

Paver: Easy Scripting for Software Projects

[image: _images/paver_banner.jpg]
Japanese translation available [https://paver.github.io/paver-docs-jp/]
thanks to Tetsuya Morimoto. Latest stable documentation is
on PyPI [https://pypi.python.org/pypi/Paver], latest development docs are
`on GitHub<https://github.com/paver/paver/tree/master/docs>`_

Paver is a Python-based software project scripting tool along the
lines of Make or Rake. It is not designed to handle the dependency
tracking requirements of, for example, a C program. It is designed
to help out with all of your other repetitive tasks (run documentation
generators, moving files around, downloading things), all with the
convenience of Python’s syntax and massive library of code.

If you’re developing applications in Python, you get even more…
Most public Python projects use distutils or setuptools to create source
tarballs for distribution. (Private projects can take advantage of
this, too!) Have you ever wanted to generate the docs before building the
source distribution? With Paver, you can, trivially. Here’s a complete
pavement.py:

from paver.easy import *
from paver.setuputils import setup

setup(
 name="MyCoolProject",
 packages=['mycool'],
 version="1.0",
 url="https://www.blueskyonmars.com/",
 author="Kevin Dangoor",
 author_email="dangoor@gmail.com"
)

@task
@needs(['html', "distutils.command.sdist"])
def sdist():
 """Generate docs and source distribution."""
 pass

With that pavement file, you can just run paver sdist, and your docs
will be rebuilt automatically before creating the source distribution.
It’s also easy to move the generated docs into some other directory
(and, of course, you can tell Paver where your docs are stored,
if they’re not in the default location.)

Features

	Build files are just Python

	One file with one syntax, pavement.py, knows how to manage
your project

	File operations are unbelievably easy, thanks to the
built-in version of Jason Orendorff’s path.py.

	Need to do something that takes 5 lines of code?
It’ll only take 5 lines of code..

	Completely encompasses distutils and setuptools so
that you can customize behavior as you need to.

	Wraps Sphinx for generating documentation, and adds utilities
that make it easier to incorporate fully tested sample code.

	Wraps Subversion for working with code that is checked out.

	Wraps virtualenv to allow you to trivially create a
bootstrap script that gets a virtual environment up and running. This is
a great way to install packages into a contained environment.

	Can use all of these other libraries, but requires none of them

	Easily transition from setup.py without making your users learn about or
even install Paver! (See the Getting Started Guide
for an example).

See how it works! Check out the Getting Started Guide.

Paver was created by Kevin Dangoor [https://blueskyonmars.com] of SitePen [https://sitepen.com].

Status

Paver has been in use in production settings since mid-2008, and significant
attention is paid to backwards compatibility since the release of 1.0.

See the changelog for more information about recent improvements.

Installation

The easiest way to get Paver is if you have pip [https://www.pip-installer.org] or distutils_ installed.

pip install Paver

or

easy_install Paver

Without setuptools, it’s still pretty easy. Download the Paver .tgz file from
Paver’s Cheeseshop page [https://pypi.python.org/pypi/Paver/], untar it and run:

python setup.py install

Help and Development

You can get help from the mailing list [https://groups.google.com/group/paver].

If you’d like to help out with Paver, you can check the code out from github:

git clone https://github.com/paver/paver.git

Ideally, create a fork, fix an issue from Paver’s list of issues [https://github.com/paver/paver/issues] (or create an issue
Yourself) and send a pull request.

Your help is appreciated!

Running test suite

Paver contains both unit and integration test suite. Unittests are run by either
paver test or paver unit. Integration tests can be run by paver integrate.

Using older, system-wide installed paver to run tests on development version can lead
to bad interactions (see issue 33 [https://github.com/paver/paver/issues/33]). Please, run paver test suite using development
version itself, by:

	Creating virtual environment with –no-site-packages

and

	Installing development version with python setup.py develop

or

	Using embedded minilib, thus invoking commands with setup.py instead of paver

License

Paver is licensed under a BSD license. See the LICENSE.txt file in the
distribution.

Contents

	Foreword: Why Paver?
	The Declarative/Imperative Divide

	Consistency for Project Related Tasks

	That’s Why Paver Is Here

	Making the Switch is Easy

	Paver’s Features
	Files Are Just Python

	One File with One Syntax

	Easy file operations

	Small bits of behavior take small amounts of work

	Can Take Advantage of Libraries But Doesn’t Require Them

	Getting Started with Paver
	The Old Way

	The New Way

	pavement.py in depth
	Defining Tasks

	Manually Calling Tasks

	How Task Names Work

	Task Parameters

	Command Line Arguments

	Hiding tasks

	More complex dependencies

	The Paver Standard Library
	distutils and setuptools (paver.setuputils)

	File Handling in Paver (paver.path)

	Documentation Tools (paver.doctools)

	Miscellaneous Tasks (paver.misctasks)

	Virtualenv Support (paver.virtual)

	Using virtualenv with tasks

	paver.virtual Tasks

	Using with Subversion (paver.svn)

	Using with Bazaar-NG (bzr) (paver.bzr)

	Using with Mercurial (hg) (paver.hg)

	SSH Remote Access Support (paver.ssh)

	Paver Command Line

	Tips and Tricks
	Using a Config File For Settings

	Articles about Paver

	Complete API Reference
	paver package

	Paver Changelog
	1.3.4 (Dec 31, 2017)

	1.3.3 (Dec 29, 2017)

	1.3.2 (Dec 28, 2017)

	1.3.1 (Dec 28, 2017)

	1.3.0 (Dec 28, 2017, tagged, but not released)

	1.2.4 (February 23, 2015)

	1.2.3 (August 10, 2014)

	1.2.2 (January 12, 2014)

	1.2.1 (June 2, 2013)

	1.2 (February 24, 2013)

	1.1.1 (August 25, 2012)

	1.1.0 (July 30, 2012)

	1.0.5 (October 21, 2011)

	1.0.4 (January 16, 2011)

	1.0.3 (June 1, 2010)

	1.0.2 (March 8, 2010)

	1.0.1 (May 4, 2009)

	1.0 (March 22, 2009)

	1.0b1 (March 13, 2009)

	1.0a4 (March 6, 2009)

	1.0a3 (March 6, 2009)

	1.0a2 (February 26, 2009)

	1.0a1 (January 28, 2009)

	0.8.1 (June 2, 2008)

	0.8 (May 19, 2008)

	0.7.3 (May 16, 2008)

	0.7.2 (May 8, 2008)

	0.7.1 (May 8, 2008)

	0.7 (May 7, 2008)

	0.4 (April 22, 2008)

	Credits

Indices and tables

	Index

	Module Index

	Search Page

Foreword: Why Paver?

Paver occupies a sweet spot in the python toolset, the design is sound,
it’s easier than mud to work with at a basic level, and it has a nice grade
of descent into more advanced things.

—David Eyk

I didn’t want to make a new build tool. Honestly. The main reason that I created Paver
is…

The Declarative/Imperative Divide

When you solve the same problem repeatedly, patterns emerge and you’re able to easily
see ways to reduce how much effort is involved in solving that problem. Often
times, you’ll end up with a declarative solution [http://en.wikipedia.org/wiki/Declarative_programming]. Python’s standard distutils
is a declarative solution. In your call to the setup() function, you declare
some metadata about your project and provide a list of the parts and you end
up with a nice command line interface. That command line interface knows how to
make redistributable tarballs (and eggs if you have setuptools), install the
package, build C extensions and more.

zc.buildout does a similar thing for deployments. Declare the parts of your system
and specify a recipe for each part (each recipe with its own collection of options)
and you can build up a consistent system with one command.

These tools sound great, don’t they? They are great. As long as you don’t need
to customize the capabilities they provide. For example, it’s not uncommon that
you’ll need to move some file here, create some directory there, etc. Then what?

In an imperative system [http://en.wikipedia.org/wiki/Imperative_programming], you’d just add the few lines of code you need.

For distutils and zc.builout and other similar tools, the answer usually involves
extra boilerplate surrounding the code in question and then installing that code somewhere. You basically have to create declarative syntax for something that is a one-off rather than a larger, well-understood problem. And, for distutils and zc.buildout, you have to use two entirely different mechanisms.

Consistency for Project Related Tasks

And that’s the next thing that bothered me with the state of Python tools. It
would be nice to have a consistent interface in command line and configuration
for the tools that I use to work with my projects. Every tool I bring in to
the project adds new command line interfaces, more config files (and some of
those config files duplicate project metadata!).

That’s Why Paver Is Here

Paver is set up to provide declarative handling of common tasks with as easy
an escape hatch to imperative programming as possible (just add a function
with a decorator in the same file). Your project-related configuration
options are all together and all accessible to different parts of your
build and deployment setup. And the language used for everything is Python,
so you’re not left guessing how to do a for loop.

Of course, rebuilding the great infrastructure provided by tools like distutils
makes no sense. So, Paver just uses distutils and other tools directly.

Paver also goes beyond just providing an extension mechanism for distutils.
It adds a bunch of useful capabilities for things like working with files
and directories, elegantly handling sample code for your documentation and
building bootstrap scripts to allow your software to easily be installed
in an isolated virtualenv.

I’m already using Paver for SitePen’s Support service user interface
project and I use Paver to manage Paver itself! It’s been working out
great for me, and it’s set up in such a way that whatever kind of scripting
your project needs it should be pretty simple with Paver.

Making the Switch is Easy

Finally, I’ve put some time into making sure that moving a project from
distutils to Paver is easy for everyone involved (people making the
projects and people using the projects). Check out the
Getting Started Guide to see an example of how
a project moves from distutils to Paver (even maintaining the
python setup.py install command that everyone’s used to!)

Thanks for reading!

Kevin Dangoor
May 2008

Paver’s Features

Files Are Just Python

Python has a very concise, readable syntax. There’s no need to create some
mini-language for describing your builds. Quite often it seems like these
mini-languages are missing features that you need. By using Python as its
syntax, you can always be sure that you can express whatever it is you
need to do easily. A for loop is just a for loop:

for fn in ["f1.txt", "f2.txt", "f3.txt"]:
 p = path(fn)
 p.remove()

One File with One Syntax

When putting together a Python project today, you get into a collection of
tools to get the job done. distutils and setuptools are the standards for
getting packages put together. zc.buildout and virtualenv are used for
installation into isolated deployment environments. Sphinx provides
a great way to document Python projects.

To put together a total system, you need each of these parts. But they
each have their own way of working. The goal with the
Paver Standard Library
is to make the common tools have a more integrated feel, so you don’t
have to guess as much about how to get something done.

As of today, Paver is tightly integrated with distutils and setuptools,
and can easily work as a drop-in, more easily scriptable replacement for
setup.py.

Easy file operations

Paver includes a customized version of Jason Orendorff’s awesome path.py
module. Operations on files and directories could hardly be easier,
and the methods have been modified to support “dry run” behavior.

Small bits of behavior take small amounts of work

Imagine you need to do something that will take you 5 lines of Python code.
With some of the tools that Paver augments, it’ll take you a lot more
effort than those 5 lines of code. You have to read about the API for
making new commands or recipes or otherwise extending the package.
The goal when using Paver is to have a five line change take about five
lines to make.

For example, let’s say you need to perform some extra work when and ‘sdist’
is run. Good luck figuring out the best way to do that with distutils. With
Paver, it’s just:

@task
def sdist():
 # perform fancy file manipulations
 blah.blah.blah()

 # *now* run the sdist
 call_task("setuptools.command.sdist")

Can Take Advantage of Libraries But Doesn’t Require Them

The Paver Standard Library includes support for a lot of the common tools,
but you don’t necessarily need all of those tools, and certainly not on
every project. Paver is designed to have no other requirements but to
automatically take advantage of other tools when they’re available.

Getting Started with Paver

Often, the easiest way to get going with a new tool is to see an example
in action, so that’s how we’ll get started with Paver. In the Paver
distribution, there are samples under docs/samples. The Getting
Started samples are in the “started” directory under there.

The Old Way

Our first sample is called “The Old Way” (and it’s in the
docs/samples/started/oldway directory). It’s a fairly typical project
with one Python package and some docs, and we want to be able to
distribute it.

Python’s distutils [http://docs.python.org/dist/dist.html] makes it easy indeed to create a distributable
package. We create a setup.py file that looks like this:

#<== include('started/oldway/setup.py')==>
#<==end==>

With that simple setup script, you can run:

python setup.py sdist

to build a source distribution:

<==
sh('cd docs/samples/started/oldway; python setup.py sdist',
insert_output=False)
sh('ls -l docs/samples/started/oldway/dist')
==>
<==end==>

Then your users can run the familiar:

python setup.py install

to install the package, or use setuptools’ even easier:

easy_install "TheOldWay"

for packages that are up on the Python Package Index.

The Old Way’s Docs

The Old Way project is at least a bit modern in that it uses Sphinx [http://sphinx.pocoo.org] for documentation. When you use sphinx-quickstart to get going with your
docs, Sphinx will give you a Makefile that you can run to generate
your HTML docs. So, generating the HTML docs is easy:

make html

Except, in this project (as in Paver itself), we want to include the
HTML files in a docs directory in the package for presenting help to
the users. We end up creating a shell script to do this:

<== include("started/oldway/builddocs.sh")==>
<==end==>

Of course, creating a script like this means that we have to actually
remember to run it. We could change this script to “buildsdist.sh”
and add a python setup.py sdist to the end of the file. But,
wouldn’t it be nicer if we could just use python setup.py sdist
directly?

You can create new distutils commands [http://docs.python.org/dist/node84.html], but do you really want to
drop stuff like that in the distutils/command package in your
Python library directory? And how would you call the sdist command
anyway? setuptools [http://peak.telecommunity.com/DevCenter/setuptools] helps, but it still requires setting up a module
and entry point for this collection of commands.

Work with me here

I just know there are some people reading this and thinking
“man, what a contrived example!”. Building, packaging, distributing
and deploying of projects is quite custom for every project.
Part of the point of Paver is to make it easy to handle whatever
weird requirements arise in your project. This example may seem
contrived, but it should give you an idea of how easy Paver
makes it to get your tasks done.

The New Way

Let’s bring in Paver now to clean up our scripting a bit. Converting
a project to use Paver is really, really simple. Recall the setup
function from our Old Way setup.py:

<== include("started/oldway/setup.py", "setup")==>
<==end==>

Getting Started with Paver

setup.py is a standard Python script. It’s just called setup.py
as a convention. Paver works a bit more like Make or Rake.
To use Paver, you run paver <taskname> and the paver
command will look for a pavement.py file in the current directory.
pavement.py is a standard Python module. A typical pavement will
import from paver.easy to get a bunch of convenience functions
and objects and then import other modules that include useful
tasks:

<== include('started/newway/pavement.py', 'imports')==>
<==end==>

Converting from setup.py to pavement.py is easy. Paver provides
a special options object that holds all of your build options.
options is just a dictionary that allows attribute-style
access and has some special searching abilities. The options
for distutils operations are stored in a setup section of the
options. And, as a convenience, Paver provides a setup function
that sets the values in that options section (and goes a step
further, by making all of the distutils/setuptools commands
available as Paver tasks). Here’s what the conversion looks like:

<== include('started/newway/pavement.py', 'setup')==>
<==end==>

Paver is compatible with distutils

Choosing to use Paver does not mean giving up on distutils or
setuptools. Paver lets you continue to use distutils and setuptools
commands. When you import a module that has Paver tasks in it,
those tasks automatically become available for running. If you
want access to distutils and setuptools commands as well, you can either
use the paver.setuputils.setup function as described
above, or call paver.setuputils.install_distutils_tasks().

We can see this in action by looking at paver help:

<== sh('cd docs/samples/started/newway; paver help')==>
<==end==>

That command is listing all of the available tasks, and you can see
near the top there are tasks from distutils.command. All of the
standard distutils commands are available.

There’s one more thing we need to do before our Python package
is properly redistributable: tell distutils about our special files.
We can do that with a simple MANIFEST.in:

<== include('started/newway/MANIFEST.in')==>
<==end==>

With that, we can run paver sdist and end up with the
equivalent output file:

<==
sh('cd docs/samples/started/newway; paver sdist',
insert_output=False)
sh('ls -l docs/samples/started/newway/dist')
==>
<==end==>

It also means that users of The New Way can also run paver install
to install the package on their system. Neat.

But people are used to setup.py!

python setup.py install has been around a long time. And while
you could certainly put a README file in your package telling
people to run paver install, we all know that no one actually
reads docs. (Hey, thanks for taking the time to read this!)

No worries, though. You can run paver generate_setup to get a
setup.py file that you can ship in your tarball. Then your users
can run python setup.py install just like they’re used to,
and Paver will take over.

But people don’t have Paver yet!

There are millions of Python installations that don’t have Paver yet,
but have Python and distutils. How can they run a Paver-based install?

Easy, you just run paver minilib and you will get a file called
paver-minilib.zip. That file has enough of Paver to allow someone
to install most projects. The Paver-generated setup.py knows to look
for that file and use it if it sees it.

Worried about bloating your package? The paver-minilib is not large:

<==
sh('cd docs/samples/started/newway ; paver minilib',
insert_output=False)
sh('ls -l docs/samples/started/newway/paver-minilib.zip')
==>
<==end==>

Paver itself is bootstrapped with a generated setup file and a
paver-minilib.

Hey! Didn’t you just create more work for me?

You might have noticed that we now have three commands to run in
order to get a proper distribution for The New Way. Well, you can
actually run them all at once: paver generate_setup minilib sdist.
That’s not terrible, but it’s also not great. You don’t want to
end up with a broken distribution just because you forgot one of
the tasks.

By design, one of the easiest things to do in Paver is to extend
the behavior of an existing “task”, and that includes distutils
commands. All we need to do is create a new sdist task in our
pavement.py:

<== include('started/newway/pavement.py', 'sdist')==>
<==end==>

The @task decorator just tells Paver that this is a task and not just
a function. The @needs decorator specifies other tasks that should
run before this one. You can also use the call_task(taskname)
function within your task if you wish. The function name determines
the name of the task. The docstring is what shows up in Paver’s
help output.

