

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Pawn 0.1.0 documentation

Welcome to Pawn’s documentation!

Contents:

	Introduction
	What is it and why do I care?

	Programatic API?

	How do I get it?

	How do I run the tests?

	What is this compatible with?

	What is on the list to be done?

	How can I help?

	API

Introduction

[image: Travis-CI Build Status (for Linux)]
 [https://travis-ci.org/iLoveTux/pawn][image: AppVeyor Build Status (for windows)]
 [https://ci.appveyor.com/project/iLoveTux/pawn][image: Test Coverage Status]
 [https://codecov.io/gh/iLoveTux/pawn][image: Code Climate]
 [https://codeclimate.com/github/iLoveTux/pawn][image: Documentation Status]
 [http://pawn.readthedocs.io/en/latest/?badge=latest]
What is it and why do I care?

Pawn is a language built by mashing Python together with AWK and gluing them together
with a little magic.

Simply put, Pawn is a language designed to scan a text file line-by-line looking
for patterns and when a pattern matches, its associated action is executed. This is
incredibly useful for parsing logs or other semi-structured, plain-text files.

I am a regular user of awk, but there are limitations to it. You are limited to the
awk programming language which is a interpreted language inspired by C. With
Pawn, you have complete access to Python and all the third-party modules
currently installed.

A typical Pawn script will look like this:

BEGIN{
 import sys
 import requests

 critical_errors = 0
}
(?i)critical{
 requests.post("https://my-alerting-server", data=LINE)
 critical_errors += 1
}
END{
 print("There were {} critical errors found".format(critical_errors))
}

This script makes use of the special patterns BEGIN and END. BEGIN is executed once
before processing any lines of the file. END is executed once after all the lines
have been processed.

The pattern in the middle portion “(?i)critical” is a regex using Python’s inline-regex
modifiers. This regex matches on any occurance of “critical” regardless of case.

The script essentialy looks for any line containing the word “critical” and when it finds
one, it sends an http post request to an imaginary server (whose purpose is to respond to
any critical events) and increment a counter. At the end of the script, a count of the
lines containing the word “critical” is printed.

To execute this script, you would save it into a file called “critical_response.pawn” and
run:

`pawn critical_response.pawn file.log`

Programatic API?

Pawn includes a programatic API as well for embeding its functionality into
other applications. To use pawn in your application, you might do something
like so:

from pawn import pawn

script = """
BEGIN{
 print("starting")
}
\d+{
 print("found a number")
}
END{
 print("ending")
}
"""

pawn(script=script, files=os.path.listdir("."))

This would run the script against each file in the current directory.

So, now for the magic:

Pawn accepts a script and a list of files. If a single file is passed in and
it is not a list, it will be coerced into one. Once it is verified that we are
working with a list, the list is scanned for strings, if a string is found in
the list, it is assumed to be a filename and it will be opened. Once that is all
done, we loop through the list of files and iterate through the files.

This is where the magic really happens since in Python file-objects are iterators
which allow one to efficiently loop through the lines of a file. If we consider this,
along with the above rules, we can pass any iterable yielding lines for processing.

How do I get it?

To get the latest version:

$ pip install https://github.com/ilovetux/pawn/archive/master.zip

For the nightlies:

$ pip install https://github.com/ilovetux/pawn/archive/dev.zip

How do I run the tests?

You can clone the repository and use the following command:

$ make test

or alternately:

$ python setup.py nosetests

What is this compatible with?

Pawn is tested and confirmed to work with

	Python 3.5

	Python 3.4

	Python 3.3

	Python 2.7

	pypy

Pawn should work on all platforms on which Python runs.

What is on the list to be done?

Check out our Issue Tracker [https://github.com/iLoveTux/pawn/issues] for the
items we are currently working on.

How can I help?

