap4_adapt

Once the FALCON installation was successful, one needs to activate the installation environment to make the hgap4_adapt script available. This will also activate FALCON and FALCON-unzip. To verify the installation, run the following:

source /path/to/your/install/dir/fc_env/bin/activate
python -m falcon_kit.mains.hgap4_adapt --help

If everything was successful, this should output verbose usage information to screen. After this is set-up and working, adapting an existing HGAP4 run is as simple as the following example (take note of the dummy path, and replace it with a real one):

source /path/to/your/install/dir/fc_env/bin/activate

job_dir=/path/to/your/hgap4/job/123/123456/
mkdir –p example1
cd example1
python -m falcon_kit.mains.hgap4_adapt --job-output-dir=${job_dir}

The result should be visible in the example1 directory - it should now be populated to folders resembling a typical FALCON assembly run.

3. Creating the fc_unzip.cfg configuration file for FALCON-unzip

For help on .cfg files, please take a look at these Wiki pages:

	https://github.com/PacificBiosciences/FALCON/wiki

	https://github.com/PacificBiosciences/FALCON_unzip/wiki

	https://github.com/PacificBiosciences/FALCON-integrate/wiki

4. Creating the input.fofn and input_bam.fofn

The input.fofn file (“file of file names”) contains the paths to files containing plain FASTA sequences of your raw reads, one file per row. All raw reads in the FASTA format should be available in your job dir:

job_dir=/path/to/your/hgap4/job/123/123456/
mkdir –p example1
cd example1

echo "${job_dir}/tasks/pbcoretools.tasks.gather_fasta-1/file.fasta" > input.fofn

The input_bam.fofn is required for the polishing step. This file is composed of a list of all BAM files from the input dataset which was provided to the initial HGAP4 run:

source /path/to/your/install/dir/fc_env/bin/activate

job_dir=/path/to/your/hgap4/job/123/123456/
mkdir –p example1
cd example1

dataset summarize ${job_dir}/tasks/pbcoretools.tasks.filterdataset-0/filtered.subreadset.xml | grep -E "*.bam$" > input_bam.fofn

5. Running FALCON-unzip

Before running FALCON-unzip, the adapted folder structure should be similar to the following:

$ cd example1
$ ls | xargs -n 1
 0-rawreads
 1-preads_ovl
 2-asm-falcon
 fc_unzip.cfg
 input_bam.fofn
 input.fofn

Finally, to run FALCON-unzip, do the following:

source /path/to/your/install/dir/fc_env/bin/activate
cd example1
fc_unzip.py fc_unzip.cfg
fc_quiver.py fc_unzip.cfg

Index

 A
 | C
 | E
 | F
 | H
 | P
 | Q
 | R
 | S

A

 	
 	associated contig

C

 	
 	compound path

 	
 	contig

E

 	
 	error correction

F

 	
 	full-pass subread

H

 	
 	haplotig

P

 	
 	pre-assembly

 	pread

 	
 	primary contig

 	proper overlap

Q

 	
 	Quiver

R

 	
 	rawreads

S

 	
 	simple path

 	
 	string graph

 	subread

 [image: Pread Ovlp Histogram]

Example R Code

library(ggplot2)
o<-read.table("ovlp.stats", header=F)
colnames(o)<-c("pread","length","fivePrimeOvlps","threePrimeOvlps")

pdf(file="OvlpHist.pdf", width=11, height=5)
par(oma=c(3,3,2,0), cex=1.6, las=1, mar=c(4,4,2,2), mfrow=c(1,2))
hist(o$fivePrimeOvlps, breaks=100,
 xlab="number of overlaps between preads",
 ylab="count", main="Five Prime")
hist(o$threePrimeOvlps, breaks=100,
 xlab="number of overlaps between preads",
 ylab="count", main="Three Prime")
dev.off()

Example Input Files

ovlp.stats

 [image: Raw Read Histogram]
[image: PRead Histogram]

