

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 [image: Ajv logo]
Ajv: Another JSON Schema Validator

The fastest JSON Schema validator for Node.js and browser. Supports draft-04/06/07.

[image: ../../../_images/ajv.svg]Build Status [https://travis-ci.org/epoberezkin/ajv]
[image: ../../../_images/ajv1.svg]npm [https://www.npmjs.com/package/ajv]
[image: ../../../_images/ajv2.svg]npm downloads [https://www.npmjs.com/package/ajv]
[image: ../../../_images/badge.svg]Coverage Status [https://coveralls.io/github/epoberezkin/ajv?branch=master]
[image: ../../../_images/ajv3.svg]Greenkeeper badge [https://greenkeeper.io/]
[image: ../../../_images/ajv4.svg]Gitter [https://gitter.im/ajv-validator/ajv]

Ajv and related repositories will be transfered to ajv-validator [https://github.com/ajv-validator] org

Using version 6

JSON Schema draft-07 [http://json-schema.org/latest/json-schema-validation.html] is published.

Ajv version 6.0.0 [https://github.com/epoberezkin/ajv/releases/tag/v6.0.0] that supports draft-07 is released. It may require either migrating your schemas or updating your code (to continue using draft-04 and v5 schemas, draft-06 schemas will be supported without changes).

Please note: To use Ajv with draft-06 schemas you need to explicitly add the meta-schema to the validator instance:

ajv.addMetaSchema(require('ajv/lib/refs/json-schema-draft-06.json'));

To use Ajv with draft-04 schemas in addition to explicitly adding meta-schema you also need to use option schemaId:

var ajv = new Ajv({schemaId: 'id'});
// If you want to use both draft-04 and draft-06/07 schemas:
// var ajv = new Ajv({schemaId: 'auto'});
ajv.addMetaSchema(require('ajv/lib/refs/json-schema-draft-04.json'));

Contents

	Performance

	Features

	Getting started

	Frequently Asked Questions [https://github.com/epoberezkin/ajv/blob/master/FAQ]

	Using in browser

	Command line interface

	Validation

	Keywords

	Annotation keywords

	Formats

	Combining schemas with $ref

	$data reference

	NEW: $merge and $patch keywords

	Defining custom keywords

	Asynchronous schema compilation

	Asynchronous validation

	Security considerations

	Modifying data during validation

	Filtering data

	Assigning defaults

	Coercing data types

	API

	Methods

	Options

	Validation errors

	Plugins

	Related packages

	Some packages using Ajv

	Tests, Contributing, History, License

Performance

Ajv generates code using doT templates [https://github.com/olado/doT] to turn JSON Schemas into super-fast validation functions that are efficient for v8 optimization.

Currently Ajv is the fastest and the most standard compliant validator according to these benchmarks:

	json-schema-benchmark [https://github.com/ebdrup/json-schema-benchmark] - 50% faster than the second place

	jsck benchmark [https://github.com/pandastrike/jsck#benchmarks] - 20-190% faster

	z-schema benchmark [https://rawgit.com/zaggino/z-schema/master/benchmark/results.html]

	themis benchmark [https://cdn.rawgit.com/playlyfe/themis/master/benchmark/results.html]

Performance of different validators by json-schema-benchmark [https://github.com/ebdrup/json-schema-benchmark]:

[image: ../../../_images/chart.png]performance [https://github.com/ebdrup/json-schema-benchmark/blob/master/README.md#performance]

Features

	Ajv implements full JSON Schema draft-06/07 [http://json-schema.org/] and draft-04 standards:

	all validation keywords (see JSON Schema validation keywords [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS])

	full support of remote refs (remote schemas have to be added with addSchema or compiled to be available)

	support of circular references between schemas

	correct string lengths for strings with unicode pairs (can be turned off)

	formats defined by JSON Schema draft-07 standard and custom formats (can be turned off)

	validates schemas against meta-schema

	supports browsers and Node.js 0.10-8.x

	asynchronous loading of referenced schemas during compilation

	“All errors” validation mode with option allErrors

	error messages with parameters describing error reasons to allow creating custom error messages

	i18n error messages support with ajv-i18n [https://github.com/epoberezkin/ajv-i18n] package

	filtering data from additional properties

	assigning defaults to missing properties and items

	coercing data to the types specified in type keywords

	custom keywords

	draft-06/07 keywords const, contains, propertyNames and if/then/else

	draft-06 boolean schemas (true/false as a schema to always pass/fail).

	keywords switch, patternRequired, formatMaximum / formatMinimum and formatExclusiveMaximum / formatExclusiveMinimum from JSON Schema extension proposals [https://github.com/json-schema/json-schema/wiki/v5-Proposals] with ajv-keywords [https://github.com/epoberezkin/ajv-keywords] package

	$data reference to use values from the validated data as values for the schema keywords

	asynchronous validation of custom formats and keywords

Currently Ajv is the only validator that passes all the tests from JSON Schema Test Suite [https://github.com/json-schema/JSON-Schema-Test-Suite] (according to json-schema-benchmark [https://github.com/ebdrup/json-schema-benchmark], apart from the test that requires that 1.0 is not an integer that is impossible to satisfy in JavaScript).

Install

npm install ajv

[bookmark: usage]Getting started

Try it in the Node.js REPL: https://tonicdev.com/npm/ajv

The fastest validation call:

var Ajv = require('ajv');
var ajv = new Ajv(); // options can be passed, e.g. {allErrors: true}
var validate = ajv.compile(schema);
var valid = validate(data);
if (!valid) console.log(validate.errors);

or with less code

// ...
var valid = ajv.validate(schema, data);
if (!valid) console.log(ajv.errors);
// ...

or

// ...
var valid = ajv.addSchema(schema, 'mySchema')
 .validate('mySchema', data);
if (!valid) console.log(ajv.errorsText());
// ...

See API and Options for more details.

Ajv compiles schemas to functions and caches them in all cases (using schema serialized with fast-json-stable-stringify [https://github.com/epoberezkin/fast-json-stable-stringify] or a custom function as a key), so that the next time the same schema is used (not necessarily the same object instance) it won’t be compiled again.

The best performance is achieved when using compiled functions returned by compile or getSchema methods (there is no additional function call).

Please note: every time a validation function or ajv.validate are called errors property is overwritten. You need to copy errors array reference to another variable if you want to use it later (e.g., in the callback). See Validation errors

Using in browser

You can require Ajv directly from the code you browserify - in this case Ajv will be a part of your bundle.

If you need to use Ajv in several bundles you can create a separate UMD bundle using npm run bundle script (thanks to siddo420 [https://github.com/siddo420]).

Then you need to load Ajv in the browser:

<script src="ajv.min.js"></script>

This bundle can be used with different module systems; it creates global Ajv if no module system is found.

The browser bundle is available on cdnjs [https://cdnjs.com/libraries/ajv].

Ajv is tested with these browsers:

[image: ../../../_images/epoberezkin.svg]Sauce Test Status [https://saucelabs.com/u/epoberezkin]

Please note: some frameworks, e.g. Dojo, may redefine global require in such way that is not compatible with CommonJS module format. In such case Ajv bundle has to be loaded before the framework and then you can use global Ajv (see issue #234 [https://github.com/epoberezkin/ajv/issues/234]).

Command line interface

CLI is available as a separate npm package ajv-cli [https://github.com/jessedc/ajv-cli]. It supports:

	compiling JSON Schemas to test their validity

	BETA: generating standalone module exporting a validation function to be used without Ajv (using ajv-pack [https://github.com/epoberezkin/ajv-pack])

	migrate schemas to draft-07 (using json-schema-migrate [https://github.com/epoberezkin/json-schema-migrate])

	validating data file(s) against JSON Schema

	testing expected validity of data against JSON Schema

	referenced schemas

	custom meta-schemas

	files in JSON and JavaScript format

	all Ajv options

	reporting changes in data after validation in JSON-patch [https://tools.ietf.org/html/rfc6902] format

Validation keywords

Ajv supports all validation keywords from draft-07 of JSON Schema standard:

	type [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS.md#type]

	for numbers [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS.md#keywords-for-numbers] - maximum, minimum, exclusiveMaximum, exclusiveMinimum, multipleOf

	for strings [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS.md#keywords-for-strings] - maxLength, minLength, pattern, format

	for arrays [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS.md#keywords-for-arrays] - maxItems, minItems, uniqueItems, items, additionalItems, contains [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS.md#contains]

	for objects [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS.md#keywords-for-objects] - maxProperties, minProperties, required, properties, patternProperties, additionalProperties, dependencies, propertyNames [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS.md#propertynames]

	for all types [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS.md#keywords-for-all-types] - enum, const [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS.md#const]

	compound keywords [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS.md#compound-keywords] - not, oneOf, anyOf, allOf, if/then/else [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS.md#ifthenelse]

With ajv-keywords [https://github.com/epoberezkin/ajv-keywords] package Ajv also supports validation keywords from JSON Schema extension proposals [https://github.com/json-schema/json-schema/wiki/v5-Proposals] for JSON Schema standard:

	patternRequired [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS.md#patternrequired-proposed] - like required but with patterns that some property should match.

	formatMaximum, formatMinimum, formatExclusiveMaximum, formatExclusiveMinimum [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS.md#formatmaximum--formatminimum-and-exclusiveformatmaximum--exclusiveformatminimum-proposed] - setting limits for date, time, etc.

See JSON Schema validation keywords [https://github.com/epoberezkin/ajv/blob/master/KEYWORDS] for more details.

Annotation keywords

JSON Schema specification defines several annotation keywords that describe schema itself but do not perform any validation.

	title and description: information about the data represented by that schema

	$comment (NEW in draft-07): information for developers. With option $comment Ajv logs or passes the comment string to the user-supplied function. See Options.

	default: a default value of the data instance, see Assigning defaults.

	examples (NEW in draft-07): an array of data instances. Ajv does not check the validity of these instances against the schema.

	readOnly and writeOnly (NEW in draft-07): marks data-instance as read-only or write-only in relation to the source of the data (database, api, etc.).

	contentEncoding: RFC 2045 [https://tools.ietf.org/html/rfc2045#section-6.1], e.g., “base64”.

	contentMediaType: RFC 2046 [https://tools.ietf.org/html/rfc2046], e.g., “image/png”.

Please note: Ajv does not implement validation of the keywords examples, contentEncoding and contentMediaType but it reserves them. If you want to create a plugin that implements some of them, it should remove these keywords from the instance.

Formats

The following formats are supported for string validation with “format” keyword:

	date: full-date according to RFC3339 [http://tools.ietf.org/html/rfc3339#section-5.6].

	time: time with optional time-zone.

	date-time: date-time from the same source (time-zone is mandatory). date, time and date-time validate ranges in full mode and only regexp in fast mode (see options).

	uri: full URI.

	uri-reference: URI reference, including full and relative URIs.

	uri-template: URI template according to RFC6570 [https://tools.ietf.org/html/rfc6570]

	url (deprecated): URL record [https://url.spec.whatwg.org/#concept-url].

	email: email address.

	hostname: host name according to RFC1034 [http://tools.ietf.org/html/rfc1034#section-3.5].

	ipv4: IP address v4.

	ipv6: IP address v6.

	regex: tests whether a string is a valid regular expression by passing it to RegExp constructor.

	uuid: Universally Unique IDentifier according to RFC4122 [http://tools.ietf.org/html/rfc4122].

	json-pointer: JSON-pointer according to RFC6901 [https://tools.ietf.org/html/rfc6901].

	relative-json-pointer: relative JSON-pointer according to this draft [http://tools.ietf.org/html/draft-luff-relative-json-pointer-00].

Please note: JSON Schema draft-07 also defines formats iri, iri-reference, idn-hostname and idn-email for URLs, hostnames and emails with international characters. Ajv does not implement these formats. If you create Ajv plugin that implements them please make a PR to mention this plugin here.

There are two modes of format validation: fast and full. This mode affects formats date, time, date-time, uri, uri-reference, email, and hostname. See Options for details.

You can add additional formats and replace any of the formats above using addFormat method.

The option unknownFormats allows changing the default behaviour when an unknown format is encountered. In this case Ajv can either fail schema compilation (default) or ignore it (default in versions before 5.0.0). You also can whitelist specific format(s) to be ignored. See Options for details.

You can find regular expressions used for format validation and the sources that were used in formats.js [https://github.com/epoberezkin/ajv/blob/master/lib/compile/formats.js].

[bookmark: ref]Combining schemas with $ref

You can structure your validation logic across multiple schema files and have schemas reference each other using $ref keyword.

Example:

var schema = {
 "$id": "http://example.com/schemas/schema.json",
 "type": "object",
 "properties": {
 "foo": { "$ref": "defs.json#/definitions/int" },
 "bar": { "$ref": "defs.json#/definitions/str" }
 }
};

var defsSchema = {
 "$id": "http://example.com/schemas/defs.json",
 "definitions": {
 "int": { "type": "integer" },
 "str": { "type": "string" }
 }
};

Now to compile your schema you can either pass all schemas to Ajv instance:

var ajv = new Ajv({schemas: [schema, defsSchema]});
var validate = ajv.getSchema('http://example.com/schemas/schema.json');

or use addSchema method:

var ajv = new Ajv;
var validate = ajv.addSchema(defsSchema)
 .compile(schema);

See Options and addSchema method.

Please note:

	$ref is resolved as the uri-reference using schema $id as the base URI (see the example).

	References can be recursive (and mutually recursive) to implement the schemas for different data structures (such as linked lists, trees, graphs, etc.).

	You don’t have to host your schema files at the URIs that you use as schema $id. These URIs are only used to identify the schemas, and according to JSON Schema specification validators should not expect to be able to download the schemas from these URIs.

	The actual location of the schema file in the file system is not used.

	You can pass the identifier of the schema as the second parameter of addSchema method or as a property name in schemas option. This identifier can be used instead of (or in addition to) schema $id.

	You cannot have the same $id (or the schema identifier) used for more than one schema - the exception will be thrown.

	You can implement dynamic resolution of the referenced schemas using compileAsync method. In this way you can store schemas in any system (files, web, database, etc.) and reference them without explicitly adding to Ajv instance. See Asynchronous schema compilation.

$data reference

With $data option you can use values from the validated data as the values for the schema keywords. See proposal [https://github.com/json-schema/json-schema/wiki/%24data-(v5-proposal)] for more information about how it works.

$data reference is supported in the keywords: const, enum, format, maximum/minimum, exclusiveMaximum / exclusiveMinimum, maxLength / minLength, maxItems / minItems, maxProperties / minProperties, formatMaximum / formatMinimum, formatExclusiveMaximum / formatExclusiveMinimum, multipleOf, pattern, required, uniqueItems.

The value of “$data” should be a JSON-pointer [https://tools.ietf.org/html/rfc6901] to the data (the root is always the top level data object, even if the $data reference is inside a referenced subschema) or a relative JSON-pointer [http://tools.ietf.org/html/draft-luff-relative-json-pointer-00] (it is relative to the current point in data; if the $data reference is inside a referenced subschema it cannot point to the data outside of the root level for this subschema).

Examples.

This schema requires that the value in property smaller is less or equal than the value in the property larger:

var ajv = new Ajv({$data: true});

var schema = {
 "properties": {
 "smaller": {
 "type": "number",
 "maximum": { "$data": "1/larger" }
 },
 "larger": { "type": "number" }
 }
};

var validData = {
 smaller: 5,
 larger: 7
};

ajv.validate(schema, validData); // true

This schema requires that the properties have the same format as their field names:

var schema = {
 "additionalProperties": {
 "type": "string",
 "format": { "$data": "0#" }
 }
};

var validData = {
 'date-time': '1963-06-19T08:30:06.283185Z',
 email: 'joe.bloggs@example.com'
}

$data reference is resolved safely - it won’t throw even if some property is undefined. If $data resolves to undefined the validation succeeds (with the exclusion of const keyword). If $data resolves to incorrect type (e.g. not “number” for maximum keyword) the validation fails.

$merge and $patch keywords

With the package ajv-merge-patch [https://github.com/epoberezkin/ajv-merge-patch] you can use the keywords $merge and $patch that allow extending JSON Schemas with patches using formats JSON Merge Patch (RFC 7396) [https://tools.ietf.org/html/rfc7396] and JSON Patch (RFC 6902) [https://tools.ietf.org/html/rfc6902].

To add keywords $merge and $patch to Ajv instance use this code:

require('ajv-merge-patch')(ajv);

Examples.

Using $merge:

{
 "$merge": {
 "source": {
 "type": "object",
 "properties": { "p": { "type": "string" } },
 "additionalProperties": false
 },
 "with": {
 "properties": { "q": { "type": "number" } }
 }
 }
}

Using $patch:

{
 "$patch": {
 "source": {
 "type": "object",
 "properties": { "p": { "type": "string" } },
 "additionalProperties": false
 },
 "with": [
 { "op": "add", "path": "/properties/q", "value": { "type": "number" } }
]
 }
}

The schemas above are equivalent to this schema:

{
 "type": "object",
 "properties": {
 "p": { "type": "string" },
 "q": { "type": "number" }
 },
 "additionalProperties": false
}

The properties source and with in the keywords $merge and $patch can use absolute or relative $ref to point to other schemas previously added to the Ajv instance or to the fragments of the current schema.

See the package ajv-merge-patch [https://github.com/epoberezkin/ajv-merge-patch] for more information.

Defining custom keywords

The advantages of using custom keywords are:

	allow creating validation scenarios that cannot be expressed using JSON Schema

	simplify your schemas

	help bringing a bigger part of the validation logic to your schemas

	make your schemas more expressive, less verbose and closer to your application domain

	implement custom data processors that modify your data (modifying option MUST be used in keyword definition) and/or create side effects while the data is being validated

If a keyword is used only for side-effects and its validation result is pre-defined, use option valid: true/false in keyword definition to simplify both generated code (no error handling in case of valid: true) and your keyword functions (no need to return any validation result).

The concerns you have to be aware of when extending JSON Schema standard with custom keywords are the portability and understanding of your schemas. You will have to support these custom keywords on other platforms and to properly document these keywords so that everybody can understand them in your schemas.

You can define custom keywords with addKeyword method. Keywords are defined on the ajv instance level - new instances will not have previously defined keywords.

Ajv allows defining keywords with:

	validation function

	compilation function

	macro function

	inline compilation function that should return code (as string) that will be inlined in the currently compiled schema.

Example. range and exclusiveRange keywords using compiled schema:

ajv.addKeyword('range', {
 type: 'number',
 compile: function (sch, parentSchema) {
 var min = sch[0];
 var max = sch[1];

 return parentSchema.exclusiveRange === true
 ? function (data) { return data > min && data < max; }
 : function (data) { return data >= min && data <= max; }
 }
});

var schema = { "range": [2, 4], "exclusiveRange": true };
var validate = ajv.compile(schema);
console.log(validate(2.01)); // true
console.log(validate(3.99)); // true
console.log(validate(2)); // false
console.log(validate(4)); // false

Several custom keywords (typeof, instanceof, range and propertyNames) are defined in ajv-keywords [https://github.com/epoberezkin/ajv-keywords] package - they can be used for your schemas and as a starting point for your own custom keywords.

See Defining custom keywords [https://github.com/epoberezkin/ajv/blob/master/CUSTOM] for more details.

Asynchronous schema compilation

During asynchronous compilation remote references are loaded using supplied function. See compileAsync method and loadSchema option.

Example:

var ajv = new Ajv({ loadSchema: loadSchema });

ajv.compileAsync(schema).then(function (validate) {
 var valid = validate(data);
 // ...
});

function loadSchema(uri) {
 return request.json(uri).then(function (res) {
 if (res.statusCode >= 400)
 throw new Error('Loading error: ' + res.statusCode);
 return res.body;
 });
}

Please note: Option missingRefs should NOT be set to "ignore" or "fail" for asynchronous compilation to work.

Asynchronous validation

Example in Node.js REPL: https://tonicdev.com/esp/ajv-asynchronous-validation

You can define custom formats and keywords that perform validation asynchronously by accessing database or some other service. You should add async: true in the keyword or format definition (see addFormat, addKeyword and Defining custom keywords).

If your schema uses asynchronous formats/keywords or refers to some schema that contains them it should have "$async": true keyword so that Ajv can compile it correctly. If asynchronous format/keyword or reference to asynchronous schema is used in the schema without $async keyword Ajv will throw an exception during schema compilation.

Please note: all asynchronous subschemas that are referenced from the current or other schemas should have "$async": true keyword as well, otherwise the schema compilation will fail.

Validation function for an asynchronous custom format/keyword should return a promise that resolves with true or false (or rejects with new Ajv.ValidationError(errors) if you want to return custom errors from the keyword function).

Ajv compiles asynchronous schemas to es7 async functions [http://tc39.github.io/ecmascript-asyncawait/] that can optionally be transpiled with nodent [https://github.com/MatAtBread/nodent]. Async functions are supported in Node.js 7+ and all modern browsers. You can also supply any other transpiler as a function via processCode option. See Options.

The compiled validation function has $async: true property (if the schema is asynchronous), so you can differentiate these functions if you are using both synchronous and asynchronous schemas.

Validation result will be a promise that resolves with validated data or rejects with an exception Ajv.ValidationError that contains the array of validation errors in errors property.

Example:

var ajv = new Ajv;
// require('ajv-async')(ajv);

ajv.addKeyword('idExists', {
 async: true,
 type: 'number',
 validate: checkIdExists
});

function checkIdExists(schema, data) {
 return knex(schema.table)
 .select('id')
 .where('id', data)
 .then(function (rows) {
 return !!rows.length; // true if record is found
 });
}

var schema = {
 "$async": true,
 "properties": {
 "userId": {
 "type": "integer",
 "idExists": { "table": "users" }
 },
 "postId": {
 "type": "integer",
 "idExists": { "table": "posts" }
 }
 }
};

var validate = ajv.compile(schema);

validate({ userId: 1, postId: 19 })
.then(function (data) {
 console.log('Data is valid', data); // { userId: 1, postId: 19 }
})
.catch(function (err) {
 if (!(err instanceof Ajv.ValidationError)) throw err;
 // data is invalid
 console.log('Validation errors:', err.errors);
});

Using transpilers with asynchronous validation functions.

ajv-async [https://github.com/epoberezkin/ajv-async] uses nodent [https://github.com/MatAtBread/nodent] to transpile async functions. To use another transpiler you should separately install it (or load its bundle in the browser).

Using nodent

var ajv = new Ajv;
require('ajv-async')(ajv);
// in the browser if you want to load ajv-async bundle separately you can:
// window.ajvAsync(ajv);
var validate = ajv.compile(schema); // transpiled es7 async function
validate(data).then(successFunc).catch(errorFunc);

Using other transpilers

var ajv = new Ajv({ processCode: transpileFunc });
var validate = ajv.compile(schema); // transpiled es7 async function
validate(data).then(successFunc).catch(errorFunc);

See Options.

Security considerations

JSON Schema, if properly used, can replace data sanitisation. It doesn’t replace other API security considerations. It also introduces additional security aspects to consider.

Untrusted schemas

Ajv treats JSON schemas as trusted as your application code. This security model is based on the most common use case, when the schemas are static and bundled together with the application.

If your schemas are received from untrusted sources (or generated from untrusted data) there are several scenarios you need to prevent:

	compiling schemas can cause stack overflow (if they are too deep)

	compiling schemas can be slow (e.g. #557 [https://github.com/epoberezkin/ajv/issues/557])

	validating certain data can be slow

It is difficult to predict all the scenarios, but at the very least it may help to limit the size of untrusted schemas (e.g. limit JSON string length) and also the maximum schema object depth (that can be high for relatively small JSON strings). You also may want to mitigate slow regular expressions in pattern and patternProperties keywords.

Regardless the measures you take, using untrusted schemas increases security risks.

Circular references in JavaScript objects

Ajv does not support schemas and validated data that have circular references in objects. See issue #802 [https://github.com/epoberezkin/ajv/issues/802].

An attempt to compile such schemas or validate such data would cause stack overflow (or will not complete in case of asynchronous validation). Depending on the parser you use, untrusted data can lead to circular references.

Security risks of trusted schemas

Some keywords in JSON Schemas can lead to very slow validation for certain data. These keywords include (but may be not limited to):

	pattern and format for large strings - use maxLength to mitigate

	uniqueItems for large non-scalar arrays - use maxItems to mitigate

	patternProperties for large property names - use propertyNames to mitigate

Please note: The suggestions above to prevent slow validation would only work if you do NOT use allErrors: true in production code (using it would continue validation after validation errors).

You can validate your JSON schemas against this meta-schema [https://github.com/epoberezkin/ajv/blob/master/lib/refs/json-schema-secure.json] to check that these recommendations are followed:

const isSchemaSecure = ajv.compile(require('ajv/lib/refs/json-schema-secure.json'));

const schema1 = {format: 'email'};
isSchemaSecure(schema1); // false

const schema2 = {format: 'email', maxLength: 256};
isSchemaSecure(schema2); // true

Please note: following all these recommendation is not a guarantee that validation of untrusted data is safe - it can still lead to some undesirable results.

Filtering data

With option removeAdditional (added by andyscott [https://github.com/andyscott]) you can filter data during the validation.

This option modifies original data.

Example:

var ajv = new Ajv({ removeAdditional: true });
var schema = {
 "additionalProperties": false,
 "properties": {
 "foo": { "type": "number" },
 "bar": {
 "additionalProperties": { "type": "number" },
 "properties": {
 "baz": { "type": "string" }
 }
 }
 }
}

var data = {
 "foo": 0,
 "additional1": 1, // will be removed; `additionalProperties` == false
 "bar": {
 "baz": "abc",
 "additional2": 2 // will NOT be removed; `additionalProperties` != false
 },
}

var validate = ajv.compile(schema);

console.log(validate(data)); // true
console.log(data); // { "foo": 0, "bar": { "baz": "abc", "additional2": 2 }

If removeAdditional option in the example above were "all" then both additional1 and additional2 properties would have been removed.

If the option were "failing" then property additional1 would have been removed regardless of its value and property additional2 would have been removed only if its value were failing the schema in the inner additionalProperties (so in the example above it would have stayed because it passes the schema, but any non-number would have been removed).

Please note: If you use removeAdditional option with additionalProperties keyword inside anyOf/oneOf keywords your validation can fail with this schema, for example:

{
 "type": "object",
 "oneOf": [
 {
 "properties": {
 "foo": { "type": "string" }
 },
 "required": ["foo"],
 "additionalProperties": false
 },
 {
 "properties": {
 "bar": { "type": "integer" }
 },
 "required": ["bar"],
 "additionalProperties": false
 }
]
}

The intention of the schema above is to allow objects with either the string property “foo” or the integer property “bar”, but not with both and not with any other properties.

With the option removeAdditional: true the validation will pass for the object { "foo": "abc"} but will fail for the object {"bar": 1}. It happens because while the first subschema in oneOf is validated, the property bar is removed because it is an additional property according to the standard (because it is not included in properties keyword in the same schema).

While this behaviour is unexpected (issues #129 [https://github.com/epoberezkin/ajv/issues/129], #134 [https://github.com/epoberezkin/ajv/issues/134]), it is correct. To have the expected behaviour (both objects are allowed and additional properties are removed) the schema has to be refactored in this way:

{
 "type": "object",
 "properties": {
 "foo": { "type": "string" },
 "bar": { "type": "integer" }
 },
 "additionalProperties": false,
 "oneOf": [
 { "required": ["foo"] },
 { "required": ["bar"] }
]
}

The schema above is also more efficient - it will compile into a faster function.

Assigning defaults

With option useDefaults Ajv will assign values from default keyword in the schemas of properties and items (when it is the array of schemas) to the missing properties and items.

With the option value "empty" properties and items equal to null or "" (empty string) will be considered missing and assigned defaults.

This option modifies original data.

Please note: the default value is inserted in the generated validation code as a literal, so the value inserted in the data will be the deep clone of the default in the schema.

Example 1 (default in properties):

var ajv = new Ajv({ useDefaults: true });
var schema = {
 "type": "object",
 "properties": {
 "foo": { "type": "number" },
 "bar": { "type": "string", "default": "baz" }
 },
 "required": ["foo", "bar"]
};

var data = { "foo": 1 };

var validate = ajv.compile(schema);

console.log(validate(data)); // true
console.log(data); // { "foo": 1, "bar": "baz" }

Example 2 (default in items):

var schema = {
 "type": "array",
 "items": [
 { "type": "number" },
 { "type": "string", "default": "foo" }
]
}

var data = [1];

var validate = ajv.compile(schema);

console.log(validate(data)); // true
console.log(data); // [1, "foo"]

default keywords in other cases are ignored:

	not in properties or items subschemas

	in schemas inside anyOf, oneOf and not (see #42 [https://github.com/epoberezkin/ajv/issues/42])

	in if subschema of switch keyword

	in schemas generated by custom macro keywords

The strictDefaults option customizes Ajv’s behavior for the defaults that Ajv ignores (true raises an error, and "log" outputs a warning).

Coercing data types

When you are validating user inputs all your data properties are usually strings. The option coerceTypes allows you to have your data types coerced to the types specified in your schema type keywords, both to pass the validation and to use the correctly typed data afterwards.

This option modifies original data.

Please note: if you pass a scalar value to the validating function its type will be coerced and it will pass the validation, but the value of the variable you pass won’t be updated because scalars are passed by value.

Example 1:

var ajv = new Ajv({ coerceTypes: true });
var schema = {
 "type": "object",
 "properties": {
 "foo": { "type": "number" },
 "bar": { "type": "boolean" }
 },
 "required": ["foo", "bar"]
};

var data = { "foo": "1", "bar": "false" };

var validate = ajv.compile(schema);

console.log(validate(data)); // true
console.log(data); // { "foo": 1, "bar": false }

Example 2 (array coercions):

var ajv = new Ajv({ coerceTypes: 'array' });
var schema = {
 "properties": {
 "foo": { "type": "array", "items": { "type": "number" } },
 "bar": { "type": "boolean" }
 }
};

var data = { "foo": "1", "bar": ["false"] };

var validate = ajv.compile(schema);

console.log(validate(data)); // true
console.log(data); // { "foo": [1], "bar": false }

The coercion rules, as you can see from the example, are different from JavaScript both to validate user input as expected and to have the coercion reversible (to correctly validate cases where different types are defined in subschemas of “anyOf” and other compound keywords).

See Coercion rules [https://github.com/epoberezkin/ajv/blob/master/COERCION] for details.

API

new Ajv(Object options) -> Object

Create Ajv instance.

.compile(Object schema) -> Function<Object data>

Generate validating function and cache the compiled schema for future use.

Validating function returns a boolean value. This function has properties errors and schema. Errors encountered during the last validation are assigned to errors property (it is assigned null if there was no errors). schema property contains the reference to the original schema.

The schema passed to this method will be validated against meta-schema unless validateSchema option is false. If schema is invalid, an error will be thrown. See options.

[bookmark: api-compileAsync].compileAsync(Object schema [, Boolean meta] [, Function callback]) -> Promise

Asynchronous version of compile method that loads missing remote schemas using asynchronous function in options.loadSchema. This function returns a Promise that resolves to a validation function. An optional callback passed to compileAsync will be called with 2 parameters: error (or null) and validating function. The returned promise will reject (and the callback will be called with an error) when:

	missing schema can’t be loaded (loadSchema returns a Promise that rejects).

	a schema containing a missing reference is loaded, but the reference cannot be resolved.

	schema (or some loaded/referenced schema) is invalid.

The function compiles schema and loads the first missing schema (or meta-schema) until all missing schemas are loaded.

You can asynchronously compile meta-schema by passing true as the second parameter.

See example in Asynchronous compilation.

.validate(Object schema|String key|String ref, data) -> Boolean

Validate data using passed schema (it will be compiled and cached).

Instead of the schema you can use the key that was previously passed to addSchema, the schema id if it was present in the schema or any previously resolved reference.

Validation errors will be available in the errors property of Ajv instance (null if there were no errors).

Please note: every time this method is called the errors are overwritten so you need to copy them to another variable if you want to use them later.

If the schema is asynchronous (has $async keyword on the top level) this method returns a Promise. See Asynchronous validation.

.addSchema(Array<Object>|Object schema [, String key]) -> Ajv

Add schema(s) to validator instance. This method does not compile schemas (but it still validates them). Because of that dependencies can be added in any order and circular dependencies are supported. It also prevents unnecessary compilation of schemas that are containers for other schemas but not used as a whole.

Array of schemas can be passed (schemas should have ids), the second parameter will be ignored.

Key can be passed that can be used to reference the schema and will be used as the schema id if there is no id inside the schema. If the key is not passed, the schema id will be used as the key.

Once the schema is added, it (and all the references inside it) can be referenced in other schemas and used to validate data.

Although addSchema does not compile schemas, explicit compilation is not required - the schema will be compiled when it is used first time.

By default the schema is validated against meta-schema before it is added, and if the schema does not pass validation the exception is thrown. This behaviour is controlled by validateSchema option.

Please note: Ajv uses the method chaining syntax [https://en.wikipedia.org/wiki/Method_chaining] for all methods with the prefix add* and remove*.
This allows you to do nice things like the following.

var validate = new Ajv().addSchema(schema).addFormat(name, regex).getSchema(uri);

.addMetaSchema(Array<Object>|Object schema [, String key]) -> Ajv

Adds meta schema(s) that can be used to validate other schemas. That function should be used instead of addSchema because there may be instance options that would compile a meta schema incorrectly (at the moment it is removeAdditional option).

There is no need to explicitly add draft-07 meta schema (http://json-schema.org/draft-07/schema) - it is added by default, unless option meta is set to false. You only need to use it if you have a changed meta-schema that you want to use to validate your schemas. See validateSchema.

[bookmark: api-validateschema].validateSchema(Object schema) -> Boolean

Validates schema. This method should be used to validate schemas rather than validate due to the inconsistency of uri format in JSON Schema standard.

By default this method is called automatically when the schema is added, so you rarely need to use it directly.

If schema doesn’t have $schema property, it is validated against draft 6 meta-schema (option meta should not be false).

If schema has $schema property, then the schema with this id (that should be previously added) is used to validate passed schema.

Errors will be available at ajv.errors.

.getSchema(String key) -> Function<Object data>

Retrieve compiled schema previously added with addSchema by the key passed to addSchema or by its full reference (id). The returned validating function has schema property with the reference to the original schema.

.removeSchema([Object schema|String key|String ref|RegExp pattern]) -> Ajv

Remove added/cached schema. Even if schema is referenced by other schemas it can be safely removed as dependent schemas have local references.

Schema can be removed using:

	key passed to addSchema

	it’s full reference (id)

	RegExp that should match schema id or key (meta-schemas won’t be removed)

	actual schema object that will be stable-stringified to remove schema from cache

If no parameter is passed all schemas but meta-schemas will be removed and the cache will be cleared.

[bookmark: api-addformat].addFormat(String name, String|RegExp|Function|Object format) -> Ajv

Add custom format to validate strings or numbers. It can also be used to replace pre-defined formats for Ajv instance.

Strings are converted to RegExp.

Function should return validation result as true or false.

If object is passed it should have properties validate, compare and async:

	validate: a string, RegExp or a function as described above.

	compare: an optional comparison function that accepts two strings and compares them according to the format meaning. This function is used with keywords formatMaximum/formatMinimum (defined in ajv-keywords [https://github.com/epoberezkin/ajv-keywords] package). It should return 1 if the first value is bigger than the second value, -1 if it is smaller and 0 if it is equal.

	async: an optional true value if validate is an asynchronous function; in this case it should return a promise that resolves with a value true or false.

	type: an optional type of data that the format applies to. It can be "string" (default) or "number" (see https://github.com/epoberezkin/ajv/issues/291#issuecomment-259923858). If the type of data is different, the validation will pass.

Custom formats can be also added via formats option.

[bookmark: api-addkeyword].addKeyword(String keyword, Object definition) -> Ajv

Add custom validation keyword to Ajv instance.

Keyword should be different from all standard JSON Schema keywords and different from previously defined keywords. There is no way to redefine keywords or to remove keyword definition from the instance.

Keyword must start with a letter, _ or $, and may continue with letters, numbers, _, $, or -.
It is recommended to use an application-specific prefix for keywords to avoid current and future name collisions.

Example Keywords:

	"xyz-example": valid, and uses prefix for the xyz project to avoid name collisions.

	"example": valid, but not recommended as it could collide with future versions of JSON Schema etc.

	"3-example": invalid as numbers are not allowed to be the first character in a keyword

Keyword definition is an object with the following properties:

	type: optional string or array of strings with data type(s) that the keyword applies to. If not present, the keyword will apply to all types.

	validate: validating function

	compile: compiling function

	macro: macro function

	inline: compiling function that returns code (as string)

	schema: an optional false value used with “validate” keyword to not pass schema

	metaSchema: an optional meta-schema for keyword schema

	dependencies: an optional list of properties that must be present in the parent schema - it will be checked during schema compilation

	modifying: true MUST be passed if keyword modifies data

	statements: true can be passed in case inline keyword generates statements (as opposed to expression)

	valid: pass true/false to pre-define validation result, the result returned from validation function will be ignored. This option cannot be used with macro keywords.

	$data: an optional true value to support $data reference as the value of custom keyword. The reference will be resolved at validation time. If the keyword has meta-schema it would be extended to allow $data and it will be used to validate the resolved value. Supporting $data reference requires that keyword has validating function (as the only option or in addition to compile, macro or inline function).

	async: an optional true value if the validation function is asynchronous (whether it is compiled or passed in validate property); in this case it should return a promise that resolves with a value true or false. This option is ignored in case of “macro” and “inline” keywords.

	errors: an optional boolean or string "full" indicating whether keyword returns errors. If this property is not set Ajv will determine if the errors were set in case of failed validation.

compile, macro and inline are mutually exclusive, only one should be used at a time. validate can be used separately or in addition to them to support $data reference.

Please note: If the keyword is validating data type that is different from the type(s) in its definition, the validation function will not be called (and expanded macro will not be used), so there is no need to check for data type inside validation function or inside schema returned by macro function (unless you want to enforce a specific type and for some reason do not want to use a separate type keyword for that). In the same way as standard keywords work, if the keyword does not apply to the data type being validated, the validation of this keyword will succeed.

See Defining custom keywords for more details.

.getKeyword(String keyword) -> Object|Boolean

Returns custom keyword definition, true for pre-defined keywords and false if the keyword is unknown.

.removeKeyword(String keyword) -> Ajv

Removes custom or pre-defined keyword so you can redefine them.

While this method can be used to extend pre-defined keywords, it can also be used to completely change their meaning - it may lead to unexpected results.

Please note: schemas compiled before the keyword is removed will continue to work without changes. To recompile schemas use removeSchema method and compile them again.

.errorsText([Array<Object> errors [, Object options]]) -> String

Returns the text with all errors in a String.

Options can have properties separator (string used to separate errors, “, “ by default) and dataVar (the variable name that dataPaths are prefixed with, “data” by default).

Options

Defaults:

{
 // validation and reporting options:
 $data: false,
 allErrors: false,
 verbose: false,
 $comment: false, // NEW in Ajv version 6.0
 jsonPointers: false,
 uniqueItems: true,
 unicode: true,
 nullable: false,
 format: 'fast',
 formats: {},
 unknownFormats: true,
 schemas: {},
 logger: undefined,
 // referenced schema options:
 schemaId: '$id',
 missingRefs: true,
 extendRefs: 'ignore', // recommended 'fail'
 loadSchema: undefined, // function(uri: string): Promise {}
 // options to modify validated data:
 removeAdditional: false,
 useDefaults: false,
 coerceTypes: false,
 // strict mode options
 strictDefaults: false,
 strictKeywords: false,
 // asynchronous validation options:
 transpile: undefined, // requires ajv-async package
 // advanced options:
 meta: true,
 validateSchema: true,
 addUsedSchema: true,
 inlineRefs: true,
 passContext: false,
 loopRequired: Infinity,
 ownProperties: false,
 multipleOfPrecision: false,
 errorDataPath: 'object', // deprecated
 messages: true,
 sourceCode: false,
 processCode: undefined, // function (str: string): string {}
 cache: new Cache,
 serialize: undefined
}

Validation and reporting options

	$data: support $data references. Draft 6 meta-schema that is added by default will be extended to allow them. If you want to use another meta-schema you need to use $dataMetaSchema method to add support for $data reference. See API.

	allErrors: check all rules collecting all errors. Default is to return after the first error.

	verbose: include the reference to the part of the schema (schema and parentSchema) and validated data in errors (false by default).

	$comment (NEW in Ajv version 6.0): log or pass the value of $comment keyword to a function. Option values:

	false (default): ignore $comment keyword.

	true: log the keyword value to console.

	function: pass the keyword value, its schema path and root schema to the specified function

	jsonPointers: set dataPath property of errors using JSON Pointers [https://tools.ietf.org/html/rfc6901] instead of JavaScript property access notation.

	uniqueItems: validate uniqueItems keyword (true by default).

	unicode: calculate correct length of strings with unicode pairs (true by default). Pass false to use .length of strings that is faster, but gives “incorrect” lengths of strings with unicode pairs - each unicode pair is counted as two characters.

	nullable: support keyword “nullable” from Open API 3 specification [https://swagger.io/docs/specification/data-models/data-types/].

	format: formats validation mode. Option values:

	"fast" (default) - simplified and fast validation (see Formats for details of which formats are available and affected by this option).

	"full" - more restrictive and slow validation. E.g., 25:00:00 and 2015/14/33 will be invalid time and date in ‘full’ mode but it will be valid in ‘fast’ mode.

	false - ignore all format keywords.

	formats: an object with custom formats. Keys and values will be passed to addFormat method.

	unknownFormats: handling of unknown formats. Option values:

	true (default) - if an unknown format is encountered the exception is thrown during schema compilation. If format keyword value is $data reference and it is unknown the validation will fail.

	[String] - an array of unknown format names that will be ignored. This option can be used to allow usage of third party schemas with format(s) for which you don’t have definitions, but still fail if another unknown format is used. If format keyword value is $data reference and it is not in this array the validation will fail.

	"ignore" - to log warning during schema compilation and always pass validation (the default behaviour in versions before 5.0.0). This option is not recommended, as it allows to mistype format name and it won’t be validated without any error message. This behaviour is required by JSON Schema specification.

	schemas: an array or object of schemas that will be added to the instance. In case you pass the array the schemas must have IDs in them. When the object is passed the method addSchema(value, key) will be called for each schema in this object.

	logger: sets the logging method. Default is the global console object that should have methods log, warn and error. Option values:

	custom logger - it should have methods log, warn and error. If any of these methods is missing an exception will be thrown.

	false - logging is disabled.

Referenced schema options

	schemaId: this option defines which keywords are used as schema URI. Option value:

	"$id" (default) - only use $id keyword as schema URI (as specified in JSON Schema draft-06/07), ignore id keyword (if it is present a warning will be logged).

	"id" - only use id keyword as schema URI (as specified in JSON Schema draft-04), ignore $id keyword (if it is present a warning will be logged).

	"auto" - use both $id and id keywords as schema URI. If both are present (in the same schema object) and different the exception will be thrown during schema compilation.

	missingRefs: handling of missing referenced schemas. Option values:

	true (default) - if the reference cannot be resolved during compilation the exception is thrown. The thrown error has properties missingRef (with hash fragment) and missingSchema (without it). Both properties are resolved relative to the current base id (usually schema id, unless it was substituted).

	"ignore" - to log error during compilation and always pass validation.

	"fail" - to log error and successfully compile schema but fail validation if this rule is checked.

	extendRefs: validation of other keywords when $ref is present in the schema. Option values:

	"ignore" (default) - when $ref is used other keywords are ignored (as per JSON Reference [https://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03#section-3] standard). A warning will be logged during the schema compilation.

	"fail" (recommended) - if other validation keywords are used together with $ref the exception will be thrown when the schema is compiled. This option is recommended to make sure schema has no keywords that are ignored, which can be confusing.

	true - validate all keywords in the schemas with $ref (the default behaviour in versions before 5.0.0).

	loadSchema: asynchronous function that will be used to load remote schemas when compileAsync method is used and some reference is missing (option missingRefs should NOT be ‘fail’ or ‘ignore’). This function should accept remote schema uri as a parameter and return a Promise that resolves to a schema. See example in Asynchronous compilation.

Options to modify validated data

	removeAdditional: remove additional properties - see example in Filtering data. This option is not used if schema is added with addMetaSchema method. Option values:

	false (default) - not to remove additional properties

	"all" - all additional properties are removed, regardless of additionalProperties keyword in schema (and no validation is made for them).

	true - only additional properties with additionalProperties keyword equal to false are removed.

	"failing" - additional properties that fail schema validation will be removed (where additionalProperties keyword is false or schema).

	useDefaults: replace missing or undefined properties and items with the values from corresponding default keywords. Default behaviour is to ignore default keywords. This option is not used if schema is added with addMetaSchema method. See examples in Assigning defaults. Option values:

	false (default) - do not use defaults

	true - insert defaults by value (object literal is used).

	"empty" - in addition to missing or undefined, use defaults for properties and items that are equal to null or "" (an empty string).

	"shared" (deprecated) - insert defaults by reference. If the default is an object, it will be shared by all instances of validated data. If you modify the inserted default in the validated data, it will be modified in the schema as well.

	coerceTypes: change data type of data to match type keyword. See the example in Coercing data types and coercion rules [https://github.com/epoberezkin/ajv/blob/master/COERCION]. Option values:

	false (default) - no type coercion.

	true - coerce scalar data types.

	"array" - in addition to coercions between scalar types, coerce scalar data to an array with one element and vice versa (as required by the schema).

Strict mode options

	strictDefaults: report ignored default keywords in schemas. Option values:

	false (default) - ignored defaults are not reported

	true - if an ignored default is present, throw an error

	"log" - if an ignored default is present, log warning

	strictKeywords: report unknown keywords in schemas. Option values:

	false (default) - unknown keywords are not reported

	true - if an unknown keyword is present, throw an error

	"log" - if an unknown keyword is present, log warning

Asynchronous validation options

	transpile: Requires ajv-async [https://github.com/epoberezkin/ajv-async] package. It determines whether Ajv transpiles compiled asynchronous validation function. Option values:

	undefined (default) - transpile with nodent [https://github.com/MatAtBread/nodent] if async functions are not supported.

	true - always transpile with nodent.

	false - do not transpile; if async functions are not supported an exception will be thrown.

Advanced options

	meta: add meta-schema [http://json-schema.org/documentation.html] so it can be used by other schemas (true by default). If an object is passed, it will be used as the default meta-schema for schemas that have no $schema keyword. This default meta-schema MUST have $schema keyword.

	validateSchema: validate added/compiled schemas against meta-schema (true by default). $schema property in the schema can be http://json-schema.org/draft-07/schema or absent (draft-07 meta-schema will be used) or can be a reference to the schema previously added with addMetaSchema method. Option values:

	true (default) - if the validation fails, throw the exception.

	"log" - if the validation fails, log error.

	false - skip schema validation.

	addUsedSchema: by default methods compile and validate add schemas to the instance if they have $id (or id) property that doesn’t start with “#”. If $id is present and it is not unique the exception will be thrown. Set this option to false to skip adding schemas to the instance and the $id uniqueness check when these methods are used. This option does not affect addSchema method.

	inlineRefs: Affects compilation of referenced schemas. Option values:

	true (default) - the referenced schemas that don’t have refs in them are inlined, regardless of their size - that substantially improves performance at the cost of the bigger size of compiled schema functions.

	false - to not inline referenced schemas (they will be compiled as separate functions).

	integer number - to limit the maximum number of keywords of the schema that will be inlined.

	passContext: pass validation context to custom keyword functions. If this option is true and you pass some context to the compiled validation function with validate.call(context, data), the context will be available as this in your custom keywords. By default this is Ajv instance.

	loopRequired: by default required keyword is compiled into a single expression (or a sequence of statements in allErrors mode). In case of a very large number of properties in this keyword it may result in a very big validation function. Pass integer to set the number of properties above which required keyword will be validated in a loop - smaller validation function size but also worse performance.

	ownProperties: by default Ajv iterates over all enumerable object properties; when this option is true only own enumerable object properties (i.e. found directly on the object rather than on its prototype) are iterated. Contributed by @mbroadst.

	multipleOfPrecision: by default multipleOf keyword is validated by comparing the result of division with parseInt() of that result. It works for dividers that are bigger than 1. For small dividers such as 0.01 the result of the division is usually not integer (even when it should be integer, see issue #84 [https://github.com/epoberezkin/ajv/issues/84]). If you need to use fractional dividers set this option to some positive integer N to have multipleOf validated using this formula: Math.abs(Math.round(division) - division) < 1e-N (it is slower but allows for float arithmetics deviations).

	errorDataPath (deprecated): set dataPath to point to ‘object’ (default) or to ‘property’ when validating keywords required, additionalProperties and dependencies.

	messages: Include human-readable messages in errors. true by default. false can be passed when custom messages are used (e.g. with ajv-i18n [https://github.com/epoberezkin/ajv-i18n]).

	sourceCode: add sourceCode property to validating function (for debugging; this code can be different from the result of toString call).

	processCode: an optional function to process generated code before it is passed to Function constructor. It can be used to either beautify (the validating function is generated without line-breaks) or to transpile code. Starting from version 5.0.0 this option replaced options:

	beautify that formatted the generated function using js-beautify [https://github.com/beautify-web/js-beautify]. If you want to beautify the generated code pass require('js-beautify').js_beautify.

	transpile that transpiled asynchronous validation function. You can still use transpile option with ajv-async [https://github.com/epoberezkin/ajv-async] package. See Asynchronous validation for more information.

	cache: an optional instance of cache to store compiled schemas using stable-stringified schema as a key. For example, set-associative cache sacjs [https://github.com/epoberezkin/sacjs] can be used. If not passed then a simple hash is used which is good enough for the common use case (a limited number of statically defined schemas). Cache should have methods put(key, value), get(key), del(key) and clear().

	serialize: an optional function to serialize schema to cache key. Pass false to use schema itself as a key (e.g., if WeakMap used as a cache). By default fast-json-stable-stringify [https://github.com/epoberezkin/fast-json-stable-stringify] is used.

Validation errors

In case of validation failure, Ajv assigns the array of errors to errors property of validation function (or to errors property of Ajv instance when validate or validateSchema methods were called). In case of asynchronous validation, the returned promise is rejected with exception Ajv.ValidationError that has errors property.

Error objects

Each error is an object with the following properties:

	keyword: validation keyword.

	dataPath: the path to the part of the data that was validated. By default dataPath uses JavaScript property access notation (e.g., ".prop[1].subProp"). When the option jsonPointers is true (see Options) dataPath will be set using JSON pointer standard (e.g., "/prop/1/subProp").

	schemaPath: the path (JSON-pointer as a URI fragment) to the schema of the keyword that failed validation.

	params: the object with the additional information about error that can be used to create custom error messages (e.g., using ajv-i18n [https://github.com/epoberezkin/ajv-i18n] package). See below for parameters set by all keywords.

	message: the standard error message (can be excluded with option messages set to false).

	schema: the schema of the keyword (added with verbose option).

	parentSchema: the schema containing the keyword (added with verbose option)

	data: the data validated by the keyword (added with verbose option).

Please note: propertyNames keyword schema validation errors have an additional property propertyName, dataPath points to the object. After schema validation for each property name, if it is invalid an additional error is added with the property keyword equal to "propertyNames".

Error parameters

Properties of params object in errors depend on the keyword that failed validation.

	maxItems, minItems, maxLength, minLength, maxProperties, minProperties - property limit (number, the schema of the keyword).

	additionalItems - property limit (the maximum number of allowed items in case when items keyword is an array of schemas and additionalItems is false).

	additionalProperties - property additionalProperty (the property not used in properties and patternProperties keywords).

	dependencies - properties:

	property (dependent property),

	missingProperty (required missing dependency - only the first one is reported currently)

	deps (required dependencies, comma separated list as a string),

	depsCount (the number of required dependencies).

	format - property format (the schema of the keyword).

	maximum, minimum - properties:

	limit (number, the schema of the keyword),

	exclusive (boolean, the schema of exclusiveMaximum or exclusiveMinimum),

	comparison (string, comparison operation to compare the data to the limit, with the data on the left and the limit on the right; can be “<”, “<=”, “>”, “>=”)

	multipleOf - property multipleOf (the schema of the keyword)

	pattern - property pattern (the schema of the keyword)

	required - property missingProperty (required property that is missing).

	propertyNames - property propertyName (an invalid property name).

	patternRequired (in ajv-keywords) - property missingPattern (required pattern that did not match any property).

	type - property type (required type(s), a string, can be a comma-separated list)

	uniqueItems - properties i and j (indices of duplicate items).

	const - property allowedValue pointing to the value (the schema of the keyword).

	enum - property allowedValues pointing to the array of values (the schema of the keyword).

	$ref - property ref with the referenced schema URI.

	oneOf - property passingSchemas (array of indices of passing schemas, null if no schema passes).

	custom keywords (in case keyword definition doesn’t create errors) - property keyword (the keyword name).

Plugins

Ajv can be extended with plugins that add custom keywords, formats or functions to process generated code. When such plugin is published as npm package it is recommended that it follows these conventions:

	it exports a function

	this function accepts ajv instance as the first parameter and returns the same instance to allow chaining

	this function can accept an optional configuration as the second parameter

If you have published a useful plugin please submit a PR to add it to the next section.

Related packages

	ajv-async [https://github.com/epoberezkin/ajv-async] - plugin to configure async validation mode

	ajv-bsontype [https://github.com/BoLaMN/ajv-bsontype] - plugin to validate mongodb’s bsonType formats

	ajv-cli [https://github.com/jessedc/ajv-cli] - command line interface

	ajv-errors [https://github.com/epoberezkin/ajv-errors] - plugin for custom error messages

	ajv-i18n [https://github.com/epoberezkin/ajv-i18n] - internationalised error messages

	ajv-istanbul [https://github.com/epoberezkin/ajv-istanbul] - plugin to instrument generated validation code to measure test coverage of your schemas

	ajv-keywords [https://github.com/epoberezkin/ajv-keywords] - plugin with custom validation keywords (select, typeof, etc.)

	ajv-merge-patch [https://github.com/epoberezkin/ajv-merge-patch] - plugin with keywords $merge and $patch

	ajv-pack [https://github.com/epoberezkin/ajv-pack] - produces a compact module exporting validation functions

Some packages using Ajv

	webpack [https://github.com/webpack/webpack] - a module bundler. Its main purpose is to bundle JavaScript files for usage in a browser

	jsonscript-js [https://github.com/JSONScript/jsonscript-js] - the interpreter for JSONScript [http://www.jsonscript.org] - scripted processing of existing endpoints and services

	osprey-method-handler [https://github.com/mulesoft-labs/osprey-method-handler] - Express middleware for validating requests and responses based on a RAML method object, used in osprey [https://github.com/mulesoft/osprey] - validating API proxy generated from a RAML definition

	har-validator [https://github.com/ahmadnassri/har-validator] - HTTP Archive (HAR) validator

	jsoneditor [https://github.com/josdejong/jsoneditor] - a web-based tool to view, edit, format, and validate JSON http://jsoneditoronline.org

	JSON Schema Lint [https://github.com/nickcmaynard/jsonschemalint] - a web tool to validate JSON/YAML document against a single JSON Schema http://jsonschemalint.com

	objection [https://github.com/vincit/objection.js] - SQL-friendly ORM for Node.js

	table [https://github.com/gajus/table] - formats data into a string table

	ripple-lib [https://github.com/ripple/ripple-lib] - a JavaScript API for interacting with Ripple [https://ripple.com] in Node.js and the browser

	restbase [https://github.com/wikimedia/restbase] - distributed storage with REST API & dispatcher for backend services built to provide a low-latency & high-throughput API for Wikipedia / Wikimedia content

	hippie-swagger [https://github.com/CacheControl/hippie-swagger] - Hippie [https://github.com/vesln/hippie] wrapper that provides end to end API testing with swagger validation

	react-form-controlled [https://github.com/seeden/react-form-controlled] - React controlled form components with validation

	rabbitmq-schema [https://github.com/tjmehta/rabbitmq-schema] - a schema definition module for RabbitMQ graphs and messages

	@query/schema [https://www.npmjs.com/package/@query/schema] - stream filtering with a URI-safe query syntax parsing to JSON Schema

	chai-ajv-json-schema [https://github.com/peon374/chai-ajv-json-schema] - chai plugin to us JSON Schema with expect in mocha tests

	grunt-jsonschema-ajv [https://github.com/SignpostMarv/grunt-jsonschema-ajv] - Grunt plugin for validating files against JSON Schema

	extract-text-webpack-plugin [https://github.com/webpack-contrib/extract-text-webpack-plugin] - extract text from bundle into a file

	electron-builder [https://github.com/electron-userland/electron-builder] - a solution to package and build a ready for distribution Electron app

	addons-linter [https://github.com/mozilla/addons-linter] - Mozilla Add-ons Linter

	gh-pages-generator [https://github.com/epoberezkin/gh-pages-generator] - multi-page site generator converting markdown files to GitHub pages

	ESLint [https://github.com/eslint/eslint] - the pluggable linting utility for JavaScript and JSX

Tests

npm install
git submodule update --init
npm test

Contributing

All validation functions are generated using doT templates in dot [https://github.com/epoberezkin/ajv/tree/master/lib/dot] folder. Templates are precompiled so doT is not a run-time dependency.

npm run build - compiles templates to dotjs [https://github.com/epoberezkin/ajv/tree/master/lib/dotjs] folder.

npm run watch - automatically compiles templates when files in dot folder change

Please see Contributing guidelines [https://github.com/epoberezkin/ajv/blob/master/CONTRIBUTING]

Changes history

See https://github.com/epoberezkin/ajv/releases

Please note: Changes in version 6.0.0 [https://github.com/epoberezkin/ajv/releases/tag/v6.0.0].

Version 5.0.0 [https://github.com/epoberezkin/ajv/releases/tag/5.0.0].

Version 4.0.0 [https://github.com/epoberezkin/ajv/releases/tag/4.0.0].

Version 3.0.0 [https://github.com/epoberezkin/ajv/releases/tag/3.0.0].

Version 2.0.0 [https://github.com/epoberezkin/ajv/releases/tag/2.0.0].

License

MIT [https://github.com/epoberezkin/ajv/blob/master/LICENSE]

 <no title>

 These files are compiled dot templates from dot folder.

Do NOT edit them directly, edit the templates and run npm run build from main ajv folder.

 Usage

 node-asn1 is a library for encoding and decoding ASN.1 datatypes in pure JS.
Currently BER encoding is supported; at some point I’ll likely have to do DER.

Usage

Mostly, if you’re actually needing to read and write ASN.1, you probably don’t
need this readme to explain what and why. If you have no idea what ASN.1 is,
see this: ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc

The source is pretty much self-explanatory, and has read/write methods for the
common types out there.

Decoding

The following reads an ASN.1 sequence with a boolean.

var Ber = require('asn1').Ber;

var reader = new Ber.Reader(Buffer.from([0x30, 0x03, 0x01, 0x01, 0xff]));

reader.readSequence();
console.log('Sequence len: ' + reader.length);
if (reader.peek() === Ber.Boolean)
 console.log(reader.readBoolean());

Encoding

The following generates the same payload as above.

var Ber = require('asn1').Ber;

var writer = new Ber.Writer();

writer.startSequence();
writer.writeBoolean(true);
writer.endSequence();

console.log(writer.buffer);

Installation

npm install asn1

License

MIT.

Bugs

See https://github.com/joyent/node-asn1/issues.

 assert-plus Changelog

assert-plus Changelog

1.0.0

	BREAKING assert.number (and derivatives) now accept Infinity as valid input

	Add assert.finite check. Previous assert.number callers should use this if
they expect Infinity inputs to throw.

0.2.0

	Fix assert.object(null) so it throws

	Fix optional/arrayOf exports for non-type-of asserts

	Add optiona/arrayOf exports for Stream/Date/Regex/uuid

	Add basic unit test coverage

 assert-plus

assert-plus

This library is a super small wrapper over node’s assert module that has two
things: (1) the ability to disable assertions with the environment variable
NODE_NDEBUG, and (2) some API wrappers for argument testing. Like
assert.string(myArg, 'myArg'). As a simple example, most of my code looks
like this:

 var assert = require('assert-plus');

 function fooAccount(options, callback) {
 assert.object(options, 'options');
 assert.number(options.id, 'options.id');
 assert.bool(options.isManager, 'options.isManager');
 assert.string(options.name, 'options.name');
 assert.arrayOfString(options.email, 'options.email');
 assert.func(callback, 'callback');

 // Do stuff
 callback(null, {});
 }

API

All methods that aren’t part of node’s core assert API are simply assumed to
take an argument, and then a string ‘name’ that’s not a message; AssertionError
will be thrown if the assertion fails with a message like:

AssertionError: foo (string) is required
at test (/home/mark/work/foo/foo.js:3:9)
at Object.<anonymous> (/home/mark/work/foo/foo.js:15:1)
at Module._compile (module.js:446:26)
at Object..js (module.js:464:10)
at Module.load (module.js:353:31)
at Function._load (module.js:311:12)
at Array.0 (module.js:484:10)
at EventEmitter._tickCallback (node.js:190:38)

from:

 function test(foo) {
 assert.string(foo, 'foo');
 }

There you go. You can check that arrays are of a homogeneous type with Arrayof$Type:

 function test(foo) {
 assert.arrayOfString(foo, 'foo');
 }

You can assert IFF an argument is not undefined (i.e., an optional arg):

 assert.optionalString(foo, 'foo');

Lastly, you can opt-out of assertion checking altogether by setting the
environment variable NODE_NDEBUG=1. This is pseudo-useful if you have
lots of assertions, and don’t want to pay typeof () taxes to v8 in
production. Be advised: The standard functions re-exported from assert are
also disabled in assert-plus if NDEBUG is specified. Using them directly from
the assert module avoids this behavior.

The complete list of APIs is:

	assert.array

	assert.bool

	assert.buffer

	assert.func

	assert.number

	assert.finite

	assert.object

	assert.string

	assert.stream

	assert.date

	assert.regexp

	assert.uuid

	assert.arrayOfArray

	assert.arrayOfBool

	assert.arrayOfBuffer

	assert.arrayOfFunc

	assert.arrayOfNumber

	assert.arrayOfFinite

	assert.arrayOfObject

	assert.arrayOfString

	assert.arrayOfStream

	assert.arrayOfDate

	assert.arrayOfRegexp

	assert.arrayOfUuid

	assert.optionalArray

	assert.optionalBool

	assert.optionalBuffer

	assert.optionalFunc

	assert.optionalNumber

	assert.optionalFinite

	assert.optionalObject

	assert.optionalString

	assert.optionalStream

	assert.optionalDate

	assert.optionalRegexp

	assert.optionalUuid

	assert.optionalArrayOfArray

	assert.optionalArrayOfBool

	assert.optionalArrayOfBuffer

	assert.optionalArrayOfFunc

	assert.optionalArrayOfNumber

	assert.optionalArrayOfFinite

	assert.optionalArrayOfObject

	assert.optionalArrayOfString

	assert.optionalArrayOfStream

	assert.optionalArrayOfDate

	assert.optionalArrayOfRegexp

	assert.optionalArrayOfUuid

	assert.AssertionError

	assert.fail

	assert.ok

	assert.equal

	assert.notEqual

	assert.deepEqual

	assert.notDeepEqual

	assert.strictEqual

	assert.notStrictEqual

	assert.throws

	assert.doesNotThrow

	assert.ifError

Installation

npm install assert-plus

License

The MIT License (MIT)
Copyright (c) 2012 Mark Cavage

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Bugs

See https://github.com/mcavage/node-assert-plus/issues.

 asynckit

asynckit [image: ../../../_images/asynckit.svg]NPM Module [https://www.npmjs.com/package/asynckit]

Minimal async jobs utility library, with streams support.

[image: ../../../_images/v0.4.0.svg]PhantomJS Build [https://travis-ci.org/alexindigo/asynckit]
[image: ../../../_images/v0.4.01.svg]Linux Build [https://travis-ci.org/alexindigo/asynckit]
[image: ../../../_images/v0.4.02.svg]Windows Build [https://ci.appveyor.com/project/alexindigo/asynckit]

[image: ../../../_images/v0.4.03.svg]Coverage Status [https://coveralls.io/github/alexindigo/asynckit?branch=master]
[image: https://img.shields.io/david/alexindigo/asynckit/v0.4.0.svg?style=flat]Dependency Status [https://david-dm.org/alexindigo/asynckit]
[image: ../../../_images/score.svg]bitHound Overall Score [https://www.bithound.io/github/alexindigo/asynckit]

AsyncKit provides harness for parallel and serial iterators over list of items represented by arrays or objects.
Optionally it accepts abort function (should be synchronously return by iterator for each item), and terminates left over jobs upon an error event. For specific iteration order built-in (ascending and descending) and custom sort helpers also supported, via asynckit.serialOrdered method.

It ensures async operations to keep behavior more stable and prevent Maximum call stack size exceeded errors, from sync iterators.

compression	size
:—————–	——-:
asynckit.js	12.34 kB
asynckit.min.js	4.11 kB
asynckit.min.js.gz	1.47 kB

Install

$ npm install --save asynckit

Examples

Parallel Jobs

Runs iterator over provided array in parallel. Stores output in the result array,
on the matching positions. In unlikely event of an error from one of the jobs,
will terminate rest of the active jobs (if abort function is provided)
and return error along with salvaged data to the main callback function.

Input Array

var parallel = require('asynckit').parallel
 , assert = require('assert')
 ;

var source = [1, 1, 4, 16, 64, 32, 8, 2]
 , expectedResult = [2, 2, 8, 32, 128, 64, 16, 4]
 , expectedTarget = [1, 1, 2, 4, 8, 16, 32, 64]
 , target = []
 ;

parallel(source, asyncJob, function(err, result)
{
 assert.deepEqual(result, expectedResult);
 assert.deepEqual(target, expectedTarget);
});

// async job accepts one element from the array
// and a callback function
function asyncJob(item, cb)
{
 // different delays (in ms) per item
 var delay = item * 25;

 // pretend different jobs take different time to finish
 // and not in consequential order
 var timeoutId = setTimeout(function() {
 target.push(item);
 cb(null, item * 2);
 }, delay);

 // allow to cancel "leftover" jobs upon error
 // return function, invoking of which will abort this job
 return clearTimeout.bind(null, timeoutId);
}

More examples could be found in test/test-parallel-array.js.

Input Object

Also it supports named jobs, listed via object.

var parallel = require('asynckit/parallel')
 , assert = require('assert')
 ;

var source = { first: 1, one: 1, four: 4, sixteen: 16, sixtyFour: 64, thirtyTwo: 32, eight: 8, two: 2 }
 , expectedResult = { first: 2, one: 2, four: 8, sixteen: 32, sixtyFour: 128, thirtyTwo: 64, eight: 16, two: 4 }
 , expectedTarget = [1, 1, 2, 4, 8, 16, 32, 64]
 , expectedKeys = ['first', 'one', 'two', 'four', 'eight', 'sixteen', 'thirtyTwo', 'sixtyFour']
 , target = []
 , keys = []
 ;

parallel(source, asyncJob, function(err, result)
{
 assert.deepEqual(result, expectedResult);
 assert.deepEqual(target, expectedTarget);
 assert.deepEqual(keys, expectedKeys);
});

// supports full value, key, callback (shortcut) interface
function asyncJob(item, key, cb)
{
 // different delays (in ms) per item
 var delay = item * 25;

 // pretend different jobs take different time to finish
 // and not in consequential order
 var timeoutId = setTimeout(function() {
 keys.push(key);
 target.push(item);
 cb(null, item * 2);
 }, delay);

 // allow to cancel "leftover" jobs upon error
 // return function, invoking of which will abort this job
 return clearTimeout.bind(null, timeoutId);
}

More examples could be found in test/test-parallel-object.js.

Serial Jobs

Runs iterator over provided array sequentially. Stores output in the result array,
on the matching positions. In unlikely event of an error from one of the jobs,
will not proceed to the rest of the items in the list
and return error along with salvaged data to the main callback function.

Input Array

var serial = require('asynckit/serial')
 , assert = require('assert')
 ;

var source = [1, 1, 4, 16, 64, 32, 8, 2]
 , expectedResult = [2, 2, 8, 32, 128, 64, 16, 4]
 , expectedTarget = [0, 1, 2, 3, 4, 5, 6, 7]
 , target = []
 ;

serial(source, asyncJob, function(err, result)
{
 assert.deepEqual(result, expectedResult);
 assert.deepEqual(target, expectedTarget);
});

// extended interface (item, key, callback)
// also supported for arrays
function asyncJob(item, key, cb)
{
 target.push(key);

 // it will be automatically made async
 // even it iterator "returns" in the same event loop
 cb(null, item * 2);
}

More examples could be found in test/test-serial-array.js.

Input Object

Also it supports named jobs, listed via object.

var serial = require('asynckit').serial
 , assert = require('assert')
 ;

var source = [1, 1, 4, 16, 64, 32, 8, 2]
 , expectedResult = [2, 2, 8, 32, 128, 64, 16, 4]
 , expectedTarget = [0, 1, 2, 3, 4, 5, 6, 7]
 , target = []
 ;

var source = { first: 1, one: 1, four: 4, sixteen: 16, sixtyFour: 64, thirtyTwo: 32, eight: 8, two: 2 }
 , expectedResult = { first: 2, one: 2, four: 8, sixteen: 32, sixtyFour: 128, thirtyTwo: 64, eight: 16, two: 4 }
 , expectedTarget = [1, 1, 4, 16, 64, 32, 8, 2]
 , target = []
 ;

serial(source, asyncJob, function(err, result)
{
 assert.deepEqual(result, expectedResult);
 assert.deepEqual(target, expectedTarget);
});

// shortcut interface (item, callback)
// works for object as well as for the arrays
function asyncJob(item, cb)
{
 target.push(item);

 // it will be automatically made async
 // even it iterator "returns" in the same event loop
 cb(null, item * 2);
}

More examples could be found in test/test-serial-object.js.

Note: Since object is an unordered collection of properties,
it may produce unexpected results with sequential iterations.
Whenever order of the jobs’ execution is important please use serialOrdered method.

Ordered Serial Iterations

TBD

For example compare-property package.

Streaming interface

TBD

Want to Know More?

More examples can be found in test folder.

Or open an issue [https://github.com/alexindigo/asynckit/issues] with questions and/or suggestions.

License

AsyncKit is licensed under the MIT license.

 aws-sign

aws-sign

AWS signing. Originally pulled from LearnBoost/knox, maintained as vendor in request, now a standalone module.

 aws4

aws4

[image: ../../../_images/aws4.png]Build Status [http://travis-ci.org/mhart/aws4]

A small utility to sign vanilla node.js http(s) request options using Amazon’s
AWS Signature Version 4 [http://docs.amazonwebservices.com/general/latest/gr/signature-version-4.html].

Can also be used in the browser.

This signature is supported by nearly all Amazon services, including
S3 [http://docs.aws.amazon.com/AmazonS3/latest/API/],
EC2 [http://docs.aws.amazon.com/AWSEC2/latest/APIReference/],
DynamoDB [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/API.html],
Kinesis [http://docs.aws.amazon.com/kinesis/latest/APIReference/],
Lambda [http://docs.aws.amazon.com/lambda/latest/dg/API_Reference.html],
SQS [http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/],
SNS [http://docs.aws.amazon.com/sns/latest/api/],
IAM [http://docs.aws.amazon.com/IAM/latest/APIReference/],
STS [http://docs.aws.amazon.com/STS/latest/APIReference/],
RDS [http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/],
CloudWatch [http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/],
CloudWatch Logs [http://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/],
CodeDeploy [http://docs.aws.amazon.com/codedeploy/latest/APIReference/],
CloudFront [http://docs.aws.amazon.com/AmazonCloudFront/latest/APIReference/],
CloudTrail [http://docs.aws.amazon.com/awscloudtrail/latest/APIReference/],
ElastiCache [http://docs.aws.amazon.com/AmazonElastiCache/latest/APIReference/],
EMR [http://docs.aws.amazon.com/ElasticMapReduce/latest/API/],
Glacier [http://docs.aws.amazon.com/amazonglacier/latest/dev/amazon-glacier-api.html],
CloudSearch [http://docs.aws.amazon.com/cloudsearch/latest/developerguide/APIReq.html],
Elastic Load Balancing [http://docs.aws.amazon.com/ElasticLoadBalancing/latest/APIReference/],
Elastic Transcoder [http://docs.aws.amazon.com/elastictranscoder/latest/developerguide/api-reference.html],
CloudFormation [http://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/],
Elastic Beanstalk [http://docs.aws.amazon.com/elasticbeanstalk/latest/api/],
Storage Gateway [http://docs.aws.amazon.com/storagegateway/latest/userguide/AWSStorageGatewayAPI.html],
Data Pipeline [http://docs.aws.amazon.com/datapipeline/latest/APIReference/],
Direct Connect [http://docs.aws.amazon.com/directconnect/latest/APIReference/],
Redshift [http://docs.aws.amazon.com/redshift/latest/APIReference/],
OpsWorks [http://docs.aws.amazon.com/opsworks/latest/APIReference/],
SES [http://docs.aws.amazon.com/ses/latest/APIReference/],
SWF [http://docs.aws.amazon.com/amazonswf/latest/apireference/],
AutoScaling [http://docs.aws.amazon.com/AutoScaling/latest/APIReference/],
Mobile Analytics [http://docs.aws.amazon.com/mobileanalytics/latest/ug/server-reference.html],
Cognito Identity [http://docs.aws.amazon.com/cognitoidentity/latest/APIReference/],
Cognito Sync [http://docs.aws.amazon.com/cognitosync/latest/APIReference/],
Container Service [http://docs.aws.amazon.com/AmazonECS/latest/APIReference/],
AppStream [http://docs.aws.amazon.com/appstream/latest/developerguide/appstream-api-rest.html],
Key Management Service [http://docs.aws.amazon.com/kms/latest/APIReference/],
Config [http://docs.aws.amazon.com/config/latest/APIReference/],
CloudHSM [http://docs.aws.amazon.com/cloudhsm/latest/dg/api-ref.html],
Route53 [http://docs.aws.amazon.com/Route53/latest/APIReference/requests-rest.html] and
Route53 Domains [http://docs.aws.amazon.com/Route53/latest/APIReference/requests-rpc.html].