With that task in our pavement.py, paver sdist is all it takes
to build a source distribution after generating a setup file
and minilib.

Note

If you are depending on distutils task (via @needs), you have to call setup() before task is defined.
Under the hood, setup call installs distutils/setupsools task and make them available, so do not make it conditional.

Tackling the Docs

Until the tools themselves provide tasks and functions that make
creating pavements easier, Paver’s Standard Library will include
a collection of modules that help out for commonly used tools.
Sphinx is one package for which Paver has built-in support.

To use Paver’s Sphinx support, you need to have Sphinx installed
and, in your pavement.py, import paver.doctools. Just performing
the import will make the doctools-related tasks available.
paver help html will tell us how to use the html command:

<== sh('paver help paver.doctools.html')==>
<==end==>

According to that, we’ll need to set the builddir setting, since we’re
using a builddir called “_build”. Let’s add this to our pavement.py:

<== include('started/newway/pavement.py', 'sphinx')==>
<==end==>

And with that, paver html is now equivalent to make html using
the Makefile that Sphinx gave us.

Getting rid of our docs shell script

You may remember that shell script we had for moving our generated
docs to the right place:

<== include('started/oldway/builddocs.sh')==>
<==end==>

Ideally, we’d want this to happen whenever we generate the docs.
We’ve already seen how to override tasks, so let’s try that out
here:

<== include('started/newway/pavement.py', 'html')==>
<==end==>

There are a handful of interesting things in here. The equivalent of
‘make html’ is the @needs(‘paver.doctools.html’), since that’s
the task we’re overriding.

Inside our task, we’re using “path”. This is a customized
version of Jason Orendorff’s path module. All kinds of file
and directory operations become super-simple using this module.

We start by deleting our destination directory, since we’ll be copying
new generated files into that spot. Next, we look at the built
docs directory that we’ll be moving:

<== include('started/newway/pavement.py', 'html.builtdocs')==>
<==end==>

One cool thing about path objects is that you can use the natural
and comfortable ‘/’ operator to build up your paths.

The next thing we see here is the accessing of options. The
options object is available to your tasks. It’s basically a dictionary
that offers attribute-style access and can search for variables
(which is why you can type options.builddir instead of
the longer options.sphinx.builddir). That property of options is
also convenient for being able to share properties between sections.

And with that, we eliminate the shell script as a separate file.

Fixing another wart in The Old Way

In the documentation for The Old Way, we actually included the
function body directly in the docs. But, we had to cut and paste
it there. Sphinx does offer a way to include an external file
in your documentation. Paver includes a better way.

There are a couple of parts to the documentation problem:

	It’s good to have your code in separate files from your docs
so that the code can be complete, runnable and, above all,
testable programs so that you can be sure that everything works.

	You want your writing and the samples included with your writing
to stand up as reasonable, coherent documents. Python’s doctest
style does not always lend itself to coherent documents.

	It’s nice to have the code sample that you’re writing about
included inline with the documents as you’re writing them.
It’s easier to write when you can easily see what you’re
writing about.

#1 and #3 sound mutually exclusive, but they’re not. Paver has a
two part strategy to solve this problem. Let’s look at part of the index.rst
document file to see the first part:

<== include("started/newway/docs/index.rst", "mainpart")==>
<==end==>

In The New Way’s index.rst, you can see the same mechanism being used that
is used in this Getting Started guide. Paver includes Ned Batchelder’s
Cog [http://nedbatchelder.com/code/cog/] package. Cog lets you drop snippets of Python into a file and have
those snippets generate stuff that goes into the file. Unlike a template
language, Cog is designed so that you can leave the markers in and
regenerate as often as you need to. With a template language, you have
the template and the finalized output, but not a file that has both.

So, as I’m writing this Getting Started document, I can glance up and see
the index.rst contents right inline. You’ll notice The # [[[cog part in there
is calling an include() function. This is the second part offered by
Paver. Paver lets you specify an “includedir” for use with Cog.
This lets you include files relative to that directory. And, critically,
it also lets you mark off sections of those files so that you can
easily include just the part you want. In the example above, we’re picking
up the ‘code’ section of the newway/thecode.py file. Let’s take a look
at that file:

<== sh("cat docs/samples/started/newway/newway/thecode.py") ==>
<==end==>

Paver has a Cog-like syntax for defining named sections. So, you just
use the include function with the relative filename and the section
you want, and it will be included. Sections can even be nested (and
you refer to nested sections using familiar dotted notation).

Bonus Deployment Example

pavements are just standard Python. The syntax for looping and things
like that are just what you’re used to. The options are standard Python
so they can contain lists and other objects. Need to deploy to
multiple hosts? Just put the hosts in the options and loop over them.

Let’s say we want to deploy The New Way project’s HTML files to a
couple of servers. This is similar to what I do for Paver itself, though
I only have one server. First, we’ll set up some variables to use for
our deploy task:

<== include('started/newway/pavement.py', 'deployoptions')==>
<==end==>

As you can see, we can put whatever kinds of objects we wish into
the options. Now for the deploy task itself:

<== include("started/newway/pavement.py", "deploy")==>
<==end==>

You’ll notice the new “cmdopts” decorator. Let’s say that you have
sensitive information like a password that you don’t want to include
in your pavement. You can easily make it a command line option for that
task using cmdopts. options.deploy.username will be set to whatever
the user enters on the command line.

It’s also worth noting that when looking up options, Paver gives
priority to options in a section with the same name as the task. So,
options.username will prefer options.deploy.username even if there
is a username in another section.

Our deploy task uses a simple for loop to run an rsync command
for each host. Let’s do a dry run providing a username to see
what the commands will be:

<== sh("cd docs/samples/started/newway; paver -n deploy -u kevin")==>
<==end==>

Where to go from here

The first thing to do is to just get started using Paver. As you’ve seen
above, it’s easy to get Paver into your workflow, even with existing
projects.

Use the paver help command.

If you really want more detail now, you’ll want to read more about
pavement files and the
Paver Standard Library.

pavement.py in depth

Paver is meant to be a hybrid declarative/imperative system for getting stuff done.
You declare things via the options in pavement.py. And, in fact, many projects
can get away with nothing but options in pavement.py. Consider, for example,
an early version of Paver’s own pavement file:

from paver.easy import *
import paver.doctools

options(
 setup=dict(
 name='paver',
 version="0.3",
 description='Python build tool',
 author='Kevin Dangoor',
 author_email='dangoor+paver@gmail.com',
 #url='',
 packages=['paver'],
 package_data=setuputils.find_package_data("paver", package="paver",
 only_in_packages=False),
 install_requires=[],
 test_suite='nose.collector',
 zip_safe=False,
 entry_points="""
 [console_scripts]
 paver = paver.command:main
 """,
),

 sphinx=Bunch(
 builddir="build",
 sourcedir="source"
)

)

@task
@needs('paver.doctools.html')
def html():
 """Build Paver's documentation and install it into paver/docs"""
 builtdocs = path("docs") / options.sphinx.builddir / "html"
 destdir = path("paver") / "docs"
 destdir.rmtree()
 builtdocs.move(destdir)

This file has both declarative and imperative aspects. The options define
enough information for distutils, setuptools and Sphinx to do their
respective jobs. This would function just fine without requiring you
to define any tasks.

However, for Paver’s ‘paverdoc’ built-in task to work, we need
Sphinx’s generated HTML to end up inside of Paver’s package tree.
So, we override the html task to move the generated files.

Defining Tasks

Tasks are just simple functions. You designate a function as being a
task by using the @task decorator.

You can also specify that a task depends on another task running
first with the @needs decorator. A given task will only run once
as a dependency for other tasks.

Manually Calling Tasks

Sometimes, you need to do something before running another task, so
the @needs decorator doesn’t quite do the job.

Of course, tasks are just Python functions. So, you can just call the
other task like a function!

How Task Names Work

Tasks have both a long name and a short name. The short name is just
the name of the function. The long name is the fully qualified Python
name for the function object.

For example, the Sphinx support includes a task function called “html”.
That task’s long name is “paver.doctools.html”.

If you `import paver.doctools` in your pavement.py, you’ll be able
to use either name to refer to that task.

Tasks that you define in your pavement are always available by their
short names. Tasks defined elsewhere are available by their short names
unless there is a conflict where two tasks are trying to use the same
short name.

Tasks are always available unambiguously via their long names.

Task Parameters

Tasks don’t have to take any parameters. However, Paver allows you to work
in a fairly clean, globals-free manner(*). Generally speaking, the easiest way
to work with paver is to just do from paver.easy import *, but if you
don’t like having so much in your namespace, you can have any attribute
from tasks.environment sent into your function. For example:

@task
def my_task(options, info):
 # this task will get the options and the "info" logging function
 # sent in
 pass

(*): well, there is one global: tasks.environment.

Command Line Arguments

Tasks can specify that they accept command line arguments, via three
other decorators. The @consume_args decorator tells Paver that all
command line arguments following this task’s name should be passed to the
task. If you’d like specifying a number of consumed arguments, let use
@consume_nargs. This later is similar by default to the previous,
but alos accept as an int argument the number of command line arguments
the decorated task will consume.
You can either look up the arguments in options.args, or just
specify args as a parameter to your function. For example, Paver’s “help”
task is declared like this:

@task
@consume_args
def help(args, help_function):
 pass

@task
@consume_nargs(3)
def mytask(args):
 pass

The “args” parameter is just an attribute on tasks.environment (as is
help_function), so it is passed in using the same rules described in the
previous section.

New in version 1.1.0: @consume_nargs decorator superseeds @consume_args,
and optionally accepts an int as argument: the number of command line
argument the decorated task will consume.

More generally, you’re not trying to consume all of the remainder of the
command line but to just accept certain specific arguments. That’s what
the cmdopts decorator is for:

@task
@cmdopts([
 ('username=', 'u', 'Username to use when logging in to the servers')
])
def deploy(options):
 pass

@cmdopts takes a list of tuples, each with long option name, short option name
and help text. If there’s an “=” after the long option name, that means
that the option takes a parameter. Otherwise, the option is assumed to be
boolean. The command line options set in this manner are all added to
the options under a namespace matching the name of the task. In the
case above, options.deploy.username would be set if the user ran
paver deploy -u my-user-name. Note that an equivalent command line would be
paver deploy.username=my-user-name deploy

For fine-tuning, you may add optparse.Option instances:

@tasks.task
@tasks.cmdopts([
 make_option("-f", "--foo", help="foo")
])
def foo_instead_of_spam_and_eggs(options):
 pass

You may share @cmdopts between tasks. To do that and to avoid confusion,
You have to add share_with argument:

@task
@cmdopts([
 ('username=', 'u', 'Username to use when logging in to the servers')
])
def deploy_to_linux(options):
 pass

@task
@needs(['deploy_to_linux'])
@cmdopts([
 ('username=', 'u', 'Username to use when logging in to the servers')
], share_with=['deploy_to_linux'])
def deploy(options):
 pass

For sharing, following must be fullfilled:

	Both long and short option names must be same

	share_with argument must be specified on top-level task

Otherwise, PavementError is raised.

You can combine both @consume_args and @cmdopts together:

@task
@cmdopts([
 ('username=', 'u', 'Username to use when logging in to the servers')
])
@consume_args
def exec(options):
 pass

	paver exec -u root will result in options.username = 'root', options.args = []

	paver exec -u root production will result in options.username = 'root', options.args = ['production']

	paver exec production -u root will result in options.args = ['production', '-u', 'root'] with no options.username attribute.

	paver exec -u root production -u other will result in options.username = 'root', options.args = ['production', '-u', 'other']

Hiding tasks

Some tasks may only exist as a shared dependency between other tasks and may not
make sense to be called directly.

There is no way to provide that, however you can hide them from paver help
to reduce noise. Just decorate function with @no_help decorator:

@task
@no_help
def hidden_dependency():
 pass

Of course, this should not be used usually. If task is not to be called at all,
why not just make them a g’old function?

More complex dependencies

@needs might not cover all your needs. For example, depending on argument
or environment, you might decide to call an appropriate task in the middle of
another one.

There are two key options for fixing that:

	@might_call decorator, which indicates that task might invoke call_task on one or more of the specified tasks. This allows you to provide command line options to task that might be called (it is inserted in dependency chain):

@task
@cmdopts([
 ('username=', 'u', 'Whom to greet')
], share_with=['deploy_to_linux'])
def say_hello(options):
 if not hasattr(options, "username"):
 print 'SPAM'
 else:
 print 'Hello, my dear user %s' % options.username

@task
@might_call('say_hello')
def greet_user(options):
 setup_environment()

 call_task('say_hello')

 do_cleanup()

	Providing options and arguments to another tasks directly.
Options are provided with final assigned value:

@task
@cmdopts([
 ('long-username=', 'u', 'Whom to greet')
], share_with=['deploy_to_linux'])
def say_hello(options):
 if not hasattr(options, "username"):
 print 'SPAM'
 else:
 print 'Hello, my dear user %s' % options.long_username

@task
def greet_user(options):
 call_task('say_hello', options={
 'long_username' : 'Kitty'
 })

Console arguments (args) should be passed as in console:

@task
@consume_args
def say_hello(args):
 print 'Hello to ALL the users: %s' % ', '.join(args)

@task
def greet_user(options):
 call_task('say_hello', args = [
 'Arthur Pewtey',
 'The Reverend Arthur Belling',
])

The Paver Standard Library

Paver includes several modules that will help you get your project scripting
done more quickly.

	distutils and setuptools (paver.setuputils)

	File Handling in Paver (paver.path)

	Documentation Tools (paver.doctools)

	Miscellaneous Tasks (paver.misctasks)

	Virtualenv Support (paver.virtual)

	Using virtualenv with tasks

	paver.virtual Tasks

	Using with Subversion (paver.svn)

	Using with Bazaar-NG (bzr) (paver.bzr)

	Using with Mercurial (hg) (paver.hg)

	SSH Remote Access Support (paver.ssh)

distutils and setuptools (paver.setuputils)

Paver makes it very easy to use and extend Python’s standard distribution
mechanisms. The Getting Started Guide has a useful
example of moving from distutils and setuptools to Paver.

Integrates distutils/setuptools with Paver.

	
paver.setuputils.find_package_data(where='.', package='', exclude=('*.py', '*.pyc', '*~', '.*', '*.bak', '*.swp*'), exclude_directories=('.*', 'CVS', '_darcs', './build', './dist', 'EGG-INFO', '*.egg-info'), only_in_packages=True, show_ignored=False)

	Return a dictionary suitable for use in package_data
in a distutils setup.py file.

The dictionary looks like:

{'package': [files]}

Where files is a list of all the files in that package that
don’t match anything in exclude.

If only_in_packages is true, then top-level directories that
are not packages won’t be included (but directories under packages
will).

Directories matching any pattern in exclude_directories will
be ignored; by default directories with leading ., CVS,
and _darcs will be ignored.

If show_ignored is true, then all the files that aren’t
included in package data are shown on stderr (for debugging
purposes).

Note patterns use wildcards, or can be exact paths (including
leading ./), and all searching is case-insensitive.

This function is by Ian Bicking.

	
paver.setuputils.install_distutils_tasks()

	Makes distutils and setuptools commands available as Paver tasks.

	
paver.setuputils.setup(**kw)

	Updates options.setup with the keyword arguments provided,
and installs the distutils tasks for this pavement. You can
use paver.setuputils.setup as a direct replacement for
the distutils.core.setup or setuptools.setup in a traditional
setup.py.

File Handling in Paver (paver.path)

Wrapper around path.py to add dry run support and other paver integration.

	
paver.path.pushd(*args, **kwds)

	A context manager for stepping into a directory and automatically coming
back to the previous one. The original directory is returned.
Usage is like this:

from paver.easy import *

@task
def my_task():
 with pushd('new/directory') as old_dir:
 ...do stuff...

Documentation Tools (paver.doctools)

Tasks and utility functions and classes for working with project
documentation.

	
class paver.doctools.Includer(basedir, cog=None, include_markers=None)

	Looks up SectionedFiles relative to the basedir.

When called with a filename and an optional section, the Includer
will:

	look up that file relative to the basedir in a cache

	load it as a SectionedFile if it’s not in the cache

	return the whole file if section is None

	return just the section desired if a section is requested

If a cog object is provided at initialization, the text will be
output (via cog’s out) rather than returned as
a string.

You can pass in include_markers which is a dictionary that maps
file extensions to the single line comment character for that
file type. If there is an include marker available, then
output like:

section ‘sectionname’ from ‘file.py’

There are some default include markers. If you don’t pass
in anything, no include markers will be displayed. If you
pass in an empty dictionary, the default ones will
be displayed.

	
class paver.doctools.SectionedFile(filename=None, from_string=None)

	Loads a file into memory and keeps track of all of the
sections found in the file. Sections are started with a
line that looks like this:

[[[section SECTIONNAME]]]

Anything else can appear on the line outside of the brackets
(so if you’re in a source code file, you can put the section marker
in a comment). The entire lines containing the section markers are
not included when you request the text from the file.

An end of section marker looks like this:

[[[endsection]]]

Sections can be nested. If you do nest sections, you will use
dotted notation to refer to the inner sections. For example,
a “dessert” section within an “order” section would be referred
to as “order.dessert”.

The SectionedFile provides dictionary-style access to the
sections. If you have a SectionedFile named ‘sf’,
sf[sectionname] will give you back a string of that section
of the file, including any inner sections. There won’t
be any section markers in that string.

You can get the text of the whole file via the all property
(for example, sf.all).

Section names must be unique across the file, but inner section
names are kept track of by the full dotted name. So you can
have a “dessert” section that is contained within two different
outer sections.

Ending a section without starting one or ending the file without
ending a section will yield BuildFailures.

	
all

	Property to get access to the whole file.

	
paver.doctools.cog(options)

	Runs the cog code generator against the files matching your
specification. By default, cog will run against any .rst files
in your Sphinx document root. Full documentation for Cog is
here:

https://nedbatchelder.com/code/cog/

In a nutshell, you put blocks in your file that look like
this:

[[[cog cog.outl(“Hi there!”)
]]]
[[[end]]]

Cog will replace the space between]]] and [[[end]]] with
the generated output. In this case, Hi there!