Example R Code

setwd("my/dir")
raw<-read.table("raw_reads.stats.txt", header=T)
preads<-read.table("preads.stats.txt",header=T)

pdf(file="RawReadHist.pdf", width=11, height=8.5)
par(oma=c(4,4,2,0), cex=1.6, las=1, mar=c(4,4,2,2))
plot(data=raw, Count~Bin, type="h",col="DeepSkyBlue", lwd=5,
 ylab="", xlab="Read Length", main="Raw Reads")
mtext("Read Count", side=2, cex=1.7, las=3, line=4)
dev.off()

pdf(file="PreadHist.pdf", width=11, height=8.5)
par(oma=c(4,4,2,0), cex=1.6, las=1, mar=c(4,4,2,2))
plot(data=preads, Count~Bin, type="h",col="ForestGreen", lwd=5,
 ylab="", xlab="Read Length", main="Preassembled Reads")
mtext("Read Count", side=2, cex=1.7, las=3, line=4)
dev.off()

Example Input Files

raw_reads.stats.txt

preads.stats.txt

fc_graph_to_contig.py

The final step in the generation of draft contigs is to find a single path for each contig graph and to generate
sequence accordingly. In the case that a contig graph is not a simple path, we find the end-to-end path that
has the most overlapped bases. This is called as the primary contig. For each compound path within the
graph, if an alternative path different from primary one is possible, we will construct the associated contig.
In the case where the associated contigs are induced by sequencing error, the identity of the
alternative contig and the primary contig will be high (> 99% identity most of time).
In the case where there are true structural variations, there are typically bigger differences between the
associated contigs and the primary contigs.

Essentially, the script fc_graph_to_contig generates contigs given sequence data and the final assembly graph.
Currently it generates primary contigs as well as all
associated contigs without any filtering. Some post-processing to remove duplicate
associated contigs induced by errors will generally be necessary.

fc_ovlp_filter.py

usage: fc_ovlp_filter [-h] [--n_core N_CORE] [--fofn FOFN] [--db DB_FN]
 [--max_diff MAX_DIFF] [--max_cov MAX_COV]
 [--min_cov MIN_COV] [--min_len MIN_LEN] [--bestn BESTN]
 [--stream] [--debug] [--silent]

a simple multi-processes LAS ovelap data filter

optional arguments:
 -h, --help show this help message and exit
 --n_core N_CORE number of processes used for generating consensus; 0
 for main process only (default: 4)
 --fofn FOFN file contains the path of all LAS file to be processed
 in parallel (default: None)
 --db DB_FN read db file path (default: None)
 --max_diff MAX_DIFF max difference of 5' and 3' coverage (default: None)
 --max_cov MAX_COV max coverage of 5' or 3' coverage (default: None)
 --min_cov MIN_COV min coverage of 5' or 3' coverage (default: None)
 --min_len MIN_LEN min length of the reads (default: 2500)
 --bestn BESTN output at least best n overlaps on 5' or 3' ends if
 possible (default: 10)
 --stream stream from LA4Falcon, instead of slurping all at once;
 can save memory for large data (default: False)
 --debug, -g single-threaded, plus other aids to debugging (default:
 False)
 --silent suppress cmd reporting on stderr (default: False)

Not all overlaps are “independent”, so it is possible to impose some filtering step to reduce computation and
assembly graph complexity. For example, if a read is fully contained in another read, the overlap information
between these two reads does not provide extra information for re-constructing the genome. Also, due to the
transitive property of the overlapping relations, a lot of overlap information can be simply inferred. In fact,
the first stage for constructing contigs are to remove the transitive reducible edges. It means that we might
just needs the “best n overlaps” in the 5' or 3' ends. The --bestn parameter in overlap_filtering_setting
option can be used to control the maximum overlap reported for each read.

Another useful heuristics is to only keep reads that have average 5' and 3' coverage. That’s because if a read
ends in a repeat, it might have higher than normal coverage at the end which is a repeat. And such reads do not
provide much value for uniquely resolving the related repeats. We can filter them out and hopefully there are
reads which span through the repeats and have “normal” unique anchors on both ends. Also, if the coverage is too
low on one end of a read, it could be just too many errors or sequencing artifacts over there. Such reads create
“spurs” in the assembly graph which are typically filtered out anyway. The –max_cov and –min_cov are used for
filtering reads that have too high or too low overlaps.