Indeed, the only AWS services that don’t support v4 as of 2014-12-30 are
Import/Export [http://docs.aws.amazon.com/AWSImportExport/latest/DG/api-reference.html] and
SimpleDB [http://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/SDB_API.html]
(they only support AWS Signature Version 2 [https://github.com/mhart/aws2]).

It also provides defaults for a number of core AWS headers and
request parameters, making it very easy to query AWS services, or
build out a fully-featured AWS library.

Example

var http = require('http'),
 https = require('https'),
 aws4 = require('aws4')

// given an options object you could pass to http.request
var opts = {host: 'sqs.us-east-1.amazonaws.com', path: '/?Action=ListQueues'}

// alternatively (as aws4 can infer the host):
opts = {service: 'sqs', region: 'us-east-1', path: '/?Action=ListQueues'}

// alternatively (as us-east-1 is default):
opts = {service: 'sqs', path: '/?Action=ListQueues'}

aws4.sign(opts) // assumes AWS credentials are available in process.env

console.log(opts)
/*
{
 host: 'sqs.us-east-1.amazonaws.com',
 path: '/?Action=ListQueues',
 headers: {
 Host: 'sqs.us-east-1.amazonaws.com',
 'X-Amz-Date': '20121226T061030Z',
 Authorization: 'AWS4-HMAC-SHA256 Credential=ABCDEF/20121226/us-east-1/sqs/aws4_request, ...'
 }
}
*/

// we can now use this to query AWS using the standard node.js http API
http.request(opts, function(res) { res.pipe(process.stdout) }).end()
/*
<?xml version="1.0"?>
<ListQueuesResponse xmlns="http://queue.amazonaws.com/doc/2012-11-05/">
...
*/

More options

// you can also pass AWS credentials in explicitly (otherwise taken from process.env)
aws4.sign(opts, {accessKeyId: '', secretAccessKey: ''})

// can also add the signature to query strings
aws4.sign({service: 's3', path: '/my-bucket?X-Amz-Expires=12345', signQuery: true})

// create a utility function to pipe to stdout (with https this time)
function request(o) { https.request(o, function(res) { res.pipe(process.stdout) }).end(o.body || '') }

// aws4 can infer the HTTP method if a body is passed in
// method will be POST and Content-Type: 'application/x-www-form-urlencoded; charset=utf-8'
request(aws4.sign({service: 'iam', body: 'Action=ListGroups&Version=2010-05-08'}))
/*
<ListGroupsResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">
...
*/

// can specify any custom option or header as per usual
request(aws4.sign({
 service: 'dynamodb',
 region: 'ap-southeast-2',
 method: 'POST',
 path: '/',
 headers: {
 'Content-Type': 'application/x-amz-json-1.0',
 'X-Amz-Target': 'DynamoDB_20120810.ListTables'
 },
 body: '{}'
}))
/*
{"TableNames":[]}
...
*/

// works with all other services that support Signature Version 4

request(aws4.sign({service: 's3', path: '/', signQuery: true}))
/*
<ListAllMyBucketsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
...
*/

request(aws4.sign({service: 'ec2', path: '/?Action=DescribeRegions&Version=2014-06-15'}))
/*
<DescribeRegionsResponse xmlns="http://ec2.amazonaws.com/doc/2014-06-15/">
...
*/

request(aws4.sign({service: 'sns', path: '/?Action=ListTopics&Version=2010-03-31'}))
/*
<ListTopicsResponse xmlns="http://sns.amazonaws.com/doc/2010-03-31/">
...
*/

request(aws4.sign({service: 'sts', path: '/?Action=GetSessionToken&Version=2011-06-15'}))
/*
<GetSessionTokenResponse xmlns="https://sts.amazonaws.com/doc/2011-06-15/">
...
*/

request(aws4.sign({service: 'cloudsearch', path: '/?Action=ListDomainNames&Version=2013-01-01'}))
/*
<ListDomainNamesResponse xmlns="http://cloudsearch.amazonaws.com/doc/2013-01-01/">
...
*/

request(aws4.sign({service: 'ses', path: '/?Action=ListIdentities&Version=2010-12-01'}))
/*
<ListIdentitiesResponse xmlns="http://ses.amazonaws.com/doc/2010-12-01/">
...
*/

request(aws4.sign({service: 'autoscaling', path: '/?Action=DescribeAutoScalingInstances&Version=2011-01-01'}))
/*
<DescribeAutoScalingInstancesResponse xmlns="http://autoscaling.amazonaws.com/doc/2011-01-01/">
...
*/

request(aws4.sign({service: 'elasticloadbalancing', path: '/?Action=DescribeLoadBalancers&Version=2012-06-01'}))
/*
<DescribeLoadBalancersResponse xmlns="http://elasticloadbalancing.amazonaws.com/doc/2012-06-01/">
...
*/

request(aws4.sign({service: 'cloudformation', path: '/?Action=ListStacks&Version=2010-05-15'}))
/*
<ListStacksResponse xmlns="http://cloudformation.amazonaws.com/doc/2010-05-15/">
...
*/

request(aws4.sign({service: 'elasticbeanstalk', path: '/?Action=ListAvailableSolutionStacks&Version=2010-12-01'}))
/*
<ListAvailableSolutionStacksResponse xmlns="http://elasticbeanstalk.amazonaws.com/docs/2010-12-01/">
...
*/

request(aws4.sign({service: 'rds', path: '/?Action=DescribeDBInstances&Version=2012-09-17'}))
/*
<DescribeDBInstancesResponse xmlns="http://rds.amazonaws.com/doc/2012-09-17/">
...
*/

request(aws4.sign({service: 'monitoring', path: '/?Action=ListMetrics&Version=2010-08-01'}))
/*
<ListMetricsResponse xmlns="http://monitoring.amazonaws.com/doc/2010-08-01/">
...
*/

request(aws4.sign({service: 'redshift', path: '/?Action=DescribeClusters&Version=2012-12-01'}))
/*
<DescribeClustersResponse xmlns="http://redshift.amazonaws.com/doc/2012-12-01/">
...
*/

request(aws4.sign({service: 'cloudfront', path: '/2014-05-31/distribution'}))
/*
<DistributionList xmlns="http://cloudfront.amazonaws.com/doc/2014-05-31/">
...
*/

request(aws4.sign({service: 'elasticache', path: '/?Action=DescribeCacheClusters&Version=2014-07-15'}))
/*
<DescribeCacheClustersResponse xmlns="http://elasticache.amazonaws.com/doc/2014-07-15/">
...
*/

request(aws4.sign({service: 'elasticmapreduce', path: '/?Action=DescribeJobFlows&Version=2009-03-31'}))
/*
<DescribeJobFlowsResponse xmlns="http://elasticmapreduce.amazonaws.com/doc/2009-03-31">
...
*/

request(aws4.sign({service: 'route53', path: '/2013-04-01/hostedzone'}))
/*
<ListHostedZonesResponse xmlns="https://route53.amazonaws.com/doc/2013-04-01/">
...
*/

request(aws4.sign({service: 'appstream', path: '/applications'}))
/*
{"_links":{"curie":[{"href":"http://docs.aws.amazon.com/appstream/latest/...
...
*/

request(aws4.sign({service: 'cognito-sync', path: '/identitypools'}))
/*
{"Count":0,"IdentityPoolUsages":[],"MaxResults":16,"NextToken":null}
...
*/

request(aws4.sign({service: 'elastictranscoder', path: '/2012-09-25/pipelines'}))
/*
{"NextPageToken":null,"Pipelines":[]}
...
*/

request(aws4.sign({service: 'lambda', path: '/2014-11-13/functions/'}))
/*
{"Functions":[],"NextMarker":null}
...
*/

request(aws4.sign({service: 'ecs', path: '/?Action=ListClusters&Version=2014-11-13'}))
/*
<ListClustersResponse xmlns="http://ecs.amazonaws.com/doc/2014-11-13/">
...
*/

request(aws4.sign({service: 'glacier', path: '/-/vaults', headers: {'X-Amz-Glacier-Version': '2012-06-01'}}))
/*
{"Marker":null,"VaultList":[]}
...
*/

request(aws4.sign({service: 'storagegateway', body: '{}', headers: {
 'Content-Type': 'application/x-amz-json-1.1',
 'X-Amz-Target': 'StorageGateway_20120630.ListGateways'
}}))
/*
{"Gateways":[]}
...
*/

request(aws4.sign({service: 'datapipeline', body: '{}', headers: {
 'Content-Type': 'application/x-amz-json-1.1',
 'X-Amz-Target': 'DataPipeline.ListPipelines'
}}))
/*
{"hasMoreResults":false,"pipelineIdList":[]}
...
*/

request(aws4.sign({service: 'opsworks', body: '{}', headers: {
 'Content-Type': 'application/x-amz-json-1.1',
 'X-Amz-Target': 'OpsWorks_20130218.DescribeStacks'
}}))
/*
{"Stacks":[]}
...
*/

request(aws4.sign({service: 'route53domains', body: '{}', headers: {
 'Content-Type': 'application/x-amz-json-1.1',
 'X-Amz-Target': 'Route53Domains_v20140515.ListDomains'
}}))
/*
{"Domains":[]}
...
*/

request(aws4.sign({service: 'kinesis', body: '{}', headers: {
 'Content-Type': 'application/x-amz-json-1.1',
 'X-Amz-Target': 'Kinesis_20131202.ListStreams'
}}))
/*
{"HasMoreStreams":false,"StreamNames":[]}
...
*/

request(aws4.sign({service: 'cloudtrail', body: '{}', headers: {
 'Content-Type': 'application/x-amz-json-1.1',
 'X-Amz-Target': 'CloudTrail_20131101.DescribeTrails'
}}))
/*
{"trailList":[]}
...
*/

request(aws4.sign({service: 'logs', body: '{}', headers: {
 'Content-Type': 'application/x-amz-json-1.1',
 'X-Amz-Target': 'Logs_20140328.DescribeLogGroups'
}}))
/*
{"logGroups":[]}
...
*/

request(aws4.sign({service: 'codedeploy', body: '{}', headers: {
 'Content-Type': 'application/x-amz-json-1.1',
 'X-Amz-Target': 'CodeDeploy_20141006.ListApplications'
}}))
/*
{"applications":[]}
...
*/

request(aws4.sign({service: 'directconnect', body: '{}', headers: {
 'Content-Type': 'application/x-amz-json-1.1',
 'X-Amz-Target': 'OvertureService.DescribeConnections'
}}))
/*
{"connections":[]}
...
*/

request(aws4.sign({service: 'kms', body: '{}', headers: {
 'Content-Type': 'application/x-amz-json-1.1',
 'X-Amz-Target': 'TrentService.ListKeys'
}}))
/*
{"Keys":[],"Truncated":false}
...
*/

request(aws4.sign({service: 'config', body: '{}', headers: {
 'Content-Type': 'application/x-amz-json-1.1',
 'X-Amz-Target': 'StarlingDoveService.DescribeDeliveryChannels'
}}))
/*
{"DeliveryChannels":[]}
...
*/

request(aws4.sign({service: 'cloudhsm', body: '{}', headers: {
 'Content-Type': 'application/x-amz-json-1.1',
 'X-Amz-Target': 'CloudHsmFrontendService.ListAvailableZones'
}}))
/*
{"AZList":["us-east-1a","us-east-1b","us-east-1c"]}
...
*/

request(aws4.sign({
 service: 'swf',
 body: '{"registrationStatus":"REGISTERED"}',
 headers: {
 'Content-Type': 'application/x-amz-json-1.0',
 'X-Amz-Target': 'SimpleWorkflowService.ListDomains'
 }
}))
/*
{"domainInfos":[]}
...
*/

request(aws4.sign({
 service: 'cognito-identity',
 body: '{"MaxResults": 1}',
 headers: {
 'Content-Type': 'application/x-amz-json-1.1',
 'X-Amz-Target': 'AWSCognitoIdentityService.ListIdentityPools'
 }
}))
/*
{"IdentityPools":[]}
...
*/

request(aws4.sign({
 service: 'mobileanalytics',
 path: '/2014-06-05/events',
 body: JSON.stringify({events:[{
 eventType: 'a',
 timestamp: new Date().toISOString(),
 session: {},
 }]}),
 headers: {
 'Content-Type': 'application/json',
 'X-Amz-Client-Context': JSON.stringify({
 client: {client_id: 'a', app_title: 'a'},
 custom: {},
 env: {platform: 'a'},
 services: {},
 }),
 }
}))
/*
(HTTP 202, empty response)
*/

// Generate CodeCommit Git access password
var signer = new aws4.RequestSigner({
 service: 'codecommit',
 host: 'git-codecommit.us-east-1.amazonaws.com',
 method: 'GIT',
 path: '/v1/repos/MyAwesomeRepo',
})
var password = signer.getDateTime() + 'Z' + signer.signature()

API

aws4.sign(requestOptions, [credentials])

This calculates and populates the Authorization header of
requestOptions, and any other necessary AWS headers and/or request
options. Returns requestOptions as a convenience for chaining.

requestOptions is an object holding the same options that the node.js
http.request [http://nodejs.org/docs/latest/api/http.html#http_http_request_options_callback]
function takes.

The following properties of requestOptions are used in the signing or
populated if they don’t already exist:

	hostname or host (will be determined from service and region if not given)

	method (will use 'GET' if not given or 'POST' if there is a body)

	path (will use '/' if not given)

	body (will use '' if not given)

	service (will be calculated from hostname or host if not given)

	region (will be calculated from hostname or host or use 'us-east-1' if not given)

	headers['Host'] (will use hostname or host or be calculated if not given)

	headers['Content-Type'] (will use 'application/x-www-form-urlencoded; charset=utf-8'
if not given and there is a body)

	headers['Date'] (used to calculate the signature date if given, otherwise new Date is used)

Your AWS credentials (which can be found in your
AWS console [https://portal.aws.amazon.com/gp/aws/securityCredentials])
can be specified in one of two ways:

	As the second argument, like this:

aws4.sign(requestOptions, {
 secretAccessKey: "<your-secret-access-key>",
 accessKeyId: "<your-access-key-id>",
 sessionToken: "<your-session-token>"
})

	From process.env, such as this:

export AWS_SECRET_ACCESS_KEY="<your-secret-access-key>"
export AWS_ACCESS_KEY_ID="<your-access-key-id>"
export AWS_SESSION_TOKEN="<your-session-token>"

(will also use AWS_ACCESS_KEY and AWS_SECRET_KEY if available)

The sessionToken property and AWS_SESSION_TOKEN environment variable are optional for signing
with IAM STS temporary credentials [http://docs.aws.amazon.com/STS/latest/UsingSTS/using-temp-creds.html].

Installation

With npm [http://npmjs.org/] do:

npm install aws4

Can also be used in the browser.

Thanks

Thanks to @jed [https://github.com/jed] for his
dynamo-client [https://github.com/jed/dynamo-client] lib where I first
committed and subsequently extracted this code.

Also thanks to the
official node.js AWS SDK [https://github.com/aws/aws-sdk-js] for giving
me a start on implementing the v4 signature.

 Contributing

Contributing

This repository uses cr.joyent.us [https://cr.joyent.us] (Gerrit) for new
changes. Anyone can submit changes. To get started, see the cr.joyent.us user
guide [https://github.com/joyent/joyent-gerrit/blob/master/docs/user/README].
This repo does not use GitHub pull requests.

See the Joyent Engineering
Guidelines [https://github.com/joyent/eng/blob/master/docs/index] for general
best practices expected in this repository.

If you’re changing something non-trivial or user-facing, you may want to submit
an issue first.

 API

 Port of the OpenBSD bcrypt_pbkdf function to pure Javascript. npm-ified
version of Devi Mandiri’s port [https://github.com/devi/tmp/blob/master/js/bcrypt_pbkdf.js],
with some minor performance improvements. The code is copied verbatim (and
un-styled) from Devi’s work.

This product includes software developed by Niels Provos.

API

bcrypt_pbkdf.pbkdf(pass, passlen, salt, saltlen, key, keylen, rounds)

Derive a cryptographic key of arbitrary length from a given password and salt,
using the OpenBSD bcrypt_pbkdf function. This is a combination of Blowfish and
SHA-512.

See this article [http://www.tedunangst.com/flak/post/bcrypt-pbkdf] for
further information.

Parameters:

	pass, a Uint8Array of length passlen

	passlen, an integer Number

	salt, a Uint8Array of length saltlen

	saltlen, an integer Number

	key, a Uint8Array of length keylen, will be filled with output

	keylen, an integer Number

	rounds, an integer Number, number of rounds of the PBKDF to run

bcrypt_pbkdf.hash(sha2pass, sha2salt, out)

Calculate a Blowfish hash, given SHA2-512 output of a password and salt. Used as
part of the inner round function in the PBKDF.

Parameters:

	sha2pass, a Uint8Array of length 64

	sha2salt, a Uint8Array of length 64

	out, a Uint8Array of length 32, will be filled with output

License

This source form is a 1:1 port from the OpenBSD blowfish.c and bcrypt_pbkdf.c.
As a result, it retains the original copyright and license. The two files are
under slightly different (but compatible) licenses, and are here combined in
one file. For each of the full license texts see LICENSE.

 <no title>

 (The MIT License)

Copyright (c) 2012 Nathan Rajlich <nathan@tootallnate.net>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 node-bindings

node-bindings

Helper module for loading your native module’s .node file

This is a helper module for authors of Node.js native addon modules.
It is basically the “swiss army knife” of require()ing your native module’s
.node file.

Throughout the course of Node’s native addon history, addons have ended up being
compiled in a variety of different places, depending on which build tool and which
version of node was used. To make matters worse, now the gyp build tool can
produce either a Release or Debug build, each being built into different
locations.

This module checks all the possible locations that a native addon would be built
at, and returns the first one that loads successfully.

Installation

Install with npm:

$ npm install --save bindings

Or add it to the "dependencies" section of your package.json file.

Example

require()ing the proper bindings file for the current node version, platform
and architecture is as simple as:

var bindings = require('bindings')('binding.node')

// Use your bindings defined in your C files
bindings.your_c_function()

Nice Error Output

When the .node file could not be loaded, node-bindings throws an Error with
a nice error message telling you exactly what was tried. You can also check the
err.tries Array property.

Error: Could not load the bindings file. Tried:
 → /Users/nrajlich/ref/build/binding.node
 → /Users/nrajlich/ref/build/Debug/binding.node
 → /Users/nrajlich/ref/build/Release/binding.node
 → /Users/nrajlich/ref/out/Debug/binding.node
 → /Users/nrajlich/ref/Debug/binding.node
 → /Users/nrajlich/ref/out/Release/binding.node
 → /Users/nrajlich/ref/Release/binding.node
 → /Users/nrajlich/ref/build/default/binding.node
 → /Users/nrajlich/ref/compiled/0.8.2/darwin/x64/binding.node
 at bindings (/Users/nrajlich/ref/node_modules/bindings/bindings.js:84:13)
 at Object.<anonymous> (/Users/nrajlich/ref/lib/ref.js:5:47)
 at Module._compile (module.js:449:26)
 at Object.Module._extensions..js (module.js:467:10)
 at Module.load (module.js:356:32)
 at Function.Module._load (module.js:312:12)
 ...

The searching for the .node file will originate from the first directory in which has a package.json file is found.

License

(The MIT License)

Copyright (c) 2012 Nathan Rajlich <nathan@tootallnate.net>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Caseless – wrap an object to set and get property with caseless semantics but also preserve caseing.

Caseless – wrap an object to set and get property with caseless semantics but also preserve caseing.

This library is incredibly useful when working with HTTP headers. It allows you to get/set/check for headers in a caseless manner while also preserving the caseing of headers the first time they are set.

Usage

var headers = {}
 , c = caseless(headers)
 ;
c.set('a-Header', 'asdf')
c.get('a-header') === 'asdf'

has(key)

Has takes a name and if it finds a matching header will return that header name with the preserved caseing it was set with.

c.has('a-header') === 'a-Header'

set(key, value[, clobber=true])

Set is fairly straight forward except that if the header exists and clobber is disabled it will add ','+value to the existing header.

c.set('a-Header', 'fdas')
c.set('a-HEADER', 'more', false)
c.get('a-header') === 'fdsa,more'

swap(key)

Swaps the casing of a header with the new one that is passed in.

var headers = {}
 , c = caseless(headers)
 ;
c.set('a-Header', 'fdas')
c.swap('a-HEADER')
c.has('a-header') === 'a-HEADER'
headers === {'a-HEADER': 'fdas'}

 combined-stream

combined-stream

A stream that emits multiple other streams one after another.

NB Currently combined-stream works with streams version 1 only. There is ongoing effort to switch this library to streams version 2. Any help is welcome. :) Meanwhile you can explore other libraries that provide streams2 support with more or less compatibility with combined-stream.

	combined-stream2 [https://www.npmjs.com/package/combined-stream2]: A drop-in streams2-compatible replacement for the combined-stream module.

	multistream [https://www.npmjs.com/package/multistream]: A stream that emits multiple other streams one after another.

Installation

npm install combined-stream

Usage

Here is a simple example that shows how you can use combined-stream to combine
two files into one:

var CombinedStream = require('combined-stream');
var fs = require('fs');

var combinedStream = CombinedStream.create();
combinedStream.append(fs.createReadStream('file1.txt'));
combinedStream.append(fs.createReadStream('file2.txt'));

combinedStream.pipe(fs.createWriteStream('combined.txt'));

While the example above works great, it will pause all source streams until
they are needed. If you don’t want that to happen, you can set pauseStreams
to false:

var CombinedStream = require('combined-stream');
var fs = require('fs');

var combinedStream = CombinedStream.create({pauseStreams: false});
combinedStream.append(fs.createReadStream('file1.txt'));
combinedStream.append(fs.createReadStream('file2.txt'));

combinedStream.pipe(fs.createWriteStream('combined.txt'));

However, what if you don’t have all the source streams yet, or you don’t want
to allocate the resources (file descriptors, memory, etc.) for them right away?
Well, in that case you can simply provide a callback that supplies the stream
by calling a next() function:

var CombinedStream = require('combined-stream');
var fs = require('fs');

var combinedStream = CombinedStream.create();
combinedStream.append(function(next) {
 next(fs.createReadStream('file1.txt'));
});
combinedStream.append(function(next) {
 next(fs.createReadStream('file2.txt'));
});

combinedStream.pipe(fs.createWriteStream('combined.txt'));

API

CombinedStream.create([options])

Returns a new combined stream object. Available options are:

	maxDataSize

	pauseStreams

The effect of those options is described below.

combinedStream.pauseStreams = true

Whether to apply back pressure to the underlaying streams. If set to false,
the underlaying streams will never be paused. If set to true, the
underlaying streams will be paused right after being appended, as well as when
delayedStream.pipe() wants to throttle.

combinedStream.maxDataSize = 2 * 1024 * 1024

The maximum amount of bytes (or characters) to buffer for all source streams.
If this value is exceeded, combinedStream emits an 'error' event.

combinedStream.dataSize = 0

The amount of bytes (or characters) currently buffered by combinedStream.

combinedStream.append(stream)

Appends the given stream to the combinedStream object. If pauseStreams is
set to `true, this stream will also be paused right away.

streams can also be a function that takes one parameter called next. next
is a function that must be invoked in order to provide the next stream, see
example above.

Regardless of how the stream is appended, combined-stream always attaches an
'error' listener to it, so you don’t have to do that manually.

Special case: stream can also be a String or Buffer.

combinedStream.write(data)

You should not call this, combinedStream takes care of piping the appended
streams into itself for you.

combinedStream.resume()

Causes combinedStream to start drain the streams it manages. The function is
idempotent, and also emits a 'resume' event each time which usually goes to
the stream that is currently being drained.

combinedStream.pause();

If combinedStream.pauseStreams is set to false, this does nothing.
Otherwise a 'pause' event is emitted, this goes to the stream that is
currently being drained, so you can use it to apply back pressure.

combinedStream.end();

Sets combinedStream.writable to false, emits an 'end' event, and removes
all streams from the queue.

combinedStream.destroy();

Same as combinedStream.end(), except it emits a 'close' event instead of
'end'.

License

combined-stream is licensed under the MIT license.

 Contextify

Contextify

YOU DON’T NEED THIS MODULE ON NODE >= 0.12

As of Node 0.12, Contextify has been merged into Node (thanks to @domenic), replacing the native vm module.
The code has been improved on since then, so if at all possible, you should use a newer Node and the native vm module.
Note that newer versions of JSDOM no longer depend on Contextify.

The README below applies to Node 0.10 and below.

Installation issues

Make sure you have the node-gyp prerequisites installed: https://github.com/nodejs/node-gyp#installation

For Windows issues, see here: https://github.com/brianmcd/contextify/wiki/Windows-Installation-Guide

What is Contextify?

Turn an object into a V8 execution context. A contextified object acts as the global ‘this’ when executing scripts in its context. Contextify adds 3 methods to the contextified object: run(code, filename), getGlobal(), and dispose(). The main difference between Contextify and Node’s vm methods is that Contextify allows asynchronous functions to continue executing in the Contextified object’s context. See vm vs. Contextify below for more discussion.

Examples

var Contextify = require('contextify');
var sandbox = { console : console, prop1 : 'prop1'};
Contextify(sandbox);
sandbox.run('console.log(prop1);');
sandbox.dispose(); // free the resources allocated for the context.

var sandbox = Contextify(); // returns an empty contextified object.
sandbox.run('var x = 3;');
console.log(sandbox.x); // prints 3
sandbox.dispose();

var sandbox = Contextify({setTimeout : setTimeout});
sandbox.run("setTimeout(function () { x = 3; }, 5);");
console.log(sandbox.x); // prints undefined
setTimeout(function () {
 console.log(sandbox.x); // prints 3
 sandbox.dispose();
}, 10);

Details

Contextify([sandbox])

sandbox - The object to contextify, which will be modified as described below
 If no sandbox is specified, an empty object will be allocated and used instead.

Returns the contextified object. It doesn't make a copy, so if you already have a reference
to the sandbox, you don't need to catch the return value.

A Contextified object has 2 methods added to it:

run(code, [filename])

code - string containing JavaScript to execute
filename - an optional filename for debugging.

Runs the code in the Contextified object's context.

getGlobal()

Returns the actual global object for the V8 context. The global object is initialized with interceptors (discussed below) which forward accesses on it to the contextified object. This means the contextified object acts like the global object in most cases. Sometimes, though, you need to make a reference to the actual global object.

For example:

var window = Contextify({console : console});
window.window = window;
window.run("console.log(window === this);");
// prints false.

var window = Contextify({console : console});
window.window = window.getGlobal();
window.run("console.log(window === this);");
// prints true

The global object returned by getGlobal() can be treated like the contextified sandbox object, except that defining getters/setters will not work on it. Define getters and setters on the actual sandbox object instead.

dispose()

Frees the memory allocated for the underlying V8 context. If you don’t call this when you’re done, the V8 context memory will leak, as will the sandbox memory, since the context’s global stores a strong reference to the sandbox object. You can still use your sandbox object after calling dispose(), but it’s unsafe to use a global previously returned from getGlobal(). run, getGlobal, and dispose will be removed from the sandbox object.

Install

npm install contextify

require(‘vm’) vs. Contextify

Node’s vm functions (runInContext etc) work by copying the values from the sandbox object onto a context’s global object, executing the passed in script, then copying the results back. This means that scripts that create asynchronous functions (using mechanisms like setTimeout) won’t have see the results of executing those functions, since the copying in/out only occurs during an explicit call to runInContext and friends.

Contextify creates a V8 context, and uses interceptors (see: http://code.google.com/apis/v8/embed.html#interceptors) to forward global object accesses to the sandbox object. This means there is no copying in or out, so asynchronous functions have the expected effect on the sandbox object.

Tests

Testing is done with nodeunit. Run the tests with

nodeunit test/

Output:

OK: 92 assertions (27ms)

Building

node-gyp rebuild

Acknowledgments

Inspiration taken from Assaf’s Zombie.js context solution: https://github.com/assaf/zombie

 core-util-is

core-util-is

The util.is* functions introduced in Node v0.12.

 CSSStyleDeclaration

CSSStyleDeclaration

[image: ../../../_images/cssstyle.svg]NpmVersion [https://www.npmjs.com/package/cssstyle] [image: ../../../_images/CSSStyleDeclaration.svg]Build Status [https://travis-ci.org/jsakas/CSSStyleDeclaration]

CSSStyleDeclaration is a work-a-like to the CSSStyleDeclaration class in Nikita Vasilyev’s CSSOM [https://github.com/NV/CSSOM]. I made it so that when using jQuery in node [https://github.com/tmtk75/node-jquery] setting css attributes via $.fn.css() would work. node-jquery uses jsdom [https://github.com/tmpvar/jsdom] to create a DOM to use in node. jsdom uses CSSOM for styling, and CSSOM’s implementation of the CSSStyleDeclaration [http://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-CSSStyleDeclaration] doesn’t support CSS2Properties [http://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-CSS2Properties], which is how jQuery’s $.fn.css() [http://api.jquery.com/css/] operates.

Why not just issue a pull request?

Well, NV wants to keep CSSOM fast (which I can appreciate) and CSS2Properties aren’t required by the standard (though every browser has the interface). So I figured the path of least resistance would be to just modify this one class, publish it as a node module (that requires CSSOM) and then make a pull request of jsdom to use it.

How do I test this code?

npm test should do the trick, assuming you have the dev dependencies installed:

$ npm test

tests
✔ Verify Has Properties
✔ Verify Has Functions
✔ Verify Has Special Properties
✔ Test From Style String
✔ Test From Properties
✔ Test Shorthand Properties
✔ Test width and height Properties and null and empty strings
✔ Test Implicit Properties

 node-dashdash changelog

node-dashdash changelog

not yet released

(nothing yet)

1.14.1

	[issue #30] Change the output used by dashdash’s Bash completion support to
indicate “there are no completions for this argument” to cope with different
sorting rules on different Bash/platforms. For example:

 $ triton -v -p test2 package get <TAB> # before
 ##-no -tritonpackage- completions-##

 $ triton -v -p test2 package get <TAB> # after
 ##-no-completion- -results-##

1.14.0

	New synopsisFromOpt(<option spec>) function. This will be used by
node-cmdln [https://github.com/trentm/node-cmdln] to put together a synopsis
of options for a command. Some examples:

 > synopsisFromOpt({names: ['help', 'h'], type: 'bool'});
 '[--help | -h]'
 > synopsisFromOpt({name: 'file', type: 'string', helpArg: 'FILE'});
 '[--file=FILE]'

1.13.1

	[issue #20] bashCompletionSpecFromOptions breaks on an options array with
an empty-string group.

1.13.0

	Update assert-plus dep to 1.x to get recent fixes (particularly for
assert.optional*).

	Drop testing (and official support in packages.json#engines) for node 0.8.x.
Add testing against node 5.x and 4.x with make testall.

	[pull #16] Change the positiveInteger type to NOT accept zero (0).
For those who might need the old behaviour, see
“examples/custom-option-intGteZero.js”. (By Dave Pacheco.)

1.12.2

	Bash completion: Add argtypes to specify the types of positional args.
E.g. this would allow you to have an ssh command with argtypes = ['host', 'cmd'] for bash completion. You then have to provide Bash functions to
handle completing those types via the specExtra arg. See
“examples/ddcompletion.js” for an example.

	Bash completion: Tweak so that options or only offered as completions when
there is a leading ‘-‘. E.g. mytool <TAB> does NOT offer options, mytool -<TAB> does. Without this, a tool with options would never be able to
fallback to Bash’s “default” completion. For example ls <TAB> wouldn’t
result in filename completion. Now it will.

	Bash completion: A workaround for not being able to explicitly have no
completion results. Because dashdash’s completion uses complete -o default,
we fallback to Bash’s “default” completion (typically for filename
completion). Before this change, an attempt to explicitly say “there are
no completions that match” would unintentionally trigger filename completion.
Instead as a workaround we return:

 $ ddcompletion --none <TAB> # the 'none' argtype
 ##-no completions-##

 $ ddcompletion # a custom 'fruit' argtype
 apple banana orange
 $ ddcompletion z
 ##-no -fruit- completions-##

This is a bit of a hack, but IMO a better experience than the surprise
of matching a local filename beginning with ‘z’, which isn’t, in this
case, a “fruit”.

1.12.1

	Bash completion: Document <option spec>.completionType. Add includeHidden
option to bashCompletionSpecFromOptions(). Add support for dealing with
hidden subcmds.

1.12.0

	Support for generating Bash completion files. See the “Bash completion”
section of the README.md and “examples/ddcompletion.js” for an example.

1.11.0

	Add the arrayFlatten boolean option to dashdash.addOptionType used for
custom option types. This allows one to create an arrayOf... option type
where each usage of the option can return multiple results. For example:

 node mytool.js --foo a,b --foo c

We could define an option type for --foo such that
opts.foo = ['a', 'b', 'c']. See
“examples/custom-option-arrayOfCommaSepString.js”
for an example.

1.10.1

	Trim the published package to the minimal bits. Before: 24K tarball, 144K unpacked.
After: 12K tarball, 48K unpacked. npm won’t let me drop the README.md. :)

1.10.0

	[issue #9] Support includeDefault in help config (similar to includeEnv) to have a
note of an option’s default value, if any, in help output.

	[issue #11] Fix option group breakage introduced in v1.9.0.

1.9.0

	[issue #10] Custom option types added with addOptionType can specify a
“default” value. See “examples/custom-option-fruit.js”.

1.8.0

	Support hidden: true in an option spec to have help output exclude this
option.

1.7.3

	[issue #8] Fix parsing of a short option group when one of the
option takes an argument. For example, consider tail with
a -f boolean option and a -n option that takes a number
argument. This should parse:

 tail -fn5

Before this change, that would not parse correctly.
It is suspected that this was introduced in version 1.4.0
(with commit 656fa8bc71c372ebddad0a7026bd71611e2ec99a).

1.7.2

	Known issues: #8

	Exclude ‘tools/’ dir in packages published to npm.

1.7.1

	Known issues: #8

	Support an option group empty string value:

 ...
 { group: '' },
 ...

to render as a blank line in option help. This can help separate loosely
related sets of options without resorting to a title for option groups.

1.7.0

	Known issues: #8

	[pull #7] Support for <parser>.help({helpWrap: false, ...}) option to be able
to fully control the formatting for option help (by Patrick Mooney) helpWrap: false can also be set on individual options in the option objects, e.g.:

 var options = [
 {
 names: ['foo'],
 type: 'string',
 helpWrap: false,
 help: 'long help with\n newlines' +
 '\n spaces\n and such\nwill render correctly'
 },
 ...
];

1.6.0

	Known issues: #8

	[pull #6] Support headings between groups of options (by Joshua M. Clulow)
so that this code:

 var options = [
 { group: 'Armament Options' },
 { names: ['weapon', 'w'], type: 'string' },
 { group: 'General Options' },
 { names: ['help', 'h'], type: 'bool' }
];
 ...

will give you this help output:

 ...
 Armament Options:
 -w, --weapon

 General Options:
 -h, --help
 ...

1.5.0

	Known issues: #8

	Add support for adding custom option types. “examples/custom-option-duration.js”
shows an example adding a “duration” option type.

 $ node custom-option-duration.js -t 1h
 duration: 3600000 ms
 $ node custom-option-duration.js -t 1s
 duration: 1000 ms
 $ node custom-option-duration.js -t 5d
 duration: 432000000 ms
 $ node custom-option-duration.js -t bogus
 custom-option-duration.js: error: arg for "-t" is not a valid duration: "bogus"

A custom option type is added via:

 var dashdash = require('dashdash');
 dashdash.addOptionType({
 name: '...',
 takesArg: true,
 helpArg: '...',
 parseArg: function (option, optstr, arg) {
 ...
 }
 });

	[issue #4] Add date and arrayOfDate option types. They accept these date
formats: epoch second times (e.g. 1396031701) and ISO 8601 format:
YYYY-MM-DD[THH:MM:SS[.sss][Z]] (e.g. “2014-03-28”,
“2014-03-28T18:35:01.489Z”). See “examples/date.js” for an example usage.

 $ node examples/date.js -s 2014-01-01 -e $(date +%s)
 start at 2014-01-01T00:00:00.000Z
 end at 2014-03-29T04:26:18.000Z

1.4.0

	Known issues: #8

	[pull #2, pull #3] Add a allowUnknown: true option on createParser to
allow unknown options to be passed through as opts._args instead of parsing
throwing an exception (by https://github.com/isaacs).

See ‘allowUnknown’ in the README for a subtle caveat.

1.3.2

	Fix a subtlety where a bool option using both env and default didn’t
work exactly correctly. If default: false then all was fine (by luck).
However, if you had an option like this:

 options: [{
 names: ['verbose', 'v'],
 env: 'FOO_VERBOSE',
 'default': true, // <--- this
 type: 'bool'
 }],

wanted FOO_VERBOSE=0 to make the option false, then you need the fix
in this version of dashdash.

1.3.1

	[issue #1] Fix an envvar not winning over an option ‘default’. Previously
an option with both default and env would never take a value from the
environment variable. E.g. FOO_FILE would never work here:

 options: [{
 names: ['file', 'f'],
 env: 'FOO_FILE',
 'default': 'default.file',
 type: 'string'
 }],

1.3.0

	[Backward incompatible change for boolean envvars] Change the
interpretation of environment variables for boolean options to consider ‘0’
to be false. Previous to this any value to the envvar was considered
true – which was quite misleading. Example:

 $ FOO_VERBOSE=0 node examples/foo.js
 # opts: { verbose: [false],
 _order: [{ key: 'verbose', value: false, from: 'env' }],
 _args: [] }
 # args: []

1.2.1

	Fix for parse.help({includeEnv: true, ...}) handling to ensure that an
option with an env but no help still has the “Environment: …”
output. E.g.:

 { names: ['foo'], type: 'string', env: 'FOO' }

 ...

 --foo=ARG Environment: FOO=ARG

1.2.0

	Transform the option key on the opts object returned from
<parser>.parse() for convenience. Currently this is just
s/-/_/g, e.g. ‘–dry-run’ -> opts.dry_run. This allow one to use hyphen
in option names (common) but not have to do silly things like
opt["dry-run"] to access the parsed results.

1.1.0

	Environment variable integration. Envvars can be associated with an option,
then option processing will fallback to using that envvar if defined and
if the option isn’t specified in argv. See the “Environment variable
integration” section in the README.

	Change the <parser>.parse() signature to take a single object with keys
for arguments. The old signature is still supported.

	dashdash.createParser(CONFIG) alternative to new dashdash.Parser(CONFIG)
a la many node-land APIs.

1.0.2

	Add “positiveInteger” and “arrayOfPositiveInteger” option types that only
accept positive integers.

	Add “integer” and “arrayOfInteger” option types that accepts only integers.
Note that, for better or worse, these do NOT accept: “0x42” (hex), “1e2”
(with exponent) or “1.”, “3.0” (floats).

1.0.1

	Fix not modifying the given option spec objects (which breaks creating
a Parser with them more than once).

1.0.0

First release.

 Install

 A light, featureful and explicit option parsing library for node.js.

Why another one? See below. tl;dr: The others I’ve tried are one of
too loosey goosey (not explicit), too big/too many deps, or ill specified.
YMMV.

Follow @trentmick
for updates to node-dashdash.

Install

npm install dashdash

Usage

var dashdash = require('dashdash');

// Specify the options. Minimally `name` (or `names`) and `type`
// must be given for each.
var options = [
 {
 // `names` or a single `name`. First element is the `opts.KEY`.
 names: ['help', 'h'],
 // See "Option specs" below for types.
 type: 'bool',
 help: 'Print this help and exit.'
 }
];

// Shortcut form. As called it infers `process.argv`. See below for
// the longer form to use methods like `.help()` on the Parser object.
var opts = dashdash.parse({options: options});

console.log("opts:", opts);
console.log("args:", opts._args);

Longer Example

A more realistic starter script “foo.js” is as follows.
This also shows using parser.help() for formatted option help.

var dashdash = require('./lib/dashdash');

var options = [
 {
 name: 'version',
 type: 'bool',
 help: 'Print tool version and exit.'
 },
 {
 names: ['help', 'h'],
 type: 'bool',
 help: 'Print this help and exit.'
 },
 {
 names: ['verbose', 'v'],
 type: 'arrayOfBool',
 help: 'Verbose output. Use multiple times for more verbose.'
 },
 {
 names: ['file', 'f'],
 type: 'string',
 help: 'File to process',
 helpArg: 'FILE'
 }
];

var parser = dashdash.createParser({options: options});
try {
 var opts = parser.parse(process.argv);
} catch (e) {
 console.error('foo: error: %s', e.message);
 process.exit(1);
}

console.log("# opts:", opts);
console.log("# args:", opts._args);

// Use `parser.help()` for formatted options help.
if (opts.help) {
 var help = parser.help({includeEnv: true}).trimRight();
 console.log('usage: node foo.js [OPTIONS]\n'
 + 'options:\n'
 + help);
 process.exit(0);
}

// ...

Some example output from this script (foo.js):

$ node foo.js -h
opts: { help: true,
 _order: [{ name: 'help', value: true, from: 'argv' }],
 _args: [] }
args: []
usage: node foo.js [OPTIONS]
options:
 --version Print tool version and exit.
 -h, --help Print this help and exit.
 -v, --verbose Verbose output. Use multiple times for more verbose.
 -f FILE, --file=FILE File to process

$ node foo.js -v
opts: { verbose: [true],
 _order: [{ name: 'verbose', value: true, from: 'argv' }],
 _args: [] }
args: []

$ node foo.js --version arg1
opts: { version: true,
 _order: [{ name: 'version', value: true, from: 'argv' }],
 _args: ['arg1'] }
args: ['arg1']

$ node foo.js -f bar.txt
opts: { file: 'bar.txt',
 _order: [{ name: 'file', value: 'bar.txt', from: 'argv' }],
 _args: [] }
args: []

$ node foo.js -vvv --file=blah
opts: { verbose: [true, true, true],
 file: 'blah',
 _order:
 [{ name: 'verbose', value: true, from: 'argv' },
 { name: 'verbose', value: true, from: 'argv' },
 { name: 'verbose', value: true, from: 'argv' },
 { name: 'file', value: 'blah', from: 'argv' }],
 _args: [] }
args: []

See the “examples” dir for a number of starter examples using
some of dashdash’s features.

Environment variable integration

If you want to allow environment variables to specify options to your tool,
dashdash makes this easy. We can change the ‘verbose’ option in the example
above to include an ‘env’ field:

 {
 names: ['verbose', 'v'],
 type: 'arrayOfBool',
 env: 'FOO_VERBOSE', // <--- add this line
 help: 'Verbose output. Use multiple times for more verbose.'
 },

then the “FOO_VERBOSE” environment variable can be used to set this
option:

$ FOO_VERBOSE=1 node foo.js
opts: { verbose: [true],
 _order: [{ name: 'verbose', value: true, from: 'env' }],
 _args: [] }
args: []

Boolean options will interpret the empty string as unset, ‘0’ as false
and anything else as true.

$ FOO_VERBOSE= node examples/foo.js # not set
opts: { _order: [], _args: [] }
args: []

$ FOO_VERBOSE=0 node examples/foo.js # '0' is false
opts: { verbose: [false],
 _order: [{ key: 'verbose', value: false, from: 'env' }],
 _args: [] }
args: []

$ FOO_VERBOSE=1 node examples/foo.js # true
opts: { verbose: [true],
 _order: [{ key: 'verbose', value: true, from: 'env' }],
 _args: [] }
args: []

$ FOO_VERBOSE=boogabooga node examples/foo.js # true
opts: { verbose: [true],
 _order: [{ key: 'verbose', value: true, from: 'env' }],
 _args: [] }
args: []

Non-booleans can be used as well. Strings:

$ FOO_FILE=data.txt node examples/foo.js
opts: { file: 'data.txt',
 _order: [{ key: 'file', value: 'data.txt', from: 'env' }],
 _args: [] }
args: []

Numbers:

$ FOO_TIMEOUT=5000 node examples/foo.js
opts: { timeout: 5000,
 _order: [{ key: 'timeout', value: 5000, from: 'env' }],
 _args: [] }
args: []

$ FOO_TIMEOUT=blarg node examples/foo.js
foo: error: arg for "FOO_TIMEOUT" is not a positive integer: "blarg"

With the includeEnv: true config to parser.help() the environment
variable can also be included in help output:

usage: node foo.js [OPTIONS]
options:
 --version Print tool version and exit.
 -h, --help Print this help and exit.
 -v, --verbose Verbose output. Use multiple times for more verbose.
 Environment: FOO_VERBOSE=1
 -f FILE, --file=FILE File to process

Bash completion

Dashdash provides a simple way to create a Bash completion file that you
can place in your “bash_completion.d” directory – sometimes that is
“/usr/local/etc/bash_completion.d/”). Features:

	Support for short and long opts

	Support for knowing which options take arguments

	Support for subcommands (e.g. ‘git log ’ to show just options for the
log subcommand). See
node-cmdln [https://github.com/trentm/node-cmdln#bash-completion] for
how to integrate that.

 delayed-stream

delayed-stream

Buffers events from a stream until you are ready to handle them.

Installation

npm install delayed-stream

Usage

The following example shows how to write a http echo server that delays its
response by 1000 ms.

var DelayedStream = require('delayed-stream');
var http = require('http');

http.createServer(function(req, res) {
 var delayed = DelayedStream.create(req);

 setTimeout(function() {
 res.writeHead(200);
 delayed.pipe(res);
 }, 1000);
});

If you are not using Stream#pipe, you can also manually release the buffered
events by calling delayedStream.resume():

var delayed = DelayedStream.create(req);

setTimeout(function() {
 // Emit all buffered events and resume underlaying source
 delayed.resume();
}, 1000);

Implementation

In order to use this meta stream properly, here are a few things you should
know about the implementation.

Event Buffering / Proxying

All events of the source stream are hijacked by overwriting the source.emit
method. Until node implements a catch-all event listener, this is the only way.

However, delayed-stream still continues to emit all events it captures on the
source, regardless of whether you have released the delayed stream yet or
not.

Upon creation, delayed-stream captures all source events and stores them in
an internal event buffer. Once delayedStream.release() is called, all
buffered events are emitted on the delayedStream, and the event buffer is
cleared. After that, delayed-stream merely acts as a proxy for the underlaying
source.

Error handling

Error events on source are buffered / proxied just like any other events.
However, delayedStream.create attaches a no-op 'error' listener to the
source. This way you only have to handle errors on the delayedStream
object, rather than in two places.

Buffer limits

delayed-stream provides a maxDataSize property that can be used to limit
the amount of data being buffered. In order to protect you from bad source
streams that don’t react to source.pause(), this feature is enabled by
default.

API

DelayedStream.create(source, [options])

Returns a new delayedStream. Available options are:

	pauseStream

	maxDataSize

The description for those properties can be found below.

delayedStream.source

The source stream managed by this object. This is useful if you are
passing your delayedStream around, and you still want to access properties
on the source object.

delayedStream.pauseStream = true

Whether to pause the underlaying source when calling
DelayedStream.create(). Modifying this property afterwards has no effect.

delayedStream.maxDataSize = 1024 * 1024

The amount of data to buffer before emitting an error.

If the underlaying source is emitting Buffer objects, the maxDataSize
refers to bytes.

If the underlaying source is emitting JavaScript strings, the size refers to
characters.

If you know what you are doing, you can set this property to Infinity to
disable this feature. You can also modify this property during runtime.

delayedStream.dataSize = 0

The amount of data buffered so far.

delayedStream.readable

An ECMA5 getter that returns the value of source.readable.

delayedStream.resume()

If the delayedStream has not been released so far, delayedStream.release()
is called.

In either case, source.resume() is called.

delayedStream.pause()

Calls source.pause().

delayedStream.pipe(dest)

Calls delayedStream.resume() and then proxies the arguments to source.pipe.

delayedStream.release()

Emits and clears all events that have been buffered up so far. This does not
resume the underlaying source, use delayedStream.resume() instead.

License

delayed-stream is licensed under the MIT license.

 ecc-jsbn

ecc-jsbn

ECC package based on jsbn [https://github.com/andyperlitch/jsbn] from Tom Wu [http://www-cs-students.stanford.edu/~tjw/].

This is a subset of the same interface as the node compiled module [https://github.com/quartzjer/ecc], but works in the browser too.

Also uses point compression now from https://github.com/kaielvin [https://github.com/kaielvin/jsbn-ec-point-compression].

 3.0.2 / 2018-07-19

3.0.2 / 2018-07-19

	[Fix] Prevent merging __proto__ property (#48)

	[Dev Deps] update eslint, @ljharb/eslint-config, tape

	[Tests] up to node v10.7, v9.11, v8.11, v7.10, v6.14, v4.9; use nvm install-latest-npm

3.0.1 / 2017-04-27

	[Fix] deep extending should work with a non-object (#46)

	[Dev Deps] update tape, eslint, @ljharb/eslint-config

	[Tests] up to node v7.9, v6.10, v4.8; improve matrix

	[Docs] Switch from vb.teelaun.ch to versionbadg.es for the npm version badge SVG.

	[Docs] Add example to readme (#34)

3.0.0 / 2015-07-01

	[Possible breaking change] Use global “strict” directive (#32)

	[Tests] int is an ES3 reserved word

	[Tests] Test up to io.js v2.3

	[Tests] Add npm run eslint

	[Dev Deps] Update covert, jscs

2.0.1 / 2015-04-25

	Use an inline isArray check, for ES3 browsers. (#27)

	Some old browsers fail when an identifier is toString

	Test latest node and io.js versions on travis-ci; speed up builds

	Add license info to package.json (#25)

	Update tape, jscs

	Adding a CHANGELOG

2.0.0 / 2014-10-01

	Increase code coverage to 100%; run code coverage as part of tests

	Add npm run lint; Run linter as part of tests

	Remove nodeType and setInterval checks in isPlainObject

	Updating tape, jscs, covert

	General style and README cleanup

1.3.0 / 2014-06-20

	Add component.json for browser support (#18)

	Use SVG for badges in README (#16)

	Updating tape, covert

	Updating travis-ci to work with multiple node versions

	Fix deep === false bug (returning target as {}) (#14)

	Fixing constructor checks in isPlainObject

	Adding additional test coverage

	Adding npm run coverage

	Add LICENSE (#13)

	Adding a warning about false, per #11

	General style and whitespace cleanup

1.2.1 / 2013-09-14

	Fixing hasOwnProperty bugs that would only have shown up in specific browsers. Fixes #8

	Updating tape

1.2.0 / 2013-09-02

	Updating the README: add badges

	Adding a missing variable reference.

	Using tape instead of buster for tests; add more tests (#7)

	Adding node 0.10 to Travis CI (#6)

	Enabling “npm test” and cleaning up package.json (#5)

	Add Travis CI.

1.1.3 / 2012-12-06

	Added unit tests.

	Ensure extend function is named. (Looks nicer in a stack trace.)

	README cleanup.

1.1.1 / 2012-11-07

	README cleanup.

	Added installation instructions.

	Added a missing semicolon

1.0.0 / 2012-04-08

	Initial commit

 extend() for Node.js

 [image: ../../../_images/node-extend.svg]Build Status [https://travis-ci.org/justmoon/node-extend]
[image: ../../../_images/node-extend1.svg]dependency status [https://david-dm.org/justmoon/node-extend]
[image: ../../../_images/dev-status.svg]dev dependency status [https://david-dm.org/justmoon/node-extend#info=devDependencies]

extend() for Node.js [image: http://versionbadg.es/justmoon/node-extend.svg]Version Badge [https://npmjs.org/package/extend]

node-extend is a port of the classic extend() method from jQuery. It behaves as you expect. It is simple, tried and true.

Notes:

	Since Node.js >= 4,
Object.assign [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign]
now offers the same functionality natively (but without the “deep copy” option).
See ECMAScript 2015 (ES6) in Node.js [https://nodejs.org/en/docs/es6].

	Some native implementations of Object.assign in both Node.js and many
browsers (since NPM modules are for the browser too) may not be fully
spec-compliant.
Check object.assign [https://www.npmjs.com/package/object.assign] module for
a compliant candidate.

Installation

This package is available on npm [https://npmjs.org/package/extend] as: extend

npm install extend

Usage

Syntax: extend ([deep], target, object1, [objectN])

Extend one object with one or more others, returning the modified object.

Example:

var extend = require('extend');
extend(targetObject, object1, object2);

Keep in mind that the target object will be modified, and will be returned from extend().

If a boolean true is specified as the first argument, extend performs a deep copy, recursively copying any objects it finds. Otherwise, the copy will share structure with the original object(s).
Undefined properties are not copied. However, properties inherited from the object’s prototype will be copied over.
Warning: passing false as the first argument is not supported.

Arguments

	deep Boolean (optional)
If set, the merge becomes recursive (i.e. deep copy).

	target	Object
The object to extend.

	object1	Object
The object that will be merged into the first.

	objectN Object (Optional)
More objects to merge into the first.

License

node-extend is licensed under the MIT License [http://opensource.org/licenses/MIT].

Acknowledgements

All credit to the jQuery authors for perfecting this amazing utility.

Ported to Node.js by Stefan Thomas [https://github.com/justmoon] with contributions by Jonathan Buchanan [https://github.com/insin] and Jordan Harband [https://github.com/ljharb].

 extsprintf: extended POSIX-style sprintf

extsprintf: extended POSIX-style sprintf

Stripped down version of s[n]printf(3c). We make a best effort to throw an
exception when given a format string we don’t understand, rather than ignoring
it, so that we won’t break existing programs if/when we go implement the rest
of this.

This implementation currently supports specifying

	field alignment (‘-‘ flag),

	zero-pad (‘0’ flag)

	always show numeric sign (‘+’ flag),

	field width

	conversions for strings, decimal integers, and floats (numbers).

	argument size specifiers. These are all accepted but ignored, since
Javascript has no notion of the physical size of an argument.

Everything else is currently unsupported, most notably: precision, unsigned
numbers, non-decimal numbers, and characters.

Besides the usual POSIX conversions, this implementation supports:

	%j: pretty-print a JSON object (using node’s “inspect”)

	%r: pretty-print an Error object

Example

First, install it:

npm install extsprintf

Now, use it:

var mod_extsprintf = require('extsprintf');
console.log(mod_extsprintf.sprintf('hello %25s', 'world'));

outputs:

hello world

Also supported

printf: same args as sprintf, but prints the result to stdout

fprintf: same args as sprintf, preceded by a Node stream. Prints the result
to the given stream.

 fast-deep-equal

fast-deep-equal

The fastest deep equal

[image: ../../../_images/fast-deep-equal.svg]Build Status [https://travis-ci.org/epoberezkin/fast-deep-equal]
[image: ../../../_images/fast-deep-equal1.svg]npm version [http://badge.fury.io/js/fast-deep-equal]
[image: ../../../_images/badge1.svg]Coverage Status [https://coveralls.io/github/epoberezkin/fast-deep-equal?branch=master]

Install

npm install fast-deep-equal

Features

	ES5 compatible

	works in node.js (0.10+) and browsers (IE9+)

	checks equality of Date and RegExp objects by value.

Usage

var equal = require('fast-deep-equal');
console.log(equal({foo: 'bar'}, {foo: 'bar'})); // true

Performance benchmark

Node.js v9.11.1:

fast-deep-equal x 226,960 ops/sec ±1.55% (86 runs sampled)
nano-equal x 218,210 ops/sec ±0.79% (89 runs sampled)
shallow-equal-fuzzy x 206,762 ops/sec ±0.84% (88 runs sampled)
underscore.isEqual x 128,668 ops/sec ±0.75% (91 runs sampled)
lodash.isEqual x 44,895 ops/sec ±0.67% (85 runs sampled)
deep-equal x 51,616 ops/sec ±0.96% (90 runs sampled)
deep-eql x 28,218 ops/sec ±0.42% (85 runs sampled)
assert.deepStrictEqual x 1,777 ops/sec ±1.05% (86 runs sampled)
ramda.equals x 13,466 ops/sec ±0.82% (86 runs sampled)
The fastest is fast-deep-equal

To run benchmark (requires node.js 6+):

npm install
node benchmark

License

MIT [https://github.com/epoberezkin/fast-deep-equal/blob/master/LICENSE]

 fast-json-stable-stringify

fast-json-stable-stringify

Deterministic JSON.stringify() - a faster version of @substack [https://github.com/substack]’s json-stable-strigify without jsonify [https://github.com/substack/jsonify].

You can also pass in a custom comparison function.

[image: ../../../_images/fast-json-stable-stringify.svg]Build Status [https://travis-ci.org/epoberezkin/fast-json-stable-stringify]
[image: ../../../_images/badge2.svg]Coverage Status [https://coveralls.io/github/epoberezkin/fast-json-stable-stringify?branch=master]

example

var stringify = require('fast-json-stable-stringify');
var obj = { c: 8, b: [{z:6,y:5,x:4},7], a: 3 };
console.log(stringify(obj));

output:

{"a":3,"b":[{"x":4,"y":5,"z":6},7],"c":8}

methods

var stringify = require('fast-json-stable-stringify')

var str = stringify(obj, opts)

Return a deterministic stringified string str from the object obj.

options

cmp

If opts is given, you can supply an opts.cmp to have a custom comparison
function for object keys. Your function opts.cmp is called with these
parameters:

opts.cmp({ key: akey, value: avalue }, { key: bkey, value: bvalue })

For example, to sort on the object key names in reverse order you could write:

var stringify = require('fast-json-stable-stringify');

var obj = { c: 8, b: [{z:6,y:5,x:4},7], a: 3 };
var s = stringify(obj, function (a, b) {
 return a.key < b.key ? 1 : -1;
});
console.log(s);

which results in the output string:

{"c":8,"b":[{"z":6,"y":5,"x":4},7],"a":3}

Or if you wanted to sort on the object values in reverse order, you could write:

var stringify = require('fast-json-stable-stringify');

var obj = { d: 6, c: 5, b: [{z:3,y:2,x:1},9], a: 10 };
var s = stringify(obj, function (a, b) {
 return a.value < b.value ? 1 : -1;
});
console.log(s);

which outputs:

{"d":6,"c":5,"b":[{"z":3,"y":2,"x":1},9],"a":10}

cycles

Pass true in opts.cycles to stringify circular property as __cycle__ - the result will not be a valid JSON string in this case.

TypeError will be thrown in case of circular object without this option.

install

With npm [https://npmjs.org] do:

npm install fast-json-stable-stringify

benchmark

To run benchmark (requires Node.js 6+):

node benchmark

Results:

fast-json-stable-stringify x 17,189 ops/sec ±1.43% (83 runs sampled)
json-stable-stringify x 13,634 ops/sec ±1.39% (85 runs sampled)
fast-stable-stringify x 20,212 ops/sec ±1.20% (84 runs sampled)
faster-stable-stringify x 15,549 ops/sec ±1.12% (84 runs sampled)
The fastest is fast-stable-stringify

license

MIT [https://github.com/epoberezkin/fast-json-stable-stringify/blob/master/LICENSE]

 1.0.0 / 2017-07-06

1.0.0 / 2017-07-06

	update “mocha” to v3

	fixed unicode URI decoding (#6)

	add typings for Typescript

	README: use SVG Travis-CI badge

	add LICENSE file (MIT)

	add .travis.yml file (testing Node.js 0.8 through 8 currently)

	add README.md file

0.0.2 / 2014-01-27

	index: invert the path separators on Windows

0.0.1 / 2014-01-27

	initial commit

 file-uri-to-path

file-uri-to-path

Convert a file: URI to a file path

[image: ../../../_images/file-uri-to-path.svg]Build Status [https://travis-ci.org/TooTallNate/file-uri-to-path]

Accepts a file: URI and returns a regular file path suitable for use with the
fs module functions.

Installation

Install with npm:

$ npm install file-uri-to-path

Example

var uri2path = require('file-uri-to-path');

uri2path('file://localhost/c|/WINDOWS/clock.avi');
// "c:\\WINDOWS\\clock.avi"

uri2path('file:///c|/WINDOWS/clock.avi');
// "c:\\WINDOWS\\clock.avi"

uri2path('file://localhost/c:/WINDOWS/clock.avi');
// "c:\\WINDOWS\\clock.avi"

uri2path('file://hostname/path/to/the%20file.txt');
// "\\\\hostname\\path\\to\\the file.txt"

uri2path('file:///c:/path/to/the%20file.txt');
// "c:\\path\\to\\the file.txt"

API

fileUriToPath(String uri) → String

License

(The MIT License)

Copyright (c) 2014 Nathan Rajlich <nathan@tootallnate.net>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 forever-agent

forever-agent

HTTP Agent that keeps socket connections alive between keep-alive requests. Formerly part of mikeal/request, now a standalone module.

 Form-Data

Form-Data [image: ../../../_images/form-data.svg]NPM Module [https://www.npmjs.com/package/form-data] [image: ../../../_images/gitterbadge.svg]Join the chat at https://gitter.im/form-data/form-data [https://gitter.im/form-data/form-data]

A library to create readable "multipart/form-data" streams. Can be used to submit forms and file uploads to other web applications.

The API of this library is inspired by the XMLHttpRequest-2 FormData Interface [http://dev.w3.org/2006/webapi/XMLHttpRequest-2/Overview.html#the-formdata-interface].

[image: ../../../_images/v2.3.3.svg]Linux Build [https://travis-ci.org/form-data/form-data]
[image: ../../../_images/v2.3.31.svg]MacOS Build [https://travis-ci.org/form-data/form-data]
[image: ../../../_images/v2.3.32.svg]Windows Build [https://ci.appveyor.com/project/alexindigo/form-data]

[image: ../../../_images/v2.3.33.svg]Coverage Status [https://coveralls.io/github/form-data/form-data?branch=master]
[image: ../../../_images/form-data1.svg]Dependency Status [https://david-dm.org/form-data/form-data]
[image: ../../../_images/score1.svg]bitHound Overall Score [https://www.bithound.io/github/form-data/form-data]

Install

npm install --save form-data

Usage

In this example we are constructing a form with 3 fields that contain a string,
a buffer and a file stream.

var FormData = require('form-data');
var fs = require('fs');

var form = new FormData();
form.append('my_field', 'my value');
form.append('my_buffer', new Buffer(10));
form.append('my_file', fs.createReadStream('/foo/bar.jpg'));

Also you can use http-response stream:

var FormData = require('form-data');
var http = require('http');

var form = new FormData();

http.request('http://nodejs.org/images/logo.png', function(response) {
 form.append('my_field', 'my value');
 form.append('my_buffer', new Buffer(10));
 form.append('my_logo', response);
});

Or @mikeal’s request [https://github.com/request/request] stream:

var FormData = require('form-data');
var request = require('request');

var form = new FormData();

form.append('my_field', 'my value');
form.append('my_buffer', new Buffer(10));
form.append('my_logo', request('http://nodejs.org/images/logo.png'));

In order to submit this form to a web application, call submit(url, [callback]) method:

form.submit('http://example.org/', function(err, res) {
 // res – response object (http.IncomingMessage) //
 res.resume();
});

For more advanced request manipulations submit() method returns http.ClientRequest object, or you can choose from one of the alternative submission methods.

Custom options

You can provide custom options, such as maxDataSize:

var FormData = require('form-data');

var form = new FormData({ maxDataSize: 20971520 });
form.append('my_field', 'my value');
form.append('my_buffer', /* something big */);

List of available options could be found in combined-stream [https://github.com/felixge/node-combined-stream/blob/master/lib/combined_stream.js#L7-L15]

Alternative submission methods

You can use node’s http client interface:

var http = require('http');

var request = http.request({
 method: 'post',
 host: 'example.org',
 path: '/upload',
 headers: form.getHeaders()
});

form.pipe(request);

request.on('response', function(res) {
 console.log(res.statusCode);
});

Or if you would prefer the 'Content-Length' header to be set for you:

form.submit('example.org/upload', function(err, res) {
 console.log(res.statusCode);
});

To use custom headers and pre-known length in parts:

var CRLF = '\r\n';
var form = new FormData();

var options = {
 header: CRLF + '--' + form.getBoundary() + CRLF + 'X-Custom-Header: 123' + CRLF + CRLF,
 knownLength: 1
};

form.append('my_buffer', buffer, options);

form.submit('http://example.com/', function(err, res) {
 if (err) throw err;
 console.log('Done');
});

Form-Data can recognize and fetch all the required information from common types of streams (fs.readStream, http.response and mikeal's request), for some other types of streams you’d need to provide “file”-related information manually:

someModule.stream(function(err, stdout, stderr) {
 if (err) throw err;

 var form = new FormData();

 form.append('file', stdout, {
 filename: 'unicycle.jpg', // ... or:
 filepath: 'photos/toys/unicycle.jpg',
 contentType: 'image/jpeg',
 knownLength: 19806
 });

 form.submit('http://example.com/', function(err, res) {
 if (err) throw err;
 console.log('Done');
 });
});

The filepath property overrides filename and may contain a relative path. This is typically used when uploading multiple files from a directory [https://wicg.github.io/entries-api/#dom-htmlinputelement-webkitdirectory].

For edge cases, like POST request to URL with query string or to pass HTTP auth credentials, object can be passed to form.submit() as first parameter:

form.submit({
 host: 'example.com',
 path: '/probably.php?extra=params',
 auth: 'username:password'
}, function(err, res) {
 console.log(res.statusCode);
});

In case you need to also send custom HTTP headers with the POST request, you can use the headers key in first parameter of form.submit():

form.submit({
 host: 'example.com',
 path: '/surelynot.php',
 headers: {'x-test-header': 'test-header-value'}
}, function(err, res) {
 console.log(res.statusCode);
});

Integration with other libraries

Request

Form submission using request [https://github.com/request/request]:

var formData = {
 my_field: 'my_value',
 my_file: fs.createReadStream(__dirname + '/unicycle.jpg'),
};

request.post({url:'http://service.com/upload', formData: formData}, function(err, httpResponse, body) {
 if (err) {
 return console.error('upload failed:', err);
 }
 console.log('Upload successful! Server responded with:', body);
});

For more details see request readme [https://github.com/request/request#multipartform-data-multipart-form-uploads].

node-fetch

You can also submit a form using node-fetch [https://github.com/bitinn/node-fetch]:

var form = new FormData();

form.append('a', 1);

fetch('http://example.com', { method: 'POST', body: form })
 .then(function(res) {
 return res.json();
 }).then(function(json) {
 console.log(json);
 });

Notes

	getLengthSync() method DOESN’T calculate length for streams, use knownLength options as workaround.

	Starting version 2.x FormData has dropped support for node@0.10.x.

License

Form-Data is released under the MIT license.

 getpass

getpass

Get a password from the terminal. Sounds simple? Sounds like the readline
module should be able to do it? NOPE.

Install and use it

npm install --save getpass

const mod_getpass = require('getpass');

API

mod_getpass.getPass([options,]callback)

Gets a password from the terminal. If available, this uses /dev/tty to avoid
interfering with any data being piped in or out of stdio.

This function prints a prompt (by default Password:) and then accepts input
without echoing.

Parameters:

	options, an Object, with properties:

	prompt, an optional String

	callback, a Func(error, password), with arguments:

	error, either null (no error) or an Error instance

	password, a String

 HAR Schema

HAR Schema [image: ../../../_images/har-schema.svg]version [https://www.npmjs.com/package/har-schema] [image: ../../../_images/har-schema1.svg]License [http://choosealicense.com/licenses/isc/]

JSON Schema for HTTP Archive (HAR [https://github.com/ahmadnassri/har-spec/blob/master/versions/1.2]).

[image: ../../../_images/har-schema2.svg]Build Status [https://travis-ci.org/ahmadnassri/har-schema]
[image: ../../../_images/har-schema3.svg]Downloads [https://www.npmjs.com/package/har-schema]
[image: https://img.shields.io/codeclimate/github/ahmadnassri/har-schema.svg?style=flat-square]Code Climate [https://codeclimate.com/github/ahmadnassri/har-schema]
[image: https://img.shields.io/codeclimate/coverage/github/ahmadnassri/har-schema.svg?style=flat-square]Coverage Status [https://codeclimate.com/github/ahmadnassri/har-schema]
[image: https://dependencyci.com/github/ahmadnassri/har-schema/badge?style=flat-square]Dependency Status [https://dependencyci.com/github/ahmadnassri/har-schema]
[image: ../../../_images/har-schema4.svg]Dependencies [https://david-dm.org/ahmadnassri/har-schema]

Install

npm install --only=production --save har-schema

Usage

Compatible with any JSON Schema validation tool [https://github.com/ahmadnassri/har-validator].

:copyright: ahmadnassri.com [https://www.ahmadnassri.com/] ·
License: ISC [http://choosealicense.com/licenses/isc/] ·
Github: @ahmadnassri [https://github.com/ahmadnassri] ·
Twitter: @ahmadnassri [https://twitter.com/ahmadnassri]

 HAR Validator

HAR Validator

[image: ../../../_images/node-har-validator.svg]License [image: ../../../_images/har-validator.svg]version [https://www.npmjs.com/package/har-validator] [image: ../../../_images/master.svg]Build Status [https://circleci.com/gh/ahmadnassri/workflows/node-har-validator]

Extremely fast HTTP Archive (HAR [https://github.com/ahmadnassri/har-spec/blob/master/versions/1.2]) validator using JSON Schema.

Install

npm install har-validator

CLI Usage

Please refer to har-cli [https://github.com/ahmadnassri/har-cli] for more info.

API

Note: as of v2.0.0 [https://github.com/ahmadnassri/node-har-validator/releases/tag/v2.0.0] this module defaults to Promise based API. For backward compatibility with v1.x an async/callback API is also provided

	async API

	callback API

	Promise API (default)

Author: Ahmad Nassri [https://www.ahmadnassri.com/] •
Github: @ahmadnassri [https://github.com/ahmadnassri] •
Twitter: @ahmadnassri [https://twitter.com/ahmadnassri]

 <no title>

 #NodeHtmlParser
A forgiving HTML/XML/RSS parser written in JS for both the browser and NodeJS (yes, despite the name it works just fine in any modern browser). The parser can handle streams (chunked data) and supports custom handlers for writing custom DOMs/output.

##Installing

npm install htmlparser

##Running Tests

###Run tests under node:
node runtests.js

###Run tests in browser:
View runtests.html in any browser

##Usage In Node

var htmlparser = require("htmlparser");
var rawHtml = "Xyz <script language= javascript>var foo = '<<bar>>';< / script><!--<!-- Waah! -- -->";
var handler = new htmlparser.DefaultHandler(function (error, dom) {
	if (error)
		[...do something for errors...]
	else
		[...parsing done, do something...]
});
var parser = new htmlparser.Parser(handler);
parser.parseComplete(rawHtml);
sys.puts(sys.inspect(handler.dom, false, null));

##Usage In Browser

var handler = new Tautologistics.NodeHtmlParser.DefaultHandler(function (error, dom) {
	if (error)
		[...do something for errors...]
	else
		[...parsing done, do something...]
});
var parser = new Tautologistics.NodeHtmlParser.Parser(handler);
parser.parseComplete(document.body.innerHTML);
alert(JSON.stringify(handler.dom, null, 2));

##Example output

[{ raw: 'Xyz ', data: 'Xyz ', type: 'text' }
 , { raw: 'script language= javascript'
 , data: 'script language= javascript'
 , type: 'script'
 , name: 'script'
 , attribs: { language: 'javascript' }
 , children:
 [{ raw: 'var foo = \'<bar>\';<'
 , data: 'var foo = \'<bar>\';<'
 , type: 'text'
 }
]
 }
, { raw: '<!-- Waah! -- '
 , data: '<!-- Waah! -- '
 , type: 'comment'
 }
]

##Streaming To Parser

while (...) {
	...
	parser.parseChunk(chunk);
}
parser.done();	

##Parsing RSS/Atom Feeds

new htmlparser.RssHandler(function (error, dom) {
	...
});

##DefaultHandler Options

###Usage

var handler = new htmlparser.DefaultHandler(
	 function (error) { ... }
	, { verbose: false, ignoreWhitespace: true }
);

###Option: ignoreWhitespace
Indicates whether the DOM should exclude text nodes that consists solely of whitespace. The default value is “false”.

####Example: true

The following HTML:

	
this is the text

becomes:

[{ raw: 'font'
 , data: 'font'
 , type: 'tag'
 , name: 'font'
 , children:
 [{ raw: 'br', data: 'br', type: 'tag', name: 'br' }
 , { raw: 'this is the text\n'
 , data: 'this is the text\n'
 , type: 'text'
 }
 , { raw: 'font', data: 'font', type: 'tag', name: 'font' }
]
 }
]

####Example: false

The following HTML:

	
this is the text

becomes:

[{ raw: 'font'
 , data: 'font'
 , type: 'tag'
 , name: 'font'
 , children:
 [{ raw: '\n\t', data: '\n\t', type: 'text' }
 , { raw: 'br', data: 'br', type: 'tag', name: 'br' }
 , { raw: 'this is the text\n'
 , data: 'this is the text\n'
 , type: 'text'
 }
 , { raw: 'font', data: 'font', type: 'tag', name: 'font' }
]
 }
]

###Option: verbose
Indicates whether to include extra information on each node in the DOM. This information consists of the “raw” attribute (original, unparsed text found between “<” and “>”) and the “data” attribute on “tag”, “script”, and “comment” nodes. The default value is “true”.

####Example: true
The following HTML:

xxx

becomes:

[{ raw: 'a href="test.html"'
 , data: 'a href="test.html"'
 , type: 'tag'
 , name: 'a'
 , attribs: { href: 'test.html' }
 , children: [{ raw: 'xxx', data: 'xxx', type: 'text' }]
 }
]

####Example: false
The following HTML:

xxx

becomes:

[{ type: 'tag'
 , name: 'a'
 , attribs: { href: 'test.html' }
 , children: [{ data: 'xxx', type: 'text' }]
 }
]

###Option: enforceEmptyTags
Indicates whether the DOM should prevent children on tags marked as empty in the HTML spec. Typically this should be set to “true” HTML parsing and “false” for XML parsing. The default value is “true”.

####Example: true
The following HTML:

<link>text</link>

becomes:

[{ raw: 'link', data: 'link', type: 'tag', name: 'link' }
, { raw: 'text', data: 'text', type: 'text' }
]

####Example: false
The following HTML:

<link>text</link>

becomes:

[{ raw: 'link'
 , data: 'link'
 , type: 'tag'
 , name: 'link'
 , children: [{ raw: 'text', data: 'text', type: 'text' }]
 }
]

##DomUtils

###TBD (see utils_example.js for now)

##Related Projects

Looking for CSS selectors to search the DOM? Try Node-SoupSelect, a port of SoupSelect to NodeJS: http://github.com/harryf/node-soupselect

There’s also a port of hpricot to NodeJS that uses HtmlParser for HTML parsing: http://github.com/silentrob/Apricot

 <no title>

 #NodeHtmlParser
A forgiving HTML/XML/RSS parser written in JS for both the browser and NodeJS (yes, despite the name it works just fine in any modern browser). The parser can handle streams (chunked data) and supports custom handlers for writing custom DOMs/output.