Here are the options available for the cog task. These are
looked up in the ‘cog’ options section by default. The
‘sphinx’ option set is also searched.

	basedir

	directory to look in for files to cog. If not set,
‘docroot’ is looked up.

	pattern

	file glob to look for under basedir. By default, *.rst

	includedir

	If you have external files to include in your
documentation, setting includedir to the root
of those files will put a paver.doctools.Includer
in your Cog namespace as ‘include’. This lets you
easily include files and sections of files. Here’s
an example usage:

[[[cog include('filename_under_includedir.py', 'mysection')]]]
[[[end]]]

	defines

	Dictionary of objects added to your Cog namespace.
(can supersede ‘include’ and ‘sh’ defined by includedir.)

	beginspec

	String used at the beginning of the code generation block.
Default: [[[cog

	endspec

	String used at the end of the code generation block.
Default;]]]

	endoutput

	String used at the end of the generated output
Default: [[[end]]]

	delete_code

	Remove the generator code. Note that this will mean that the
files that get changed cannot be changed again since the code
will be gone. Default: False

	include_markers

	Dictionary mapping file extensions to the single line
comment marker for that file. There are some defaults.
For example, ‘py’ maps to ‘# ‘. If there is a known
include marker for a given file, then a comment
will be displayed along the lines of:

section ‘SECTIONNAME’ in file ‘foo.py’

If this option is not set, these lines will not
be displayed at all. If this option is set to an
empty dictionary, the default include markers
will be displayed. You can also pass in your own
extension -> include marker settings.

	
paver.doctools.doc_clean()

	Clean (delete) the built docs. Specifically, this deletes the
build directory under the docroot. See the html task for the
options list.

	
paver.doctools.html()

	Build HTML documentation using Sphinx. This uses the following
options in a “sphinx” section of the options.

	docroot

	the root under which Sphinx will be working. Default: docs

	builddir

	directory under the docroot where the resulting files are put.
default: .build

	sourcedir

	directory under the docroot for the source files
default: (empty string)

	apidir

	directory under the sourcedir for the auto-generated API docs (empty = don’t create them)
default: api

	
paver.doctools.uncog(options)

	Remove the Cog generated code from files. Often, you will want to
do this before committing code under source control, because you
don’t generally want generated code in your version control system.

This takes the same options as the cog task. Look there for
more information.

Miscellaneous Tasks (paver.misctasks)

These are some other tasks that are located in the paver.misctasks module.

Miscellaneous tasks that don’t fit into one of the other groupings.

	
paver.misctasks.generate_setup(options)

	Generates a setup.py file that uses paver behind the scenes. This
setup.py file will look in the directory that the user is running it
in for a paver-minilib.zip and will add that to sys.path if available.
Otherwise, it will just assume that paver is available.

	
paver.misctasks.minilib(options)

	Create a Paver mini library that contains enough for a simple
pavement.py to be installed using a generated setup.py. This
is a good temporary measure until more people have deployed paver.
The output file is ‘paver-minilib.zip’ in the current directory.

Options:

	versioned_name

	if set to True, paver version will be added into minilib’s filename
(ie paver-minilib-1.1.0.zip)
purpose is to avoid import error while using different versions of minilib
with easy_install
(default False)

	extra_files

	list of other paver modules to include (don’t include the .py
extension). By default, the following modules are included:
defaults, path, release, setuputils, misctasks, options,
tasks, easy

	extra_packages

	list of unrelated packages to include. By default, Paver’s own
dependencies are included. Package must be installed and importable

Virtualenv Support (paver.virtual)

Paver makes it easy to set up virtualenv environments for development and deployment.
Virtualenv gives you a place to install Python packages and keep them separate from
your main system’s Python installation.

Using virtualenv with tasks

You may specify which virtual environment should particular task use. Do this
with @virtualenv decorator:

from paver.easy import task
from paver.virtual import virtualenv

@task
@virtualenv(dir="virtualenv")
def t1():
 import some_module_existing_only_in_virtualenv

paver.virtual Tasks

Tasks for managing virtualenv environments.

	
paver.virtual.bootstrap()

	Creates a virtualenv bootstrap script.
The script will create a bootstrap script that populates a
virtualenv in the current directory. The environment will
have paver, the packages of your choosing and will run
the paver command of your choice.

This task looks in the virtualenv options for:

	script_name

	name of the generated script

	packages_to_install

	packages to install with pip/easy_install. The version of paver that
you are using is included automatically. This should be a list of
strings.

	paver_command_line

	run this paver command line after installation (just the command
line arguments, not the paver command itself).

	dest_dir

	the destination directory for the virtual environment (defaults to
‘.’)

	no_site_packages

	don’t give access to the global site-packages dir to the virtual
environment (default; deprecated)

	system_site_packages

	give access to the global site-packages dir to the virtual
environment

	unzip_setuptools

	unzip Setuptools when installing it (defaults to False)

	distribute

	use Distribute instead of Setuptools. Set environment variable
VIRTUALENV_DISTRIBUTE to make it the default.

	index_url

	base URL of Python Package Index

	trusted_host

	specify whether the given index_url is a trusted host to avoid
deprecated warnings

	no_index

	ignore package index (only looking at find_links URL(s) instead)

	find_links

	additional URL(s) to search for packages. This should be a list of
strings.

	prefer_easy_install

	prefer easy_install to pip for package installation if both are
installed (defaults to False)

	
paver.virtual.virtualenv(dir)

	Run decorated task in specified virtual environment.

Using with Subversion (paver.svn)

Convenience functions for working with svn.

This module does not include any tasks, only functions.

At this point, these functions do not use any kind of library. They require
the svn binary on the path.

	
paver.svn.checkout(url, dest, revision='')

	Checks out the specified URL to the given destination.

	
paver.svn.checkup(url, dest, revision='')

	Does a checkout or update, depending on whether the destination
exists and is up to date (if a revision is passed in). Returns
true if a checkout or update was performed. False otherwise.

	
paver.svn.export(url, dest, revision='')

	Exports the specified URL to the given destination.

	
paver.svn.info(path='')

	Retrieves the svn info for the path and returns a dictionary of
the values. Names are normalized to lower case with spaces converted
to underscores.

	
paver.svn.update(path='', revision='')

	Run an svn update on the given path.

Using with Bazaar-NG (bzr) (paver.bzr)

Using with Mercurial (hg) (paver.hg)

Convenience functions for working with mercurial

This module does not include any tasks, only functions.

At this point, these functions do not use any kind of library. They require
the hg binary on the PATH.

	
paver.hg.branches(repo_path, closed=False)

	List branches for the target repository.

	Parameters:

	repo_path (string): The local path to a mercurial repository.
closed=False (bool): Whether to include closed branches in the

branch list.

	Returns:

	A python tuple. The first item of the tuple is the current branch.
The second item of the tuple is a list of the branches

	
paver.hg.clone(url, dest_folder, rev=None)

	Clone a mercurial repository.

	Parameters:

	
	url (string): The path to clone the repository from. Could be local

	or remote.

	dest_folder (string): The local folder where the repository will be

	cloned.

	rev=None (string or None): If specified, the revision to clone to.

	If omitted or None, all changes will be cloned.

	Returns:

	None

	
paver.hg.latest_tag(repo_path, relative_to='tip')

	Get the latest tag from a mercurial repository.

	Parameters:

	repo_path (string): The local path to a mercurial repository.
relative_to=’tip’ (string): If provided, the revision to use as

a reference. Defaults to ‘tip’.

	Returns:

	The string name of the latest tag.

	
paver.hg.pull(repo_path, rev=None, url=None)

	Pull changes into a mercurial repository.

	Parameters:

	repo_path (string): The local path to a mercurial repository.
rev=None (string or None): If specified, the revision to pull to.

If omitted or None, all changes will be pulled.

	url=None (string or None): If specified, the repository to pull from.

	If omitted or None, the default location of the repository will
be used.

	Returns:

	None

	
paver.hg.update(repo_path, rev='tip', clean=False)

	Update a mercurial repository to a revision.

	Parameters:

	repo_path (string): The local path to a mercurial repository.
rev=’tip’ (string): If provided, the revision to update to. If

omitted, ‘tip’ will be used.

	clean=False (bool): If True, the update will discard uncommitted

	changes.

	Returns:

	None

SSH Remote Access Support (paver.ssh)

Functions for accessing remote hosts.

At present, these are implemented by calling ssh’s command line programs.

	
paver.ssh.scp(source, dest)

	Copy the source file to the destination.

Paver Command Line

Paver does sophisticated command line parsing globally and for each task:

paver [-q] [-n] [-v] [-f pavement] [-h] [option.name=key] [taskname] [taskoptions] [taskname...]

The command line options are:

	-q

	quiet… don’t display much info (info and debug messages are not shown)

	-n

	dry run… don’t actually run destructive commands

	-v

	verbose… display debug level output

	-h

	display the command line options and list of available tasks. Note
that -h can be provided for any task to display the command line options
and detailed help for that task.

	-f <pavement>

	use a different file than “pavement.py”

If you run paver without a task, it will only run the “auto” task, if there
is one. Otherwise, Paver will do nothing.

paver help is the equivalent of paver -h, and paver help taskname
is the equivalent of paver taskname -h.

You can set build options via the command line by providing optionname=value.
The option names can be in dotted notation, so foo.bar.baz=something will
set options[‘foo’][‘bar’][‘baz’] = ‘something’ in the options. If you need
to enter a value with multiple words, put quotes around the part with the space.

Important and useful: Options are set at the point in which they appear in
the command line. That means that you can set an option before one task
and then set it to another value for the next task.

Tips and Tricks

Using a Config File For Settings

Many people like to have their configuration metadata available in a
data file, rather than a Python program. This is easy to do with
Paver:

from paver.easy import *

@task
def auto():
 config_data = (read config data using config parser of choice)
 # assuming config_data is a dictionary
 options.update(config_data)

The auto task is automatically run when the pavement is launched. You can
use Python’s standard ConfigParser module, if you’d like to store the
information in an .ini file.

Articles about Paver

	Converting from Make to Paver [http://blog.doughellmann.com/2009/01/converting-from-make-to-paver.html] - Doug Hellman’s look at how he moved from Make to Paver for Python Module of the Week.

	Writing Technical Documentation with Sphinx, Paver and Cog [http://blog.doughellmann.com/2009/02/writing-technical-documentation-with.html] - Doug Hellman’s in-depth article about how he produces the Python Module of the Week series.

	Initial announcement [http://www.blueskyonmars.com/2008/04/22/paver-and-the-building-distribution-deployment-etc-of-python-projects/] and background about the project

	Release 0.7 announcement [http://www.blueskyonmars.com/2008/05/07/paver-07-better-than-distutils-better-docs-and-much-more/]

	Paver 1.0a1 announcement [http://www.blueskyonmars.com/2009/01/28/paver-10a1-is-out/] (the ill-fated release that was recalled)

Complete API Reference

The following is a complete API reference generated from source,
as a companion to the “Paver Standard Library” chapter.

	paver package
	Subpackages
	paver.deps package
	Submodules

	paver.deps.path2 module

	paver.deps.path3 module

	Module contents

	paver.tests package
	Submodules

	paver.tests.other_pavement module

	paver.tests.test_doctools module

	paver.tests.test_git module

	paver.tests.test_hg module

	paver.tests.test_options module

	paver.tests.test_path module

	paver.tests.test_setuputils module

	paver.tests.test_shell module

	paver.tests.test_svn module

	paver.tests.test_tasks module

	paver.tests.utils module

	Module contents

	Submodules

	paver.bzr module

	paver.command module

	paver.defaults module

	paver.doctools module

	paver.easy module

	paver.git module

	paver.hg module

	paver.misctasks module

	paver.options module

	paver.path module

	paver.release module

	paver.runtime module

	paver.setuputils module

	paver.shell module

	paver.ssh module

	paver.svn module

	paver.tasks module

	paver.version module

	paver.virtual module

	Module contents

paver package

Subpackages

	paver.deps package
	Submodules

	paver.deps.path2 module

	paver.deps.path3 module

	Module contents

	paver.tests package
	Submodules

	paver.tests.other_pavement module

	paver.tests.test_doctools module

	paver.tests.test_git module

	paver.tests.test_hg module

	paver.tests.test_options module

	paver.tests.test_path module

	paver.tests.test_setuputils module

	paver.tests.test_shell module

	paver.tests.test_svn module

	paver.tests.test_tasks module

	paver.tests.utils module

	Module contents

Submodules

paver.bzr module

paver.command module

Paver’s command-line driver

	
paver.command.main()

	

paver.defaults module

The namespace for the pavement to run in, also imports default tasks.

paver.doctools module

Tasks and utility functions and classes for working with project
documentation.

	
class paver.doctools.Includer(basedir, cog=None, include_markers=None)

	Bases: object

Looks up SectionedFiles relative to the basedir.

When called with a filename and an optional section, the Includer
will:

	look up that file relative to the basedir in a cache

	load it as a SectionedFile if it’s not in the cache

	return the whole file if section is None

	return just the section desired if a section is requested

If a cog object is provided at initialization, the text will be
output (via cog’s out) rather than returned as
a string.

You can pass in include_markers which is a dictionary that maps
file extensions to the single line comment character for that
file type. If there is an include marker available, then
output like:

section ‘sectionname’ from ‘file.py’

There are some default include markers. If you don’t pass
in anything, no include markers will be displayed. If you
pass in an empty dictionary, the default ones will
be displayed.

	
class paver.doctools.SectionedFile(filename=None, from_string=None)

	Bases: object

Loads a file into memory and keeps track of all of the
sections found in the file. Sections are started with a
line that looks like this:

[[[section SECTIONNAME]]]

Anything else can appear on the line outside of the brackets
(so if you’re in a source code file, you can put the section marker
in a comment). The entire lines containing the section markers are
not included when you request the text from the file.

An end of section marker looks like this:

[[[endsection]]]

Sections can be nested. If you do nest sections, you will use
dotted notation to refer to the inner sections. For example,
a “dessert” section within an “order” section would be referred
to as “order.dessert”.

The SectionedFile provides dictionary-style access to the
sections. If you have a SectionedFile named ‘sf’,
sf[sectionname] will give you back a string of that section
of the file, including any inner sections. There won’t
be any section markers in that string.

You can get the text of the whole file via the all property
(for example, sf.all).

Section names must be unique across the file, but inner section
names are kept track of by the full dotted name. So you can
have a “dessert” section that is contained within two different
outer sections.

Ending a section without starting one or ending the file without
ending a section will yield BuildFailures.

	
all

	Property to get access to the whole file.

	
keys()

	

	
paver.doctools.cog(options)

	Runs the cog code generator against the files matching your
specification. By default, cog will run against any .rst files
in your Sphinx document root. Full documentation for Cog is
here:

https://nedbatchelder.com/code/cog/

In a nutshell, you put blocks in your file that look like
this:

[[[cog cog.outl(“Hi there!”)
]]]
[[[end]]]

Cog will replace the space between]]] and [[[end]]] with
the generated output. In this case, Hi there!

Here are the options available for the cog task. These are
looked up in the ‘cog’ options section by default. The
‘sphinx’ option set is also searched.

	basedir

	directory to look in for files to cog. If not set,
‘docroot’ is looked up.

	pattern

	file glob to look for under basedir. By default, *.rst

	includedir

	If you have external files to include in your
documentation, setting includedir to the root
of those files will put a paver.doctools.Includer
in your Cog namespace as ‘include’. This lets you
easily include files and sections of files. Here’s
an example usage:

[[[cog include('filename_under_includedir.py', 'mysection')]]]
[[[end]]]

	defines

	Dictionary of objects added to your Cog namespace.
(can supersede ‘include’ and ‘sh’ defined by includedir.)

	beginspec

	String used at the beginning of the code generation block.
Default: [[[cog

	endspec

	String used at the end of the code generation block.
Default;]]]

	endoutput

	String used at the end of the generated output
Default: [[[end]]]

	delete_code

	Remove the generator code. Note that this will mean that the
files that get changed cannot be changed again since the code
will be gone. Default: False

	include_markers

	Dictionary mapping file extensions to the single line
comment marker for that file. There are some defaults.
For example, ‘py’ maps to ‘# ‘. If there is a known
include marker for a given file, then a comment
will be displayed along the lines of:

section ‘SECTIONNAME’ in file ‘foo.py’

If this option is not set, these lines will not
be displayed at all. If this option is set to an
empty dictionary, the default include markers
will be displayed. You can also pass in your own
extension -> include marker settings.

	
paver.doctools.doc_clean()

	Clean (delete) the built docs. Specifically, this deletes the
build directory under the docroot. See the html task for the
options list.

	
paver.doctools.html()

	Build HTML documentation using Sphinx. This uses the following
options in a “sphinx” section of the options.

	docroot

	the root under which Sphinx will be working. Default: docs

	builddir

	directory under the docroot where the resulting files are put.
default: .build

	sourcedir

	directory under the docroot for the source files
default: (empty string)

	apidir

	directory under the sourcedir for the auto-generated API docs (empty = don’t create them)
default: api

	
paver.doctools.uncog(options)

	Remove the Cog generated code from files. Often, you will want to
do this before committing code under source control, because you
don’t generally want generated code in your version control system.

This takes the same options as the cog task. Look there for
more information.

paver.easy module

	
paver.easy.call_task

	

	
paver.easy.debug(message, *args)

	Displays a message to the user, but only if the verbose flag is
set.

	
paver.easy.dry(message, func, *args, **kw)

	Wraps a function that performs a destructive operation, so that
nothing will happen when a dry run is requested.

Runs func with the given arguments and keyword arguments. If this
is a dry run, print the message rather than running the function.

	
paver.easy.error(message, *args)

	Displays an error message to the user.

	
paver.easy.info(message, *args)

	Displays a message to the user. If the quiet option is specified, the
message will not be displayed.

paver.git module

Convenience functions for working with git.