The filtering scripts also allows filtering out some “split” reads. If a read have very unequal coverage between
the 5' and 3' ends, it can be also a signal that one end is a repeat. The --max_diff parameter can be used to
filter out the reads where one ends has much more coverage than the other end.

What is the right numbers used for these parameters? These parameters may the most tricky ones to be set right.
If the overall coverage of the error corrected reads longer than the length cut off is known and reasonable high
(e.g. greater than 20x), it might be safe to set --min_cov to be 5, max_cov to be three times of the average
coverage and the max_diff to be twice of the average coverage. However, in low coverage case, it might better
to set --min_cov to be one or two. A helper script called fc_ovlp_stats` can help to dump the number of the
3' and 5' overlap of a given length cutoff, you can plot the distribution of the number of overlaps to make a
better decision.

One can also set the --max_diff and --max_cov to be really high to avoid any filtering if that is preferred
in some cases.

This filtering process will certainly filter out information about high copy repeats. Namely, those repeats will
likely to be filtered out totally and do not appear in the final assembly. If you are interested in those repeats
even though they may not be able to placed within some longer contig, you will probably want to avoid filtering
them out or process them differently. In general, it might be more efficient and useful to process those repeats
separately. Including them in the assembly process typically does not help much for getting better contiguity and
maybe messy for post-processing with current algorithms. I think it is a very interesting but also very challenging
bioinformatics topic on how to process these repeats better for improving assembly beside understand the nature
of these repeats.

fc_ovlp_to_graph.py

Here is the usage information for running fc_ovlp_to_graph.py:

usage: fc_ovlp_to_graph.py [-h] [--min_len MIN_LEN] [--min_idt MIN_IDT]
 [--lfc]
 overlap_file

a example string graph assembler that is desinged for handling diploid genomes

positional arguments:
 overlap_file a file that contains the overlap information.

optional arguments:
 -h, --help show this help message and exit
 --min_len MIN_LEN minimum length of the reads to be considered for
 assembling
 --min_idt MIN_IDT minimum alignment identity of the reads to be considered
 for assembling
 --lfc use local flow constraint method rather than best overlap
 method to resolve knots in string graph

In some case, you might want to lower the min_idt to keep more overlap or increase min_len to reduce the number of
overlap used for constructing the contig after the overlap filtering step. The --lfc toggles the rule for resolving
local knots in the graph. If --lfc is not specified, “the best overlapped edge” will be kept when there are multiple
in- or out- edges from a node while the others will be removed.

The first stage of the assembly is to construct the initial string graph and classify each edges in the string graph.
sg_edges_list contained the information of the information of the edges in the full string graph and the
classification. For example, 5 edges are shown in the five lines of the file below

$ head -5 sg_edges_list
000017363:B 000007817:E 000007817 10841 28901 10841 99.52 TR
000015379:E 000004331:B 000004331 6891 0 18178 99.35 TR
000006813:B 000000681:E 000000681 7609 23795 7616 99.72 TR
000002258:E 000002505:B 000002505 5850 0 17215 99.62 TR
000013449:B 000012565:B 000012565 3317 0 20570 99.72 G

The first two columns indicates the in and out node of the edge. The node notation contains two files operated by :.
The first field is the read identifier. The second field is either B or E. B is the 5' end of the read and E is the
3' end of the reads. The next three field indicates the corresponding sequences of the edges. In this example, the
edge in the first line contains the sequence from read 000007817 base [10841, 28901). If the second coordinate is
smaller than the first one, it means the corresponded sequence is reverse complimented. The next two column are the
number of overlapped base and the overlap identity. The final column is the classification. Currently, there are 4
different types G, TR, R, and S. An edge with type G is used for the final string graph. A TR
means the edge is transitive reducible. R means the edge is removed during the local repeat resolution and S
means the edge is likely to be a “spur” which only one ends is connected.