##Installing

npm install htmlparser

##Running Tests

###Run tests under node:
node runtests.js

###Run tests in browser:
View runtests.html in any browser

##Usage In Node
var htmlparser = require(“node-htmlparser”);
var rawHtml = “Xyz

 node-http-signature changelog

node-http-signature changelog

1.1.1

	Version of dependency assert-plus updated: old version was missing
some license information

	Corrected examples in http_signing.md, added auto-tests to
automatically validate these examples

1.1.0

	Bump version of sshpk dependency, remove peerDependency on it since
it now supports exchanging objects between multiple versions of itself
where possible

1.0.2

	Bump min version of jsprim dependency, to include fixes for using
http-signature with browserify

1.0.1

	Bump minimum version of sshpk dependency, to include fixes for
whitespace tolerance in key parsing.

1.0.0

	First semver release.

	#36: Ensure verifySignature does not leak useful timing information

	#42: Bring the library up to the latest version of the spec (including the
request-target changes)

	Support for ECDSA keys and signatures.

	Now uses sshpk for key parsing, validation and conversion.

	Fixes for #21, #47, #39 and compatibility with node 0.8

0.11.0

	Split up HMAC and Signature verification to avoid vulnerabilities where a
key intended for use with one can be validated against the other method
instead.

0.10.2

	Updated versions of most dependencies.

	Utility functions exported for PEM => SSH-RSA conversion.

	Improvements to tests and examples.

 node-http-signature

node-http-signature

node-http-signature is a node.js library that has client and server components
for Joyent’s HTTP Signature Scheme.

Usage

Note the example below signs a request with the same key/cert used to start an
HTTP server. This is almost certainly not what you actually want, but is just
used to illustrate the API calls; you will need to provide your own key
management in addition to this library.

Client

var fs = require('fs');
var https = require('https');
var httpSignature = require('http-signature');

var key = fs.readFileSync('./key.pem', 'ascii');

var options = {
 host: 'localhost',
 port: 8443,
 path: '/',
 method: 'GET',
 headers: {}
};

// Adds a 'Date' header in, signs it, and adds the
// 'Authorization' header in.
var req = https.request(options, function(res) {
 console.log(res.statusCode);
});

httpSignature.sign(req, {
 key: key,
 keyId: './cert.pem'
});

req.end();

Server

var fs = require('fs');
var https = require('https');
var httpSignature = require('http-signature');

var options = {
 key: fs.readFileSync('./key.pem'),
 cert: fs.readFileSync('./cert.pem')
};

https.createServer(options, function (req, res) {
 var rc = 200;
 var parsed = httpSignature.parseRequest(req);
 var pub = fs.readFileSync(parsed.keyId, 'ascii');
 if (!httpSignature.verifySignature(parsed, pub))
 rc = 401;

 res.writeHead(rc);
 res.end();
}).listen(8443);

Installation

npm install http-signature

License

MIT.

Bugs

See https://github.com/joyent/node-http-signature/issues.

 Abstract

Abstract

This document describes a way to add origin authentication, message integrity,
and replay resistance to HTTP REST requests. It is intended to be used over
the HTTPS protocol.

Copyright Notice

Copyright (c) 2011 Joyent, Inc. and the persons identified as document authors.
All rights reserved.

Code Components extracted from this document must include MIT License text.

Introduction

This protocol is intended to provide a standard way for clients to sign HTTP
requests. RFC2617 (HTTP Authentication) defines Basic and Digest authentication
mechanisms, and RFC5246 (TLS 1.2) defines client-auth, both of which are widely
employed on the Internet today. However, it is common place that the burdens of
PKI prevent web service operators from deploying that methodology, and so many
fall back to Basic authentication, which has poor security characteristics.

Additionally, OAuth provides a fully-specified alternative for authorization
of web service requests, but is not (always) ideal for machine to machine
communication, as the key acquisition steps (generally) imply a fixed
infrastructure that may not make sense to a service provider (e.g., symmetric
keys).

Several web service providers have invented their own schemes for signing
HTTP requests, but to date, none have been placed in the public domain as a
standard. This document serves that purpose. There are no techniques in this
proposal that are novel beyond previous art, however, this aims to be a simple
mechanism for signing these requests.

Signature Authentication Scheme

The “signature” authentication scheme is based on the model that the client must
authenticate itself with a digital signature produced by either a private
asymmetric key (e.g., RSA) or a shared symmetric key (e.g., HMAC). The scheme
is parameterized enough such that it is not bound to any particular key type or
signing algorithm. However, it does explicitly assume that clients can send an
HTTP Date header.

Authorization Header

The client is expected to send an Authorization header (as defined in RFC 2617)
with the following parameterization:

credentials := "Signature" params
params := 1#(keyId | algorithm | [headers] | [ext] | signature)
digitalSignature := plain-string

keyId := "keyId" "=" <"> plain-string <">
algorithm := "algorithm" "=" <"> plain-string <">
headers := "headers" "=" <"> 1#headers-value <">
ext := "ext" "=" <"> plain-string <">
signature := "signature" "=" <"> plain-string <">

headers-value := plain-string
plain-string = 1*(%x20-21 / %x23-5B / %x5D-7E)

Signature Parameters

keyId

REQUIRED. The keyId field is an opaque string that the server can use to look
up the component they need to validate the signature. It could be an SSH key
fingerprint, an LDAP DN, etc. Management of keys and assignment of keyId is
out of scope for this document.

algorithm

REQUIRED. The algorithm parameter is used if the client and server agree on a
non-standard digital signature algorithm. The full list of supported signature
mechanisms is listed below.

headers

OPTIONAL. The headers parameter is used to specify the list of HTTP headers
used to sign the request. If specified, it should be a quoted list of HTTP
header names, separated by a single space character. By default, only one
HTTP header is signed, which is the Date header. Note that the list MUST be
specified in the order the values are concatenated together during signing. To
include the HTTP request line in the signature calculation, use the special
request-line value. While this is overloading the definition of headers in
HTTP linguism, the request-line is defined in RFC 2616, and as the outlier from
headers in useful signature calculation, it is deemed simpler to simply use
request-line than to add a separate parameter for it.

extensions

OPTIONAL. The extensions parameter is used to include additional information
which is covered by the request. The content and format of the string is out of
scope for this document, and expected to be specified by implementors.

signature

REQUIRED. The signature parameter is a Base64 encoded digital signature
generated by the client. The client uses the algorithm and headers request
parameters to form a canonicalized signing string. This signing string is
then signed with the key associated with keyId and the algorithm
corresponding to algorithm. The signature parameter is then set to the
Base64 encoding of the signature.

Signing String Composition

In order to generate the string that is signed with a key, the client MUST take
the values of each HTTP header specified by headers in the order they appear.

	If the header name is not request-line then append the lowercased header
name followed with an ASCII colon : and an ASCII space .

	If the header name is request-line then append the HTTP request line,
otherwise append the header value.

	If value is not the last value then append an ASCII newline \n. The string
MUST NOT include a trailing ASCII newline.

Example Requests

All requests refer to the following request (body omitted):

POST /foo HTTP/1.1
Host: example.org
Date: Tue, 07 Jun 2014 20:51:35 GMT
Content-Type: application/json
Digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=
Content-Length: 18

The “rsa-key-1” keyId refers to a private key known to the client and a public
key known to the server. The “hmac-key-1” keyId refers to key known to the
client and server.

Default parameterization

The authorization header and signature would be generated as:

Authorization: Signature keyId="rsa-key-1",algorithm="rsa-sha256",signature="Base64(RSA-SHA256(signing string))"

The client would compose the signing string as:

date: Tue, 07 Jun 2014 20:51:35 GMT

Header List

The authorization header and signature would be generated as:

Authorization: Signature keyId="rsa-key-1",algorithm="rsa-sha256",headers="(request-target) date content-type digest",signature="Base64(RSA-SHA256(signing string))"

The client would compose the signing string as (+ "\n" inserted for
readability):

(request-target) post /foo + "\n"
date: Tue, 07 Jun 2011 20:51:35 GMT + "\n"
content-type: application/json + "\n"
digest: SHA-256=Base64(SHA256(Body))

Algorithm

The authorization header and signature would be generated as:

Authorization: Signature keyId="hmac-key-1",algorithm="hmac-sha1",signature="Base64(HMAC-SHA1(signing string))"

The client would compose the signing string as:

date: Tue, 07 Jun 2011 20:51:35 GMT

Signing Algorithms

Currently supported algorithm names are:

	rsa-sha1

	rsa-sha256

	rsa-sha512

	dsa-sha1

	hmac-sha1

	hmac-sha256

	hmac-sha512

Security Considerations

Default Parameters

Note the default parameterization of the Signature scheme is only safe if all
requests are carried over a secure transport (i.e., TLS). Sending the default
scheme over a non-secure transport will leave the request vulnerable to
spoofing, tampering, replay/repudiation, and integrity violations (if using the
STRIDE threat-modeling methodology).

Insecure Transports

If sending the request over plain HTTP, service providers SHOULD require clients
to sign ALL HTTP headers, and the request-line. Additionally, service
providers SHOULD require Content-MD5 calculations to be performed to ensure
against any tampering from clients.

Nonces

Nonces are out of scope for this document simply because many service providers
fail to implement them correctly, or do not adopt security specifications
because of the infrastructure complexity. Given the header parameterization,
a service provider is fully enabled to add nonce semantics into this scheme by
using something like an x-request-nonce header, and ensuring it is signed
with the Date header.

Clock Skew

As the default scheme is to sign the Date header, service providers SHOULD
protect against logged replay attacks by enforcing a clock skew. The server
SHOULD be synchronized with NTP, and the recommendation in this specification
is to allow 300s of clock skew (in either direction).

Required Headers to Sign

It is out of scope for this document to dictate what headers a service provider
will want to enforce, but service providers SHOULD at minimum include the
Date header.

References

Normative References

	[RFC2616] Hypertext Transfer Protocol – HTTP/1.1

	[RFC2617] HTTP Authentication: Basic and Digest Access Authentication

	[RFC5246] The Transport Layer Security (TLS) Protocol Version 1.2

Informative References

Name: Mark Cavage (editor)
Company: Joyent, Inc.
Email: mark.cavage@joyent.com
URI: http://www.joyent.com

Appendix A - Test Values

The following test data uses the RSA (1024b) keys, which we will refer
to as keyId=Test in the following samples:

-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDCFENGw33yGihy92pDjZQhl0C3
6rPJj+CvfSC8+q28hxA161QFNUd13wuCTUcq0Qd2qsBe/2hFyc2DCJJg0h1L78+6
Z4UMR7EOcpfdUE9Hf3m/hs+FUR45uBJeDK1HSFHD8bHKD6kv8FPGfJTotc+2xjJw
oYi+1hqp1fIekaxsyQIDAQAB
-----END PUBLIC KEY-----

-----BEGIN RSA PRIVATE KEY-----
MIICXgIBAAKBgQDCFENGw33yGihy92pDjZQhl0C36rPJj+CvfSC8+q28hxA161QF
NUd13wuCTUcq0Qd2qsBe/2hFyc2DCJJg0h1L78+6Z4UMR7EOcpfdUE9Hf3m/hs+F
UR45uBJeDK1HSFHD8bHKD6kv8FPGfJTotc+2xjJwoYi+1hqp1fIekaxsyQIDAQAB
AoGBAJR8ZkCUvx5kzv+utdl7T5MnordT1TvoXXJGXK7ZZ+UuvMNUCdN2QPc4sBiA
QWvLw1cSKt5DsKZ8UETpYPy8pPYnnDEz2dDYiaew9+xEpubyeW2oH4Zx71wqBtOK
kqwrXa/pzdpiucRRjk6vE6YY7EBBs/g7uanVpGibOVAEsqH1AkEA7DkjVH28WDUg
f1nqvfn2Kj6CT7nIcE3jGJsZZ7zlZmBmHFDONMLUrXR/Zm3pR5m0tCmBqa5RK95u
412jt1dPIwJBANJT3v8pnkth48bQo/fKel6uEYyboRtA5/uHuHkZ6FQF7OUkGogc
mSJluOdc5t6hI1VsLn0QZEjQZMEOWr+wKSMCQQCC4kXJEsHAve77oP6HtG/IiEn7
kpyUXRNvFsDE0czpJJBvL/aRFUJxuRK91jhjC68sA7NsKMGg5OXb5I5Jj36xAkEA
gIT7aFOYBFwGgQAQkWNKLvySgKbAZRTeLBacpHMuQdl1DfdntvAyqpAZ0lY0RKmW
G6aFKaqQfOXKCyWoUiVknQJAXrlgySFci/2ueKlIE1QqIiLSZ8V8OlpFLRnb1pzI
7U1yQXnTAEFYM560yJlzUpOb1V4cScGd365tiSMvxLOvTA==
-----END RSA PRIVATE KEY-----

And all examples use this request:

POST /foo?param=value&pet=dog HTTP/1.1
Host: example.com
Date: Thu, 05 Jan 2014 21:31:40 GMT
Content-Type: application/json
Digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=
Content-Length: 18

{"hello": "world"}

Default

The string to sign would be:

date: Thu, 05 Jan 2014 21:31:40 GMT

The Authorization header would be:

Authorization: Signature keyId="Test",algorithm="rsa-sha256",headers="date",signature="jKyvPcxB4JbmYY4mByyBY7cZfNl4OW9HpFQlG7N4YcJPteKTu4MWCLyk+gIr0wDgqtLWf9NLpMAMimdfsH7FSWGfbMFSrsVTHNTk0rK3usrfFnti1dxsM4jl0kYJCKTGI/UWkqiaxwNiKqGcdlEDrTcUhhsFsOIo8VhddmZTZ8w="

All Headers

Parameterized to include all headers, the string to sign would be (+ "\n"
inserted for readability):

(request-target): post /foo?param=value&pet=dog
host: example.com
date: Thu, 05 Jan 2014 21:31:40 GMT
content-type: application/json
digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=
content-length: 18

The Authorization header would be:

Authorization: Signature keyId="Test",algorithm="rsa-sha256",headers="(request-target) host date content-type digest content-length",signature="Ef7MlxLXoBovhil3AlyjtBwAL9g4TN3tibLj7uuNB3CROat/9KaeQ4hW2NiJ+pZ6HQEOx9vYZAyi+7cmIkmJszJCut5kQLAwuX+Ms/mUFvpKlSo9StS2bMXDBNjOh4Auj774GFj4gwjS+3NhFeoqyr/MuN6HsEnkvn6zdgfE2i0="

Generating and verifying signatures using openssl

The openssl commandline tool can be used to generate or verify the signatures listed above.

Compose the signing string as usual, and pipe it into the the openssl dgst command, then into openssl enc -base64, as follows:

$ printf 'date: Thu, 05 Jan 2014 21:31:40 GMT' | \
 openssl dgst -binary -sign /path/to/private.pem -sha256 | \
 openssl enc -base64
jKyvPcxB4JbmYY4mByyBY7cZfNl4OW9Hp...
$

The -sha256 option is necessary to produce an rsa-sha256 signature. You can select other hash algorithms such as sha1 by changing this argument.

To verify a signature, first save the signature data, Base64-decoded, into a file, then use openssl dgst again with the -verify option:

$ echo 'jKyvPcxB4JbmYY4mByy...' | openssl enc -A -d -base64 > signature
$ printf 'date: Thu, 05 Jan 2014 21:31:40 GMT' | \
 openssl dgst -sha256 -verify /path/to/public.pem -signature ./signature
Verified OK
$

Generating and verifying signatures using sshpk-sign

You can also generate and check signatures using the sshpk-sign tool which is
included with the sshpk package in npm.

Compose the signing string as above, and pipe it into sshpk-sign as follows:

$ printf 'date: Thu, 05 Jan 2014 21:31:40 GMT' | \
 sshpk-sign -i /path/to/private.pem
jKyvPcxB4JbmYY4mByyBY7cZfNl4OW9Hp...
$

This will produce an rsa-sha256 signature by default, as you can see using
the -v option:

sshpk-sign: using rsa-sha256 with a 1024 bit key

You can also use sshpk-verify in a similar manner:

$ printf 'date: Thu, 05 Jan 2014 21:31:40 GMT' | \
 sshpk-verify -i ./public.pem -s 'jKyvPcxB4JbmYY...'
OK
$

 <no title>

 This software is released under the MIT license:

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 is-typedarray

is-typedarray [image: ../../../_images/locked.svg]locked [http://github.com/badges/stability-badges]

Detect whether or not an object is a
Typed Array [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays].

Usage

[image: ../../../_images/is-typedarray.png]NPM [https://nodei.co/npm/is-typedarray/]

isTypedArray(array)

Returns true when array is a Typed Array, and false when it is not.

License

MIT. See LICENSE.md [http://github.com/hughsk/is-typedarray/blob/master/LICENSE] for details.

 The MIT License (MIT)

The MIT License (MIT)

Copyright (c) 2015 Rod Vagg

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 isStream

isStream

[image: ../../../_images/isstream.png]Build Status [http://travis-ci.org/rvagg/isstream]

Test if an object is a Stream

[image: ../../../_images/isstream.svg]NPM [https://nodei.co/npm/isstream/]

The missing Stream.isStream(obj): determine if an object is standard Node.js Stream. Works for Node-core Stream objects (for 0.8, 0.10, 0.11, and in theory, older and newer versions) and all versions of readable-stream [https://github.com/isaacs/readable-stream].

Usage:

var isStream = require('isstream')
var Stream = require('stream')

isStream(new Stream()) // true

isStream({}) // false

isStream(new Stream.Readable()) // true
isStream(new Stream.Writable()) // true
isStream(new Stream.Duplex()) // true
isStream(new Stream.Transform()) // true
isStream(new Stream.PassThrough()) // true

But wait! There’s more!

You can also test for isReadable(obj), isWritable(obj) and isDuplex(obj) to test for implementations of Streams2 (and Streams3) base classes.

var isReadable = require('isstream').isReadable
var isWritable = require('isstream').isWritable
var isDuplex = require('isstream').isDuplex
var Stream = require('stream')

isReadable(new Stream()) // false
isWritable(new Stream()) // false
isDuplex(new Stream()) // false

isReadable(new Stream.Readable()) // true
isReadable(new Stream.Writable()) // false
isReadable(new Stream.Duplex()) // true
isReadable(new Stream.Transform()) // true
isReadable(new Stream.PassThrough()) // true

isWritable(new Stream.Readable()) // false
isWritable(new Stream.Writable()) // true
isWritable(new Stream.Duplex()) // true
isWritable(new Stream.Transform()) // true
isWritable(new Stream.PassThrough()) // true

isDuplex(new Stream.Readable()) // false
isDuplex(new Stream.Writable()) // false
isDuplex(new Stream.Duplex()) // true
isDuplex(new Stream.Transform()) // true
isDuplex(new Stream.PassThrough()) // true

Reminder: when implementing your own streams, please use readable-stream rather than core streams [http://r.va.gg/2014/06/why-i-dont-use-nodes-core-stream-module.html].

License

isStream is Copyright (c) 2015 Rod Vagg @rvagg [https://twitter.com/rvagg] and licenced under the MIT licence. All rights not explicitly granted in the MIT license are reserved. See the included LICENSE.md file for more details.

 jQuery

jQuery

jQuery is a fast, small, and feature-rich JavaScript library.

For information on how to get started and how to use jQuery, please see jQuery’s documentation [http://api.jquery.com/].
For source files and issues, please visit the jQuery repo [https://github.com/jquery/jquery].

If upgrading, please see the blog post for 3.3.1 [https://blog.jquery.com/2017/03/20/jquery-3.3.1-now-available/]. This includes notable differences from the previous version and a more readable changelog.

Including jQuery

Below are some of the most common ways to include jQuery.

Browser

Script tag

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>

Babel

Babel [http://babeljs.io/] is a next generation JavaScript compiler. One of the features is the ability to use ES6/ES2015 modules now, even though browsers do not yet support this feature natively.

import $ from "jquery";

Browserify/Webpack

There are several ways to use Browserify [http://browserify.org/] and Webpack [https://webpack.github.io/]. For more information on using these tools, please refer to the corresponding project’s documention. In the script, including jQuery will usually look like this…

var $ = require("jquery");

AMD (Asynchronous Module Definition)

AMD is a module format built for the browser. For more information, we recommend require.js’ documentation [http://requirejs.org/docs/whyamd.html].

define(["jquery"], function($) {

});

Node

To include jQuery in Node, first install with npm.

npm install jquery

For jQuery to work in Node, a window with a document is required. Since no such window exists natively in Node, one can be mocked by tools such as jsdom [https://github.com/tmpvar/jsdom]. This can be useful for testing purposes.

require("jsdom").env("", function(err, window) {
	if (err) {
		console.error(err);
		return;
	}

	var $ = require("jquery")(window);
});

 Node.JS

 Originally from https://github.com/coolaj86/node-jquery/
This is using latest jQuery 1.9.0

Node.JS

 npm install jquery-latest

 var $ = require('jquery-latest');

Examples

 $("<h1>test passes</h1>").appendTo("body");
 console.log($("body").html());

In Node.JS you may also create separate window instances

 var jsdom = require('jsdom').jsdom
 , myWindow = jsdom().createWindow()
 , $ = require('jquery')
 , jq = require('jquery').create()
 , jQuery = require('jquery').create(myWindow)
 ;

 $("<h1>test passes</h1>").appendTo("body");
 console.log($("body").html());

 jq("<h2>other test passes</h2>").appendTo("body");
 console.log(jq("body").html());

 jQuery("<h3>third test passes</h3>").appendTo("body");
 console.log(jQuery("body").html());

Output:

 <h1>test passes</h1>
 <h2>other test passes</h2>
 <h3>third test passes</h3>

JSONP Example

 var $ = require('jquery');

 $.getJSON('http://twitter.com/status/user_timeline/treason.json?count=10&callback=?',function(data) {
 console.log(data);
 });

 jsbn: javascript big number

jsbn: javascript big number

Tom Wu’s Original Website [http://www-cs-students.stanford.edu/~tjw/jsbn/]

I felt compelled to put this on github and publish to npm. I haven’t tested every other big integer library out there, but the few that I have tested in comparison to this one have not even come close in performance. I am aware of the bi module on npm, however it has been modified and I wanted to publish the original without modifications. This is jsbn and jsbn2 from Tom Wu’s original website above, with the modular pattern applied to prevent global leaks and to allow for use with node.js on the server side.

usage

var BigInteger = require('jsbn');

var a = new BigInteger('91823918239182398123');
alert(a.bitLength()); // 67

API

bi.toString()

returns the base-10 number as a string

bi.negate()

returns a new BigInteger equal to the negation of bi

bi.abs

returns new BI of absolute value

bi.compareTo

bi.bitLength

bi.mod

bi.modPowInt

bi.clone

bi.intValue

bi.byteValue

bi.shortValue

bi.signum

bi.toByteArray

bi.equals

bi.min

bi.max

bi.and

bi.or

bi.xor

bi.andNot

bi.not

bi.shiftLeft

bi.shiftRight

bi.getLowestSetBit

bi.bitCount

bi.testBit

bi.setBit

bi.clearBit

bi.flipBit

bi.add

bi.subtract

bi.multiply

bi.divide

bi.remainder

bi.divideAndRemainder

bi.modPow

bi.modInverse

bi.pow

bi.gcd

bi.isProbablePrime

 jsdom

jsdom

A JavaScript implementation of the W3C DOM.

Install

$ npm install jsdom

Human contact

see: mailing list [http://groups.google.com/group/jsdom]

Easymode

Bootstrapping a DOM is generally a difficult process involving many error prone steps. We didn’t want jsdom to fall into the same trap and that is why a new method, jsdom.env(), has been added in jsdom 0.2.0 which should make everyone’s lives easier.

with URL

// Count all of the links from the nodejs build page
var jsdom = require("jsdom");

jsdom.env(
 "http://nodejs.org/dist/",
 ["http://code.jquery.com/jquery.js"],
 function (errors, window) {
 console.log("there have been", window.$("a").length, "nodejs releases!");
 }
);

or with raw HTML

// Run some jQuery on a html fragment
var jsdom = require("jsdom");

jsdom.env(
 '<p>jsdom\'s Homepage</p>',
 ["http://code.jquery.com/jquery.js"],
 function(errors, window) {
 console.log("contents of a.the-link:", window.$("a.the-link").text());
 }
);

or with a configuration object

// Print all of the news items on hackernews
var jsdom = require("jsdom");

jsdom.env({
 html: "http://news.ycombinator.com/",
 scripts: ["http://code.jquery.com/jquery.js"],
 done: function (errors, window) {
 var $ = window.$;
 console.log("HN Links");
 $("td.title:not(:last) a").each(function() {
 console.log(" -", $(this).text());
 });
 }
});

or with raw JavaScript source

// Print all of the news items on hackernews
var jsdom = require("jsdom");
var fs = require("fs");
var jquery = fs.readFileSync("./jquery.js").toString();

jsdom.env({
 html: "http://news.ycombinator.com/",
 src: [jquery],
 done: function (errors, window) {
 var $ = window.$;
 console.log("HN Links");
 $("td.title:not(:last) a").each(function() {
 console.log(" -", $(this).text());
 });
 }
});

How it works

jsdom.env is built for ease of use, which is rare in the world of the DOM! Since the web has some absolutely horrible JavaScript on it, as of jsdom 0.2.0 jsdom.env will not process external resources (scripts, images, etc). If you want to process the JavaScript use one of the methods below (jsdom.jsdom or jsdom.jQueryify)

jsdom.env(html, [scripts], [config], callback);

	html (required): may be a URL, HTML fragment, or file.

	scripts (optional): may contain files or URLs.

	config (optional): see below.

	callback (required): takes two arguments:

	errors: an array of errors

	window: a brand new window

example:

jsdom.env(html, function (errors, window) {
 // free memory associated with the window
 window.close();
});

If you would like to specify a configuration object only:

jsdom.env(config);

	config.html: see html above.

	config.scripts: see scripts above.

	config.src: an array of JavaScript strings that will be evaluated against the resulting document. Similar to scripts, but it accepts JavaScript instead of paths/URLs.

	config.done: see callback above.

	config.document:

	referer: the new document will have this referer

	cookie: manually set a cookie value, e.g. 'key=value; expires=Wed, Sep 21 2011 12:00:00 GMT; path=/'

	config.features : see Flexibility section below. Note: the default feature set for jsdom.env does not include fetching remote JavaScript and executing it. This is something that you will need to carefully enable yourself.

For the hardcore

If you want to spawn a document/window and specify all sorts of options this is the section for you. This section covers the jsdom.jsdom method:

var jsdom = require("jsdom").jsdom;
var doc = jsdom(markup, level, options);
var window = doc.createWindow();

	markup is an HTML/XML document to be parsed. You can also pass null or an undefined value to get a basic document with empty <head> and <body> tags. Document fragments are also supported (including ""), and will behave as sanely as possible (e.g. the resulting document will lack the head, body and documentElement properties if the corresponding elements aren’t included).

	level is null (which means level3) by default, but you can pass another level if you’d like.

var jsdom = require("jsdom");
var doc = jsdom.jsdom("<html><body></body></html>", jsdom.level(1, "core"));

	options see the Flexibility section below.

Flexibility

One of the goals of jsdom is to be as minimal and light as possible. This section details how someone can change the behavior of Documents on the fly. These features are baked into the DOMImplementation that every Document has, and may be tweaked in two ways:

	When you create a new Document using the jsdom builder (require("jsdom").jsdom())

var jsdom = require("jsdom").jsdom;
var doc = jsdom("<html><body></body></html>", null, {
 features: {
 FetchExternalResources : ["img"]
 }
});

Do note, that this will only affect the document that is currently being created. All other documents will use the defaults specified below (see: Default Features).

	Before creating any documents, you can modify the defaults for all future documents:

require("jsdom").defaultDocumentFeatures = {
 FetchExternalResources: ["script"],
 ProcessExternalResources: false
};

Default Features

Default features are extremely important for jsdom as they lower the configuration requirement and present developers a set of consistent default behaviors. The following sections detail the available features, their defaults, and the values that jsdom uses.

FetchExternalResources

	Default: ["script"]

	Allowed: ["script", "img", "css", "frame", "iframe", "link"] or false

Enables/disables fetching files over the file system/HTTP.

ProcessExternalResources

	Default: ["script"]

	Allowed: ["script"] or false

Disabling this will disable script execution (currently only JavaScript).

SkipExternalResources

	Default: false

	Allowed: /url to be skipped/ or false

	Example: /http:\/\/example.org/js/bad\.js/

Do not download and process resources with url matching a regular expression.

Canvas

jsdom includes support for using the canvas [https://npmjs.org/package/canvas] package to extend any <canvas> elements with the canvas API. To make this work, you need to include canvas as a dependency in your project, as a peer of jsdom. If jsdom can find the canvas package, it will use it, but if it’s not present, then <canvas> elements will behave like <div>s.

More Examples

Creating a document-less window

var jsdom = require("jsdom");
var window = jsdom.createWindow();

console.log(window.document); // output: undefined

Creating a document

var jsdom = require("jsdom");
var doc = new (jsdom.level(1, "core").Document)();

console.log(doc.nodeName); // outputs: #document

Creating a browser-like BOM/DOM/Window

var jsdom = require("jsdom").jsdom;
var document = jsdom("<html><head></head><body>hello world</body></html>");
var window = document.createWindow();

console.log(window.document.innerHTML);
// output: "<html><head></head><body>hello world</body></html>"

console.log(window.innerWidth);
// output: 1024

console.log(typeof window.document.getElementsByClassName);
// outputs: function

jQueryify

var jsdom = require("jsdom");
var window = jsdom.jsdom().createWindow();

jsdom.jQueryify(window, "http://code.jquery.com/jquery.js", function () {
 window.$("body").append('<div class="testing">Hello World, It works</div>');

 console.log(window.$(".testing").text());
});

Passing objects to scripts inside the page

var jsdom = require("jsdom").jsdom;
var window = jsdom().createWindow();

window.__myObject = { foo: "bar" };

var scriptEl = window.document.createElement("script");
scriptEl.src = "anotherScript.js";
window.document.body.appendChild(scriptEl);

// anotherScript.js will have the ability to read `window.__myObject`, even
// though it originated in Node!

Test Compliance:

 level1/core 532/532 100%
 level1/html 238/238 100%
 level1/svg 527/527 100%
 level2/core 283/283 100%
 level2/html 697/697 100%
 level2/style 10/10 100%
 level2/extra 4/4 100%
 level2/events 24/24 100%
 level3/xpath 93/93 100%
 window/index 5/5 100%
 window/script 10/10 100%
 window/frame 14/14 100%
 sizzle/index 9/14 64%
 jsdom/index 86/86 100%
 jsonp/jsonp 1/1 100%
 browser/contextifyReplacement 4/4 100%
 browser/index 22/22 100%
--
TOTALS: 5/2564 failed; 99% success

Running the tests

First you’ll want to npm install. To run all the tests, use npm test, which just calls node test/runner.

Using test/runner directly, you can slice and dice which tests your want to run from different levels. Usage is as follows:

test/runner --help
Run the jsdom test suite

Options:
-s, --suites suites that you want to run. ie: -s level1/core,1/html,html [string]
-f, --fail-fast stop on the first failed test
-h, --help show the help
-t, --tests choose the test cases to run. ie: -t jquery

 <no title>

 JSON Schema is a repository for the JSON Schema specification, reference schemas and a CommonJS implementation of JSON Schema (not the only JavaScript implementation of JSON Schema, JSV is another excellent JavaScript validator).

Code is licensed under the AFL or BSD license as part of the Persevere
project which is administered under the Dojo foundation,
and all contributions require a Dojo CLA.

 json-schema-traverse

json-schema-traverse

Traverse JSON Schema passing each schema object to callback

[image: ../../../_images/json-schema-traverse.svg]Build Status [https://travis-ci.org/epoberezkin/json-schema-traverse]
[image: ../../../_images/json-schema-traverse1.svg]npm version [https://www.npmjs.com/package/json-schema-traverse]
[image: ../../../_images/badge3.svg]Coverage Status [https://coveralls.io/github/epoberezkin/json-schema-traverse?branch=master]

Install

npm install json-schema-traverse

Usage

const traverse = require('json-schema-traverse');
const schema = {
 properties: {
 foo: {type: 'string'},
 bar: {type: 'integer'}
 }
};

traverse(schema, {cb});
// cb is called 3 times with:
// 1. root schema
// 2. {type: 'string'}
// 3. {type: 'integer'}

// Or:

traverse(schema, {cb: {pre, post}});
// pre is called 3 times with:
// 1. root schema
// 2. {type: 'string'}
// 3. {type: 'integer'}
//
// post is called 3 times with:
// 1. {type: 'string'}
// 2. {type: 'integer'}
// 3. root schema

Callback function cb is called for each schema object (not including draft-06 boolean schemas), including the root schema, in pre-order traversal. Schema references ($ref) are not resolved, they are passed as is. Alternatively, you can pass a {pre, post} object as cb, and then pre will be called before traversing child elements, and post will be called after all child elements have been traversed.

Callback is passed these parameters:

	schema: the current schema object

	JSON pointer: from the root schema to the current schema object

	root schema: the schema passed to traverse object

	parent JSON pointer: from the root schema to the parent schema object (see below)

	parent keyword: the keyword inside which this schema appears (e.g. properties, anyOf, etc.)

	parent schema: not necessarily parent object/array; in the example above the parent schema for {type: 'string'} is the root schema

	index/property: index or property name in the array/object containing multiple schemas; in the example above for {type: 'string'} the property name is 'foo'

Traverse objects in all unknown keywords

const traverse = require('json-schema-traverse');
const schema = {
 mySchema: {
 minimum: 1,
 maximum: 2
 }
};

traverse(schema, {allKeys: true, cb});
// cb is called 2 times with:
// 1. root schema
// 2. mySchema

Without option allKeys: true callback will be called only with root schema.

License

MIT [https://github.com/epoberezkin/json-schema-traverse/blob/master/LICENSE]

 Unreleased

Unreleased

	Fixes stringify to only take ancestors into account when checking
circularity.It previously assumed every visited object was circular which led to false
positives [https://github.com/isaacs/json-stringify-safe/issues/9].Uses the tiny serializer I wrote for Must.js [https://github.com/moll/js-must] a year and a half ago.

	Fixes calling the replacer function in the proper context (thisArg).

	Fixes calling the cycleReplacer function in the proper context (thisArg).

	Speeds serializing by a factor of
Big-O(h-my-god-it-linearly-searched-every-object) it had ever seen. Searching
only the ancestors for a circular references speeds up things considerably.

 json-stringify-safe

json-stringify-safe

Like JSON.stringify, but doesn’t throw on circular references.

Usage

Takes the same arguments as JSON.stringify.

var stringify = require('json-stringify-safe');
var circularObj = {};
circularObj.circularRef = circularObj;
circularObj.list = [circularObj, circularObj];
console.log(stringify(circularObj, null, 2));

Output:

{
 "circularRef": "[Circular]",
 "list": [
 "[Circular]",
 "[Circular]"
]
}

Details

stringify(obj, serializer, indent, decycler)

The first three arguments are the same as to JSON.stringify. The last
is an argument that’s only used when the object has been seen already.

The default decycler function returns the string '[Circular]'.
If, for example, you pass in function(k,v){} (return nothing) then it
will prune cycles. If you pass in function(k,v){ return {foo: 'bar'}},
then cyclical objects will always be represented as {"foo":"bar"} in
the result.

stringify.getSerialize(serializer, decycler)

Returns a serializer that can be used elsewhere. This is the actual
function that’s passed to JSON.stringify.

Note that the function returned from getSerialize is stateful for now, so
do not use it more than once.

 Changelog

Changelog

not yet released

None yet.

v1.4.1 (2017-08-02)

	#21 Update verror dep

	#22 Update extsprintf dependency

	#23 update contribution guidelines

v1.4.0 (2017-03-13)

	#7 Add parseInteger() function for safer number parsing

v1.3.1 (2016-09-12)

	#13 Incompatible with webpack

v1.3.0 (2016-06-22)

	#14 add safer version of hasOwnProperty()

	#15 forEachKey() should ignore inherited properties

v1.2.2 (2015-10-15)

	#11 NPM package shouldn’t include any code that does require('JSV')

	#12 jsl.node.conf missing definition for “module”

v1.2.1 (2015-10-14)

	#8 odd date parsing behaviour

v1.2.0 (2015-10-13)

	#9 want function for returning RFC1123 dates

v1.1.0 (2015-09-02)

	#6 a new suite of hrtime manipulation routines: hrtimeAdd(),
hrtimeAccum(), hrtimeNanosec(), hrtimeMicrosec() and
hrtimeMillisec().

v1.0.0 (2015-09-01)

First tracked release. Includes everything in previous releases, plus:

	#4 want function for merging objects

 Contributing

Contributing

This repository uses cr.joyent.us [https://cr.joyent.us] (Gerrit) for new
changes. Anyone can submit changes. To get started, see the cr.joyent.us user
guide [https://github.com/joyent/joyent-gerrit/blob/master/docs/user/README].
This repo does not use GitHub pull requests.

See the Joyent Engineering
Guidelines [https://github.com/joyent/eng/blob/master/docs/index] for general
best practices expected in this repository.

Contributions should be “make prepush” clean. The “prepush” target runs the
“check” target, which requires these separate tools:

	https://github.com/davepacheco/jsstyle

	https://github.com/davepacheco/javascriptlint

If you’re changing something non-trivial or user-facing, you may want to submit
an issue first.

 jsprim: utilities for primitive JavaScript types

jsprim: utilities for primitive JavaScript types

This module provides miscellaneous facilities for working with strings,
numbers, dates, and objects and arrays of these basic types.

deepCopy(obj)

Creates a deep copy of a primitive type, object, or array of primitive types.

deepEqual(obj1, obj2)

Returns whether two objects are equal.

isEmpty(obj)

Returns true if the given object has no properties and false otherwise. This
is O(1) (unlike Object.keys(obj).length === 0, which is O(N)).

hasKey(obj, key)

Returns true if the given object has an enumerable, non-inherited property
called key. For information on enumerability and ownership of properties, see
the MDN
documentation. [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Enumerability_and_ownership_of_properties]

forEachKey(obj, callback)

Like Array.forEach, but iterates enumerable, owned properties of an object
rather than elements of an array. Equivalent to:

for (var key in obj) {
 if (Object.prototype.hasOwnProperty.call(obj, key)) {
 callback(key, obj[key]);
 }
}

flattenObject(obj, depth)

Flattens an object up to a given level of nesting, returning an array of arrays
of length “depth + 1”, where the first “depth” elements correspond to flattened
columns and the last element contains the remaining object . For example:

flattenObject({
 'I': {
 'A': {
 'i': {
 'datum1': [1, 2],
 'datum2': [3, 4]
 },
 'ii': {
 'datum1': [3, 4]
 }
 },
 'B': {
 'i': {
 'datum1': [5, 6]
 },
 'ii': {
 'datum1': [7, 8],
 'datum2': [3, 4],
 },
 'iii': {
 }
 }
 },
 'II': {
 'A': {
 'i': {
 'datum1': [1, 2],
 'datum2': [3, 4]
 }
 }
 }
}, 3)

becomes:

[
 ['I', 'A', 'i', { 'datum1': [1, 2], 'datum2': [3, 4] }],
 ['I', 'A', 'ii', { 'datum1': [3, 4] }],
 ['I', 'B', 'i', { 'datum1': [5, 6] }],
 ['I', 'B', 'ii', { 'datum1': [7, 8], 'datum2': [3, 4] }],
 ['I', 'B', 'iii', {}],
 ['II', 'A', 'i', { 'datum1': [1, 2], 'datum2': [3, 4] }]
]

This function is strict: “depth” must be a non-negative integer and “obj” must
be a non-null object with at least “depth” levels of nesting under all keys.

flattenIter(obj, depth, func)

This is similar to flattenObject except that instead of returning an array,
this function invokes func(entry) for each entry in the array that
flattenObject would return. flattenIter(obj, depth, func) is logically
equivalent to flattenObject(obj, depth).forEach(func). Importantly, this
version never constructs the full array. Its memory usage is O(depth) rather
than O(n) (where n is the number of flattened elements).

There’s another difference between flattenObject and flattenIter that’s
related to the special case where depth === 0. In this case, flattenObject
omits the array wrapping obj (which is regrettable).

pluck(obj, key)

Fetch nested property “key” from object “obj”, traversing objects as needed.
For example, pluck(obj, "foo.bar.baz") is roughly equivalent to
obj.foo.bar.baz, except that:

	If traversal fails, the resulting value is undefined, and no error is
thrown. For example, pluck({}, "foo.bar") is just undefined.

	If “obj” has property “key” directly (without traversing), the
corresponding property is returned. For example,
pluck({ 'foo.bar': 1 }, 'foo.bar') is 1, not undefined. This is also
true recursively, so pluck({ 'a': { 'foo.bar': 1 } }, 'a.foo.bar') is
also 1, not undefined.

randElt(array)

Returns an element from “array” selected uniformly at random. If “array” is
empty, throws an Error.

startsWith(str, prefix)

Returns true if the given string starts with the given prefix and false
otherwise.

endsWith(str, suffix)

Returns true if the given string ends with the given suffix and false
otherwise.

parseInteger(str, options)

Parses the contents of str (a string) as an integer. On success, the integer
value is returned (as a number). On failure, an error is returned describing
why parsing failed.

By default, leading and trailing whitespace characters are not allowed, nor are
trailing characters that are not part of the numeric representation. This
behaviour can be toggled by using the options below. The empty string ('') is
not considered valid input. If the return value cannot be precisely represented
as a number (i.e., is smaller than Number.MIN_SAFE_INTEGER or larger than
Number.MAX_SAFE_INTEGER), an error is returned. Additionally, the string
'-0' will be parsed as the integer 0, instead of as the IEEE floating point
value -0.

This function accepts both upper and lowercase characters for digits, similar to
parseInt(), Number(), and strtol(3C) [https://illumos.org/man/3C/strtol].

The following may be specified in options:

Option | Type | Default | Meaning
—————— | ——- | ——- | —————————
base | number | 10 | numeric base (radix) to use, in the range 2 to 36
allowSign | boolean | true | whether to interpret any leading + (positive) and - (negative) characters
allowImprecise | boolean | false | whether to accept values that may have lost precision (past MAX_SAFE_INTEGER or below MIN_SAFE_INTEGER)
allowPrefix | boolean | false | whether to interpret the prefixes 0b (base 2), 0o (base 8), 0t (base 10), or 0x (base 16)
allowTrailing | boolean | false | whether to ignore trailing characters
trimWhitespace | boolean | false | whether to trim any leading or trailing whitespace/line terminators
leadingZeroIsOctal | boolean | false | whether a leading zero indicates octal

Note that if base is unspecified, and allowPrefix or leadingZeroIsOctal
are, then the leading characters can change the default base from 10. If base
is explicitly specified and allowPrefix is true, then the prefix will only be
accepted if it matches the specified base. base and leadingZeroIsOctal
cannot be used together.

Context: It’s tricky to parse integers with JavaScript’s built-in facilities
for several reasons:

	parseInt() and Number() by default allow the base to be specified in the
input string by a prefix (e.g., 0x for hex).

	parseInt() allows trailing nonnumeric characters.

	Number(str) returns 0 when str is the empty string ('').

	Both functions return incorrect values when the input string represents a
valid integer outside the range of integers that can be represented precisely.
Specifically, parseInt('9007199254740993') returns 9007199254740992.

	Both functions always accept - and + signs before the digit.

	Some older JavaScript engines always interpret a leading 0 as indicating
octal, which can be surprising when parsing input from users who expect a
leading zero to be insignificant.

While each of these may be desirable in some contexts, there are also times when
none of them are wanted. parseInteger() grants greater control over what
input’s permissible.

iso8601(date)

Converts a Date object to an ISO8601 date string of the form
“YYYY-MM-DDTHH:MM:SS.sssZ”. This format is not customizable.

parseDateTime(str)

Parses a date expressed as a string, as either a number of milliseconds since
the epoch or any string format that Date accepts, giving preference to the
former where these two sets overlap (e.g., strings containing small numbers).

hrtimeDiff(timeA, timeB)

Given two hrtime readings (as from Node’s process.hrtime()), where timeA is
later than timeB, compute the difference and return that as an hrtime. It is
illegal to invoke this for a pair of times where timeB is newer than timeA.

hrtimeAdd(timeA, timeB)

Add two hrtime intervals (as from Node’s process.hrtime()), returning a new
hrtime interval array. This function does not modify either input argument.

hrtimeAccum(timeA, timeB)

Add two hrtime intervals (as from Node’s process.hrtime()), storing the
result in timeA. This function overwrites (and returns) the first argument
passed in.

hrtimeNanosec(timeA), hrtimeMicrosec(timeA), hrtimeMillisec(timeA)

This suite of functions converts a hrtime interval (as from Node’s
process.hrtime()) into a scalar number of nanoseconds, microseconds or
milliseconds. Results are truncated, as with Math.floor().

validateJsonObject(schema, object)

Uses JSON validation (via JSV) to validate the given object against the given
schema. On success, returns null. On failure, returns (does not throw) a
useful Error object.

extraProperties(object, allowed)

Check an object for unexpected properties. Accepts the object to check, and an
array of allowed property name strings. If extra properties are detected, an
array of extra property names is returned. If no properties other than those
in the allowed list are present on the object, the returned array will be of
zero length.

mergeObjects(provided, overrides, defaults)

Merge properties from objects “provided”, “overrides”, and “defaults”. The
intended use case is for functions that accept named arguments in an “args”
object, but want to provide some default values and override other values. In
that case, “provided” is what the caller specified, “overrides” are what the
function wants to override, and “defaults” contains default values.

The function starts with the values in “defaults”, overrides them with the
values in “provided”, and then overrides those with the values in “overrides”.
For convenience, any of these objects may be falsey, in which case they will be
ignored. The input objects are never modified, but properties in the returned
object are not deep-copied.

For example:

mergeObjects(undefined, { 'objectMode': true }, { 'highWaterMark': 0 })

returns:

{ 'objectMode': true, 'highWaterMark': 0 }

For another example:

mergeObjects(
 { 'highWaterMark': 16, 'objectMode': 7 }, /* from caller */
 { 'objectMode': true }, /* overrides */
 { 'highWaterMark': 0 }); /* default */

returns:

{ 'objectMode': true, 'highWaterMark': 16 }

Contributing

See separate contribution guidelines.

 location

location

A mock location object for unit tests and such and to maintain compatibility between Ender.JS and Node.JS

For best results, create a location.config.js in the working directory of your app that returns a location object that should be used.

Current Implementation

var fs = require('fs')
 , location
 , defaultLocation
 ;

defaultLocation = {
 "origin": "http://localhost:3000",
 "pathname": "/",
 "host": "localhost:3000",
 "hostname": "localhost",
 "port": "3000",
 "search": "",
 "hash": "#home",
 "href": "http://localhost:3000/#home",
 "protocol": "http:"
};

try {
 // TODO try all from `__dirname` to `/` before giving up
 location = fs.readFileSync('./location.config.js');
} catch(e) {
 location = defaultLocation;
}

module.exports = location;

TODO

Look for __dirname + "location.config.js" and then look up one directory at each failure before finally giving up and using the default object.

 1.38.0 / 2019-02-04

1.38.0 / 2019-02-04

	Add extension .nq to application/n-quads

	Add extension .nt to application/n-triples

	Add new upstream MIME types

	Mark text/less as compressible

1.37.0 / 2018-10-19

	Add extensions to HEIC image types

	Add new upstream MIME types

1.36.0 / 2018-08-20

	Add Apple file extensions from IANA

	Add extensions from IANA for image/* types

	Add new upstream MIME types

1.35.0 / 2018-07-15

	Add extension .owl to application/rdf+xml

	Add new upstream MIME types

	Removes extension .woff from application/font-woff

1.34.0 / 2018-06-03

	Add extension .csl to application/vnd.citationstyles.style+xml

	Add extension .es to application/ecmascript

	Add new upstream MIME types

	Add UTF-8 as default charset for text/turtle

	Mark all XML-derived types as compressible

1.33.0 / 2018-02-15

	Add extensions from IANA for message/* types

	Add new upstream MIME types

	Fix some incorrect OOXML types

	Remove application/font-woff2

1.32.0 / 2017-11-29

	Add new upstream MIME types

	Update text/hjson to registered application/hjson

	Add text/shex with extension .shex

1.31.0 / 2017-10-25

	Add application/raml+yaml with extension .raml

	Add application/wasm with extension .wasm

	Add new font type from IANA

	Add new upstream font extensions

	Add new upstream MIME types

	Add extensions for JPEG-2000 images

1.30.0 / 2017-08-27

	Add application/vnd.ms-outlook

	Add application/x-arj

	Add extension .mjs to application/javascript

	Add glTF types and extensions

	Add new upstream MIME types

	Add text/x-org

	Add VirtualBox MIME types

	Fix source records for video/* types that are IANA

	Update font/opentype to registered font/otf

1.29.0 / 2017-07-10

	Add application/fido.trusted-apps+json

	Add extension .wadl to application/vnd.sun.wadl+xml

	Add new upstream MIME types

	Add UTF-8 as default charset for text/css

1.28.0 / 2017-05-14

	Add new upstream MIME types

	Add extension .gz to application/gzip

	Update extensions .md and .markdown to be text/markdown

1.27.0 / 2017-03-16

	Add new upstream MIME types

	Add image/apng with extension .apng

1.26.0 / 2017-01-14

	Add new upstream MIME types

	Add extension .geojson to application/geo+json

1.25.0 / 2016-11-11

	Add new upstream MIME types

1.24.0 / 2016-09-18

	Add audio/mp3

	Add new upstream MIME types

1.23.0 / 2016-05-01

	Add new upstream MIME types

	Add extension .3gpp to audio/3gpp

1.22.0 / 2016-02-15

	Add text/slim

	Add extension .rng to application/xml

	Add new upstream MIME types

	Fix extension of application/dash+xml to be .mpd

	Update primary extension to .m4a for audio/mp4

1.21.0 / 2016-01-06

	Add Google document types

	Add new upstream MIME types

1.20.0 / 2015-11-10

	Add text/x-suse-ymp

	Add new upstream MIME types

1.19.0 / 2015-09-17

	Add application/vnd.apple.pkpass

	Add new upstream MIME types

1.18.0 / 2015-09-03

	Add new upstream MIME types

1.17.0 / 2015-08-13

	Add application/x-msdos-program

	Add audio/g711-0

	Add image/vnd.mozilla.apng

	Add extension .exe to application/x-msdos-program

1.16.0 / 2015-07-29

	Add application/vnd.uri-map

1.15.0 / 2015-07-13

	Add application/x-httpd-php

1.14.0 / 2015-06-25

	Add application/scim+json

	Add application/vnd.3gpp.ussd+xml

	Add application/vnd.biopax.rdf+xml

	Add text/x-processing

1.13.0 / 2015-06-07

	Add nginx as a source

	Add application/x-cocoa

	Add application/x-java-archive-diff

	Add application/x-makeself

	Add application/x-perl

	Add application/x-pilot

	Add application/x-redhat-package-manager

	Add application/x-sea

	Add audio/x-m4a

	Add audio/x-realaudio

	Add image/x-jng

	Add text/mathml

1.12.0 / 2015-06-05

	Add application/bdoc

	Add application/vnd.hyperdrive+json

	Add application/x-bdoc

	Add extension .rtf to text/rtf

1.11.0 / 2015-05-31

	Add audio/wav

	Add audio/wave

	Add extension .litcoffee to text/coffeescript

	Add extension .sfd-hdstx to application/vnd.hydrostatix.sof-data

	Add extension .n-gage to application/vnd.nokia.n-gage.symbian.install

1.10.0 / 2015-05-19

	Add application/vnd.balsamiq.bmpr

	Add application/vnd.microsoft.portable-executable

	Add application/x-ns-proxy-autoconfig

1.9.1 / 2015-04-19

	Remove .json extension from application/manifest+json

	This is causing bugs downstream

1.9.0 / 2015-04-19

	Add application/manifest+json

	Add application/vnd.micro+json

	Add image/vnd.zbrush.pcx

	Add image/x-ms-bmp

1.8.0 / 2015-03-13

	Add application/vnd.citationstyles.style+xml

	Add application/vnd.fastcopy-disk-image

	Add application/vnd.gov.sk.xmldatacontainer+xml

	Add extension .jsonld to application/ld+json

1.7.0 / 2015-02-08

	Add application/vnd.gerber

	Add application/vnd.msa-disk-image

1.6.1 / 2015-02-05

	Community extensions ownership transferred from node-mime

1.6.0 / 2015-01-29

	Add application/jose

	Add application/jose+json

	Add application/json-seq

	Add application/jwk+json

	Add application/jwk-set+json

	Add application/jwt

	Add application/rdap+json

	Add application/vnd.gov.sk.e-form+xml

	Add application/vnd.ims.imsccv1p3

1.5.0 / 2014-12-30

	Add application/vnd.oracle.resource+json

	Fix various invalid MIME type entries

	application/mbox+xml

	application/oscp-response

	application/vwg-multiplexed

	audio/g721

1.4.0 / 2014-12-21

	Add application/vnd.ims.imsccv1p2

	Fix various invalid MIME type entries

	application/vnd-acucobol

	application/vnd-curl

	application/vnd-dart

	application/vnd-dxr

	application/vnd-fdf

	application/vnd-mif

	application/vnd-sema

	application/vnd-wap-wmlc

	application/vnd.adobe.flash-movie

	application/vnd.dece-zip

	application/vnd.dvb_service

	application/vnd.micrografx-igx

	application/vnd.sealed-doc

	application/vnd.sealed-eml

	application/vnd.sealed-mht

	application/vnd.sealed-ppt

	application/vnd.sealed-tiff

	application/vnd.sealed-xls

	application/vnd.sealedmedia.softseal-html

	application/vnd.sealedmedia.softseal-pdf

	application/vnd.wap-slc

	application/vnd.wap-wbxml

	audio/vnd.sealedmedia.softseal-mpeg

	image/vnd-djvu

	image/vnd-svf

	image/vnd-wap-wbmp

	image/vnd.sealed-png

	image/vnd.sealedmedia.softseal-gif

	image/vnd.sealedmedia.softseal-jpg

	model/vnd-dwf

	model/vnd.parasolid.transmit-binary

	model/vnd.parasolid.transmit-text

	text/vnd-a

	text/vnd-curl

	text/vnd.wap-wml

	Remove example template MIME types

	application/example

	audio/example

	image/example

	message/example

	model/example

	multipart/example

	text/example

	video/example

1.3.1 / 2014-12-16

	Fix missing extensions

	application/json5

	text/hjson

1.3.0 / 2014-12-07

	Add application/a2l

	Add application/aml

	Add application/atfx

	Add application/atxml

	Add application/cdfx+xml

	Add application/dii

	Add application/json5

	Add application/lxf

	Add application/mf4

	Add application/vnd.apache.thrift.compact

	Add application/vnd.apache.thrift.json

	Add application/vnd.coffeescript

	Add application/vnd.enphase.envoy

	Add application/vnd.ims.imsccv1p1

	Add text/csv-schema

	Add text/hjson

	Add text/markdown

	Add text/yaml

1.2.0 / 2014-11-09

	Add application/cea

	Add application/dit

	Add application/vnd.gov.sk.e-form+zip

	Add application/vnd.tmd.mediaflex.api+xml

	Type application/epub+zip is now IANA-registered

1.1.2 / 2014-10-23

	Rebuild database for application/x-www-form-urlencoded change

1.1.1 / 2014-10-20

	Mark application/x-www-form-urlencoded as compressible.

1.1.0 / 2014-09-28

	Add application/font-woff2

1.0.3 / 2014-09-25

	Fix engine requirement in package

1.0.2 / 2014-09-25

	Add application/coap-group+json

	Add application/dcd

	Add application/vnd.apache.thrift.binary

	Add image/vnd.tencent.tap

	Mark all JSON-derived types as compressible

	Update text/vtt data

1.0.1 / 2014-08-30

	Fix extension ordering

1.0.0 / 2014-08-30

	Add application/atf

	Add application/merge-patch+json

	Add multipart/x-mixed-replace

	Add source: 'apache' metadata

	Add source: 'iana' metadata

	Remove badly-assumed charset data

 mime-db

mime-db

[image: ../../../_images/mime-db.svg]NPM Version [https://npmjs.org/package/mime-db]
[image: ../../../_images/mime-db1.svg]NPM Downloads [https://npmjs.org/package/mime-db]
[image: ../../../_images/mime-db2.svg]Node.js Version [https://nodejs.org/en/download]
[image: ../../../_images/master1.svg]Build Status [https://travis-ci.org/jshttp/mime-db]
[image: ../../../_images/master2.svg]Coverage Status [https://coveralls.io/r/jshttp/mime-db?branch=master]

This is a database of all mime types.
It consists of a single, public JSON file and does not include any logic,
allowing it to remain as un-opinionated as possible with an API.
It aggregates data from the following sources:

	http://www.iana.org/assignments/media-types/media-types.xhtml

	http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

	http://hg.nginx.org/nginx/raw-file/default/conf/mime.types

Installation

npm install mime-db

Database Download

If you’re crazy enough to use this in the browser, you can just grab the
JSON file using jsDelivr [https://www.jsdelivr.com/]. It is recommended to
replace master with a release tag [https://github.com/jshttp/mime-db/tags]
as the JSON format may change in the future.

https://cdn.jsdelivr.net/gh/jshttp/mime-db@master/db.json

Usage

var db = require('mime-db');

// grab data on .js files
var data = db['application/javascript'];

Data Structure

The JSON file is a map lookup for lowercased mime types.
Each mime type has the following properties:

	.source - where the mime type is defined.
If not set, it’s probably a custom media type.

	apache - Apache common media types [http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types]

	iana - IANA-defined media types [http://www.iana.org/assignments/media-types/media-types.xhtml]

	nginx - nginx media types [http://hg.nginx.org/nginx/raw-file/default/conf/mime.types]

	.extensions[] - known extensions associated with this mime type.

	.compressible - whether a file of this type can be gzipped.

	.charset - the default charset associated with this type, if any.

If unknown, every property could be undefined.

Contributing

To edit the database, only make PRs against src/custom.json or
src/custom-suffix.json.

The src/custom.json file is a JSON object with the MIME type as the keys
and the values being an object with the following keys:

	compressible - leave out if you don’t know, otherwise true/false to
indicate whether the data represented by the type is typically compressible.

	extensions - include an array of file extensions that are associated with
the type.

	notes - human-readable notes about the type, typically what the type is.

	sources - include an array of URLs of where the MIME type and the associated
extensions are sourced from. This needs to be a primary source [https://en.wikipedia.org/wiki/Primary_source];
links to type aggregating sites and Wikipedia are not acceptable.

To update the build, run npm run build.

Adding Custom Media Types

The best way to get new media types included in this library is to register
them with the IANA. The community registration procedure is outlined in
RFC 6838 section 5 [http://tools.ietf.org/html/rfc6838#section-5]. Types
registered with the IANA are automatically pulled into this library.

 2.1.22 / 2019-02-14

2.1.22 / 2019-02-14

	deps: mime-db@~1.38.0

	Add extension .nq to application/n-quads

	Add extension .nt to application/n-triples

	Add new upstream MIME types

	Mark text/less as compressible

2.1.21 / 2018-10-19

	deps: mime-db@~1.37.0

	Add extensions to HEIC image types

	Add new upstream MIME types

2.1.20 / 2018-08-26

	deps: mime-db@~1.36.0

	Add Apple file extensions from IANA

	Add extensions from IANA for image/* types

	Add new upstream MIME types

2.1.19 / 2018-07-17

	deps: mime-db@~1.35.0

	Add extension .csl to application/vnd.citationstyles.style+xml

	Add extension .es to application/ecmascript

	Add extension .owl to application/rdf+xml

	Add new upstream MIME types

	Add UTF-8 as default charset for text/turtle

2.1.18 / 2018-02-16

	deps: mime-db@~1.33.0

	Add application/raml+yaml with extension .raml

	Add application/wasm with extension .wasm

	Add text/shex with extension .shex

	Add extensions for JPEG-2000 images

	Add extensions from IANA for message/* types

	Add new upstream MIME types

	Update font MIME types

	Update text/hjson to registered application/hjson

2.1.17 / 2017-09-01

	deps: mime-db@~1.30.0

	Add application/vnd.ms-outlook

	Add application/x-arj

	Add extension .mjs to application/javascript

	Add glTF types and extensions

	Add new upstream MIME types

	Add text/x-org

	Add VirtualBox MIME types

	Fix source records for video/* types that are IANA

	Update font/opentype to registered font/otf

2.1.16 / 2017-07-24

	deps: mime-db@~1.29.0

	Add application/fido.trusted-apps+json

	Add extension .wadl to application/vnd.sun.wadl+xml

	Add extension .gz to application/gzip

	Add new upstream MIME types

	Update extensions .md and .markdown to be text/markdown

2.1.15 / 2017-03-23

	deps: mime-db@~1.27.0

	Add new mime types

	Add image/apng

2.1.14 / 2017-01-14

	deps: mime-db@~1.26.0

	Add new mime types

2.1.13 / 2016-11-18

	deps: mime-db@~1.25.0

	Add new mime types

2.1.12 / 2016-09-18

	deps: mime-db@~1.24.0

	Add new mime types

	Add audio/mp3

2.1.11 / 2016-05-01

	deps: mime-db@~1.23.0

	Add new mime types

2.1.10 / 2016-02-15

	deps: mime-db@~1.22.0

	Add new mime types

	Fix extension of application/dash+xml

	Update primary extension for audio/mp4

2.1.9 / 2016-01-06

	deps: mime-db@~1.21.0

	Add new mime types

2.1.8 / 2015-11-30

	deps: mime-db@~1.20.0

	Add new mime types

2.1.7 / 2015-09-20

	deps: mime-db@~1.19.0

	Add new mime types

2.1.6 / 2015-09-03

	deps: mime-db@~1.18.0

	Add new mime types

2.1.5 / 2015-08-20

	deps: mime-db@~1.17.0

	Add new mime types

2.1.4 / 2015-07-30

	deps: mime-db@~1.16.0

	Add new mime types

2.1.3 / 2015-07-13

	deps: mime-db@~1.15.0

	Add new mime types

2.1.2 / 2015-06-25

	deps: mime-db@~1.14.0

	Add new mime types

2.1.1 / 2015-06-08

	perf: fix deopt during mapping

2.1.0 / 2015-06-07

	Fix incorrectly treating extension-less file name as extension

	i.e. 'path/to/json' will no longer return application/json

	Fix .charset(type) to accept parameters

	Fix .charset(type) to match case-insensitive

	Improve generation of extension to MIME mapping

	Refactor internals for readability and no argument reassignment

	Prefer application/* MIME types from the same source

	Prefer any type over application/octet-stream

	deps: mime-db@~1.13.0

	Add nginx as a source

	Add new mime types

2.0.14 / 2015-06-06

	deps: mime-db@~1.12.0

	Add new mime types

2.0.13 / 2015-05-31

	deps: mime-db@~1.11.0

	Add new mime types

2.0.12 / 2015-05-19

	deps: mime-db@~1.10.0

	Add new mime types

2.0.11 / 2015-05-05

	deps: mime-db@~1.9.1

	Add new mime types

2.0.10 / 2015-03-13

	deps: mime-db@~1.8.0

	Add new mime types

2.0.9 / 2015-02-09

	deps: mime-db@~1.7.0

	Add new mime types

	Community extensions ownership transferred from node-mime

2.0.8 / 2015-01-29

	deps: mime-db@~1.6.0

	Add new mime types

2.0.7 / 2014-12-30

	deps: mime-db@~1.5.0

	Add new mime types

	Fix various invalid MIME type entries

2.0.6 / 2014-12-30

	deps: mime-db@~1.4.0

	Add new mime types

	Fix various invalid MIME type entries

	Remove example template MIME types

2.0.5 / 2014-12-29

	deps: mime-db@~1.3.1

	Fix missing extensions

2.0.4 / 2014-12-10

	deps: mime-db@~1.3.0

	Add new mime types

2.0.3 / 2014-11-09

	deps: mime-db@~1.2.0

	Add new mime types

2.0.2 / 2014-09-28

	deps: mime-db@~1.1.0

	Add new mime types

	Add additional compressible

	Update charsets

2.0.1 / 2014-09-07

	Support Node.js 0.6

2.0.0 / 2014-09-02

	Use mime-db

	Remove .define()

1.0.2 / 2014-08-04

	Set charset=utf-8 for text/javascript

1.0.1 / 2014-06-24

	Add text/jsx type

1.0.0 / 2014-05-12

	Return false for unknown types

	Set charset=utf-8 for application/json

0.1.0 / 2014-05-02

	Initial release

 mime-types

mime-types

[image: ../../../_images/mime-types.svg]NPM Version [https://npmjs.org/package/mime-types]
[image: ../../../_images/mime-types1.svg]NPM Downloads [https://npmjs.org/package/mime-types]
[image: ../../../_images/mime-types2.svg]Node.js Version [https://nodejs.org/en/download]
[image: ../../../_images/master3.svg]Build Status [https://travis-ci.org/jshttp/mime-types]
[image: ../../../_images/master4.svg]Test Coverage [https://coveralls.io/r/jshttp/mime-types?branch=master]

The ultimate javascript content-type utility.

Similar to the mime@1.x module [https://www.npmjs.com/package/mime], except:

	No fallbacks. Instead of naively returning the first available type,
mime-types simply returns false, so do
var type = mime.lookup('unrecognized') || 'application/octet-stream'.

	No new Mime() business, so you could do var lookup = require('mime-types').lookup.

	No .define() functionality

	Bug fixes for .lookup(path)

Otherwise, the API is compatible with mime 1.x.

Install

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install mime-types

Adding Types

All mime types are based on mime-db [https://www.npmjs.com/package/mime-db],
so open a PR there if you’d like to add mime types.

API

var mime = require('mime-types')

All functions return false if input is invalid or not found.

mime.lookup(path)

Lookup the content-type associated with a file.

mime.lookup('json') // 'application/json'
mime.lookup('.md') // 'text/markdown'
mime.lookup('file.html') // 'text/html'
mime.lookup('folder/file.js') // 'application/javascript'
mime.lookup('folder/.htaccess') // false

mime.lookup('cats') // false

mime.contentType(type)

Create a full content-type header given a content-type or extension.
When given an extension, mime.lookup is used to get the matching
content-type, otherwise the given content-type is used. Then if the
content-type does not already have a charset parameter, mime.charset
is used to get the default charset and add to the returned content-type.

mime.contentType('markdown') // 'text/x-markdown; charset=utf-8'
mime.contentType('file.json') // 'application/json; charset=utf-8'
mime.contentType('text/html') // 'text/html; charset=utf-8'
mime.contentType('text/html; charset=iso-8859-1') // 'text/html; charset=iso-8859-1'

// from a full path
mime.contentType(path.extname('/path/to/file.json')) // 'application/json; charset=utf-8'

mime.extension(type)

Get the default extension for a content-type.

mime.extension('application/octet-stream') // 'bin'

mime.charset(type)

Lookup the implied default charset of a content-type.

mime.charset('text/markdown') // 'UTF-8'

var type = mime.types[extension]

A map of content-types by extension.

[extensions…] = mime.extensions[type]

A map of extensions by content-type.

License

MIT

 NAN ChangeLog

NAN ChangeLog

Version 2.12.1: current Node 11.4.0, Node 0.12: 0.12.18, Node 0.10: 0.10.48, iojs: 3.3.1

2.12.1 Dec 18 2018

	Bugfix: Fix build breakage with Node.js 10.0.0-10.9.0. (#833) 625e90e8fef8d39ffa7247250a76a100b2487474

2.12.0 Dec 16 2018

	Bugfix: Add scope.Escape() to Call() (#817) 2e5ed4fc3a8ac80a6ef1f2a55099ab3ac8800dc6

	Bugfix: Fix Node.js v10.12.0 deprecation warnings. 509859cc23b1770376b56550a027840a2ce0f73d

	Feature: Allow SetWeak() for non-object persistent handles. (#824) e6ef6a48e7e671fe3e4b7dddaa8912a3f8262ecd

2.11.1 Sep 29 2018

	Fix: adapt to V8 7.0 24a22c3b25eeeec2016c6ec239bdd6169e985447

2.11.0 Aug 25 2018

	Removal: remove FunctionCallbackInfo::Callee for nodejs >= 10 1a56c0a6efd4fac944cb46c30912a8e023bda7d4

	Bugfix: Fix AsyncProgressWorkerBase::WorkProgress sends invalid data b0c764d1dab11e9f8b37ffb81e2560a4498aad5e

	Feature: Introduce GetCurrentEventLoop b4911b0bb1f6d47d860e10ec014d941c51efac5e

	Feature: Add NAN_MODULE_WORKER_ENABLED macro as a replacement for NAN_MODULE b058fb047d18a58250e66ae831444441c1f2ac7a

2.10.0 Mar 16 2018

	Deprecation: Deprecate MakeCallback 5e92b19a59e194241d6a658bd6ff7bfbda372950

	Feature: add Nan::Call overload 4482e1242fe124d166fc1a5b2be3c1cc849fe452

	Feature: add more Nan::Call overloads 8584e63e6d04c7d2eb8c4a664e4ef57d70bf672b

	Feature: Fix deprecation warnings for Node 10 1caf258243b0602ed56922bde74f1c91b0cbcb6a

2.9.2 Feb 22 2018

	Bugfix: Bandaid for async hooks 212bd2f849be14ef1b02fc85010b053daa24252b

2.9.1 Feb 22 2018

	Bugfix: Avoid deprecation warnings in deprecated Nan::Callback::operator() 372b14d91289df4604b0f81780709708c45a9aa4

	Bugfix: Avoid deprecation warnings in Nan::JSON 3bc294bce0b7d0a3ee4559926303e5ed4866fda2

2.9.0 Feb 22 2018

	Deprecation: Deprecate legacy Callback::Call 6dd5fa690af61ca3523004b433304c581b3ea309

	Feature: introduce AsyncResource class 90c0a179c0d8cb5fd26f1a7d2b1d6231eb402d48o

	Feature: Add context aware Nan::Callback::Call functions 7169e09fb088418b6e388222e88b4c13f07ebaee

	Feature: Make AsyncWorker context aware 066ba21a6fb9e2b5230c9ed3a6fc51f1211736a4

	Feature: add Callback overload to Nan::Call 5328daf66e202658c1dc0d916c3aaba99b3cc606

	Bugfix: fix warning: suggest parentheses around && within || b2bb63d68b8ae623a526b542764e1ac82319cb2c

	Bugfix: Fix compilation on io.js 3 d06114dba0a522fb436f0c5f47b994210968cd7b

2.8.0 Nov 15 2017

	Deprecation: Deprecate Nan::ForceSet in favor of Nan::DefineOwnProperty() 95cbb976d6fbbba88ba0f86dd188223a8591b4e7

	Feature: Add Nan::AsyncProgressQueueWorker a976636ecc2ef617d1b061ce4a6edf39923691cb

	Feature: Add Nan::DefineOwnProperty() 95cbb976d6fbbba88ba0f86dd188223a8591b4e7

	Bugfix: Fix compiling on io.js 1 & 2 82705a64503ce60c62e98df5bd02972bba090900

	Bugfix: Use DefineOwnProperty instead of ForceSet 95cbb976d6fbbba88ba0f86dd188223a8591b4e7

2.7.0 Aug 30 2017

	Feature: Add Nan::To<v8::Function>() overload. b93280670c9f6da42ed4cf6cbf085ffdd87bd65b

	Bugfix: Fix ternary in Nan::MaybeLocal<T>::FromMaybe<S>(). 79a26f7d362e756a9524e672a82c3d603b542867

2.6.2 Apr 12 2017

	Bugfix: Fix v8::JSON::Parse() deprecation warning. 87f6a3c65815fa062296a994cc863e2fa124867d

2.6.1 Apr 6 2017

	Bugfix: nan_json.h: fix build breakage in Node 6 ac8d47dc3c10bfbf3f15a6b951633120c0ee6d51

2.6.0 Apr 6 2017

	Feature: nan: add support for JSON::Parse & Stringify b533226c629cce70e1932a873bb6f849044a56c5

2.5.1 Jan 23 2017

	Bugfix: Fix disappearing handle for private value 6a80995694f162ef63dbc9948fbefd45d4485aa0

	Bugfix: Add missing scopes a93b8bae6bc7d32a170db6e89228b7f60ee57112

	Bugfix: Use string::data instead of string::front in NewOneByteString d5f920371e67e1f3b268295daee6e83af86b6e50

2.5.0 Dec 21 2016

	Feature: Support Private accessors a86255cb357e8ad8ccbf1f6a4a901c921e39a178

	Bugfix: Abort in delete operators that shouldn’t be called 0fe38215ff8581703967dfd26c12793feb960018

2.4.0 Jul 10 2016

	Feature: Rewrite Callback to add Callback::Reset c4cf44d61f8275cd5f7b0c911d7a806d4004f649

	Feature: AsyncProgressWorker: add template types for .send 1242c9a11a7ed481c8f08ec06316385cacc513d0

	Bugfix: Add constness to old Persistent comparison operators bd43cb9982c7639605d60fd073efe8cae165d9b2

2.3.5 May 31 2016

	Bugfix: Replace NAN_INLINE with ‘inline’ keyword. 71819d8725f822990f439479c9aba3b240804909

2.3.4 May 31 2016

	Bugfix: Remove V8 deprecation warnings 0592fb0a47f3a1c7763087ebea8e1138829f24f9

	Bugfix: Fix new versions not to use WeakCallbackInfo::IsFirstPass 615c19d9e03d4be2049c10db0151edbc3b229246

	Bugfix: Make ObjectWrap::handle() const d19af99595587fe7a26bd850af6595c2a7145afc

	Bugfix: Fix compilation errors related to 0592fb0a47f3a1c7763087ebea8e1138829f24f9 e9191c525b94f652718325e28610a1adcf90fed8

2.3.3 May 4 2016

	Bugfix: Refactor SetMethod() to deal with v8::Templates (#566) b9083cf6d5de6ebe6bcb49c7502fbb7c0d9ddda8

2.3.2 Apr 27 2016

	Bugfix: Fix compilation on outdated versions due to Handle removal f8b7c875d04d425a41dfd4f3f8345bc3a11e6c52

2.3.1 Apr 27 2016

	Bugfix: Don’t use deprecated v8::Template::Set() in SetMethod a90951e9ea70fa1b3836af4b925322919159100e

2.3.0 Apr 27 2016

	Feature: added Signal() for invoking async callbacks without sending data from AsyncProgressWorker d8adba45f20e077d00561b20199133620c990b38

	Bugfix: Don’t use deprecated v8::Template::Set() 00dacf0a4b86027415867fa7f1059acc499dcece

2.2.1 Mar 29 2016

	Bugfix: Use NewFromUnsigned in ReturnValue::Set(uint32_t i) for pre_12 3a18f9bdce29826e0e4c217854bc476918241a58

 The MIT License (MIT)

The MIT License (MIT)

Copyright (c) 2018 NAN contributors

NAN contributors listed at https://github.com/nodejs/nan#contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Native Abstractions for Node.js

Native Abstractions for Node.js

A header file filled with macro and utility goodness for making add-on development for Node.js easier across versions 0.8, 0.10, 0.12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11.