This module does not include any tasks, only functions.

At this point, these functions do not use any kind of library. They require
the git binary on the path.

	
paver.git.branch_checkout(branch_name, path='')

	Checkout a git branch.

Take the branch name to checkout, and optional path parameter
(the path to the git repo. Else uses os.getcwd())

	
paver.git.branch_list(path='', remote_branches_only=False, __override__=None)

	Lists git branches for the repository specified (or CWD).
If remote_branches_only is specified will list branches that exist
on the remote. These branches may, or may not, have corresponding remote
tracking branches.

Returns a Python tuple. The first item in the tuple will be the current
branch, and the other item will be a list of branches for the repository.

Optional parameter path: the path to the git repo. Else uses os.getcwd()

	
paver.git.branch_track_remote(remote_branch_name, local_branch_name=None, path='')

	

	
paver.git.clone(url, dest_folder)

	

	
paver.git.latest_tag()

	Get the most recent git tag. Useful for using in package version.

	
paver.git.pull(destination, remote='origin', branch='master')

	Perform a git pull. Destination must be absolute path.

paver.hg module

Convenience functions for working with mercurial

This module does not include any tasks, only functions.

At this point, these functions do not use any kind of library. They require
the hg binary on the PATH.

	
paver.hg.branches(repo_path, closed=False)

	List branches for the target repository.

	Parameters:

	repo_path (string): The local path to a mercurial repository.
closed=False (bool): Whether to include closed branches in the

branch list.

	Returns:

	A python tuple. The first item of the tuple is the current branch.
The second item of the tuple is a list of the branches

	
paver.hg.clone(url, dest_folder, rev=None)

	Clone a mercurial repository.

	Parameters:

	
	url (string): The path to clone the repository from. Could be local

	or remote.

	dest_folder (string): The local folder where the repository will be

	cloned.

	rev=None (string or None): If specified, the revision to clone to.

	If omitted or None, all changes will be cloned.

	Returns:

	None

	
paver.hg.latest_tag(repo_path, relative_to='tip')

	Get the latest tag from a mercurial repository.

	Parameters:

	repo_path (string): The local path to a mercurial repository.
relative_to=’tip’ (string): If provided, the revision to use as

a reference. Defaults to ‘tip’.

	Returns:

	The string name of the latest tag.

	
paver.hg.pull(repo_path, rev=None, url=None)

	Pull changes into a mercurial repository.

	Parameters:

	repo_path (string): The local path to a mercurial repository.
rev=None (string or None): If specified, the revision to pull to.

If omitted or None, all changes will be pulled.

	url=None (string or None): If specified, the repository to pull from.

	If omitted or None, the default location of the repository will
be used.

	Returns:

	None

	
paver.hg.update(repo_path, rev='tip', clean=False)

	Update a mercurial repository to a revision.

	Parameters:

	repo_path (string): The local path to a mercurial repository.
rev=’tip’ (string): If provided, the revision to update to. If

omitted, ‘tip’ will be used.

	clean=False (bool): If True, the update will discard uncommitted

	changes.

	Returns:

	None

paver.misctasks module

Miscellaneous tasks that don’t fit into one of the other groupings.

	
paver.misctasks.generate_setup(options)

	Generates a setup.py file that uses paver behind the scenes. This
setup.py file will look in the directory that the user is running it
in for a paver-minilib.zip and will add that to sys.path if available.
Otherwise, it will just assume that paver is available.

	
paver.misctasks.minilib(options)

	Create a Paver mini library that contains enough for a simple
pavement.py to be installed using a generated setup.py. This
is a good temporary measure until more people have deployed paver.
The output file is ‘paver-minilib.zip’ in the current directory.

Options:

	versioned_name

	if set to True, paver version will be added into minilib’s filename
(ie paver-minilib-1.1.0.zip)
purpose is to avoid import error while using different versions of minilib
with easy_install
(default False)

	extra_files

	list of other paver modules to include (don’t include the .py
extension). By default, the following modules are included:
defaults, path, release, setuputils, misctasks, options,
tasks, easy

	extra_packages

	list of unrelated packages to include. By default, Paver’s own
dependencies are included. Package must be installed and importable

paver.options module

	
class paver.options.Bunch

	Bases: dict

A dictionary that provides attribute-style access.

	
class paver.options.Namespace(d=None, **kw)

	Bases: paver.options.Bunch

A Bunch that will search dictionaries contained within to find a value.
The search order is set via the order() method. See the order method for
more information about search order.

	
clear()

	

	
get(key, default=None)

	

	
order(*keys, **kw)

	Set the search order for this namespace. The arguments
should be the list of keys in the order you wish to search,
or a dictionary/Bunch that you want to search.
Keys that are left out will not be searched. If you pass in
no arguments, then the default ordering will be used. (The default
is to search the global space first, then in the order in
which the sections were created.)

If you pass in a key name that is not a section, that
key will be silently removed from the list.

Keyword arguments are:

	add_rest=False

	put the sections you list at the front of the search
and add the remaining sections to the end

	
setdefault(key, default)

	

	
setdotted(key, value)

	Sets a namespace key, value pair where the key
can use dotted notation to set sub-values. For example,
the key “foo.bar” will set the “bar” value in the “foo”
Bunch in this Namespace. If foo does not exist, it is created
as a Bunch. If foo is a value, an OptionsError will be
raised.

	
update(d=None, **kw)

	Update the namespace. This is less efficient than the standard
dict.update but is necessary to keep track of the sections that we’ll be
searching.

	
exception paver.options.OptionsError

	Bases: exceptions.Exception

paver.path module

Wrapper around path.py to add dry run support and other paver integration.

	
class paver.path.path

	Bases: paver.deps.path2.path

	
chdir()

	

	
chmod(*args, **kwds)

	

	
chown(*args, **kwds)

	

	
copy(*args, **kwds)

	Copy data and mode bits (“cp src dst”).

The destination may be a directory.

	
copy2(*args, **kwds)

	Copy data and all stat info (“cp -p src dst”).

The destination may be a directory.

	
copyfile(*args, **kwds)

	Copy data from src to dst

	
copymode(*args, **kwds)

	Copy mode bits from src to dst

	
copystat(*args, **kwds)

	Copy all stat info (mode bits, atime, mtime, flags) from src to dst

	
copytree(*args, **kwds)

	Recursively copy a directory tree using copy2().

The destination directory must not already exist.
If exception(s) occur, an Error is raised with a list of reasons.

If the optional symlinks flag is true, symbolic links in the
source tree result in symbolic links in the destination tree; if
it is false, the contents of the files pointed to by symbolic
links are copied.

The optional ignore argument is a callable. If given, it
is called with the src parameter, which is the directory
being visited by copytree(), and names which is the list of
src contents, as returned by os.listdir():

callable(src, names) -> ignored_names

Since copytree() is called recursively, the callable will be
called once for each directory that is copied. It returns a
list of names relative to the src directory that should
not be copied.

XXX Consider this example code rather than the ultimate tool.

	
link(*args, **kwds)

	Create a hard link at ‘newpath’, pointing to this file.

	
makedirs(*args, **kwds)

	

	
makedirs_p(*args, **kwds)

	

	
mkdir(*args, **kwds)

	

	
mkdir_p(*args, **kwds)

	

	
move(*args, **kwds)

	Recursively move a file or directory to another location. This is
similar to the Unix “mv” command.

If the destination is a directory or a symlink to a directory, the source
is moved inside the directory. The destination path must not already
exist.

If the destination already exists but is not a directory, it may be
overwritten depending on os.rename() semantics.

If the destination is on our current filesystem, then rename() is used.
Otherwise, src is copied to the destination and then removed.
A lot more could be done here… A look at a mv.c shows a lot of
the issues this implementation glosses over.

	
remove(*args, **kwds)

	

	
remove_p(*args, **kwds)

	

	
removedirs(*args, **kwds)

	

	
removedirs_p(*args, **kwds)

	

	
rename(*args, **kwds)

	

	
renames(*args, **kwds)

	

	
rmdir(*args, **kwds)

	

	
rmdir_p(*args, **kwds)

	

	
rmtree(*args, **kwds)

	

	
rmtree_p(*args, **kwds)

	

	
symlink(*args, **kwds)

	Create a symbolic link at ‘newlink’, pointing here.

	
touch(*args, **kwds)

	Set the access/modified times of this file to the current time.
Create the file if it does not exist.

	
unlink(*args, **kwds)

	

	
unlink_p(*args, **kwds)

	

	
utime(*args, **kwds)

	Set the access and modified times of this file.

	
write_bytes(*args, **kwds)

	Open this file and write the given bytes to it.

Default behavior is to overwrite any existing file.
Call p.write_bytes(bytes, append=True) to append instead.

	
write_lines(*args, **kwds)

	Write the given lines of text to this file.

By default this overwrites any existing file at this path.

This puts a platform-specific newline sequence on every line.
See ‘linesep’ below.

lines - A list of strings.

	encoding - A Unicode encoding to use. This applies only if

	‘lines’ contains any Unicode strings.

	errors - How to handle errors in Unicode encoding. This

	also applies only to Unicode strings.

	linesep - The desired line-ending. This line-ending is

	applied to every line. If a line already has any
standard line ending (‘r’, ‘n’, ‘rn’, u’x85’,
u’rx85’, u’u2028’), that will be stripped off and
this will be used instead. The default is os.linesep,
which is platform-dependent (‘rn’ on Windows, ‘n’ on
Unix, etc.) Specify None to write the lines as-is,
like file.writelines().

Use the keyword argument append=True to append lines to the
file. The default is to overwrite the file. Warning:
When you use this with Unicode data, if the encoding of the
existing data in the file is different from the encoding
you specify with the encoding= parameter, the result is
mixed-encoding data, which can really confuse someone trying
to read the file later.

	
write_text(*args, **kwds)

	Write the given text to this file.

The default behavior is to overwrite any existing file;
to append instead, use the ‘append=True’ keyword argument.

There are two differences between path.write_text() and
path.write_bytes(): newline handling and Unicode handling.
See below.

Parameters:

	text - str/unicode - The text to be written.

	encoding - str - The Unicode encoding that will be used.
This is ignored if ‘text’ isn’t a Unicode string.

	errors - str - How to handle Unicode encoding errors.
Default is ‘strict’. See help(unicode.encode) for the
options. This is ignored if ‘text’ isn’t a Unicode
string.

	linesep - keyword argument - str/unicode - The sequence of
characters to be used to mark end-of-line. The default is
os.linesep. You can also specify None; this means to
leave all newlines as they are in ‘text’.

	append - keyword argument - bool - Specifies what to do if
the file already exists (True: append to the end of it;
False: overwrite it.) The default is False.

— Newline handling.

write_text() converts all standard end-of-line sequences
(‘n’, ‘r’, and ‘rn’) to your platform’s default end-of-line
sequence (see os.linesep; on Windows, for example, the
end-of-line marker is ‘rn’).

If you don’t like your platform’s default, you can override it
using the ‘linesep=’ keyword argument. If you specifically want
write_text() to preserve the newlines as-is, use ‘linesep=None’.

This applies to Unicode text the same as to 8-bit text, except
there are three additional standard Unicode end-of-line sequences:
u’x85’, u’rx85’, and u’u2028’.

(This is slightly different from when you open a file for
writing with fopen(filename, “w”) in C or open(filename, ‘w’)
in Python.)

— Unicode

If ‘text’ isn’t Unicode, then apart from newline handling, the
bytes are written verbatim to the file. The ‘encoding’ and
‘errors’ arguments are not used and must be omitted.

If ‘text’ is Unicode, it is first converted to bytes using the
specified ‘encoding’ (or the default encoding if ‘encoding’
isn’t specified). The ‘errors’ argument applies only to this
conversion.

	
paver.path.pushd(*args, **kwds)

	A context manager for stepping into a directory and automatically coming
back to the previous one. The original directory is returned.
Usage is like this:

from paver.easy import *

@task
def my_task():
 with pushd('new/directory') as old_dir:
 ...do stuff...

paver.release module

Release metadata for Paver.

paver.runtime module

Helper functions and data structures used by pavements.

	
class paver.runtime.Bunch

	Bases: dict

A dictionary that provides attribute-style access.

	
paver.runtime.task(func)

	Specifies that this function is a task.

Note that this decorator does not actually replace the function object.
It just keeps track of the task and sets an is_task flag on the
function object.

	
paver.runtime.needs(*args)

	Specifies tasks upon which this task depends.

req can be a string or a list of strings with the names
of the tasks. You can call this decorator multiple times
and the various requirements are added on. You can also
call with the requirements as a list of arguments.

The requirements are called in the order presented in the
list.

	
paver.runtime.dry(message, func, *args, **kw)

	Wraps a function that performs a destructive operation, so that
nothing will happen when a dry run is requested.

Runs func with the given arguments and keyword arguments. If this
is a dry run, print the message rather than running the function.

	
paver.runtime.error(message, *args)

	Displays an error message to the user.

	
paver.runtime.info(message, *args)

	Displays a message to the user. If the quiet option is specified, the
message will not be displayed.

	
paver.runtime.debug(message, *args)

	Displays a message to the user, but only if the verbose flag is
set.

	
paver.runtime.call_task(task_name, options=None)

	DEPRECATED. Just call the task instead.

Calls the desired task, including any tasks upon which that task
depends. options is an optional dictionary that will be added
to the option lookup search order.

You can always call a task directly by calling the function directly.
But, if you do so the dependencies aren’t called. call_task ensures
that these are called.

Note that call_task will only call the task once during a given
build as long as the options remain the same. If the options are
changed, the task will be called again.

	
paver.runtime.require_keys(keys)

	GONE. There is no equivalent in Paver 1.0. Calling this
will raise an exception.

A set of dotted-notation keys that must be present in the
options for this task to be relevant.

	
paver.runtime.sh(command, capture=False, ignore_error=False, cwd=None, env=None)

	Runs an external command. If capture is True, the output of the
command will be captured and returned as a string. If the command
has a non-zero return code raise a BuildFailure. You can pass
ignore_error=True to allow non-zero return codes to be allowed to
pass silently, silently into the night. If you pass cwd=’some/path’
paver will chdir to ‘some/path’ before exectuting the command.

If the dry_run option is True, the command will not
actually be run.

env is a dictionary of environment variables. Refer to subprocess.Popen’s
documentation for further information on this.

	
exception paver.runtime.BuildFailure

	Bases: exceptions.Exception

Represents a problem with some part of the build’s execution.

	
exception paver.runtime.PavementError

	Bases: exceptions.Exception

Exception that represents a problem in the pavement.py file
rather than the process of running a build.

	
class paver.runtime.path

	Bases: paver.deps.path2.path

	
chdir()

	

	
chmod(*args, **kwds)

	

	
chown(*args, **kwds)

	

	
copy(*args, **kwds)

	Copy data and mode bits (“cp src dst”).

The destination may be a directory.

	
copy2(*args, **kwds)

	Copy data and all stat info (“cp -p src dst”).

The destination may be a directory.

	
copyfile(*args, **kwds)

	Copy data from src to dst

	
copymode(*args, **kwds)

	Copy mode bits from src to dst

	
copystat(*args, **kwds)

	Copy all stat info (mode bits, atime, mtime, flags) from src to dst

	
copytree(*args, **kwds)

	Recursively copy a directory tree using copy2().

The destination directory must not already exist.
If exception(s) occur, an Error is raised with a list of reasons.

If the optional symlinks flag is true, symbolic links in the
source tree result in symbolic links in the destination tree; if
it is false, the contents of the files pointed to by symbolic
links are copied.

The optional ignore argument is a callable. If given, it
is called with the src parameter, which is the directory
being visited by copytree(), and names which is the list of
src contents, as returned by os.listdir():

callable(src, names) -> ignored_names

Since copytree() is called recursively, the callable will be
called once for each directory that is copied. It returns a
list of names relative to the src directory that should
not be copied.

XXX Consider this example code rather than the ultimate tool.

	
link(*args, **kwds)

	Create a hard link at ‘newpath’, pointing to this file.

	
makedirs(*args, **kwds)

	

	
makedirs_p(*args, **kwds)

	

	
mkdir(*args, **kwds)

	

	
mkdir_p(*args, **kwds)

	

	
move(*args, **kwds)

	Recursively move a file or directory to another location. This is
similar to the Unix “mv” command.

If the destination is a directory or a symlink to a directory, the source
is moved inside the directory. The destination path must not already
exist.

If the destination already exists but is not a directory, it may be
overwritten depending on os.rename() semantics.

If the destination is on our current filesystem, then rename() is used.
Otherwise, src is copied to the destination and then removed.
A lot more could be done here… A look at a mv.c shows a lot of
the issues this implementation glosses over.

	
remove(*args, **kwds)

	

	
remove_p(*args, **kwds)

	

	
removedirs(*args, **kwds)

	

	
removedirs_p(*args, **kwds)

	

	
rename(*args, **kwds)

	

	
renames(*args, **kwds)

	

	
rmdir(*args, **kwds)

	

	
rmdir_p(*args, **kwds)

	

	
rmtree(*args, **kwds)

	

	
rmtree_p(*args, **kwds)

	

	
symlink(*args, **kwds)

	Create a symbolic link at ‘newlink’, pointing here.

	
touch(*args, **kwds)

	Set the access/modified times of this file to the current time.
Create the file if it does not exist.

	
unlink(*args, **kwds)

	

	
unlink_p(*args, **kwds)

	

	
utime(*args, **kwds)

	Set the access and modified times of this file.

	
write_bytes(*args, **kwds)

	Open this file and write the given bytes to it.

Default behavior is to overwrite any existing file.
Call p.write_bytes(bytes, append=True) to append instead.

	
write_lines(*args, **kwds)

	Write the given lines of text to this file.

By default this overwrites any existing file at this path.