The initial string graph is further to be simplified into a set of “unitig” edges. The utg_data file contains the
details of each unitig. Each line in the file represents a unitig. The first three fields are “start node”, “via node”,
and “end node”. Two untigs might have the same “start node” and “end node”, so we need another “via node” to uniquely
identify the unitigs. Here is an example of the utg_data files:

$ head -10 utg_data
000015696:B 000009028:B 000016941:B contained 16438 134865 000015696:B~000006612:B~000002456:B~000014643:B~000007407:B~000015939:E~000009028:B~000016941:B
000010623:B 000015633:B 000014991:B contained 30158 18666 000010623:B~000015633:B~000014991:B
000015636:B 000002245:B 000010757:E contained 15402 40356 000015636:B~000002245:B~000010757:E
000014184:E NA 000012028:E compound 14895 56928 000014184:E~000012765:E~000012028:E|000014184:E~000007953:B~000012028:E
000010757:B NA 000015636:E compound 15402 40356 000010757:B~000002245:E~000015636:E|000010757:B~000014783:E~000015636:E
000014184:E 000007953:B 000012028:E contained 14792 32932 000014184:E~000007953:B~000012028:E
000010623:B NA 000014991:B compound 30148 163627 000010623:B~000015633:B~000014991:B|000010623:B~000001407:B~000014991:B
000012028:B 000012765:B 000014184:B contained 19137 56928 000012028:B~000000382:E~000012765:B~000014184:B
000016941:B 000003353:B 000008783:B simple 88381 615439 000016941:B~000003353:B~000010261:B~000011789:E~000017006:B~000016307:B~...
000014991:B 000013790:E 000002926:B simple 392373 2274104 000014991:B~000013790:E~000004614:B~000003329:B~000004898:B~000000461:B~000017105:E~...

The forth field indicates the type of the unitigs, the fifth field is the estimate length of the unitig and the six
field is the total number of overlapped bases in the unitig. There are three kinds of unitigs: “simple”, “contained”,
and “compound”. “Simple” unitigs are those unitigs which are just a simple path (every node has one in- and one
out-edge except the begining and ending nodes of the path.) It is represented by a list of nodes which each node
is separated by ~ characters in the 7th column. The “contained” contigs are simple path but those unitigs are also
part of other “compound” paths. The “compound” unitigs represents bubble-like subgraph in the graph. While it is not
“simple”, it has well defined in- and out- nodes and they are treated as a single unit when the contigs are
constructed. The structure inside a “compound” unitig can be from biological nature or sequencing/alignment errors.
Each edge in the “compound” unitig subgraph are encoded explicitly as a collection of simple contained unitigs in
the 7th column. The contained unitigs within a compound unitig are separated by the | character.

The file ctg_paths encodes the graph for each contig after the unitigs are analyzed and put into contigs. Each line
has 7 columns. The first column is the contig ID. The contig ID are just the serial numbers followed by R or F.
Two contigs with same serial number but different endings are “dual” to each other. Namely, they are constructed
from “dual” edges and they are mostly reverse complemented to each other except near the ends of the contigs.
The second column is the type of contig. If a unitig is circular (the beginning node and the ending node are the
same), then it will be marked as ctg_circular. Everything else will be ctg_linear. In some case, even a contig
is marked as ctg_linear, it can be still a circular contig if the beginning node and the ending node are the
same but it is not a “simple” path. One can detect that by checking the beginning and ending nodes if necessary.

The third field indicates the first unitig in the contig in the form of begin_node~via_node~end_node. The fourth
field is the ending node of the contig. The 5th and 6th fields are the estimated length and the overlapped
based of the contig respectively. The final column are the unitigs in the contig. The three node format unitig
IDs are separated by |

References

TODO

 [image: Pread Ovlp Histogram with Repeats]

Tertiary

Slides presented at the East Coast UGM in Baltimore, June 27th, 2017

Kingan_DiploidGenome_ECUGM2017_BFX.pdf

Fritz_Sedlazeck_SVswithPacB.pdf

Ghurye_PacBHiC_Asm.pdf

Wenger_pbsv_BFXwrkshop.pdf

Goodwin_SamplePrep_ExtraLongLibraries.pdf

Smith_SamplePrep_BestPracLargeInsertLib.pdf

HamidAshrafi_BlueberryAsmIsoSeq.pdf

DB2Falcon

Usage: DB2fasta [-U] [-w<int(80)>] <path:db>

fc_consensus.py

usage: fc_consensus.py [-h] [--n_core N_CORE] [--min_cov MIN_COV]
 [--min_cov_aln MIN_COV_ALN] [--max_cov_aln MAX_COV_ALN]
 [--min_len_aln MIN_LEN_ALN] [--min_n_read MIN_N_READ]
 [--max_n_read MAX_N_READ] [--trim] [--output_full]
 [--output_multi] [--min_idt MIN_IDT]
 [--edge_tolerance EDGE_TOLERANCE]
 [--trim_size TRIM_SIZE]