Current version: 2.12.1

(See CHANGELOG.md [https://github.com/nodejs/nan/blob/master/CHANGELOG] for complete ChangeLog)

[image: ../../../_images/nan.png]NPM [https://nodei.co/npm/nan/] [image: ../../../_images/nan1.png]NPM [https://nodei.co/npm/nan/]

[image: ../../../_images/nan.svg]Build Status [https://travis-ci.org/nodejs/nan]
[image: ../../../_images/kh73pbm9dsju7fgh.png]Build status [https://ci.appveyor.com/project/RodVagg/nan]

Thanks to the crazy changes in V8 (and some in Node core), keeping native addons compiling happily across versions, particularly 0.10 to 0.12 to 4.0, is a minor nightmare. The goal of this project is to store all logic necessary to develop native Node.js addons without having to inspect NODE_MODULE_VERSION and get yourself into a macro-tangle.

This project also contains some helper utilities that make addon development a bit more pleasant.

	News & Updates

	Usage

	Example

	API

	Tests

	Knowns issues

	Governance & Contributing

[bookmark: news]

News & Updates

[bookmark: usage]

Usage

Simply add NAN as a dependency in the package.json of your Node addon:

$ npm install --save nan

Pull in the path to NAN in your binding.gyp so that you can use #include <nan.h> in your .cpp files:

"include_dirs" : [
 "<!(node -e \"require('nan')\")"
]

This works like a -I<path-to-NAN> when compiling your addon.

[bookmark: example]

Example

Just getting started with Nan? Take a look at the Node Add-on Examples [https://github.com/nodejs/node-addon-examples].

Refer to a quick-start Nan Boilerplate [https://github.com/fcanas/node-native-boilerplate] for a ready-to-go project that utilizes basic Nan functionality.

For a simpler example, see the async pi estimation example [https://github.com/nodejs/nan/tree/master/examples/async_pi_estimate] in the examples directory for full code and an explanation of what this Monte Carlo Pi estimation example does. Below are just some parts of the full example that illustrate the use of NAN.

Yet another example is nan-example-eol [https://github.com/CodeCharmLtd/nan-example-eol]. It shows newline detection implemented as a native addon.

Also take a look at our comprehensive C++ test suite [https://github.com/nodejs/nan/tree/master/test/cpp] which has a plethora of code snippets for your pasting pleasure.

[bookmark: api]

API

Additional to the NAN documentation below, please consult:

	The V8 Getting Started * Guide [https://github.com/v8/v8/wiki/Getting%20Started%20with%20Embedding]

	The V8 Embedders * Guide [https://github.com/v8/v8/wiki/Embedder%27s%20Guide]

	V8 API Documentation [https://v8docs.nodesource.com/]

	Node Add-on Documentation [https://nodejs.org/api/addons.html]

JavaScript-accessible methods

A template is a blueprint for JavaScript functions and objects in a context. You can use a template to wrap C++ functions and data structures within JavaScript objects so that they can be manipulated from JavaScript. See the V8 Embedders Guide section on Templates [https://github.com/v8/v8/wiki/Embedder%27s-Guide#templates] for further information.

In order to expose functionality to JavaScript via a template, you must provide it to V8 in a form that it understands. Across the versions of V8 supported by NAN, JavaScript-accessible method signatures vary widely, NAN fully abstracts method declaration and provides you with an interface that is similar to the most recent V8 API but is backward-compatible with older versions that still use the now-deceased v8::Argument type.

	Method argument types

	Nan::FunctionCallbackInfo

	Nan::PropertyCallbackInfo

	Nan::ReturnValue

	Method declarations

	Method declaration

	Getter declaration

	Setter declaration

	Property getter declaration

	Property setter declaration

	Property enumerator declaration

	Property deleter declaration

	Property query declaration

	Index getter declaration

	Index setter declaration

	Index enumerator declaration

	Index deleter declaration

	Index query declaration

	Method and template helpers

	Nan::SetMethod()

	Nan::SetPrototypeMethod()

	Nan::SetAccessor()

	Nan::SetNamedPropertyHandler()

	Nan::SetIndexedPropertyHandler()

	Nan::SetTemplate()

	Nan::SetPrototypeTemplate()

	Nan::SetInstanceTemplate()

	Nan::SetCallHandler()

	Nan::SetCallAsFunctionHandler()

Scopes

A local handle is a pointer to an object. All V8 objects are accessed using handles, they are necessary because of the way the V8 garbage collector works.

A handle scope can be thought of as a container for any number of handles. When you’ve finished with your handles, instead of deleting each one individually you can simply delete their scope.

The creation of HandleScope objects is different across the supported versions of V8. Therefore, NAN provides its own implementations that can be used safely across these.

	Nan::HandleScope

	Nan::EscapableHandleScope

Also see the V8 Embedders Guide section on Handles and Garbage Collection [https://github.com/v8/v8/wiki/Embedder%27s%20Guide#handles-and-garbage-collection].

Persistent references

An object reference that is independent of any HandleScope is a persistent reference. Where a Local handle only lives as long as the HandleScope in which it was allocated, a Persistent handle remains valid until it is explicitly disposed.

Due to the evolution of the V8 API, it is necessary for NAN to provide a wrapper implementation of the Persistent classes to supply compatibility across the V8 versions supported.

	Nan::PersistentBase & v8::PersistentBase

	Nan::NonCopyablePersistentTraits & v8::NonCopyablePersistentTraits

	Nan::CopyablePersistentTraits & v8::CopyablePersistentTraits

	Nan::Persistent

	Nan::Global

	Nan::WeakCallbackInfo

	Nan::WeakCallbackType

Also see the V8 Embedders Guide section on Handles and Garbage Collection [https://developers.google.com/v8/embed#handles].

New

NAN provides a Nan::New() helper for the creation of new JavaScript objects in a way that’s compatible across the supported versions of V8.

	Nan::New()

	Nan::Undefined()

	Nan::Null()

	Nan::True()

	Nan::False()

	Nan::EmptyString()

Converters

NAN contains functions that convert v8::Values to other v8::Value types and native types. Since type conversion is not guaranteed to succeed, they return Nan::Maybe types. These converters can be used in place of value->ToX() and value->XValue() (where X is one of the types, e.g. Boolean) in a way that provides a consistent interface across V8 versions. Newer versions of V8 use the new v8::Maybe and v8::MaybeLocal types for these conversions, older versions don’t have this functionality so it is provided by NAN.

	Nan::To()

Maybe Types

The Nan::MaybeLocal and Nan::Maybe types are monads that encapsulate v8::Local handles that may be empty.

	Maybe Types

	Nan::MaybeLocal

	Nan::Maybe

	Nan::Nothing

	Nan::Just

	Maybe Helpers

	Nan::Call()

	Nan::ToDetailString()

	Nan::ToArrayIndex()

	Nan::Equals()

	Nan::NewInstance()

	Nan::GetFunction()

	Nan::Set()

	Nan::DefineOwnProperty()

	Nan::ForceSet()

	Nan::Get()

	Nan::GetPropertyAttributes()

	Nan::Has()

	Nan::Delete()

	Nan::GetPropertyNames()

	Nan::GetOwnPropertyNames()

	Nan::SetPrototype()

	Nan::ObjectProtoToString()

	Nan::HasOwnProperty()

	Nan::HasRealNamedProperty()

	Nan::HasRealIndexedProperty()

	Nan::HasRealNamedCallbackProperty()

	Nan::GetRealNamedPropertyInPrototypeChain()

	Nan::GetRealNamedProperty()

	Nan::CallAsFunction()

	Nan::CallAsConstructor()

	Nan::GetSourceLine()

	Nan::GetLineNumber()

	Nan::GetStartColumn()

	Nan::GetEndColumn()

	Nan::CloneElementAt()

	Nan::HasPrivate()

	Nan::GetPrivate()

	Nan::SetPrivate()

	Nan::DeletePrivate()

	Nan::MakeMaybe()

Script

NAN provides a v8::Script helpers as the API has changed over the supported versions of V8.

	Nan::CompileScript()

	Nan::RunScript()

JSON

The JSON object provides the c++ versions of the methods offered by the JSON object in javascript. V8 exposes these methods via the v8::JSON object.

	Nan::JSON.Parse

	Nan::JSON.Stringify

Refer to the V8 JSON object in the V8 documentation [https://v8docs.nodesource.com/node-8.11/da/d6f/classv8_1_1_j_s_o_n.html] for more information about these methods and their arguments.

Errors

NAN includes helpers for creating, throwing and catching Errors as much of this functionality varies across the supported versions of V8 and must be abstracted.

Note that an Error object is simply a specialized form of v8::Value.

Also consult the V8 Embedders Guide section on Exceptions [https://developers.google.com/v8/embed#exceptions] for more information.

	Nan::Error()

	Nan::RangeError()

	Nan::ReferenceError()

	Nan::SyntaxError()

	Nan::TypeError()

	Nan::ThrowError()

	Nan::ThrowRangeError()

	Nan::ThrowReferenceError()

	Nan::ThrowSyntaxError()

	Nan::ThrowTypeError()

	Nan::FatalException()

	Nan::ErrnoException()

	Nan::TryCatch

Buffers

NAN’s node::Buffer helpers exist as the API has changed across supported Node versions. Use these methods to ensure compatibility.

	Nan::NewBuffer()

	Nan::CopyBuffer()

	Nan::FreeCallback()

Nan::Callback

Nan::Callback makes it easier to use v8::Function handles as callbacks. A class that wraps a v8::Function handle, protecting it from garbage collection and making it particularly useful for storage and use across asynchronous execution.

	Nan::Callback

Asynchronous work helpers

Nan::AsyncWorker, Nan::AsyncProgressWorker and Nan::AsyncProgressQueueWorker are helper classes that make working with asynchronous code easier.

	Nan::AsyncWorker

	Nan::AsyncProgressWorkerBase & Nan::AsyncProgressWorker

	Nan::AsyncProgressQueueWorker

	Nan::AsyncQueueWorker

Strings & Bytes

Miscellaneous string & byte encoding and decoding functionality provided for compatibility across supported versions of V8 and Node. Implemented by NAN to ensure that all encoding types are supported, even for older versions of Node where they are missing.

	Nan::Encoding

	Nan::Encode()

	Nan::DecodeBytes()

	Nan::DecodeWrite()

Object Wrappers

The ObjectWrap class can be used to make wrapped C++ objects and a factory of wrapped objects.

	Nan::ObjectWrap

V8 internals

The hooks to access V8 internals—including GC and statistics—are different across the supported versions of V8, therefore NAN provides its own hooks that call the appropriate V8 methods.

	NAN_GC_CALLBACK()

	Nan::AddGCEpilogueCallback()

	Nan::RemoveGCEpilogueCallback()

	Nan::AddGCPrologueCallback()

	Nan::RemoveGCPrologueCallback()

	Nan::GetHeapStatistics()

	Nan::SetCounterFunction()

	Nan::SetCreateHistogramFunction()

	Nan::SetAddHistogramSampleFunction()

	Nan::IdleNotification()

	Nan::LowMemoryNotification()

	Nan::ContextDisposedNotification()

	Nan::GetInternalFieldPointer()

	Nan::SetInternalFieldPointer()

	Nan::AdjustExternalMemory()

Miscellaneous V8 Helpers

	Nan::Utf8String

	Nan::GetCurrentContext()

	Nan::SetIsolateData()

	Nan::GetIsolateData()

	Nan::TypedArrayContents

Miscellaneous Node Helpers

	Nan::AsyncResource

	Nan::MakeCallback()

	NAN_MODULE_INIT()

	Nan::Export()

[bookmark: tests]

Tests

To run the NAN tests do:

npm install
npm run-script rebuild-tests
npm test

Or just:

npm install
make test

[bookmark: issues]

Known issues

Compiling against Node.js 0.12 on OSX

With new enough compilers available on OSX, the versions of V8 headers corresponding to Node.js 0.12
do not compile anymore. The error looks something like:

❯ CXX(target) Release/obj.target/accessors/cpp/accessors.o
In file included from ../cpp/accessors.cpp:9:
In file included from ../../nan.h:51:
In file included from /Users/ofrobots/.node-gyp/0.12.18/include/node/node.h:61:
/Users/ofrobots/.node-gyp/0.12.18/include/node/v8.h:5800:54: error: 'CreateHandle' is a protected member of 'v8::HandleScope'
 return Handle<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
                                        ~~~~~~~~~~~~~^~~~~~~~~~~~





This can be worked around by patching your local versions of v8.h corresponding to Node 0.12 to make
v8::Handle a friend of v8::HandleScope. Since neither Node.js not V8 support this release line anymore
this patch cannot be released by either project in an official release.

For this reason, we do not test against Node.js 0.12 on OSX in this project’s CI. If you need to support
that configuration, you will need to either get an older compiler, or apply a source patch to the version
of V8 headers as a workaround.

[bookmark: governance]






Governance & Contributing

NAN is governed by the Node.js Addon API Working Group [https://github.com/nodejs/CTC/blob/master/WORKING_GROUPS.md#addon-api]


Addon API Working Group (WG)

The NAN project is jointly governed by a Working Group which is responsible for high-level guidance of the project.

Members of the WG are also known as Collaborators, there is no distinction between the two, unlike other Node.js projects.

The WG has final authority over this project including:


	Technical direction


	Project governance and process (including this policy)


	Contribution policy


	GitHub repository hosting


	Maintaining the list of additional Collaborators




For the current list of WG members, see the project README.md.

Individuals making significant and valuable contributions are made members of the WG and given commit-access to the project. These individuals are identified by the WG and their addition to the WG is discussed via GitHub and requires unanimous consensus amongst those WG members participating in the discussion with a quorum of 50% of WG members required for acceptance of the vote.

Note: If you make a significant contribution and are not considered for commit-access log an issue or contact a WG member directly.

For the current list of WG members / Collaborators, see the project README.md.




Consensus Seeking Process

The WG follows a Consensus Seeking [https://en.wikipedia.org/wiki/Consensus-seeking_decision-making] decision making model.

Modifications of the contents of the NAN repository are made on a collaborative basis. Anybody with a GitHub account may propose a modification via pull request and it will be considered by the WG. All pull requests must be reviewed and accepted by a WG member with sufficient expertise who is able to take full responsibility for the change. In the case of pull requests proposed by an existing WG member, an additional WG member is required for sign-off. Consensus should be sought if additional WG members participate and there is disagreement around a particular modification.

If a change proposal cannot reach a consensus, a WG member can call for a vote amongst the members of the WG. Simple majority wins.








Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:


	(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or


	(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or


	(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.


	(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.




[bookmark: collaborators]


WG Members / Collaborators


	Rod Vagg	GitHub/rvagg	Twitter/@rvagg

	Benjamin Byholm	GitHub/kkoopa	-

	Trevor Norris	GitHub/trevnorris	Twitter/@trevnorris

	Nathan Rajlich	GitHub/TooTallNate	Twitter/@TooTallNate

	Brett Lawson	GitHub/brett19	Twitter/@brett19x

	Ben Noordhuis	GitHub/bnoordhuis	Twitter/@bnoordhuis

	David Siegel	GitHub/agnat	Twitter/@agnat

	Michael Ira Krufky	GitHub/mkrufky	Twitter/@mkrufky







Licence & copyright

Copyright (c) 2018 NAN WG Members / Collaborators (listed above).

Native Abstractions for Node.js is licensed under an MIT license. All rights not explicitly granted in the MIT license are reserved. See the included LICENSE file for more details.







          

      

      

    

  

  
    
    Asynchronous work helpers
    

    
 
  

    
      
          
            
  
Asynchronous work helpers

Nan::AsyncWorker, Nan::AsyncProgressWorker and Nan::AsyncProgressQueueWorker are helper classes that make working with asynchronous code easier.


	Nan::AsyncWorker


	Nan::AsyncProgressWorkerBase & Nan::AsyncProgressWorker


	Nan::AsyncProgressQueueWorker


	Nan::AsyncQueueWorker




[bookmark: api_nan_async_worker]


Nan::AsyncWorker

Nan::AsyncWorker is an abstract class that you can subclass to have much of the annoying asynchronous queuing and handling taken care of for you. It can even store arbitrary V8 objects for you and have them persist while the asynchronous work is in progress.

This class internally handles the details of creating an AsyncResource, and running the callback in the
correct async context. To be able to identify the async resources created by this class in async-hooks, provide a
resource_name to the constructor. It is recommended that the module name be used as a prefix to the resource_name to avoid
collisions in the names. For more details see AsyncResource documentation.  The resource_name needs to stay valid for the lifetime of the worker instance.

Definition:

class AsyncWorker {
 public:
  explicit AsyncWorker(Callback *callback_, const char* resource_name = "nan:AsyncWorker");

  virtual ~AsyncWorker();

  virtual void WorkComplete();

  void SaveToPersistent(const char *key, const v8::Local<v8::Value> &value);

  void SaveToPersistent(const v8::Local<v8::String> &key,
                        const v8::Local<v8::Value> &value);

  void SaveToPersistent(uint32_t index,
                        const v8::Local<v8::Value> &value);

  v8::Local<v8::Value> GetFromPersistent(const char *key) const;

  v8::Local<v8::Value> GetFromPersistent(const v8::Local<v8::String> &key) const;

  v8::Local<v8::Value> GetFromPersistent(uint32_t index) const;

  virtual void Execute() = 0;

  uv_work_t request;

  virtual void Destroy();

 protected:
  Persistent<v8::Object> persistentHandle;

  Callback *callback;

  virtual void HandleOKCallback();

  virtual void HandleErrorCallback();

  void SetErrorMessage(const char *msg);

  const char* ErrorMessage();
};





[bookmark: api_nan_async_progress_worker]




Nan::AsyncProgressWorkerBase & Nan::AsyncProgressWorker

Nan::AsyncProgressWorkerBase is an abstract class template that extends Nan::AsyncWorker and adds additional progress reporting callbacks that can be used during the asynchronous work execution to provide progress data back to JavaScript.

Previously the definiton of Nan::AsyncProgressWorker only allowed sending const char data. Now extending Nan::AsyncProgressWorker will yield an instance of the implicit Nan::AsyncProgressWorkerBase template with type <char> for compatibility.

Nan::AsyncProgressWorkerBase & Nan::AsyncProgressWorker is intended for best-effort delivery of nonessential progress messages, e.g. a progress bar.  The last event sent before the main thread is woken will be delivered.

Definition:

template<class T>
class AsyncProgressWorkerBase<T> : public AsyncWorker {
 public:
  explicit AsyncProgressWorkerBase(Callback *callback_, const char* resource_name = ...);

  virtual ~AsyncProgressWorkerBase();

  void WorkProgress();

  class ExecutionProgress {
   public:
    void Signal() const;
    void Send(const T* data, size_t count) const;
  };

  virtual void Execute(const ExecutionProgress& progress) = 0;

  virtual void HandleProgressCallback(const T *data, size_t count) = 0;

  virtual void Destroy();
};

typedef AsyncProgressWorkerBase<T> AsyncProgressWorker;





[bookmark: api_nan_async_progress_queue_worker]




Nan::AsyncProgressQueueWorker

Nan::AsyncProgressQueueWorker is an abstract class template that extends Nan::AsyncWorker and adds additional progress reporting callbacks that can be used during the asynchronous work execution to provide progress data back to JavaScript.

Nan::AsyncProgressQueueWorker behaves exactly the same as Nan::AsyncProgressWorker, except all events are queued and delivered to the main thread.

Definition:

template<class T>
class AsyncProgressQueueWorker<T> : public AsyncWorker {
 public:
  explicit AsyncProgressQueueWorker(Callback *callback_, const char* resource_name = "nan:AsyncProgressQueueWorker");

  virtual ~AsyncProgressQueueWorker();

  void WorkProgress();

  class ExecutionProgress {
   public:
    void Send(const T* data, size_t count) const;
  };

  virtual void Execute(const ExecutionProgress& progress) = 0;

  virtual void HandleProgressCallback(const T *data, size_t count) = 0;

  virtual void Destroy();
};





[bookmark: api_nan_async_queue_worker]




Nan::AsyncQueueWorker

Nan::AsyncQueueWorker will run a Nan::AsyncWorker asynchronously via libuv. Both the execute and after_work steps are taken care of for you. Most of the logic for this is embedded in Nan::AsyncWorker.

Definition:

void AsyncQueueWorker(AsyncWorker *);











          

      

      

    

  

  
    
    Buffers
    

    
 
  

    
      
          
            
  
Buffers

NAN’s node::Buffer helpers exist as the API has changed across supported Node versions. Use these methods to ensure compatibility.


	Nan::NewBuffer()


	Nan::CopyBuffer()


	Nan::FreeCallback()




[bookmark: api_nan_new_buffer]


Nan::NewBuffer()

Allocate a new node::Buffer object with the specified size and optional data. Calls node::Buffer::New().

Note that when creating a Buffer using Nan::NewBuffer() and an existing char*, it is assumed that the ownership of the pointer is being transferred to the new Buffer for management.
When a node::Buffer instance is garbage collected and a FreeCallback has not been specified, data will be disposed of via a call to free().
You must not free the memory space manually once you have created a Buffer in this way.

Signature:

Nan::MaybeLocal<v8::Object> Nan::NewBuffer(uint32_t size)
Nan::MaybeLocal<v8::Object> Nan::NewBuffer(char* data, uint32_t size)
Nan::MaybeLocal<v8::Object> Nan::NewBuffer(char *data,
                                           size_t length,
                                           Nan::FreeCallback callback,
                                           void *hint)





[bookmark: api_nan_copy_buffer]




Nan::CopyBuffer()

Similar to Nan::NewBuffer() except that an implicit memcpy will occur within Node. Calls node::Buffer::Copy().

Management of the char* is left to the user, you should manually free the memory space if necessary as the new Buffer will have its own copy.

Signature:

Nan::MaybeLocal<v8::Object> Nan::CopyBuffer(const char *data, uint32_t size)





[bookmark: api_nan_free_callback]




Nan::FreeCallback()

A free callback that can be provided to Nan::NewBuffer().
The supplied callback will be invoked when the Buffer undergoes garbage collection.

Signature:

typedef void (*FreeCallback)(char *data, void *hint);











          

      

      

    

  

  
    
    Nan::Callback
    

    
 
  

    
      
          
            
  
Nan::Callback

Nan::Callback makes it easier to use v8::Function handles as callbacks. A class that wraps a v8::Function handle, protecting it from garbage collection and making it particularly useful for storage and use across asynchronous execution.


	Nan::Callback




[bookmark: api_nan_callback]


Nan::Callback

class Callback {
 public:
  Callback();

  explicit Callback(const v8::Local<v8::Function> &fn);

  ~Callback();

  bool operator==(const Callback &other) const;

  bool operator!=(const Callback &other) const;

  v8::Local<v8::Function> operator*() const;

  MaybeLocal<v8::Value> operator()(AsyncResource* async_resource,
                                   v8::Local<v8::Object> target,
                                   int argc = 0,
                                   v8::Local<v8::Value> argv[] = 0) const;

  MaybeLocal<v8::Value> operator()(AsyncResource* async_resource,
                                   int argc = 0,
                                   v8::Local<v8::Value> argv[] = 0) const;

  void SetFunction(const v8::Local<v8::Function> &fn);

  v8::Local<v8::Function> GetFunction() const;

  bool IsEmpty() const;

  void Reset(const v8::Local<v8::Function> &fn);

  void Reset();

  MaybeLocal<v8::Value> Call(v8::Local<v8::Object> target,
                            int argc,
                            v8::Local<v8::Value> argv[],
                            AsyncResource* async_resource) const;
  MaybeLocal<v8::Value> Call(int argc,
                             v8::Local<v8::Value> argv[],
                             AsyncResource* async_resource) const;

  // Deprecated versions. Use the versions that accept an async_resource instead
  // as they run the callback in the correct async context as specified by the
  // resource. If you want to call a synchronous JS function (i.e. on a
  // non-empty JS stack), you can use Nan::Call instead.
  v8::Local<v8::Value> operator()(v8::Local<v8::Object> target,
                                  int argc = 0,
                                  v8::Local<v8::Value> argv[] = 0) const;

  v8::Local<v8::Value> operator()(int argc = 0,
                                  v8::Local<v8::Value> argv[] = 0) const;
  v8::Local<v8::Value> Call(v8::Local<v8::Object> target,
                            int argc,
                            v8::Local<v8::Value> argv[]) const;

  v8::Local<v8::Value> Call(int argc, v8::Local<v8::Value> argv[]) const;
};





Example usage:

v8::Local<v8::Function> function;
Nan::Callback callback(function);
callback.Call(0, 0);











          

      

      

    

  

  
    
    Converters
    

    
 
  

    
      
          
            
  
Converters

NAN contains functions that convert v8::Values to other v8::Value types and native types. Since type conversion is not guaranteed to succeed, they return Nan::Maybe types. These converters can be used in place of value->ToX() and value->XValue() (where X is one of the types, e.g. Boolean) in a way that provides a consistent interface across V8 versions. Newer versions of V8 use the new v8::Maybe and v8::MaybeLocal types for these conversions, older versions don’t have this functionality so it is provided by NAN.


	Nan::To()




[bookmark: api_nan_to]


Nan::To()

Converts a v8::Local<v8::Value> to a different subtype of v8::Value or to a native data type. Returns a Nan::MaybeLocal<> or a Nan::Maybe<> accordingly.

See maybe_types.md for more information on Nan::Maybe types.

Signatures:

// V8 types
Nan::MaybeLocal<v8::Boolean> Nan::To<v8::Boolean>(v8::Local<v8::Value> val);
Nan::MaybeLocal<v8::Int32> Nan::To<v8::Int32>(v8::Local<v8::Value> val);
Nan::MaybeLocal<v8::Integer> Nan::To<v8::Integer>(v8::Local<v8::Value> val);
Nan::MaybeLocal<v8::Object> Nan::To<v8::Object>(v8::Local<v8::Value> val);
Nan::MaybeLocal<v8::Number> Nan::To<v8::Number>(v8::Local<v8::Value> val);
Nan::MaybeLocal<v8::String> Nan::To<v8::String>(v8::Local<v8::Value> val);
Nan::MaybeLocal<v8::Uint32> Nan::To<v8::Uint32>(v8::Local<v8::Value> val);

// Native types
Nan::Maybe<bool> Nan::To<bool>(v8::Local<v8::Value> val);
Nan::Maybe<double> Nan::To<double>(v8::Local<v8::Value> val);
Nan::Maybe<int32_t> Nan::To<int32_t>(v8::Local<v8::Value> val);
Nan::Maybe<int64_t> Nan::To<int64_t>(v8::Local<v8::Value> val);
Nan::Maybe<uint32_t> Nan::To<uint32_t>(v8::Local<v8::Value> val);








Example

v8::Local<v8::Value> val;
Nan::MaybeLocal<v8::String> str = Nan::To<v8::String>(val);
Nan::Maybe<double> d = Nan::To<double>(val);











          

      

      

    

  

  
    
    Errors
    

    
 
  

    
      
          
            
  
Errors

NAN includes helpers for creating, throwing and catching Errors as much of this functionality varies across the supported versions of V8 and must be abstracted.

Note that an Error object is simply a specialized form of v8::Value.

Also consult the V8 Embedders Guide section on Exceptions [https://developers.google.com/v8/embed#exceptions] for more information.


	Nan::Error()


	Nan::RangeError()


	Nan::ReferenceError()


	Nan::SyntaxError()


	Nan::TypeError()


	Nan::ThrowError()


	Nan::ThrowRangeError()


	Nan::ThrowReferenceError()


	Nan::ThrowSyntaxError()


	Nan::ThrowTypeError()


	Nan::FatalException()


	Nan::ErrnoException()


	Nan::TryCatch




[bookmark: api_nan_error]


Nan::Error()

Create a new Error object using the v8::Exception [https://v8docs.nodesource.com/node-8.11/da/d6a/classv8_1_1_exception.html] class in a way that is compatible across the supported versions of V8.

Note that an Error object is simply a specialized form of v8::Value.

Signature:

v8::Local<v8::Value> Nan::Error(const char *msg);
v8::Local<v8::Value> Nan::Error(v8::Local<v8::String> msg);





[bookmark: api_nan_range_error]




Nan::RangeError()

Create a new RangeError object using the v8::Exception [https://v8docs.nodesource.com/node-8.11/da/d6a/classv8_1_1_exception.html] class in a way that is compatible across the supported versions of V8.

Note that an RangeError object is simply a specialized form of v8::Value.

Signature:

v8::Local<v8::Value> Nan::RangeError(const char *msg);
v8::Local<v8::Value> Nan::RangeError(v8::Local<v8::String> msg);





[bookmark: api_nan_reference_error]




Nan::ReferenceError()

Create a new ReferenceError object using the v8::Exception [https://v8docs.nodesource.com/node-8.11/da/d6a/classv8_1_1_exception.html] class in a way that is compatible across the supported versions of V8.

Note that an ReferenceError object is simply a specialized form of v8::Value.

Signature:

v8::Local<v8::Value> Nan::ReferenceError(const char *msg);
v8::Local<v8::Value> Nan::ReferenceError(v8::Local<v8::String> msg);





[bookmark: api_nan_syntax_error]




Nan::SyntaxError()

Create a new SyntaxError object using the v8::Exception [https://v8docs.nodesource.com/node-8.11/da/d6a/classv8_1_1_exception.html] class in a way that is compatible across the supported versions of V8.

Note that an SyntaxError object is simply a specialized form of v8::Value.

Signature:

v8::Local<v8::Value> Nan::SyntaxError(const char *msg);
v8::Local<v8::Value> Nan::SyntaxError(v8::Local<v8::String> msg);





[bookmark: api_nan_type_error]




Nan::TypeError()

Create a new TypeError object using the v8::Exception [https://v8docs.nodesource.com/node-8.11/da/d6a/classv8_1_1_exception.html] class in a way that is compatible across the supported versions of V8.

Note that an TypeError object is simply a specialized form of v8::Value.

Signature:

v8::Local<v8::Value> Nan::TypeError(const char *msg);
v8::Local<v8::Value> Nan::TypeError(v8::Local<v8::String> msg);





[bookmark: api_nan_throw_error]




Nan::ThrowError()

Throw an Error object (a specialized v8::Value as above) in the current context. If a msg is provided, a new Error object will be created.

Signature:

void Nan::ThrowError(const char *msg);
void Nan::ThrowError(v8::Local<v8::String> msg);
void Nan::ThrowError(v8::Local<v8::Value> error);





[bookmark: api_nan_throw_range_error]




Nan::ThrowRangeError()

Throw an RangeError object (a specialized v8::Value as above) in the current context. If a msg is provided, a new RangeError object will be created.

Signature:

void Nan::ThrowRangeError(const char *msg);
void Nan::ThrowRangeError(v8::Local<v8::String> msg);
void Nan::ThrowRangeError(v8::Local<v8::Value> error);





[bookmark: api_nan_throw_reference_error]




Nan::ThrowReferenceError()

Throw an ReferenceError object (a specialized v8::Value as above) in the current context. If a msg is provided, a new ReferenceError object will be created.

Signature:

void Nan::ThrowReferenceError(const char *msg);
void Nan::ThrowReferenceError(v8::Local<v8::String> msg);
void Nan::ThrowReferenceError(v8::Local<v8::Value> error);





[bookmark: api_nan_throw_syntax_error]




Nan::ThrowSyntaxError()

Throw an SyntaxError object (a specialized v8::Value as above) in the current context. If a msg is provided, a new SyntaxError object will be created.

Signature:

void Nan::ThrowSyntaxError(const char *msg);
void Nan::ThrowSyntaxError(v8::Local<v8::String> msg);
void Nan::ThrowSyntaxError(v8::Local<v8::Value> error);





[bookmark: api_nan_throw_type_error]




Nan::ThrowTypeError()

Throw an TypeError object (a specialized v8::Value as above) in the current context. If a msg is provided, a new TypeError object will be created.

Signature:

void Nan::ThrowTypeError(const char *msg);
void Nan::ThrowTypeError(v8::Local<v8::String> msg);
void Nan::ThrowTypeError(v8::Local<v8::Value> error);





[bookmark: api_nan_fatal_exception]




Nan::FatalException()

Replaces node::FatalException() which has a different API across supported versions of Node. For use with Nan::TryCatch.

Signature:

void Nan::FatalException(const Nan::TryCatch& try_catch);





[bookmark: api_nan_errno_exception]




Nan::ErrnoException()

Replaces node::ErrnoException() which has a different API across supported versions of Node.

Signature:

v8::Local<v8::Value> Nan::ErrnoException(int errorno,
                                         const char* syscall = NULL,
                                         const char* message = NULL,
                                         const char* path = NULL);





[bookmark: api_nan_try_catch]




Nan::TryCatch

A simple wrapper around v8::TryCatch [https://v8docs.nodesource.com/node-8.11/d4/dc6/classv8_1_1_try_catch.html] compatible with all supported versions of V8. Can be used as a direct replacement in most cases. See also Nan::FatalException() for an internal use compatible with node::FatalException.

Signature:

class Nan::TryCatch {
 public:
  Nan::TryCatch();

  bool HasCaught() const;

  bool CanContinue() const;

  v8::Local<v8::Value> ReThrow();

  v8::Local<v8::Value> Exception() const;

  // Nan::MaybeLocal for older versions of V8
  v8::MaybeLocal<v8::Value> StackTrace() const;

  v8::Local<v8::Message> Message() const;

  void Reset();

  void SetVerbose(bool value);

  void SetCaptureMessage(bool value);
};











          

      

      

    

  

  
    
    JSON
    

    
 
  

    
      
          
            
  
JSON

The JSON object provides the c++ versions of the methods offered by the JSON object in javascript. V8 exposes these methods via the v8::JSON object.


	Nan::JSON.Parse


	Nan::JSON.Stringify




Refer to the V8 JSON object in the V8 documentation [https://v8docs.nodesource.com/node-8.11/da/d6f/classv8_1_1_j_s_o_n.html] for more information about these methods and their arguments.

[bookmark: api_nan_json_parse]


Nan::JSON.Parse

A simple wrapper around v8::JSON::Parse [https://v8docs.nodesource.com/node-8.11/da/d6f/classv8_1_1_j_s_o_n.html#a936310d2540fb630ed37d3ee3ffe4504].

Definition:

Nan::MaybeLocal<v8::Value> Nan::JSON::Parse(v8::Local<v8::String> json_string);





Use JSON.Parse(json_string) to parse a string into a v8::Value.

Example:

v8::Local<v8::String> json_string = Nan::New("{ \"JSON\": \"object\" }").ToLocalChecked();

Nan::JSON NanJSON;
Nan::MaybeLocal<v8::Value> result = NanJSON.Parse(json_string);
if (!result.IsEmpty()) {
  v8::Local<v8::Value> val = result.ToLocalChecked();
}





[bookmark: api_nan_json_stringify]




Nan::JSON.Stringify

A simple wrapper around v8::JSON::Stringify [https://v8docs.nodesource.com/node-8.11/da/d6f/classv8_1_1_j_s_o_n.html#a44b255c3531489ce43f6110209138860].

Definition:

Nan::MaybeLocal<v8::String> Nan::JSON::Stringify(v8::Local<v8::Object> json_object, v8::Local<v8::String> gap = v8::Local<v8::String>());





Use JSON.Stringify(value) to stringify a v8::Object.

Example:

// using `v8::Local<v8::Value> val` from the `JSON::Parse` example
v8::Local<v8::Object> obj = Nan::To<v8::Object>(val).ToLocalChecked();

Nan::JSON NanJSON;
Nan::MaybeLocal<v8::String> result = NanJSON.Stringify(obj);
if (!result.IsEmpty()) {
  v8::Local<v8::String> stringified = result.ToLocalChecked();
}











          

      

      

    

  

  
    
    Maybe Types
    

    
 
  

    
      
          
            
  
Maybe Types

The Nan::MaybeLocal and Nan::Maybe types are monads that encapsulate v8::Local handles that may be empty.


	Maybe Types


	Nan::MaybeLocal


	Nan::Maybe


	Nan::Nothing


	Nan::Just






	Maybe Helpers


	Nan::Call()


	Nan::ToDetailString()


	Nan::ToArrayIndex()


	Nan::Equals()


	Nan::NewInstance()


	Nan::GetFunction()


	Nan::Set()


	Nan::DefineOwnProperty()


	Nan::ForceSet()


	Nan::Get()


	Nan::GetPropertyAttributes()


	Nan::Has()


	Nan::Delete()


	Nan::GetPropertyNames()


	Nan::GetOwnPropertyNames()


	Nan::SetPrototype()


	Nan::ObjectProtoToString()


	Nan::HasOwnProperty()


	Nan::HasRealNamedProperty()


	Nan::HasRealIndexedProperty()


	Nan::HasRealNamedCallbackProperty()


	Nan::GetRealNamedPropertyInPrototypeChain()


	Nan::GetRealNamedProperty()


	Nan::CallAsFunction()


	Nan::CallAsConstructor()


	Nan::GetSourceLine()


	Nan::GetLineNumber()


	Nan::GetStartColumn()


	Nan::GetEndColumn()


	Nan::CloneElementAt()


	Nan::HasPrivate()


	Nan::GetPrivate()


	Nan::SetPrivate()


	Nan::DeletePrivate()


	Nan::MakeMaybe()








[bookmark: api_nan_maybe_local]


Nan::MaybeLocal

A Nan::MaybeLocal<T> is a wrapper around v8::Local<T> [https://v8docs.nodesource.com/node-8.11/de/deb/classv8_1_1_local.html] that enforces a check that determines whether the v8::Local<T> is empty before it can be used.

If an API method returns a Nan::MaybeLocal, the API method can potentially fail either because an exception is thrown, or because an exception is pending, e.g. because a previous API call threw an exception that hasn’t been caught yet, or because a v8::TerminateExecution exception was thrown. In that case, an empty Nan::MaybeLocal is returned.

Definition:

template<typename T> class Nan::MaybeLocal {
 public:
  MaybeLocal();

  template<typename S> MaybeLocal(v8::Local<S> that);

  bool IsEmpty() const;

  template<typename S> bool ToLocal(v8::Local<S> *out);

  // Will crash if the MaybeLocal<> is empty.
  v8::Local<T> ToLocalChecked();

  template<typename S> v8::Local<S> FromMaybe(v8::Local<S> default_value) const;
};





See the documentation for v8::MaybeLocal [https://v8docs.nodesource.com/node-8.11/d8/d7d/classv8_1_1_maybe_local.html] for further details.

[bookmark: api_nan_maybe]




Nan::Maybe

A simple Nan::Maybe type, representing an object which may or may not have a value, see https://hackage.haskell.org/package/base/docs/Data-Maybe.html.

If an API method returns a Nan::Maybe<>, the API method can potentially fail either because an exception is thrown, or because an exception is pending, e.g. because a previous API call threw an exception that hasn’t been caught yet, or because a v8::TerminateExecution exception was thrown. In that case, a “Nothing” value is returned.

Definition:

template<typename T> class Nan::Maybe {
 public:
  bool IsNothing() const;
  bool IsJust() const;

  // Will crash if the Maybe<> is nothing.
  T FromJust();

  T FromMaybe(const T& default_value);

  bool operator==(const Maybe &other);

  bool operator!=(const Maybe &other);
};





See the documentation for v8::Maybe [https://v8docs.nodesource.com/node-8.11/d9/d4b/classv8_1_1_maybe.html] for further details.

[bookmark: api_nan_nothing]




Nan::Nothing

Construct an empty Nan::Maybe type representing nothing.

template<typename T> Nan::Maybe<T> Nan::Nothing();





[bookmark: api_nan_just]




Nan::Just

Construct a Nan::Maybe type representing just a value.

template<typename T> Nan::Maybe<T> Nan::Just(const T &t);





[bookmark: api_nan_call]




Nan::Call()

A helper method for calling a synchronous v8::Function#Call() [https://v8docs.nodesource.com/node-8.11/d5/d54/classv8_1_1_function.html#a9c3d0e4e13ddd7721fce238aa5b94a11] in a way compatible across supported versions of V8.

For asynchronous callbacks, use Nan::Callback::Call along with an AsyncResource.

Signature:

Nan::MaybeLocal<v8::Value> Nan::Call(v8::Local<v8::Function> fun, v8::Local<v8::Object> recv, int argc, v8::Local<v8::Value> argv[]);
Nan::MaybeLocal<v8::Value> Nan::Call(const Nan::Callback& callback, v8::Local<v8::Object> recv,
 int argc, v8::Local<v8::Value> argv[]);
Nan::MaybeLocal<v8::Value> Nan::Call(const Nan::Callback& callback, int argc, v8::Local<v8::Value> argv[]);





[bookmark: api_nan_to_detail_string]




Nan::ToDetailString()

A helper method for calling v8::Value#ToDetailString() [https://v8docs.nodesource.com/node-8.11/dc/d0a/classv8_1_1_value.html#a2f9770296dc2c8d274bc8cc0dca243e5] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::String> Nan::ToDetailString(v8::Local<v8::Value> val);





[bookmark: api_nan_to_array_index]




Nan::ToArrayIndex()

A helper method for calling v8::Value#ToArrayIndex() [https://v8docs.nodesource.com/node-8.11/dc/d0a/classv8_1_1_value.html#acc5bbef3c805ec458470c0fcd6f13493] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::Uint32> Nan::ToArrayIndex(v8::Local<v8::Value> val);





[bookmark: api_nan_equals]




Nan::Equals()

A helper method for calling v8::Value#Equals() [https://v8docs.nodesource.com/node-8.11/dc/d0a/classv8_1_1_value.html#a08fba1d776a59bbf6864b25f9152c64b] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<bool> Nan::Equals(v8::Local<v8::Value> a, v8::Local<v8::Value>(b));





[bookmark: api_nan_new_instance]




Nan::NewInstance()

A helper method for calling v8::Function#NewInstance() [https://v8docs.nodesource.com/node-8.11/d5/d54/classv8_1_1_function.html#ae477558b10c14b76ed00e8dbab44ce5b] and v8::ObjectTemplate#NewInstance() [https://v8docs.nodesource.com/node-8.11/db/d5f/classv8_1_1_object_template.html#ad605a7543cfbc5dab54cdb0883d14ae4] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::Object> Nan::NewInstance(v8::Local<v8::Function> h);
Nan::MaybeLocal<v8::Object> Nan::NewInstance(v8::Local<v8::Function> h, int argc, v8::Local<v8::Value> argv[]);
Nan::MaybeLocal<v8::Object> Nan::NewInstance(v8::Local<v8::ObjectTemplate> h);





[bookmark: api_nan_get_function]




Nan::GetFunction()

A helper method for calling v8::FunctionTemplate#GetFunction() [https://v8docs.nodesource.com/node-8.11/d8/d83/classv8_1_1_function_template.html#a56d904662a86eca78da37d9bb0ed3705] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::Function> Nan::GetFunction(v8::Local<v8::FunctionTemplate> t);





[bookmark: api_nan_set]




Nan::Set()

A helper method for calling v8::Object#Set() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#a67604ea3734f170c66026064ea808f20] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<bool> Nan::Set(v8::Local<v8::Object> obj,
                          v8::Local<v8::Value> key,
                          v8::Local<v8::Value> value)
Nan::Maybe<bool> Nan::Set(v8::Local<v8::Object> obj,
                          uint32_t index,
                          v8::Local<v8::Value> value);





[bookmark: api_nan_define_own_property]




Nan::DefineOwnProperty()

A helper method for calling v8::Object#DefineOwnProperty() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#a6f76b2ed605cb8f9185b92de0033a820] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<bool> Nan::DefineOwnProperty(v8::Local<v8::Object> obj,
                                        v8::Local<v8::String> key,
                                        v8::Local<v8::Value> value,
                                        v8::PropertyAttribute attribs = v8::None);





[bookmark: api_nan_force_set]




Nan::ForceSet()

Deprecated, use Nan::DefineOwnProperty().

A helper method for calling v8::Object#ForceSet() [https://v8docs.nodesource.com/node-0.12/db/d85/classv8_1_1_object.html#acfbdfd7427b516ebdb5c47c4df5ed96c] in a way compatible across supported versions of V8.

Signature:

NAN_DEPRECATED Nan::Maybe<bool> Nan::ForceSet(v8::Local<v8::Object> obj,
                                              v8::Local<v8::Value> key,
                                              v8::Local<v8::Value> value,
                                              v8::PropertyAttribute attribs = v8::None);





[bookmark: api_nan_get]




Nan::Get()

A helper method for calling v8::Object#Get() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#a2565f03e736694f6b1e1cf22a0b4eac2] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::Value> Nan::Get(v8::Local<v8::Object> obj,
                                    v8::Local<v8::Value> key);
Nan::MaybeLocal<v8::Value> Nan::Get(v8::Local<v8::Object> obj, uint32_t index);





[bookmark: api_nan_get_property_attribute]




Nan::GetPropertyAttributes()

A helper method for calling v8::Object#GetPropertyAttributes() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#a9b898894da3d1db2714fd9325a54fe57] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<v8::PropertyAttribute> Nan::GetPropertyAttributes(
    v8::Local<v8::Object> obj,
    v8::Local<v8::Value> key);





[bookmark: api_nan_has]




Nan::Has()

A helper method for calling v8::Object#Has() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#ab3c3d89ea7c2f9afd08965bd7299a41d] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<bool> Nan::Has(v8::Local<v8::Object> obj, v8::Local<v8::String> key);
Nan::Maybe<bool> Nan::Has(v8::Local<v8::Object> obj, uint32_t index);





[bookmark: api_nan_delete]




Nan::Delete()

A helper method for calling v8::Object#Delete() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#a48e4a19b2cedff867eecc73ddb7d377f] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<bool> Nan::Delete(v8::Local<v8::Object> obj,
                             v8::Local<v8::String> key);
Nan::Maybe<bool> Nan::Delete(v8::Local<v8::Object> obj, uint32_t index);





[bookmark: api_nan_get_property_names]




Nan::GetPropertyNames()

A helper method for calling v8::Object#GetPropertyNames() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#aced885270cfd2c956367b5eedc7fbfe8] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::Array> Nan::GetPropertyNames(v8::Local<v8::Object> obj);





[bookmark: api_nan_get_own_property_names]




Nan::GetOwnPropertyNames()

A helper method for calling v8::Object#GetOwnPropertyNames() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#a79a6e4d66049b9aa648ed4dfdb23e6eb] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::Array> Nan::GetOwnPropertyNames(v8::Local<v8::Object> obj);





[bookmark: api_nan_set_prototype]




Nan::SetPrototype()

A helper method for calling v8::Object#SetPrototype() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#a442706b22fceda6e6d1f632122a9a9f4] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<bool> Nan::SetPrototype(v8::Local<v8::Object> obj,
                                   v8::Local<v8::Value> prototype);





[bookmark: api_nan_object_proto_to_string]




Nan::ObjectProtoToString()

A helper method for calling v8::Object#ObjectProtoToString() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#ab7a92b4dcf822bef72f6c0ac6fea1f0b] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::String> Nan::ObjectProtoToString(v8::Local<v8::Object> obj);





[bookmark: api_nan_has_own_property]




Nan::HasOwnProperty()

A helper method for calling v8::Object#HasOwnProperty() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#ab7b7245442ca6de1e1c145ea3fd653ff] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<bool> Nan::HasOwnProperty(v8::Local<v8::Object> obj,
                                     v8::Local<v8::String> key);





[bookmark: api_nan_has_real_named_property]




Nan::HasRealNamedProperty()

A helper method for calling v8::Object#HasRealNamedProperty() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#ad8b80a59c9eb3c1e6c3cd6c84571f767] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<bool> Nan::HasRealNamedProperty(v8::Local<v8::Object> obj,
                                           v8::Local<v8::String> key);





[bookmark: api_nan_has_real_indexed_property]




Nan::HasRealIndexedProperty()

A helper method for calling v8::Object#HasRealIndexedProperty() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#af94fc1135a5e74a2193fb72c3a1b9855] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<bool> Nan::HasRealIndexedProperty(v8::Local<v8::Object> obj,
                                             uint32_t index);





[bookmark: api_nan_has_real_named_callback_property]




Nan::HasRealNamedCallbackProperty()

A helper method for calling v8::Object#HasRealNamedCallbackProperty() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#af743b7ea132b89f84d34d164d0668811] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<bool> Nan::HasRealNamedCallbackProperty(
    v8::Local<v8::Object> obj,
    v8::Local<v8::String> key);





[bookmark: api_nan_get_real_named_property_in_prototype_chain]




Nan::GetRealNamedPropertyInPrototypeChain()

A helper method for calling v8::Object#GetRealNamedPropertyInPrototypeChain() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#a8700b1862e6b4783716964ba4d5e6172] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::Value> Nan::GetRealNamedPropertyInPrototypeChain(
    v8::Local<v8::Object> obj,
    v8::Local<v8::String> key);





[bookmark: api_nan_get_real_named_property]




Nan::GetRealNamedProperty()

A helper method for calling v8::Object#GetRealNamedProperty() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#a84471a824576a5994fdd0ffcbf99ccc0] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::Value> Nan::GetRealNamedProperty(v8::Local<v8::Object> obj,
                                                     v8::Local<v8::String> key);





[bookmark: api_nan_call_as_function]




Nan::CallAsFunction()

A helper method for calling v8::Object#CallAsFunction() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#ad3ffc36f3dfc3592ce2a96bc047ee2cd] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::Value> Nan::CallAsFunction(v8::Local<v8::Object> obj,
                                               v8::Local<v8::Object> recv,
                                               int argc,
                                               v8::Local<v8::Value> argv[]);





[bookmark: api_nan_call_as_constructor]




Nan::CallAsConstructor()

A helper method for calling v8::Object#CallAsConstructor() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#a50d571de50d0b0dfb28795619d07a01b] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::Value> Nan::CallAsConstructor(v8::Local<v8::Object> obj,
                                                  int argc,
                                                  v8::Local<v8::Value> argv[]);





[bookmark: api_nan_get_source_line]




Nan::GetSourceLine()

A helper method for calling v8::Message#GetSourceLine() [https://v8docs.nodesource.com/node-8.11/d9/d28/classv8_1_1_message.html#a849f7a6c41549d83d8159825efccd23a] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::String> Nan::GetSourceLine(v8::Local<v8::Message> msg);





[bookmark: api_nan_get_line_number]




Nan::GetLineNumber()

A helper method for calling v8::Message#GetLineNumber() [https://v8docs.nodesource.com/node-8.11/d9/d28/classv8_1_1_message.html#adbe46c10a88a6565f2732a2d2adf99b9] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<int> Nan::GetLineNumber(v8::Local<v8::Message> msg);





[bookmark: api_nan_get_start_column]




Nan::GetStartColumn()

A helper method for calling v8::Message#GetStartColumn() [https://v8docs.nodesource.com/node-8.11/d9/d28/classv8_1_1_message.html#a60ede616ba3822d712e44c7a74487ba6] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<int> Nan::GetStartColumn(v8::Local<v8::Message> msg);





[bookmark: api_nan_get_end_column]




Nan::GetEndColumn()

A helper method for calling v8::Message#GetEndColumn() [https://v8docs.nodesource.com/node-8.11/d9/d28/classv8_1_1_message.html#aaa004cf19e529da980bc19fcb76d93be] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<int> Nan::GetEndColumn(v8::Local<v8::Message> msg);





[bookmark: api_nan_clone_element_at]




Nan::CloneElementAt()

A helper method for calling v8::Array#CloneElementAt() [https://v8docs.nodesource.com/node-4.8/d3/d32/classv8_1_1_array.html#a1d3a878d4c1c7cae974dd50a1639245e] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::Object> Nan::CloneElementAt(v8::Local<v8::Array> array, uint32_t index);





[bookmark: api_nan_has_private]




Nan::HasPrivate()

A helper method for calling v8::Object#HasPrivate() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#af68a0b98066cfdeb8f943e98a40ba08d] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<bool> Nan::HasPrivate(v8::Local<v8::Object> object, v8::Local<v8::String> key);





[bookmark: api_nan_get_private]




Nan::GetPrivate()

A helper method for calling v8::Object#GetPrivate() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#a169f2da506acbec34deadd9149a1925a] in a way compatible across supported versions of V8.

Signature:

Nan::MaybeLocal<v8::Value> Nan::GetPrivate(v8::Local<v8::Object> object, v8::Local<v8::String> key);





[bookmark: api_nan_set_private]




Nan::SetPrivate()

A helper method for calling v8::Object#SetPrivate() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#ace1769b0f3b86bfe9fda1010916360ee] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<bool> Nan::SetPrivate(v8::Local<v8::Object> object, v8::Local<v8::String> key, v8::Local<v8::Value> value);





[bookmark: api_nan_delete_private]




Nan::DeletePrivate()

A helper method for calling v8::Object#DeletePrivate() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#a138bb32a304f3982be02ad499693b8fd] in a way compatible across supported versions of V8.

Signature:

Nan::Maybe<bool> Nan::DeletePrivate(v8::Local<v8::Object> object, v8::Local<v8::String> key);





[bookmark: api_nan_make_maybe]




Nan::MakeMaybe()

Wraps a v8::Local<> in a Nan::MaybeLocal<>. When called with a Nan::MaybeLocal<> it just returns its argument. This is useful in generic template code that builds on NAN.

Synopsis:

  MaybeLocal<v8::Number> someNumber = MakeMaybe(New<v8::Number>(3.141592654));
  MaybeLocal<v8::String> someString = MakeMaybe(New<v8::String>("probably"));





Signature:

template <typename T, template <typename> class MaybeMaybe>
Nan::MaybeLocal<T> Nan::MakeMaybe(MaybeMaybe<T> v);











          

      

      

    

  

  
    
    JavaScript-accessible methods
    

    
 
  

    
      
          
            
  
JavaScript-accessible methods

A template is a blueprint for JavaScript functions and objects in a context. You can use a template to wrap C++ functions and data structures within JavaScript objects so that they can be manipulated from JavaScript. See the V8 Embedders Guide section on Templates [https://github.com/v8/v8/wiki/Embedder%27s-Guide#templates] for further information.

In order to expose functionality to JavaScript via a template, you must provide it to V8 in a form that it understands. Across the versions of V8 supported by NAN, JavaScript-accessible method signatures vary widely, NAN fully abstracts method declaration and provides you with an interface that is similar to the most recent V8 API but is backward-compatible with older versions that still use the now-deceased v8::Argument type.


	Method argument types





	Nan::FunctionCallbackInfo


	Nan::PropertyCallbackInfo


	Nan::ReturnValue





	Method declarations





	Method declaration


	Getter declaration


	Setter declaration


	Property getter declaration


	Property setter declaration


	Property enumerator declaration


	Property deleter declaration


	Property query declaration


	Index getter declaration


	Index setter declaration


	Index enumerator declaration


	Index deleter declaration


	Index query declaration





	Method and template helpers





	Nan::SetMethod()


	Nan::SetPrototypeMethod()


	Nan::SetAccessor()


	Nan::SetNamedPropertyHandler()


	Nan::SetIndexedPropertyHandler()


	Nan::SetTemplate()


	Nan::SetPrototypeTemplate()


	Nan::SetInstanceTemplate()


	Nan::SetCallHandler()


	Nan::SetCallAsFunctionHandler()




[bookmark: api_nan_function_callback_info]


Nan::FunctionCallbackInfo

Nan::FunctionCallbackInfo should be used in place of v8::FunctionCallbackInfo [https://v8docs.nodesource.com/node-8.11/dd/d0d/classv8_1_1_function_callback_info.html], even with older versions of Node where v8::FunctionCallbackInfo does not exist.

Definition:

template<typename T> class FunctionCallbackInfo {
 public:
  ReturnValue<T> GetReturnValue() const;
  v8::Local<v8::Function> Callee(); // NOTE: Not available in NodeJS >= 10.0.0
  v8::Local<v8::Value> Data();
  v8::Local<v8::Object> Holder();
  bool IsConstructCall();
  int Length() const;
  v8::Local<v8::Value> operator[](int i) const;
  v8::Local<v8::Object> This() const;
  v8::Isolate *GetIsolate() const;
};





See the v8::FunctionCallbackInfo [https://v8docs.nodesource.com/node-8.11/dd/d0d/classv8_1_1_function_callback_info.html] documentation for usage details on these. See Nan::ReturnValue for further information on how to set a return value from methods.

Note: FunctionCallbackInfo::Callee is removed in Node.js after 10.0.0 because it is was deprecated in V8. Consider using info.Data() to pass any information you need.

[bookmark: api_nan_property_callback_info]




Nan::PropertyCallbackInfo

Nan::PropertyCallbackInfo should be used in place of v8::PropertyCallbackInfo [https://v8docs.nodesource.com/node-8.11/d7/dc5/classv8_1_1_property_callback_info.html], even with older versions of Node where v8::PropertyCallbackInfo does not exist.

Definition:

template<typename T> class PropertyCallbackInfo : public PropertyCallbackInfoBase<T> {
 public:
  ReturnValue<T> GetReturnValue() const;
  v8::Isolate* GetIsolate() const;
  v8::Local<v8::Value> Data() const;
  v8::Local<v8::Object> This() const;
  v8::Local<v8::Object> Holder() const;
};





See the v8::PropertyCallbackInfo [https://v8docs.nodesource.com/node-8.11/d7/dc5/classv8_1_1_property_callback_info.html] documentation for usage details on these. See Nan::ReturnValue for further information on how to set a return value from property accessor methods.

[bookmark: api_nan_return_value]




Nan::ReturnValue

Nan::ReturnValue is used in place of v8::ReturnValue [https://v8docs.nodesource.com/node-8.11/da/da7/classv8_1_1_return_value.html] on both Nan::FunctionCallbackInfo and Nan::PropertyCallbackInfo as the return type of GetReturnValue().

Example usage:

void EmptyArray(const Nan::FunctionCallbackInfo<v8::Value>& info) {
  info.GetReturnValue().Set(Nan::New<v8::Array>());
}





Definition:

template<typename T> class ReturnValue {
 public:
  // Handle setters
  template <typename S> void Set(const v8::Local<S> &handle);
  template <typename S> void Set(const Nan::Global<S> &handle);

  // Fast primitive setters
  void Set(bool value);
  void Set(double i);
  void Set(int32_t i);
  void Set(uint32_t i);

  // Fast JS primitive setters
  void SetNull();
  void SetUndefined();
  void SetEmptyString();

  // Convenience getter for isolate
  v8::Isolate *GetIsolate() const;
};





See the documentation on v8::ReturnValue [https://v8docs.nodesource.com/node-8.11/da/da7/classv8_1_1_return_value.html] for further information on this.

[bookmark: api_nan_method]




Method declaration

JavaScript-accessible methods should be declared with the following signature to form a Nan::FunctionCallback:

typedef void(*FunctionCallback)(const FunctionCallbackInfo<v8::Value>&);





Example:

void MethodName(const Nan::FunctionCallbackInfo<v8::Value>& info) {
  ...
}





You do not need to declare a new HandleScope within a method as one is implicitly created for you.

Example usage

// .h:
class Foo : public Nan::ObjectWrap {
  ...

  static void Bar(const Nan::FunctionCallbackInfo<v8::Value>& info);
  static void Baz(const Nan::FunctionCallbackInfo<v8::Value>& info);
}


// .cc:
void Foo::Bar(const Nan::FunctionCallbackInfo<v8::Value>& info) {
  ...
}

void Foo::Baz(const Nan::FunctionCallbackInfo<v8::Value>& info) {
  ...
}





A helper macro NAN_METHOD(methodname) exists, compatible with NAN v1 method declarations.

Example usage with NAN_METHOD(methodname)

// .h:
class Foo : public Nan::ObjectWrap {
  ...

  static NAN_METHOD(Bar);
  static NAN_METHOD(Baz);
}


// .cc:
NAN_METHOD(Foo::Bar) {
  ...
}

NAN_METHOD(Foo::Baz) {
  ...
}





Use Nan::SetPrototypeMethod to attach a method to a JavaScript function prototype or Nan::SetMethod to attach a method directly on a JavaScript object.

[bookmark: api_nan_getter]




Getter declaration

JavaScript-accessible getters should be declared with the following signature to form a Nan::GetterCallback:

typedef void(*GetterCallback)(v8::Local<v8::String>,
                              const PropertyCallbackInfo<v8::Value>&);





Example:

void GetterName(v8::Local<v8::String> property,
                const Nan::PropertyCallbackInfo<v8::Value>& info) {
  ...
}





You do not need to declare a new HandleScope within a getter as one is implicitly created for you.

A helper macro NAN_GETTER(methodname) exists, compatible with NAN v1 method declarations.

Also see the V8 Embedders Guide documentation on Accessors [https://developers.google.com/v8/embed#accesssors].

[bookmark: api_nan_setter]




Setter declaration

JavaScript-accessible setters should be declared with the following signature to form a Nan::SetterCallback:

typedef void(*SetterCallback)(v8::Local<v8::String>,
                              v8::Local<v8::Value>,
                              const PropertyCallbackInfo<void>&);





Example:

void SetterName(v8::Local<v8::String> property,
                v8::Local<v8::Value> value,
                const Nan::PropertyCallbackInfo<void>& info) {
  ...
}





You do not need to declare a new HandleScope within a setter as one is implicitly created for you.

A helper macro NAN_SETTER(methodname) exists, compatible with NAN v1 method declarations.

Also see the V8 Embedders Guide documentation on Accessors [https://developers.google.com/v8/embed#accesssors].

[bookmark: api_nan_property_getter]




Property getter declaration

JavaScript-accessible property getters should be declared with the following signature to form a Nan::PropertyGetterCallback:

typedef void(*PropertyGetterCallback)(v8::Local<v8::String>,
                                      const PropertyCallbackInfo<v8::Value>&);





Example:

void PropertyGetterName(v8::Local<v8::String> property,
                        const Nan::PropertyCallbackInfo<v8::Value>& info) {
  ...
}





You do not need to declare a new HandleScope within a property getter as one is implicitly created for you.

A helper macro NAN_PROPERTY_GETTER(methodname) exists, compatible with NAN v1 method declarations.

Also see the V8 Embedders Guide documentation on named property Interceptors [https://developers.google.com/v8/embed#interceptors].

[bookmark: api_nan_property_setter]




Property setter declaration

JavaScript-accessible property setters should be declared with the following signature to form a Nan::PropertySetterCallback:

typedef void(*PropertySetterCallback)(v8::Local<v8::String>,
                                      v8::Local<v8::Value>,
                                      const PropertyCallbackInfo<v8::Value>&);





Example:

void PropertySetterName(v8::Local<v8::String> property,
                        v8::Local<v8::Value> value,
                        const Nan::PropertyCallbackInfo<v8::Value>& info);





You do not need to declare a new HandleScope within a property setter as one is implicitly created for you.

A helper macro NAN_PROPERTY_SETTER(methodname) exists, compatible with NAN v1 method declarations.

Also see the V8 Embedders Guide documentation on named property Interceptors [https://developers.google.com/v8/embed#interceptors].

[bookmark: api_nan_property_enumerator]




Property enumerator declaration

JavaScript-accessible property enumerators should be declared with the following signature to form a Nan::PropertyEnumeratorCallback:

typedef void(*PropertyEnumeratorCallback)(const PropertyCallbackInfo<v8::Array>&);





Example:

void PropertyEnumeratorName(const Nan::PropertyCallbackInfo<v8::Array>& info);





You do not need to declare a new HandleScope within a property enumerator as one is implicitly created for you.

A helper macro NAN_PROPERTY_ENUMERATOR(methodname) exists, compatible with NAN v1 method declarations.

Also see the V8 Embedders Guide documentation on named property Interceptors [https://developers.google.com/v8/embed#interceptors].

[bookmark: api_nan_property_deleter]




Property deleter declaration

JavaScript-accessible property deleters should be declared with the following signature to form a Nan::PropertyDeleterCallback:

typedef void(*PropertyDeleterCallback)(v8::Local<v8::String>,
                                       const PropertyCallbackInfo<v8::Boolean>&);





Example:

void PropertyDeleterName(v8::Local<v8::String> property,
                         const Nan::PropertyCallbackInfo<v8::Boolean>& info);





You do not need to declare a new HandleScope within a property deleter as one is implicitly created for you.

A helper macro NAN_PROPERTY_DELETER(methodname) exists, compatible with NAN v1 method declarations.

Also see the V8 Embedders Guide documentation on named property Interceptors [https://developers.google.com/v8/embed#interceptors].

[bookmark: api_nan_property_query]




Property query declaration

JavaScript-accessible property query methods should be declared with the following signature to form a Nan::PropertyQueryCallback:

typedef void(*PropertyQueryCallback)(v8::Local<v8::String>,
                                     const PropertyCallbackInfo<v8::Integer>&);





Example:

void PropertyQueryName(v8::Local<v8::String> property,
                       const Nan::PropertyCallbackInfo<v8::Integer>& info);





You do not need to declare a new HandleScope within a property query method as one is implicitly created for you.

A helper macro NAN_PROPERTY_QUERY(methodname) exists, compatible with NAN v1 method declarations.

Also see the V8 Embedders Guide documentation on named property Interceptors [https://developers.google.com/v8/embed#interceptors].

[bookmark: api_nan_index_getter]




Index getter declaration

JavaScript-accessible index getter methods should be declared with the following signature to form a Nan::IndexGetterCallback:

typedef void(*IndexGetterCallback)(uint32_t,
                                   const PropertyCallbackInfo<v8::Value>&);





Example:

void IndexGetterName(uint32_t index, const PropertyCallbackInfo<v8::Value>& info);





You do not need to declare a new HandleScope within a index getter as one is implicitly created for you.

A helper macro NAN_INDEX_GETTER(methodname) exists, compatible with NAN v1 method declarations.

Also see the V8 Embedders Guide documentation on indexed property Interceptors [https://developers.google.com/v8/embed#interceptors].

[bookmark: api_nan_index_setter]




Index setter declaration

JavaScript-accessible index setter methods should be declared with the following signature to form a Nan::IndexSetterCallback:

typedef void(*IndexSetterCallback)(uint32_t,
                                   v8::Local<v8::Value>,
                                   const PropertyCallbackInfo<v8::Value>&);





Example:

void IndexSetterName(uint32_t index,
                     v8::Local<v8::Value> value,
                     const PropertyCallbackInfo<v8::Value>& info);





You do not need to declare a new HandleScope within a index setter as one is implicitly created for you.

A helper macro NAN_INDEX_SETTER(methodname) exists, compatible with NAN v1 method declarations.

Also see the V8 Embedders Guide documentation on indexed property Interceptors [https://developers.google.com/v8/embed#interceptors].

[bookmark: api_nan_index_enumerator]




Index enumerator declaration

JavaScript-accessible index enumerator methods should be declared with the following signature to form a Nan::IndexEnumeratorCallback:

typedef void(*IndexEnumeratorCallback)(const PropertyCallbackInfo<v8::Array>&);





Example:

void IndexEnumeratorName(const PropertyCallbackInfo<v8::Array>& info);





You do not need to declare a new HandleScope within a index enumerator as one is implicitly created for you.

A helper macro NAN_INDEX_ENUMERATOR(methodname) exists, compatible with NAN v1 method declarations.

Also see the V8 Embedders Guide documentation on indexed property Interceptors [https://developers.google.com/v8/embed#interceptors].

[bookmark: api_nan_index_deleter]




Index deleter declaration

JavaScript-accessible index deleter methods should be declared with the following signature to form a Nan::IndexDeleterCallback:

typedef void(*IndexDeleterCallback)(uint32_t,
                                    const PropertyCallbackInfo<v8::Boolean>&);





Example:

void IndexDeleterName(uint32_t index, const PropertyCallbackInfo<v8::Boolean>& info);





You do not need to declare a new HandleScope within a index deleter as one is implicitly created for you.

A helper macro NAN_INDEX_DELETER(methodname) exists, compatible with NAN v1 method declarations.

Also see the V8 Embedders Guide documentation on indexed property Interceptors [https://developers.google.com/v8/embed#interceptors].

[bookmark: api_nan_index_query]




Index query declaration

JavaScript-accessible index query methods should be declared with the following signature to form a Nan::IndexQueryCallback:

typedef void(*IndexQueryCallback)(uint32_t,
                                  const PropertyCallbackInfo<v8::Integer>&);





Example:

void IndexQueryName(uint32_t index, const PropertyCallbackInfo<v8::Integer>& info);





You do not need to declare a new HandleScope within a index query method as one is implicitly created for you.

A helper macro NAN_INDEX_QUERY(methodname) exists, compatible with NAN v1 method declarations.

Also see the V8 Embedders Guide documentation on indexed property Interceptors [https://developers.google.com/v8/embed#interceptors].

[bookmark: api_nan_set_method]




Nan::SetMethod()

Sets a method with a given name directly on a JavaScript object where the method has the Nan::FunctionCallback signature (see Method declaration).

Signature:

void Nan::SetMethod(v8::Local<v8::Object> recv,
                    const char *name,
                    Nan::FunctionCallback callback)
void Nan::SetMethod(v8::Local<v8::Template> templ,
                    const char *name,
                    Nan::FunctionCallback callback)





[bookmark: api_nan_set_prototype_method]




Nan::SetPrototypeMethod()

Sets a method with a given name on a FunctionTemplate’s prototype where the method has the Nan::FunctionCallback signature (see Method declaration).

Signature:

void Nan::SetPrototypeMethod(v8::Local<v8::FunctionTemplate> recv,
                             const char* name,
                             Nan::FunctionCallback callback)





[bookmark: api_nan_set_accessor]




Nan::SetAccessor()

Sets getters and setters for a property with a given name on an ObjectTemplate or a plain Object. Accepts getters with the Nan::GetterCallback signature (see Getter declaration) and setters with the Nan::SetterCallback signature (see Setter declaration).

Signature:

void SetAccessor(v8::Local<v8::ObjectTemplate> tpl,
                 v8::Local<v8::String> name,
                 Nan::GetterCallback getter,
                 Nan::SetterCallback setter = 0,
                 v8::Local<v8::Value> data = v8::Local<v8::Value>(),
                 v8::AccessControl settings = v8::DEFAULT,
                 v8::PropertyAttribute attribute = v8::None,
                 imp::Sig signature = imp::Sig());
bool SetAccessor(v8::Local<v8::Object> obj,
                 v8::Local<v8::String> name,
                 Nan::GetterCallback getter,
                 Nan::SetterCallback setter = 0,
                 v8::Local<v8::Value> data = v8::Local<v8::Value>(),
                 v8::AccessControl settings = v8::DEFAULT,
                 v8::PropertyAttribute attribute = v8::None)





See the V8 ObjectTemplate#SetAccessor() [https://v8docs.nodesource.com/node-8.11/db/d5f/classv8_1_1_object_template.html#aca0ed196f8a9adb1f68b1aadb6c9cd77] and Object#SetAccessor() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#ae91b3b56b357f285288c89fbddc46d1b] for further information about how to use Nan::SetAccessor().

[bookmark: api_nan_set_named_property_handler]




Nan::SetNamedPropertyHandler()

Sets named property getters, setters, query, deleter and enumerator methods on an ObjectTemplate. Accepts:


	Property getters with the Nan::PropertyGetterCallback signature (see Property getter declaration)


	Property setters with the Nan::PropertySetterCallback signature (see Property setter declaration)


	Property query methods with the Nan::PropertyQueryCallback signature (see Property query declaration)


	Property deleters with the Nan::PropertyDeleterCallback signature (see Property deleter declaration)


	Property enumerators with the Nan::PropertyEnumeratorCallback signature (see Property enumerator declaration)




Signature:

void SetNamedPropertyHandler(v8::Local<v8::ObjectTemplate> tpl,
                             Nan::PropertyGetterCallback getter,
                             Nan::PropertySetterCallback setter = 0,
                             Nan::PropertyQueryCallback query = 0,
                             Nan::PropertyDeleterCallback deleter = 0,
                             Nan::PropertyEnumeratorCallback enumerator = 0,
                             v8::Local<v8::Value> data = v8::Local<v8::Value>())





See the V8 ObjectTemplate#SetNamedPropertyHandler() [https://v8docs.nodesource.com/node-8.11/db/d5f/classv8_1_1_object_template.html#a33b3ebd7de641f6cc6414b7de01fc1c7] for further information about how to use Nan::SetNamedPropertyHandler().

[bookmark: api_nan_set_indexed_property_handler]




Nan::SetIndexedPropertyHandler()

Sets indexed property getters, setters, query, deleter and enumerator methods on an ObjectTemplate. Accepts:


	Indexed property getters with the Nan::IndexGetterCallback signature (see Index getter declaration)


	Indexed property setters with the Nan::IndexSetterCallback signature (see Index setter declaration)


	Indexed property query methods with the Nan::IndexQueryCallback signature (see Index query declaration)


	Indexed property deleters with the Nan::IndexDeleterCallback signature (see Index deleter declaration)


	Indexed property enumerators with the Nan::IndexEnumeratorCallback signature (see Index enumerator declaration)




Signature:

void SetIndexedPropertyHandler(v8::Local<v8::ObjectTemplate> tpl,
                               Nan::IndexGetterCallback getter,
                               Nan::IndexSetterCallback setter = 0,
                               Nan::IndexQueryCallback query = 0,
                               Nan::IndexDeleterCallback deleter = 0,
                               Nan::IndexEnumeratorCallback enumerator = 0,
                               v8::Local<v8::Value> data = v8::Local<v8::Value>())





See the V8 ObjectTemplate#SetIndexedPropertyHandler() [https://v8docs.nodesource.com/node-8.11/db/d5f/classv8_1_1_object_template.html#ac89f06d634add0e890452033f7d17ff1] for further information about how to use Nan::SetIndexedPropertyHandler().