You can do all the github type things, submit an issue in our issue tracker [https://github.com/ilovetux/unitils/issues] or fork and submit a pull request [https://github.com/ilovetux/unitils/pulls]. If none of that appeals to you, you can always send me an email personally at me@ilovetux.com

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pawn 0.1.0 documentation

Introduction

[image: Travis-CI Build Status (for Linux)]
 [https://travis-ci.org/iLoveTux/pawn][image: AppVeyor Build Status (for windows)]
 [https://ci.appveyor.com/project/iLoveTux/pawn][image: Test Coverage Status]
 [https://codecov.io/gh/iLoveTux/pawn][image: Code Climate]
 [https://codeclimate.com/github/iLoveTux/pawn][image: Documentation Status]
 [http://pawn.readthedocs.io/en/latest/?badge=latest]
What is it and why do I care?

Pawn is a language built by mashing Python together with AWK and gluing them together
with a little magic.

Simply put, Pawn is a language designed to scan a text file line-by-line looking
for patterns and when a pattern matches, its associated action is executed. This is
incredibly useful for parsing logs or other semi-structured, plain-text files.

I am a regular user of awk, but there are limitations to it. You are limited to the
awk programming language which is a interpreted language inspired by C. With
Pawn, you have complete access to Python and all the third-party modules
currently installed.

A typical Pawn script will look like this:

BEGIN{
 import sys
 import requests

 critical_errors = 0
}
(?i)critical{
 requests.post("https://my-alerting-server", data=LINE)
 critical_errors += 1
}
END{
 print("There were {} critical errors found".format(critical_errors))
}

This script makes use of the special patterns BEGIN and END. BEGIN is executed once
before processing any lines of the file. END is executed once after all the lines
have been processed.

The pattern in the middle portion “(?i)critical” is a regex using Python’s inline-regex
modifiers. This regex matches on any occurance of “critical” regardless of case.

The script essentialy looks for any line containing the word “critical” and when it finds
one, it sends an http post request to an imaginary server (whose purpose is to respond to
any critical events) and increment a counter. At the end of the script, a count of the
lines containing the word “critical” is printed.

To execute this script, you would save it into a file called “critical_response.pawn” and
run:

`pawn critical_response.pawn file.log`

Programatic API?

Pawn includes a programatic API as well for embeding its functionality into
other applications. To use pawn in your application, you might do something
like so:

from pawn import pawn

script = """
BEGIN{
 print("starting")
}
\d+{
 print("found a number")
}
END{
 print("ending")
}
"""

pawn(script=script, files=os.path.listdir("."))

This would run the script against each file in the current directory.

So, now for the magic:

Pawn accepts a script and a list of files. If a single file is passed in and
it is not a list, it will be coerced into one. Once it is verified that we are
working with a list, the list is scanned for strings, if a string is found in
the list, it is assumed to be a filename and it will be opened. Once that is all
done, we loop through the list of files and iterate through the files.

This is where the magic really happens since in Python file-objects are iterators
which allow one to efficiently loop through the lines of a file. If we consider this,
along with the above rules, we can pass any iterable yielding lines for processing.

How do I get it?

To get the latest version:

$ pip install https://github.com/ilovetux/pawn/archive/master.zip

For the nightlies:

$ pip install https://github.com/ilovetux/pawn/archive/dev.zip

How do I run the tests?

You can clone the repository and use the following command:

$ make test

or alternately:

$ python setup.py nosetests

What is this compatible with?

Pawn is tested and confirmed to work with

	Python 3.5

	Python 3.4

	Python 3.3

	Python 2.7

	pypy

Pawn should work on all platforms on which Python runs.

What is on the list to be done?

Check out our Issue Tracker [https://github.com/iLoveTux/pawn/issues] for the
items we are currently working on.

How can I help?

You can do all the github type things, submit an issue in our issue tracker [https://github.com/ilovetux/unitils/issues] or fork and submit a pull request [https://github.com/ilovetux/unitils/pulls]. If none of that appeals to you, you can always send me an email personally at me@ilovetux.com

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Pawn 0.1.0 documentation

API

	
pawn.pawn(script, files)[source]

	A simple interpreter for a language based on Python and AWK.

The rules are simple, and in a great act of blasphemy, they rely heavily
on curly-braces “{}”.