a simple multi-processor consensus sequence generator

optional arguments:
 -h, --help show this help message and exit
 --n_core N_CORE number of processes used for generating consensus; 0
 for main process only (default: 24)
 --min_cov MIN_COV minimum coverage to break the consensus (default: 6)
 --min_cov_aln MIN_COV_ALN
 minimum coverage of alignment data; a seed read with
 less than MIN_COV_ALN average depth of coverage will
 be completely ignored (default: 10)
 --max_cov_aln MAX_COV_ALN
 maximum coverage of alignment data; a seed read with
 more than MAX_COV_ALN average depth of coverage of the
 longest alignments will be capped, excess shorter
 alignments will be ignored (default: 0)
 --min_len_aln MIN_LEN_ALN
 minimum length of a sequence in an alignment to be
 used in consensus; any shorter sequence will be
 completely ignored (default: 0)
 --min_n_read MIN_N_READ
 1 + minimum number of reads used in generating the
 consensus; a seed read with fewer alignments will be
 completely ignored (default: 10)
 --max_n_read MAX_N_READ
 1 + maximum number of reads used in generating the
 consensus (default: 500)
 --trim trim the input sequence with k-mer spare dynamic
 programming to find the mapped range (default: False)
 --output_full output uncorrected regions too (default: False)
 --output_multi output multi correct regions (default: False)
 --min_idt MIN_IDT minimum identity of the alignments used for correction
 (default: 0.7)
 --edge_tolerance EDGE_TOLERANCE
 for trimming, the there is unaligned edge leng >
 edge_tolerance, ignore the read (default: 1000)
 --trim_size TRIM_SIZE
 the size for triming both ends from initial sparse
 aligned region (default: 50)

fc_get_read_hctg_map.py

usage: fc_get_read_hctg_map.py [-h] [--basedir BASEDIR]

generate `3-unzip/read_maps/read_to_contig_map` that contains the information
from the chain of mapping: (contig id, last col) -> (internal p-read id) ->
(internal raw-read id) -> (original read id) it assumes the 2-asm-
falcon/read_maps/raw_read_ids and pread_ids are already generated

optional arguments:
 -h, --help show this help message and exit
 --basedir BASEDIR the base working dir of a FALCON assembly (default: ./)

fc_graph_to_contig.py

The final step in the generation of draft contigs is to find a single path for each contig graph and to generate
sequence accordingly. In the case that a contig graph is not a simple path, we find the end-to-end path that
has the most overlapped bases. This is called as the primary contig. For each compound path within the
graph, if an alternative path different from primary one is possible, we will construct the associated contig.
In the case where the associated contigs are induced by sequencing error, the identity of the
alternative contig and the primary contig will be high (> 99% identity most of time).
In the case where there are true structural variations, there are typically bigger differences between the
associated contigs and the primary contigs.

Essentially, the script fc_graph_to_contig generates contigs given sequence data and the final assembly graph.
Currently it generates primary contigs as well as all
associated contigs without any filtering. Some post-processing to remove duplicate
associated contigs induced by errors will generally be necessary.

fc_ovlp_filter.py

usage: fc_ovlp_filter [-h] [--n_core N_CORE] [--fofn FOFN] [--db DB_FN]
 [--max_diff MAX_DIFF] [--max_cov MAX_COV]
 [--min_cov MIN_COV] [--min_len MIN_LEN] [--bestn BESTN]
 [--stream] [--debug] [--silent]

a simple multi-processes LAS ovelap data filter

optional arguments:
 -h, --help show this help message and exit
 --n_core N_CORE number of processes used for generating consensus; 0
 for main process only (default: 4)
 --fofn FOFN file contains the path of all LAS file to be processed
 in parallel (default: None)
 --db DB_FN read db file path (default: None)
 --max_diff MAX_DIFF max difference of 5' and 3' coverage (default: None)
 --max_cov MAX_COV max coverage of 5' or 3' coverage (default: None)
 --min_cov MIN_COV min coverage of 5' or 3' coverage (default: None)
 --min_len MIN_LEN min length of the reads (default: 2500)
 --bestn BESTN output at least best n overlaps on 5' or 3' ends if
 possible (default: 10)
 --stream stream from LA4Falcon, instead of slurping all at once;
 can save memory for large data (default: False)
 --debug, -g single-threaded, plus other aids to debugging (default:
 False)
 --silent suppress cmd reporting on stderr (default: False)