[bookmark: api_nan_set_template]




Nan::SetTemplate()

Adds properties on an Object’s or Function’s template.

Signature:

void Nan::SetTemplate(v8::Local<v8::Template> templ,
                      const char *name,
                      v8::Local<v8::Data> value);
void Nan::SetTemplate(v8::Local<v8::Template> templ,
                      v8::Local<v8::String> name,
                      v8::Local<v8::Data> value,
                      v8::PropertyAttribute attributes)





Calls the Template’s Set() [https://v8docs.nodesource.com/node-8.11/db/df7/classv8_1_1_template.html#ae3fbaff137557aa6a0233bc7e52214ac].

[bookmark: api_nan_set_prototype_template]




Nan::SetPrototypeTemplate()

Adds properties on an Object’s or Function’s prototype template.

Signature:

void Nan::SetPrototypeTemplate(v8::Local<v8::FunctionTemplate> templ,
                               const char *name,
                               v8::Local<v8::Data> value);
void Nan::SetPrototypeTemplate(v8::Local<v8::FunctionTemplate> templ,
                               v8::Local<v8::String> name,
                               v8::Local<v8::Data> value,
                               v8::PropertyAttribute attributes)





Calls the FunctionTemplate’s PrototypeTemplate’s Set() [https://v8docs.nodesource.com/node-8.11/db/df7/classv8_1_1_template.html#a2db6a56597bf23c59659c0659e564ddf].

[bookmark: api_nan_set_instance_template]




Nan::SetInstanceTemplate()

Use to add instance properties on FunctionTemplate’s.

Signature:

void Nan::SetInstanceTemplate(v8::Local<v8::FunctionTemplate> templ,
                              const char *name,
                              v8::Local<v8::Data> value);
void Nan::SetInstanceTemplate(v8::Local<v8::FunctionTemplate> templ,
                              v8::Local<v8::String> name,
                              v8::Local<v8::Data> value,
                              v8::PropertyAttribute attributes)





Calls the FunctionTemplate’s InstanceTemplate’s Set() [https://v8docs.nodesource.com/node-8.11/db/df7/classv8_1_1_template.html#a2db6a56597bf23c59659c0659e564ddf].

[bookmark: api_nan_set_call_handler]




Nan::SetCallHandler()

Set the call-handler callback for a v8::FunctionTemplate.
This callback is called whenever the function created from this FunctionTemplate is called.

Signature:

void Nan::SetCallHandler(v8::Local<v8::FunctionTemplate> templ, Nan::FunctionCallback callback, v8::Local<v8::Value> data = v8::Local<v8::Value>())





Calls the FunctionTemplate’s SetCallHandler() [https://v8docs.nodesource.com/node-8.11/d8/d83/classv8_1_1_function_template.html#ab7574b298db3c27fbc2ed465c08ea2f8].

[bookmark: api_nan_set_call_as_function_handler]




Nan::SetCallAsFunctionHandler()

Sets the callback to be used when calling instances created from the v8::ObjectTemplate as a function.
If no callback is set, instances behave like normal JavaScript objects that cannot be called as a function.

Signature:

void Nan::SetCallAsFunctionHandler(v8::Local<v8::ObjectTemplate> templ, Nan::FunctionCallback callback, v8::Local<v8::Value> data = v8::Local<v8::Value>())





Calls the ObjectTemplate’s SetCallAsFunctionHandler() [https://v8docs.nodesource.com/node-8.11/db/d5f/classv8_1_1_object_template.html#a5e9612fc80bf6db8f2da199b9b0bd04e].







          

      

      

    

  

  
    
    New
    

    
 
  

    
      
          
            
  
New

NAN provides a Nan::New() helper for the creation of new JavaScript objects in a way that’s compatible across the supported versions of V8.


	Nan::New()


	Nan::Undefined()


	Nan::Null()


	Nan::True()


	Nan::False()


	Nan::EmptyString()




[bookmark: api_nan_new]


Nan::New()

Nan::New() should be used to instantiate new JavaScript objects.

Refer to the specific V8 type in the V8 documentation [https://v8docs.nodesource.com/node-8.11/d1/d83/classv8_1_1_data.html] for information on the types of arguments required for instantiation.

Signatures:

Return types are mostly omitted from the signatures for simplicity. In most cases the type will be contained within a v8::Local<T>. The following types will be contained within a Nan::MaybeLocal<T>: v8::String, v8::Date, v8::RegExp, v8::Script, v8::UnboundScript.

Empty objects:

Nan::New<T>();





Generic single and multiple-argument:

Nan::New<T>(A0 arg0);
Nan::New<T>(A0 arg0, A1 arg1);
Nan::New<T>(A0 arg0, A1 arg1, A2 arg2);
Nan::New<T>(A0 arg0, A1 arg1, A2 arg2, A3 arg3);





For creating v8::FunctionTemplate and v8::Function objects:

The definition of Nan::FunctionCallback can be found in the Method declaration documentation.

Nan::New<T>(Nan::FunctionCallback callback,
            v8::Local<v8::Value> data = v8::Local<v8::Value>());
Nan::New<T>(Nan::FunctionCallback callback,
            v8::Local<v8::Value> data = v8::Local<v8::Value>(),
            A2 a2 = A2());





Native number types:

v8::Local<v8::Boolean> Nan::New<T>(bool value);
v8::Local<v8::Int32> Nan::New<T>(int32_t value);
v8::Local<v8::Uint32> Nan::New<T>(uint32_t value);
v8::Local<v8::Number> Nan::New<T>(double value);





String types:

Nan::MaybeLocal<v8::String> Nan::New<T>(std::string const& value);
Nan::MaybeLocal<v8::String> Nan::New<T>(const char * value, int length);
Nan::MaybeLocal<v8::String> Nan::New<T>(const char * value);
Nan::MaybeLocal<v8::String> Nan::New<T>(const uint16_t * value);
Nan::MaybeLocal<v8::String> Nan::New<T>(const uint16_t * value, int length);





Specialized types:

v8::Local<v8::String> Nan::New<T>(v8::String::ExternalStringResource * value);
v8::Local<v8::String> Nan::New<T>(Nan::ExternalOneByteStringResource * value);
v8::Local<v8::RegExp> Nan::New<T>(v8::Local<v8::String> pattern, v8::RegExp::Flags flags);





Note that Nan::ExternalOneByteStringResource maps to v8::String::ExternalOneByteStringResource [https://v8docs.nodesource.com/node-8.11/d9/db3/classv8_1_1_string_1_1_external_one_byte_string_resource.html], and v8::String::ExternalAsciiStringResource in older versions of V8.

[bookmark: api_nan_undefined]




Nan::Undefined()

A helper method to reference the v8::Undefined object in a way that is compatible across all supported versions of V8.

Signature:

v8::Local<v8::Primitive> Nan::Undefined()





[bookmark: api_nan_null]




Nan::Null()

A helper method to reference the v8::Null object in a way that is compatible across all supported versions of V8.

Signature:

v8::Local<v8::Primitive> Nan::Null()





[bookmark: api_nan_true]




Nan::True()

A helper method to reference the v8::Boolean object representing the true value in a way that is compatible across all supported versions of V8.

Signature:

v8::Local<v8::Boolean> Nan::True()





[bookmark: api_nan_false]




Nan::False()

A helper method to reference the v8::Boolean object representing the false value in a way that is compatible across all supported versions of V8.

Signature:

v8::Local<v8::Boolean> Nan::False()





[bookmark: api_nan_empty_string]




Nan::EmptyString()

Call v8::String::Empty [https://v8docs.nodesource.com/node-8.11/d2/db3/classv8_1_1_string.html#a7c1bc8886115d7ee46f1d571dd6ebc6d] to reference the empty string in a way that is compatible across all supported versions of V8.

Signature:

v8::Local<v8::String> Nan::EmptyString()





[bookmark: api_nan_new_one_byte_string]




Nan::NewOneByteString()

An implementation of v8::String::NewFromOneByte() [https://v8docs.nodesource.com/node-8.11/d2/db3/classv8_1_1_string.html#a5264d50b96d2c896ce525a734dc10f09] provided for consistent availability and API across supported versions of V8. Allocates a new string from Latin-1 data.

Signature:

Nan::MaybeLocal<v8::String> Nan::NewOneByteString(const uint8_t * value,
                                                  int length = -1)











          

      

      

    

  

  
    
    Miscellaneous Node Helpers
    

    
 
  

    
      
          
            
  
Miscellaneous Node Helpers


	Nan::AsyncResource


	Nan::MakeCallback()


	NAN_MODULE_INIT()


	Nan::Export()




[bookmark: api_nan_asyncresource]


Nan::AsyncResource

This class is analogous to the AsyncResource JavaScript class exposed by Node’s async_hooks [https://nodejs.org/dist/latest-v9.x/docs/api/async_hooks.html] API.

When calling back into JavaScript asynchronously, special care must be taken to ensure that the runtime can properly track
async hops. Nan::AsyncResource is a class that provides an RAII wrapper around node::EmitAsyncInit, node::EmitAsyncDestroy,
and node::MakeCallback. Using this mechanism to call back into JavaScript, as opposed to Nan::MakeCallback or
v8::Function::Call ensures that the callback is executed in the correct async context. This ensures that async mechanisms
such as domains and async_hooks [https://nodejs.org/dist/latest-v9.x/docs/api/async_hooks.html] function correctly.

Definition:

class AsyncResource {
 public:
  AsyncResource(v8::Local<v8::String> name,
                v8::Local<v8::Object> resource = New<v8::Object>());
  AsyncResource(const char* name,
                v8::Local<v8::Object> resource = New<v8::Object>());
  ~AsyncResource();

  v8::MaybeLocal<v8::Value> runInAsyncScope(v8::Local<v8::Object> target,
                                            v8::Local<v8::Function> func,
                                            int argc,
                                            v8::Local<v8::Value>* argv);
  v8::MaybeLocal<v8::Value> runInAsyncScope(v8::Local<v8::Object> target,
                                            v8::Local<v8::String> symbol,
                                            int argc,
                                            v8::Local<v8::Value>* argv);
  v8::MaybeLocal<v8::Value> runInAsyncScope(v8::Local<v8::Object> target,
                                            const char* method,
                                            int argc,
                                            v8::Local<v8::Value>* argv);
};






	name: Identifier for the kind of resource that is being provided for diagnostics information exposed by the async_hooks [https://nodejs.org/dist/latest-v9.x/docs/api/async_hooks.html]
API. This will be passed to the possible init hook as the type. To avoid name collisions with other modules we recommend
that the name include the name of the owning module as a prefix. For example mysql module could use something like
mysql:batch-db-query-resource.


	resource: An optional object associated with the async work that will be passed to the possible async_hooks [https://nodejs.org/dist/latest-v9.x/docs/api/async_hooks.html]
init hook. If this parameter is omitted, or an empty handle is provided, this object will be created automatically.


	When calling JS on behalf of this resource, one can use runInAsyncScope. This will ensure that the callback runs in the
correct async execution context.


	AsyncDestroy is automatically called when an AsyncResource object is destroyed.




For more details, see the Node async_hooks [https://nodejs.org/dist/latest-v9.x/docs/api/async_hooks.html] documentation. You might also want to take a look at the documentation for the
N-API counterpart [https://nodejs.org/dist/latest-v9.x/docs/api/n-api.html#n_api_custom_asynchronous_operations]. For example usage, see the asyncresource.cpp example in the test/cpp directory.

[bookmark: api_nan_make_callback]




Nan::MakeCallback()

Deprecated wrappers around the legacy node::MakeCallback() APIs. Node.js 10+
has deprecated these legacy APIs as they do not provide a mechanism to preserve
async context.

We recommend that you use the AsyncResource class and AsyncResource::runInAsyncScope instead of using Nan::MakeCallback or
v8::Function#Call() directly. AsyncResource properly takes care of running the callback in the correct async execution
context – something that is essential for functionality like domains, async_hooks and async debugging.

Signatures:

NAN_DEPRECATED
v8::Local<v8::Value> Nan::MakeCallback(v8::Local<v8::Object> target,
                                       v8::Local<v8::Function> func,
                                       int argc,
                                       v8::Local<v8::Value>* argv);
NAN_DEPRECATED
v8::Local<v8::Value> Nan::MakeCallback(v8::Local<v8::Object> target,
                                       v8::Local<v8::String> symbol,
                                       int argc,
                                       v8::Local<v8::Value>* argv);
NAN_DEPRECATED
v8::Local<v8::Value> Nan::MakeCallback(v8::Local<v8::Object> target,
                                       const char* method,
                                       int argc,
                                       v8::Local<v8::Value>* argv);





[bookmark: api_nan_module_init]




NAN_MODULE_INIT()

Used to define the entry point function to a Node add-on. Creates a function with a given name that receives a target object representing the equivalent of the JavaScript exports object.

See example below.

[bookmark: api_nan_export]




Nan::Export()

A simple helper to register a v8::FunctionTemplate from a JavaScript-accessible method (see Methods) as a property on an object. Can be used in a way similar to assigning properties to module.exports in JavaScript.

Signature:

void Export(v8::Local<v8::Object> target, const char *name, Nan::FunctionCallback f)





Also available as the shortcut NAN_EXPORT macro.

Example:

NAN_METHOD(Foo) {
  ...
}

NAN_MODULE_INIT(Init) {
  NAN_EXPORT(target, Foo);
}











          

      

      

    

  

  
    
    Object Wrappers
    

    
 
  

    
      
          
            
  
Object Wrappers

The ObjectWrap class can be used to make wrapped C++ objects and a factory of wrapped objects.


	Nan::ObjectWrap




[bookmark: api_nan_object_wrap]


Nan::ObjectWrap()

A reimplementation of node::ObjectWrap that adds some API not present in older versions of Node. Should be preferred over node::ObjectWrap in all cases for consistency.

Definition:

class ObjectWrap {
 public:
  ObjectWrap();

  virtual ~ObjectWrap();

  template <class T>
  static inline T* Unwrap(v8::Local<v8::Object> handle);

  inline v8::Local<v8::Object> handle();

  inline Nan::Persistent<v8::Object>& persistent();

 protected:
  inline void Wrap(v8::Local<v8::Object> handle);

  inline void MakeWeak();

  /* Ref() marks the object as being attached to an event loop.
   * Refed objects will not be garbage collected, even if
   * all references are lost.
   */
  virtual void Ref();

  /* Unref() marks an object as detached from the event loop.  This is its
   * default state.  When an object with a "weak" reference changes from
   * attached to detached state it will be freed. Be careful not to access
   * the object after making this call as it might be gone!
   * (A "weak reference" means an object that only has a
   * persistant handle.)
   *
   * DO NOT CALL THIS FROM DESTRUCTOR
   */
  virtual void Unref();

  int refs_;  // ro
};





See the Node documentation on Wrapping C++ Objects [https://nodejs.org/api/addons.html#addons_wrapping_c_objects] for more details.




This vs. Holder

When calling Unwrap, it is important that the argument is indeed some JavaScript object which got wrapped by a Wrap call for this class or any derived class.
The Signature installed by Nan::SetPrototypeMethod() does ensure that info.Holder() is just such an instance.
In Node 0.12 and later, info.This() will also be of such a type, since otherwise the invocation will get rejected.
However, in Node 0.10 and before it was possible to invoke a method on a JavaScript object which just had the extension type in its prototype chain.
In such a situation, calling Unwrap on info.This() will likely lead to a failed assertion causing a crash, but could lead to even more serious corruption.

On the other hand, calling Unwrap in an accessor should not use Holder() if the accessor is defined on the prototype.
So either define your accessors on the instance template,
or use This() after verifying that it is indeed a valid object.




Examples


Basic

class MyObject : public Nan::ObjectWrap {
 public:
  static NAN_MODULE_INIT(Init) {
    v8::Local<v8::FunctionTemplate> tpl = Nan::New<v8::FunctionTemplate>(New);
    tpl->SetClassName(Nan::New("MyObject").ToLocalChecked());
    tpl->InstanceTemplate()->SetInternalFieldCount(1);

    Nan::SetPrototypeMethod(tpl, "getHandle", GetHandle);
    Nan::SetPrototypeMethod(tpl, "getValue", GetValue);

    constructor().Reset(Nan::GetFunction(tpl).ToLocalChecked());
    Nan::Set(target, Nan::New("MyObject").ToLocalChecked(),
      Nan::GetFunction(tpl).ToLocalChecked());
  }

 private:
  explicit MyObject(double value = 0) : value_(value) {}
  ~MyObject() {}

  static NAN_METHOD(New) {
    if (info.IsConstructCall()) {
      double value = info[0]->IsUndefined() ? 0 : Nan::To<double>(info[0]).FromJust();
      MyObject *obj = new MyObject(value);
      obj->Wrap(info.This());
      info.GetReturnValue().Set(info.This());
    } else {
      const int argc = 1;
      v8::Local<v8::Value> argv[argc] = {info[0]};
      v8::Local<v8::Function> cons = Nan::New(constructor());
      info.GetReturnValue().Set(Nan::NewInstance(cons, argc, argv).ToLocalChecked());
    }
  }

  static NAN_METHOD(GetHandle) {
    MyObject* obj = Nan::ObjectWrap::Unwrap<MyObject>(info.Holder());
    info.GetReturnValue().Set(obj->handle());
  }

  static NAN_METHOD(GetValue) {
    MyObject* obj = Nan::ObjectWrap::Unwrap<MyObject>(info.Holder());
    info.GetReturnValue().Set(obj->value_);
  }

  static inline Nan::Persistent<v8::Function> & constructor() {
    static Nan::Persistent<v8::Function> my_constructor;
    return my_constructor;
  }

  double value_;
};

NODE_MODULE(objectwrapper, MyObject::Init)





To use in Javascript:

var objectwrapper = require('bindings')('objectwrapper');

var obj = new objectwrapper.MyObject(5);
console.log('Should be 5: ' + obj.getValue());








Factory of wrapped objects

class MyFactoryObject : public Nan::ObjectWrap {
 public:
  static NAN_MODULE_INIT(Init) {
    v8::Local<v8::FunctionTemplate> tpl = Nan::New<v8::FunctionTemplate>(New);
    tpl->InstanceTemplate()->SetInternalFieldCount(1);

    Nan::SetPrototypeMethod(tpl, "getValue", GetValue);

    constructor().Reset(Nan::GetFunction(tpl).ToLocalChecked());
  }

  static NAN_METHOD(NewInstance) {
    v8::Local<v8::Function> cons = Nan::New(constructor());
    double value = info[0]->IsNumber() ? Nan::To<double>(info[0]).FromJust() : 0;
    const int argc = 1;
    v8::Local<v8::Value> argv[1] = {Nan::New(value)};
    info.GetReturnValue().Set(Nan::NewInstance(cons, argc, argv).ToLocalChecked());
  }

  // Needed for the next example:
  inline double value() const {
    return value_;
  }

 private:
  explicit MyFactoryObject(double value = 0) : value_(value) {}
  ~MyFactoryObject() {}

  static NAN_METHOD(New) {
    if (info.IsConstructCall()) {
      double value = info[0]->IsNumber() ? Nan::To<double>(info[0]).FromJust() : 0;
      MyFactoryObject * obj = new MyFactoryObject(value);
      obj->Wrap(info.This());
      info.GetReturnValue().Set(info.This());
    } else {
      const int argc = 1;
      v8::Local<v8::Value> argv[argc] = {info[0]};
      v8::Local<v8::Function> cons = Nan::New(constructor());
      info.GetReturnValue().Set(Nan::NewInstance(cons, argc, argv).ToLocalChecked());
    }
  }

  static NAN_METHOD(GetValue) {
    MyFactoryObject* obj = ObjectWrap::Unwrap<MyFactoryObject>(info.Holder());
    info.GetReturnValue().Set(obj->value_);
  }

  static inline Nan::Persistent<v8::Function> & constructor() {
    static Nan::Persistent<v8::Function> my_constructor;
    return my_constructor;
  }

  double value_;
};

NAN_MODULE_INIT(Init) {
  MyFactoryObject::Init(target);
  Nan::Set(target,
    Nan::New<v8::String>("newFactoryObjectInstance").ToLocalChecked(),
    Nan::GetFunction(
      Nan::New<v8::FunctionTemplate>(MyFactoryObject::NewInstance)).ToLocalChecked()
  );
}

NODE_MODULE(wrappedobjectfactory, Init)





To use in Javascript:

var wrappedobjectfactory = require('bindings')('wrappedobjectfactory');

var obj = wrappedobjectfactory.newFactoryObjectInstance(10);
console.log('Should be 10: ' + obj.getValue());








Passing wrapped objects around

Use the MyFactoryObject class above along with the following:

static NAN_METHOD(Sum) {
  Nan::MaybeLocal<v8::Object> maybe1 = Nan::To<v8::Object>(info[0]);
  Nan::MaybeLocal<v8::Object> maybe2 = Nan::To<v8::Object>(info[1]);

  // Quick check:
  if (maybe1.IsEmpty() || maybe2.IsEmpty()) {
    // return value is undefined by default
    return;
  }

  MyFactoryObject* obj1 =
    Nan::ObjectWrap::Unwrap<MyFactoryObject>(maybe1.ToLocalChecked());
  MyFactoryObject* obj2 =
    Nan::ObjectWrap::Unwrap<MyFactoryObject>(maybe2.ToLocalChecked());

  info.GetReturnValue().Set(Nan::New<v8::Number>(obj1->value() + obj2->value()));
}

NAN_MODULE_INIT(Init) {
  MyFactoryObject::Init(target);
  Nan::Set(target,
    Nan::New<v8::String>("newFactoryObjectInstance").ToLocalChecked(),
    Nan::GetFunction(
      Nan::New<v8::FunctionTemplate>(MyFactoryObject::NewInstance)).ToLocalChecked()
  );
  Nan::Set(target,
    Nan::New<v8::String>("sum").ToLocalChecked(),
    Nan::GetFunction(Nan::New<v8::FunctionTemplate>(Sum)).ToLocalChecked()
  );
}

NODE_MODULE(myaddon, Init)





To use in Javascript:

var myaddon = require('bindings')('myaddon');

var obj1 = myaddon.newFactoryObjectInstance(5);
var obj2 = myaddon.newFactoryObjectInstance(10);
console.log('sum of object values: ' + myaddon.sum(obj1, obj2));













          

      

      

    

  

  
    
    Persistent references
    

    
 
  

    
      
          
            
  
Persistent references

An object reference that is independent of any HandleScope is a persistent reference. Where a Local handle only lives as long as the HandleScope in which it was allocated, a Persistent handle remains valid until it is explicitly disposed.

Due to the evolution of the V8 API, it is necessary for NAN to provide a wrapper implementation of the Persistent classes to supply compatibility across the V8 versions supported.


	Nan::PersistentBase & v8::PersistentBase


	Nan::NonCopyablePersistentTraits & v8::NonCopyablePersistentTraits


	Nan::CopyablePersistentTraits & v8::CopyablePersistentTraits


	Nan::Persistent


	Nan::Global


	Nan::WeakCallbackInfo


	Nan::WeakCallbackType




Also see the V8 Embedders Guide section on Handles and Garbage Collection [https://developers.google.com/v8/embed#handles].

[bookmark: api_nan_persistent_base]


Nan::PersistentBase & v8::PersistentBase

A persistent handle contains a reference to a storage cell in V8 which holds an object value and which is updated by the garbage collector whenever the object is moved. A new storage cell can be created using the constructor or Nan::PersistentBase::Reset(). Existing handles can be disposed using an argument-less Nan::PersistentBase::Reset().

Definition:

(note: this is implemented as Nan::PersistentBase for older versions of V8 and the native v8::PersistentBase is used for newer versions of V8)

template<typename T> class PersistentBase {
 public:
  /**
   * If non-empty, destroy the underlying storage cell
   */
  void Reset();

  /**
   * If non-empty, destroy the underlying storage cell and create a new one with
   * the contents of another if it is also non-empty
   */
  template<typename S> void Reset(const v8::Local<S> &other);

  /**
   * If non-empty, destroy the underlying storage cell and create a new one with
   * the contents of another if it is also non-empty
   */
  template<typename S> void Reset(const PersistentBase<S> &other);

  /** Returns true if the handle is empty. */
  bool IsEmpty() const;

  /**
   * If non-empty, destroy the underlying storage cell
   * IsEmpty() will return true after this call.
   */
  void Empty();

  template<typename S> bool operator==(const PersistentBase<S> &that);

  template<typename S> bool operator==(const v8::Local<S> &that);

  template<typename S> bool operator!=(const PersistentBase<S> &that);

  template<typename S> bool operator!=(const v8::Local<S> &that);

   /**
   *  Install a finalization callback on this object.
   *  NOTE: There is no guarantee as to *when* or even *if* the callback is
   *  invoked. The invocation is performed solely on a best effort basis.
   *  As always, GC-based finalization should *not* be relied upon for any
   *  critical form of resource management! At the moment you can either
   *  specify a parameter for the callback or the location of two internal
   *  fields in the dying object.
   */
  template<typename P>
  void SetWeak(P *parameter,
               typename WeakCallbackInfo<P>::Callback callback,
               WeakCallbackType type);

  void ClearWeak();

  /**
   * Marks the reference to this object independent. Garbage collector is free
   * to ignore any object groups containing this object. Weak callback for an
   * independent handle should not assume that it will be preceded by a global
   * GC prologue callback or followed by a global GC epilogue callback.
   */
  void MarkIndependent() const;

  bool IsIndependent() const;

  /** Checks if the handle holds the only reference to an object. */
  bool IsNearDeath() const;

  /** Returns true if the handle's reference is weak.  */
  bool IsWeak() const
};





See the V8 documentation for PersistentBase [https://v8docs.nodesource.com/node-8.11/d4/dca/classv8_1_1_persistent_base.html] for further information.

Tip: To get a v8::Local reference to the original object back from a PersistentBase or Persistent object:

v8::Local<v8::Object> object = Nan::New(persistent);





[bookmark: api_nan_non_copyable_persistent_traits]




Nan::NonCopyablePersistentTraits & v8::NonCopyablePersistentTraits

Default traits for Nan::Persistent. This class does not allow use of the a copy constructor or assignment operator. At present kResetInDestructor is not set, but that will change in a future version.

Definition:

(note: this is implemented as Nan::NonCopyablePersistentTraits for older versions of V8 and the native v8::NonCopyablePersistentTraits is used for newer versions of V8)

template<typename T> class NonCopyablePersistentTraits {
 public:
  typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;

  static const bool kResetInDestructor = false;

  template<typename S, typename M>
  static void Copy(const Persistent<S, M> &source,
                   NonCopyablePersistent *dest);

  template<typename O> static void Uncompilable();
};





See the V8 documentation for NonCopyablePersistentTraits [https://v8docs.nodesource.com/node-8.11/de/d73/classv8_1_1_non_copyable_persistent_traits.html] for further information.

[bookmark: api_nan_copyable_persistent_traits]




Nan::CopyablePersistentTraits & v8::CopyablePersistentTraits

A helper class of traits to allow copying and assignment of Persistent. This will clone the contents of storage cell, but not any of the flags, etc..

Definition:

(note: this is implemented as Nan::CopyablePersistentTraits for older versions of V8 and the native v8::NonCopyablePersistentTraits is used for newer versions of V8)

template<typename T>
class CopyablePersistentTraits {
 public:
  typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;

  static const bool kResetInDestructor = true;

  template<typename S, typename M>
  static void Copy(const Persistent<S, M> &source,
                   CopyablePersistent *dest);
};





See the V8 documentation for CopyablePersistentTraits [https://v8docs.nodesource.com/node-8.11/da/d5c/structv8_1_1_copyable_persistent_traits.html] for further information.

[bookmark: api_nan_persistent]




Nan::Persistent

A type of PersistentBase which allows copy and assignment. Copy, assignment and destructor behavior is controlled by the traits class M.

Definition:

template<typename T, typename M = NonCopyablePersistentTraits<T> >
class Persistent;

template<typename T, typename M> class Persistent : public PersistentBase<T> {
 public:
 /**
  * A Persistent with no storage cell.
  */
  Persistent();

  /**
   * Construct a Persistent from a v8::Local. When the v8::Local is non-empty, a
   * new storage cell is created pointing to the same object, and no flags are
   * set.
   */
  template<typename S> Persistent(v8::Local<S> that);

  /**
   * Construct a Persistent from a Persistent. When the Persistent is non-empty,
   * a new storage cell is created pointing to the same object, and no flags are
   * set.
   */
  Persistent(const Persistent &that);

  /**
   * The copy constructors and assignment operator create a Persistent exactly
   * as the Persistent constructor, but the Copy function from the traits class
   * is called, allowing the setting of flags based on the copied Persistent.
   */
  Persistent &operator=(const Persistent &that);

  template <typename S, typename M2>
  Persistent &operator=(const Persistent<S, M2> &that);

  /**
   * The destructor will dispose the Persistent based on the kResetInDestructor
   * flags in the traits class.  Since not calling dispose can result in a
   * memory leak, it is recommended to always set this flag.
   */
  ~Persistent();
};





See the V8 documentation for Persistent [https://v8docs.nodesource.com/node-8.11/d2/d78/classv8_1_1_persistent.html] for further information.

[bookmark: api_nan_global]




Nan::Global

A type of PersistentBase which has move semantics.

template<typename T> class Global : public PersistentBase<T> {
 public:
  /**
   * A Global with no storage cell.
   */
  Global();

  /**
   * Construct a Global from a v8::Local. When the v8::Local is non-empty, a new
   * storage cell is created pointing to the same object, and no flags are set.
   */
  template<typename S> Global(v8::Local<S> that);
  /**
   * Construct a Global from a PersistentBase. When the Persistent is non-empty,
   * a new storage cell is created pointing to the same object, and no flags are
   * set.
   */
  template<typename S> Global(const PersistentBase<S> &that);

  /**
   * Pass allows returning globals from functions, etc.
   */
  Global Pass();
};





See the V8 documentation for Global [https://v8docs.nodesource.com/node-8.11/d5/d40/classv8_1_1_global.html] for further information.

[bookmark: api_nan_weak_callback_info]




Nan::WeakCallbackInfo

Nan::WeakCallbackInfo is used as an argument when setting a persistent reference as weak. You may need to free any external resources attached to the object. It is a mirror of v8:WeakCallbackInfo as found in newer versions of V8.

Definition:

template<typename T> class WeakCallbackInfo {
 public:
  typedef void (*Callback)(const WeakCallbackInfo<T>& data);

  v8::Isolate *GetIsolate() const;

  /**
   * Get the parameter that was associated with the weak handle.
   */
  T *GetParameter() const;

  /**
   * Get pointer from internal field, index can be 0 or 1.
   */
  void *GetInternalField(int index) const;
};





Example usage:

void weakCallback(const WeakCallbackInfo<int> &data) {
  int *parameter = data.GetParameter();
  delete parameter;
}

Persistent<v8::Object> obj;
int *data = new int(0);
obj.SetWeak(data, callback, WeakCallbackType::kParameter);





See the V8 documentation for WeakCallbackInfo [https://v8docs.nodesource.com/node-8.11/d8/d06/classv8_1_1_weak_callback_info.html] for further information.

[bookmark: api_nan_weak_callback_type]




Nan::WeakCallbackType

Represents the type of a weak callback.
A weak callback of type kParameter makes the supplied parameter to Nan::PersistentBase::SetWeak available through WeakCallbackInfo::GetParameter.
A weak callback of type kInternalFields uses up to two internal fields at indices 0 and 1 on the Nan::PersistentBase<v8::Object> being made weak.
Note that only v8::Objects and derivatives can have internal fields.

Definition:

enum class WeakCallbackType { kParameter, kInternalFields };











          

      

      

    

  

  
    
    Scopes
    

    
 
  

    
      
          
            
  
Scopes

A local handle is a pointer to an object. All V8 objects are accessed using handles, they are necessary because of the way the V8 garbage collector works.

A handle scope can be thought of as a container for any number of handles. When you’ve finished with your handles, instead of deleting each one individually you can simply delete their scope.

The creation of HandleScope objects is different across the supported versions of V8. Therefore, NAN provides its own implementations that can be used safely across these.


	Nan::HandleScope


	Nan::EscapableHandleScope




Also see the V8 Embedders Guide section on Handles and Garbage Collection [https://github.com/v8/v8/wiki/Embedder%27s%20Guide#handles-and-garbage-collection].

[bookmark: api_nan_handle_scope]


Nan::HandleScope

A simple wrapper around v8::HandleScope [https://v8docs.nodesource.com/node-8.11/d3/d95/classv8_1_1_handle_scope.html].

Definition:

class Nan::HandleScope {
 public:
  Nan::HandleScope();
  static int NumberOfHandles();
};





Allocate a new Nan::HandleScope whenever you are creating new V8 JavaScript objects. Note that an implicit HandleScope is created for you on JavaScript-accessible methods so you do not need to insert one yourself.

Example:

// new object is created, it needs a new scope:
void Pointless() {
  Nan::HandleScope scope;
  v8::Local<v8::Object> obj = Nan::New<v8::Object>();
}

// JavaScript-accessible method already has a HandleScope
NAN_METHOD(Pointless2) {
  v8::Local<v8::Object> obj = Nan::New<v8::Object>();
}





[bookmark: api_nan_escapable_handle_scope]




Nan::EscapableHandleScope

Similar to Nan::HandleScope but should be used in cases where a function needs to return a V8 JavaScript type that has been created within it.

Definition:

class Nan::EscapableHandleScope {
 public:
  Nan::EscapableHandleScope();
  static int NumberOfHandles();
  template<typename T> v8::Local<T> Escape(v8::Local<T> value);
}





Use Escape(value) to return the object.

Example:

v8::Local<v8::Object> EmptyObj() {
  Nan::EscapableHandleScope scope;
  v8::Local<v8::Object> obj = Nan::New<v8::Object>();
  return scope.Escape(obj);
}











          

      

      

    

  

  
    
    Script
    

    
 
  

    
      
          
            
  
Script

NAN provides a v8::Script helpers as the API has changed over the supported versions of V8.


	Nan::CompileScript()


	Nan::RunScript()




[bookmark: api_nan_compile_script]


Nan::CompileScript()

A wrapper around v8::ScriptCompiler::Compile() [https://v8docs.nodesource.com/node-8.11/da/da5/classv8_1_1_script_compiler.html#a93f5072a0db55d881b969e9fc98e564b].

Note that Nan::BoundScript is an alias for v8::Script.

Signature:

Nan::MaybeLocal<Nan::BoundScript> Nan::CompileScript(
    v8::Local<v8::String> s,
    const v8::ScriptOrigin& origin);
Nan::MaybeLocal<Nan::BoundScript> Nan::CompileScript(v8::Local<v8::String> s);





[bookmark: api_nan_run_script]




Nan::RunScript()

Calls script->Run() or script->BindToCurrentContext()->Run(Nan::GetCurrentContext()).

Note that Nan::BoundScript is an alias for v8::Script and Nan::UnboundScript is an alias for v8::UnboundScript where available and v8::Script on older versions of V8.

Signature:

Nan::MaybeLocal<v8::Value> Nan::RunScript(v8::Local<Nan::UnboundScript> script)
Nan::MaybeLocal<v8::Value> Nan::RunScript(v8::Local<Nan::BoundScript> script) 











          

      

      

    

  

  
    
    Strings & Bytes
    

    
 
  

    
      
          
            
  
Strings & Bytes

Miscellaneous string & byte encoding and decoding functionality provided for compatibility across supported versions of V8 and Node. Implemented by NAN to ensure that all encoding types are supported, even for older versions of Node where they are missing.


	Nan::Encoding


	Nan::Encode()


	Nan::DecodeBytes()


	Nan::DecodeWrite()




[bookmark: api_nan_encoding]


Nan::Encoding

An enum representing the supported encoding types. A copy of node::encoding that is consistent across versions of Node.

Definition:

enum Nan::Encoding { ASCII, UTF8, BASE64, UCS2, BINARY, HEX, BUFFER }





[bookmark: api_nan_encode]




Nan::Encode()

A wrapper around node::Encode() that provides a consistent implementation across supported versions of Node.

Signature:

v8::Local<v8::Value> Nan::Encode(const void *buf,
                                 size_t len,
                                 enum Nan::Encoding encoding = BINARY);





[bookmark: api_nan_decode_bytes]




Nan::DecodeBytes()

A wrapper around node::DecodeBytes() that provides a consistent implementation across supported versions of Node.

Signature:

ssize_t Nan::DecodeBytes(v8::Local<v8::Value> val,
                         enum Nan::Encoding encoding = BINARY);





[bookmark: api_nan_decode_write]




Nan::DecodeWrite()

A wrapper around node::DecodeWrite() that provides a consistent implementation across supported versions of Node.

Signature:

ssize_t Nan::DecodeWrite(char *buf,
                         size_t len,
                         v8::Local<v8::Value> val,
                         enum Nan::Encoding encoding = BINARY);











          

      

      

    

  

  
    
    V8 internals
    

    
 
  

    
      
          
            
  
V8 internals

The hooks to access V8 internals—including GC and statistics—are different across the supported versions of V8, therefore NAN provides its own hooks that call the appropriate V8 methods.


	NAN_GC_CALLBACK()


	Nan::AddGCEpilogueCallback()


	Nan::RemoveGCEpilogueCallback()


	Nan::AddGCPrologueCallback()


	Nan::RemoveGCPrologueCallback()


	Nan::GetHeapStatistics()


	Nan::SetCounterFunction()


	Nan::SetCreateHistogramFunction()


	Nan::SetAddHistogramSampleFunction()


	Nan::IdleNotification()


	Nan::LowMemoryNotification()


	Nan::ContextDisposedNotification()


	Nan::GetInternalFieldPointer()


	Nan::SetInternalFieldPointer()


	Nan::AdjustExternalMemory()




[bookmark: api_nan_gc_callback]


NAN_GC_CALLBACK(callbackname)

Use NAN_GC_CALLBACK to declare your callbacks for Nan::AddGCPrologueCallback() and Nan::AddGCEpilogueCallback(). Your new method receives the arguments v8::GCType type and v8::GCCallbackFlags flags.

static Nan::Persistent<Function> callback;

NAN_GC_CALLBACK(gcPrologueCallback) {
  v8::Local<Value> argv[] = { Nan::New("prologue").ToLocalChecked() };
  Nan::MakeCallback(Nan::GetCurrentContext()->Global(), Nan::New(callback), 1, argv);
}

NAN_METHOD(Hook) {
  callback.Reset(To<Function>(args[0]).ToLocalChecked());
  Nan::AddGCPrologueCallback(gcPrologueCallback);
  info.GetReturnValue().Set(info.Holder());
}





[bookmark: api_nan_add_gc_epilogue_callback]




Nan::AddGCEpilogueCallback()

Signature:

void Nan::AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback, v8::GCType gc_type_filter = v8::kGCTypeAll)





Calls V8’s AddGCEpilogueCallback() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#a580f976e4290cead62c2fc4dd396be3e].

[bookmark: api_nan_remove_gc_epilogue_callback]




Nan::RemoveGCEpilogueCallback()

Signature:

void Nan::RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback)





Calls V8’s RemoveGCEpilogueCallback() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#adca9294555a3908e9f23c7bb0f0f284c].

[bookmark: api_nan_add_gc_prologue_callback]




Nan::AddGCPrologueCallback()

Signature:

void Nan::AddGCPrologueCallback(v8::Isolate::GCPrologueCallback, v8::GCType gc_type_filter callback)





Calls V8’s AddGCPrologueCallback() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#a6dbef303603ebdb03da6998794ea05b8].

[bookmark: api_nan_remove_gc_prologue_callback]




Nan::RemoveGCPrologueCallback()

Signature:

void Nan::RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback)





Calls V8’s RemoveGCPrologueCallback() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#a5f72c7cda21415ce062bbe5c58abe09e].

[bookmark: api_nan_get_heap_statistics]




Nan::GetHeapStatistics()

Signature:

void Nan::GetHeapStatistics(v8::HeapStatistics *heap_statistics)





Calls V8’s GetHeapStatistics() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#a5593ac74687b713095c38987e5950b34].

[bookmark: api_nan_set_counter_function]




Nan::SetCounterFunction()

Signature:

void Nan::SetCounterFunction(v8::CounterLookupCallback cb)





Calls V8’s SetCounterFunction() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#a045d7754e62fa0ec72ae6c259b29af94].

[bookmark: api_nan_set_create_histogram_function]




Nan::SetCreateHistogramFunction()

Signature:

void Nan::SetCreateHistogramFunction(v8::CreateHistogramCallback cb) 





Calls V8’s SetCreateHistogramFunction() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#a542d67e85089cb3f92aadf032f99e732].

[bookmark: api_nan_set_add_histogram_sample_function]




Nan::SetAddHistogramSampleFunction()

Signature:

void Nan::SetAddHistogramSampleFunction(v8::AddHistogramSampleCallback cb) 





Calls V8’s SetAddHistogramSampleFunction() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#aeb420b690bc2c216882d6fdd00ddd3ea].

[bookmark: api_nan_idle_notification]




Nan::IdleNotification()

Signature:

bool Nan::IdleNotification(int idle_time_in_ms)





Calls V8’s IdleNotification() or IdleNotificationDeadline() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#ad6a2a02657f5425ad460060652a5a118] depending on V8 version.

[bookmark: api_nan_low_memory_notification]




Nan::LowMemoryNotification()

Signature:

void Nan::LowMemoryNotification() 





Calls V8’s LowMemoryNotification() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#a24647f61d6b41f69668094bdcd6ea91f].

[bookmark: api_nan_context_disposed_notification]




Nan::ContextDisposedNotification()

Signature:

void Nan::ContextDisposedNotification()





Calls V8’s ContextDisposedNotification() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#ad7f5dc559866343fe6cd8db1f134d48b].

[bookmark: api_nan_get_internal_field_pointer]




Nan::GetInternalFieldPointer()

Gets a pointer to the internal field with at index from a V8 Object handle.

Signature:

void* Nan::GetInternalFieldPointer(v8::Local<v8::Object> object, int index) 





Calls the Object’s GetAlignedPointerFromInternalField() or GetPointerFromInternalField() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#a580ea84afb26c005d6762eeb9e3c308f] depending on the version of V8.

[bookmark: api_nan_set_internal_field_pointer]




Nan::SetInternalFieldPointer()

Sets the value of the internal field at index on a V8 Object handle.

Signature:

void Nan::SetInternalFieldPointer(v8::Local<v8::Object> object, int index, void* value)





Calls the Object’s SetAlignedPointerInInternalField() or SetPointerInInternalField() [https://v8docs.nodesource.com/node-8.11/db/d85/classv8_1_1_object.html#ab3c57184263cf29963ef0017bec82281] depending on the version of V8.

[bookmark: api_nan_adjust_external_memory]




Nan::AdjustExternalMemory()

Signature:

int Nan::AdjustExternalMemory(int bytesChange)





Calls V8’s AdjustAmountOfExternalAllocatedMemory() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#ae1a59cac60409d3922582c4af675473e].







          

      

      

    

  

  
    
    Miscellaneous V8 Helpers
    

    
 
  

    
      
          
            
  
Miscellaneous V8 Helpers


	Nan::Utf8String


	Nan::GetCurrentContext()


	Nan::SetIsolateData()


	Nan::GetIsolateData()


	Nan::TypedArrayContents




[bookmark: api_nan_utf8_string]


Nan::Utf8String

Converts an object to a UTF-8-encoded character array. If conversion to a string fails (e.g. due to an exception in the toString() method of the object) then the length() method returns 0 and the * operator returns NULL. The underlying memory used for this object is managed by the object.

An implementation of v8::String::Utf8Value [https://v8docs.nodesource.com/node-8.11/d4/d1b/classv8_1_1_string_1_1_utf8_value.html] that is consistent across all supported versions of V8.

Definition:

class Nan::Utf8String {
 public:
  Nan::Utf8String(v8::Local<v8::Value> from);

  int length() const;

  char* operator*();
  const char* operator*() const;
};





[bookmark: api_nan_get_current_context]




Nan::GetCurrentContext()

A call to v8::Isolate::GetCurrent()->GetCurrentContext() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#a81c7a1ed7001ae2a65e89107f75fd053] that works across all supported versions of V8.

Signature:

v8::Local<v8::Context> Nan::GetCurrentContext()





[bookmark: api_nan_set_isolate_data]




Nan::SetIsolateData()

A helper to provide a consistent API to v8::Isolate#SetData() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#a7acadfe7965997e9c386a05f098fbe36].

Signature:

void Nan::SetIsolateData(v8::Isolate *isolate, T *data)





[bookmark: api_nan_get_isolate_data]




Nan::GetIsolateData()

A helper to provide a consistent API to v8::Isolate#GetData() [https://v8docs.nodesource.com/node-8.11/d5/dda/classv8_1_1_isolate.html#aabd223436bc1100a787dadaa024c6257].

Signature:

T *Nan::GetIsolateData(v8::Isolate *isolate)





[bookmark: api_nan_typedarray_contents]




Nan::TypedArrayContents
  
    
    <no title>
    

    
 
  

    
      
          
            
  1to2 naively converts source code files from NAN 1 to NAN 2. There will be erroneous conversions,
false positives and missed opportunities. The input files are rewritten in place. Make sure that
you have backups. You will have to manually review the changes afterwards and do some touchups.

$ tools/1to2.js

  Usage: 1to2 [options] <file ...>

  Options:

    -h, --help     output usage information
    -V, --version  output the version number







          

      

      

    

  

  
    
    navigator
    

    
 
  

    
      
          
            
  
navigator

Emulates the browser’s navigator

{
    appCodeName: "Mozilla"
  , appName: "Netscape"
  , appVersion: "5.0 (" + machine + "; " + arch + ") " + engine
  , cookieEnabled: true
  , geolocation: undefined
    /*
      clearWatch
      getCurrentPosition
      watchPosition
    */
  , mimeTypes: []
    /*
    */
  , onLine: true
  , platform: "MacIntel"
  , plugins: []
    /*
    */
  , product: "Gecko"
  , productSub: "20030107"
  , usegAgent: "Mozilla/5.0 (" + machine + "; " + arch + ") " + engine
  , vendor: "Joyent"
  , vendorSub: ""
}








TODO

Use process.os and such for a more accurate readout





          

      

      

    

  

  
    
    NWMatcher
    

    
 
  

    
      
          
            
  
NWMatcher [http://dperini.github.io/nwmatcher/]

A fast CSS selector engine and matcher.


Installation

To include NWMatcher in a standard web page:

<script type="text/javascript" src="nwmatcher.js"></script>





To use it with Node.js:

$ npm install nwmatcher





NWMatcher currently supports browsers (as a global, NW.Dom) and headless environments (as a CommonJS module).




Supported Selectors

Here is a list of all the CSS2/CSS3 Supported selectors [https://github.com/dperini/nwmatcher/wiki/CSS-supported-selectors].




Features and Compliance

You can read more about NWMatcher features and compliance [https://github.com/dperini/nwmatcher/wiki/Features-and-compliance] on the wiki.




API


DOM Selection


first( selector, context )

Returns a reference to the first element matching selector, starting at context.




match( element, selector, context )

Returns true if element matches selector, starting at context; returns false otherwise.




select( selector, context, callback )

Returns an array of all the elements matching selector, starting at context. If callback is provided, it is invoked for each matching element.






DOM Helpers


byId( id, from )

Returns a reference to the first element with ID id, optionally filtered to descendants of the element from.




byTag( tag, from )

Returns an array of elements having the specified tag name tag, optionally filtered to descendants of the element from.




byClass( class, from )

Returns an array of elements having the specified class name class, optionally filtered to descendants of the element from.




byName( name, from )

Returns an array of elements having the specified value name for their name attribute, optionally filtered to descendants of the element from.




getAttribute( element, attribute )

Return the value read from the attribute of element with name attribute, as a string.




hasAttribute( element, attribute )

Returns true element has an attribute with name attribute set; returns false otherwise.






Engine Configuration


configure( options )

The following is the list of currently available configuration options, their default values and descriptions, they are boolean flags that can be set to true or false:


	CACHING:   false - false to disable caching of result sets, true to enable


	ESCAPECHR: true  - true to allow CSS escaped identifiers, false to disallow


	NON_ASCII: true  - true to allow identifiers containing non-ASCII (utf-8) chars


	SELECTOR3: true  - switch syntax RE, true to use Level 3, false to use Level 2


	UNICODE16: true  - true to allow identifiers containing Unicode (utf-16) chars


	SHORTCUTS: false - false to disable mangled selector strings like “+div” or “ul>”


	SIMPLENOT: true  - true to disallow complex selectors nested in ‘:not()’ classes


	SVG_LCASE: false - false to disable matching lowercase tag names of SVG elements


	UNIQUE_ID: true  - true to disallow multiple elements with the same id (strict)


	USE_HTML5: true  - true to use HTML5 specs for “:checked” and similar UI states


	USE_QSAPI: true  - true to use browsers native Query Selector API if available


	VERBOSITY: true  - true to throw exceptions, false to skip throwing exceptions


	LOGERRORS: true  - true to print console errors or warnings, false to mute them




Example:

NW.Dom.configure( { USE_QSAPI: false, VERBOSITY: false } );








registerOperator( symbol, resolver )

Registers a new symbol and its matching resolver in the operators table. Example:

NW.Dom.registerOperator( '!=', 'n!="%m"' );








registerSelector( name, rexp, func )

Registers a new selector, with the matching regular expression and the appropriate resolver function, in the selectors table.











          

      

      

    

  

  
    
    oauth-sign
    

    
 
  

    
      
          
            
  
oauth-sign

OAuth 1 signing. Formerly a vendor lib in mikeal/request, now a standalone module.


Supported Method Signatures


	HMAC-SHA1


	HMAC-SHA256


	RSA-SHA1


	PLAINTEXT










          

      

      

    

  

  
    
    performance-now
    

    
 
  

    
      
          
            
  
performance-now [image: ../../../_images/performance-now.png]Build Status [https://travis-ci.org/braveg1rl/performance-now] [image: ../../../_images/performance-now1.png]Dependency Status [https://david-dm.org/braveg1rl/performance-now]

Implements a function similar to performance.now (based on process.hrtime).

Modern browsers have a window.performance object with - among others - a now method which gives time in milliseconds, but with sub-millisecond precision. This module offers the same function based on the Node.js native process.hrtime function.

Using process.hrtime means that the reported time will be monotonically increasing, and not subject to clock-drift.

According to the High Resolution Time specification [http://www.w3.org/TR/hr-time/], the number of milliseconds reported by performance.now should be relative to the value of performance.timing.navigationStart.

In the current version of the module (2.0) the reported time is relative to the time the current Node process has started (inferred from process.uptime()).

Version 1.0 reported a different time. The reported time was relative to the time the module was loaded (i.e. the time it was first required). If you need this functionality, version 1.0 is still available on NPM.


Example usage

var now = require("performance-now")
var start = now()
var end = now()
console.log(start.toFixed(3)) // the number of milliseconds the current node process is running
console.log((start-end).toFixed(3)) // ~ 0.002 on my system





Running the now function two times right after each other yields a time difference of a few microseconds. Given this overhead, I think it’s best to assume that the precision of intervals computed with this method is not higher than 10 microseconds, if you don’t know the exact overhead on your own system.




License

performance-now is released under the MIT License [http://opensource.org/licenses/MIT].
Copyright (c) 2017 Braveg1rl







          

      

      

    

  

  
    
    PleaseWait.js
    

    
 
  

    
      
          
            
  
PleaseWait.js

A simple library to show your users a beautiful splash page while your application loads.


Documentation and Demo

Documentation and demo can be found here [http://pathgather.github.io/please-wait/].




About Pathgather

Pathgather is an NYC-based startup building a platform that dramatically accelerates learning for enterprises by bringing employees, training content, and existing enterprise systems into one engaging platform.

Every Friday, we work on open-source software (our own or other projects). Want to join our always growing team? Peruse our current opportunities [http://www.pathgather.com/jobs/] or reach out to us at tech@pathgather.com!







          

      

      

    

  

  
    
    psl (Public Suffix List)
    

    
 
  

    
      
          
            
  
psl (Public Suffix List)

[image: ../../../_images/psl.png]NPM [https://nodei.co/npm/psl/]

[image: ../../../_images/psl.svg]Greenkeeper badge [https://greenkeeper.io/]
[image: ../../../_images/psl1.svg]Build Status [https://travis-ci.org/wrangr/psl]
[image: ../../../_images/dev-status.png]devDependency Status [https://david-dm.org/wrangr/psl#info=devDependencies]

psl is a JavaScript domain name parser based on the
Public Suffix List [https://publicsuffix.org/].

This implementation is tested against the
test data hosted by Mozilla [http://mxr.mozilla.org/mozilla-central/source/netwerk/test/unit/data/test_psl.txt?raw=1]
and kindly provided by Comodo [https://www.comodo.com/].


What is the Public Suffix List?

The Public Suffix List is a cross-vendor initiative to provide an accurate list
of domain name suffixes.

The Public Suffix List is an initiative of the Mozilla Project, but is
maintained as a community resource. It is available for use in any software,
but was originally created to meet the needs of browser manufacturers.

A “public suffix” is one under which Internet users can directly register names.
Some examples of public suffixes are “.com”, “.co.uk” and “pvt.k12.wy.us”. The
Public Suffix List is a list of all known public suffixes.

Source: http://publicsuffix.org




Installation


Node.js

npm install --save psl








Browser

Download psl.min.js [https://raw.githubusercontent.com/wrangr/psl/master/dist/psl.min.js]
and include it in a script tag.

<script src="psl.min.js"></script>





This script is browserified and wrapped in a umd [https://github.com/umdjs/umd]
wrapper so you should be able to use it standalone or together with a module
loader.






API


psl.parse(domain)

Parse domain based on Public Suffix List. Returns an Object with the following
properties:


	tld: Top level domain (this is the public suffix).


	sld: Second level domain (the first private part of the domain name).


	domain: The domain name is the sld + tld.


	subdomain: Optional parts left of the domain.





Example:

var psl = require('psl');

// Parse domain without subdomain
var parsed = psl.parse('google.com');
console.log(parsed.tld); // 'com'
console.log(parsed.sld); // 'google'
console.log(parsed.domain); // 'google.com'
console.log(parsed.subdomain); // null

// Parse domain with subdomain
var parsed = psl.parse('www.google.com');
console.log(parsed.tld); // 'com'
console.log(parsed.sld); // 'google'
console.log(parsed.domain); // 'google.com'
console.log(parsed.subdomain); // 'www'

// Parse domain with nested subdomains
var parsed = psl.parse('a.b.c.d.foo.com');
console.log(parsed.tld); // 'com'
console.log(parsed.sld); // 'foo'
console.log(parsed.domain); // 'foo.com'
console.log(parsed.subdomain); // 'a.b.c.d'










psl.get(domain)

Get domain name, sld + tld. Returns null if not valid.


Example:

var psl = require('psl');

// null input.
psl.get(null); // null

// Mixed case.
psl.get('COM'); // null
psl.get('example.COM'); // 'example.com'
psl.get('WwW.example.COM'); // 'example.com'

// Unlisted TLD.
psl.get('example'); // null
psl.get('example.example'); // 'example.example'
psl.get('b.example.example'); // 'example.example'
psl.get('a.b.example.example'); // 'example.example'

// TLD with only 1 rule.
psl.get('biz'); // null
psl.get('domain.biz'); // 'domain.biz'
psl.get('b.domain.biz'); // 'domain.biz'
psl.get('a.b.domain.biz'); // 'domain.biz'

// TLD with some 2-level rules.
psl.get('uk.com'); // null);
psl.get('example.uk.com'); // 'example.uk.com');
psl.get('b.example.uk.com'); // 'example.uk.com');

// More complex TLD.
psl.get('c.kobe.jp'); // null
psl.get('b.c.kobe.jp'); // 'b.c.kobe.jp'
psl.get('a.b.c.kobe.jp'); // 'b.c.kobe.jp'
psl.get('city.kobe.jp'); // 'city.kobe.jp'
psl.get('www.city.kobe.jp'); // 'city.kobe.jp'

// IDN labels.
psl.get('食狮.com.cn'); // '食狮.com.cn'
psl.get('食狮.公司.cn'); // '食狮.公司.cn'
psl.get('www.食狮.公司.cn'); // '食狮.公司.cn'

// Same as above, but punycoded.
psl.get('xn--85x722f.com.cn'); // 'xn--85x722f.com.cn'
psl.get('xn--85x722f.xn--55qx5d.cn'); // 'xn--85x722f.xn--55qx5d.cn'
psl.get('www.xn--85x722f.xn--55qx5d.cn'); // 'xn--85x722f.xn--55qx5d.cn'










psl.isValid(domain)

Check whether a domain has a valid Public Suffix. Returns a Boolean indicating
whether the domain has a valid Public Suffix.


Example

var psl = require('psl');

psl.isValid('google.com'); // true
psl.isValid('www.google.com'); // true
psl.isValid('x.yz'); // false












Testing and Building

Test are written using mocha [https://mochajs.org/] and can be
run in two different environments: node and phantomjs.

# This will run `eslint`, `mocha` and `karma`.
npm test

# Individual test environments
# Run tests in node only.
./node_modules/.bin/mocha test
# Run tests in phantomjs only.
./node_modules/.bin/karma start ./karma.conf.js --single-run

# Build data (parse raw list) and create dist files
npm run build





Feel free to fork if you see possible improvements!




Acknowledgements


	Mozilla Foundation’s Public Suffix List [https://publicsuffix.org/]


	Thanks to Rob Stradling of Comodo [https://www.comodo.com/] for providing
test data.


	Inspired by weppos/publicsuffix-ruby [https://github.com/weppos/publicsuffix-ruby]







License

The MIT License (MIT)

Copyright (c) 2017 Lupo Montero lupomontero@gmail.com

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.







          

      

      

    

  

  
    
    Punycode.js
    

    
 
  

    
      
          
            
  
Punycode.js [image: ../../../_images/punycode.js.svg]Build status [https://travis-ci.org/bestiejs/punycode.js] [image: ../../../_images/punycode.js1.svg]Code coverage status [https://codecov.io/gh/bestiejs/punycode.js] [image: ../../../_images/punycode.js2.svg]Dependency status [https://gemnasium.com/bestiejs/punycode.js]

Punycode.js is a robust Punycode converter that fully complies to RFC 3492 [https://tools.ietf.org/html/rfc3492] and RFC 5891 [https://tools.ietf.org/html/rfc5891].

This JavaScript library is the result of comparing, optimizing and documenting different open-source implementations of the Punycode algorithm:


	The C example code from RFC 3492 [https://tools.ietf.org/html/rfc3492#appendix-C]


	punycode.c by Markus W. Scherer (IBM) [http://opensource.apple.com/source/ICU/ICU-400.42/icuSources/common/punycode.c]


	punycode.c by Ben Noordhuis [https://github.com/bnoordhuis/punycode/blob/master/punycode.c]


	JavaScript implementation by some [http://stackoverflow.com/questions/183485/can-anyone-recommend-a-good-free-javascript-for-punycode-to-unicode-conversion/301287#301287]


	punycode.js by Ben Noordhuis [https://github.com/joyent/node/blob/426298c8c1c0d5b5224ac3658c41e7c2a3fe9377/lib/punycode.js] (note: not fully compliant [https://github.com/joyent/node/issues/2072])




This project was bundled [https://github.com/joyent/node/blob/master/lib/punycode.js] with Node.js from v0.6.2+ [https://github.com/joyent/node/compare/975f1930b1...61e796decc] until v7 [https://github.com/nodejs/node/pull/7941] (soft-deprecated).

The current version supports recent versions of Node.js only. It provides a CommonJS module and an ES6 module. For the old version that offers the same functionality with broader support, including Rhino, Ringo, Narwhal, and web browsers, see v1.4.1 [https://github.com/bestiejs/punycode.js/releases/tag/v1.4.1].


Installation

Via npm [https://www.npmjs.com/]:

npm install punycode --save





In Node.js [https://nodejs.org/]:

const punycode = require('punycode');








API


punycode.decode(string)

Converts a Punycode string of ASCII symbols to a string of Unicode symbols.

// decode domain name parts
punycode.decode('maana-pta'); // 'mañana'
punycode.decode('--dqo34k'); // '☃-⌘'








punycode.encode(string)

Converts a string of Unicode symbols to a Punycode string of ASCII symbols.

// encode domain name parts
punycode.encode('mañana'); // 'maana-pta'
punycode.encode('☃-⌘'); // '--dqo34k'








punycode.toUnicode(input)

Converts a Punycode string representing a domain name or an email address to Unicode. Only the Punycoded parts of the input will be converted, i.e. it doesn’t matter if you call it on a string that has already been converted to Unicode.

// decode domain names
punycode.toUnicode('xn--maana-pta.com');
// → 'mañana.com'
punycode.toUnicode('xn----dqo34k.com');
// → '☃-⌘.com'

// decode email addresses
punycode.toUnicode('джумла@xn--p-8sbkgc5ag7bhce.xn--ba-lmcq');
// → 'джумла@джpумлатест.bрфa'








punycode.toASCII(input)

Converts a lowercased Unicode string representing a domain name or an email address to Punycode. Only the non-ASCII parts of the input will be converted, i.e. it doesn’t matter if you call it with a domain that’s already in ASCII.

// encode domain names
punycode.toASCII('mañana.com');
// → 'xn--maana-pta.com'
punycode.toASCII('☃-⌘.com');
// → 'xn----dqo34k.com'

// encode email addresses
punycode.toASCII('джумла@джpумлатест.bрфa');
// → 'джумла@xn--p-8sbkgc5ag7bhce.xn--ba-lmcq'








punycode.ucs2


punycode.ucs2.decode(string)

Creates an array containing the numeric code point values of each Unicode symbol in the string. While JavaScript uses UCS-2 internally [https://mathiasbynens.be/notes/javascript-encoding], this function will convert a pair of surrogate halves (each of which UCS-2 exposes as separate characters) into a single code point, matching UTF-16.

punycode.ucs2.decode('abc');
// → [0x61, 0x62, 0x63]
// surrogate pair for U+1D306 TETRAGRAM FOR CENTRE:
punycode.ucs2.decode('\uD834\uDF06');
// → [0x1D306]








punycode.ucs2.encode(codePoints)

Creates a string based on an array of numeric code point values.

punycode.ucs2.encode([0x61, 0x62, 0x63]);
// → 'abc'
punycode.ucs2.encode([0x1D306]);
// → '\uD834\uDF06'










punycode.version

A string representing the current Punycode.js version number.






Author

| [image: ../../../_images/24e08a9ea84deb17ae121074d0f17125.jpg]twitter/mathias [https://twitter.com/mathias] |
|—|
| Mathias Bynens [https://mathiasbynens.be/] |




License

Punycode.js is available under the MIT [https://mths.be/mit] license.







          

      

      

    

  

  
    
    6.5.2
    

    
 
  

    
      
          
            
  
6.5.2


	[Fix] use safer-buffer instead of Buffer constructor


	[Refactor] utils: module.exports one thing, instead of mutating exports (#230)


	[Dev Deps] update browserify, eslint, iconv-lite, safer-buffer, tape, browserify







6.5.1


	[Fix] Fix parsing & compacting very deep objects (#224)


	[Refactor] name utils functions


	[Dev Deps] update eslint, @ljharb/eslint-config, tape


	[Tests] up to node v8.4; use nvm install-latest-npm so newer npm doesn’t break older node


	[Tests] Use precise dist for Node.js 0.6 runtime (#225)


	[Tests] make 0.6 required, now that it’s passing


	[Tests] on node v8.2; fix npm on node 0.6







6.5.0


	[New] add utils.assign


	[New] pass default encoder/decoder to custom encoder/decoder functions (#206)


	[New] parse/stringify: add ignoreQueryPrefix/addQueryPrefix options, respectively (#213)


	[Fix] Handle stringifying empty objects with addQueryPrefix (#217)


	[Fix] do not mutate options argument (#207)


	[Refactor] parse: cache index to reuse in else statement (#182)


	[Docs] add various badges to readme (#208)


	[Dev Deps] update eslint, browserify, iconv-lite, tape


	[Tests] up to node v8.1, v7.10, v6.11; npm v4.6 breaks on node < v1; npm v5+ breaks on node < v4


	[Tests] add editorconfig-tools







6.4.0


	[New] qs.stringify: add encodeValuesOnly option


	[Fix] follow allowPrototypes option during merge (#201, #201)


	[Fix] support keys starting with brackets (#202, #200)


	[Fix] chmod a-x


	[Dev Deps] update eslint


	[Tests] up to node v7.7, v6.10,v4.8; disable osx builds since they block linux builds


	[eslint] reduce warnings







6.3.2


	[Fix] follow allowPrototypes option during merge (#201, #200)


	[Dev Deps] update eslint


	[Fix] chmod a-x


	[Fix] support keys starting with brackets (#202, #200)


	[Tests] up to node v7.7, v6.10,v4.8; disable osx builds since they block linux builds







6.3.1


	[Fix] ensure that allowPrototypes: false does not ever shadow Object.prototype properties (thanks, @snyk!)


	[Dev Deps] update eslint, @ljharb/eslint-config, browserify, iconv-lite, qs-iconv, tape


	[Tests] on all node minors; improve test matrix


	[Docs] document stringify option allowDots (#195)


	[Docs] add empty object and array values example (#195)


	[Docs] Fix minor inconsistency/typo (#192)


	[Docs] document stringify option sort (#191)


	[Refactor] stringify: throw faster with an invalid encoder


	[Refactor] remove unnecessary escapes (#184)


	Remove contributing.md, since qs is no longer part of hapi (#183)







6.3.0


	[New] Add support for RFC 1738 (#174, #173)


	[New] stringify: Add serializeDate option to customize Date serialization (#159)


	[Fix] ensure utils.merge handles merging two arrays


	[Refactor] only constructors should be capitalized


	[Refactor] capitalized var names are for constructors only


	[Refactor] avoid using a sparse array


	[Robustness] formats: cache String#replace


	[Dev Deps] update browserify, eslint, @ljharb/eslint-config; add safe-publish-latest


	[Tests] up to node v6.8, v4.6; improve test matrix


	[Tests] flesh out arrayLimit/arrayFormat tests (#107)


	[Tests] skip Object.create tests when null objects are not available


	[Tests] Turn on eslint for test files (#175)







6.2.3


	[Fix] follow allowPrototypes option during merge (#201, #200)


	[Fix] chmod a-x


	[Fix] support keys starting with brackets (#202, #200)


	[Tests] up to node v7.7, v6.10,v4.8; disable osx builds since they block linux builds







6.2.2


	[Fix] ensure that allowPrototypes: false does not ever shadow Object.prototype properties







6.2.1


	[Fix] ensure key[]=x&key[]&key[]=y results in 3, not 2, values


	[Refactor] Be explicit and use Object.prototype.hasOwnProperty.call


	[Tests] remove parallelshell since it does not reliably report failures


	[Tests] up to node v6.3, v5.12


	[Dev Deps] update tape, eslint, @ljharb/eslint-config, qs-iconv







6.2.0 [https://github.com/ljharb/qs/issues?milestone=36&state=closed]


	[New] pass Buffers to the encoder/decoder directly (#161)


	[New] add “encoder” and “decoder” options, for custom param encoding/decoding (#160)


	[Fix] fix compacting of nested sparse arrays (#150)







**6.1.2


	[Fix] follow allowPrototypes option during merge (#201, #200)


	[Fix] chmod a-x


	[Fix] support keys starting with brackets (#202, #200)


	[Tests] up to node v7.7, v6.10,v4.8; disable osx builds since they block linux builds







6.1.1


	[Fix] ensure that allowPrototypes: false does not ever shadow Object.prototype properties







6.1.0 [https://github.com/ljharb/qs/issues?milestone=35&state=closed]


	[New] allowDots option for stringify (#151)


	[Fix] “sort” option should work at a depth of 3 or more (#151)


	[Fix] Restore dist directory; will be removed in v7 (#148)







6.0.4


	[Fix] follow allowPrototypes option during merge (#201, #200)


	[Fix] chmod a-x


	[Fix] support keys starting with brackets (#202, #200)


	[Tests] up to node v7.7, v6.10,v4.8; disable osx builds since they block linux builds







6.0.3


	[Fix] ensure that allowPrototypes: false does not ever shadow Object.prototype properties


	[Fix] Restore dist directory; will be removed in v7 (#148)







6.0.2 [https://github.com/ljharb/qs/issues?milestone=33&state=closed]


	Revert ES6 requirement and restore support for node down to v0.8.







6.0.1 [https://github.com/ljharb/qs/issues?milestone=32&state=closed]


	#127 [https://github.com/ljharb/qs/pull/127] Fix engines definition in package.json







6.0.0 [https://github.com/ljharb/qs/issues?milestone=31&state=closed]


	#124 [https://github.com/ljharb/qs/issues/124] Use ES6 and drop support for node < v4







5.2.1


	[Fix] ensure key[]=x&key[]&key[]=y results in 3, not 2, values







5.2.0 [https://github.com/ljharb/qs/issues?milestone=30&state=closed]


	#64 [https://github.com/ljharb/qs/issues/64] Add option to sort object keys in the query string







5.1.0 [https://github.com/ljharb/qs/issues?milestone=29&state=closed]


	#117 [https://github.com/ljharb/qs/issues/117] make URI encoding stringified results optional


	#106 [https://github.com/ljharb/qs/issues/106] Add flag skipNulls to optionally skip null values in stringify







5.0.0 [https://github.com/ljharb/qs/issues?milestone=28&state=closed]


	#114 [https://github.com/ljharb/qs/issues/114] default allowDots to false


	#100 [https://github.com/ljharb/qs/issues/100] include dist to npm







4.0.0 [https://github.com/ljharb/qs/issues?milestone=26&state=closed]


	#98 [https://github.com/ljharb/qs/issues/98] make returning plain objects and allowing prototype overwriting properties optional







3.1.0 [https://github.com/ljharb/qs/issues?milestone=24&state=closed]


	#89 [https://github.com/ljharb/qs/issues/89] Add option to disable “Transform dot notation to bracket notation”







3.0.0 [https://github.com/ljharb/qs/issues?milestone=23&state=closed]


	#80 [https://github.com/ljharb/qs/issues/80] qs.parse silently drops properties


	#77 [https://github.com/ljharb/qs/issues/77] Perf boost


	#60 [https://github.com/ljharb/qs/issues/60] Add explicit option to disable array parsing


	#74 [https://github.com/ljharb/qs/issues/74] Bad parse when turning array into object


	#81 [https://github.com/ljharb/qs/issues/81] Add a filter option


	#68 [https://github.com/ljharb/qs/issues/68] Fixed issue with recursion and passing strings into objects.


	#66 [https://github.com/ljharb/qs/issues/66] Add mixed array and object dot notation support Closes: #47


	#76 [https://github.com/ljharb/qs/issues/76] RFC 3986


	#85 [https://github.com/ljharb/qs/issues/85] No equal sign


	#84 [https://github.com/ljharb/qs/issues/84] update license attribute







2.4.1 [https://github.com/ljharb/qs/issues?milestone=20&state=closed]


	#73 [https://github.com/ljharb/qs/issues/73] Property ‘hasOwnProperty’ of object # is not a function
  
    
    qs
    

    
 
  

    
      
          
            
  
qs [image: http://versionbadg.es/ljharb/qs.svg]Version Badge [https://npmjs.org/package/qs]

[image: ../../../_images/qs.svg]Build Status [https://travis-ci.org/ljharb/qs]
[image: ../../../_images/qs1.svg]dependency status [https://david-dm.org/ljharb/qs]
[image: ../../../_images/dev-status1.svg]dev dependency status [https://david-dm.org/ljharb/qs?type=dev]
[image: ../../../_images/qs2.svg]License
[image: ../../../_images/qs3.svg]Downloads [http://npm-stat.com/charts.html?package=qs]

[image: ../../../_images/qs.png]npm badge [https://npmjs.org/package/qs]

A querystring parsing and stringifying library with some added security.

Lead Maintainer: Jordan Harband [https://github.com/ljharb]

The qs module was originally created and maintained by TJ Holowaychuk [https://github.com/visionmedia/node-querystring].


Usage

var qs = require('qs');
var assert = require('assert');

var obj = qs.parse('a=c');
assert.deepEqual(obj, { a: 'c' });

var str = qs.stringify(obj);
assert.equal(str, 'a=c');






Parsing Objects



qs.parse(string, [options]);





qs allows you to create nested objects within your query strings, by surrounding the name of sub-keys with square brackets [].
For example, the string 'foo[bar]=baz' converts to:

assert.deepEqual(qs.parse('foo[bar]=baz'), {
    foo: {
        bar: 'baz'
    }
});





When using the plainObjects option the parsed value is returned as a null object, created via Object.create(null) and as such you should be aware that prototype methods will not exist on it and a user may set those names to whatever value they like:

var nullObject = qs.parse('a[hasOwnProperty]=b', { plainObjects: true });
assert.deepEqual(nullObject, { a: { hasOwnProperty: 'b' } });





By default parameters that would overwrite properties on the object prototype are ignored, if you wish to keep the data from those fields either use plainObjects as mentioned above, or set allowPrototypes to true which will allow user input to overwrite those properties. WARNING It is generally a bad idea to enable this option as it can cause problems when attempting to use the properties that have been overwritten. Always be careful with this option.

var protoObject = qs.parse('a[hasOwnProperty]=b', { allowPrototypes: true });
assert.deepEqual(protoObject, { a: { hasOwnProperty: 'b' } });





URI encoded strings work too:

assert.deepEqual(qs.parse('a%5Bb%5D=c'), {
    a: { b: 'c' }
});





You can also nest your objects, like 'foo[bar][baz]=foobarbaz':

assert.deepEqual(qs.parse('foo[bar][baz]=foobarbaz'), {
    foo: {
        bar: {
            baz: 'foobarbaz'
        }
    }
});





By default, when nesting objects qs will only parse up to 5 children deep. This means if you attempt to parse a string like
'a[b][c][d][e][f][g][h][i]=j' your resulting object will be:

var expected = {
    a: {
        b: {
            c: {
                d: {
                    e: {
                        f: {
                            '[g][h][i]': 'j'
                        }
                    }
                }
            }
        }
    }
};
var string = 'a[b][c][d][e][f][g][h][i]=j';
assert.deepEqual(qs.parse(string), expected);





This depth can be overridden by passing a depth option to qs.parse(string, [options]):

var deep = qs.parse('a[b][c][d][e][f][g][h][i]=j', { depth: 1 });
assert.deepEqual(deep, { a: { b: { '[c][d][e][f][g][h][i]': 'j' } } });





The depth limit helps mitigate abuse when qs is used to parse user input, and it is recommended to keep it a reasonably small number.