This puts a platform-specific newline sequence on every line.
See ‘linesep’ below.

lines - A list of strings.

	encoding - A Unicode encoding to use. This applies only if

	‘lines’ contains any Unicode strings.

	errors - How to handle errors in Unicode encoding. This

	also applies only to Unicode strings.

	linesep - The desired line-ending. This line-ending is

	applied to every line. If a line already has any
standard line ending (‘r’, ‘n’, ‘rn’, u’x85’,
u’rx85’, u’u2028’), that will be stripped off and
this will be used instead. The default is os.linesep,
which is platform-dependent (‘rn’ on Windows, ‘n’ on
Unix, etc.) Specify None to write the lines as-is,
like file.writelines().

Use the keyword argument append=True to append lines to the
file. The default is to overwrite the file. Warning:
When you use this with Unicode data, if the encoding of the
existing data in the file is different from the encoding
you specify with the encoding= parameter, the result is
mixed-encoding data, which can really confuse someone trying
to read the file later.

	
write_text(*args, **kwds)

	Write the given text to this file.

The default behavior is to overwrite any existing file;
to append instead, use the ‘append=True’ keyword argument.

There are two differences between path.write_text() and
path.write_bytes(): newline handling and Unicode handling.
See below.

Parameters:

	text - str/unicode - The text to be written.

	encoding - str - The Unicode encoding that will be used.
This is ignored if ‘text’ isn’t a Unicode string.

	errors - str - How to handle Unicode encoding errors.
Default is ‘strict’. See help(unicode.encode) for the
options. This is ignored if ‘text’ isn’t a Unicode
string.

	linesep - keyword argument - str/unicode - The sequence of
characters to be used to mark end-of-line. The default is
os.linesep. You can also specify None; this means to
leave all newlines as they are in ‘text’.

	append - keyword argument - bool - Specifies what to do if
the file already exists (True: append to the end of it;
False: overwrite it.) The default is False.

— Newline handling.

write_text() converts all standard end-of-line sequences
(‘n’, ‘r’, and ‘rn’) to your platform’s default end-of-line
sequence (see os.linesep; on Windows, for example, the
end-of-line marker is ‘rn’).

If you don’t like your platform’s default, you can override it
using the ‘linesep=’ keyword argument. If you specifically want
write_text() to preserve the newlines as-is, use ‘linesep=None’.

This applies to Unicode text the same as to 8-bit text, except
there are three additional standard Unicode end-of-line sequences:
u’x85’, u’rx85’, and u’u2028’.

(This is slightly different from when you open a file for
writing with fopen(filename, “w”) in C or open(filename, ‘w’)
in Python.)

— Unicode

If ‘text’ isn’t Unicode, then apart from newline handling, the
bytes are written verbatim to the file. The ‘encoding’ and
‘errors’ arguments are not used and must be omitted.

If ‘text’ is Unicode, it is first converted to bytes using the
specified ‘encoding’ (or the default encoding if ‘encoding’
isn’t specified). The ‘errors’ argument applies only to this
conversion.

	
paver.runtime.cmdopts(options, share_with=None)

	Sets the command line options that can be set for this task.
This uses the same format as the distutils command line option
parser. It’s a list of tuples, each with three elements:
long option name, short option, description.

If the long option name ends with ‘=’, that means that the
option takes a value. Otherwise the option is just boolean.
All of the options will be stored in the options dict with
the name of the task. Each value that gets stored in that
dict will be stored with a key that is based on the long option
name (the only difference is that - is replaced by _).

	
paver.runtime.consume_args(func)

	Any command line arguments that appear after this task on the
command line will be placed in options.args.

paver.setuputils module

Integrates distutils/setuptools with Paver.

	
class paver.setuputils.DistutilsTask(distribution, command_name, command_class)

	Bases: paver.tasks.Task

	
description

	

	
class paver.setuputils.DistutilsTaskFinder

	Bases: object

	
get_task(taskname)

	

	
get_tasks()

	

	
paver.setuputils.find_package_data(where='.', package='', exclude=('*.py', '*.pyc', '*~', '.*', '*.bak', '*.swp*'), exclude_directories=('.*', 'CVS', '_darcs', './build', './dist', 'EGG-INFO', '*.egg-info'), only_in_packages=True, show_ignored=False)

	Return a dictionary suitable for use in package_data
in a distutils setup.py file.

The dictionary looks like:

{'package': [files]}

Where files is a list of all the files in that package that
don’t match anything in exclude.

If only_in_packages is true, then top-level directories that
are not packages won’t be included (but directories under packages
will).

Directories matching any pattern in exclude_directories will
be ignored; by default directories with leading ., CVS,
and _darcs will be ignored.

If show_ignored is true, then all the files that aren’t
included in package data are shown on stderr (for debugging
purposes).

Note patterns use wildcards, or can be exact paths (including
leading ./), and all searching is case-insensitive.

This function is by Ian Bicking.

	
paver.setuputils.install_distutils_tasks()

	Makes distutils and setuptools commands available as Paver tasks.

	
paver.setuputils.setup(**kw)

	Updates options.setup with the keyword arguments provided,
and installs the distutils tasks for this pavement. You can
use paver.setuputils.setup as a direct replacement for
the distutils.core.setup or setuptools.setup in a traditional
setup.py.

paver.shell module

	
paver.shell.sh(command, capture=False, ignore_error=False, cwd=None, env=None)

	Runs an external command. If capture is True, the output of the
command will be captured and returned as a string. If the command
has a non-zero return code raise a BuildFailure. You can pass
ignore_error=True to allow non-zero return codes to be allowed to
pass silently, silently into the night. If you pass cwd=’some/path’
paver will chdir to ‘some/path’ before exectuting the command.

If the dry_run option is True, the command will not
actually be run.

env is a dictionary of environment variables. Refer to subprocess.Popen’s
documentation for further information on this.

paver.ssh module

Functions for accessing remote hosts.

At present, these are implemented by calling ssh’s command line programs.

	
paver.ssh.scp(source, dest)

	Copy the source file to the destination.

paver.svn module

Convenience functions for working with svn.

This module does not include any tasks, only functions.

At this point, these functions do not use any kind of library. They require
the svn binary on the path.

	
paver.svn.checkout(url, dest, revision='')

	Checks out the specified URL to the given destination.

	
paver.svn.checkup(url, dest, revision='')

	Does a checkout or update, depending on whether the destination
exists and is up to date (if a revision is passed in). Returns
true if a checkout or update was performed. False otherwise.

	
paver.svn.export(url, dest, revision='')

	Exports the specified URL to the given destination.

	
paver.svn.info(path='')

	Retrieves the svn info for the path and returns a dictionary of
the values. Names are normalized to lower case with spaces converted
to underscores.

	
paver.svn.update(path='', revision='')

	Run an svn update on the given path.

paver.tasks module

	
exception paver.tasks.BuildFailure

	Bases: exceptions.Exception

Represents a problem with some part of the build’s execution.

	
class paver.tasks.Environment(pavement=None)

	Bases: object

	
call_task(task_name, args=None, options=None)

	

	
debug(message, *args)

	

	
dry_run

	

	
error(message, *args)

	

	
file

	

	
get_task(taskname)

	

	
get_tasks()

	

	
info(message, *args)

	

	
interactive = False

	

	
pavement_file

	

	
quiet = False

	

	
verbose = False

	

	
exception paver.tasks.PavementError

	Bases: exceptions.Exception

Exception that represents a problem in the pavement.py file
rather than the process of running a build.

	
class paver.tasks.Task(func)

	Bases: object

	
called = False

	

	
consume_args = 0

	

	
description

	

	
display_help(parser=None)

	

	
needs_closure

	

	
no_auto = False

	

	
parse_args(args)

	

	
parser

	

	
paver.tasks.call_pavement(new_pavement, args)

	

	
paver.tasks.cmdopts(options, share_with=None)

	Sets the command line options that can be set for this task.
This uses the same format as the distutils command line option
parser. It’s a list of tuples, each with three elements:
long option name, short option, description.

If the long option name ends with ‘=’, that means that the
option takes a value. Otherwise the option is just boolean.
All of the options will be stored in the options dict with
the name of the task. Each value that gets stored in that
dict will be stored with a key that is based on the long option
name (the only difference is that - is replaced by _).

	
paver.tasks.consume_args(func)

	Any command line arguments that appear after this task on the
command line will be placed in options.args.

	
paver.tasks.consume_nargs(nb_args=None)

	All specified command line arguments that appear after this task on the
command line will be placed in options.args.
By default, if nb_args is not specified, all arguments will
be consumed.

	Parameters

	nb_args (int) – number of arguments the decorated function consumes

	
paver.tasks.help(args, help_function)

	This help display.

	
paver.tasks.main(args=None)

	

	
paver.tasks.might_call(*args)

	

	
paver.tasks.needs(*args)

	Specifies tasks upon which this task depends.

req can be a string or a list of strings with the names
of the tasks. You can call this decorator multiple times
and the various requirements are added on. You can also
call with the requirements as a list of arguments.

The requirements are called in the order presented in the
list.

	
paver.tasks.no_auto(func)

	Specify that this task does not depend on the auto task,
and don’t run the auto task just for this one.

	
paver.tasks.no_help(func)

	Do not show this task in paver help.

	
paver.tasks.task(func)

	Specifies that this function is a task.

Note that this decorator does not actually replace the function object.
It just keeps track of the task and sets an is_task flag on the
function object.

paver.version module

paver.virtual module

Tasks for managing virtualenv environments.

	
paver.virtual.bootstrap()

	Creates a virtualenv bootstrap script.
The script will create a bootstrap script that populates a
virtualenv in the current directory. The environment will
have paver, the packages of your choosing and will run
the paver command of your choice.

This task looks in the virtualenv options for:

	script_name

	name of the generated script

	packages_to_install

	packages to install with pip/easy_install. The version of paver that
you are using is included automatically. This should be a list of
strings.

	paver_command_line

	run this paver command line after installation (just the command
line arguments, not the paver command itself).

	dest_dir

	the destination directory for the virtual environment (defaults to
‘.’)

	no_site_packages

	don’t give access to the global site-packages dir to the virtual
environment (default; deprecated)

	system_site_packages

	give access to the global site-packages dir to the virtual
environment

	unzip_setuptools

	unzip Setuptools when installing it (defaults to False)

	distribute

	use Distribute instead of Setuptools. Set environment variable
VIRTUALENV_DISTRIBUTE to make it the default.

	index_url

	base URL of Python Package Index

	trusted_host

	specify whether the given index_url is a trusted host to avoid
deprecated warnings

	no_index

	ignore package index (only looking at find_links URL(s) instead)

	find_links

	additional URL(s) to search for packages. This should be a list of
strings.

	prefer_easy_install

	prefer easy_install to pip for package installation if both are
installed (defaults to False)

	
paver.virtual.virtualenv(dir)

	Run decorated task in specified virtual environment.

Module contents

paver.deps package

Submodules

paver.deps.path2 module

path.py - An object representing a path to a file or directory.

	Original author:

	Jason Orendorff <jason.orendorff@gmail.com>

	Contributors:

	Mikhail Gusarov <dottedmag@dottedmag.net>
Marc Abramowitz <marc@marc-abramowitz.com>

Example:

from path import path
d = path(‘/home/guido/bin’)
for f in d.files(‘*.py’):

f.chmod(0755)

This module requires Python 2.3 or later.

	
class paver.deps.path2.path

	Bases: str

Represents a filesystem path.

For documentation on individual methods, consult their
counterparts in os.path.

	
abspath()

	

	
access(mode)

	Return true if current user has access to this path.

mode - One of the constants os.F_OK, os.R_OK, os.W_OK, os.X_OK

	
atime

	Last access time of the file.

	
basename()

	

	
bytes()

	Open this file, read all bytes, return them as a string.

	
chmod(mode)

	

	
chown(uid, gid)

	

	
chroot()

	

	
copy(src, dst)

	Copy data and mode bits (“cp src dst”).

The destination may be a directory.

	
copy2(src, dst)

	Copy data and all stat info (“cp -p src dst”).

The destination may be a directory.

	
copyfile(src, dst)

	Copy data from src to dst

	
copymode(src, dst)

	Copy mode bits from src to dst

	
copystat(src, dst)

	Copy all stat info (mode bits, atime, mtime, flags) from src to dst

	
copytree(src, dst, symlinks=False, ignore=None)

	Recursively copy a directory tree using copy2().

The destination directory must not already exist.
If exception(s) occur, an Error is raised with a list of reasons.

If the optional symlinks flag is true, symbolic links in the
source tree result in symbolic links in the destination tree; if
it is false, the contents of the files pointed to by symbolic
links are copied.

The optional ignore argument is a callable. If given, it
is called with the src parameter, which is the directory
being visited by copytree(), and names which is the list of
src contents, as returned by os.listdir():

callable(src, names) -> ignored_names

Since copytree() is called recursively, the callable will be
called once for each directory that is copied. It returns a
list of names relative to the src directory that should
not be copied.

XXX Consider this example code rather than the ultimate tool.

	
ctime

	Creation time of the file.

	
dirname()

	

	
dirs() → List of this directory's subdirectories.

	The elements of the list are path objects.
This does not walk recursively into subdirectories
(but see path.walkdirs).

With the optional ‘pattern’ argument, this only lists
directories whose names match the given pattern. For
example, d.dirs(‘build-*’).

	
drive

	The drive specifier, for example ‘C:’.
This is always empty on systems that don’t use drive specifiers.

	
exists()

	

	
expand()

	Clean up a filename by calling expandvars(),
expanduser(), and normpath() on it.

This is commonly everything needed to clean up a filename
read from a configuration file, for example.

	
expanduser()

	

	
expandvars()

	

	
ext

	The file extension, for example ‘.py’.

	
files() → List of the files in this directory.

	The elements of the list are path objects.
This does not walk into subdirectories (see path.walkfiles).

With the optional ‘pattern’ argument, this only lists files
whose names match the given pattern. For example,
d.files(‘*.pyc’).

	
fnmatch(pattern)

	Return True if self.name matches the given pattern.

	pattern - A filename pattern with wildcards,

	for example ‘*.py’.

	
get_owner()

	Return the name of the owner of this file or directory.

This follows symbolic links.

On Windows, this returns a name of the form ur’DOMAINUser Name’.
On Windows, a group can own a file or directory.

	
getatime()

	

	
getctime()

	

	
classmethod getcwd()

	Return the current working directory as a path object.

	
getmtime()

	

	
getsize()

	

	
glob(pattern)

	Return a list of path objects that match the pattern.

pattern - a path relative to this directory, with wildcards.

For example, path(‘/users’).glob(‘/bin/’) returns a list
of all the files users have in their bin directories.

	
isabs()

	

	
isdir()

	

	
isfile()

	

	
islink()

	

	
ismount()

	

	
joinpath(*args)

	Join two or more path components, adding a separator
character (os.sep) if needed. Returns a new path
object.

	
lines(encoding=None, errors='strict', retain=True)

	Open this file, read all lines, return them in a list.

	Optional arguments:

	
	encoding - The Unicode encoding (or character set) of

	the file. The default is None, meaning the content
of the file is read as 8-bit characters and returned
as a list of (non-Unicode) str objects.

	errors - How to handle Unicode errors; see help(str.decode)

	for the options. Default is ‘strict’

	retain - If true, retain newline characters; but all newline

	character combinations (‘r’, ‘n’, ‘rn’) are
translated to ‘n’. If false, newline characters are
stripped off. Default is True.

This uses ‘U’ mode in Python 2.3 and later.

	
link(newpath)

	Create a hard link at ‘newpath’, pointing to this file.

	
listdir() → List of items in this directory.

	Use D.files() or D.dirs() instead if you want a listing
of just files or just subdirectories.

The elements of the list are path objects.

With the optional ‘pattern’ argument, this only lists
items whose names match the given pattern.

	
lstat()

	Like path.stat(), but do not follow symbolic links.

	
makedirs(mode=511)

	

	
makedirs_p(mode=511)

	

	
mkdir(mode=511)

	

	
mkdir_p(mode=511)

	

	
move(src, dst)

	Recursively move a file or directory to another location. This is
similar to the Unix “mv” command.

If the destination is a directory or a symlink to a directory, the source
is moved inside the directory. The destination path must not already
exist.

If the destination already exists but is not a directory, it may be
overwritten depending on os.rename() semantics.

If the destination is on our current filesystem, then rename() is used.
Otherwise, src is copied to the destination and then removed.
A lot more could be done here… A look at a mv.c shows a lot of
the issues this implementation glosses over.

	
mtime

	Last-modified time of the file.

	
name

	The name of this file or directory without the full path.

For example, path(‘/usr/local/lib/libpython.so’).name == ‘libpython.so’

	
namebase

	The same as path.name, but with one file extension stripped off.

For example, path(‘/home/guido/python.tar.gz’).name == ‘python.tar.gz’,
but path(‘/home/guido/python.tar.gz’).namebase == ‘python.tar’

	
normcase()

	

	
normpath()

	

	
open(mode='r')

	Open this file. Return a file object.

	
owner

	Name of the owner of this file or directory.

	
parent

	This path’s parent directory, as a new path object.

For example, path(‘/usr/local/lib/libpython.so’).parent == path(‘/usr/local/lib’)

	
pathconf(name)

	

	
read_hash(hash_name)

	Calculate given hash for this file.

List of supported hashes can be obtained from hashlib package. This
reads the entire file.

	
read_hexhash(hash_name)

	Calculate given hash for this file, returning hexdigest.

List of supported hashes can be obtained from hashlib package. This
reads the entire file.

	
read_md5()

	Calculate the md5 hash for this file.

This reads through the entire file.

	
readlink()

	Return the path to which this symbolic link points.

The result may be an absolute or a relative path.

	
readlinkabs()

	Return the path to which this symbolic link points.

The result is always an absolute path.

	
realpath()

	

	
relpath()

	Return this path as a relative path,
based from the current working directory.

	
relpathto(dest)

	Return a relative path from self to dest.

If there is no relative path from self to dest, for example if
they reside on different drives in Windows, then this returns
dest.abspath().

	
remove()

	

	
remove_p()

	

	
removedirs()

	

	
removedirs_p()

	

	
rename(new)

	

	
renames(new)

	

	
rmdir()

	

	
rmdir_p()

	

	
rmtree(*args, **kw)

	

	
rmtree_p()

	

	
samefile(otherfile)

	

	
size

	Size of the file, in bytes.

	
splitall()

	Return a list of the path components in this path.