Not all overlaps are “independent”, so it is possible to impose some filtering step to reduce computation and
assembly graph complexity. For example, if a read is fully contained in another read, the overlap information
between these two reads does not provide extra information for re-constructing the genome. Also, due to the
transitive property of the overlapping relations, a lot of overlap information can be simply inferred. In fact,
the first stage for constructing contigs are to remove the transitive reducible edges. It means that we might
just needs the “best n overlaps” in the 5' or 3' ends. The --bestn parameter in overlap_filtering_setting
option can be used to control the maximum overlap reported for each read.

Another useful heuristics is to only keep reads that have average 5' and 3' coverage. That’s because if a read
ends in a repeat, it might have higher than normal coverage at the end which is a repeat. And such reads do not
provide much value for uniquely resolving the related repeats. We can filter them out and hopefully there are
reads which span through the repeats and have “normal” unique anchors on both ends. Also, if the coverage is too
low on one end of a read, it could be just too many errors or sequencing artifacts over there. Such reads create
“spurs” in the assembly graph which are typically filtered out anyway. The –max_cov and –min_cov are used for
filtering reads that have too high or too low overlaps.

The filtering scripts also allows filtering out some “split” reads. If a read have very unequal coverage between
the 5' and 3' ends, it can be also a signal that one end is a repeat. The --max_diff parameter can be used to
filter out the reads where one ends has much more coverage than the other end.

What is the right numbers used for these parameters? These parameters may the most tricky ones to be set right.
If the overall coverage of the error corrected reads longer than the length cut off is known and reasonable high
(e.g. greater than 20x), it might be safe to set --min_cov to be 5, max_cov to be three times of the average
coverage and the max_diff to be twice of the average coverage. However, in low coverage case, it might better
to set --min_cov to be one or two. A helper script called fc_ovlp_stats` can help to dump the number of the
3' and 5' overlap of a given length cutoff, you can plot the distribution of the number of overlaps to make a
better decision.

One can also set the --max_diff and --max_cov to be really high to avoid any filtering if that is preferred
in some cases.

This filtering process will certainly filter out information about high copy repeats. Namely, those repeats will
likely to be filtered out totally and do not appear in the final assembly. If you are interested in those repeats
even though they may not be able to placed within some longer contig, you will probably want to avoid filtering
them out or process them differently. In general, it might be more efficient and useful to process those repeats
separately. Including them in the assembly process typically does not help much for getting better contiguity and
maybe messy for post-processing with current algorithms. I think it is a very interesting but also very challenging
bioinformatics topic on how to process these repeats better for improving assembly beside understand the nature
of these repeats.

fc_ovlp_to_graph.py

Here is the usage information for running fc_ovlp_to_graph.py:

usage: fc_ovlp_to_graph.py [-h] [--min_len MIN_LEN] [--min_idt MIN_IDT]
 [--lfc]
 overlap_file

a example string graph assembler that is desinged for handling diploid genomes

positional arguments:
 overlap_file a file that contains the overlap information.

optional arguments:
 -h, --help show this help message and exit
 --min_len MIN_LEN minimum length of the reads to be considered for
 assembling
 --min_idt MIN_IDT minimum alignment identity of the reads to be considered
 for assembling
 --lfc use local flow constraint method rather than best overlap
 method to resolve knots in string graph

In some case, you might want to lower the min_idt to keep more overlap or increase min_len to reduce the number of
overlap used for constructing the contig after the overlap filtering step. The --lfc toggles the rule for resolving
local knots in the graph. If --lfc is not specified, “the best overlapped edge” will be kept when there are multiple
in- or out- edges from a node while the others will be removed.