For similar reasons, by default qs will only parse up to 1000 parameters. This can be overridden by passing a parameterLimit option:

var limited = qs.parse('a=b&c=d', { parameterLimit: 1 });
assert.deepEqual(limited, { a: 'b' });





To bypass the leading question mark, use ignoreQueryPrefix:

var prefixed = qs.parse('?a=b&c=d', { ignoreQueryPrefix: true });
assert.deepEqual(prefixed, { a: 'b', c: 'd' });





An optional delimiter can also be passed:

var delimited = qs.parse('a=b;c=d', { delimiter: ';' });
assert.deepEqual(delimited, { a: 'b', c: 'd' });





Delimiters can be a regular expression too:

var regexed = qs.parse('a=b;c=d,e=f', { delimiter: /[;,]/ });
assert.deepEqual(regexed, { a: 'b', c: 'd', e: 'f' });





Option allowDots can be used to enable dot notation:

var withDots = qs.parse('a.b=c', { allowDots: true });
assert.deepEqual(withDots, { a: { b: 'c' } });








Parsing Arrays

qs can also parse arrays using a similar [] notation:

var withArray = qs.parse('a[]=b&a[]=c');
assert.deepEqual(withArray, { a: ['b', 'c'] });





You may specify an index as well:

var withIndexes = qs.parse('a[1]=c&a[0]=b');
assert.deepEqual(withIndexes, { a: ['b', 'c'] });





Note that the only difference between an index in an array and a key in an object is that the value between the brackets must be a number
to create an array. When creating arrays with specific indices, qs will compact a sparse array to only the existing values preserving
their order:

var noSparse = qs.parse('a[1]=b&a[15]=c');
assert.deepEqual(noSparse, { a: ['b', 'c'] });





Note that an empty string is also a value, and will be preserved:

var withEmptyString = qs.parse('a[]=&a[]=b');
assert.deepEqual(withEmptyString, { a: ['', 'b'] });

var withIndexedEmptyString = qs.parse('a[0]=b&a[1]=&a[2]=c');
assert.deepEqual(withIndexedEmptyString, { a: ['b', '', 'c'] });





qs will also limit specifying indices in an array to a maximum index of 20. Any array members with an index of greater than 20 will
instead be converted to an object with the index as the key:

var withMaxIndex = qs.parse('a[100]=b');
assert.deepEqual(withMaxIndex, { a: { '100': 'b' } });





This limit can be overridden by passing an arrayLimit option:

var withArrayLimit = qs.parse('a[1]=b', { arrayLimit: 0 });
assert.deepEqual(withArrayLimit, { a: { '1': 'b' } });





To disable array parsing entirely, set parseArrays to false.

var noParsingArrays = qs.parse('a[]=b', { parseArrays: false });
assert.deepEqual(noParsingArrays, { a: { '0': 'b' } });





If you mix notations, qs will merge the two items into an object:

var mixedNotation = qs.parse('a[0]=b&a[b]=c');
assert.deepEqual(mixedNotation, { a: { '0': 'b', b: 'c' } });





You can also create arrays of objects:

var arraysOfObjects = qs.parse('a[][b]=c');
assert.deepEqual(arraysOfObjects, { a: [{ b: 'c' }] });








Stringifying



qs.stringify(object, [options]);





When stringifying, qs by default URI encodes output. Objects are stringified as you would expect:

assert.equal(qs.stringify({ a: 'b' }), 'a=b');
assert.equal(qs.stringify({ a: { b: 'c' } }), 'a%5Bb%5D=c');





This encoding can be disabled by setting the encode option to false:

var unencoded = qs.stringify({ a: { b: 'c' } }, { encode: false });
assert.equal(unencoded, 'a[b]=c');





Encoding can be disabled for keys by setting the encodeValuesOnly option to true:

var encodedValues = qs.stringify(
    { a: 'b', c: ['d', 'e=f'], f: [['g'], ['h']] },
    { encodeValuesOnly: true }
);
assert.equal(encodedValues,'a=b&c[0]=d&c[1]=e%3Df&f[0][0]=g&f[1][0]=h');





This encoding can also be replaced by a custom encoding method set as encoder option:

var encoded = qs.stringify({ a: { b: 'c' } }, { encoder: function (str) {
    // Passed in values `a`, `b`, `c`
    return // Return encoded string
}})





(Note: the encoder option does not apply if encode is false)

Analogue to the encoder there is a decoder option for parse to override decoding of properties and values:

var decoded = qs.parse('x=z', { decoder: function (str) {
    // Passed in values `x`, `z`
    return // Return decoded string
}})





Examples beyond this point will be shown as though the output is not URI encoded for clarity. Please note that the return values in these cases will be URI encoded during real usage.

When arrays are stringified, by default they are given explicit indices:

qs.stringify({ a: ['b', 'c', 'd'] });
// 'a[0]=b&a[1]=c&a[2]=d'





You may override this by setting the indices option to false:

qs.stringify({ a: ['b', 'c', 'd'] }, { indices: false });
// 'a=b&a=c&a=d'





You may use the arrayFormat option to specify the format of the output array:

qs.stringify({ a: ['b', 'c'] }, { arrayFormat: 'indices' })
// 'a[0]=b&a[1]=c'
qs.stringify({ a: ['b', 'c'] }, { arrayFormat: 'brackets' })
// 'a[]=b&a[]=c'
qs.stringify({ a: ['b', 'c'] }, { arrayFormat: 'repeat' })
// 'a=b&a=c'





When objects are stringified, by default they use bracket notation:

qs.stringify({ a: { b: { c: 'd', e: 'f' } } });
// 'a[b][c]=d&a[b][e]=f'





You may override this to use dot notation by setting the allowDots option to true:

qs.stringify({ a: { b: { c: 'd', e: 'f' } } }, { allowDots: true });
// 'a.b.c=d&a.b.e=f'





Empty strings and null values will omit the value, but the equals sign (=) remains in place:

assert.equal(qs.stringify({ a: '' }), 'a=');





Key with no values (such as an empty object or array) will return nothing:

assert.equal(qs.stringify({ a: [] }), '');
assert.equal(qs.stringify({ a: {} }), '');
assert.equal(qs.stringify({ a: [{}] }), '');
assert.equal(qs.stringify({ a: { b: []} }), '');
assert.equal(qs.stringify({ a: { b: {}} }), '');





Properties that are set to undefined will be omitted entirely:

assert.equal(qs.stringify({ a: null, b: undefined }), 'a=');





The query string may optionally be prepended with a question mark:

assert.equal(qs.stringify({ a: 'b', c: 'd' }, { addQueryPrefix: true }), '?a=b&c=d');





The delimiter may be overridden with stringify as well:

assert.equal(qs.stringify({ a: 'b', c: 'd' }, { delimiter: ';' }), 'a=b;c=d');





If you only want to override the serialization of Date objects, you can provide a serializeDate option:

var date = new Date(7);
assert.equal(qs.stringify({ a: date }), 'a=1970-01-01T00:00:00.007Z'.replace(/:/g, '%3A'));
assert.equal(
    qs.stringify({ a: date }, { serializeDate: function (d) { return d.getTime(); } }),
    'a=7'
);





You may use the sort option to affect the order of parameter keys:

function alphabeticalSort(a, b) {
    return a.localeCompare(b);
}
assert.equal(qs.stringify({ a: 'c', z: 'y', b : 'f' }, { sort: alphabeticalSort }), 'a=c&b=f&z=y');





Finally, you can use the filter option to restrict which keys will be included in the stringified output.
If you pass a function, it will be called for each key to obtain the replacement value. Otherwise, if you
pass an array, it will be used to select properties and array indices for stringification:

function filterFunc(prefix, value) {
    if (prefix == 'b') {
        // Return an `undefined` value to omit a property.
        return;
    }
    if (prefix == 'e[f]') {
        return value.getTime();
    }
    if (prefix == 'e[g][0]') {
        return value * 2;
    }
    return value;
}
qs.stringify({ a: 'b', c: 'd', e: { f: new Date(123), g: [2] } }, { filter: filterFunc });
// 'a=b&c=d&e[f]=123&e[g][0]=4'
qs.stringify({ a: 'b', c: 'd', e: 'f' }, { filter: ['a', 'e'] });
// 'a=b&e=f'
qs.stringify({ a: ['b', 'c', 'd'], e: 'f' }, { filter: ['a', 0, 2] });
// 'a[0]=b&a[2]=d'








Handling of null values

By default, null values are treated like empty strings:

var withNull = qs.stringify({ a: null, b: '' });
assert.equal(withNull, 'a=&b=');





Parsing does not distinguish between parameters with and without equal signs. Both are converted to empty strings.

var equalsInsensitive = qs.parse('a&b=');
assert.deepEqual(equalsInsensitive, { a: '', b: '' });





To distinguish between null values and empty strings use the strictNullHandling flag. In the result string the null
values have no = sign:

var strictNull = qs.stringify({ a: null, b: '' }, { strictNullHandling: true });
assert.equal(strictNull, 'a&b=');





To parse values without = back to null use the strictNullHandling flag:

var parsedStrictNull = qs.parse('a&b=', { strictNullHandling: true });
assert.deepEqual(parsedStrictNull, { a: null, b: '' });





To completely skip rendering keys with null values, use the skipNulls flag:

var nullsSkipped = qs.stringify({ a: 'b', c: null}, { skipNulls: true });
assert.equal(nullsSkipped, 'a=b');








Dealing with special character sets

By default the encoding and decoding of characters is done in utf-8. If you
wish to encode querystrings to a different character set (i.e.
Shift JIS [https://en.wikipedia.org/wiki/Shift_JIS]) you can use the
qs-iconv [https://github.com/martinheidegger/qs-iconv] library:

var encoder = require('qs-iconv/encoder')('shift_jis');
var shiftJISEncoded = qs.stringify({ a: 'こんにちは！' }, { encoder: encoder });
assert.equal(shiftJISEncoded, 'a=%82%B1%82%F1%82%C9%82%BF%82%CD%81I');





This also works for decoding of query strings:

var decoder = require('qs-iconv/decoder')('shift_jis');
var obj = qs.parse('a=%82%B1%82%F1%82%C9%82%BF%82%CD%81I', { decoder: decoder });
assert.deepEqual(obj, { a: 'こんにちは！' });








RFC 3986 and RFC 1738 space encoding

RFC3986 used as default option and encodes ‘ ‘ to %20 which is backward compatible.
In the same time, output can be stringified as per RFC1738 with ‘ ‘ equal to ‘+’.

assert.equal(qs.stringify({ a: 'b c' }), 'a=b%20c');
assert.equal(qs.stringify({ a: 'b c' }, { format : 'RFC3986' }), 'a=b%20c');
assert.equal(qs.stringify({ a: 'b c' }, { format : 'RFC1738' }), 'a=b+c');













          

      

      

    

  

  
    
    Change Log
    

    
 
  

    
      
          
            
  
Change Log


v2.87.0 (2018/05/21)


	#2943 [https://github.com/request/request/pull/2943] Replace hawk dependency with a local implemenation (#2943) (@hueniverse)







v2.86.0 (2018/05/15)


	#2885 [https://github.com/request/request/pull/2885] Remove redundant code (for Node.js 0.9.4 and below) and dependency (@ChALkeR)


	#2942 [https://github.com/request/request/pull/2942] Make Test GREEN Again! (@simov)


	#2923 [https://github.com/request/request/pull/2923] Alterations for failing CI tests (@gareth-robinson)







v2.85.0 (2018/03/12)


	#2880 [https://github.com/request/request/pull/2880] Revert “Update hawk to 7.0.7 (#2880)” (@simov)







v2.84.0 (2018/03/12)


	#2793 [https://github.com/request/request/pull/2793] Fixed calculation of oauth_body_hash, issue #2792 (@dvishniakov)


	#2880 [https://github.com/request/request/pull/2880] Update hawk to 7.0.7 (#2880) (@kornel-kedzierski)







v2.83.0 (2017/09/27)


	#2776 [https://github.com/request/request/pull/2776] Updating tough-cookie due to security fix. (#2776) (@karlnorling)







v2.82.0 (2017/09/19)


	#2703 [https://github.com/request/request/pull/2703] Add Node.js v8 to Travis CI (@ryysud)


	#2751 [https://github.com/request/request/pull/2751] Update of hawk and qs to latest version (#2751) (@Olivier-Moreau)


	#2658 [https://github.com/request/request/pull/2658] Fixed some text in README.md (#2658) (@Marketionist)


	#2635 [https://github.com/request/request/pull/2635] chore(package): update aws-sign2 to version 0.7.0 (#2635) (@greenkeeperio-bot)


	#2641 [https://github.com/request/request/pull/2641] Update README to simplify & update convenience methods (#2641) (@FredKSchott)


	#2541 [https://github.com/request/request/pull/2541] Add convenience method for HTTP OPTIONS (#2541) (@jamesseanwright)


	#2605 [https://github.com/request/request/pull/2605] Add promise support section to README (#2605) (@FredKSchott)


	#2579 [https://github.com/request/request/pull/2579] refactor(lint): replace eslint with standard (#2579) (@ahmadnassri)


	#2598 [https://github.com/request/request/pull/2598] Update codecov to version 2.0.2 🚀 (@greenkeeperio-bot)


	#2590 [https://github.com/request/request/pull/2590] Adds test-timing keepAlive test (@nicjansma)


	#2589 [https://github.com/request/request/pull/2589] fix tabulation on request example README.MD (@odykyi)


	#2594 [https://github.com/request/request/pull/2594] chore(dependencies): har-validator to 5.x [removes babel dep] (@ahmadnassri)







v2.81.0 (2017/03/09)


	#2584 [https://github.com/request/request/pull/2584] Security issue: Upgrade qs to version 6.4.0 (@sergejmueller)


	#2578 [https://github.com/request/request/pull/2578] safe-buffer doesn’t zero-fill by default, its just a polyfill. (#2578) (@mikeal)


	#2566 [https://github.com/request/request/pull/2566] Timings: Tracks ‘lookup’, adds ‘wait’ time, fixes connection re-use (#2566) (@nicjansma)


	#2574 [https://github.com/request/request/pull/2574] Migrating to safe-buffer for improved security. (@mikeal)


	#2573 [https://github.com/request/request/pull/2573] fixes #2572 (@ahmadnassri)







v2.80.0 (2017/03/04)


	#2571 [https://github.com/request/request/pull/2571] Correctly format the Host header for IPv6 addresses (@JamesMGreene)


	#2558 [https://github.com/request/request/pull/2558] Update README.md example snippet (@FredKSchott)


	#2221 [https://github.com/request/request/pull/2221] Adding a simple Response object reference in argument specification (@calamarico)


	#2452 [https://github.com/request/request/pull/2452] Adds .timings array with DNC, TCP, request and response times (@nicjansma)


	#2553 [https://github.com/request/request/pull/2553] add ISSUE_TEMPLATE, move PR template (@FredKSchott)


	#2539 [https://github.com/request/request/pull/2539] Create PULL_REQUEST_TEMPLATE.md (@FredKSchott)


	#2524 [https://github.com/request/request/pull/2524] Update caseless to version 0.12.0 🚀 (@greenkeeperio-bot)


	#2460 [https://github.com/request/request/pull/2460] Fix wrong MIME type in example (@OwnageIsMagic)


	#2514 [https://github.com/request/request/pull/2514] Change tags to keywords in package.json (@humphd)


	#2492 [https://github.com/request/request/pull/2492] More lenient gzip decompression (@addaleax)







v2.79.0 (2016/11/18)


	#2368 [https://github.com/request/request/pull/2368] Fix typeof check in test-pool.js (@forivall)


	#2394 [https://github.com/request/request/pull/2394] Use files in package.json (@SimenB)


	#2463 [https://github.com/request/request/pull/2463] AWS support for session tokens for temporary credentials (@simov)


	#2467 [https://github.com/request/request/pull/2467] Migrate to uuid (@simov, @antialias)


	#2459 [https://github.com/request/request/pull/2459] Update taper to version 0.5.0 🚀 (@greenkeeperio-bot)


	#2448 [https://github.com/request/request/pull/2448] Make other connect timeout test more reliable too (@mscdex)







v2.78.0 (2016/11/03)


	#2447 [https://github.com/request/request/pull/2447] Always set request timeout on keep-alive connections (@mscdex)







v2.77.0 (2016/11/03)


	#2439 [https://github.com/request/request/pull/2439] Fix socket ‘connect’ listener handling (@mscdex)


	#2442 [https://github.com/request/request/pull/2442] 👻😱 Node.js 0.10 is unmaintained 😱👻 (@greenkeeperio-bot)


	#2435 [https://github.com/request/request/pull/2435] Add followOriginalHttpMethod to redirect to original HTTP method (@kirrg001)


	#2414 [https://github.com/request/request/pull/2414] Improve test-timeout reliability (@mscdex)







v2.76.0 (2016/10/25)


	#2424 [https://github.com/request/request/pull/2424] Handle buffers directly instead of using “bl” (@zertosh)


	#2415 [https://github.com/request/request/pull/2415] Re-enable timeout tests on Travis + other fixes (@mscdex)


	#2431 [https://github.com/request/request/pull/2431] Improve timeouts accuracy and node v6.8.0+ compatibility (@mscdex, @greenkeeperio-bot)


	#2428 [https://github.com/request/request/pull/2428] Update qs to version 6.3.0 🚀 (@greenkeeperio-bot)


	#2420 [https://github.com/request/request/pull/2420] change .on to .once, remove possible memory leaks (@duereg)


	#2426 [https://github.com/request/request/pull/2426] Remove “isFunction” helper in favor of “typeof” check (@zertosh)


	#2425 [https://github.com/request/request/pull/2425] Simplify “defer” helper creation (@zertosh)


	#2402 [https://github.com/request/request/pull/2402] form-data@2.1.1 breaks build 🚨 (@greenkeeperio-bot)


	#2393 [https://github.com/request/request/pull/2393] Update form-data to version 2.1.0 🚀 (@greenkeeperio-bot)







v2.75.0 (2016/09/17)


	#2381 [https://github.com/request/request/pull/2381] Drop support for Node 0.10 (@simov)


	#2377 [https://github.com/request/request/pull/2377] Update form-data to version 2.0.0 🚀 (@greenkeeperio-bot)


	#2353 [https://github.com/request/request/pull/2353] Add greenkeeper ignored packages (@simov)


	#2351 [https://github.com/request/request/pull/2351] Update karma-tap to version 3.0.1 🚀 (@greenkeeperio-bot)


	#2348 [https://github.com/request/request/pull/2348] form-data@1.0.1 breaks build 🚨 (@greenkeeperio-bot)


	#2349 [https://github.com/request/request/pull/2349] Check error type instead of string (@scotttrinh)







v2.74.0 (2016/07/22)


	#2295 [https://github.com/request/request/pull/2295] Update tough-cookie to 2.3.0 (@stash-sfdc)


	#2280 [https://github.com/request/request/pull/2280] Update karma-tap to version 2.0.1 🚀 (@greenkeeperio-bot)







v2.73.0 (2016/07/09)


	#2240 [https://github.com/request/request/pull/2240] Remove connectionErrorHandler to fix #1903 (@zarenner)


	#2251 [https://github.com/request/request/pull/2251] tape@4.6.0 breaks build 🚨 (@greenkeeperio-bot)


	#2225 [https://github.com/request/request/pull/2225] Update docs (@ArtskydJ)


	#2203 [https://github.com/request/request/pull/2203] Update browserify to version 13.0.1 🚀 (@greenkeeperio-bot)


	#2275 [https://github.com/request/request/pull/2275] Update karma to version 1.1.1 🚀 (@greenkeeperio-bot)


	#2204 [https://github.com/request/request/pull/2204] Add codecov.yml and disable PR comments (@simov)


	#2212 [https://github.com/request/request/pull/2212] Fix link to http.IncomingMessage documentation (@nazieb)


	#2208 [https://github.com/request/request/pull/2208] Update to form-data RC4 and pass null values to it (@simov)


	#2207 [https://github.com/request/request/pull/2207] Move aws4 require statement to the top (@simov)


	#2199 [https://github.com/request/request/pull/2199] Update karma-coverage to version 1.0.0 🚀 (@greenkeeperio-bot)


	#2206 [https://github.com/request/request/pull/2206] Update qs to version 6.2.0 🚀 (@greenkeeperio-bot)


	#2205 [https://github.com/request/request/pull/2205] Use server-destory to close hanging sockets in tests (@simov)


	#2200 [https://github.com/request/request/pull/2200] Update karma-cli to version 1.0.0 🚀 (@greenkeeperio-bot)







v2.72.0 (2016/04/17)


	#2176 [https://github.com/request/request/pull/2176] Do not try to pipe Gzip responses with no body (@simov)


	#2175 [https://github.com/request/request/pull/2175] Add ‘delete’ alias for the ‘del’ API method (@simov, @MuhanZou)


	#2172 [https://github.com/request/request/pull/2172] Add support for deflate content encoding (@czardoz)


	#2169 [https://github.com/request/request/pull/2169] Add callback option (@simov)


	#2165 [https://github.com/request/request/pull/2165] Check for self.req existence inside the write method (@simov)


	#2167 [https://github.com/request/request/pull/2167] Fix TravisCI badge reference master branch (@a0viedo)







v2.71.0 (2016/04/12)


	#2164 [https://github.com/request/request/pull/2164] Catch errors from the underlying http module (@simov)







v2.70.0 (2016/04/05)


	#2147 [https://github.com/request/request/pull/2147] Update eslint to version 2.5.3 🚀 (@simov, @greenkeeperio-bot)


	#2009 [https://github.com/request/request/pull/2009] Support JSON stringify replacer argument. (@elyobo)


	#2142 [https://github.com/request/request/pull/2142] Update eslint to version 2.5.1 🚀 (@greenkeeperio-bot)


	#2128 [https://github.com/request/request/pull/2128] Update browserify-istanbul to version 2.0.0 🚀 (@greenkeeperio-bot)


	#2115 [https://github.com/request/request/pull/2115] Update eslint to version 2.3.0 🚀 (@simov, @greenkeeperio-bot)


	#2089 [https://github.com/request/request/pull/2089] Fix badges (@simov)


	#2092 [https://github.com/request/request/pull/2092] Update browserify-istanbul to version 1.0.0 🚀 (@greenkeeperio-bot)


	#2079 [https://github.com/request/request/pull/2079] Accept read stream as body option (@simov)


	#2070 [https://github.com/request/request/pull/2070] Update bl to version 1.1.2 🚀 (@greenkeeperio-bot)


	#2063 [https://github.com/request/request/pull/2063] Up bluebird and oauth-sign (@simov)


	#2058 [https://github.com/request/request/pull/2058] Karma fixes for latest versions (@eiriksm)


	#2057 [https://github.com/request/request/pull/2057] Update contributing guidelines (@simov)


	#2054 [https://github.com/request/request/pull/2054] Update qs to version 6.1.0 🚀 (@greenkeeperio-bot)







v2.69.0 (2016/01/27)


	#2041 [https://github.com/request/request/pull/2041] restore aws4 as regular dependency (@rmg)







v2.68.0 (2016/01/27)


	#2036 [https://github.com/request/request/pull/2036] Add AWS Signature Version 4 (@simov, @mirkods)


	#2022 [https://github.com/request/request/pull/2022] Convert numeric multipart bodies to string (@simov, @feross)


	#2024 [https://github.com/request/request/pull/2024] Update har-validator dependency for nsp advisory #76 (@TylerDixon)


	#2016 [https://github.com/request/request/pull/2016] Update qs to version 6.0.2 🚀 (@greenkeeperio-bot)


	#2007 [https://github.com/request/request/pull/2007] Use the extend module instead of util._extend (@simov)


	#2003 [https://github.com/request/request/pull/2003] Update browserify to version 13.0.0 🚀 (@greenkeeperio-bot)


	#1989 [https://github.com/request/request/pull/1989] Update buffer-equal to version 1.0.0 🚀 (@greenkeeperio-bot)


	#1956 [https://github.com/request/request/pull/1956] Check form-data content-length value before setting up the header (@jongyoonlee)


	#1958 [https://github.com/request/request/pull/1958] Use IncomingMessage.destroy method (@simov)


	#1952 [https://github.com/request/request/pull/1952] Adds example for Tor proxy (@prometheansacrifice)


	#1943 [https://github.com/request/request/pull/1943] Update eslint to version 1.10.3 🚀 (@simov, @greenkeeperio-bot)


	#1924 [https://github.com/request/request/pull/1924] Update eslint to version 1.10.1 🚀 (@greenkeeperio-bot)


	#1915 [https://github.com/request/request/pull/1915] Remove content-length and transfer-encoding headers from defaultProxyHeaderWhiteList (@yaxia)







v2.67.0 (2015/11/19)


	#1913 [https://github.com/request/request/pull/1913] Update http-signature to version 1.1.0 🚀 (@greenkeeperio-bot)







v2.66.0 (2015/11/18)


	#1906 [https://github.com/request/request/pull/1906] Update README URLs based on HTTP redirects (@ReadmeCritic)


	#1905 [https://github.com/request/request/pull/1905] Convert typed arrays into regular buffers (@simov)


	#1902 [https://github.com/request/request/pull/1902] node-uuid@1.4.7 breaks build 🚨 (@greenkeeperio-bot)


	#1894 [https://github.com/request/request/pull/1894] Fix tunneling after redirection from https (Original: #1881) (@simov, @falms)


	#1893 [https://github.com/request/request/pull/1893] Update eslint to version 1.9.0 🚀 (@greenkeeperio-bot)


	#1852 [https://github.com/request/request/pull/1852] Update eslint to version 1.7.3 🚀 (@simov, @greenkeeperio-bot, @paulomcnally, @michelsalib, @arbaaz, @nsklkn, @LoicMahieu, @JoshWillik, @jzaefferer, @ryanwholey, @djchie, @thisconnect, @mgenereu, @acroca, @Sebmaster, @KoltesDigital)


	#1876 [https://github.com/request/request/pull/1876] Implement loose matching for har mime types (@simov)


	#1875 [https://github.com/request/request/pull/1875] Update bluebird to version 3.0.2 🚀 (@simov, @greenkeeperio-bot)


	#1871 [https://github.com/request/request/pull/1871] Update browserify to version 12.0.1 🚀 (@greenkeeperio-bot)


	#1866 [https://github.com/request/request/pull/1866] Add missing quotes on x-token property in README (@miguelmota)


	#1874 [https://github.com/request/request/pull/1874] Fix typo in README.md (@gswalden)


	#1860 [https://github.com/request/request/pull/1860] Improve referer header tests and docs (@simov)


	#1861 [https://github.com/request/request/pull/1861] Remove redundant call to Stream constructor (@watson)


	#1857 [https://github.com/request/request/pull/1857] Fix Referer header to point to the original host name (@simov)


	#1850 [https://github.com/request/request/pull/1850] Update karma-coverage to version 0.5.3 🚀 (@greenkeeperio-bot)


	#1847 [https://github.com/request/request/pull/1847] Use node’s latest version when building (@simov)


	#1836 [https://github.com/request/request/pull/1836] Tunnel: fix wrong property name (@KoltesDigital)


	#1820 [https://github.com/request/request/pull/1820] Set href as request.js uses it (@mgenereu)


	#1840 [https://github.com/request/request/pull/1840] Update http-signature to version 1.0.2 🚀 (@greenkeeperio-bot)


	#1845 [https://github.com/request/request/pull/1845] Update istanbul to version 0.4.0 🚀 (@greenkeeperio-bot)







v2.65.0 (2015/10/11)


	#1833 [https://github.com/request/request/pull/1833] Update aws-sign2 to version 0.6.0 🚀 (@greenkeeperio-bot)


	#1811 [https://github.com/request/request/pull/1811] Enable loose cookie parsing in tough-cookie (@Sebmaster)


	#1830 [https://github.com/request/request/pull/1830] Bring back tilde ranges for all dependencies (@simov)


	#1821 [https://github.com/request/request/pull/1821] Implement support for RFC 2617 MD5-sess algorithm. (@BigDSK)


	#1828 [https://github.com/request/request/pull/1828] Updated qs dependency to 5.2.0 (@acroca)


	#1818 [https://github.com/request/request/pull/1818] Extract readResponseBody method out of onRequestResponse (@pvoisin)


	#1819 [https://github.com/request/request/pull/1819] Run stringify once (@mgenereu)


	#1814 [https://github.com/request/request/pull/1814] Updated har-validator to version 2.0.2 (@greenkeeperio-bot)


	#1807 [https://github.com/request/request/pull/1807] Updated tough-cookie to version 2.1.0 (@greenkeeperio-bot)


	#1800 [https://github.com/request/request/pull/1800] Add caret ranges for devDependencies, except eslint (@simov)


	#1799 [https://github.com/request/request/pull/1799] Updated karma-browserify to version 4.4.0 (@greenkeeperio-bot)


	#1797 [https://github.com/request/request/pull/1797] Updated tape to version 4.2.0 (@greenkeeperio-bot)


	#1788 [https://github.com/request/request/pull/1788] Pinned all dependencies (@greenkeeperio-bot)







v2.64.0 (2015/09/25)


	#1787 [https://github.com/request/request/pull/1787] npm ignore examples, release.sh and disabled.appveyor.yml (@thisconnect)


	#1775 [https://github.com/request/request/pull/1775] Fix typo in README.md (@djchie)


	#1776 [https://github.com/request/request/pull/1776] Changed word ‘conjuction’ to read ‘conjunction’ in README.md (@ryanwholey)


	#1785 [https://github.com/request/request/pull/1785] Revert: Set default application/json content-type when using json option #1772 (@simov)







v2.63.0 (2015/09/21)


	#1772 [https://github.com/request/request/pull/1772] Set default application/json content-type when using json option (@jzaefferer)







v2.62.0 (2015/09/15)


	#1768 [https://github.com/request/request/pull/1768] Add node 4.0 to the list of build targets (@simov)


	#1767 [https://github.com/request/request/pull/1767] Query strings now cooperate with unix sockets (@JoshWillik)


	#1750 [https://github.com/request/request/pull/1750] Revert doc about installation of tough-cookie added in #884 (@LoicMahieu)


	#1746 [https://github.com/request/request/pull/1746] Missed comma in Readme (@nsklkn)


	#1743 [https://github.com/request/request/pull/1743] Fix options not being initialized in defaults method (@simov)







v2.61.0 (2015/08/19)


	#1721 [https://github.com/request/request/pull/1721] Minor fix in README.md (@arbaaz)


	#1733 [https://github.com/request/request/pull/1733] Avoid useless Buffer transformation (@michelsalib)


	#1726 [https://github.com/request/request/pull/1726] Update README.md (@paulomcnally)


	#1715 [https://github.com/request/request/pull/1715] Fix forever option in node > 0.10 #1709 (@calibr)


	#1716 [https://github.com/request/request/pull/1716] Do not create Buffer from Object in setContentLength(iojs v3.0 issue) (@calibr)


	#1711 [https://github.com/request/request/pull/1711] Add ability to detect connect timeouts (@kevinburke)


	#1712 [https://github.com/request/request/pull/1712] Set certificate expiration to August 2, 2018 (@kevinburke)


	#1700 [https://github.com/request/request/pull/1700] debug() when JSON.parse() on a response body fails (@phillipj)







v2.60.0 (2015/07/21)


	#1687 [https://github.com/request/request/pull/1687] Fix caseless bug - content-type not being set for multipart/form-data (@simov, @garymathews)







v2.59.0 (2015/07/20)


	#1671 [https://github.com/request/request/pull/1671] Add tests and docs for using the agent, agentClass, agentOptions and forever options.
Forever option defaults to using http(s).Agent in node 0.12+ (@simov)


	#1679 [https://github.com/request/request/pull/1679] Fix - do not remove OAuth param when using OAuth realm (@simov, @jhalickman)


	#1668 [https://github.com/request/request/pull/1668] updated dependencies (@deamme)


	#1656 [https://github.com/request/request/pull/1656] Fix form method (@simov)


	#1651 [https://github.com/request/request/pull/1651] Preserve HEAD method when using followAllRedirects (@simov)


	#1652 [https://github.com/request/request/pull/1652] Update encoding option documentation in README.md (@daniel347x)


	#1650 [https://github.com/request/request/pull/1650] Allow content-type overriding when using the form option (@simov)


	#1646 [https://github.com/request/request/pull/1646] Clarify the nature of setting ca in agentOptions (@jeffcharles)







v2.58.0 (2015/06/16)


	#1638 [https://github.com/request/request/pull/1638] Use the extend module to deep extend in the defaults method (@simov)


	#1631 [https://github.com/request/request/pull/1631] Move tunnel logic into separate module (@simov)


	#1634 [https://github.com/request/request/pull/1634] Fix OAuth query transport_method (@simov)


	#1603 [https://github.com/request/request/pull/1603] Add codecov (@simov)







v2.57.0 (2015/05/31)


	#1615 [https://github.com/request/request/pull/1615] Replace ‘.client’ with ‘.socket’ as the former was deprecated in 2.2.0. (@ChALkeR)







v2.56.0 (2015/05/28)


	#1610 [https://github.com/request/request/pull/1610] Bump module dependencies (@simov)


	#1600 [https://github.com/request/request/pull/1600] Extract the querystring logic into separate module (@simov)


	#1607 [https://github.com/request/request/pull/1607] Re-generate certificates (@simov)


	#1599 [https://github.com/request/request/pull/1599] Move getProxyFromURI logic below the check for Invaild URI (#1595) (@simov)


	#1598 [https://github.com/request/request/pull/1598] Fix the way http verbs are defined in order to please intellisense IDEs (@simov, @flannelJesus)


	#1591 [https://github.com/request/request/pull/1591] A few minor fixes: (@simov)


	#1584 [https://github.com/request/request/pull/1584] Refactor test-default tests (according to comments in #1430) (@simov)


	#1585 [https://github.com/request/request/pull/1585] Fixing documentation regarding TLS options (#1583) (@mainakae)


	#1574 [https://github.com/request/request/pull/1574] Refresh the oauth_nonce on redirect (#1573) (@simov)


	#1570 [https://github.com/request/request/pull/1570] Discovered tests that weren’t properly running (@seanstrom)


	#1569 [https://github.com/request/request/pull/1569] Fix pause before response arrives (@kevinoid)


	#1558 [https://github.com/request/request/pull/1558] Emit error instead of throw (@simov)


	#1568 [https://github.com/request/request/pull/1568] Fix stall when piping gzipped response (@kevinoid)


	#1560 [https://github.com/request/request/pull/1560] Update combined-stream (@apechimp)


	#1543 [https://github.com/request/request/pull/1543] Initial support for oauth_body_hash on json payloads (@simov, @aesopwolf)


	#1541 [https://github.com/request/request/pull/1541] Fix coveralls (@simov)


	#1540 [https://github.com/request/request/pull/1540] Fix recursive defaults for convenience methods (@simov)


	#1536 [https://github.com/request/request/pull/1536] More eslint style rules (@froatsnook)


	#1533 [https://github.com/request/request/pull/1533] Adding dependency status bar to README.md (@YasharF)


	#1539 [https://github.com/request/request/pull/1539] ensure the latest version of har-validator is included (@ahmadnassri)


	#1516 [https://github.com/request/request/pull/1516] forever+pool test (@devTristan)







v2.55.0 (2015/04/05)


	#1520 [https://github.com/request/request/pull/1520] Refactor defaults (@simov)


	#1525 [https://github.com/request/request/pull/1525] Delete request headers with undefined value. (@froatsnook)


	#1521 [https://github.com/request/request/pull/1521] Add promise tests (@simov)


	#1518 [https://github.com/request/request/pull/1518] Fix defaults (@simov)


	#1515 [https://github.com/request/request/pull/1515] Allow static invoking of convenience methods (@simov)


	#1505 [https://github.com/request/request/pull/1505] Fix multipart boundary extraction regexp (@simov)


	#1510 [https://github.com/request/request/pull/1510] Fix basic auth form data (@simov)







v2.54.0 (2015/03/24)


	#1501 [https://github.com/request/request/pull/1501] HTTP Archive 1.2 support (@ahmadnassri)


	#1486 [https://github.com/request/request/pull/1486] Add a test for the forever agent (@akshayp)


	#1500 [https://github.com/request/request/pull/1500] Adding handling for no auth method and null bearer (@philberg)


	#1498 [https://github.com/request/request/pull/1498] Add table of contents in readme (@simov)


	#1477 [https://github.com/request/request/pull/1477] Add support for qs options via qsOptions key (@simov)


	#1496 [https://github.com/request/request/pull/1496] Parameters encoded to base 64 should be decoded as UTF-8, not ASCII. (@albanm)


	#1494 [https://github.com/request/request/pull/1494] Update eslint (@froatsnook)


	#1474 [https://github.com/request/request/pull/1474] Require Colon in Basic Auth (@erykwalder)


	#1481 [https://github.com/request/request/pull/1481] Fix baseUrl and redirections. (@burningtree)


	#1469 [https://github.com/request/request/pull/1469] Feature/base url (@froatsnook)


	#1459 [https://github.com/request/request/pull/1459] Add option to time request/response cycle (including rollup of redirects) (@aaron-em)


	#1468 [https://github.com/request/request/pull/1468] Re-enable io.js/node 0.12 build (@simov, @mikeal, @BBB)


	#1442 [https://github.com/request/request/pull/1442] Fixed the issue with strictSSL tests on  0.12 & io.js by explicitly setting a cipher that matches the cert. (@BBB, @nickmccurdy, @demohi, @simov, @0x4139)


	#1460 [https://github.com/request/request/pull/1460] localAddress or proxy config is lost when redirecting (@simov, @0x4139)


	#1453 [https://github.com/request/request/pull/1453] Test on Node.js 0.12 and io.js with allowed failures (@nickmccurdy, @demohi)


	#1426 [https://github.com/request/request/pull/1426] Fixing tests to pass on io.js and node 0.12 (only test-https.js stiff failing) (@mikeal)


	#1446 [https://github.com/request/request/pull/1446] Missing HTTP referer header with redirects Fixes #1038 (@simov, @guimon)


	#1428 [https://github.com/request/request/pull/1428] Deprecate Node v0.8.x (@nylen)


	#1436 [https://github.com/request/request/pull/1436] Add ability to set a requester without setting default options (@tikotzky)


	#1435 [https://github.com/request/request/pull/1435] dry up verb methods (@sethpollack)


	#1423 [https://github.com/request/request/pull/1423] Allow fully qualified multipart content-type header (@simov)


	#1430 [https://github.com/request/request/pull/1430] Fix recursive requester (@tikotzky)


	#1429 [https://github.com/request/request/pull/1429] Throw error when making HEAD request with a body (@tikotzky)


	#1419 [https://github.com/request/request/pull/1419] Add note that the project is broken in 0.12.x (@nylen)


	#1413 [https://github.com/request/request/pull/1413] Fix basic auth (@simov)


	#1397 [https://github.com/request/request/pull/1397] Improve pipe-from-file tests (@nylen)







v2.53.0 (2015/02/02)


	#1396 [https://github.com/request/request/pull/1396] Do not rfc3986 escape JSON bodies (@nylen, @simov)


	#1392 [https://github.com/request/request/pull/1392] Improve timeout option description (@watson)







v2.52.0 (2015/02/02)


	#1383 [https://github.com/request/request/pull/1383] Add missing HTTPS options that were not being passed to tunnel (@brichard19) (@nylen)


	#1388 [https://github.com/request/request/pull/1388] Upgrade mime-types package version (@roderickhsiao)


	#1389 [https://github.com/request/request/pull/1389] Revise Setup Tunnel Function (@seanstrom)


	#1374 [https://github.com/request/request/pull/1374] Allow explicitly disabling tunneling for proxied https destinations (@nylen)


	#1376 [https://github.com/request/request/pull/1376] Use karma-browserify for tests. Add browser test coverage reporter. (@eiriksm)


	#1366 [https://github.com/request/request/pull/1366] Refactor OAuth into separate module (@simov)


	#1373 [https://github.com/request/request/pull/1373] Rewrite tunnel test to be pure Node.js (@nylen)


	#1371 [https://github.com/request/request/pull/1371] Upgrade test reporter (@nylen)


	#1360 [https://github.com/request/request/pull/1360] Refactor basic, bearer, digest auth logic into separate class (@simov)


	#1354 [https://github.com/request/request/pull/1354] Remove circular dependency from debugging code (@nylen)


	#1351 [https://github.com/request/request/pull/1351] Move digest auth into private prototype method (@simov)


	#1352 [https://github.com/request/request/pull/1352] Update hawk dependency to ~2.3.0 (@mridgway)


	#1353 [https://github.com/request/request/pull/1353] Correct travis-ci badge (@dogancelik)


	#1349 [https://github.com/request/request/pull/1349] Make sure we return on errored browser requests. (@eiriksm)


	#1346 [https://github.com/request/request/pull/1346] getProxyFromURI Extraction Refactor (@seanstrom)


	#1337 [https://github.com/request/request/pull/1337] Standardize test ports on 6767 (@nylen)


	#1341 [https://github.com/request/request/pull/1341] Emit FormData error events as Request error events (@nylen, @rwky)


	#1343 [https://github.com/request/request/pull/1343] Clean up readme badges, and add Travis and Coveralls badges (@nylen)


	#1345 [https://github.com/request/request/pull/1345] Update README.md (@Aaron-Hartwig)


	#1338 [https://github.com/request/request/pull/1338] Always wait for server.close() callback in tests (@nylen)


	#1342 [https://github.com/request/request/pull/1342] Add mock https server and redo start of browser tests for this purpose. (@eiriksm)


	#1339 [https://github.com/request/request/pull/1339] Improve auth docs (@nylen)


	#1335 [https://github.com/request/request/pull/1335] Add support for OAuth plaintext signature method (@simov)


	#1332 [https://github.com/request/request/pull/1332] Add clean script to remove test-browser.js after the tests run (@seanstrom)


	#1327 [https://github.com/request/request/pull/1327] Fix errors generating coverage reports. (@nylen)


	#1330 [https://github.com/request/request/pull/1330] Return empty buffer upon empty response body and encoding is set to null (@seanstrom)


	#1326 [https://github.com/request/request/pull/1326] Use faster container-based infrastructure on Travis (@nylen)


	#1315 [https://github.com/request/request/pull/1315] Implement rfc3986 option (@simov, @nylen, @apoco, @DullReferenceException, @mmalecki, @oliamb, @cliffcrosland, @LewisJEllis, @eiriksm, @poislagarde)


	#1314 [https://github.com/request/request/pull/1314] Detect urlencoded form data header via regex (@simov)


	#1317 [https://github.com/request/request/pull/1317] Improve OAuth1.0 server side flow example (@simov)







v2.51.0 (2014/12/10)


	#1310 [https://github.com/request/request/pull/1310] Revert changes introduced in https://github.com/request/request/pull/1282 (@simov)







v2.50.0 (2014/12/09)


	#1308 [https://github.com/request/request/pull/1308] Add browser test to keep track of browserify compability. (@eiriksm)


	#1299 [https://github.com/request/request/pull/1299] Add optional support for jsonReviver (@poislagarde)


	#1277 [https://github.com/request/request/pull/1277] Add Coveralls configuration (@simov)


	#1307 [https://github.com/request/request/pull/1307] Upgrade form-data, add back browserify compability. Fixes #455. (@eiriksm)


	#1305 [https://github.com/request/request/pull/1305] Fix typo in README.md (@LewisJEllis)


	#1288 [https://github.com/request/request/pull/1288] Update README.md to explain custom file use case (@cliffcrosland)







v2.49.0 (2014/11/28)


	#1295 [https://github.com/request/request/pull/1295] fix(proxy): no-proxy false positive (@oliamb)


	#1292 [https://github.com/request/request/pull/1292] Upgrade caseless to 0.8.1 (@mmalecki)


	#1276 [https://github.com/request/request/pull/1276] Set transfer encoding for multipart/related to chunked by default (@simov)


	#1275 [https://github.com/request/request/pull/1275] Fix multipart content-type headers detection (@simov)


	#1269 [https://github.com/request/request/pull/1269] adds streams example for review (@tbuchok)


	#1238 [https://github.com/request/request/pull/1238] Add examples README.md (@simov)







v2.48.0 (2014/11/12)


	#1263 [https://github.com/request/request/pull/1263] Fixed a syntax error / typo in README.md (@xna2)


	#1253 [https://github.com/request/request/pull/1253] Add multipart chunked flag (@simov, @nylen)


	#1251 [https://github.com/request/request/pull/1251] Clarify that defaults() does not modify global defaults (@nylen)


	#1250 [https://github.com/request/request/pull/1250] Improve documentation for pool and maxSockets options (@nylen)


	#1237 [https://github.com/request/request/pull/1237] Documenting error handling when using streams (@vmattos)


	#1244 [https://github.com/request/request/pull/1244] Finalize changelog command (@nylen)


	#1241 [https://github.com/request/request/pull/1241] Fix typo (@alexanderGugel)


	#1223 [https://github.com/request/request/pull/1223] Show latest version number instead of “upcoming” in changelog (@nylen)


	#1236 [https://github.com/request/request/pull/1236] Document how to use custom CA in README (#1229) (@hypesystem)


	#1228 [https://github.com/request/request/pull/1228] Support for oauth with RSA-SHA1 signing (@nylen)


	#1216 [https://github.com/request/request/pull/1216] Made json and multipart options coexist (@nylen, @simov)


	#1225 [https://github.com/request/request/pull/1225] Allow header white/exclusive lists in any case. (@RReverser)







v2.47.0 (2014/10/26)


	#1222 [https://github.com/request/request/pull/1222] Move from mikeal/request to request/request (@nylen)


	#1220 [https://github.com/request/request/pull/1220] update qs dependency to 2.3.1 (@FredKSchott)


	#1212 [https://github.com/request/request/pull/1212] Improve tests/test-timeout.js (@nylen)


	#1219 [https://github.com/request/request/pull/1219] remove old globalAgent workaround for node 0.4 (@request)


	#1214 [https://github.com/request/request/pull/1214] Remove cruft left over from optional dependencies (@nylen)


	#1215 [https://github.com/request/request/pull/1215] Add proxyHeaderExclusiveList option for proxy-only headers. (@RReverser)


	#1211 [https://github.com/request/request/pull/1211] Allow ‘Host’ header instead of ‘host’ and remember case across redirects (@nylen)


	#1208 [https://github.com/request/request/pull/1208] Improve release script (@nylen)


	#1213 [https://github.com/request/request/pull/1213] Support for custom cookie store (@nylen, @mitsuru)


	#1197 [https://github.com/request/request/pull/1197] Clean up some code around setting the agent (@FredKSchott)


	#1209 [https://github.com/request/request/pull/1209] Improve multipart form append test (@simov)


	#1207 [https://github.com/request/request/pull/1207] Update changelog (@nylen)


	#1185 [https://github.com/request/request/pull/1185] Stream multipart/related bodies (@simov)







v2.46.0 (2014/10/23)


	#1198 [https://github.com/request/request/pull/1198] doc for TLS/SSL protocol options (@shawnzhu)


	#1200 [https://github.com/request/request/pull/1200] Add a Gitter chat badge to README.md (@gitter-badger)


	#1196 [https://github.com/request/request/pull/1196] Upgrade taper test reporter to v0.3.0 (@nylen)


	#1199 [https://github.com/request/request/pull/1199] Fix lint error: undeclared var i (@nylen)


	#1191 [https://github.com/request/request/pull/1191] Move self.proxy decision logic out of init and into a helper (@FredKSchott)


	#1190 [https://github.com/request/request/pull/1190] Move _buildRequest() logic back into init (@FredKSchott)


	#1186 [https://github.com/request/request/pull/1186] Support Smarter Unix URL Scheme (@FredKSchott)


	#1178 [https://github.com/request/request/pull/1178] update form documentation for new usage (@FredKSchott)


	#1180 [https://github.com/request/request/pull/1180] Enable no-mixed-requires linting rule (@nylen)


	#1184 [https://github.com/request/request/pull/1184] Don’t forward authorization header across redirects to different hosts (@nylen)


	#1183 [https://github.com/request/request/pull/1183] Correct README about pre and postamble CRLF using multipart and not mult… (@netpoetica)


	#1179 [https://github.com/request/request/pull/1179] Lint tests directory (@nylen)


	#1169 [https://github.com/request/request/pull/1169] add metadata for form-data file field (@dotcypress)


	#1173 [https://github.com/request/request/pull/1173] remove optional dependencies (@seanstrom)


	#1165 [https://github.com/request/request/pull/1165] Cleanup event listeners and remove function creation from init (@FredKSchott)


	#1174 [https://github.com/request/request/pull/1174] update the request.cookie docs to have a valid cookie example (@seanstrom)


	#1168 [https://github.com/request/request/pull/1168] create a detach helper and use detach helper in replace of nextTick (@seanstrom)


	#1171 [https://github.com/request/request/pull/1171] in post can send form data and use callback (@MiroRadenovic)


	#1159 [https://github.com/request/request/pull/1159] accept charset for x-www-form-urlencoded content-type (@seanstrom)


	#1157 [https://github.com/request/request/pull/1157] Update README.md: body with json=true (@Rob–W)


	#1164 [https://github.com/request/request/pull/1164] Disable tests/test-timeout.js on Travis (@nylen)


	#1153 [https://github.com/request/request/pull/1153] Document how to run a single test (@nylen)


	#1144 [https://github.com/request/request/pull/1144] adds documentation for the “response” event within the streaming section (@tbuchok)


	#1162 [https://github.com/request/request/pull/1162] Update eslintrc file to no longer allow past errors (@FredKSchott)


	#1155 [https://github.com/request/request/pull/1155] Support/use self everywhere (@seanstrom)


	#1161 [https://github.com/request/request/pull/1161] fix no-use-before-define lint warnings (@emkay)


	#1156 [https://github.com/request/request/pull/1156] adding curly brackets to get rid of lint errors (@emkay)


	#1151 [https://github.com/request/request/pull/1151] Fix localAddress test on OS X (@nylen)


	#1145 [https://github.com/request/request/pull/1145] documentation: fix outdated reference to setCookieSync old name in README (@FredKSchott)


	#1131 [https://github.com/request/request/pull/1131] Update pool documentation (@FredKSchott)


	#1143 [https://github.com/request/request/pull/1143] Rewrite all tests to use tape (@nylen)


	#1137 [https://github.com/request/request/pull/1137] Add ability to specifiy querystring lib in options. (@jgrund)


	#1138 [https://github.com/request/request/pull/1138] allow hostname and port in place of host on uri (@cappslock)


	#1134 [https://github.com/request/request/pull/1134] Fix multiple redirects and self.followRedirect (@blakeembrey)


	#1130 [https://github.com/request/request/pull/1130] documentation fix: add note about npm test for contributing (@FredKSchott)


	#1120 [https://github.com/request/request/pull/1120] Support/refactor request setup tunnel (@seanstrom)


	#1129 [https://github.com/request/request/pull/1129] linting fix: convert double quote strings to use single quotes (@FredKSchott)


	#1124 [https://github.com/request/request/pull/1124] linting fix: remove unneccesary semi-colons (@FredKSchott)







v2.45.0 (2014/10/06)


	#1128 [https://github.com/request/request/pull/1128] Add test for setCookie regression (@nylen)


	#1127 [https://github.com/request/request/pull/1127] added tests around using objects as values in a query string (@bcoe)


	#1103 [https://github.com/request/request/pull/1103] Support/refactor request constructor (@nylen, @seanstrom)


	#1119 [https://github.com/request/request/pull/1119] add basic linting to request library (@FredKSchott)


	#1121 [https://github.com/request/request/pull/1121] Revert “Explicitly use sync versions of cookie functions” (@nylen)


	#1118 [https://github.com/request/request/pull/1118] linting fix: Restructure bad empty if statement (@FredKSchott)


	#1117 [https://github.com/request/request/pull/1117] Fix a bad check for valid URIs (@FredKSchott)


	#1113 [https://github.com/request/request/pull/1113] linting fix: space out operators (@FredKSchott)


	#1116 [https://github.com/request/request/pull/1116] Fix typo in noProxyHost definition (@FredKSchott)


	#1114 [https://github.com/request/request/pull/1114] linting fix: Added a new operator that was missing when creating and throwing a new error (@FredKSchott)


	#1096 [https://github.com/request/request/pull/1096] No_proxy support (@samcday)


	#1107 [https://github.com/request/request/pull/1107] linting-fix: remove unused variables (@FredKSchott)


	#1112 [https://github.com/request/request/pull/1112] linting fix: Make return values consistent and more straitforward (@FredKSchott)


	#1111 [https://github.com/request/request/pull/1111] linting fix: authPieces was getting redeclared (@FredKSchott)


	#1105 [https://github.com/request/request/pull/1105] Use strict mode in request (@FredKSchott)


	#1110 [https://github.com/request/request/pull/1110] linting fix: replace lazy ‘==’ with more strict ‘===’ (@FredKSchott)


	#1109 [https://github.com/request/request/pull/1109] linting fix: remove function call from if-else conditional statement (@FredKSchott)


	#1102 [https://github.com/request/request/pull/1102] Fix to allow setting a requester on recursive calls to request.defaults (@tikotzky)


	#1095 [https://github.com/request/request/pull/1095] Tweaking engines in package.json (@pdehaan)


	#1082 [https://github.com/request/request/pull/1082] Forward the socket event from the httpModule request (@seanstrom)


	#972 [https://github.com/request/request/pull/972] Clarify gzip handling in the README (@kevinoid)


	#1089 [https://github.com/request/request/pull/1089] Mention that encoding defaults to utf8, not Buffer (@stuartpb)


	#1088 [https://github.com/request/request/pull/1088] Fix cookie example in README.md and make it more clear (@pipi32167)


	#1027 [https://github.com/request/request/pull/1027] Add support for multipart form data in request options. (@crocket)


	#1076 [https://github.com/request/request/pull/1076] use Request.abort() to abort the request when the request has timed-out (@seanstrom)


	#1068 [https://github.com/request/request/pull/1068] add optional postamble required by .NET multipart requests (@netpoetica)







v2.43.0 (2014/09/18)


	#1057 [https://github.com/request/request/pull/1057] Defaults should not overwrite defined options (@davidwood)


	#1046 [https://github.com/request/request/pull/1046] Propagate datastream errors, useful in case gzip fails. (@ZJONSSON, @Janpot)


	#1063 [https://github.com/request/request/pull/1063] copy the input headers object #1060 (@finnp)


	#1031 [https://github.com/request/request/pull/1031] Explicitly use sync versions of cookie functions (@ZJONSSON)


	#1056 [https://github.com/request/request/pull/1056] Fix redirects when passing url.parse(x) as URL to convenience method (@nylen)







v2.42.0 (2014/09/04)


	#1053 [https://github.com/request/request/pull/1053] Fix #1051 Parse auth properly when using non-tunneling proxy (@isaacs)







v2.41.0 (2014/09/04)


	#1050 [https://github.com/request/request/pull/1050] Pass whitelisted headers to tunneling proxy.  Organize all tunneling logic. (@isaacs, @Feldhacker)


	#1035 [https://github.com/request/request/pull/1035] souped up nodei.co badge (@rvagg)


	#1048 [https://github.com/request/request/pull/1048] Aws is now possible over a proxy (@steven-aerts)


	#1039 [https://github.com/request/request/pull/1039] extract out helper functions to a helper file (@seanstrom)


	#1021 [https://github.com/request/request/pull/1021] Support/refactor indexjs (@seanstrom)


	#1033 [https://github.com/request/request/pull/1033] Improve and document debug options (@nylen)


	#1034 [https://github.com/request/request/pull/1034] Fix readme headings (@nylen)


	#1030 [https://github.com/request/request/pull/1030] Allow recursive request.defaults (@tikotzky)


	#1029 [https://github.com/request/request/pull/1029] Fix a couple of typos (@nylen)


	#675 [https://github.com/request/request/pull/675] Checking for SSL fault on connection before reading SSL properties (@VRMink)


	#989 [https://github.com/request/request/pull/989] Added allowRedirect function. Should return true if redirect is allowed or false otherwise (@doronin)


	#1025 [https://github.com/request/request/pull/1025] [fixes #1023] Set self._ended to true once response has ended (@mridgway)


	#1020 [https://github.com/request/request/pull/1020] Add back removed debug metadata (@FredKSchott)


	#1008 [https://github.com/request/request/pull/1008] Moving to  module instead of cutomer buffer concatenation. (@mikeal)


	#770 [https://github.com/request/request/pull/770] Added dependency badge for README file; (@timgluz, @mafintosh, @lalitkapoor, @stash, @bobyrizov)


	#1016 [https://github.com/request/request/pull/1016] toJSON no longer results in an infinite loop, returns simple objects (@FredKSchott)


	#1018 [https://github.com/request/request/pull/1018] Remove pre-0.4.4 HTTPS fix (@mmalecki)


	#1006 [https://github.com/request/request/pull/1006] Migrate to caseless, fixes #1001 (@mikeal)


	#995 [https://github.com/request/request/pull/995] Fix parsing array of objects (@sjonnet19)


	#999 [https://github.com/request/request/pull/999] Fix fallback for browserify for optional modules. (@eiriksm)


	#996 [https://github.com/request/request/pull/996] Wrong oauth signature when multiple same param keys exist [updated] (@bengl)







v2.40.0 (2014/08/06)


	#992 [https://github.com/request/request/pull/992] Fix security vulnerability. Update qs (@poeticninja)


	#988 [https://github.com/request/request/pull/988] “–” -> “—” (@upisfree)


	#987 [https://github.com/request/request/pull/987] Show optional modules as being loaded by the module that reqeusted them (@iarna)







v2.39.0 (2014/07/24)


	#976 [https://github.com/request/request/pull/976] Update README.md (@pvoznenko)







v2.38.0 (2014/07/22)


	#952 [https://github.com/request/request/pull/952] Adding support to client certificate with proxy use case (@ofirshaked)


	#884 [https://github.com/request/request/pull/884] Documented tough-cookie installation. (@wbyoung)


	#935 [https://github.com/request/request/pull/935] Correct repository url (@fritx)


	#963 [https://github.com/request/request/pull/963] Update changelog (@nylen)


	#960 [https://github.com/request/request/pull/960] Support gzip with encoding on node pre-v0.9.4 (@kevinoid)


	#953 [https://github.com/request/request/pull/953] Add async Content-Length computation when using form-data (@LoicMahieu)


	#844 [https://github.com/request/request/pull/844] Add support for HTTP[S]_PROXY environment variables.  Fixes #595. (@jvmccarthy)


	#946 [https://github.com/request/request/pull/946] defaults: merge headers (@aj0strow)







v2.37.0 (2014/07/07)


	#957 [https://github.com/request/request/pull/957] Silence EventEmitter memory leak warning #311 (@watson)


	#955 [https://github.com/request/request/pull/955] check for content-length header before setting it in nextTick (@camilleanne)


	#951 [https://github.com/request/request/pull/951] Add support for gzip content decoding (@kevinoid)


	#949 [https://github.com/request/request/pull/949] Manually enter querystring in form option (@charlespwd)


	#944 [https://github.com/request/request/pull/944] Make request work with browserify (@eiriksm)


	#943 [https://github.com/request/request/pull/943] New mime module (@eiriksm)


	#927 [https://github.com/request/request/pull/927] Bump version of hawk dep. (@samccone)


	#907 [https://github.com/request/request/pull/907] append secureOptions to poolKey (@medovob)







v2.35.0 (2014/05/17)


	#901 [https://github.com/request/request/pull/901] Fixes #555 (@pigulla)


	#897 [https://github.com/request/request/pull/897] merge with default options (@vohof)


	#891 [https://github.com/request/request/pull/891] fixes 857 - options object is mutated by calling request (@lalitkapoor)


	#869 [https://github.com/request/request/pull/869] Pipefilter test (@tgohn)


	#866 [https://github.com/request/request/pull/866] Fix typo (@dandv)


	#861 [https://github.com/request/request/pull/861] Add support for RFC 6750 Bearer Tokens (@phedny)


	#809 [https://github.com/request/request/pull/809] upgrade tunnel-proxy to 0.4.0 (@ksato9700)


	#850 [https://github.com/request/request/pull/850] Fix word consistency in readme (@0xNobody)


	#810 [https://github.com/request/request/pull/810] add some exposition to mpu example in README.md (@mikermcneil)


	#840 [https://github.com/request/request/pull/840] improve error reporting for invalid protocols (@FND)


	#821 [https://github.com/request/request/pull/821] added secureOptions back (@nw)


	#815 [https://github.com/request/request/pull/815] Create changelog based on pull requests (@lalitkapoor)







v2.34.0 (2014/02/18)


	#516 [https://github.com/request/request/pull/516] UNIX Socket URL Support (@lyuzashi)


	#801 [https://github.com/request/request/pull/801] 794 ignore cookie parsing and domain errors (@lalitkapoor)


	#802 [https://github.com/request/request/pull/802] Added the Apache license to the package.json. (@keskival)


	#793 [https://github.com/request/request/pull/793] Adds content-length calculation when submitting forms using form-data li… (@Juul)


	#785 [https://github.com/request/request/pull/785] Provide ability to override content-type when json option used (@vvo)


	#781 [https://github.com/request/request/pull/781] simpler isReadStream function (@joaojeronimo)







v2.32.0 (2014/01/16)


	#767 [https://github.com/request/request/pull/767] Use tough-cookie CookieJar sync API (@stash)


	#764 [https://github.com/request/request/pull/764] Case-insensitive authentication scheme (@bobyrizov)


	#763 [https://github.com/request/request/pull/763] Upgrade tough-cookie to 0.10.0 (@stash)


	#744 [https://github.com/request/request/pull/744] Use Cookie.parse (@lalitkapoor)


	#757 [https://github.com/request/request/pull/757] require aws-sign2 (@mafintosh)







v2.31.0 (2014/01/08)


	#645 [https://github.com/request/request/pull/645] update twitter api url to v1.1 (@mick)


	#746 [https://github.com/request/request/pull/746] README: Markdown code highlight (@weakish)


	#745 [https://github.com/request/request/pull/745] updating setCookie example to make it clear that the callback is required (@emkay)


	#742 [https://github.com/request/request/pull/742] Add note about JSON output body type (@iansltx)


	#741 [https://github.com/request/request/pull/741] README example is using old cookie jar api (@emkay)


	#736 [https://github.com/request/request/pull/736] Fix callback arguments documentation (@mmalecki)


	#732 [https://github.com/request/request/pull/732] JSHINT: Creating global ‘for’ variable. Should be ‘for (var …’. (@Fritz-Lium)


	#730 [https://github.com/request/request/pull/730] better HTTP DIGEST support (@dai-shi)


	#728 [https://github.com/request/request/pull/728] Fix TypeError when calling request.cookie (@scarletmeow)


	#727 [https://github.com/request/request/pull/727] fix requester bug (@jchris)


	#724 [https://github.com/request/request/pull/724] README.md: add custom HTTP Headers example. (@tcort)


	#719 [https://github.com/request/request/pull/719] Made a comment gender neutral. (@unsetbit)


	#715 [https://github.com/request/request/pull/715] Request.multipart no longer crashes when header ‘Content-type’ present (@pastaclub)


	#710 [https://github.com/request/request/pull/710] Fixing listing in callback part of docs. (@lukasz-zak)


	#696 [https://github.com/request/request/pull/696] Edited README.md for formatting and clarity of phrasing (@Zearin)


	#694 [https://github.com/request/request/pull/694] Typo in README (@VRMink)


	#690 [https://github.com/request/request/pull/690] Handle blank password in basic auth. (@diversario)


	#682 [https://github.com/request/request/pull/682] Optional dependencies (@Turbo87)


	#683 [https://github.com/request/request/pull/683] Travis CI support (@Turbo87)


	#674 [https://github.com/request/request/pull/674] change cookie module,to tough-cookie.please check it . (@sxyizhiren)


	#666 [https://github.com/request/request/pull/666] make ciphers and secureProtocol to work in https request (@richarddong)


	#656 [https://github.com/request/request/pull/656] Test case for #304. (@diversario)


	#662 [https://github.com/request/request/pull/662] option.tunnel to explicitly disable tunneling (@seanmonstar)


	#659 [https://github.com/request/request/pull/659] fix failure when running with NODE_DEBUG=request, and a test for that (@jrgm)


	#630 [https://github.com/request/request/pull/630] Send random cnonce for HTTP Digest requests (@wprl)


	#619 [https://github.com/request/request/pull/619] decouple things a bit (@joaojeronimo)


	#613 [https://github.com/request/request/pull/613] Fixes #583, moved initialization of self.uri.pathname (@lexander)


	#605 [https://github.com/request/request/pull/605] Only include “:” + pass in Basic Auth if it’s defined (fixes #602) (@bendrucker)


	#596 [https://github.com/request/request/pull/596] Global agent is being used when pool is specified (@Cauldrath)


	#594 [https://github.com/request/request/pull/594] Emit complete event when there is no callback (@RomainLK)


	#601 [https://github.com/request/request/pull/601] Fixed a small typo (@michalstanko)


	#589 [https://github.com/request/request/pull/589] Prevent setting headers after they are sent (@geek)


	#587 [https://github.com/request/request/pull/587] Global cookie jar disabled by default (@threepointone)


	#544 [https://github.com/request/request/pull/544] Update http-signature version. (@davidlehn)


	#581 [https://github.com/request/request/pull/581] Fix spelling of “ignoring.” (@bigeasy)


	#568 [https://github.com/request/request/pull/568] use agentOptions to create agent when specified in request (@SamPlacette)


	#564 [https://github.com/request/request/pull/564] Fix redirections (@criloz)


	#541 [https://github.com/request/request/pull/541] The exported request function doesn’t have an auth method (@tschaub)


	#542 [https://github.com/request/request/pull/542] Expose Request class (@regality)


	#536 [https://github.com/request/request/pull/536] Allow explicitly empty user field for basic authentication. (@mikeando)


	#532 [https://github.com/request/request/pull/532] fix typo (@fredericosilva)


	#497 [https://github.com/request/request/pull/497] Added redirect event (@Cauldrath)


	#503 [https://github.com/request/request/pull/503] Fix basic auth for passwords that contain colons (@tonistiigi)


	#521 [https://github.com/request/request/pull/521] Improving test-localAddress.js (@noway)


	#529 [https://github.com/request/request/pull/529] dependencies versions bump (@jodaka)


	#523 [https://github.com/request/request/pull/523] Updating dependencies (@noway)


	#520 [https://github.com/request/request/pull/520] Fixing test-tunnel.js (@noway)


	#519 [https://github.com/request/request/pull/519] Update internal path state on post-creation QS changes (@jblebrun)


	#510 [https://github.com/request/request/pull/510] Add HTTP Signature support. (@davidlehn)


	#502 [https://github.com/request/request/pull/502] Fix POST (and probably other) requests that are retried after 401 Unauthorized (@nylen)


	#508 [https://github.com/request/request/pull/508] Honor the .strictSSL option when using proxies (tunnel-agent) (@jhs)


	#512 [https://github.com/request/request/pull/512] Make password optional to support the format: http://username@hostname/ (@pajato1)


	#513 [https://github.com/request/request/pull/513] add ‘localAddress’ support (@yyfrankyy)


	#498 [https://github.com/request/request/pull/498] Moving response emit above setHeaders on destination streams (@kenperkins)


	#490 [https://github.com/request/request/pull/490] Empty response body (3-rd argument) must be passed to callback as an empty string (@Olegas)


	#479 [https://github.com/request/request/pull/479] Changing so if Accept header is explicitly set, sending json does not ov… (@RoryH)


	#475 [https://github.com/request/request/pull/475] Use unescape from querystring (@shimaore)


	#473 [https://github.com/request/request/pull/473] V0.10 compat (@isaacs)


	#471 [https://github.com/request/request/pull/471] Using querystring library from visionmedia (@kbackowski)


	#461 [https://github.com/request/request/pull/461] Strip the UTF8 BOM from a UTF encoded response (@kppullin)


	#460 [https://github.com/request/request/pull/460] hawk 0.10.0 (@hueniverse)


	#462 [https://github.com/request/request/pull/462] if query params are empty, then request path shouldn’t end with a ‘?’ (merges cleanly now) (@jaipandya)


	#456 [https://github.com/request/request/pull/456] hawk 0.9.0 (@hueniverse)


	#429 [https://github.com/request/request/pull/429] Copy options before adding callback. (@nrn, @nfriedly, @youurayy, @jplock, @kapetan, @landeiro, @othiym23, @mmalecki)


	#454 [https://github.com/request/request/pull/454] Destroy the response if present when destroying the request (clean merge) (@mafintosh)


	#310 [https://github.com/request/request/pull/310] Twitter Oauth Stuff Out of Date; Now Updated (@joemccann, @isaacs, @mscdex)


	#413 [https://github.com/request/request/pull/413] rename googledoodle.png to .jpg (@nfriedly, @youurayy, @jplock, @kapetan, @landeiro, @othiym23, @mmalecki)


	#448 [https://github.com/request/request/pull/448] Convenience method for PATCH (@mloar)


	#444 [https://github.com/request/request/pull/444] protect against double callbacks on error path (@spollack)


	#433 [https://github.com/request/request/pull/433] Added support for HTTPS cert & key (@mmalecki)


	#430 [https://github.com/request/request/pull/430] Respect specified {Host,host} headers, not just {host} (@andrewschaaf)


	#415 [https://github.com/request/request/pull/415] Fixed a typo. (@jerem)


	#338 [https://github.com/request/request/pull/338] Add more auth options, including digest support (@nylen)


	#403 [https://github.com/request/request/pull/403] Optimize environment lookup to happen once only (@mmalecki)


	#398 [https://github.com/request/request/pull/398] Add more reporting to tests (@mmalecki)


	#388 [https://github.com/request/request/pull/388] Ensure “safe” toJSON doesn’t break EventEmitters (@othiym23)


	#381 [https://github.com/request/request/pull/381] Resolving “Invalid signature. Expected signature base string: “ (@landeiro)


	#380 [https://github.com/request/request/pull/380] Fixes missing host header on retried request when using forever agent (@mac-)


	#376 [https://github.com/request/request/pull/376] Headers lost on redirect (@kapetan)


	#375 [https://github.com/request/request/pull/375] Fix for missing oauth_timestamp parameter (@jplock)


	#374 [https://github.com/request/request/pull/374] Correct Host header for proxy tunnel CONNECT (@youurayy)


	#370 [https://github.com/request/request/pull/370] Twitter reverse auth uses x_auth_mode not x_auth_type (@drudge)


	#369 [https://github.com/request/request/pull/369] Don’t remove x_auth_mode for Twitter reverse auth (@drudge)


	#344 [https://github.com/request/request/pull/344] Make AWS auth signing find headers correctly (@nlf)


	#363 [https://github.com/request/request/pull/363] rfc3986 on base_uri, now passes tests (@jeffmarshall)


	#362 [https://github.com/request/request/pull/362] Running rfc3986 on base_uri in oauth.hmacsign instead of just encodeURIComponent (@jeffmarshall)


	#361 [https://github.com/request/request/pull/361] Don’t create a Content-Length header if we already have it set (@danjenkins)


	#360 [https://github.com/request/request/pull/360] Delete self._form along with everything else on redirect (@jgautier)


	#355 [https://github.com/request/request/pull/355] stop sending erroneous headers on redirected requests (@azylman)


	#332 [https://github.com/request/request/pull/332] Fix #296 - Only set Content-Type if body exists (@Marsup)


	#343 [https://github.com/request/request/pull/343] Allow AWS to work in more situations, added a note in the README on its usage (@nlf)


	#320 [https://github.com/request/request/pull/320] request.defaults() doesn’t need to wrap jar() (@StuartHarris)


	#322 [https://github.com/request/request/pull/322] Fix + test for piped into request bumped into redirect. #321 (@alexindigo)


	#326 [https://github.com/request/request/pull/326] Do not try to remove listener from an undefined connection (@CartoDB)


	#318 [https://github.com/request/request/pull/318] Pass servername to tunneling secure socket creation (@isaacs)


	#317 [https://github.com/request/request/pull/317] Workaround for #313 (@isaacs)


	#293 [https://github.com/request/request/pull/293] Allow parser errors to bubble up to request (@mscdex)


	#290 [https://github.com/request/request/pull/290] A test for #289 (@isaacs)


	#280 [https://github.com/request/request/pull/280] Like in node.js print options if NODE_DEBUG contains the word request (@Filirom1)


	#207 [https://github.com/request/request/pull/207] Fix #206 Change HTTP/HTTPS agent when redirecting between protocols (@isaacs)


	#214 [https://github.com/request/request/pull/214] documenting additional behavior of json option (@jphaas, @vpulim)


	#272 [https://github.com/request/request/pull/272] Boundary begins with CRLF? (@elspoono, @timshadel, @naholyr, @nanodocumet, @TehShrike)


	#284 [https://github.com/request/request/pull/284] Remove stray console.log() call in multipart generator. (@bcherry)


	#241 [https://github.com/request/request/pull/241] Composability updates suggested by issue #239 (@polotek)


	#282 [https://github.com/request/request/pull/282] OAuth Authorization header contains non-“oauth_” parameters (@jplock)


	#279 [https://github.com/request/request/pull/279] fix tests with boundary by injecting boundry from header (@benatkin)


	#273 [https://github.com/request/request/pull/273] Pipe back pressure issue (@mafintosh)


	#268 [https://github.com/request/request/pull/268] I’m not OCD seriously (@TehShrike)


	#263 [https://github.com/request/request/pull/263] Bug in OAuth key generation for sha1 (@nanodocumet)


	#265 [https://github.com/request/request/pull/265] uncaughtException when redirected to invalid URI (@naholyr)


	#262 [https://github.com/request/request/pull/262] JSON test should check for equality (@timshadel)


	#261 [https://github.com/request/request/pull/261] Setting ‘pool’ to ‘false’ does NOT disable Agent pooling (@timshadel)


	#249 [https://github.com/request/request/pull/249] Fix for the fix of your (closed) issue #89 where self.headers[content-length] is set to 0 for all methods (@sethbridges, @polotek, @zephrax, @jeromegn)


	#255 [https://github.com/request/request/pull/255] multipart allow body === ‘’ ( the empty string ) (@Filirom1)


	#260 [https://github.com/request/request/pull/260] fixed just another leak of ‘i’ (@sreuter)


	#246 [https://github.com/request/request/pull/246] Fixing the set-cookie header (@jeromegn)


	#243 [https://github.com/request/request/pull/243] Dynamic boundary (@zephrax)


	#240 [https://github.com/request/request/pull/240] don’t error when null is passed for options (@polotek)


	#211 [https://github.com/request/request/pull/211] Replace all occurrences of special chars in RFC3986 (@chriso, @vpulim)


	#224 [https://github.com/request/request/pull/224] Multipart content-type change (@janjongboom)


	#217 [https://github.com/request/request/pull/217] need to use Authorization (titlecase) header with Tumblr OAuth (@visnup)


	#203 [https://github.com/request/request/pull/203] Fix cookie and redirect bugs and add auth support for HTTPS tunnel (@vpulim)


	#199 [https://github.com/request/request/pull/199] Tunnel (@isaacs)


	#198 [https://github.com/request/request/pull/198] Bugfix on forever usage of util.inherits (@isaacs)


	#197 [https://github.com/request/request/pull/197] Make ForeverAgent work with HTTPS (@isaacs)


	#193 [https://github.com/request/request/pull/193] Fixes GH-119 (@goatslacker)


	#188 [https://github.com/request/request/pull/188] Add abort support to the returned request (@itay)


	#176 [https://github.com/request/request/pull/176] Querystring option (@csainty)


	#182 [https://github.com/request/request/pull/182] Fix request.defaults to support (uri, options, callback) api (@twilson63)


	#180 [https://github.com/request/request/pull/180] Modified the post, put, head and del shortcuts to support uri optional param (@twilson63)


	#179 [https://github.com/request/request/pull/179] fix to add opts in .pipe(stream, opts) (@substack)


	#177 [https://github.com/request/request/pull/177] Issue #173 Support uri as first and optional config as second argument (@twilson63)


	#170 [https://github.com/request/request/pull/170] can’t create a cookie in a wrapped request (defaults) (@fabianonunes)


	#168 [https://github.com/request/request/pull/168] Picking off an EasyFix by adding some missing mimetypes. (@serby)


	#161 [https://github.com/request/request/pull/161] Fix cookie jar/headers.cookie collision (#125) (@papandreou)


	#162 [https://github.com/request/request/pull/162] Fix issue #159 (@dpetukhov)


	#90 [https://github.com/request/request/pull/90] add option followAllRedirects to follow post/put redirects (@jroes)


	#148 [https://github.com/request/request/pull/148] Retry Agent (@thejh)


	#146 [https://github.com/request/request/pull/146] Multipart should respect content-type if previously set (@apeace)


	#144 [https://github.com/request/request/pull/144] added “form” option to readme (@petejkim)


	#133 [https://github.com/request/request/pull/133] Fixed cookies parsing (@afanasy)


	#135 [https://github.com/request/request/pull/135] host vs hostname (@iangreenleaf)


	#132 [https://github.com/request/request/pull/132] return the body as a Buffer when encoding is set to null (@jahewson)


	#112 [https://github.com/request/request/pull/112] Support using a custom http-like module (@jhs)


	#104 [https://github.com/request/request/pull/104] Cookie handling contains bugs (@janjongboom)


	#121 [https://github.com/request/request/pull/121] Another patch for cookie handling regression (@jhurliman)


	#117 [https://github.com/request/request/pull/117] Remove the global i (@3rd-Eden)


	#110 [https://github.com/request/request/pull/110] Update to Iris Couch URL (@jhs)


	#86 [https://github.com/request/request/pull/86] Can’t post binary to multipart requests (@kkaefer)


	#105 [https://github.com/request/request/pull/105] added test for proxy option. (@dominictarr)


	#102 [https://github.com/request/request/pull/102] Implemented cookies - closes issue 82: https://github.com/mikeal/request/issues/82 (@alessioalex)


	#97 [https://github.com/request/request/pull/97] Typo in previous pull causes TypeError in non-0.5.11 versions (@isaacs)


	#96 [https://github.com/request/request/pull/96] Authless parsed url host support (@isaacs)


	#81 [https://github.com/request/request/pull/81] Enhance redirect handling (@danmactough)


	#78 [https://github.com/request/request/pull/78] Don’t try to do strictSSL for non-ssl connections (@isaacs)


	#76 [https://github.com/request/request/pull/76] Bug when a request fails and a timeout is set (@Marsup)


	#70 [https://github.com/request/request/pull/70] add test script to package.json (@isaacs, @aheckmann)


	#73 [https://github.com/request/request/pull/73] Fix #71 Respect the strictSSL flag (@isaacs)


	#69 [https://github.com/request/request/pull/69] Flatten chunked requests properly (@isaacs)


	#67 [https://github.com/request/request/pull/67] fixed global variable leaks (@aheckmann)


	#66 [https://github.com/request/request/pull/66] Do not overwrite established content-type headers for read stream deliver (@voodootikigod)


	#53 [https://github.com/request/request/pull/53] Parse json: Issue #51 (@benatkin)


	#45 [https://github.com/request/request/pull/45] Added timeout option (@mbrevoort)


	#35 [https://github.com/request/request/pull/35] The “end” event isn’t emitted for some responses (@voxpelli)


	#31 [https://github.com/request/request/pull/31] Error on piping a request to a destination (@tobowers)










          

      

      

    

  

  
    
    Request - Simplified HTTP client
    

    
 
  

    
      
          
            
  
Request - Simplified HTTP client

[image: ../../../_images/request.png]npm package [https://nodei.co/npm/request/]

[image: ../../../_images/master5.svg]Build status [https://travis-ci.org/request/request]
[image: ../../../_images/request.svg]Coverage [https://codecov.io/github/request/request?branch=master]
[image: ../../../_images/request1.svg]Coverage [https://coveralls.io/r/request/request]
[image: ../../../_images/request2.svg]Dependency Status [https://david-dm.org/request/request]
[image: ../../../_images/badge4.svg]Known Vulnerabilities [https://snyk.io/test/npm/request]
[image: ../../../_images/gitter-join_chat-blue.svg]Gitter [https://gitter.im/request/request?utm_source=badge]


Super simple to use

Request is designed to be the simplest way possible to make http calls. It supports HTTPS and follows redirects by default.

var request = require('request');
request('http://www.google.com', function (error, response, body) {
  console.log('error:', error); // Print the error if one occurred
  console.log('statusCode:', response && response.statusCode); // Print the response status code if a response was received
  console.log('body:', body); // Print the HTML for the Google homepage.
});








Table of contents


	Streaming


	Promises & Async/Await


	Forms


	HTTP Authentication


	Custom HTTP Headers


	OAuth Signing


	Proxies


	Unix Domain Sockets


	TLS/SSL Protocol


	Support for HAR 1.2


	All Available Options




Request also offers convenience methods like
request.defaults and request.post, and there are
lots of usage examples and several
debugging techniques.