The first item in the list will be a path. Its value will be
either os.curdir, os.pardir, empty, or the root directory of
this path (for example, ‘/’ or ‘C:'). The other items in
the list will be strings.

path.path.joinpath(*result) will yield the original path.

	
splitdrive() → Return (p.drive, <the rest of p>).

	Split the drive specifier from this path. If there is
no drive specifier, p.drive is empty, so the return value
is simply (path(‘’), p). This is always the case on Unix.

	
splitext() → Return (p.stripext(), p.ext).

	Split the filename extension from this path and return
the two parts. Either part may be empty.

The extension is everything from ‘.’ to the end of the
last path segment. This has the property that if
(a, b) == p.splitext(), then a + b == p.

	
splitpath() → Return (p.parent, p.name).

	

	
stat()

	Perform a stat() system call on this path.

	
statvfs()

	Perform a statvfs() system call on this path.

	
stripext() → Remove one file extension from the path.

	For example, path(‘/home/guido/python.tar.gz’).stripext()
returns path(‘/home/guido/python.tar’).

	
symlink(newlink)

	Create a symbolic link at ‘newlink’, pointing here.

	
text(encoding=None, errors='strict')

	Open this file, read it in, return the content as a string.

This uses ‘U’ mode in Python 2.3 and later, so ‘rn’ and ‘r’
are automatically translated to ‘n’.

Optional arguments:

	encoding - The Unicode encoding (or character set) of

	the file. If present, the content of the file is
decoded and returned as a unicode object; otherwise
it is returned as an 8-bit str.

	errors - How to handle Unicode errors; see help(str.decode)

	for the options. Default is ‘strict’.

	
touch()

	Set the access/modified times of this file to the current time.
Create the file if it does not exist.

	
unlink()

	

	
unlink_p()

	

	
utime(times)

	Set the access and modified times of this file.

	
walk() → iterator over files and subdirs, recursively.

	The iterator yields path objects naming each child item of
this directory and its descendants. This requires that
D.isdir().

This performs a depth-first traversal of the directory tree.
Each directory is returned just before all its children.

The errors= keyword argument controls behavior when an
error occurs. The default is ‘strict’, which causes an
exception. The other allowed values are ‘warn’, which
reports the error via warnings.warn(), and ‘ignore’.

	
walkdirs() → iterator over subdirs, recursively.

	With the optional ‘pattern’ argument, this yields only
directories whose names match the given pattern. For
example, mydir.walkdirs(‘*test’) yields only directories
with names ending in ‘test’.

The errors= keyword argument controls behavior when an
error occurs. The default is ‘strict’, which causes an
exception. The other allowed values are ‘warn’, which
reports the error via warnings.warn(), and ‘ignore’.

	
walkfiles() → iterator over files in D, recursively.

	The optional argument, pattern, limits the results to files
with names that match the pattern. For example,
mydir.walkfiles(‘*.tmp’) yields only files with the .tmp
extension.

	
write_bytes(bytes, append=False)

	Open this file and write the given bytes to it.

Default behavior is to overwrite any existing file.
Call p.write_bytes(bytes, append=True) to append instead.

	
write_lines(lines, encoding=None, errors='strict', linesep='\n', append=False)

	Write the given lines of text to this file.

By default this overwrites any existing file at this path.

This puts a platform-specific newline sequence on every line.
See ‘linesep’ below.

lines - A list of strings.

	encoding - A Unicode encoding to use. This applies only if

	‘lines’ contains any Unicode strings.

	errors - How to handle errors in Unicode encoding. This

	also applies only to Unicode strings.

	linesep - The desired line-ending. This line-ending is

	applied to every line. If a line already has any
standard line ending (‘r’, ‘n’, ‘rn’, u’x85’,
u’rx85’, u’u2028’), that will be stripped off and
this will be used instead. The default is os.linesep,
which is platform-dependent (‘rn’ on Windows, ‘n’ on
Unix, etc.) Specify None to write the lines as-is,
like file.writelines().

Use the keyword argument append=True to append lines to the
file. The default is to overwrite the file. Warning:
When you use this with Unicode data, if the encoding of the
existing data in the file is different from the encoding
you specify with the encoding= parameter, the result is
mixed-encoding data, which can really confuse someone trying
to read the file later.

	
write_text(text, encoding=None, errors='strict', linesep='\n', append=False)

	Write the given text to this file.

The default behavior is to overwrite any existing file;
to append instead, use the ‘append=True’ keyword argument.

There are two differences between path.write_text() and
path.write_bytes(): newline handling and Unicode handling.
See below.

Parameters:

	text - str/unicode - The text to be written.

	encoding - str - The Unicode encoding that will be used.
This is ignored if ‘text’ isn’t a Unicode string.

	errors - str - How to handle Unicode encoding errors.
Default is ‘strict’. See help(unicode.encode) for the
options. This is ignored if ‘text’ isn’t a Unicode
string.

	linesep - keyword argument - str/unicode - The sequence of
characters to be used to mark end-of-line. The default is
os.linesep. You can also specify None; this means to
leave all newlines as they are in ‘text’.

	append - keyword argument - bool - Specifies what to do if
the file already exists (True: append to the end of it;
False: overwrite it.) The default is False.

— Newline handling.

write_text() converts all standard end-of-line sequences
(‘n’, ‘r’, and ‘rn’) to your platform’s default end-of-line
sequence (see os.linesep; on Windows, for example, the
end-of-line marker is ‘rn’).

If you don’t like your platform’s default, you can override it
using the ‘linesep=’ keyword argument. If you specifically want
write_text() to preserve the newlines as-is, use ‘linesep=None’.

This applies to Unicode text the same as to 8-bit text, except
there are three additional standard Unicode end-of-line sequences:
u’x85’, u’rx85’, and u’u2028’.

(This is slightly different from when you open a file for
writing with fopen(filename, “w”) in C or open(filename, ‘w’)
in Python.)

— Unicode

If ‘text’ isn’t Unicode, then apart from newline handling, the
bytes are written verbatim to the file. The ‘encoding’ and
‘errors’ arguments are not used and must be omitted.

If ‘text’ is Unicode, it is first converted to bytes using the
specified ‘encoding’ (or the default encoding if ‘encoding’
isn’t specified). The ‘errors’ argument applies only to this
conversion.

paver.deps.path3 module

path.py - An object representing a path to a file or directory.

	Original author:

	Jason Orendorff <jason.orendorff@gmail.com>

	Contributors:

	Mikhail Gusarov <dottedmag@dottedmag.net>
Marc Abramowitz <marc@marc-abramowitz.com>

Example:

from path import path
d = path(‘/home/guido/bin’)
for f in d.files(‘*.py’):

f.chmod(0755)

This module requires Python 2.3 or later.

	
class paver.deps.path3.path

	Bases: str

Represents a filesystem path.

For documentation on individual methods, consult their
counterparts in os.path.

	
abspath()

	

	
access(mode)

	Return true if current user has access to this path.

mode - One of the constants os.F_OK, os.R_OK, os.W_OK, os.X_OK

	
atime

	Last access time of the file.

	
basename()

	

	
bytes()

	Open this file, read all bytes, return them as a string.

	
chmod(mode)

	

	
chown(uid, gid)

	

	
chroot()

	

	
copy(src, dst)

	Copy data and mode bits (“cp src dst”).

The destination may be a directory.

	
copy2(src, dst)

	Copy data and all stat info (“cp -p src dst”).

The destination may be a directory.

	
copyfile(src, dst)

	Copy data from src to dst

	
copymode(src, dst)

	Copy mode bits from src to dst

	
copystat(src, dst)

	Copy all stat info (mode bits, atime, mtime, flags) from src to dst

	
copytree(src, dst, symlinks=False, ignore=None)

	Recursively copy a directory tree using copy2().

The destination directory must not already exist.
If exception(s) occur, an Error is raised with a list of reasons.

If the optional symlinks flag is true, symbolic links in the
source tree result in symbolic links in the destination tree; if
it is false, the contents of the files pointed to by symbolic
links are copied.

The optional ignore argument is a callable. If given, it
is called with the src parameter, which is the directory
being visited by copytree(), and names which is the list of
src contents, as returned by os.listdir():

callable(src, names) -> ignored_names

Since copytree() is called recursively, the callable will be
called once for each directory that is copied. It returns a
list of names relative to the src directory that should
not be copied.

XXX Consider this example code rather than the ultimate tool.

	
ctime

	Creation time of the file.

	
dirname()

	

	
dirs() → List of this directory's subdirectories.

	The elements of the list are path objects.
This does not walk recursively into subdirectories
(but see path.walkdirs).

With the optional ‘pattern’ argument, this only lists
directories whose names match the given pattern. For
example, d.dirs(‘build-*’).

	
drive

	The drive specifier, for example ‘C:’.
This is always empty on systems that don’t use drive specifiers.

	
exists()

	

	
expand()

	Clean up a filename by calling expandvars(),
expanduser(), and normpath() on it.

This is commonly everything needed to clean up a filename
read from a configuration file, for example.

	
expanduser()

	

	
expandvars()

	

	
ext

	The file extension, for example ‘.py’.

	
files() → List of the files in this directory.

	The elements of the list are path objects.
This does not walk into subdirectories (see path.walkfiles).

With the optional ‘pattern’ argument, this only lists files
whose names match the given pattern. For example,
d.files(‘*.pyc’).

	
fnmatch(pattern)

	Return True if self.name matches the given pattern.

	pattern - A filename pattern with wildcards,

	for example ‘*.py’.

	
get_owner()

	Return the name of the owner of this file or directory.

This follows symbolic links.

On Windows, this returns a name of the form ur’DOMAINUser Name’.
On Windows, a group can own a file or directory.

	
getatime()

	

	
getctime()

	

	
classmethod getcwd()

	Return the current working directory as a path object.

	
getmtime()

	

	
getsize()

	

	
glob(pattern)

	Return a list of path objects that match the pattern.

pattern - a path relative to this directory, with wildcards.

For example, path(‘/users’).glob(‘/bin/’) returns a list
of all the files users have in their bin directories.

	
isabs()

	

	
isdir()

	

	
isfile()

	

	
islink()

	

	
ismount()

	

	
joinpath(*args)

	Join two or more path components, adding a separator
character (os.sep) if needed. Returns a new path
object.

	
lines(encoding=None, errors='strict', retain=True)

	Open this file, read all lines, return them in a list.

	Optional arguments:

	
	encoding - The Unicode encoding (or character set) of

	the file. The default is None, meaning the content
of the file is read as 8-bit characters and returned
as a list of (non-Unicode) str objects.

	errors - How to handle Unicode errors; see help(str.decode)

	for the options. Default is ‘strict’

	retain - If true, retain newline characters; but all newline

	character combinations (‘r’, ‘n’, ‘rn’) are
translated to ‘n’. If false, newline characters are
stripped off. Default is True.

This uses ‘U’ mode in Python 2.3 and later.

	
link(newpath)

	Create a hard link at ‘newpath’, pointing to this file.

	
listdir() → List of items in this directory.

	Use D.files() or D.dirs() instead if you want a listing
of just files or just subdirectories.

The elements of the list are path objects.

With the optional ‘pattern’ argument, this only lists
items whose names match the given pattern.

	
lstat()

	Like path.stat(), but do not follow symbolic links.

	
makedirs(mode=511)

	

	
makedirs_p(mode=511)

	

	
mkdir(mode=511)

	

	
mkdir_p(mode=511)

	

	
move(src, dst)

	Recursively move a file or directory to another location. This is
similar to the Unix “mv” command.

If the destination is a directory or a symlink to a directory, the source
is moved inside the directory. The destination path must not already
exist.

If the destination already exists but is not a directory, it may be
overwritten depending on os.rename() semantics.

If the destination is on our current filesystem, then rename() is used.
Otherwise, src is copied to the destination and then removed.
A lot more could be done here… A look at a mv.c shows a lot of
the issues this implementation glosses over.

	
mtime

	Last-modified time of the file.

	
name

	The name of this file or directory without the full path.

For example, path(‘/usr/local/lib/libpython.so’).name == ‘libpython.so’

	
namebase

	The same as path.name, but with one file extension stripped off.

For example, path(‘/home/guido/python.tar.gz’).name == ‘python.tar.gz’,
but path(‘/home/guido/python.tar.gz’).namebase == ‘python.tar’

	
normcase()

	

	
normpath()

	

	
open(mode='r')

	Open this file. Return a file object.

	
owner

	Name of the owner of this file or directory.

	
parent

	This path’s parent directory, as a new path object.

For example, path(‘/usr/local/lib/libpython.so’).parent == path(‘/usr/local/lib’)

	
pathconf(name)

	

	
read_hash(hash_name)

	Calculate given hash for this file.

List of supported hashes can be obtained from hashlib package. This
reads the entire file.

	
read_hexhash(hash_name)

	Calculate given hash for this file, returning hexdigest.

List of supported hashes can be obtained from hashlib package. This
reads the entire file.

	
read_md5()

	Calculate the md5 hash for this file.

This reads through the entire file.

	
readlink()

	Return the path to which this symbolic link points.

The result may be an absolute or a relative path.

	
readlinkabs()

	Return the path to which this symbolic link points.

The result is always an absolute path.

	
realpath()

	

	
relpath()

	Return this path as a relative path,
based from the current working directory.

	
relpathto(dest)

	Return a relative path from self to dest.

If there is no relative path from self to dest, for example if
they reside on different drives in Windows, then this returns
dest.abspath().

	
remove()

	

	
remove_p()

	

	
removedirs()

	

	
removedirs_p()

	

	
rename(new)

	

	
renames(new)

	

	
rmdir()

	

	
rmdir_p()

	

	
rmtree(*args, **kw)

	

	
rmtree_p()

	

	
samefile(otherfile)

	

	
size

	Size of the file, in bytes.

	
splitall()

	Return a list of the path components in this path.

The first item in the list will be a path. Its value will be
either os.curdir, os.pardir, empty, or the root directory of
this path (for example, ‘/’ or ‘C:'). The other items in
the list will be strings.

path.path.joinpath(*result) will yield the original path.

	
splitdrive() → Return (p.drive, <the rest of p>).

	Split the drive specifier from this path. If there is
no drive specifier, p.drive is empty, so the return value
is simply (path(‘’), p). This is always the case on Unix.

	
splitext() → Return (p.stripext(), p.ext).

	Split the filename extension from this path and return
the two parts. Either part may be empty.

The extension is everything from ‘.’ to the end of the
last path segment. This has the property that if
(a, b) == p.splitext(), then a + b == p.

	
splitpath() → Return (p.parent, p.name).

	

	
stat()

	Perform a stat() system call on this path.

	
statvfs()

	Perform a statvfs() system call on this path.

	
stripext() → Remove one file extension from the path.

	For example, path(‘/home/guido/python.tar.gz’).stripext()
returns path(‘/home/guido/python.tar’).

	
symlink(newlink)

	Create a symbolic link at ‘newlink’, pointing here.

	
text(encoding=None, errors='strict')

	Open this file, read it in, return the content as a string.

This uses ‘U’ mode in Python 2.3 and later, so ‘rn’ and ‘r’
are automatically translated to ‘n’.

Optional arguments:

	encoding - The Unicode encoding (or character set) of

	the file. If present, the content of the file is
decoded and returned as a unicode object; otherwise
it is returned as an 8-bit str.

	errors - How to handle Unicode errors; see help(str.decode)

	for the options. Default is ‘strict’.

	
touch()

	Set the access/modified times of this file to the current time.
Create the file if it does not exist.

	
unlink()

	

	
unlink_p()

	

	
utime(times)

	Set the access and modified times of this file.

	
walk() → iterator over files and subdirs, recursively.

	The iterator yields path objects naming each child item of
this directory and its descendants. This requires that
D.isdir().

This performs a depth-first traversal of the directory tree.
Each directory is returned just before all its children.

The errors= keyword argument controls behavior when an
error occurs. The default is ‘strict’, which causes an
exception. The other allowed values are ‘warn’, which
reports the error via warnings.warn(), and ‘ignore’.

	
walkdirs() → iterator over subdirs, recursively.

	With the optional ‘pattern’ argument, this yields only
directories whose names match the given pattern. For
example, mydir.walkdirs(‘*test’) yields only directories
with names ending in ‘test’.

The errors= keyword argument controls behavior when an
error occurs. The default is ‘strict’, which causes an
exception. The other allowed values are ‘warn’, which
reports the error via warnings.warn(), and ‘ignore’.

	
walkfiles() → iterator over files in D, recursively.

	The optional argument, pattern, limits the results to files
with names that match the pattern. For example,
mydir.walkfiles(‘*.tmp’) yields only files with the .tmp
extension.

	
write_bytes(bytes, append=False)

	Open this file and write the given bytes to it.

Default behavior is to overwrite any existing file.
Call p.write_bytes(bytes, append=True) to append instead.

	
write_lines(lines, encoding=None, errors='strict', linesep='\n', append=False)

	Write the given lines of text to this file.

By default this overwrites any existing file at this path.

This puts a platform-specific newline sequence on every line.
See ‘linesep’ below.

lines - A list of strings.

	encoding - A Unicode encoding to use. This applies only if

	‘lines’ contains any Unicode strings.

	errors - How to handle errors in Unicode encoding. This

	also applies only to Unicode strings.

	linesep - The desired line-ending. This line-ending is

	applied to every line. If a line already has any
standard line ending (‘r’, ‘n’, ‘rn’, u’x85’,
u’rx85’, u’u2028’), that will be stripped off and
this will be used instead. The default is os.linesep,
which is platform-dependent (‘rn’ on Windows, ‘n’ on
Unix, etc.) Specify None to write the lines as-is,
like file.writelines().