So, a pawn program consists of patterns and actions. Patterns are regular
expressions which are evaluated and actions which consist of Python source
code.

The main concept with pawn is that it is executed with two contexts the first
is of a plain text input file and the second is a pawn script. Each line of
the input is examined within the context of the pawn script. Based on the
defined patterns a set of actions is built and executed in order.

The Python source code which comprises an action is evaluated with the following
global variables defined:

	LINE: The current line being examined

	FIELDS: A list containing the fields into which the LINE was split

	FS: The field seperator, defaults to any whitespace

	Parameters:	
	script (str) – The script to execute, can be passed as-is or a filename can be passed which will be read for the script

	files (str file list) – Can be a single file-like object or a str containing a filename or a list of either

	Return type:	None

	Returns:	None

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Pawn 0.1.0 documentation

 Python Module Index

 p

 			

 		
 p	

 	
 	
 pawn	

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Pawn 0.1.0 documentation

Index

 P

P

 	

 	pawn (module)

 	

 	pawn() (in module pawn)

 Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

 _modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Pawn 0.1.0 documentation »

 All modules for which code is available

		pawn.pawn

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		Pawn 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_modules/pawn/pawn.html

 Navigation

 		
 index

 		
 modules |

 		Pawn 0.1.0 documentation »

 		Module code »

 Source code for pawn.pawn

import io
import os
import re
import sys
import atexit
from textwrap import dedent
FS = re.compile(r"\s+", re.UNICODE)
pattern_action = re.compile(r"(.*?)\{([^\}]+?)\}", re.UNICODE)

def _parse_actions(script):
 """Parse the script to produce a dict of patterns and actions.

 :param script: The pawn script to parse, must be a str not a filename
 :type script: str
 :rtype: dict
 :returns: A mapping of pattern to action
 """
 script = dedent(script)
 ret = {}
 for pattern, action in pattern_action.findall(script):
 if not pattern:
 pattern = ".*"
 ret[pattern] = dedent(action)
 return ret

[docs]def pawn(script, files):
 """A simple interpreter for a language based on Python and AWK.

 The rules are simple, and in a great act of blasphemy, they rely heavily
 on curly-braces "{}".

 So, a pawn program consists of patterns and actions. Patterns are regular
 expressions which are evaluated and actions which consist of Python source
 code.

 The main concept with pawn is that it is executed with two contexts the first
 is of a plain text input file and the second is a pawn script. Each line of
 the input is examined within the context of the pawn script. Based on the
 defined patterns a set of actions is built and executed in order.

 The Python source code which comprises an action is evaluated with the following
 global variables defined:

 * LINE: The current line being examined
 * FIELDS: A list containing the fields into which the LINE was split
 * FS: The field seperator, defaults to any whitespace

 :param script: The script to execute, can be passed as-is or a filename can be passed which will be read for the script
 :param files: Can be a single file-like object or a str containing a filename or a list of either
 :type script: str
 :type files: str file list
 :rtype: None
 :returns: None
 """
 if not isinstance(files, list):
 files = [files]
 for index, file in enumerate(list(files)):
 if isinstance(file, str):
 files[index] = io.open(file, "r")
 atexit.register(files[index].close)
 if os.path.exists(script) and os.path.isfile(script):
 with io.open(script, "r") as fp:
 patterns = _parse_actions(fp.read())
 else:
 patterns = _parse_actions(script)
 environ = {
 "FS": FS.pattern
 }
 if "BEGIN" in patterns:
 begin = patterns.pop("BEGIN")
 exec(begin, environ)
 end = None
 if "END" in patterns:
 end = patterns.pop("END")
 for file in files:
 for line in file:
 environ["LINE"] = line.rstrip()
 environ["FIELDS"] = list(filter(lambda x: x, FS.split(line)))
 for pattern in patterns:
 if re.search(pattern, line):
 exec(patterns[pattern], environ)
 if end:
 exec(end, environ)

 © Copyright 2016, iLoveTux.
 Created using Sphinx 1.3.5.

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/file.png