Streaming

You can stream any response to a file stream.

request('http://google.com/doodle.png').pipe(fs.createWriteStream('doodle.png'))





You can also stream a file to a PUT or POST request. This method will also check the file extension against a mapping of file extensions to content-types (in this case application/json) and use the proper content-type in the PUT request (if the headers don’t already provide one).

fs.createReadStream('file.json').pipe(request.put('http://mysite.com/obj.json'))





Request can also pipe to itself. When doing so, content-type and content-length are preserved in the PUT headers.

request.get('http://google.com/img.png').pipe(request.put('http://mysite.com/img.png'))





Request emits a “response” event when a response is received. The response argument will be an instance of http.IncomingMessage [https://nodejs.org/api/http.html#http_class_http_incomingmessage].

request
  .get('http://google.com/img.png')
  .on('response', function(response) {
    console.log(response.statusCode) // 200
    console.log(response.headers['content-type']) // 'image/png'
  })
  .pipe(request.put('http://mysite.com/img.png'))





To easily handle errors when streaming requests, listen to the error event before piping:

request
  .get('http://mysite.com/doodle.png')
  .on('error', function(err) {
    console.log(err)
  })
  .pipe(fs.createWriteStream('doodle.png'))





Now let’s get fancy.

http.createServer(function (req, resp) {
  if (req.url === '/doodle.png') {
    if (req.method === 'PUT') {
      req.pipe(request.put('http://mysite.com/doodle.png'))
    } else if (req.method === 'GET' || req.method === 'HEAD') {
      request.get('http://mysite.com/doodle.png').pipe(resp)
    }
  }
})





You can also pipe() from http.ServerRequest instances, as well as to http.ServerResponse instances. The HTTP method, headers, and entity-body data will be sent. Which means that, if you don’t really care about security, you can do:

http.createServer(function (req, resp) {
  if (req.url === '/doodle.png') {
    var x = request('http://mysite.com/doodle.png')
    req.pipe(x)
    x.pipe(resp)
  }
})





And since pipe() returns the destination stream in ≥ Node 0.5.x you can do one line proxying. :)

req.pipe(request('http://mysite.com/doodle.png')).pipe(resp)





Also, none of this new functionality conflicts with requests previous features, it just expands them.

var r = request.defaults({'proxy':'http://localproxy.com'})

http.createServer(function (req, resp) {
  if (req.url === '/doodle.png') {
    r.get('http://google.com/doodle.png').pipe(resp)
  }
})





You can still use intermediate proxies, the requests will still follow HTTP forwards, etc.

back to top






Promises & Async/Await

request supports both streaming and callback interfaces natively. If you’d like request to return a Promise instead, you can use an alternative interface wrapper for request. These wrappers can be useful if you prefer to work with Promises, or if you’d like to use async/await in ES2017.

Several alternative interfaces are provided by the request team, including:


	request-promise [https://github.com/request/request-promise] (uses Bluebird [https://github.com/petkaantonov/bluebird] Promises)


	request-promise-native [https://github.com/request/request-promise-native] (uses native Promises)


	request-promise-any [https://github.com/request/request-promise-any] (uses any-promise [https://www.npmjs.com/package/any-promise] Promises)




back to top






Forms

request supports application/x-www-form-urlencoded and multipart/form-data form uploads. For multipart/related refer to the multipart API.


application/x-www-form-urlencoded (URL-Encoded Forms)

URL-encoded forms are simple.

request.post('http://service.com/upload', {form:{key:'value'}})
// or
request.post('http://service.com/upload').form({key:'value'})
// or
request.post({url:'http://service.com/upload', form: {key:'value'}}, function(err,httpResponse,body){ /* ... */ })








multipart/form-data (Multipart Form Uploads)

For multipart/form-data we use the form-data [https://github.com/form-data/form-data] library by @felixge [https://github.com/felixge]. For the most cases, you can pass your upload form data via the formData option.

var formData = {
  // Pass a simple key-value pair
  my_field: 'my_value',
  // Pass data via Buffers
  my_buffer: Buffer.from([1, 2, 3]),
  // Pass data via Streams
  my_file: fs.createReadStream(__dirname + '/unicycle.jpg'),
  // Pass multiple values /w an Array
  attachments: [
    fs.createReadStream(__dirname + '/attachment1.jpg'),
    fs.createReadStream(__dirname + '/attachment2.jpg')
  ],
  // Pass optional meta-data with an 'options' object with style: {value: DATA, options: OPTIONS}
  // Use case: for some types of streams, you'll need to provide "file"-related information manually.
  // See the `form-data` README for more information about options: https://github.com/form-data/form-data
  custom_file: {
    value:  fs.createReadStream('/dev/urandom'),
    options: {
      filename: 'topsecret.jpg',
      contentType: 'image/jpeg'
    }
  }
};
request.post({url:'http://service.com/upload', formData: formData}, function optionalCallback(err, httpResponse, body) {
  if (err) {
    return console.error('upload failed:', err);
  }
  console.log('Upload successful!  Server responded with:', body);
});





For advanced cases, you can access the form-data object itself via r.form(). This can be modified until the request is fired on the next cycle of the event-loop. (Note that this calling form() will clear the currently set form data for that request.)

// NOTE: Advanced use-case, for normal use see 'formData' usage above
var r = request.post('http://service.com/upload', function optionalCallback(err, httpResponse, body) {...})
var form = r.form();
form.append('my_field', 'my_value');
form.append('my_buffer', Buffer.from([1, 2, 3]));
form.append('custom_file', fs.createReadStream(__dirname + '/unicycle.jpg'), {filename: 'unicycle.jpg'});





See the form-data README [https://github.com/form-data/form-data] for more information & examples.




multipart/related

Some variations in different HTTP implementations require a newline/CRLF before, after, or both before and after the boundary of a multipart/related request (using the multipart option). This has been observed in the .NET WebAPI version 4.0. You can turn on a boundary preambleCRLF or postamble by passing them as true to your request options.

  request({
    method: 'PUT',
    preambleCRLF: true,
    postambleCRLF: true,
    uri: 'http://service.com/upload',
    multipart: [
      {
        'content-type': 'application/json',
        body: JSON.stringify({foo: 'bar', _attachments: {'message.txt': {follows: true, length: 18, 'content_type': 'text/plain' }}})
      },
      { body: 'I am an attachment' },
      { body: fs.createReadStream('image.png') }
    ],
    // alternatively pass an object containing additional options
    multipart: {
      chunked: false,
      data: [
        {
          'content-type': 'application/json',
          body: JSON.stringify({foo: 'bar', _attachments: {'message.txt': {follows: true, length: 18, 'content_type': 'text/plain' }}})
        },
        { body: 'I am an attachment' }
      ]
    }
  },
  function (error, response, body) {
    if (error) {
      return console.error('upload failed:', error);
    }
    console.log('Upload successful!  Server responded with:', body);
  })





back to top








HTTP Authentication

request.get('http://some.server.com/').auth('username', 'password', false);
// or
request.get('http://some.server.com/', {
  'auth': {
    'user': 'username',
    'pass': 'password',
    'sendImmediately': false
  }
});
// or
request.get('http://some.server.com/').auth(null, null, true, 'bearerToken');
// or
request.get('http://some.server.com/', {
  'auth': {
    'bearer': 'bearerToken'
  }
});





If passed as an option, auth should be a hash containing values:


	user || username


	pass || password


	sendImmediately (optional)


	bearer (optional)




The method form takes parameters
auth(username, password, sendImmediately, bearer).

sendImmediately defaults to true, which causes a basic or bearer
authentication header to be sent. If sendImmediately is false, then
request will retry with a proper authentication header after receiving a
401 response from the server (which must contain a WWW-Authenticate header
indicating the required authentication method).

Note that you can also specify basic authentication using the URL itself, as
detailed in RFC 1738 [http://www.ietf.org/rfc/rfc1738.txt]. Simply pass the
user:password before the host with an @ sign:

var username = 'username',
    password = 'password',
    url = 'http://' + username + ':' + password + '@some.server.com';

request({url: url}, function (error, response, body) {
   // Do more stuff with 'body' here
});





Digest authentication is supported, but it only works with sendImmediately
set to false; otherwise request will send basic authentication on the
initial request, which will probably cause the request to fail.

Bearer authentication is supported, and is activated when the bearer value is
available. The value may be either a String or a Function returning a
String. Using a function to supply the bearer token is particularly useful if
used in conjunction with defaults to allow a single function to supply the
last known token at the time of sending a request, or to compute one on the fly.

back to top






Custom HTTP Headers

HTTP Headers, such as User-Agent, can be set in the options object.
In the example below, we call the github API to find out the number
of stars and forks for the request repository. This requires a
custom User-Agent header as well as https.

var request = require('request');

var options = {
  url: 'https://api.github.com/repos/request/request',
  headers: {
    'User-Agent': 'request'
  }
};

function callback(error, response, body) {
  if (!error && response.statusCode == 200) {
    var info = JSON.parse(body);
    console.log(info.stargazers_count + " Stars");
    console.log(info.forks_count + " Forks");
  }
}

request(options, callback);





back to top






OAuth Signing

OAuth version 1.0 [https://tools.ietf.org/html/rfc5849] is supported. The
default signing algorithm is
HMAC-SHA1 [https://tools.ietf.org/html/rfc5849#section-3.4.2]:

// OAuth1.0 - 3-legged server side flow (Twitter example)
// step 1
var qs = require('querystring')
  , oauth =
    { callback: 'http://mysite.com/callback/'
    , consumer_key: CONSUMER_KEY
    , consumer_secret: CONSUMER_SECRET
    }
  , url = 'https://api.twitter.com/oauth/request_token'
  ;
request.post({url:url, oauth:oauth}, function (e, r, body) {
  // Ideally, you would take the body in the response
  // and construct a URL that a user clicks on (like a sign in button).
  // The verifier is only available in the response after a user has
  // verified with twitter that they are authorizing your app.

  // step 2
  var req_data = qs.parse(body)
  var uri = 'https://api.twitter.com/oauth/authenticate'
    + '?' + qs.stringify({oauth_token: req_data.oauth_token})
  // redirect the user to the authorize uri

  // step 3
  // after the user is redirected back to your server
  var auth_data = qs.parse(body)
    , oauth =
      { consumer_key: CONSUMER_KEY
      , consumer_secret: CONSUMER_SECRET
      , token: auth_data.oauth_token
      , token_secret: req_data.oauth_token_secret
      , verifier: auth_data.oauth_verifier
      }
    , url = 'https://api.twitter.com/oauth/access_token'
    ;
  request.post({url:url, oauth:oauth}, function (e, r, body) {
    // ready to make signed requests on behalf of the user
    var perm_data = qs.parse(body)
      , oauth =
        { consumer_key: CONSUMER_KEY
        , consumer_secret: CONSUMER_SECRET
        , token: perm_data.oauth_token
        , token_secret: perm_data.oauth_token_secret
        }
      , url = 'https://api.twitter.com/1.1/users/show.json'
      , qs =
        { screen_name: perm_data.screen_name
        , user_id: perm_data.user_id
        }
      ;
    request.get({url:url, oauth:oauth, qs:qs, json:true}, function (e, r, user) {
      console.log(user)
    })
  })
})





For RSA-SHA1 signing [https://tools.ietf.org/html/rfc5849#section-3.4.3], make
the following changes to the OAuth options object:


	Pass signature_method : 'RSA-SHA1'


	Instead of consumer_secret, specify a private_key string in
PEM format [http://how2ssl.com/articles/working_with_pem_files/]




For PLAINTEXT signing [http://oauth.net/core/1.0/#anchor22], make
the following changes to the OAuth options object:


	Pass signature_method : 'PLAINTEXT'




To send OAuth parameters via query params or in a post body as described in The
Consumer Request Parameters [http://oauth.net/core/1.0/#consumer_req_param]
section of the oauth1 spec:


	Pass transport_method : 'query' or transport_method : 'body' in the OAuth
options object.


	transport_method defaults to 'header'




To use Request Body Hash [https://oauth.googlecode.com/svn/spec/ext/body_hash/1.0/oauth-bodyhash.html] you can either


	Manually generate the body hash and pass it as a string body_hash: '...'


	Automatically generate the body hash by passing body_hash: true




back to top






Proxies

If you specify a proxy option, then the request (and any subsequent
redirects) will be sent via a connection to the proxy server.

If your endpoint is an https url, and you are using a proxy, then
request will send a CONNECT request to the proxy server first, and
then use the supplied connection to connect to the endpoint.

That is, first it will make a request like:

HTTP/1.1 CONNECT endpoint-server.com:80
Host: proxy-server.com
User-Agent: whatever user agent you specify





and then the proxy server make a TCP connection to endpoint-server
on port 80, and return a response that looks like:

HTTP/1.1 200 OK





At this point, the connection is left open, and the client is
communicating directly with the endpoint-server.com machine.

See the wikipedia page on HTTP Tunneling [https://en.wikipedia.org/wiki/HTTP_tunnel]
for more information.

By default, when proxying http traffic, request will simply make a
standard proxied http request. This is done by making the url
section of the initial line of the request a fully qualified url to
the endpoint.

For example, it will make a single request that looks like:

HTTP/1.1 GET http://endpoint-server.com/some-url
Host: proxy-server.com
Other-Headers: all go here

request body or whatever





Because a pure “http over http” tunnel offers no additional security
or other features, it is generally simpler to go with a
straightforward HTTP proxy in this case. However, if you would like
to force a tunneling proxy, you may set the tunnel option to true.

You can also make a standard proxied http request by explicitly setting
tunnel : false, but note that this will allow the proxy to see the traffic
to/from the destination server.

If you are using a tunneling proxy, you may set the
proxyHeaderWhiteList to share certain headers with the proxy.

You can also set the proxyHeaderExclusiveList to share certain
headers only with the proxy and not with destination host.

By default, this set is:

accept
accept-charset
accept-encoding
accept-language
accept-ranges
cache-control
content-encoding
content-language
content-length
content-location
content-md5
content-range
content-type
connection
date
expect
max-forwards
pragma
proxy-authorization
referer
te
transfer-encoding
user-agent
via





Note that, when using a tunneling proxy, the proxy-authorization
header and any headers from custom proxyHeaderExclusiveList are
never sent to the endpoint server, but only to the proxy server.


Controlling proxy behaviour using environment variables

The following environment variables are respected by request:


	HTTP_PROXY / http_proxy


	HTTPS_PROXY / https_proxy


	NO_PROXY / no_proxy




When HTTP_PROXY / http_proxy are set, they will be used to proxy non-SSL requests that do not have an explicit proxy configuration option present. Similarly, HTTPS_PROXY / https_proxy will be respected for SSL requests that do not have an explicit proxy configuration option. It is valid to define a proxy in one of the environment variables, but then override it for a specific request, using the proxy configuration option. Furthermore, the proxy configuration option can be explicitly set to false / null to opt out of proxying altogether for that request.

request is also aware of the NO_PROXY/no_proxy environment variables. These variables provide a granular way to opt out of proxying, on a per-host basis. It should contain a comma separated list of hosts to opt out of proxying. It is also possible to opt of proxying when a particular destination port is used. Finally, the variable may be set to * to opt out of the implicit proxy configuration of the other environment variables.

Here’s some examples of valid no_proxy values:


	google.com - don’t proxy HTTP/HTTPS requests to Google.


	google.com:443 - don’t proxy HTTPS requests to Google, but do proxy HTTP requests to Google.


	google.com:443, yahoo.com:80 - don’t proxy HTTPS requests to Google, and don’t proxy HTTP requests to Yahoo!


	* - ignore https_proxy/http_proxy environment variables altogether.




back to top








UNIX Domain Sockets

request supports making requests to UNIX Domain Sockets [https://en.wikipedia.org/wiki/Unix_domain_socket]. To make one, use the following URL scheme:

/* Pattern */ 'http://unix:SOCKET:PATH'
/* Example */ request.get('http://unix:/absolute/path/to/unix.socket:/request/path')





Note: The SOCKET path is assumed to be absolute to the root of the host file system.

back to top






TLS/SSL Protocol

TLS/SSL Protocol options, such as cert, key and passphrase, can be
set directly in options object, in the agentOptions property of the options object, or even in https.globalAgent.options. Keep in mind that, although agentOptions allows for a slightly wider range of configurations, the recommended way is via options object directly, as using agentOptions or https.globalAgent.options would not be applied in the same way in proxied environments (as data travels through a TLS connection instead of an http/https agent).

var fs = require('fs')
    , path = require('path')
    , certFile = path.resolve(__dirname, 'ssl/client.crt')
    , keyFile = path.resolve(__dirname, 'ssl/client.key')
    , caFile = path.resolve(__dirname, 'ssl/ca.cert.pem')
    , request = require('request');

var options = {
    url: 'https://api.some-server.com/',
    cert: fs.readFileSync(certFile),
    key: fs.readFileSync(keyFile),
    passphrase: 'password',
    ca: fs.readFileSync(caFile)
};

request.get(options);






Using options.agentOptions

In the example below, we call an API that requires client side SSL certificate
(in PEM format) with passphrase protected private key (in PEM format) and disable the SSLv3 protocol:

var fs = require('fs')
    , path = require('path')
    , certFile = path.resolve(__dirname, 'ssl/client.crt')
    , keyFile = path.resolve(__dirname, 'ssl/client.key')
    , request = require('request');

var options = {
    url: 'https://api.some-server.com/',
    agentOptions: {
        cert: fs.readFileSync(certFile),
        key: fs.readFileSync(keyFile),
        // Or use `pfx` property replacing `cert` and `key` when using private key, certificate and CA certs in PFX or PKCS12 format:
        // pfx: fs.readFileSync(pfxFilePath),
        passphrase: 'password',
        securityOptions: 'SSL_OP_NO_SSLv3'
    }
};

request.get(options);





It is able to force using SSLv3 only by specifying secureProtocol:

request.get({
    url: 'https://api.some-server.com/',
    agentOptions: {
        secureProtocol: 'SSLv3_method'
    }
});





It is possible to accept other certificates than those signed by generally allowed Certificate Authorities (CAs).
This can be useful, for example,  when using self-signed certificates.
To require a different root certificate, you can specify the signing CA by adding the contents of the CA’s certificate file to the agentOptions.
The certificate the domain presents must be signed by the root certificate specified:

request.get({
    url: 'https://api.some-server.com/',
    agentOptions: {
        ca: fs.readFileSync('ca.cert.pem')
    }
});





back to top








Support for HAR 1.2

The options.har property will override the values: url, method, qs, headers, form, formData, body, json, as well as construct multipart data and read files from disk when request.postData.params[].fileName is present without a matching value.

A validation step will check if the HAR Request format matches the latest spec (v1.2) and will skip parsing if not matching.

  var request = require('request')
  request({
    // will be ignored
    method: 'GET',
    uri: 'http://www.google.com',

    // HTTP Archive Request Object
    har: {
      url: 'http://www.mockbin.com/har',
      method: 'POST',
      headers: [
        {
          name: 'content-type',
          value: 'application/x-www-form-urlencoded'
        }
      ],
      postData: {
        mimeType: 'application/x-www-form-urlencoded',
        params: [
          {
            name: 'foo',
            value: 'bar'
          },
          {
            name: 'hello',
            value: 'world'
          }
        ]
      }
    }
  })

  // a POST request will be sent to http://www.mockbin.com
  // with body an application/x-www-form-urlencoded body:
  // foo=bar&hello=world





back to top






request(options, callback)

The first argument can be either a url or an options object. The only required option is uri; all others are optional.


	uri || url - fully qualified uri or a parsed url object from url.parse()


	baseUrl - fully qualified uri string used as the base url. Most useful with request.defaults, for example when you want to do many requests to the same domain. If baseUrl is https://example.com/api/, then requesting /end/point?test=true will fetch https://example.com/api/end/point?test=true. When baseUrl is given, uri must also be a string.


	method - http method (default: "GET")


	headers - http headers (default: {})







	qs - object containing querystring values to be appended to the uri


	qsParseOptions - object containing options to pass to the qs.parse [https://github.com/hapijs/qs#parsing-objects] method. Alternatively pass options to the querystring.parse [https://nodejs.org/docs/v0.12.0/api/querystring.html#querystring_querystring_parse_str_sep_eq_options] method using this format {sep:';', eq:':', options:{}}


	qsStringifyOptions - object containing options to pass to the qs.stringify [https://github.com/hapijs/qs#stringifying] method. Alternatively pass options to the  querystring.stringify [https://nodejs.org/docs/v0.12.0/api/querystring.html#querystring_querystring_stringify_obj_sep_eq_options] method using this format {sep:';', eq:':', options:{}}. For example, to change the way arrays are converted to query strings using the qs module pass the arrayFormat option with one of indices|brackets|repeat


	useQuerystring - if true, use querystring to stringify and parse
querystrings, otherwise use qs (default: false). Set this option to
true if you need arrays to be serialized as foo=bar&foo=baz instead of the
default foo[0]=bar&foo[1]=baz.







	body - entity body for PATCH, POST and PUT requests. Must be a Buffer, String or ReadStream. If json is true, then body must be a JSON-serializable object.


	form - when passed an object or a querystring, this sets body to a querystring representation of value, and adds Content-type: application/x-www-form-urlencoded header. When passed no options, a FormData instance is returned (and is piped to request). See “Forms” section above.


	formData - data to pass for a multipart/form-data request. See
Forms section above.


	multipart - array of objects which contain their own headers and body
attributes. Sends a multipart/related request. See Forms section
above.


	Alternatively you can pass in an object {chunked: false, data: []} where
chunked is used to specify whether the request is sent in
chunked transfer encoding [https://en.wikipedia.org/wiki/Chunked_transfer_encoding]
In non-chunked requests, data items with body streams are not allowed.






	preambleCRLF - append a newline/CRLF before the boundary of your multipart/form-data request.


	postambleCRLF - append a newline/CRLF at the end of the boundary of your multipart/form-data request.


	json - sets body to JSON representation of value and adds Content-type: application/json header. Additionally, parses the response body as JSON.


	jsonReviver - a reviver function [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse] that will be passed to JSON.parse() when parsing a JSON response body.


	jsonReplacer - a replacer function [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify] that will be passed to JSON.stringify() when stringifying a JSON request body.







	auth - a hash containing values user || username, pass || password, and sendImmediately (optional). See documentation above.


	oauth - options for OAuth HMAC-SHA1 signing. See documentation above.


	hawk - options for Hawk signing [https://github.com/hueniverse/hawk]. The credentials key must contain the necessary signing info, see hawk docs for details [https://github.com/hueniverse/hawk#usage-example].


	aws - object containing AWS signing information. Should have the properties key, secret, and optionally session (note that this only works for services that require session as part of the canonical string). Also requires the property bucket, unless you’re specifying your bucket as part of the path, or the request doesn’t use a bucket (i.e. GET Services). If you want to use AWS sign version 4 use the parameter sign_version with value 4 otherwise the default is version 2. If you are using SigV4, you can also include a service property that specifies the service name. Note: you need to npm install aws4 first.


	httpSignature - options for the HTTP Signature Scheme [https://github.com/joyent/node-http-signature/blob/master/http_signing] using Joyent’s library [https://github.com/joyent/node-http-signature]. The keyId and key properties must be specified. See the docs for other options.







	followRedirect - follow HTTP 3xx responses as redirects (default: true). This property can also be implemented as function which gets response object as a single argument and should return true if redirects should continue or false otherwise.


	followAllRedirects - follow non-GET HTTP 3xx responses as redirects (default: false)


	followOriginalHttpMethod - by default we redirect to HTTP method GET. you can enable this property to redirect to the original HTTP method (default: false)


	maxRedirects - the maximum number of redirects to follow (default: 10)


	removeRefererHeader - removes the referer header when a redirect happens (default: false). Note: if true, referer header set in the initial request is preserved during redirect chain.







	encoding - encoding to be used on setEncoding of response data. If null, the body is returned as a Buffer. Anything else (including the default value of undefined) will be passed as the encoding [http://nodejs.org/api/buffer.html#buffer_buffer] parameter to toString() (meaning this is effectively utf8 by default). (Note: if you expect binary data, you should set encoding: null.)


	gzip - if true, add an Accept-Encoding header to request compressed content encodings from the server (if not already present) and decode supported content encodings in the response. Note: Automatic decoding of the response content is performed on the body data returned through request (both through the request stream and passed to the callback function) but is not performed on the response stream (available from the response event) which is the unmodified http.IncomingMessage object which may contain compressed data. See example below.


	jar - if true, remember cookies for future use (or define your custom cookie jar; see examples section)







	agent - http(s).Agent instance to use


	agentClass - alternatively specify your agent’s class name


	agentOptions - and pass its options. Note: for HTTPS see tls API doc for TLS/SSL options [http://nodejs.org/api/tls.html#tls_tls_connect_options_callback] and the documentation above.


	forever - set to true to use the forever-agent [https://github.com/request/forever-agent] Note: Defaults to http(s).Agent({keepAlive:true}) in node 0.12+


	pool - an object describing which agents to use for the request. If this option is omitted the request will use the global agent (as long as your options allow for it). Otherwise, request will search the pool for your custom agent. If no custom agent is found, a new agent will be created and added to the pool. Note: pool is used only when the agent option is not specified.


	A maxSockets property can also be provided on the pool object to set the max number of sockets for all agents created (ex: pool: {maxSockets: Infinity}).


	Note that if you are sending multiple requests in a loop and creating
multiple new pool objects, maxSockets will not work as intended. To
work around this, either use request.defaults
with your pool options or create the pool object with the maxSockets
property outside of the loop.






	timeout - integer containing the number of milliseconds to wait for a
server to send response headers (and start the response body) before aborting
the request. Note that if the underlying TCP connection cannot be established,
the OS-wide TCP connection timeout will overrule the timeout option (the
default in Linux can be anywhere from 20-120 seconds [http://www.sekuda.com/overriding_the_default_linux_kernel_20_second_tcp_socket_connect_timeout]).







	localAddress - local interface to bind for network connections.


	proxy - an HTTP proxy to be used. Supports proxy Auth with Basic Auth, identical to support for the url parameter (by embedding the auth info in the uri)


	strictSSL - if true, requires SSL certificates be valid. Note: to use your own certificate authority, you need to specify an agent that was created with that CA as an option.


	tunnel - controls the behavior of
HTTP CONNECT tunneling [https://en.wikipedia.org/wiki/HTTP_tunnel#HTTP_CONNECT_tunneling]
as follows:


	undefined (default) - true if the destination is https, false otherwise


	true - always tunnel to the destination by making a CONNECT request to
the proxy


	false - request the destination as a GET request.






	proxyHeaderWhiteList - a whitelist of headers to send to a
tunneling proxy.


	proxyHeaderExclusiveList - a whitelist of headers to send
exclusively to a tunneling proxy and not to destination.







	time - if true, the request-response cycle (including all redirects) is timed at millisecond resolution. When set, the following properties are added to the response object:


	elapsedTime Duration of the entire request/response in milliseconds (deprecated).


	responseStartTime Timestamp when the response began (in Unix Epoch milliseconds) (deprecated).


	timingStart Timestamp of the start of the request (in Unix Epoch milliseconds).


	timings Contains event timestamps in millisecond resolution relative to timingStart. If there were redirects, the properties reflect the timings of the final request in the redirect chain:


	socket Relative timestamp when the http [https://nodejs.org/api/http.html#http_event_socket] module’s socket event fires. This happens when the socket is assigned to the request.


	lookup Relative timestamp when the net [https://nodejs.org/api/net.html#net_event_lookup] module’s lookup event fires. This happens when the DNS has been resolved.


	connect: Relative timestamp when the net [https://nodejs.org/api/net.html#net_event_connect] module’s connect event fires. This happens when the server acknowledges the TCP connection.


	response: Relative timestamp when the http [https://nodejs.org/api/http.html#http_event_response] module’s response event fires. This happens when the first bytes are received from the server.


	end: Relative timestamp when the last bytes of the response are received.






	timingPhases Contains the durations of each request phase. If there were redirects, the properties reflect the timings of the final request in the redirect chain:


	wait: Duration of socket initialization (timings.socket)


	dns: Duration of DNS lookup (timings.lookup - timings.socket)


	tcp: Duration of TCP connection (timings.connect - timings.socket)


	firstByte: Duration of HTTP server response (timings.response - timings.connect)


	download: Duration of HTTP download (timings.end - timings.response)


	total: Duration entire HTTP round-trip (timings.end)










	har - a HAR 1.2 Request Object [http://www.softwareishard.com/blog/har-12-spec/#request], will be processed from HAR format into options overwriting matching values (see the HAR 1.2 section for details)


	callback - alternatively pass the request’s callback in the options object




The callback argument gets 3 arguments:


	An error when applicable (usually from http.ClientRequest [http://nodejs.org/api/http.html#http_class_http_clientrequest] object)


	An http.IncomingMessage [https://nodejs.org/api/http.html#http_class_http_incomingmessage] object (Response object)


	The third is the response body (String or Buffer, or JSON object if the json option is supplied)




back to top






Convenience methods

There are also shorthand methods for different HTTP METHODs and some other conveniences.


request.defaults(options)

This method returns a wrapper around the normal request API that defaults
to whatever options you pass to it.

Note: request.defaults() does not modify the global request API;
instead, it returns a wrapper that has your default settings applied to it.

Note: You can call .defaults() on the wrapper that is returned from
request.defaults to add/override defaults that were previously defaulted.

For example:

//requests using baseRequest() will set the 'x-token' header
var baseRequest = request.defaults({
  headers: {'x-token': 'my-token'}
})

//requests using specialRequest() will include the 'x-token' header set in
//baseRequest and will also include the 'special' header
var specialRequest = baseRequest.defaults({
  headers: {special: 'special value'}
})








request.METHOD()

These HTTP method convenience functions act just like request() but with a default method already set for you:


	request.get(): Defaults to method: "GET".


	request.post(): Defaults to method: "POST".


	request.put(): Defaults to method: "PUT".


	request.patch(): Defaults to method: "PATCH".


	request.del() / request.delete(): Defaults to method: "DELETE".


	request.head(): Defaults to method: "HEAD".


	request.options(): Defaults to method: "OPTIONS".







request.cookie()

Function that creates a new cookie.

request.cookie('key1=value1')








request.jar()

Function that creates a new cookie jar.

request.jar()





back to top








Debugging

There are at least three ways to debug the operation of request:


	Launch the node process like NODE_DEBUG=request node script.js
(lib,request,otherlib works too).


	Set require('request').debug = true at any time (this does the same thing
as #1).


	Use the request-debug module [https://github.com/request/request-debug] to
view request and response headers and bodies.




back to top






Timeouts

Most requests to external servers should have a timeout attached, in case the
server is not responding in a timely manner. Without a timeout, your code may
have a socket open/consume resources for minutes or more.

There are two main types of timeouts: connection timeouts and read
timeouts. A connect timeout occurs if the timeout is hit while your client is
attempting to establish a connection to a remote machine (corresponding to the
connect() call [http://linux.die.net/man/2/connect] on the socket). A read timeout occurs any time the
server is too slow to send back a part of the response.

These two situations have widely different implications for what went wrong
with the request, so it’s useful to be able to distinguish them. You can detect
timeout errors by checking err.code for an ‘ETIMEDOUT’ value. Further, you
can detect whether the timeout was a connection timeout by checking if the
err.connect property is set to true.

request.get('http://10.255.255.1', {timeout: 1500}, function(err) {
    console.log(err.code === 'ETIMEDOUT');
    // Set to `true` if the timeout was a connection timeout, `false` or
    // `undefined` otherwise.
    console.log(err.connect === true);
    process.exit(0);
});








Examples:

  var request = require('request')
    , rand = Math.floor(Math.random()*100000000).toString()
    ;
  request(
    { method: 'PUT'
    , uri: 'http://mikeal.iriscouch.com/testjs/' + rand
    , multipart:
      [ { 'content-type': 'application/json'
        ,  body: JSON.stringify({foo: 'bar', _attachments: {'message.txt': {follows: true, length: 18, 'content_type': 'text/plain' }}})
        }
      , { body: 'I am an attachment' }
      ]
    }
  , function (error, response, body) {
      if(response.statusCode == 201){
        console.log('document saved as: http://mikeal.iriscouch.com/testjs/'+ rand)
      } else {
        console.log('error: '+ response.statusCode)
        console.log(body)
      }
    }
  )





For backwards-compatibility, response compression is not supported by default.
To accept gzip-compressed responses, set the gzip option to true. Note
that the body data passed through request is automatically decompressed
while the response object is unmodified and will contain compressed data if
the server sent a compressed response.

  var request = require('request')
  request(
    { method: 'GET'
    , uri: 'http://www.google.com'
    , gzip: true
    }
  , function (error, response, body) {
      // body is the decompressed response body
      console.log('server encoded the data as: ' + (response.headers['content-encoding'] || 'identity'))
      console.log('the decoded data is: ' + body)
    }
  )
  .on('data', function(data) {
    // decompressed data as it is received
    console.log('decoded chunk: ' + data)
  })
  .on('response', function(response) {
    // unmodified http.IncomingMessage object
    response.on('data', function(data) {
      // compressed data as it is received
      console.log('received ' + data.length + ' bytes of compressed data')
    })
  })





Cookies are disabled by default (else, they would be used in subsequent requests). To enable cookies, set jar to true (either in defaults or options).

var request = request.defaults({jar: true})
request('http://www.google.com', function () {
  request('http://images.google.com')
})





To use a custom cookie jar (instead of request’s global cookie jar), set jar to an instance of request.jar() (either in defaults or options)

var j = request.jar()
var request = request.defaults({jar:j})
request('http://www.google.com', function () {
  request('http://images.google.com')
})





OR

var j = request.jar();
var cookie = request.cookie('key1=value1');
var url = 'http://www.google.com';
j.setCookie(cookie, url);
request({url: url, jar: j}, function () {
  request('http://images.google.com')
})





To use a custom cookie store (such as a
FileCookieStore [https://github.com/mitsuru/tough-cookie-filestore]
which supports saving to and restoring from JSON files), pass it as a parameter
to request.jar():

var FileCookieStore = require('tough-cookie-filestore');
// NOTE - currently the 'cookies.json' file must already exist!
var j = request.jar(new FileCookieStore('cookies.json'));
request = request.defaults({ jar : j })
request('http://www.google.com', function() {
  request('http://images.google.com')
})





The cookie store must be a
tough-cookie [https://github.com/SalesforceEng/tough-cookie]
store and it must support synchronous operations; see the
CookieStore API docs [https://github.com/SalesforceEng/tough-cookie#cookiestore-api]
for details.

To inspect your cookie jar after a request:

var j = request.jar()
request({url: 'http://www.google.com', jar: j}, function () {
  var cookie_string = j.getCookieString(url); // "key1=value1; key2=value2; ..."
  var cookies = j.getCookies(url);
  // [{key: 'key1', value: 'value1', domain: "www.google.com", ...}, ...]
})





back to top







          

      

      

    

  

  
    
    safe-buffer
    

    
 
  

    
      
          
            
  
safe-buffer [image: ../../../_images/master6.svg]travis [https://travis-ci.org/feross/safe-buffer] [image: ../../../_images/safe-buffer.svg]npm [https://npmjs.org/package/safe-buffer] [image: ../../../_images/safe-buffer1.svg]downloads [https://npmjs.org/package/safe-buffer] [image: ../../../_images/f1896fcbdac8c2253770dcedb81221d2f5d37cea.svg]javascript style guide [https://standardjs.com]


Safer Node.js Buffer API

Use the new Node.js Buffer APIs (Buffer.from, Buffer.alloc,
Buffer.allocUnsafe, Buffer.allocUnsafeSlow) in all versions of Node.js.

Uses the built-in implementation when available.




install

npm install safe-buffer








usage

The goal of this package is to provide a safe replacement for the node.js Buffer.

It’s a drop-in replacement for Buffer. You can use it by adding one require line to
the top of your node.js modules:

var Buffer = require('safe-buffer').Buffer

// Existing buffer code will continue to work without issues:

new Buffer('hey', 'utf8')
new Buffer([1, 2, 3], 'utf8')
new Buffer(obj)
new Buffer(16) // create an uninitialized buffer (potentially unsafe)

// But you can use these new explicit APIs to make clear what you want:

Buffer.from('hey', 'utf8') // convert from many types to a Buffer
Buffer.alloc(16) // create a zero-filled buffer (safe)
Buffer.allocUnsafe(16) // create an uninitialized buffer (potentially unsafe)








api


Class Method: Buffer.from(array)


	array {Array}




Allocates a new Buffer using an array of octets.

const buf = Buffer.from([0x62,0x75,0x66,0x66,0x65,0x72]);
  // creates a new Buffer containing ASCII bytes
  // ['b','u','f','f','e','r']





A TypeError will be thrown if array is not an Array.




Class Method: Buffer.from(arrayBuffer[, byteOffset[, length]])


	arrayBuffer {ArrayBuffer} The .buffer property of a TypedArray or
a new ArrayBuffer()


	byteOffset {Number} Default: 0


	length {Number} Default: arrayBuffer.length - byteOffset




When passed a reference to the .buffer property of a TypedArray instance,
the newly created Buffer will share the same allocated memory as the
TypedArray.

const arr = new Uint16Array(2);
arr[0] = 5000;
arr[1] = 4000;

const buf = Buffer.from(arr.buffer); // shares the memory with arr;

console.log(buf);
  // Prints: <Buffer 88 13 a0 0f>

// changing the TypedArray changes the Buffer also
arr[1] = 6000;

console.log(buf);
  // Prints: <Buffer 88 13 70 17>





The optional byteOffset and length arguments specify a memory range within
the arrayBuffer that will be shared by the Buffer.

const ab = new ArrayBuffer(10);
const buf = Buffer.from(ab, 0, 2);
console.log(buf.length);
  // Prints: 2





A TypeError will be thrown if arrayBuffer is not an ArrayBuffer.




Class Method: Buffer.from(buffer)


	buffer {Buffer}




Copies the passed buffer data onto a new Buffer instance.

const buf1 = Buffer.from('buffer');
const buf2 = Buffer.from(buf1);

buf1[0] = 0x61;
console.log(buf1.toString());
  // 'auffer'
console.log(buf2.toString());
  // 'buffer' (copy is not changed)





A TypeError will be thrown if buffer is not a Buffer.




Class Method: Buffer.from(str[, encoding])


	str {String} String to encode.


	encoding {String} Encoding to use, Default: 'utf8'




Creates a new Buffer containing the given JavaScript string str. If
provided, the encoding parameter identifies the character encoding.
If not provided, encoding defaults to 'utf8'.

const buf1 = Buffer.from('this is a tést');
console.log(buf1.toString());
  // prints: this is a tést
console.log(buf1.toString('ascii'));
  // prints: this is a tC)st

const buf2 = Buffer.from('7468697320697320612074c3a97374', 'hex');
console.log(buf2.toString());
  // prints: this is a tést





A TypeError will be thrown if str is not a string.




Class Method: Buffer.alloc(size[, fill[, encoding]])


	size {Number}


	fill {Value} Default: undefined


	encoding {String} Default: utf8




Allocates a new Buffer of size bytes. If fill is undefined, the
Buffer will be zero-filled.

const buf = Buffer.alloc(5);
console.log(buf);
  // <Buffer 00 00 00 00 00>





The size must be less than or equal to the value of
require('buffer').kMaxLength (on 64-bit architectures, kMaxLength is
(2^31)-1). Otherwise, a [RangeError][] is thrown. A zero-length Buffer will
be created if a size less than or equal to 0 is specified.

If fill is specified, the allocated Buffer will be initialized by calling
buf.fill(fill). See [buf.fill()][] for more information.

const buf = Buffer.alloc(5, 'a');
console.log(buf);
  // <Buffer 61 61 61 61 61>





If both fill and encoding are specified, the allocated Buffer will be
initialized by calling buf.fill(fill, encoding). For example:

const buf = Buffer.alloc(11, 'aGVsbG8gd29ybGQ=', 'base64');
console.log(buf);
  // <Buffer 68 65 6c 6c 6f 20 77 6f 72 6c 64>





Calling Buffer.alloc(size) can be significantly slower than the alternative
Buffer.allocUnsafe(size) but ensures that the newly created Buffer instance
contents will never contain sensitive data.

A TypeError will be thrown if size is not a number.




Class Method: Buffer.allocUnsafe(size)


	size {Number}




Allocates a new non-zero-filled Buffer of size bytes.  The size must
be less than or equal to the value of require('buffer').kMaxLength (on 64-bit
architectures, kMaxLength is (2^31)-1). Otherwise, a [RangeError][] is
thrown. A zero-length Buffer will be created if a size less than or equal to
0 is specified.

The underlying memory for Buffer instances created in this way is not
initialized. The contents of the newly created Buffer are unknown and
may contain sensitive data. Use [buf.fill(0)][] to initialize such
Buffer instances to zeroes.

const buf = Buffer.allocUnsafe(5);
console.log(buf);
  // <Buffer 78 e0 82 02 01>
  // (octets will be different, every time)
buf.fill(0);
console.log(buf);
  // <Buffer 00 00 00 00 00>





A TypeError will be thrown if size is not a number.

Note that the Buffer module pre-allocates an internal Buffer instance of
size Buffer.poolSize that is used as a pool for the fast allocation of new
Buffer instances created using Buffer.allocUnsafe(size) (and the deprecated
new Buffer(size) constructor) only when size is less than or equal to
Buffer.poolSize >> 1 (floor of Buffer.poolSize divided by two). The default
value of Buffer.poolSize is 8192 but can be modified.

Use of this pre-allocated internal memory pool is a key difference between
calling Buffer.alloc(size, fill) vs. Buffer.allocUnsafe(size).fill(fill).
Specifically, Buffer.alloc(size, fill) will never use the internal Buffer
pool, while Buffer.allocUnsafe(size).fill(fill) will use the internal
Buffer pool if size is less than or equal to half Buffer.poolSize. The
difference is subtle but can be important when an application requires the
additional performance that Buffer.allocUnsafe(size) provides.




Class Method: Buffer.allocUnsafeSlow(size)


	size {Number}




Allocates a new non-zero-filled and non-pooled Buffer of size bytes.  The
size must be less than or equal to the value of
require('buffer').kMaxLength (on 64-bit architectures, kMaxLength is
(2^31)-1). Otherwise, a [RangeError][] is thrown. A zero-length Buffer will
be created if a size less than or equal to 0 is specified.

The underlying memory for Buffer instances created in this way is not
initialized. The contents of the newly created Buffer are unknown and
may contain sensitive data. Use [buf.fill(0)][] to initialize such
Buffer instances to zeroes.

When using Buffer.allocUnsafe() to allocate new Buffer instances,
allocations under 4KB are, by default, sliced from a single pre-allocated
Buffer. This allows applications to avoid the garbage collection overhead of
creating many individually allocated Buffers. This approach improves both
performance and memory usage by eliminating the need to track and cleanup as
many Persistent objects.

However, in the case where a developer may need to retain a small chunk of
memory from a pool for an indeterminate amount of time, it may be appropriate
to create an un-pooled Buffer instance using Buffer.allocUnsafeSlow() then
copy out the relevant bits.

// need to keep around a few small chunks of memory
const store = [];

socket.on('readable', () => {
  const data = socket.read();
  // allocate for retained data
  const sb = Buffer.allocUnsafeSlow(10);
  // copy the data into the new allocation
  data.copy(sb, 0, 0, 10);
  store.push(sb);
});





Use of Buffer.allocUnsafeSlow() should be used only as a last resort after
a developer has observed undue memory retention in their applications.

A TypeError will be thrown if size is not a number.




All the Rest

The rest of the Buffer API is exactly the same as in node.js.
See the docs [https://nodejs.org/api/buffer.html].






Related links


	Node.js issue: Buffer(number) is unsafe [https://github.com/nodejs/node/issues/4660]


	Node.js Enhancement Proposal: Buffer.from/Buffer.alloc/Buffer.zalloc/Buffer() soft-deprecate [https://github.com/nodejs/node-eps/pull/4]







Why is Buffer unsafe?

Today, the node.js Buffer constructor is overloaded to handle many different argument
types like String, Array, Object, TypedArrayView (Uint8Array, etc.),
ArrayBuffer, and also Number.

The API is optimized for convenience: you can throw any type at it, and it will try to do
what you want.

Because the Buffer constructor is so powerful, you often see code like this:

// Convert UTF-8 strings to hex
function toHex (str) {
  return new Buffer(str).toString('hex')
}





But what happens if toHex is called with a Number argument?


Remote Memory Disclosure

If an attacker can make your program call the Buffer constructor with a Number
argument, then they can make it allocate uninitialized memory from the node.js process.
This could potentially disclose TLS private keys, user data, or database passwords.

When the Buffer constructor is passed a Number argument, it returns an
UNINITIALIZED block of memory of the specified size. When you create a Buffer like
this, you MUST overwrite the contents before returning it to the user.

From the node.js docs [https://nodejs.org/api/buffer.html#buffer_new_buffer_size]:


new Buffer(size)


	size Number




The underlying memory for Buffer instances created in this way is not initialized.
The contents of a newly created Buffer are unknown and could contain sensitive
data. Use buf.fill(0) to initialize a Buffer to zeroes.




(Emphasis our own.)

Whenever the programmer intended to create an uninitialized Buffer you often see code
like this:

var buf = new Buffer(16)

// Immediately overwrite the uninitialized buffer with data from another buffer
for (var i = 0; i < buf.length; i++) {
  buf[i] = otherBuf[i]
}








Would this ever be a problem in real code?

Yes. It’s surprisingly common to forget to check the type of your variables in a
dynamically-typed language like JavaScript.

Usually the consequences of assuming the wrong type is that your program crashes with an
uncaught exception. But the failure mode for forgetting to check the type of arguments to
the Buffer constructor is more catastrophic.

Here’s an example of a vulnerable service that takes a JSON payload and converts it to
hex:

// Take a JSON payload {str: "some string"} and convert it to hex
var server = http.createServer(function (req, res) {
  var data = ''
  req.setEncoding('utf8')
  req.on('data', function (chunk) {
    data += chunk
  })
  req.on('end', function () {
    var body = JSON.parse(data)
    res.end(new Buffer(body.str).toString('hex'))
  })
})

server.listen(8080)





In this example, an http client just has to send:

{
  "str": 1000
}





and it will get back 1,000 bytes of uninitialized memory from the server.

This is a very serious bug. It’s similar in severity to the
the Heartbleed bug [http://heartbleed.com/] that allowed disclosure of OpenSSL process
memory by remote attackers.




Which real-world packages were vulnerable?


bittorrent-dht [https://www.npmjs.com/package/bittorrent-dht]

Mathias Buus [https://github.com/mafintosh] and I
(Feross Aboukhadijeh [http://feross.org/]) found this issue in one of our own packages,
bittorrent-dht [https://www.npmjs.com/package/bittorrent-dht]. The bug would allow
anyone on the internet to send a series of messages to a user of bittorrent-dht and get
them to reveal 20 bytes at a time of uninitialized memory from the node.js process.

Here’s
the commit [https://github.com/feross/bittorrent-dht/commit/6c7da04025d5633699800a99ec3fbadf70ad35b8]
that fixed it. We released a new fixed version, created a
Node Security Project disclosure [https://nodesecurity.io/advisories/68], and deprecated all
vulnerable versions on npm so users will get a warning to upgrade to a newer version.




ws [https://www.npmjs.com/package/ws]

That got us wondering if there were other vulnerable packages. Sure enough, within a short
period of time, we found the same issue in ws [https://www.npmjs.com/package/ws], the
most popular WebSocket implementation in node.js.

If certain APIs were called with Number parameters instead of String or Buffer as
expected, then uninitialized server memory would be disclosed to the remote peer.

These were the vulnerable methods:

socket.send(number)
socket.ping(number)
socket.pong(number)





Here’s a vulnerable socket server with some echo functionality:

server.on('connection', function (socket) {
  socket.on('message', function (message) {
    message = JSON.parse(message)
    if (message.type === 'echo') {
      socket.send(message.data) // send back the user's message
    }
  })
})





socket.send(number) called on the server, will disclose server memory.

Here’s the release [https://github.com/websockets/ws/releases/tag/1.0.1] where the issue
was fixed, with a more detailed explanation. Props to
Arnout Kazemier [https://github.com/3rd-Eden] for the quick fix. Here’s the
Node Security Project disclosure [https://nodesecurity.io/advisories/67].






What’s the solution?

It’s important that node.js offers a fast way to get memory otherwise performance-critical
applications would needlessly get a lot slower.

But we need a better way to signal our intent as programmers. When we want
uninitialized memory, we should request it explicitly.

Sensitive functionality should not be packed into a developer-friendly API that loosely
accepts many different types. This type of API encourages the lazy practice of passing
variables in without checking the type very carefully.


A new API: Buffer.allocUnsafe(number)

The functionality of creating buffers with uninitialized memory should be part of another
API. We propose Buffer.allocUnsafe(number). This way, it’s not part of an API that
frequently gets user input of all sorts of different types passed into it.

var buf = Buffer.allocUnsafe(16) // careful, uninitialized memory!

// Immediately overwrite the uninitialized buffer with data from another buffer
for (var i = 0; i < buf.length; i++) {
  buf[i] = otherBuf[i]
}










How do we fix node.js core?

We sent a PR to node.js core [https://github.com/nodejs/node/pull/4514] (merged as
semver-major) which defends against one case:

var str = 16
new Buffer(str, 'utf8')





In this situation, it’s implied that the programmer intended the first argument to be a
string, since they passed an encoding as a second argument. Today, node.js will allocate
uninitialized memory in the case of new Buffer(number, encoding), which is probably not
what the programmer intended.

But this is only a partial solution, since if the programmer does new Buffer(variable)
(without an encoding parameter) there’s no way to know what they intended. If variable
is sometimes a number, then uninitialized memory will sometimes be returned.




What’s the real long-term fix?

We could deprecate and remove new Buffer(number) and use Buffer.allocUnsafe(number) when
we need uninitialized memory. But that would break 1000s of packages.

~~We believe the best solution is to:~~

~~1. Change new Buffer(number) to return safe, zeroed-out memory~~

~~2. Create a new API for creating uninitialized Buffers. We propose: Buffer.allocUnsafe(number)~~


Update

We now support adding three new APIs:


	Buffer.from(value) - convert from any type to a buffer


	Buffer.alloc(size) - create a zero-filled buffer


	Buffer.allocUnsafe(size) - create an uninitialized buffer with given size




This solves the core problem that affected ws and bittorrent-dht which is
Buffer(variable) getting tricked into taking a number argument.

This way, existing code continues working and the impact on the npm ecosystem will be
minimal. Over time, npm maintainers can migrate performance-critical code to use
Buffer.allocUnsafe(number) instead of new Buffer(number).






Conclusion

We think there’s a serious design issue with the Buffer API as it exists today. It
promotes insecure software by putting high-risk functionality into a convenient API
with friendly “developer ergonomics”.

This wasn’t merely a theoretical exercise because we found the issue in some of the
most popular npm packages.

Fortunately, there’s an easy fix that can be applied today. Use safe-buffer in place of
buffer.

var Buffer = require('safe-buffer').Buffer





Eventually, we hope that node.js core can switch to this new, safer behavior. We believe
the impact on the ecosystem would be minimal since it’s not a breaking change.
Well-maintained, popular packages would be updated to use Buffer.alloc quickly, while
older, insecure packages would magically become safe from this attack vector.






links


	Node.js PR: buffer: throw if both length and enc are passed [https://github.com/nodejs/node/pull/4514]


	Node Security Project disclosure for ws [https://nodesecurity.io/advisories/67]


	Node Security Project disclosure forbittorrent-dht [https://nodesecurity.io/advisories/68]







credit

The original issues in bittorrent-dht
(disclosure [https://nodesecurity.io/advisories/68]) and
ws (disclosure [https://nodesecurity.io/advisories/67]) were discovered by
Mathias Buus [https://github.com/mafintosh] and
Feross Aboukhadijeh [http://feross.org/].

Thanks to Adam Baldwin [https://github.com/evilpacket] for helping disclose these issues
and for his work running the Node Security Project [https://nodesecurity.io/].

Thanks to John Hiesey [https://github.com/jhiesey] for proofreading this README and
auditing the code.




license

MIT. Copyright (C) Feross Aboukhadijeh [http://feross.org]







          

      

      

    

  

  
    
    Porting to the Buffer.from/Buffer.alloc API
    

    
 
  

    
      
          
            
  
Porting to the Buffer.from/Buffer.alloc API




Overview


	Variant 1: Drop support for Node.js ≤ 4.4.x and 5.0.0 — 5.9.x. (recommended)


	Variant 2: Use a polyfill


	Variant 3: manual detection, with safeguards





Finding problematic bits of code using grep

Just run grep -nrE '[^a-zA-Z](Slow)?Buffer\s*\(' --exclude-dir node_modules.

It will find all the potentially unsafe places in your own code (with some considerably unlikely
exceptions).




Finding problematic bits of code using Node.js 8

If you’re using Node.js ≥ 8.0.0 (which is recommended), Node.js exposes multiple options that help with finding the relevant pieces of code:


	--trace-warnings will make Node.js show a stack trace for this warning and other warnings that are printed by Node.js.


	--trace-deprecation does the same thing, but only for deprecation warnings.


	--pending-deprecation will show more types of deprecation warnings. In particular, it will show the Buffer() deprecation warning, even on Node.js 8.




You can set these flags using an environment variable:

$ export NODE_OPTIONS='--trace-warnings --pending-deprecation'
$ cat example.js
'use strict';
const foo = new Buffer('foo');
$ node example.js
(node:7147) [DEP0005] DeprecationWarning: The Buffer() and new Buffer() constructors are not recommended for use due to security and usability concerns. Please use the new Buffer.alloc(), Buffer.allocUnsafe(), or Buffer.from() construction methods instead.
    at showFlaggedDeprecation (buffer.js:127:13)
    at new Buffer (buffer.js:148:3)
    at Object.<anonymous> (/path/to/example.js:2:13)
    [... more stack trace lines ...]








Finding problematic bits of code using linters

Eslint rules no-buffer-constructor [https://eslint.org/docs/rules/no-buffer-constructor]
or
node/no-deprecated-api [https://github.com/mysticatea/eslint-plugin-node/blob/master/docs/rules/no-deprecated-api]
also find calls to deprecated Buffer() API. Those rules are included in some pre-sets.

There is a drawback, though, that it doesn’t always
work correctly [https://github.com/chalker/safer-buffer#why-not-safe-buffer] when Buffer is
overriden e.g. with a polyfill, so recommended is a combination of this and some other method
described above.








Variant 1: Drop support for Node.js ≤ 4.4.x and 5.0.0 — 5.9.x.

This is the recommended solution nowadays that would imply only minimal overhead.

The Node.js 5.x release line has been unsupported since July 2016, and the Node.js 4.x release line reaches its End of Life in April 2018 (→ Schedule [https://github.com/nodejs/Release#release-schedule]). This means that these versions of Node.js will not receive any updates, even in case of security issues, so using these release lines should be avoided, if at all possible.

What you would do in this case is to convert all new Buffer() or Buffer() calls to use Buffer.alloc() or Buffer.from(), in the following way:


	For new Buffer(number), replace it with Buffer.alloc(number).


	For new Buffer(string) (or new Buffer(string, encoding)), replace it with Buffer.from(string) (or Buffer.from(string, encoding)).


	For all other combinations of arguments (these are much rarer), also replace new Buffer(...arguments) with Buffer.from(...arguments).




Note that Buffer.alloc() is also faster on the current Node.js versions than
new Buffer(size).fill(0), which is what you would otherwise need to ensure zero-filling.

Enabling eslint rule no-buffer-constructor [https://eslint.org/docs/rules/no-buffer-constructor]
or
node/no-deprecated-api [https://github.com/mysticatea/eslint-plugin-node/blob/master/docs/rules/no-deprecated-api]
is recommended to avoid accidential unsafe Buffer API usage.

There is also a JSCodeshift codemod [https://github.com/joyeecheung/node-dep-codemod#dep005]
for automatically migrating Buffer constructors to Buffer.alloc() or Buffer.from().
Note that it currently only works with cases where the arguments are literals or where the
constructor is invoked with two arguments.

If you currently support those older Node.js versions and dropping them would be a semver-major change
for you, or if you support older branches of your packages, consider using Variant 2
or Variant 3 on older branches, so people using those older branches will also receive
the fix. That way, you will eradicate potential issues caused by unguarded Buffer API usage and
your users will not observe a runtime deprecation warning when running your code on Node.js 10.






Variant 2: Use a polyfill

Utilize safer-buffer [https://www.npmjs.com/package/safer-buffer] as a polyfill to support older
Node.js versions.

You would take exacly the same steps as in Variant 1, but with a polyfill
const Buffer = require('safer-buffer').Buffer in all files where you use the new Buffer api.

Make sure that you do not use old new Buffer API — in any files where the line above is added,
using old new Buffer() API will throw. It will be easy to notice that in CI, though.

Alternatively, you could use buffer-from [https://www.npmjs.com/package/buffer-from] and/or
buffer-alloc [https://www.npmjs.com/package/buffer-alloc] ponyfills [https://ponyfill.com/] —
those are great, the only downsides being 4 deps in the tree and slightly more code changes to
migrate off them (as you would be using e.g. Buffer.from under a different name). If you need only
Buffer.from polyfilled — buffer-from alone which comes with no extra dependencies.

Alternatively, you could use safe-buffer [https://www.npmjs.com/package/safe-buffer] — it also
provides a polyfill, but takes a different approach which has
it’s drawbacks [https://github.com/chalker/safer-buffer#why-not-safe-buffer]. It will allow you
to also use the older new Buffer() API in your code, though — but that’s arguably a benefit, as
it is problematic, can cause issues in your code, and will start emitting runtime deprecation
warnings starting with Node.js 10.

Note that in either case, it is important that you also remove all calls to the old Buffer
API manually — just throwing in safe-buffer doesn’t fix the problem by itself, it just provides
a polyfill for the new API. I have seen people doing that mistake.

Enabling eslint rule no-buffer-constructor [https://eslint.org/docs/rules/no-buffer-constructor]
or
node/no-deprecated-api [https://github.com/mysticatea/eslint-plugin-node/blob/master/docs/rules/no-deprecated-api]
is recommended.

Don’t forget to drop the polyfill usage once you drop support for Node.js < 4.5.0.






Variant 3 — manual detection, with safeguards

This is useful if you create Buffer instances in only a few places (e.g. one), or you have your own
wrapper around them.


Buffer(0)

This special case for creating empty buffers can be safely replaced with Buffer.concat([]), which
returns the same result all the way down to Node.js 0.8.x.




Buffer(notNumber)

Before:

var buf = new Buffer(notNumber, encoding);





After:

var buf;
if (Buffer.from && Buffer.from !== Uint8Array.from) {
  buf = Buffer.from(notNumber, encoding);
} else {
  if (typeof notNumber === 'number')
    throw new Error('The "size" argument must be of type number.');
  buf = new Buffer(notNumber, encoding);
}





encoding is optional.

Note that the typeof notNumber before new Buffer is required (for cases when notNumber argument is not
hard-coded) and is not caused by the deprecation of Buffer constructor — it’s exactly why the
Buffer constructor is deprecated. Ecosystem packages lacking this type-check caused numereous
security issues — situations when unsanitized user input could end up in the Buffer(arg) create
problems ranging from DoS to leaking sensitive information to the attacker from the process memory.

When notNumber argument is hardcoded (e.g. literal "abc" or [0,1,2]), the typeof check can
be omitted.

Also note that using TypeScript does not fix this problem for you — when libs written in
TypeScript are used from JS, or when user input ends up there — it behaves exactly as pure JS, as
all type checks are translation-time only and are not present in the actual JS code which TS
compiles to.




Buffer(number)

For Node.js 0.10.x (and below) support:

var buf;
if (Buffer.alloc) {
  buf = Buffer.alloc(number);
} else {
  buf = new Buffer(number);
  buf.fill(0);
}





Otherwise (Node.js ≥ 0.12.x):

const buf = Buffer.alloc ? Buffer.alloc(number) : new Buffer(number).fill(0);










Regarding Buffer.allocUnsafe

Be extra cautious when using Buffer.allocUnsafe:


	Don’t use it if you don’t have a good reason to


	e.g. you probably won’t ever see a performance difference for small buffers, in fact, those
might be even faster with Buffer.alloc(),


	if your code is not in the hot code path — you also probably won’t notice a difference,


	keep in mind that zero-filling minimizes the potential risks.






	If you use it, make sure that you never return the buffer in a partially-filled state,


	if you are writing to it sequentially — always truncate it to the actuall written length








Errors in handling buffers allocated with Buffer.allocUnsafe could result in various issues,
ranged from undefined behaviour of your code to sensitive data (user input, passwords, certs)
leaking to the remote attacker.

Note that the same applies to new Buffer usage without zero-filling, depending on the Node.js
version (and lacking type checks also adds DoS to the list of potential problems).






FAQ




What is wrong with the Buffer constructor?

The Buffer constructor could be used to create a buffer in many different ways:


	new Buffer(42) creates a Buffer of 42 bytes. Before Node.js 8, this buffer contained
arbitrary memory for performance reasons, which could include anything ranging from
program source code to passwords and encryption keys.


	new Buffer('abc') creates a Buffer that contains the UTF-8-encoded version of
the string 'abc'. A second argument could specify another encoding: For example,
new Buffer(string, 'base64') could be used to convert a Base64 string into the original
sequence of bytes that it represents.


	There are several other combinations of arguments.




This meant that, in code like var buffer = new Buffer(foo);, it is not possible to tell
what exactly the contents of the generated buffer are without knowing the type of foo.

Sometimes, the value of foo comes from an external source. For example, this function
could be exposed as a service on a web server, converting a UTF-8 string into its Base64 form:

function stringToBase64(req, res) {
  // The request body should have the format of `{ string: 'foobar' }`
  const rawBytes = new Buffer(req.body.string)
  const encoded = rawBytes.toString('base64')
  res.end({ encoded: encoded })
}





Note that this code does not validate the type of req.body.string:


	req.body.string is expected to be a string. If this is the case, all goes well.


	req.body.string is controlled by the client that sends the request.


	If req.body.string is the number 50, the rawBytes would be 50 bytes:


	Before Node.js 8, the content would be uninitialized


	After Node.js 8, the content would be 50 bytes with the value 0








Because of the missing type check, an attacker could intentionally send a number
as part of the request. Using this, they can either:


	Read uninitialized memory. This will leak passwords, encryption keys and other
kinds of sensitive information. (Information leak)


	Force the program to allocate a large amount of memory. For example, when specifying
500000000 as the input value, each request will allocate 500MB of memory.
This can be used to either exhaust the memory available of a program completely
and make it crash, or slow it down significantly. (Denial of Service)




Both of these scenarios are considered serious security issues in a real-world
web server context.

when using Buffer.from(req.body.string) instead, passing a number will always
throw an exception instead, giving a controlled behaviour that can always be
handled by the program.






The Buffer() constructor has been deprecated for a while. Is this really an issue?

Surveys of code in the npm ecosystem have shown that the Buffer() constructor is still
widely used. This includes new code, and overall usage of such code has actually been
increasing.









          

      

      

    

  

  
    
    safer-buffer
    

    
 
  

    
      
          
            
  
safer-buffer [image: ../../../_images/safer-buffer.svg]travis [https://travis-ci.org/ChALkeR/safer-buffer] [image: ../../../_images/safer-buffer1.svg]npm [https://npmjs.org/package/safer-buffer] [image: ../../../_images/f1896fcbdac8c2253770dcedb81221d2f5d37cea.svg]javascript style guide [https://standardjs.com] [image: ../../../_images/bdbaec04ce318d2b573aa339c1662662b85405b0.svg]Security Responsible Disclosure [https://github.com/nodejs/security-wg/blob/master/processes/responsible_disclosure_template]

Modern Buffer API polyfill without footguns, working on Node.js from 0.8 to current.


How to use?

First, port all Buffer() and new Buffer() calls to Buffer.alloc() and Buffer.from() API.

Then, to achieve compatibility with outdated Node.js versions (<4.5.0 and 5.x <5.9.0), use
const Buffer = require('safer-buffer').Buffer in all files where you make calls to the new
Buffer API. Use var instead of const if you need that for your Node.js version range support.

Also, see the
porting Buffer [https://github.com/ChALkeR/safer-buffer/blob/master/Porting-Buffer] guide.




Do I need it?

Hopefully, not — dropping support for outdated Node.js versions should be fine nowdays, and that
is the recommended path forward. You do need to port to the Buffer.alloc() and Buffer.from()
though.

See the porting guide [https://github.com/ChALkeR/safer-buffer/blob/master/Porting-Buffer]
for a better description.




Why not safe-buffer [https://npmjs.com/safe-buffer]?

In short: while safe-buffer serves as a polyfill for the new API, it allows old API usage and
itself contains footguns.

safe-buffer could be used safely to get the new API while still keeping support for older
Node.js versions (like this module), but while analyzing ecosystem usage of the old Buffer API
I found out that safe-buffer is itself causing problems in some cases.

For example, consider the following snippet:

$ cat example.unsafe.js
console.log(Buffer(20))
$ ./node-v6.13.0-linux-x64/bin/node example.unsafe.js
<Buffer 0a 00 00 00 00 00 00 00 28 13 de 02 00 00 00 00 05 00 00 00>
$ standard example.unsafe.js
standard: Use JavaScript Standard Style (https://standardjs.com)
  /home/chalker/repo/safer-buffer/example.unsafe.js:2:13: 'Buffer()' was deprecated since v6. Use 'Buffer.alloc()' or 'Buffer.from()' (use 'https://www.npmjs.com/package/safe-buffer' for '<4.5.0') instead.





This is allocates and writes to console an uninitialized chunk of memory.
standard [https://www.npmjs.com/package/standard] linter (among others) catch that and warn people
to avoid using unsafe API.

Let’s now throw in safe-buffer!

$ cat example.safe-buffer.js
const Buffer = require('safe-buffer').Buffer
console.log(Buffer(20))
$ standard example.safe-buffer.js
$ ./node-v6.13.0-linux-x64/bin/node example.safe-buffer.js
<Buffer 08 00 00 00 00 00 00 00 28 58 01 82 fe 7f 00 00 00 00 00 00>





See the problem? Adding in safe-buffer magically removes the lint warning, but the behavior
remains identiсal to what we had before, and when launched on Node.js 6.x LTS — this dumps out
chunks of uninitialized memory.
And this code will still emit runtime warnings on Node.js 10.x and above.

That was done by design. I first considered changing safe-buffer, prohibiting old API usage or
emitting warnings on it, but that significantly diverges from safe-buffer design. After some
discussion, it was decided to move my approach into a separate package, and this is that separate
package.

This footgun is not imaginary — I observed top-downloaded packages doing that kind of thing,
«fixing» the lint warning by blindly including safe-buffer without any actual changes.

Also in some cases, even if the API was migrated to use of safe Buffer API — a random pull request
can bring unsafe Buffer API usage back to the codebase by adding new calls — and that could go
unnoticed even if you have a linter prohibiting that (becase of the reason stated above), and even
pass CI. I also observed that being done in popular packages.

Some examples:


	webdriverio [https://github.com/webdriverio/webdriverio/commit/05cbd3167c12e4930f09ef7cf93b127ba4effae4#diff-124380949022817b90b622871837d56cR31]
(a module with 548 759 downloads/month),


	websocket-stream [https://github.com/maxogden/websocket-stream/commit/c9312bd24d08271687d76da0fe3c83493871cf61]
(218 288 d/m, fix in maxogden/websocket-stream#142 [https://github.com/maxogden/websocket-stream/pull/142]),


	node-serialport [https://github.com/node-serialport/node-serialport/commit/e8d9d2b16c664224920ce1c895199b1ce2def48c]
(113 138 d/m, fix in node-serialport/node-serialport#1510 [https://github.com/node-serialport/node-serialport/pull/1510]),


	karma [https://github.com/karma-runner/karma/commit/3d94b8cf18c695104ca195334dc75ff054c74eec]
(3 973 193 d/m, fix in karma-runner/karma#2947 [https://github.com/karma-runner/karma/pull/2947]),


	spdy-transport [https://github.com/spdy-http2/spdy-transport/commit/5375ac33f4a62a4f65bcfc2827447d42a5dbe8b1]
(5 970 727 d/m, fix in spdy-http2/spdy-transport#53 [https://github.com/spdy-http2/spdy-transport/pull/53]).