The first stage of the assembly is to construct the initial string graph and classify each edges in the string graph.
sg_edges_list contained the information of the information of the edges in the full string graph and the
classification. For example, 5 edges are shown in the five lines of the file below

$ head -5 sg_edges_list
000017363:B 000007817:E 000007817 10841 28901 10841 99.52 TR
000015379:E 000004331:B 000004331 6891 0 18178 99.35 TR
000006813:B 000000681:E 000000681 7609 23795 7616 99.72 TR
000002258:E 000002505:B 000002505 5850 0 17215 99.62 TR
000013449:B 000012565:B 000012565 3317 0 20570 99.72 G

The first two columns indicates the in and out node of the edge. The node notation contains two files operated by :.
The first field is the read identifier. The second field is either B or E. B is the 5' end of the read and E is the
3' end of the reads. The next three field indicates the corresponding sequences of the edges. In this example, the
edge in the first line contains the sequence from read 000007817 base [10841, 28901). If the second coordinate is
smaller than the first one, it means the corresponded sequence is reverse complimented. The next two column are the
number of overlapped base and the overlap identity. The final column is the classification. Currently, there are 4
different types G, TR, R, and S. An edge with type G is used for the final string graph. A TR
means the edge is transitive reducible. R means the edge is removed during the local repeat resolution and S
means the edge is likely to be a “spur” which only one ends is connected.

The initial string graph is further to be simplified into a set of “unitig” edges. The utg_data file contains the
details of each unitig. Each line in the file represents a unitig. The first three fields are “start node”, “via node”,
and “end node”. Two untigs might have the same “start node” and “end node”, so we need another “via node” to uniquely
identify the unitigs. Here is an example of the utg_data files:

$ head -10 utg_data
000015696:B 000009028:B 000016941:B contained 16438 134865 000015696:B~000006612:B~000002456:B~000014643:B~000007407:B~000015939:E~000009028:B~000016941:B
000010623:B 000015633:B 000014991:B contained 30158 18666 000010623:B~000015633:B~000014991:B
000015636:B 000002245:B 000010757:E contained 15402 40356 000015636:B~000002245:B~000010757:E
000014184:E NA 000012028:E compound 14895 56928 000014184:E~000012765:E~000012028:E|000014184:E~000007953:B~000012028:E
000010757:B NA 000015636:E compound 15402 40356 000010757:B~000002245:E~000015636:E|000010757:B~000014783:E~000015636:E
000014184:E 000007953:B 000012028:E contained 14792 32932 000014184:E~000007953:B~000012028:E
000010623:B NA 000014991:B compound 30148 163627 000010623:B~000015633:B~000014991:B|000010623:B~000001407:B~000014991:B
000012028:B 000012765:B 000014184:B contained 19137 56928 000012028:B~000000382:E~000012765:B~000014184:B
000016941:B 000003353:B 000008783:B simple 88381 615439 000016941:B~000003353:B~000010261:B~000011789:E~000017006:B~000016307:B~...
000014991:B 000013790:E 000002926:B simple 392373 2274104 000014991:B~000013790:E~000004614:B~000003329:B~000004898:B~000000461:B~000017105:E~...

The forth field indicates the type of the unitigs, the fifth field is the estimate length of the unitig and the six
field is the total number of overlapped bases in the unitig. There are three kinds of unitigs: “simple”, “contained”,
and “compound”. “Simple” unitigs are those unitigs which are just a simple path (every node has one in- and one
out-edge except the begining and ending nodes of the path.) It is represented by a list of nodes which each node
is separated by ~ characters in the 7th column. The “contained” contigs are simple path but those unitigs are also
part of other “compound” paths. The “compound” unitigs represents bubble-like subgraph in the graph. While it is not
“simple”, it has well defined in- and out- nodes and they are treated as a single unit when the contigs are
constructed. The structure inside a “compound” unitig can be from biological nature or sequencing/alignment errors.
Each edge in the “compound” unitig subgraph are encoded explicitly as a collection of simple contained unitigs in
the 7th column. The contained unitigs within a compound unitig are separated by the | character.