Use the keyword argument append=True to append lines to the
file. The default is to overwrite the file. Warning:
When you use this with Unicode data, if the encoding of the
existing data in the file is different from the encoding
you specify with the encoding= parameter, the result is
mixed-encoding data, which can really confuse someone trying
to read the file later.

	
write_text(text, encoding=None, errors='strict', linesep='\n', append=False)

	Write the given text to this file.

The default behavior is to overwrite any existing file;
to append instead, use the ‘append=True’ keyword argument.

There are two differences between path.write_text() and
path.write_bytes(): newline handling and Unicode handling.
See below.

Parameters:

	text - str/unicode - The text to be written.

	encoding - str - The Unicode encoding that will be used.
This is ignored if ‘text’ isn’t a Unicode string.

	errors - str - How to handle Unicode encoding errors.
Default is ‘strict’. See help(unicode.encode) for the
options. This is ignored if ‘text’ isn’t a Unicode
string.

	linesep - keyword argument - str/unicode - The sequence of
characters to be used to mark end-of-line. The default is
os.linesep. You can also specify None; this means to
leave all newlines as they are in ‘text’.

	append - keyword argument - bool - Specifies what to do if
the file already exists (True: append to the end of it;
False: overwrite it.) The default is False.

— Newline handling.

write_text() converts all standard end-of-line sequences
(‘n’, ‘r’, and ‘rn’) to your platform’s default end-of-line
sequence (see os.linesep; on Windows, for example, the
end-of-line marker is ‘rn’).

If you don’t like your platform’s default, you can override it
using the ‘linesep=’ keyword argument. If you specifically want
write_text() to preserve the newlines as-is, use ‘linesep=None’.

This applies to Unicode text the same as to 8-bit text, except
there are three additional standard Unicode end-of-line sequences:
u’x85’, u’rx85’, and u’u2028’.

(This is slightly different from when you open a file for
writing with fopen(filename, “w”) in C or open(filename, ‘w’)
in Python.)

— Unicode

If ‘text’ isn’t Unicode, then apart from newline handling, the
bytes are written verbatim to the file. The ‘encoding’ and
‘errors’ arguments are not used and must be omitted.

If ‘text’ is Unicode, it is first converted to bytes using the
specified ‘encoding’ (or the default encoding if ‘encoding’
isn’t specified). The ‘errors’ argument applies only to this
conversion.

Module contents

paver.tests package

Submodules

paver.tests.other_pavement module

paver.tests.test_doctools module

paver.tests.test_git module

paver.tests.test_hg module

paver.tests.test_options module

paver.tests.test_path module

paver.tests.test_setuputils module

paver.tests.test_shell module

paver.tests.test_svn module

paver.tests.test_tasks module

paver.tests.utils module

Module contents

Paver Changelog

1.3.4 (Dec 31, 2017)

	Minilib can now be include arbitrary packages (#28 [https://github.com/paver/paver/issues/28])

	Six is now bundled in minilib (#193 [https://github.com/paver/paver/issues/194])

	install_requires is now not overriden and six is properly declared as a dependency (#194 [https://github.com/paver/paver/issues/193])

	Regression: Installation using setup.py install with minilib will not install six since it will be recognised as a dependency from minilib (#193 [https://github.com/paver/paver/issues/194])

1.3.3 (Dec 29, 2017)

	Properly exclude cache files from release

1.3.2 (Dec 28, 2017)

	Properly specify six in release dependencies

1.3.1 (Dec 28, 2017)

	Same as 1.3.1, but with properly bumped versions in source code

	Releases are now done from Travis CI

1.3.0 (Dec 28, 2017, tagged, but not released)

	Removed support for Python 2.6, 3.2, 3.3 and Jython 2.6 (#179 [https://github.com/paver/paver/issues/179])

	Unvendor six (#180 [https://github.com/paver/paver/issues/180])

	https everything (#181 [https://github.com/paver/paver/issues/181])

	Mercurial convenience commands (#159 [https://github.com/paver/paver/issues/159])

	Add support for trusted hosts (#146 [https://github.com/paver/paver/issues/146])

	Minilib can now be directly executed (#145 [https://github.com/paver/paver/issues/145])

	Fix task grouping (#158 [https://github.com/paver/paver/issues/158])

1.2.4 (February 23, 2015)

	Make path comparison better (github issue #78 [https://github.com/paver/paver/issues/78])

	Add last_tag task

	six upgraded to 1.6.1

1.2.3 (August 10, 2014)

	Removed support for Python 2.5. 2.6 is deprecated and will be removed in next release.

	Fixed shell.py missing from minilib (github issue #122 [https://github.com/paver/paver/issues/122])

	Added env keyword to sh. (github issue #132 [https://github.com/paver/paver/issues/132])

	When both @cmdopts and @consume_nargs are used, the options before the

args are parsed by the task’s parser and given to it (github issue #126 [https://github.com/paver/paver/issues/126])
* Support list and tuple as sh argument (github issue #92 [https://github.com/paver/paver/issues/92])

1.2.2 (January 12, 2014)

	Fixed version.py missing from minilib (github issue #112 [https://github.com/paver/paver/issues/112])

1.2.1 (June 2, 2013)

	Fixed most of the regressions from 1.2:

	documentation was missing from tarball (github issue #95 [https://github.com/paver/paver/issues/95])

	path.push missing in paver.easy (github issue #97 [https://github.com/paver/paver/issues/97], thanks to leonhandreke)

	broken backward compatibility with python2.5 and custom tasks (github issue #94 [https://github.com/paver/paver/issues/94])

	Variety of Python 3 problems (thanks to Afrever [https://github.com/Arfrever])

	Ignore non-system-default characters when sh()ing command with bad output

1.2 (February 24, 2013)

	Python 3 support, thanks to @rkuppe [https://github.com/rkruppe]

	pypy support now tested on Travis

	pip now preferred over easy_install (github issue #81 [https://github.com/paver/paver/issues/81], thanks to pmcnr)

	virtual.bootstrap enhancements: support for find-links, index-url, system-site-packages and distribute options (github issue #79 [https://github.com/paver/paver/issues/79], thanks to pmcnr)

	new tasks.consume_nargs() decorator, similar to tasks.consume_args() but accepting an argument: the number of arguments that the decorated function will consume. If no argument is passed to consume_nargs decorator, all comand-line arguments will be consumed.

1.1.1 (August 25, 2012)

	path.py fix for Jython compatibility (github issue #70 [https://github.com/paver/paver/issues/70], thanks to Arfrever)

	bundled cog updated to version 2.2 for Jython compatibility

	fixes regression for setuptools intallation (i.e. using –root parameter, github issue #71 [https://github.com/paver/paver/issues/71], thanks to Afrever for the report and yedpodtrzitko for the fix)

	basic jython compatibility tested

1.1.0 (July 30, 2012)

	Minilib is now imported only if full paver is not available (github issue #13 [https://github.com/paver/paver/issues/13])

	Option instances may now be passed to @cmdopts (github issues #41 [https://github.com/paver/paver/issues/41] and #42 [https://github.com/paver/paver/issues/42], thanks to David Cramer)

	--propagate-traceback option for debugging ``BuildFailure``s (github issue #43 [https://github.com/paver/paver/issues/43])

	Fix misleading error message when non-task is passed to @needs (github issue #37 [https://github.com/paver/paver/issues/37])

	@no_help to provide a way to hide task from paver help (github issue #36 [https://github.com/paver/paver/issues/36])

	@might_call for more complex dependencies (see docs, not only github issue #16 [https://github.com/paver/paver/issues/16])

	bundled path.py upgraded to patched version 2.2.2 (github issue #15 [https://github.com/paver/paver/issues/15])

	correctly handle dependencies in install_requires directive for setup.py install command (github issue #49 [https://github.com/paver/paver/issues/49])

	fix creating virtualenv (github issue #44 [https://github.com/paver/paver/issues/44])

	fix virtualenv example in docs (github issue #48 [https://github.com/paver/paver/issues/48])

	path.rename() do not call rename twice (github issue #47 [https://github.com/paver/paver/issues/47])

	updated path.py to resolve issues with bounding os functions with CPython 2.7.3 (github issue #59 [https://github.com/paver/paver/issues/59], thanks to Pedro Romano)

	minimal version of python raised to Python 2.5 (github issue #52 [https://github.com/paver/paver/issues/52])

	always import + do not allow to overwrite basic tasks (eg. help) (github issue #58 [https://github.com/paver/paver/issues/58])

	if virtualenv is not available, PaverImportError is raised instead of generic Exception (github issue #30 [https://github.com/paver/paver/issues/30])

1.0.5 (October 21, 2011)

	Ability to share command line options between tasks (github issue #7 [https://github.com/paver/paver/issues/issue/7])

	Flush after print (github issue #17 [https://github.com/paver/paver/issues/issue/17], thanks to Honza Kral)

	Minilib is now compatible with zipimport (github issue #19 [https://github.com/paver/paver/issues/issue/19], thanks to Piet Delport)

	Auto task is now properly not called when target task is decorated with no_auto (github issue #4 [https://github.com/paver/paver/issues/issue/24])

1.0.4 (January 16, 2011)

	Fixed md5 deprecation warnings in the bundled cog (thanks to jszakmeister, issue #56)

	Project moved to github

	Fixed problems with negative command-line options for distutils (thanks to Nao Nakashima for bugreport, github issue #2 [https://github.com/paver/paver/issues/2])

	Japanese translation moved to https://github.com/paver/paver-docs-jp [http://paver.github.com/paver-docs-jp/]

	Tasks take cmdopts even from grandparents (thanks to aurelianito, github issue #4)

	Task description is taken from the first sentence, where the end of the sentence is dot followed by alphanumeric character (google code bug #44). Description is also stripped now.

1.0.3 (June 1, 2010)

	Fixed deadlock problem when there’s a lot of output from a subprocess (thanks to Jeremy Rossi)

	Fixed unit tests (thanks to Elias Alma)

1.0.2 (March 8, 2010)

	FIXED A command that outputs to stderr containing formatting directives (%s) or something that looks like one would cause an error. Thanks to disturbyte for the patch.

	Tasks can take normal keyword arguments

	Returns exit code 1 if any tasks fail

	stderr is no longer swallowed up by sh() (issue #37, thanks to Marc Sibson for
the patch)

1.0.1 (May 4, 2009)

This release was made possible by Adam Lowry who helped improve the code and reviewed
committed many of the patches.

	Fixed sending nonpositional arguments first with consume_args (issue #31).

	Fixed use of setuputils without defining options.setup (issue #24).

	Python 2.4 compatibility fixes (issue #28)

	sh() failures are logged to stderr.

	sh() accepts a cwd keyword argument (issue #29).

	virtualenv bootstrap generation accepts no_site_packages, unzip_setuptools,
and destination directory arguments in options.

	Distutils config files were being ignored (issue #36) (thanks to Matthew Scott for the patch)

	The exit code was 0 whenever the first task passes, even if later tasks fail (issue #35) (thanks to Matt for the patch)

	Tasks can take normal keyword arguments (issue #33) (thanks to Chris Burroughs for the patch with test!)

1.0 (March 22, 2009)

	If there is a task called “default”, it is run if Paver is run with no
tasks listed on the command line.

	The auto task is run, even if no tasks are specified on the command line.

	distutils’ log output is now routed through Paver’s logging functions,
which means that the output is now displayed once more (and is controlled
via Paver’s command line arguments.)

	The paver.setuputils.setup function will automatically call
install_distutils_tasks. This makes it a very convenient way to upgrade
from distutils/setuptools to Paver.

	Nicer looking error when you run Paver with an unknown task name.

	fix the md5 deprecation warning in paver.path for real (forgot to delete the
offending import). Also fixed an import loop when you try to import
paver.path.

	Improved docs for 1.0

	Paver now requires Sphinx 0.6 for the docs. In Paver’s conf.py for Sphinx,
there is an autodoc Documenter for handling Paver Tasks properly.

1.0b1 (March 13, 2009)

	added call_task to environment and paver.easy, so it should be easy to call
distutils tasks, for example. (Normally, with Paver 1.0, you just call Paver
tasks like normal functions.)

	added setup() function to paver.setuputils that is a shortcut for
setting options in options.setup. This means that you switch from
distutils to Paver just by renaming the file and changing the
import.

	the -h command line argument and “help” task have been unified. You’ll
get the same output regardless of which one you use.

	the auto task is no longer called when you run the help task (issue #21).
As part of this, a new “no_auto” decorator has been created so that any
task can be marked as not requiring the auto behavior.

	consume_args and PavementError are now included in paver.easy (thanks to
Marc Sibson)

	more methods in paver.path now check for existence or lack thereof
and won’t fail as a result. (mkdir and makedirs both check that the
directory does not exist, rmdir and rmtree check to be sure that
it does.) This is because the goal is ultimately to create or remove
something… paver just makes sure that it either exists or doesn’t.

	fix md5 deprecation warning in paver.path (issue #22)

1.0a4 (March 6, 2009)

	call_pavement would raise an exception if the pavement being called is
in the current directory

	the new paver.path25 module was missing from the paver-minilib.zip

1.0a3 (March 6, 2009)

	Added automatic running of “auto” task. If there’s a task with the name “auto”,
it is run automatically. Using this mechanism, you can write code that sets up
the options any way you wish, and without using globals at all (because the
auto task can be given options as a parameter).

	When generating egg_info running “paver”, the full path to the Paver script
was getting included in egg-info/SOURCES.txt. This causes installation problems
on Windows, at the very least. Paver will now instead place the pavement
that is being run in there. This likely has the beneficial side effect of
not requiring a MANIFEST.in file just to include the pavement.

	the options help provided via the cmdopts decorator now appears

	pavements can now refer to __file__ to get their own filename. You can also
just declare pavement_file as an argument to your task function, if
you wish.

	call_pavement now switches directories to the location of the pavement and
then switches back when returning

	if you try to run a function as a task, you’ll now get a more appropriate
and descriptive BuildFailure, rather than an AttributeError

	paver can now again run tasks even when there is no pavement present.
any task accessible via paver.easy (which now also includes misctasks)
will work.

	added the pushd context manager (Python 2.5+). This will switch into another
directory on the way in and then change back to the old directory on
the way out. Suggested by Steve Howe, with the additional suggestion from
Juergen Hermann to return the old directory:

with pushd('newdirectory') as olddirectory:
 ...do something...

1.0a2 (February 26, 2009)

	The bug that caused 1.0a1 to be recalled (distutils command options)
has been fixed thanks to Greg Thornton.

	If you provide an invalid long task name, you will no longer get an
AttributeError. Thanks to Marc Sibson.

	If a task has an uncaught exception, the debug-level output is displayed
and Paver will exit with a return code of 1. No further tasks are
executed. Thanks to Marc Sibson.

	The version number is no longer displayed, so that you can reasonably
pipe the output elsewhere. A new –version option will display the version
as before.

	Eliminate DeprecationWarnings in paver.ssh and paver.svn. Thanks to Marc
Sibson.

	The html task will always be defined now when you import paver.doctools
but will yield a BuildFailure if Sphinx is not installed. Hopefully this
will lead to clearer errors for people. Thanks to Marc Sibson.

	The Getting Started Guide has been improved for 1.0. Additionally,
the “newway” sample now has a MANIFEST.in which provides useful knowledge
for people.

1.0a1 (January 28, 2009)

(note: 1.0a1 was recalled because it was unable to properly handle distutils command
line options.)

	COMPATIBILITY BREAK: paver.misctasks is no longer imported by default, even when using paver.easy

	DEPRECATIONS: paver.runtime and paver.defaults have been deprecated. Watch the
warnings for info on how to change to the new paver.easy module.

	COMPATIBILITY WARNING: By default, the sh() function will now raise a
BuildFailure exception if the return code of the process is non-zero.
Passing ignore_error=True will switch back to the previous behavior.
Thanks to Marc Sibson.

	There is a new call_pavement function (automatically imported with
from paver.easy import *) that can call another pavement file. The
new pavement gets its own environment/options but runs in the same
process.

	You can now specify an alternate file to run rather than “pavement.py” using
the -f or –file global option. Thanks to Marc Sibson.

	Regardless of logging level, output for a task is captured. If there is a BuildFailure,
then that captured output is displayed.

	The new paver.tasks module encapsulates everything needed for running tasks
in a file. The distutils ties have been reduced.

	@needs now accepts a list of requirements in the form @needs(‘task1’, ‘task2’)
(passing in a list still works as well)

	Added paver.bzr (support for Bazaar-NG related operations), courtesy of
Bryan Forbes.

	The error() function is now exported, for logging of errors (thanks to Marc Sibson)

	Added handy paver.svn.export function for exporting an svn repository revision
(thanks to Marc Sibson)

	The “scripts” directory has been renamed “distutils_scripts” to avoid name collision
on Windows.

0.8.1 (June 2, 2008)

	Fix bug in minilib on Windows (error in rmtree). Also simplifies the minilib
implementation. Patch from Juergen Hermann.

	Fix bug in virtualenv bootstrap generation (patches from Michael Greene and
Juergen Hermann. Michael Greene’s is the one that was applied.)

0.8 (May 19, 2008)

	Installation on Windows was broken due to a / at the end of the /paver/tests
path in MANIFEST.in

	Options can now be set on the command line using the syntax option.name=value.
Options are set at the point in which they appear on the command line, so
you can set one value before task1 and then another value before task2.

	Option ordering can now take an explicit dictionary or Bunch added to the
ordering. This allows you to put in new options without changing the global
options dictionary and more closely resembles how options would be looked
up in a buildout.

	call_task now supports an optional “options” argument that allows you to
pass in a dictionary or Bunch that is added to the front of the option
search ordering.

0.7.3 (May 16, 2008)

	Added include_markers parameter to the paver.doctools.Includer to display a nice
comment with the name of the file and section. This can look more attractive than
the raw cog. By default, this is turned off. Set options.cog.include_markers
to an empty dictionary, and the default include markers will be used.

	Added options.cog.delete_code to remove the generator code when cogging.
Default: false

	Paver 0.7.2 could not be installed by zc.buildout on the Mac due to a problem
with the py2app command under that environment.

	cog and tests were missing from shipped distributions (bug 229324, fixed with
a patch from Krys Wilken.)