The file ctg_paths encodes the graph for each contig after the unitigs are analyzed and put into contigs. Each line
has 7 columns. The first column is the contig ID. The contig ID are just the serial numbers followed by R or F.
Two contigs with same serial number but different endings are “dual” to each other. Namely, they are constructed
from “dual” edges and they are mostly reverse complemented to each other except near the ends of the contigs.
The second column is the type of contig. If a unitig is circular (the beginning node and the ending node are the
same), then it will be marked as ctg_circular. Everything else will be ctg_linear. In some case, even a contig
is marked as ctg_linear, it can be still a circular contig if the beginning node and the ending node are the
same but it is not a “simple” path. One can detect that by checking the beginning and ending nodes if necessary.

The third field indicates the first unitig in the contig in the form of begin_node~via_node~end_node. The fourth
field is the ending node of the contig. The 5th and 6th fields are the estimated length and the overlapped
based of the contig respectively. The final column are the unitigs in the contig. The three node format unitig
IDs are separated by |

fc_quiver.py

Run quiver on your completed unzipped assembly

fc_run.py

usage: fc_run.py [-h] config [logger]

positional arguments:
 config .cfg/.ini/.json
 logger (Optional)JSON config for standard Python logging module

optional arguments:
 -h, --help show this help message and exit

 nav.xhtml

 Table of Contents

 		
 FALCON Assembler

_images/OvlpHist.png
count

1000

800

600

400

200

Five Prime

.l e

T T 1
50 100 150

number of overlaps between preads

count

1000

800

600

400

200

Three Prime
| [T
T T 1
50 100 150

number of overlaps between preads

_images/PreadHist.png
Read Count

2000

1500

1000

500

Preassembled Reads

0

5000

10000 15000 20000 25000 30000 35000

Read Length

_images/Fig1.png
(a) FALCON

Initial assembly graph
sV

SNPs SNPs SNPs ~

/'\ Associate conti? 2
(Alternative allele)
Primary contig .

Associate contig 1
(Alternative allele) \/

(b)

-

Phase heterozygous SNPs and
identify the haplotype of each read

(c) FALCON-Unzip

—C

Haplotype-resolved assembly graph

SNPs gys

SNPs SVs SNPs

— e e
—_— - —

>

/ =
Updated
primary
contig
haplotig 1 haplotig 2 haplotig 3
J
v

Assembly output

_images/HGAP.png
Long reads

— - Construct pre-assembled
Longest =" - . . reads

‘seed’ reads

Pre-assembled Assemble
reads - — - 3 to finished

Genome genome

_images/falcon_icon2.png

_images/heterozygosity.jpg
Biological sequence

TwaiEnltyhes Low heterozygasity High heterozygosity

with various degree
of heterozygosty |

The high heterozygosity part
(orange) has no averlap with

the counter part and FALCON assembly model
becomes its own p-contig

< > (> p-contig

= == = -~ prcontig

The low heterczygasity part
(purple) has no associated

haplotig asno reliable phasing FALCON-Unzip assembly model

information available :
p-contig

ntig

_images/RawReadHist.png
Read Count

5000

4000

3000

2000

1000

Raw Reads

0

10000

20000

Read Length

30000

40000

_images/dotplots.png
FALCON

FALCON-UNZIP

~Assoc. Contigs

Primary Contig

Haplotigs

Primary Contig

_images/phaseswitch.png
€ s

FALCON-UNZIP OUTPUT: UNLINKED PHASE BLOCKS

Il vom
| LY
“Haplotype Switch”
plotype S M VOM=DAD
Primary Contig ——
Haplotig 1 Haplotig 2 Haplotig 3

—Haplotigs represent PHASE BLOCKS
—phased haplotype from one parent

—Regions of primary contigs lacking associated haplotig are
haplotypes that parents share (“collapsed haplotypes”)

—Haplotigs are not phased with each other

—“Haplotype Switches” are transitions between maternal or
paternal haplotypes

_images/repeatOvlps.png
90000~

count

30000-

60000-

fused haplotypes (2X coverage)

100

repeats

200
five

300

_images/unzippedHapDiv.png
Anna's Zebra ! ! ! !
Buffalo Hummingbird finch Kakapo Hops Fig Barberry

Water

Andus x
Brahman

(%) sousbianig edhiojde paddizun

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