	Added svn.checkup function that does a checkout or update. This is like an
svn:externals that’s a bit more readable and easier to control, in my opinion.

0.7.2 (May 8, 2008)

	Fixed Python 2.4 compatibility. The paver-minilib.zip file contained 2.5
.pyc files. .pyc files are not compatible between major Python versions.
The new version contains .py files.

0.7.1 (May 8, 2008)

	0.7 had a broken paver-minilib.zip (missing misctasks.py, which is now part of the
standard minilib)

0.7 (May 7, 2008)

Breaking changes:

	“targets” have become “tasks”, because that name is a clearer description.

	paver.sphinxdoc has been renamed paver.doctools

New features and changes:

	runtime.OPTIONS is gone now. The old voodoo surrounding the options() function
has been replaced with a distinctly non-magical __call__ = update in the
Namespace class.

	distutils.core.setup is now the command line driver

	distutils/setuptools commands can be seamlessly intermingled with Tasks

	tasks can have command line settable options via the cmdopts decorator.
Additionally, they can use the consume_args decorator to collect up
all command line arguments that come after the task name.

	Two new tasks: cog and uncog. These run Ned Batchelder’s Cog code
generator (included in the Paver package), by default against your
Sphinx documentation. The idea is that you can keep your code samples
in separate files (with unit tests and all) and incorporate them
into your documentation files. Unlike the Sphinx include directives,
using Cog lets you work on your documentation with the code samples
in place.

	paver.doctools.SectionedFile provides a convenient way to mark off sections
of a file, usually for documentation purposes, so that those sections can
be included in another documentation file.

	paver.doctools.Includer knows how to look up SectionedFiles underneath
a directory and to cache their sections.

	options are now a “Namespace” object that will search the sections for
values. By default, the namespace is searched starting with top-level
items (preserving current behavior) followed by a section named the same
as the task, followed by all of the other sections. The order can
be changed by calling options.order.

	option values that are callable will be called and that value returned.
This is a simple way to provide lazy evaluation of options.

	Added minilib task that creates a paver-minilib.zip file that can be
used to distribute programs that use Paver for their builds so that
setup.py will run even without Paver fully installed.

	Added generate_setup task that creates a setup.py file that will
actually run Paver. This will detect paver-minilib.zip if it’s
present.

	The “help” task has been greatly improved to provide a clearer picture
of the tasks, options and commands available.

	Add the ability to create virtualenv bootstrap scripts

	The “help” property on tasks has changed to “description”

	output is now directed through distutils.log

	Ever improving docs, including a new Getting Started guide.

	Changes to Paver’s bootstrap setup so that Paver no longer uses
distutils for its bootstrapping.

There were no versions 0.5 and 0.6.

0.4 (April 22, 2008)

	First public release.

	Removes setuptools dependency

	More docs

	Paver can now be run even without a pavement.py file for commands like
help and paverdocs

Credits

	Kevin Dangoor is the original author, designer and coder.

	The Paver project has gotten patches from Juergen Hermann, Marc Sibson,
Greg Thornton, Michael Greene, Krys Wilken, Bryan Forbes and Ryan Wilcox.

	Ned Batchelder’s “cog” package is included for handling inclusion of files
into the docs.

	Ian Bicking provided a lot of great input prior to Paver’s initial release
pointers to code that he’s been using both at Open Planning and prior to
working there.

	Ian is also the original author of the paver.setuputils.find_package_data
function.

	Jason Orendorff wrote the original path.py module that paver.path is based
upon.

	Michael Foord’s Mock module is included to assist in testing.

	Ian Bicking, Jim Fulton, Philip Eby and Georg Brandl lead the various
projects that the Paver Standard Library takes advantage of. Without those
projects, Paver users would have to do a lot more work.

	Though it seems almost too obvious for a Python project, Guido van Rossum
deserves credit for making and steering a language that is so flexible
and clean for such a wide variety of tasks.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 paver	

 	
 	
 paver.command	

 	
 	
 paver.defaults	

 	
 	
 paver.deps	

 	
 	
 paver.deps.path2	

 	
 	
 paver.deps.path3	

 	
 	
 paver.doctools	

 	
 	
 paver.easy	

 	
 	
 paver.git	

 	
 	
 paver.hg	

 	
 	
 paver.misctasks	

 	
 	
 paver.options	

 	
 	
 paver.path	

 	
 	
 paver.release	

 	
 	
 paver.runtime	

 	
 	
 paver.setuputils	

 	
 	
 paver.shell	

 	
 	
 paver.ssh	

 	
 	
 paver.svn	

 	
 	
 paver.tasks	

 	
 	
 paver.version	

 	
 	
 paver.virtual	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	abspath() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	access() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	
 	all (paver.doctools.SectionedFile attribute), [1]

 	atime (paver.deps.path2.path attribute)

 	(paver.deps.path3.path attribute)

B

 	
 	basename() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	bootstrap() (in module paver.virtual), [1]

 	branch_checkout() (in module paver.git)

 	branch_list() (in module paver.git)

 	branch_track_remote() (in module paver.git)

 	
 	branches() (in module paver.hg), [1]

 	BuildFailure, [1]

 	Bunch (class in paver.options)

 	(class in paver.runtime)

 	bytes() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

C

 	
 	call_pavement() (in module paver.tasks)

 	call_task (in module paver.easy)

 	call_task() (in module paver.runtime)

 	(paver.tasks.Environment method)

 	called (paver.tasks.Task attribute)

 	chdir() (paver.path.path method)

 	(paver.runtime.path method)

 	checkout() (in module paver.svn), [1]

 	checkup() (in module paver.svn), [1]

 	chmod() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	chown() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	chroot() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	clear() (paver.options.Namespace method)

 	clone() (in module paver.git)

 	(in module paver.hg), [1]

 	cmdopts() (in module paver.runtime)

 	(in module paver.tasks)

 	cog() (in module paver.doctools), [1]

 	consume_args (paver.tasks.Task attribute)

 	consume_args() (in module paver.runtime)

 	(in module paver.tasks)

 	
 	consume_nargs() (in module paver.tasks)

 	copy() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	copy2() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	copyfile() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	copymode() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	copystat() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	copytree() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	ctime (paver.deps.path2.path attribute)

 	(paver.deps.path3.path attribute)

D

 	
 	debug() (in module paver.easy)

 	(in module paver.runtime)

 	(paver.tasks.Environment method)

 	description (paver.setuputils.DistutilsTask attribute)

 	(paver.tasks.Task attribute)

 	dirname() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	dirs() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	
 	display_help() (paver.tasks.Task method)

 	DistutilsTask (class in paver.setuputils)

 	DistutilsTaskFinder (class in paver.setuputils)

 	doc_clean() (in module paver.doctools), [1]

 	drive (paver.deps.path2.path attribute)

 	(paver.deps.path3.path attribute)

 	dry() (in module paver.easy)

 	(in module paver.runtime)

 	dry_run (paver.tasks.Environment attribute)

E

 	
 	Environment (class in paver.tasks)

 	error() (in module paver.easy)

 	(in module paver.runtime)

 	(paver.tasks.Environment method)

 	exists() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	expand() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	
 	expanduser() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	expandvars() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	export() (in module paver.svn), [1]

 	ext (paver.deps.path2.path attribute)

 	(paver.deps.path3.path attribute)

F

 	
 	file (paver.tasks.Environment attribute)

 	files() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	
 	find_package_data() (in module paver.setuputils), [1]

 	fnmatch() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

G

 	
 	generate_setup() (in module paver.misctasks), [1]

 	get() (paver.options.Namespace method)

 	get_owner() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	get_task() (paver.setuputils.DistutilsTaskFinder method)

 	(paver.tasks.Environment method)

 	get_tasks() (paver.setuputils.DistutilsTaskFinder method)

 	(paver.tasks.Environment method)

 	getatime() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	
 	getctime() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	getcwd() (paver.deps.path2.path class method)

 	(paver.deps.path3.path class method)

 	getmtime() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	getsize() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	glob() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

H

 	
 	help() (in module paver.tasks)

 	
 	html() (in module paver.doctools), [1]

I

 	
 	Includer (class in paver.doctools), [1]

 	info() (in module paver.easy)

 	(in module paver.runtime)

 	(in module paver.svn), [1]

 	(paver.tasks.Environment method)

 	install_distutils_tasks() (in module paver.setuputils), [1]

 	interactive (paver.tasks.Environment attribute)

 	isabs() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	
 	isdir() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	isfile() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	islink() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	ismount() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

J

 	
 	joinpath() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

K

 	
 	keys() (paver.doctools.SectionedFile method)

L

 	
 	latest_tag() (in module paver.git)

 	(in module paver.hg), [1]

 	lines() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	link() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	
 	listdir() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	lstat() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

M

 	
 	main() (in module paver.command)

 	(in module paver.tasks)

 	makedirs() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	makedirs_p() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	might_call() (in module paver.tasks)

 	minilib() (in module paver.misctasks), [1]

 	mkdir() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	
 	mkdir_p() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	move() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	mtime (paver.deps.path2.path attribute)

 	(paver.deps.path3.path attribute)

N

 	
 	name (paver.deps.path2.path attribute)

 	(paver.deps.path3.path attribute)

 	namebase (paver.deps.path2.path attribute)

 	(paver.deps.path3.path attribute)

 	Namespace (class in paver.options)

 	needs() (in module paver.runtime)

 	(in module paver.tasks)

 	
 	needs_closure (paver.tasks.Task attribute)

 	no_auto (paver.tasks.Task attribute)

 	no_auto() (in module paver.tasks)

 	no_help() (in module paver.tasks)

 	normcase() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	normpath() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

O

 	
 	open() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	OptionsError

 	
 	order() (paver.options.Namespace method)

 	owner (paver.deps.path2.path attribute)

 	(paver.deps.path3.path attribute)

P

 	
 	parent (paver.deps.path2.path attribute)

 	(paver.deps.path3.path attribute)

 	parse_args() (paver.tasks.Task method)

 	parser (paver.tasks.Task attribute)

 	path (class in paver.deps.path2)

 	(class in paver.deps.path3)

 	(class in paver.path)

 	(class in paver.runtime)

 	pathconf() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	pavement_file (paver.tasks.Environment attribute)

 	PavementError, [1]

 	paver (module)

 	paver.command (module)

 	paver.defaults (module)

 	paver.deps (module)

 	paver.deps.path2 (module)

 	paver.deps.path3 (module)

 	
 	paver.doctools (module), [1]

 	paver.easy (module)

 	paver.git (module)

 	paver.hg (module), [1]

 	paver.misctasks (module), [1]

 	paver.options (module)

 	paver.path (module), [1]

 	paver.release (module)

 	paver.runtime (module)

 	paver.setuputils (module), [1]

 	paver.shell (module)

 	paver.ssh (module), [1]

 	paver.svn (module), [1]

 	paver.tasks (module)

 	paver.version (module)

 	paver.virtual (module), [1]

 	pull() (in module paver.git)

 	(in module paver.hg), [1]

 	pushd() (in module paver.path), [1]

Q

 	
 	quiet (paver.tasks.Environment attribute)

R

 	
 	read_hash() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	read_hexhash() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	read_md5() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	readlink() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	readlinkabs() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	realpath() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	relpath() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	relpathto() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	remove() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	remove_p() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	removedirs() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	
 	removedirs_p() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	rename() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	renames() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	require_keys() (in module paver.runtime)

 	rmdir() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	rmdir_p() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	rmtree() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	rmtree_p() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

S

 	
 	samefile() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	scp() (in module paver.ssh), [1]

 	SectionedFile (class in paver.doctools), [1]

 	setdefault() (paver.options.Namespace method)

 	setdotted() (paver.options.Namespace method)

 	setup() (in module paver.setuputils), [1]

 	sh() (in module paver.runtime)

 	(in module paver.shell)

 	size (paver.deps.path2.path attribute)

 	(paver.deps.path3.path attribute)

 	splitall() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	splitdrive() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	
 	splitext() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	splitpath() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	stat() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	statvfs() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	stripext() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	symlink() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

T

 	
 	Task (class in paver.tasks)

 	task() (in module paver.runtime)

 	(in module paver.tasks)

 	text() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	
 	touch() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

U

 	
 	uncog() (in module paver.doctools), [1]

 	unlink() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	unlink_p() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	
 	update() (in module paver.hg), [1]

 	(in module paver.svn), [1]

 	(paver.options.Namespace method)

 	utime() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

V

 	
 	verbose (paver.tasks.Environment attribute)

 	
 	virtualenv() (in module paver.virtual), [1]

W

 	
 	walk() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	walkdirs() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	walkfiles() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	write_bytes() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	
 	write_lines() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

 	write_text() (paver.deps.path2.path method)

 	(paver.deps.path3.path method)

 	(paver.path.path method)

 	(paver.runtime.path method)

paver

	paver package
	Subpackages
	paver.deps package
	Submodules

	paver.deps.path2 module

	paver.deps.path3 module

	Module contents

	paver.tests package
	Submodules

	paver.tests.other_pavement module

	paver.tests.test_doctools module

	paver.tests.test_git module

	paver.tests.test_hg module

	paver.tests.test_options module

	paver.tests.test_path module

	paver.tests.test_setuputils module

	paver.tests.test_shell module

	paver.tests.test_svn module

	paver.tests.test_tasks module

	paver.tests.utils module

	Module contents

	Submodules

	paver.bzr module

	paver.command module

	paver.defaults module

	paver.doctools module

	paver.easy module

	paver.git module

	paver.hg module

	paver.misctasks module

	paver.options module

	paver.path module

	paver.release module

	paver.runtime module

	paver.setuputils module

	paver.shell module

	paver.ssh module

	paver.svn module

	paver.tasks module

	paver.version module

	paver.virtual module

	Module contents

 _static/down.png

_static/paver_banner.jpg

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Paver: Easy Scripting for Software Projects

 		
 Foreword: Why Paver?

 		
 The Declarative/Imperative Divide

 		
 Consistency for Project Related Tasks

 		
 That’s Why Paver Is Here

 		
 Making the Switch is Easy

 		
 Paver’s Features

 		
 Files Are Just Python

 		
 One File with One Syntax

 		
 Easy file operations

 		
 Small bits of behavior take small amounts of work

 		
 Can Take Advantage of Libraries But Doesn’t Require Them

 		
 Getting Started with Paver

 		
 The Old Way

 		
 The Old Way’s Docs

 		
 Work with me here

 		
 The New Way

 		
 Getting Started with Paver

 		
 Paver is compatible with distutils

 		
 But people are used to setup.py!

 		
 But people don’t have Paver yet!

 		
 Hey! Didn’t you just create more work for me?

 		
 Tackling the Docs

 		
 Getting rid of our docs shell script

 		
 Fixing another wart in The Old Way

 		
 Bonus Deployment Example

 		
 Where to go from here

 		
 pavement.py in depth

 		
 Defining Tasks

 		
 Manually Calling Tasks

 		
 How Task Names Work

 		
 Task Parameters

 		
 Command Line Arguments

 		
 Hiding tasks

 		
 More complex dependencies

 		
 The Paver Standard Library

 		
 distutils and setuptools (paver.setuputils)

 		
 File Handling in Paver (paver.path)

 		
 Documentation Tools (paver.doctools)

 		
 Miscellaneous Tasks (paver.misctasks)

 		
 Virtualenv Support (paver.virtual)

 		
 Using virtualenv with tasks

 		
 paver.virtual Tasks

 		
 Using with Subversion (paver.svn)

 		
 Using with Bazaar-NG (bzr) (paver.bzr)

 		
 Using with Mercurial (hg) (paver.hg)

 		
 SSH Remote Access Support (paver.ssh)

 		
 Paver Command Line

 		
 Tips and Tricks

 		
 Using a Config File For Settings

 		
 Articles about Paver

 		
 Complete API Reference

 		
 paver package

 		
 Subpackages

 		
 Submodules

 		
 paver.bzr module

 		
 paver.command module

 		
 paver.defaults module

 		
 paver.doctools module

 		
 paver.easy module

 		
 paver.git module

 		
 paver.hg module

 		
 paver.misctasks module

 		
 paver.options module

 		
 paver.path module

 		
 paver.release module

 		
 paver.runtime module

 		
 paver.setuputils module

 		
 paver.shell module

 		
 paver.ssh module

 		
 paver.svn module

 		
 paver.tasks module

 		
 paver.version module

 		
 paver.virtual module

 		
 Module contents

 		
 Paver Changelog

 		
 1.3.4 (Dec 31, 2017)

 		
 1.3.3 (Dec 29, 2017)

 		
 1.3.2 (Dec 28, 2017)

 		
 1.3.1 (Dec 28, 2017)

 		
 1.3.0 (Dec 28, 2017, tagged, but not released)

 		
 1.2.4 (February 23, 2015)

 		
 1.2.3 (August 10, 2014)

 		
 1.2.2 (January 12, 2014)

 		
 1.2.1 (June 2, 2013)

 		
 1.2 (February 24, 2013)

 		
 1.1.1 (August 25, 2012)

 		
 1.1.0 (July 30, 2012)

 		
 1.0.5 (October 21, 2011)

 		
 1.0.4 (January 16, 2011)

 		
 1.0.3 (June 1, 2010)

 		
 1.0.2 (March 8, 2010)

 		
 1.0.1 (May 4, 2009)

 		
 1.0 (March 22, 2009)

 		
 1.0b1 (March 13, 2009)

 		
 1.0a4 (March 6, 2009)

 		
 1.0a3 (March 6, 2009)

 		
 1.0a2 (February 26, 2009)

 		
 1.0a1 (January 28, 2009)

 		
 0.8.1 (June 2, 2008)

 		
 0.8 (May 19, 2008)

 		
 0.7.3 (May 16, 2008)

 		
 0.7.2 (May 8, 2008)

 		
 0.7.1 (May 8, 2008)

 		
 0.7 (May 7, 2008)

 		
 0.4 (April 22, 2008)

 		
 Credits

_images/paver_banner.jpg

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