	And there are a lot more over the ecosystem.




I filed a PR at
mysticatea/eslint-plugin-node#110 [https://github.com/mysticatea/eslint-plugin-node/pull/110] to
partially fix that (for cases when that lint rule is used), but it is a semver-major change for
linter rules and presets, so it would take significant time for that to reach actual setups.
It also hasn’t been released yet (2018-03-20).

Also, safer-buffer discourages the usage of .allocUnsafe(), which is often done by a mistake.
It still supports it with an explicit concern barier, by placing it under
require('safer-buffer/dangereous').




But isn’t throwing bad?

Not really. It’s an error that could be noticed and fixed early, instead of causing havoc later like
unguarded new Buffer() calls that end up receiving user input can do.

This package affects only the files where var Buffer = require('safer-buffer').Buffer was done, so
it is really simple to keep track of things and make sure that you don’t mix old API usage with that.
Also, CI should hint anything that you might have missed.

New commits, if tested, won’t land new usage of unsafe Buffer API this way.
Node.js 10.x also deals with that by printing a runtime depecation warning.


Would it affect third-party modules?

No, unless you explicitly do an awful thing like monkey-patching or overriding the built-in Buffer.
Don’t do that.




But I don’t want throwing…

That is also fine!

Also, it could be better in some cases when you don’t comprehensive enough test coverage.

In that case — just don’t override Buffer and use
var SaferBuffer = require('safer-buffer').Buffer instead.

That way, everything using Buffer natively would still work, but there would be two drawbacks:


	Buffer.from/Buffer.alloc won’t be polyfilled — use SaferBuffer.from and
SaferBuffer.alloc instead.


	You are still open to accidentally using the insecure deprecated API — use a linter to catch that.




Note that using a linter to catch accidential Buffer constructor usage in this case is strongly
recommended. Buffer is not overriden in this usecase, so linters won’t get confused.






«Without footguns»?

Well, it is still possible to do some things with Buffer API, e.g. accessing .buffer property
on older versions and duping things from there. You shouldn’t do that in your code, probabably.

The intention is to remove the most significant footguns that affect lots of packages in the
ecosystem, and to do it in the proper way.

Also, this package doesn’t protect against security issues affecting some Node.js versions, so for
usage in your own production code, it is still recommended to update to a Node.js version
supported by upstream [https://github.com/nodejs/release#release-schedule].







          

      

      

    

  

  
    
    The MIT License
    

    
 
  

    
      
          
            
  
The MIT License

Copyright (c) 2011-2018 Felix Gnass [fgnass at gmail dot com]

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.





          

      

      

    

  

  
    
    spin.js
    

    
 
  

    
      
          
            
  
spin.js [image: ../../../_images/js.org-spin-ffb400.svg]JS.ORG [http://js.org]

An animated loading spinner


	No images


	No dependencies


	Highly configurable


	Resolution independent


	Uses CSS keyframe animations


	Works in all major browsers


	Includes TypeScript definitions


	Distributed as a native ES6 module


	MIT License





Usage

import {Spinner} from 'spin.js';

var target = document.getElementById('foo');
new Spinner({color:'#fff', lines: 12}).spin(target);





For an interactive demo and a list of all supported options please refer to the project’s homepage [https://spin.js.org].







          

      

      

    

  

  
    
    sshpk
    

    
 
  

    
      
          
            
  
sshpk

Parse, convert, fingerprint and use SSH keys (both public and private) in pure
node – no ssh-keygen or other external dependencies.

Supports RSA, DSA, ECDSA (nistp-*) and ED25519 key types, in PEM (PKCS#1,
PKCS#8) and OpenSSH formats.

This library has been extracted from
node-http-signature [https://github.com/joyent/node-http-signature]
(work by Mark Cavage [https://github.com/mcavage] and
Dave Eddy [https://github.com/bahamas10]) and
node-ssh-fingerprint [https://github.com/bahamas10/node-ssh-fingerprint]
(work by Dave Eddy), with additions (including ECDSA support) by
Alex Wilson [https://github.com/arekinath].


Install

npm install sshpk








Examples

var sshpk = require('sshpk');

var fs = require('fs');

/* Read in an OpenSSH-format public key */
var keyPub = fs.readFileSync('id_rsa.pub');
var key = sshpk.parseKey(keyPub, 'ssh');

/* Get metadata about the key */
console.log('type => %s', key.type);
console.log('size => %d bits', key.size);
console.log('comment => %s', key.comment);

/* Compute key fingerprints, in new OpenSSH (>6.7) format, and old MD5 */
console.log('fingerprint => %s', key.fingerprint().toString());
console.log('old-style fingerprint => %s', key.fingerprint('md5').toString());





Example output:

type => rsa
size => 2048 bits
comment => foo@foo.com
fingerprint => SHA256:PYC9kPVC6J873CSIbfp0LwYeczP/W4ffObNCuDJ1u5w
old-style fingerprint => a0:c8:ad:6c:32:9a:32:fa:59:cc:a9:8c:0a:0d:6e:bd





More examples: converting between formats:

/* Read in a PEM public key */
var keyPem = fs.readFileSync('id_rsa.pem');
var key = sshpk.parseKey(keyPem, 'pem');

/* Convert to PEM PKCS#8 public key format */
var pemBuf = key.toBuffer('pkcs8');

/* Convert to SSH public key format (and return as a string) */
var sshKey = key.toString('ssh');





Signing and verifying:

/* Read in an OpenSSH/PEM *private* key */
var keyPriv = fs.readFileSync('id_ecdsa');
var key = sshpk.parsePrivateKey(keyPriv, 'pem');

var data = 'some data';

/* Sign some data with the key */
var s = key.createSign('sha1');
s.update(data);
var signature = s.sign();

/* Now load the public key (could also use just key.toPublic()) */
var keyPub = fs.readFileSync('id_ecdsa.pub');
key = sshpk.parseKey(keyPub, 'ssh');

/* Make a crypto.Verifier with this key */
var v = key.createVerify('sha1');
v.update(data);
var valid = v.verify(signature);
/* => true! */





Matching fingerprints with keys:

var fp = sshpk.parseFingerprint('SHA256:PYC9kPVC6J873CSIbfp0LwYeczP/W4ffObNCuDJ1u5w');

var keys = [sshpk.parseKey(...), sshpk.parseKey(...), ...];

keys.forEach(function (key) {
	if (fp.matches(key))
		console.log('found it!');
});








Usage




Public keys


parseKey(data[, format = 'auto'[, options]])

Parses a key from a given data format and returns a new Key object.

Parameters


	data – Either a Buffer or String, containing the key


	format – String name of format to use, valid options are:


	auto: choose automatically from all below


	pem: supports both PKCS#1 and PKCS#8


	ssh: standard OpenSSH format,


	pkcs1, pkcs8: variants of pem


	rfc4253: raw OpenSSH wire format


	openssh: new post-OpenSSH 6.5 internal format, produced by
ssh-keygen -o


	dnssec: .key file format output by dnssec-keygen etc


	putty: the PuTTY .ppk file format (supports truncated variant without
all the lines from Private-Lines: onwards)






	options – Optional Object, extra options, with keys:


	filename – Optional String, name for the key being parsed
(eg. the filename that was opened). Used to generate
Error messages


	passphrase – Optional String, encryption passphrase used to decrypt an
encrypted PEM file











Key.isKey(obj)

Returns true if the given object is a valid Key object created by a version
of sshpk compatible with this one.

Parameters


	obj – Object to identify







Key#type

String, the type of key. Valid options are rsa, dsa, ecdsa.




Key#size

Integer, “size” of the key in bits. For RSA/DSA this is the size of the modulus;
for ECDSA this is the bit size of the curve in use.




Key#comment

Optional string, a key comment used by some formats (eg the ssh format).




Key#curve

Only present if this.type === 'ecdsa', string containing the name of the
named curve used with this key. Possible values include nistp256, nistp384
and nistp521.




Key#toBuffer([format = 'ssh'])

Convert the key into a given data format and return the serialized key as
a Buffer.

Parameters


	format – String name of format to use, for valid options see parseKey()







Key#toString([format = 'ssh])

Same as this.toBuffer(format).toString().




Key#fingerprint([algorithm = 'sha256'[, hashType = 'ssh']])

Creates a new Fingerprint object representing this Key’s fingerprint.

Parameters


	algorithm – String name of hash algorithm to use, valid options are md5,
sha1, sha256, sha384, sha512


	hashType – String name of fingerprint hash type to use, valid options are
ssh (the type of fingerprint used by OpenSSH, e.g. in
ssh-keygen), spki (used by HPKP, some OpenSSL applications)







Key#createVerify([hashAlgorithm])

Creates a crypto.Verifier specialized to use this Key (and the correct public
key algorithm to match it). The returned Verifier has the same API as a regular
one, except that the verify() function takes only the target signature as an
argument.

Parameters


	hashAlgorithm – optional String name of hash algorithm to use, any
supported by OpenSSL are valid, usually including
sha1, sha256.




v.verify(signature[, format]) Parameters


	signature – either a Signature object, or a Buffer or String


	format – optional String, name of format to interpret given String with.
Not valid if signature is a Signature or Buffer.







Key#createDiffieHellman()




Key#createDH()

Creates a Diffie-Hellman key exchange object initialized with this key and all
necessary parameters. This has the same API as a crypto.DiffieHellman
instance, except that functions take Key and PrivateKey objects as
arguments, and return them where indicated for.

This is only valid for keys belonging to a cryptosystem that supports DHE
or a close analogue (i.e. dsa, ecdsa and curve25519 keys). An attempt
to call this function on other keys will yield an Error.






Private keys


parsePrivateKey(data[, format = 'auto'[, options]])

Parses a private key from a given data format and returns a new
PrivateKey object.

Parameters


	data – Either a Buffer or String, containing the key


	format – String name of format to use, valid options are:


	auto: choose automatically from all below


	pem: supports both PKCS#1 and PKCS#8


	ssh, openssh: new post-OpenSSH 6.5 internal format, produced by
ssh-keygen -o


	pkcs1, pkcs8: variants of pem


	rfc4253: raw OpenSSH wire format


	dnssec: .private format output by dnssec-keygen etc.






	options – Optional Object, extra options, with keys:


	filename – Optional String, name for the key being parsed
(eg. the filename that was opened). Used to generate
Error messages


	passphrase – Optional String, encryption passphrase used to decrypt an
encrypted PEM file











generatePrivateKey(type[, options])

Generates a new private key of a certain key type, from random data.

Parameters


	type – String, type of key to generate. Currently supported are 'ecdsa'
and 'ed25519'


	options – optional Object, with keys:


	curve – optional String, for 'ecdsa' keys, specifies the curve to use.
If ECDSA is specified and this option is not given, defaults to
using 'nistp256'.











PrivateKey.isPrivateKey(obj)

Returns true if the given object is a valid PrivateKey object created by a
version of sshpk compatible with this one.

Parameters


	obj – Object to identify







PrivateKey#type

String, the type of key. Valid options are rsa, dsa, ecdsa.




PrivateKey#size

Integer, “size” of the key in bits. For RSA/DSA this is the size of the modulus;
for ECDSA this is the bit size of the curve in use.




PrivateKey#curve

Only present if this.type === 'ecdsa', string containing the name of the
named curve used with this key. Possible values include nistp256, nistp384
and nistp521.




PrivateKey#toBuffer([format = 'pkcs1'])

Convert the key into a given data format and return the serialized key as
a Buffer.

Parameters


	format – String name of format to use, valid options are listed under
parsePrivateKey. Note that ED25519 keys default to openssh
format instead (as they have no pkcs1 representation).







PrivateKey#toString([format = 'pkcs1'])

Same as this.toBuffer(format).toString().




PrivateKey#toPublic()

Extract just the public part of this private key, and return it as a Key
object.




PrivateKey#fingerprint([algorithm = 'sha256'])

Same as this.toPublic().fingerprint().




PrivateKey#createVerify([hashAlgorithm])

Same as this.toPublic().createVerify().




PrivateKey#createSign([hashAlgorithm])

Creates a crypto.Sign specialized to use this PrivateKey (and the correct
key algorithm to match it). The returned Signer has the same API as a regular
one, except that the sign() function takes no arguments, and returns a
Signature object.

Parameters


	hashAlgorithm – optional String name of hash algorithm to use, any
supported by OpenSSL are valid, usually including
sha1, sha256.




v.sign() Parameters


	none







PrivateKey#derive(newType)

Derives a related key of type newType from this key. Currently this is
only supported to change between ed25519 and curve25519 keys which are
stored with the same private key (but usually distinct public keys in order
to avoid degenerate keys that lead to a weak Diffie-Hellman exchange).

Parameters


	newType – String, type of key to derive, either ed25519 or curve25519









Fingerprints


parseFingerprint(fingerprint[, options])

Pre-parses a fingerprint, creating a Fingerprint object that can be used to
quickly locate a key by using the Fingerprint#matches function.

Parameters


	fingerprint – String, the fingerprint value, in any supported format


	options – Optional Object, with properties:


	algorithms – Array of strings, names of hash algorithms to limit
support to. If fingerprint uses a hash algorithm not on
this list, throws InvalidAlgorithmError.


	hashType – String, the type of hash the fingerprint uses, either ssh
or spki (normally auto-detected based on the format, but
can be overridden)


	type – String, the entity this fingerprint identifies, either key or
certificate











Fingerprint.isFingerprint(obj)

Returns true if the given object is a valid Fingerprint object created by a
version of sshpk compatible with this one.

Parameters


	obj – Object to identify







Fingerprint#toString([format])

Returns a fingerprint as a string, in the given format.

Parameters


	format – Optional String, format to use, valid options are hex and
base64. If this Fingerprint uses the md5 algorithm, the
default format is hex. Otherwise, the default is base64.







Fingerprint#matches(keyOrCertificate)

Verifies whether or not this Fingerprint matches a given Key or
Certificate. This function uses double-hashing to avoid leaking timing
information. Returns a boolean.

Note that a Key-type Fingerprint will always return false if asked to match
a Certificate and vice versa.

Parameters


	keyOrCertificate – a Key object or Certificate object, the entity to
match this fingerprint against









Signatures


parseSignature(signature, algorithm, format)

Parses a signature in a given format, creating a Signature object. Useful
for converting between the SSH and ASN.1 (PKCS/OpenSSL) signature formats, and
also returned as output from PrivateKey#createSign().sign().

A Signature object can also be passed to a verifier produced by
Key#createVerify() and it will automatically be converted internally into the
correct format for verification.

Parameters


	signature – a Buffer (binary) or String (base64), data of the actual
signature in the given format


	algorithm – a String, name of the algorithm to be used, possible values
are rsa, dsa, ecdsa


	format – a String, either asn1 or ssh







Signature.isSignature(obj)

Returns true if the given object is a valid Signature object created by a
version of sshpk compatible with this one.

Parameters


	obj – Object to identify







Signature#toBuffer([format = 'asn1'])

Converts a Signature to the given format and returns it as a Buffer.

Parameters


	format – a String, either asn1 or ssh







Signature#toString([format = 'asn1'])

Same as this.toBuffer(format).toString('base64').






Certificates

sshpk includes basic support for parsing certificates in X.509 (PEM) format
and the OpenSSH certificate format. This feature is intended to be used mainly
to access basic metadata about certificates, extract public keys from them, and
also to generate simple self-signed certificates from an existing key.

Notably, there is no implementation of CA chain-of-trust verification, and only
very minimal support for key usage restrictions. Please do the security world
a favour, and DO NOT use this code for certificate verification in the
traditional X.509 CA chain style.


parseCertificate(data, format)

Parameters


	data – a Buffer or String


	format – a String, format to use, one of 'openssh', 'pem' (X.509 in a
PEM wrapper), or 'x509' (raw DER encoded)







createSelfSignedCertificate(subject, privateKey[, options])

Parameters


	subject – an Identity, the subject of the certificate


	privateKey – a PrivateKey, the key of the subject: will be used both to be
placed in the certificate and also to sign it (since this is
a self-signed certificate)


	options – optional Object, with keys:


	lifetime – optional Number, lifetime of the certificate from now in
seconds


	validFrom, validUntil – optional Dates, beginning and end of
certificate validity period. If given
lifetime will be ignored


	serial – optional Buffer, the serial number of the certificate


	purposes – optional Array of String, X.509 key usage restrictions











createCertificate(subject, key, issuer, issuerKey[, options])

Parameters


	subject – an Identity, the subject of the certificate


	key – a Key, the public key of the subject


	issuer – an Identity, the issuer of the certificate who will sign it


	issuerKey – a PrivateKey, the issuer’s private key for signing


	options – optional Object, with keys:


	lifetime – optional Number, lifetime of the certificate from now in
seconds


	validFrom, validUntil – optional Dates, beginning and end of
certificate validity period. If given
lifetime will be ignored


	serial – optional Buffer, the serial number of the certificate


	purposes – optional Array of String, X.509 key usage restrictions











Certificate#subjects

Array of Identity instances describing the subject of this certificate.




Certificate#issuer

The Identity of the Certificate’s issuer (signer).




Certificate#subjectKey

The public key of the subject of the certificate, as a Key instance.




Certificate#issuerKey

The public key of the signing issuer of this certificate, as a Key instance.
May be undefined if the issuer’s key is unknown (e.g. on an X509 certificate).




Certificate#serial

The serial number of the certificate. As this is normally a 64-bit or wider
integer, it is returned as a Buffer.




Certificate#purposes

Array of Strings indicating the X.509 key usage purposes that this certificate
is valid for. The possible strings at the moment are:


	'signature' – key can be used for digital signatures


	'identity' – key can be used to attest about the identity of the signer
(X.509 calls this nonRepudiation)


	'codeSigning' – key can be used to sign executable code


	'keyEncryption' – key can be used to encrypt other keys


	'encryption' – key can be used to encrypt data (only applies for RSA)


	'keyAgreement' – key can be used for key exchange protocols such as
Diffie-Hellman


	'ca' – key can be used to sign other certificates (is a Certificate
Authority)


	'crl' – key can be used to sign Certificate Revocation Lists (CRLs)







Certificate#getExtension(nameOrOid)

Retrieves information about a certificate extension, if present, or returns
undefined if not. The string argument nameOrOid should be either the OID
(for X509 extensions) or the name (for OpenSSH extensions) of the extension
to retrieve.

The object returned will have the following properties:


	format – String, set to either 'x509' or 'openssh'


	name or oid – String, only one set based on value of format


	data – Buffer, the raw data inside the extension







Certificate#getExtensions()

Returns an Array of all present certificate extensions, in the same manner and
format as getExtension().




Certificate#isExpired([when])

Tests whether the Certificate is currently expired (i.e. the validFrom and
validUntil dates specify a range of time that does not include the current
time).

Parameters


	when – optional Date, if specified, tests whether the Certificate was or
will be expired at the specified time instead of now




Returns a Boolean.




Certificate#isSignedByKey(key)

Tests whether the Certificate was validly signed by the given (public) Key.

Parameters


	key – a Key instance




Returns a Boolean.




Certificate#isSignedBy(certificate)

Tests whether this Certificate was validly signed by the subject of the given
certificate. Also tests that the issuer Identity of this Certificate and the
subject Identity of the other Certificate are equivalent.

Parameters


	certificate – another Certificate instance




Returns a Boolean.




Certificate#fingerprint([hashAlgo])

Returns the X509-style fingerprint of the entire certificate (as a Fingerprint
instance). This matches what a web-browser or similar would display as the
certificate fingerprint and should not be confused with the fingerprint of the
subject’s public key.

Parameters


	hashAlgo – an optional String, any hash function name







Certificate#toBuffer([format])

Serializes the Certificate to a Buffer and returns it.

Parameters


	format – an optional String, output format, one of 'openssh', 'pem' or
'x509'. Defaults to 'x509'.




Returns a Buffer.




Certificate#toString([format])


	format – an optional String, output format, one of 'openssh', 'pem' or
'x509'. Defaults to 'pem'.




Returns a String.






Certificate identities


identityForHost(hostname)

Constructs a host-type Identity for a given hostname.

Parameters


	hostname – the fully qualified DNS name of the host




Returns an Identity instance.




identityForUser(uid)

Constructs a user-type Identity for a given UID.

Parameters


	uid – a String, user identifier (login name)




Returns an Identity instance.




identityForEmail(email)

Constructs an email-type Identity for a given email address.

Parameters


	email – a String, email address




Returns an Identity instance.




identityFromDN(dn)

Parses an LDAP-style DN string (e.g. 'CN=foo, C=US') and turns it into an
Identity instance.

Parameters


	dn – a String




Returns an Identity instance.




identityFromArray(arr)

Constructs an Identity from an array of DN components (see Identity#toArray()
for the format).

Parameters


	arr – an Array of Objects, DN components with name and value




Returns an Identity instance.

Supported attributes in DNs:

Attribute name	OID
————–	—
cn	2.5.4.3
o	2.5.4.10
ou	2.5.4.11
l	2.5.4.7
s	2.5.4.8
c	2.5.4.6
sn	2.5.4.4
postalCode	2.5.4.17
serialNumber	2.5.4.5
street	2.5.4.9
x500UniqueIdentifier	2.5.4.45
role	2.5.4.72
telephoneNumber	2.5.4.20
description	2.5.4.13
dc	0.9.2342.19200300.100.1.25
uid	0.9.2342.19200300.100.1.1
mail	0.9.2342.19200300.100.1.3
title	2.5.4.12
gn	2.5.4.42
initials	2.5.4.43
pseudonym	2.5.4.65




Identity#toString()

Returns the identity as an LDAP-style DN string.
e.g. 'CN=foo, O=bar corp, C=us'




Identity#type

The type of identity. One of 'host', 'user', 'email' or 'unknown'




Identity#hostname




Identity#uid




Identity#email

Set when type is 'host', 'user', or 'email', respectively. Strings.




Identity#cn

The value of the first CN= in the DN, if any. It’s probably better to use
the #get() method instead of this property.




Identity#get(name[, asArray])

Returns the value of a named attribute in the Identity DN. If there is no
attribute of the given name, returns undefined. If multiple components
of the DN contain an attribute of this name, an exception is thrown unless
the asArray argument is given as true – then they will be returned as
an Array in the same order they appear in the DN.

Parameters


	name – a String


	asArray – an optional Boolean







Identity#toArray()

Returns the Identity as an Array of DN component objects. This looks like:

[ {
  "name": "cn",
  "value": "Joe Bloggs"
},
{
  "name": "o",
  "value": "Organisation Ltd"
} ]





Each object has a name and a value property. The returned objects may be
safely modified.






Errors


InvalidAlgorithmError

The specified algorithm is not valid, either because it is not supported, or
because it was not included on a list of allowed algorithms.

Thrown by Fingerprint.parse, Key#fingerprint.

Properties


	algorithm – the algorithm that could not be validated







FingerprintFormatError

The fingerprint string given could not be parsed as a supported fingerprint
format, or the specified fingerprint format is invalid.

Thrown by Fingerprint.parse, Fingerprint#toString.

Properties


	fingerprint – if caused by a fingerprint, the string value given


	format – if caused by an invalid format specification, the string value given







KeyParseError

The key data given could not be parsed as a valid key.

Properties


	keyName – filename that was given to parseKey


	format – the format that was trying to parse the key (see parseKey)


	innerErr – the inner Error thrown by the format parser







KeyEncryptedError

The key is encrypted with a symmetric key (ie, it is password protected). The
parsing operation would succeed if it was given the passphrase option.

Properties


	keyName – filename that was given to parseKey


	format – the format that was trying to parse the key (currently can only
be "pem")







CertificateParseError

The certificate data given could not be parsed as a valid certificate.

Properties


	certName – filename that was given to parseCertificate


	format – the format that was trying to parse the key
(see parseCertificate)


	innerErr – the inner Error thrown by the format parser









Friends of sshpk


	sshpk-agent [https://github.com/arekinath/node-sshpk-agent] is a library
for speaking the ssh-agent protocol from node.js, which uses sshpk










          

      

      

    

  

  
    
    Synopsis
    

    
 
  

    
      
          
            
  RFC6265 [https://tools.ietf.org/html/rfc6265] Cookies and CookieJar for Node.js

[image: ../../../_images/tough-cookie.png]npm package [https://nodei.co/npm/tough-cookie/]

[image: ../../../_images/tough-cookie1.png]Build Status [https://travis-ci.org/salesforce/tough-cookie]


Synopsis

var tough = require('tough-cookie');
var Cookie = tough.Cookie;
var cookie = Cookie.parse(header);
cookie.value = 'somethingdifferent';
header = cookie.toString();

var cookiejar = new tough.CookieJar();
cookiejar.setCookie(cookie, 'http://currentdomain.example.com/path', cb);
// ...
cookiejar.getCookies('http://example.com/otherpath',function(err,cookies) {
  res.headers['cookie'] = cookies.join('; ');
});








Installation

It’s so easy!

npm install tough-cookie

Why the name?  NPM modules cookie, cookies and cookiejar were already taken.


Version Support

Support for versions of node.js will follow that of the request [https://www.npmjs.com/package/request] module.






API


tough

Functions on the module you get from require('tough-cookie').  All can be used as pure functions and don’t need to be “bound”.

Note: prior to 1.0.x, several of these functions took a strict parameter. This has since been removed from the API as it was no longer necessary.


parseDate(string)

Parse a cookie date string into a Date.  Parses according to RFC6265 Section 5.1.1, not Date.parse().




formatDate(date)

Format a Date into a RFC1123 string (the RFC6265-recommended format).




canonicalDomain(str)

Transforms a domain-name into a canonical domain-name.  The canonical domain-name is a trimmed, lowercased, stripped-of-leading-dot and optionally punycode-encoded domain-name (Section 5.1.2 of RFC6265).  For the most part, this function is idempotent (can be run again on its output without ill effects).




domainMatch(str,domStr[,canonicalize=true])

Answers “does this real domain match the domain in a cookie?”.  The str is the “current” domain-name and the domStr is the “cookie” domain-name.  Matches according to RFC6265 Section 5.1.3, but it helps to think of it as a “suffix match”.

The canonicalize parameter will run the other two parameters through canonicalDomain or not.




defaultPath(path)

Given a current request/response path, gives the Path apropriate for storing in a cookie.  This is basically the “directory” of a “file” in the path, but is specified by Section 5.1.4 of the RFC.

The path parameter MUST be only the pathname part of a URI (i.e. excludes the hostname, query, fragment, etc.).  This is the .pathname property of node’s uri.parse() output.




pathMatch(reqPath,cookiePath)

Answers “does the request-path path-match a given cookie-path?” as per RFC6265 Section 5.1.4.  Returns a boolean.

This is essentially a prefix-match where cookiePath is a prefix of reqPath.




parse(cookieString[, options])

alias for Cookie.parse(cookieString[, options])




fromJSON(string)

alias for Cookie.fromJSON(string)




getPublicSuffix(hostname)

Returns the public suffix of this hostname.  The public suffix is the shortest domain-name upon which a cookie can be set.  Returns null if the hostname cannot have cookies set for it.

For example: www.example.com and www.subdomain.example.com both have public suffix example.com.

For further information, see http://publicsuffix.org/.  This module derives its list from that site. This call is currently a wrapper around psl [https://www.npmjs.com/package/psl]’s get() method [https://www.npmjs.com/package/psl#pslgetdomain].




cookieCompare(a,b)

For use with .sort(), sorts a list of cookies into the recommended order given in the RFC (Section 5.4 step 2). The sort algorithm is, in order of precedence:


	Longest .path


	oldest .creation (which has a 1ms precision, same as Date)


	lowest .creationIndex (to get beyond the 1ms precision)




var cookies = [ /* unsorted array of Cookie objects */ ];
cookies = cookies.sort(cookieCompare);





Note: Since JavaScript’s Date is limited to a 1ms precision, cookies within the same milisecond are entirely possible. This is especially true when using the now option to .setCookie(). The .creationIndex property is a per-process global counter, assigned during construction with new Cookie(). This preserves the spirit of the RFC sorting: older cookies go first. This works great for MemoryCookieStore, since Set-Cookie headers are parsed in order, but may not be so great for distributed systems. Sophisticated Stores may wish to set this to some other logical clock such that if cookies A and B are created in the same millisecond, but cookie A is created before cookie B, then A.creationIndex < B.creationIndex. If you want to alter the global counter, which you probably shouldn’t do, it’s stored in Cookie.cookiesCreated.




permuteDomain(domain)

Generates a list of all possible domains that domainMatch() the parameter.  May be handy for implementing cookie stores.




permutePath(path)

Generates a list of all possible paths that pathMatch() the parameter.  May be handy for implementing cookie stores.






Cookie

Exported via tough.Cookie.


Cookie.parse(cookieString[, options])

Parses a single Cookie or Set-Cookie HTTP header into a Cookie object.  Returns undefined if the string can’t be parsed.

The options parameter is not required and currently has only one property:


	loose - boolean - if true enable parsing of key-less cookies like =abc and =, which are not RFC-compliant.




If options is not an object, it is ignored, which means you can use Array#map with it.

Here’s how to process the Set-Cookie header(s) on a node HTTP/HTTPS response:

if (res.headers['set-cookie'] instanceof Array)
  cookies = res.headers['set-cookie'].map(Cookie.parse);
else
  cookies = [Cookie.parse(res.headers['set-cookie'])];





Note: in version 2.3.3, tough-cookie limited the number of spaces before the = to 256 characters. This limitation has since been removed.
See Issue 92 [https://github.com/salesforce/tough-cookie/issues/92]




Properties

Cookie object properties:


	key - string - the name or key of the cookie (default “”)


	value - string - the value of the cookie (default “”)


	expires - Date - if set, the Expires= attribute of the cookie (defaults to the string "Infinity"). See setExpires()


	maxAge - seconds - if set, the Max-Age= attribute in seconds of the cookie.  May also be set to strings "Infinity" and "-Infinity" for non-expiry and immediate-expiry, respectively.  See setMaxAge()


	domain - string - the Domain= attribute of the cookie


	path - string - the Path= of the cookie


	secure - boolean - the Secure cookie flag


	httpOnly - boolean - the HttpOnly cookie flag


	extensions - Array - any unrecognized cookie attributes as strings (even if equal-signs inside)


	creation - Date - when this cookie was constructed


	creationIndex - number - set at construction, used to provide greater sort precision (please see cookieCompare(a,b) for a full explanation)




After a cookie has been passed through CookieJar.setCookie() it will have the following additional attributes:


	hostOnly - boolean - is this a host-only cookie (i.e. no Domain field was set, but was instead implied)


	pathIsDefault - boolean - if true, there was no Path field on the cookie and defaultPath() was used to derive one.


	creation - Date - modified from construction to when the cookie was added to the jar


	lastAccessed - Date - last time the cookie got accessed. Will affect cookie cleaning once implemented.  Using cookiejar.getCookies(...) will update this attribute.







Cookie([{properties}])

Receives an options object that can contain any of the above Cookie properties, uses the default for unspecified properties.




.toString()

encode to a Set-Cookie header value.  The Expires cookie field is set using formatDate(), but is omitted entirely if .expires is Infinity.




.cookieString()

encode to a Cookie header value (i.e. the .key and .value properties joined with ‘=’).




.setExpires(String)

sets the expiry based on a date-string passed through parseDate().  If parseDate returns null (i.e. can’t parse this date string), .expires is set to "Infinity" (a string) is set.




.setMaxAge(number)

sets the maxAge in seconds.  Coerces -Infinity to "-Infinity" and Infinity to "Infinity" so it JSON serializes correctly.




.expiryTime([now=Date.now()])




.expiryDate([now=Date.now()])

expiryTime() Computes the absolute unix-epoch milliseconds that this cookie expires. expiryDate() works similarly, except it returns a Date object.  Note that in both cases the now parameter should be milliseconds.

Max-Age takes precedence over Expires (as per the RFC). The .creation attribute – or, by default, the now parameter – is used to offset the .maxAge attribute.

If Expires (.expires) is set, that’s returned.

Otherwise, expiryTime() returns Infinity and expiryDate() returns a Date object for “Tue, 19 Jan 2038 03:14:07 GMT” (latest date that can be expressed by a 32-bit time_t; the common limit for most user-agents).




.TTL([now=Date.now()])

compute the TTL relative to now (milliseconds).  The same precedence rules as for expiryTime/expiryDate apply.

The “number” Infinity is returned for cookies without an explicit expiry and 0 is returned if the cookie is expired.  Otherwise a time-to-live in milliseconds is returned.




.canonicalizedDoman()




.cdomain()

return the canonicalized .domain field.  This is lower-cased and punycode (RFC3490) encoded if the domain has any non-ASCII characters.




.toJSON()

For convenience in using JSON.serialize(cookie). Returns a plain-old Object that can be JSON-serialized.

Any Date properties (i.e., .expires, .creation, and .lastAccessed) are exported in ISO format (.toISOString()).

NOTE: Custom Cookie properties will be discarded. In tough-cookie 1.x, since there was no .toJSON method explicitly defined, all enumerable properties were captured. If you want a property to be serialized, add the property name to the Cookie.serializableProperties Array.




Cookie.fromJSON(strOrObj)

Does the reverse of cookie.toJSON(). If passed a string, will JSON.parse() that first.

Any Date properties (i.e., .expires, .creation, and .lastAccessed) are parsed via Date.parse(), not the tough-cookie parseDate, since it’s JavaScript/JSON-y timestamps being handled at this layer.

Returns null upon JSON parsing error.




.clone()

Does a deep clone of this cookie, exactly implemented as Cookie.fromJSON(cookie.toJSON()).




.validate()

Status: IN PROGRESS. Works for a few things, but is by no means comprehensive.

validates cookie attributes for semantic correctness.  Useful for “lint” checking any Set-Cookie headers you generate.  For now, it returns a boolean, but eventually could return a reason string – you can future-proof with this construct:

if (cookie.validate() === true) {
  // it's tasty
} else {
  // yuck!
}










CookieJar

Exported via tough.CookieJar.


CookieJar([store],[options])

Simply use new CookieJar().  If you’d like to use a custom store, pass that to the constructor otherwise a MemoryCookieStore will be created and used.

The options object can be omitted and can have the following properties:


	rejectPublicSuffixes - boolean - default true - reject cookies with domains like “com” and “co.uk”


	looseMode - boolean - default false - accept malformed cookies like bar and =bar, which have an implied empty name.
This is not in the standard, but is used sometimes on the web and is accepted by (most) browsers.




Since eventually this module would like to support database/remote/etc. CookieJars, continuation passing style is used for CookieJar methods.




.setCookie(cookieOrString, currentUrl, [{options},] cb(err,cookie))

Attempt to set the cookie in the cookie jar.  If the operation fails, an error will be given to the callback cb, otherwise the cookie is passed through.  The cookie will have updated .creation, .lastAccessed and .hostOnly properties.

The options object can be omitted and can have the following properties:


	http - boolean - default true - indicates if this is an HTTP or non-HTTP API.  Affects HttpOnly cookies.


	secure - boolean - autodetect from url - indicates if this is a “Secure” API.  If the currentUrl starts with https: or wss: then this is defaulted to true, otherwise false.


	now - Date - default new Date() - what to use for the creation/access time of cookies


	ignoreError - boolean - default false - silently ignore things like parse errors and invalid domains.  Store errors aren’t ignored by this option.




As per the RFC, the .hostOnly property is set if there was no “Domain=” parameter in the cookie string (or .domain was null on the Cookie object).  The .domain property is set to the fully-qualified hostname of currentUrl in this case.  Matching this cookie requires an exact hostname match (not a domainMatch as per usual).




.setCookieSync(cookieOrString, currentUrl, [{options}])

Synchronous version of setCookie; only works with synchronous stores (e.g. the default MemoryCookieStore).




.getCookies(currentUrl, [{options},] cb(err,cookies))

Retrieve the list of cookies that can be sent in a Cookie header for the current url.

If an error is encountered, that’s passed as err to the callback, otherwise an Array of Cookie objects is passed.  The array is sorted with cookieCompare() unless the {sort:false} option is given.

The options object can be omitted and can have the following properties:


	http - boolean - default true - indicates if this is an HTTP or non-HTTP API.  Affects HttpOnly cookies.


	secure - boolean - autodetect from url - indicates if this is a “Secure” API.  If the currentUrl starts with https: or wss: then this is defaulted to true, otherwise false.


	now - Date - default new Date() - what to use for the creation/access time of cookies


	expire - boolean - default true - perform expiry-time checking of cookies and asynchronously remove expired cookies from the store.  Using false will return expired cookies and not remove them from the store (which is useful for replaying Set-Cookie headers, potentially).


	allPaths - boolean - default false - if true, do not scope cookies by path. The default uses RFC-compliant path scoping. Note: may not be supported by the underlying store (the default MemoryCookieStore supports it).




The .lastAccessed property of the returned cookies will have been updated.




.getCookiesSync(currentUrl, [{options}])

Synchronous version of getCookies; only works with synchronous stores (e.g. the default MemoryCookieStore).




.getCookieString(...)

Accepts the same options as .getCookies() but passes a string suitable for a Cookie header rather than an array to the callback.  Simply maps the Cookie array via .cookieString().




.getCookieStringSync(...)

Synchronous version of getCookieString; only works with synchronous stores (e.g. the default MemoryCookieStore).




.getSetCookieStrings(...)

Returns an array of strings suitable for Set-Cookie headers. Accepts the same options as .getCookies().  Simply maps the cookie array via .toString().




.getSetCookieStringsSync(...)

Synchronous version of getSetCookieStrings; only works with synchronous stores (e.g. the default MemoryCookieStore).




.serialize(cb(err,serializedObject))

Serialize the Jar if the underlying store supports .getAllCookies.

NOTE: Custom Cookie properties will be discarded. If you want a property to be serialized, add the property name to the Cookie.serializableProperties Array.

See [Serialization Format].




.serializeSync()

Sync version of .serialize




.toJSON()

Alias of .serializeSync() for the convenience of JSON.stringify(cookiejar).




CookieJar.deserialize(serialized, [store], cb(err,object))

A new Jar is created and the serialized Cookies are added to the underlying store. Each Cookie is added via store.putCookie in the order in which they appear in the serialization.

The store argument is optional, but should be an instance of Store. By default, a new instance of MemoryCookieStore is created.

As a convenience, if serialized is a string, it is passed through JSON.parse first. If that throws an error, this is passed to the callback.




CookieJar.deserializeSync(serialized, [store])

Sync version of .deserialize.  Note that the store must be synchronous for this to work.




CookieJar.fromJSON(string)

Alias of .deserializeSync to provide consistency with Cookie.fromJSON().




.clone([store,]cb(err,newJar))

Produces a deep clone of this jar. Modifications to the original won’t affect the clone, and vice versa.

The store argument is optional, but should be an instance of Store. By default, a new instance of MemoryCookieStore is created. Transferring between store types is supported so long as the source implements .getAllCookies() and the destination implements .putCookie().




.cloneSync([store])

Synchronous version of .clone, returning a new CookieJar instance.

The store argument is optional, but must be a synchronous Store instance if specified. If not passed, a new instance of MemoryCookieStore is used.

The source and destination must both be synchronous Stores. If one or both stores are asynchronous, use .clone instead. Recall that MemoryCookieStore supports both synchronous and asynchronous API calls.






Store

Base class for CookieJar stores. Available as tough.Store.




Store API

The storage model for each CookieJar instance can be replaced with a custom implementation.  The default is MemoryCookieStore which can be found in the lib/memstore.js file.  The API uses continuation-passing-style to allow for asynchronous stores.

Stores should inherit from the base Store class, which is available as require('tough-cookie').Store.

Stores are asynchronous by default, but if store.synchronous is set to true, then the *Sync methods on the of the containing CookieJar can be used (however, the continuation-passing style

All domain parameters will have been normalized before calling.

The Cookie store must have all of the following methods.


store.findCookie(domain, path, key, cb(err,cookie))

Retrieve a cookie with the given domain, path and key (a.k.a. name).  The RFC maintains that exactly one of these cookies should exist in a store.  If the store is using versioning, this means that the latest/newest such cookie should be returned.

Callback takes an error and the resulting Cookie object.  If no cookie is found then null MUST be passed instead (i.e. not an error).




store.findCookies(domain, path, cb(err,cookies))

Locates cookies matching the given domain and path.  This is most often called in the context of cookiejar.getCookies() above.

If no cookies are found, the callback MUST be passed an empty array.

The resulting list will be checked for applicability to the current request according to the RFC (domain-match, path-match, http-only-flag, secure-flag, expiry, etc.), so it’s OK to use an optimistic search algorithm when implementing this method.  However, the search algorithm used SHOULD try to find cookies that domainMatch() the domain and pathMatch() the path in order to limit the amount of checking that needs to be done.

As of version 0.9.12, the allPaths option to cookiejar.getCookies() above will cause the path here to be null.  If the path is null, path-matching MUST NOT be performed (i.e. domain-matching only).




store.putCookie(cookie, cb(err))

Adds a new cookie to the store.  The implementation SHOULD replace any existing cookie with the same .domain, .path, and .key properties – depending on the nature of the implementation, it’s possible that between the call to fetchCookie and putCookie that a duplicate putCookie can occur.

The cookie object MUST NOT be modified; the caller will have already updated the .creation and .lastAccessed properties.

Pass an error if the cookie cannot be stored.




store.updateCookie(oldCookie, newCookie, cb(err))

Update an existing cookie.  The implementation MUST update the .value for a cookie with the same domain, .path and .key.  The implementation SHOULD check that the old value in the store is equivalent to oldCookie - how the conflict is resolved is up to the store.

The .lastAccessed property will always be different between the two objects (to the precision possible via JavaScript’s clock).  Both .creation and .creationIndex are guaranteed to be the same.  Stores MAY ignore or defer the .lastAccessed change at the cost of affecting how cookies are selected for automatic deletion (e.g., least-recently-used, which is up to the store to implement).

Stores may wish to optimize changing the .value of the cookie in the store versus storing a new cookie.  If the implementation doesn’t define this method a stub that calls putCookie(newCookie,cb) will be added to the store object.

The newCookie and oldCookie objects MUST NOT be modified.

Pass an error if the newCookie cannot be stored.




store.removeCookie(domain, path, key, cb(err))

Remove a cookie from the store (see notes on findCookie about the uniqueness constraint).

The implementation MUST NOT pass an error if the cookie doesn’t exist; only pass an error due to the failure to remove an existing cookie.




store.removeCookies(domain, path, cb(err))

Removes matching cookies from the store.  The path parameter is optional, and if missing means all paths in a domain should be removed.

Pass an error ONLY if removing any existing cookies failed.




store.getAllCookies(cb(err, cookies))

Produces an Array of all cookies during jar.serialize(). The items in the array can be true Cookie objects or generic Objects with the [Serialization Format] data structure.

Cookies SHOULD be returned in creation order to preserve sorting via compareCookies(). For reference, MemoryCookieStore will sort by .creationIndex since it uses true Cookie objects internally. If you don’t return the cookies in creation order, they’ll still be sorted by creation time, but this only has a precision of 1ms.  See compareCookies for more detail.

Pass an error if retrieval fails.






MemoryCookieStore

Inherits from Store.

A just-in-memory CookieJar synchronous store implementation, used by default. Despite being a synchronous implementation, it’s usable with both the synchronous and asynchronous forms of the CookieJar API.




Community Cookie Stores

These are some Store implementations authored and maintained by the community. They aren’t official and we don’t vouch for them but you may be interested to have a look:


	db-cookie-store [https://github.com/JSBizon/db-cookie-store]: SQL including SQLite-based databases


	file-cookie-store [https://github.com/JSBizon/file-cookie-store]: Netscape cookie file format on disk


	redis-cookie-store [https://github.com/benkroeger/redis-cookie-store]: Redis


	tough-cookie-filestore [https://github.com/mitsuru/tough-cookie-filestore]: JSON on disk


	tough-cookie-web-storage-store [https://github.com/exponentjs/tough-cookie-web-storage-store]: DOM localStorage and sessionStorage









Serialization Format

NOTE: if you want to have custom Cookie properties serialized, add the property name to Cookie.serializableProperties.

  {
    // The version of tough-cookie that serialized this jar.
    version: 'tough-cookie@1.x.y',

    // add the store type, to make humans happy:
    storeType: 'MemoryCookieStore',

    // CookieJar configuration:
    rejectPublicSuffixes: true,
    // ... future items go here

    // Gets filled from jar.store.getAllCookies():
    cookies: [
      {
        key: 'string',
        value: 'string',
        // ...
        /* other Cookie.serializableProperties go here */
      }
    ]
  }








Copyright and License

(tl;dr: BSD-3-Clause with some MPL/2.0)

 Copyright (c) 2015, Salesforce.com, Inc.
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

 3. Neither the name of Salesforce.com nor the names of its contributors may
 be used to endorse or promote products derived from this software without
 specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGE.









          

      

      

    

  

  
    
    Punycode.js
    

    
 
  

    
      
          
            
  
Punycode.js [image: ../../../../../_images/punycode.js.svg]Build status [https://travis-ci.org/bestiejs/punycode.js] [image: ../../../../../_images/master7.svg]Code coverage status [https://coveralls.io/r/bestiejs/punycode.js] [image: ../../../../../_images/punycode.js2.svg]Dependency status [https://gemnasium.com/bestiejs/punycode.js]

A robust Punycode converter that fully complies to RFC 3492 [https://tools.ietf.org/html/rfc3492] and RFC 5891 [https://tools.ietf.org/html/rfc5891], and works on nearly all JavaScript platforms.

This JavaScript library is the result of comparing, optimizing and documenting different open-source implementations of the Punycode algorithm:


	The C example code from RFC 3492 [https://tools.ietf.org/html/rfc3492#appendix-C]


	punycode.c by Markus W. Scherer (IBM) [http://opensource.apple.com/source/ICU/ICU-400.42/icuSources/common/punycode.c]


	punycode.c by Ben Noordhuis [https://github.com/bnoordhuis/punycode/blob/master/punycode.c]


	JavaScript implementation by some [http://stackoverflow.com/questions/183485/can-anyone-recommend-a-good-free-javascript-for-punycode-to-unicode-conversion/301287#301287]


	punycode.js by Ben Noordhuis [https://github.com/joyent/node/blob/426298c8c1c0d5b5224ac3658c41e7c2a3fe9377/lib/punycode.js] (note: not fully compliant [https://github.com/joyent/node/issues/2072])




This project is bundled [https://github.com/joyent/node/blob/master/lib/punycode.js] with Node.js v0.6.2+ [https://github.com/joyent/node/compare/975f1930b1...61e796decc] and io.js v1.0.0+ [https://github.com/iojs/io.js/blob/v1.x/lib/punycode.js].


Installation

Via npm [https://www.npmjs.com/] (only required for Node.js releases older than v0.6.2):

npm install punycode





Via Bower [http://bower.io/]:

bower install punycode





Via Component [https://github.com/component/component]:

component install bestiejs/punycode.js





In a browser:

<script src="punycode.js"></script>





In Node.js [https://nodejs.org/], io.js [https://iojs.org/], Narwhal [http://narwhaljs.org/], and RingoJS [http://ringojs.org/]:

var punycode = require('punycode');





In Rhino [http://www.mozilla.org/rhino/]:

load('punycode.js');





Using an AMD loader like RequireJS [http://requirejs.org/]:

require(
  {
    'paths': {
      'punycode': 'path/to/punycode'
    }
  },
  ['punycode'],
  function(punycode) {
    console.log(punycode);
  }
);








API


punycode.decode(string)

Converts a Punycode string of ASCII symbols to a string of Unicode symbols.

// decode domain name parts
punycode.decode('maana-pta'); // 'mañana'
punycode.decode('--dqo34k'); // '☃-⌘'








punycode.encode(string)

Converts a string of Unicode symbols to a Punycode string of ASCII symbols.

// encode domain name parts
punycode.encode('mañana'); // 'maana-pta'
punycode.encode('☃-⌘'); // '--dqo34k'








punycode.toUnicode(input)

Converts a Punycode string representing a domain name or an email address to Unicode. Only the Punycoded parts of the input will be converted, i.e. it doesn’t matter if you call it on a string that has already been converted to Unicode.

// decode domain names
punycode.toUnicode('xn--maana-pta.com');
// → 'mañana.com'
punycode.toUnicode('xn----dqo34k.com');
// → '☃-⌘.com'

// decode email addresses
punycode.toUnicode('джумла@xn--p-8sbkgc5ag7bhce.xn--ba-lmcq');
// → 'джумла@джpумлатест.bрфa'








punycode.toASCII(input)

Converts a lowercased Unicode string representing a domain name or an email address to Punycode. Only the non-ASCII parts of the input will be converted, i.e. it doesn’t matter if you call it with a domain that’s already in ASCII.

// encode domain names
punycode.toASCII('mañana.com');
// → 'xn--maana-pta.com'
punycode.toASCII('☃-⌘.com');
// → 'xn----dqo34k.com'

// encode email addresses
punycode.toASCII('джумла@джpумлатест.bрфa');
// → 'джумла@xn--p-8sbkgc5ag7bhce.xn--ba-lmcq'








punycode.ucs2


punycode.ucs2.decode(string)

Creates an array containing the numeric code point values of each Unicode symbol in the string. While JavaScript uses UCS-2 internally [https://mathiasbynens.be/notes/javascript-encoding], this function will convert a pair of surrogate halves (each of which UCS-2 exposes as separate characters) into a single code point, matching UTF-16.

punycode.ucs2.decode('abc');
// → [0x61, 0x62, 0x63]
// surrogate pair for U+1D306 TETRAGRAM FOR CENTRE:
punycode.ucs2.decode('\uD834\uDF06');
// → [0x1D306]








punycode.ucs2.encode(codePoints)

Creates a string based on an array of numeric code point values.

punycode.ucs2.encode([0x61, 0x62, 0x63]);
// → 'abc'
punycode.ucs2.encode([0x1D306]);
// → '\uD834\uDF06'










punycode.version

A string representing the current Punycode.js version number.






Unit tests & code coverage

After cloning this repository, run npm install --dev to install the dependencies needed for Punycode.js development and testing. You may want to install Istanbul globally using npm install istanbul -g.

Once that’s done, you can run the unit tests in Node using npm test or node tests/tests.js. To run the tests in Rhino, Ringo, Narwhal, PhantomJS, and web browsers as well, use grunt test.

To generate the code coverage report, use grunt cover.

Feel free to fork if you see possible improvements!




Author

| [image: ../../../../../_images/24e08a9ea84deb17ae121074d0f17125.jpg]twitter/mathias [https://twitter.com/mathias] |
|—|
| Mathias Bynens [https://mathiasbynens.be/] |




Contributors

| [image: ../../../../../_images/299a3d891ff1920b69c364d061007043.jpg]twitter/jdalton [https://twitter.com/jdalton] |
|—|
| John-David Dalton [http://allyoucanleet.com/] |




License

Punycode.js is available under the MIT [https://mths.be/mit] license.







          

      

      

    

  

  
    
    tunnel-agent
    

    
 
  

    
      
          
            
  
tunnel-agent

HTTP proxy tunneling agent. Formerly part of mikeal/request, now a standalone module.





          

      

      

    

  

  
    
    List of TweetNaCl.js authors
    

    
 
  

    
      
          
            
  
List of TweetNaCl.js authors

Alphabetical order by first name.
Format: Name (GitHub username or URL)






	AndSDev (@AndSDev)


	Devi Mandiri (@devi)


	Dmitry Chestnykh (@dchest)







List of authors of third-party public domain code from which TweetNaCl.js code was derived


TweetNaCl [http://tweetnacl.cr.yp.to/]


	Bernard van Gastel


	Daniel J. Bernstein http://cr.yp.to/djb.html


	Peter Schwabe http://www.cryptojedi.org/users/peter/


	Sjaak Smetsers http://www.cs.ru.nl/~sjakie/


	Tanja Lange http://hyperelliptic.org/tanja


	Wesley Janssen







Poly1305-donna [https://github.com/floodyberry/poly1305-donna]


	Andrew Moon (@floodyberry)










          

      

      

    

  

  
    
    TweetNaCl.js Changelog
    

    
 
  

    
      
          
            
  
TweetNaCl.js Changelog


v0.14.5


	Fixed incomplete return types in TypeScript typings.


	Replaced COPYING.txt with LICENSE file, which now has public domain dedication
text from The Unlicense. License fields in package.json and bower.json have
been set to “Unlicense”. The project was and will be in the public domain –
this change just makes it easier for automated tools to know about this fact by
using the widely recognized and SPDX-compatible template for public domain
dedication.







v0.14.4


	Added TypeScript type definitions (contributed by @AndSDev).


	Improved benchmarking code.







v0.14.3

Fixed a bug in the fast version of Poly1305 and brought it back.

Thanks to @floodyberry for promptly responding and fixing the original C code:


“The issue was not properly detecting if st->h was >= 2^130 - 5, coupled with
[testing mistake] not catching the failure. The chance of the bug affecting
anything in the real world is essentially zero luckily, but it’s good to have
it fixed.”




https://github.com/floodyberry/poly1305-donna/issues/2#issuecomment-202698577




v0.14.2

Switched Poly1305 fast version back to original (slow) version due to a bug.




v0.14.1

No code changes, just tweaked packaging and added COPYING.txt.




v0.14.0


	Breaking change! All functions from nacl.util have been removed. These
functions are no longer available:

nacl.util.decodeUTF8
nacl.util.encodeUTF8
nacl.util.decodeBase64
nacl.util.encodeBase64





If want to continue using them, you can include
https://github.com/dchest/tweetnacl-util-js package:

<script src="nacl.min.js"></script>
<script src="nacl-util.min.js"></script>





or

var nacl = require('tweetnacl');
nacl.util = require('tweetnacl-util');





However it is recommended to use better packages that have wider
compatibility and better performance. Functions from nacl.util were never
intended to be robust solution for string conversion and were included for
convenience: cryptography library is not the right place for them.

Currently calling these functions will throw error pointing to
tweetnacl-util-js (in the next version this error message will be removed).



	Improved detection of available random number generators, making it possible
to use nacl.randomBytes and related functions in Web Workers without
changes.


	Changes to testing (see README).







v0.13.3

No code changes.


	Reverted license field in package.json to “Public domain”.


	Fixed typo in README.







v0.13.2


	Fixed undefined variable bug in fast version of Poly1305. No worries, this
bug was never triggered.


	Specified CC0 public domain dedication.


	Updated development dependencies.







v0.13.1


	Exclude crypto and buffer modules from browserify builds.







v0.13.0


	Made nacl-fast the default version in NPM package. Now
require("tweetnacl") will use fast version; to get the original version,
use require("tweetnacl/nacl.js").


	Cleanup temporary array after generating random bytes.







v0.12.2


	Improved performance of curve operations, making nacl.scalarMult, nacl.box,
nacl.sign and related functions up to 3x faster in nacl-fast version.







v0.12.1


	Significantly improved performance of Salsa20 (~1.5x faster) and
Poly1305 (~3.5x faster) in nacl-fast version.







v0.12.0


	Instead of using the given secret key directly, TweetNaCl.js now copies it to
a new array in nacl.box.keyPair.fromSecretKey and
nacl.sign.keyPair.fromSecretKey.







v0.11.2


	Added new constant: nacl.sign.seedLength.







v0.11.1


	Even faster hash for both short and long inputs (in nacl-fast).







v0.11.0


	Implement nacl.sign.keyPair.fromSeed to enable creation of sign key pairs
deterministically from a 32-byte seed. (It behaves like
libsodium’s [http://doc.libsodium.org/public-key_cryptography/public-key_signatures.html]
crypto_sign_seed_keypair: the seed becomes a secret part of the secret key.)


	Fast version now has an improved hash implementation that is 2x-5x faster.


	Fixed benchmarks, which may have produced incorrect measurements.







v0.10.1


	Exported undocumented nacl.lowlevel.crypto_core_hsalsa20.







v0.10.0


	Signature API breaking change! nacl.sign and nacl.sign.open now deal
with signed messages, and new nacl.sign.detached and
nacl.sign.detached.verify are available.




Previously, nacl.sign returned a signature, and nacl.sign.open accepted a
message and “detached” signature. This was unlike NaCl’s API, which dealt with
signed messages (concatenation of signature and message).

The new API is:

  nacl.sign(message, secretKey) -> signedMessage
  nacl.sign.open(signedMessage, publicKey) -> message | null





Since detached signatures are common, two new API functions were introduced:

  nacl.sign.detached(message, secretKey) -> signature
  nacl.sign.detached.verify(message, signature, publicKey) -> true | false





(Note that it’s verify, not open, and it returns a boolean value, unlike
open, which returns an “unsigned” message.)


	NPM package now comes without test directory to keep it small.







v0.9.2


	Improved documentation.


	Fast version: increased theoretical message size limit from 2^32-1 to 2^52
bytes in Poly1305 (and thus, secretbox and box). However this has no impact
in practice since JavaScript arrays or ArrayBuffers are limited to 32-bit
indexes, and most implementations won’t allocate more than a gigabyte or so.
(Obviously, there are no tests for the correctness of implementation.) Also,
it’s not recommended to use messages that large without splitting them into
smaller packets anyway.







v0.9.1


	Initial release










          

      

      

    

  

  
    
    Important!
    

    
 
  

    
      
          
            
  
Important!

If your contribution is not trivial (not a typo fix, etc.), we can only accept
it if you dedicate your copyright for the contribution to the public domain.
Make sure you understand what it means (see http://unlicense.org/)! If you
agree, please add yourself to AUTHORS.md file, and include the following text
to your pull request description or a comment in it:



I dedicate any and all copyright interest in this software to the
public domain. I make this dedication for the benefit of the public at
large and to the detriment of my heirs and successors. I intend this
dedication to be an overt act of relinquishment in perpetuity of all
present and future rights to this software under copyright law.

Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.









          

      

      

    

  

  
    
    TweetNaCl.js
    

    
 
  

    
      
          
            
  
TweetNaCl.js

Port of TweetNaCl [http://tweetnacl.cr.yp.to] / NaCl [http://nacl.cr.yp.to/]
to JavaScript for modern browsers and Node.js. Public domain.

[image: ../../../_images/tweetnacl-js.svg]Build Status
 [https://travis-ci.org/dchest/tweetnacl-js]

Demo: https://tweetnacl.js.org

:warning: The library is stable and API is frozen, however it has not been
independently reviewed. If you can help reviewing it, please contact
me.




Documentation


	Overview


	Installation


	Usage


	Public-key authenticated encryption (box)


	Secret-key authenticated encryption (secretbox)


	Scalar multiplication


	Signatures


	Hashing


	Random bytes generation


	Constant-time comparison






	System requirements


	Development and testing


	Benchmarks


	Contributors


	Who uses it





Overview

The primary goal of this project is to produce a translation of TweetNaCl to
JavaScript which is as close as possible to the original C implementation, plus
a thin layer of idiomatic high-level API on top of it.

There are two versions, you can use either of them:


	nacl.js is the port of TweetNaCl with minimum differences from the
original + high-level API.


	nacl-fast.js is like nacl.js, but with some functions replaced with
faster versions.







Installation

You can install TweetNaCl.js via a package manager:

Bower [http://bower.io]:

$ bower install tweetnacl





NPM [https://www.npmjs.org/]:

$ npm install tweetnacl





or download source code [https://github.com/dchest/tweetnacl-js/releases].




Usage

All API functions accept and return bytes as Uint8Arrays.  If you need to
encode or decode strings, use functions from
https://github.com/dchest/tweetnacl-util-js or one of the more robust codec
packages.

In Node.js v4 and later Buffer objects are backed by Uint8Arrays, so you
can freely pass them to TweetNaCl.js functions as arguments. The returned
objects are still Uint8Arrays, so if you need Buffers, you’ll have to
convert them manually; make sure to convert using copying: new Buffer(array),
instead of sharing: new Buffer(array.buffer), because some functions return
subarrays of their buffers.


Public-key authenticated encryption (box)

Implements curve25519-xsalsa20-poly1305.


nacl.box.keyPair()

Generates a new random key pair for box and returns it as an object with
publicKey and secretKey members:

{
   publicKey: ...,  // Uint8Array with 32-byte public key
   secretKey: ...   // Uint8Array with 32-byte secret key
}








nacl.box.keyPair.fromSecretKey(secretKey)

Returns a key pair for box with public key corresponding to the given secret
key.




nacl.box(message, nonce, theirPublicKey, mySecretKey)

Encrypt and authenticates message using peer’s public key, our secret key, and
the given nonce, which must be unique for each distinct message for a key pair.

Returns an encrypted and authenticated message, which is
nacl.box.overheadLength longer than the original message.




nacl.box.open(box, nonce, theirPublicKey, mySecretKey)

Authenticates and decrypts the given box with peer’s public key, our secret
key, and the given nonce.

Returns the original message, or false if authentication fails.




nacl.box.before(theirPublicKey, mySecretKey)

Returns a precomputed shared key which can be used in nacl.box.after and
nacl.box.open.after.




nacl.box.after(message, nonce, sharedKey)

Same as nacl.box, but uses a shared key precomputed with nacl.box.before.




nacl.box.open.after(box, nonce, sharedKey)

Same as nacl.box.open, but uses a shared key precomputed with nacl.box.before.




nacl.box.publicKeyLength = 32

Length of public key in bytes.




nacl.box.secretKeyLength = 32

Length of secret key in bytes.




nacl.box.sharedKeyLength = 32

Length of precomputed shared key in bytes.




nacl.box.nonceLength = 24

Length of nonce in bytes.




nacl.box.overheadLength = 16

Length of overhead added to box compared to original message.






Secret-key authenticated encryption (secretbox)

Implements xsalsa20-poly1305.


nacl.secretbox(message, nonce, key)

Encrypt and authenticates message using the key and the nonce. The nonce must
be unique for each distinct message for this key.

Returns an encrypted and authenticated message, which is
nacl.secretbox.overheadLength longer than the original message.




nacl.secretbox.open(box, nonce, key)

Authenticates and decrypts the given secret box using the key and the nonce.

Returns the original message, or false if authentication fails.




nacl.secretbox.keyLength = 32

Length of key in bytes.




nacl.secretbox.nonceLength = 24

Length of nonce in bytes.




nacl.secretbox.overheadLength = 16

Length of overhead added to secret box compared to original message.






Scalar multiplication

Implements curve25519.


nacl.scalarMult(n, p)

Multiplies an integer n by a group element p and returns the resulting
group element.




nacl.scalarMult.base(n)

Multiplies an integer n by a standard group element and returns the resulting
group element.




nacl.scalarMult.scalarLength = 32

Length of scalar in bytes.




nacl.scalarMult.groupElementLength = 32

Length of group element in bytes.






Signatures

Implements ed25519 [http://ed25519.cr.yp.to].


nacl.sign.keyPair()

Generates new random key pair for signing and returns it as an object with
publicKey and secretKey members:

{
   publicKey: ...,  // Uint8Array with 32-byte public key
   secretKey: ...   // Uint8Array with 64-byte secret key
}








nacl.sign.keyPair.fromSecretKey(secretKey)

Returns a signing key pair with public key corresponding to the given
64-byte secret key. The secret key must have been generated by
nacl.sign.keyPair or nacl.sign.keyPair.fromSeed.




nacl.sign.keyPair.fromSeed(seed)

Returns a new signing key pair generated deterministically from a 32-byte seed.
The seed must contain enough entropy to be secure. This method is not
recommended for general use: instead, use nacl.sign.keyPair to generate a new
key pair from a random seed.




nacl.sign(message, secretKey)

Signs the message using the secret key and returns a signed message.




nacl.sign.open(signedMessage, publicKey)

Verifies the signed message and returns the message without signature.

Returns null if verification failed.




nacl.sign.detached(message, secretKey)

Signs the message using the secret key and returns a signature.




nacl.sign.detached.verify(message, signature, publicKey)

Verifies the signature for the message and returns true if verification
succeeded or false if it failed.




nacl.sign.publicKeyLength = 32

Length of signing public key in bytes.




nacl.sign.secretKeyLength = 64

Length of signing secret key in bytes.




nacl.sign.seedLength = 32

Length of seed for nacl.sign.keyPair.fromSeed in bytes.




nacl.sign.signatureLength = 64

Length of signature in bytes.






Hashing

Implements SHA-512.


nacl.hash(message)

Returns SHA-512 hash of the message.




nacl.hash.hashLength = 64

Length of hash in bytes.






Random bytes generation


nacl.randomBytes(length)

Returns a Uint8Array of the given length containing random bytes of
cryptographic quality.

Implementation note

TweetNaCl.js uses the following methods to generate random bytes,
depending on the platform it runs on:


	window.crypto.getRandomValues (WebCrypto standard)


	window.msCrypto.getRandomValues (Internet Explorer 11)


	crypto.randomBytes (Node.js)




If the platform doesn’t provide a suitable PRNG, the following functions,
which require random numbers, will throw exception:


	nacl.randomBytes


	nacl.box.keyPair


	nacl.sign.keyPair




Other functions are deterministic and will continue working.

If a platform you are targeting doesn’t implement secure random number
generator, but you somehow have a cryptographically-strong source of entropy
(not Math.random!), and you know what you are doing, you can plug it into
TweetNaCl.js like this:

nacl.setPRNG(function(x, n) {
  // ... copy n random bytes into x ...
});





Note that nacl.setPRNG completely replaces internal random byte generator
with the one provided.






Constant-time comparison


nacl.verify(x, y)

Compares x and y in constant time and returns true if their lengths are
non-zero and equal, and their contents are equal.

Returns false if either of the arguments has zero length, or arguments have
different lengths, or their contents differ.








System requirements

TweetNaCl.js supports modern browsers that have a cryptographically secure
pseudorandom number generator and typed arrays, including the latest versions
of:


	Chrome


	Firefox


	Safari (Mac, iOS)


	Internet Explorer 11




Other systems:


	Node.js







Development and testing

Install NPM modules needed for development:

$ npm install





To build minified versions:

$ npm run build





Tests use minified version, so make sure to rebuild it every time you change
nacl.js or nacl-fast.js.


Testing

To run tests in Node.js:

$ npm run test-node





By default all tests described here work on nacl.min.js. To test other
versions, set environment variable NACL_SRC to the file name you want to test.
For example, the following command will test fast minified version:

$ NACL_SRC=nacl-fast.min.js npm run test-node





To run full suite of tests in Node.js, including comparing outputs of
JavaScript port to outputs of the original C version:

$ npm run test-node-all





To prepare tests for browsers:

$ npm run build-test-browser





and then open test/browser/test.html (or test/browser/test-fast.html) to
run them.

To run headless browser tests with tape-run (powered by Electron):

$ npm run test-browser





(If you get Error: spawn ENOENT, install xvfb: sudo apt-get install xvfb.)

To run tests in both Node and Electron:

$ npm test








Benchmarking

To run benchmarks in Node.js:

$ npm run bench
$ NACL_SRC=nacl-fast.min.js npm run bench





To run benchmarks in a browser, open test/benchmark/bench.html (or
test/benchmark/bench-fast.html).






Benchmarks

For reference, here are benchmarks from MacBook Pro (Retina, 13-inch, Mid 2014)
laptop with 2.6 GHz Intel Core i5 CPU (Intel) in Chrome 53/OS X and Xiaomi Redmi
Note 3 smartphone with 1.8 GHz Qualcomm Snapdragon 650 64-bit CPU (ARM) in
Chrome 52/Android:

	nacl.js Intel	nacl-fast.js Intel	nacl.js ARM	nacl-fast.js ARM
————-	:————-:	:——————-:	:————-:	:—————–:
salsa20	1.3 MB/s	128 MB/s	0.4 MB/s	43 MB/s
poly1305	13 MB/s	171 MB/s	4 MB/s	52 MB/s
hash	4 MB/s	34 MB/s	0.9 MB/s	12 MB/s
secretbox 1K	1113 op/s	57583 op/s	334 op/s	14227 op/s
box 1K	145 op/s	718 op/s	37 op/s	368 op/s
scalarMult	171 op/s	733 op/s	56 op/s	380 op/s
sign	77  op/s	200 op/s	20 op/s	61 op/s
sign.open	39  op/s	102  op/s	11 op/s	31 op/s

(You can run benchmarks on your devices by clicking on the links at the bottom
of the home page [https://tweetnacl.js.org]).

In short, with nacl-fast.js and 1024-byte messages you can expect to encrypt and
authenticate more than 57000 messages per second on a typical laptop or more than
14000 messages per second on a $170 smartphone, sign about 200 and verify 100
messages per second on a laptop or 60 and 30 messages per second on a smartphone,
per CPU core (with Web Workers you can do these operations in parallel),
which is good enough for most applications.




Contributors

See AUTHORS.md file.




Third-party libraries based on TweetNaCl.js


	forward-secrecy [https://github.com/alax/forward-secrecy] — Axolotl ratchet implementation


	nacl-stream [https://github.com/dchest/nacl-stream-js] - streaming encryption


	tweetnacl-auth-js [https://github.com/dchest/tweetnacl-auth-js] — implementation of crypto_auth [http://nacl.cr.yp.to/auth.html]


	chloride [https://github.com/dominictarr/chloride] - unified API for various NaCl modules







Who uses it

Some notable users of TweetNaCl.js:


	miniLock [http://minilock.io/]


	Stellar [https://www.stellar.org/]










          

      

      

    

  

  
    
    URI.js
    

    
 
  

    
      
          
            
  
URI.js

URI.js is an RFC 3986 [http://www.ietf.org/rfc/rfc3986.txt] compliant, scheme extendable URI parsing/validating/resolving library for all JavaScript environments (browsers, Node.js, etc).
It is also compliant with the IRI (RFC 3987 [http://www.ietf.org/rfc/rfc3987.txt]), IDNA (RFC 5890 [http://www.ietf.org/rfc/rfc5890.txt]), IPv6 Address (RFC 5952 [http://www.ietf.org/rfc/rfc5952.txt]), IPv6 Zone Identifier (RFC 6874 [http://www.ietf.org/rfc/rfc6874.txt]) specifications.

URI.js has an extensive test suite, and works in all (Node.js, web) environments. It weighs in at 6.2kb (gzipped, 16kb deflated).


API


Parsing

URI.parse("uri://user:pass@example.com:123/one/two.three?q1=a1&q2=a2#body");
//returns:
//{
//  scheme : "uri",
//  userinfo : "user:pass",
//  host : "example.com",
//  port : 123,
//  path : "/one/two.three",
//  query : "q1=a1&q2=a2",
//  fragment : "body"
//}








Serializing

URI.serialize({scheme : "http", host : "example.com", fragment : "footer"}) === "http://example.com/#footer"








Resolving

URI.resolve("uri://a/b/c/d?q", "../../g") === "uri://a/g"








Normalizing

URI.normalize("HTTP://ABC.com:80/%7Esmith/home.html") === "http://abc.com/~smith/home.html"








Comparison

URI.equal("example://a/b/c/%7Bfoo%7D", "eXAMPLE://a/./b/../b/%63/%7bfoo%7d") === true








IP Support

//IPv4 normalization
URI.normalize("//192.068.001.000") === "//192.68.1.0"

//IPv6 normalization
URI.normalize("//[2001:0:0DB8::0:0001]") === "//[2001:0:db8::1]"

//IPv6 zone identifier support
URI.parse("//[2001:db8::7%25en1]");
//returns:
//{
//  host : "2001:db8::7%en1"
//}








IRI Support

//convert IRI to URI
URI.serialize(URI.parse("http://examplé.org/rosé")) === "http://xn--exampl-gva.org/ros%C3%A9"
//convert URI to IRI
URI.serialize(URI.parse("http://xn--exampl-gva.org/ros%C3%A9"), {iri:true}) === "http://examplé.org/rosé"








Options

All of the above functions can accept an additional options argument that is an object that can contain one or more of the following properties:


	scheme (string)

Indicates the scheme that the URI should be treated as, overriding the URI’s normal scheme parsing behavior.



	reference (string)

If set to "suffix", it indicates that the URI is in the suffix format, and the validator will use the option’s scheme property to determine the URI’s scheme.



	tolerant (boolean, false)

If set to true, the parser will relax URI resolving rules.



	absolutePath (boolean, false)

If set to true, the serializer will not resolve a relative path component.



	iri (boolean, false)

If set to true, the serializer will unescape non-ASCII characters as per RFC 3987 [http://www.ietf.org/rfc/rfc3987.txt].



	unicodeSupport (boolean, false)

If set to true, the parser will unescape non-ASCII characters in the parsed output as per RFC 3987 [http://www.ietf.org/rfc/rfc3987.txt].



	domainHost (boolean, false)

If set to true, the library will treat the host component as a domain name, and convert IDNs (International Domain Names) as per RFC 5891 [http://www.ietf.org/rfc/rfc5891.txt].










Scheme Extendable

URI.js supports inserting custom scheme [http://en.wikipedia.org/wiki/URI_scheme] dependent processing rules. Currently, URI.js has built in support for the following schemes:


	http [RFC 2616 [http://www.ietf.org/rfc/rfc2616.txt]]


	https [RFC 2818 [http://www.ietf.org/rfc/rfc2818.txt]]


	mailto [RFC 6068 [http://www.ietf.org/rfc/rfc6068.txt]]


	urn [RFC 2141 [http://www.ietf.org/rfc/rfc2141.txt]]


	urn:uuid [RFC 4122 [http://www.ietf.org/rfc/rfc4122.txt]]





HTTP Support

URI.equal("HTTP://ABC.COM:80", "http://abc.com/") === true








Mailto Support

URI.parse("mailto:alpha@example.com,bravo@example.com?subject=SUBSCRIBE&body=Sign%20me%20up!");
//returns:
//{
//	scheme : "mailto",
//	to : ["alpha@example.com", "bravo@example.com"],
//	subject : "SUBSCRIBE",
//	body : "Sign me up!"
//}

URI.serialize({
	scheme : "mailto",
	to : ["alpha@example.com"],
	subject : "REMOVE",
	body : "Please remove me",
	headers : {
		cc : "charlie@example.com"
	}
}) === "mailto:alpha@example.com?cc=charlie@example.com&subject=REMOVE&body=Please%20remove%20me"








URN Support

URI.parse("urn:example:foo");
//returns:
//{
//	scheme : "urn",
//	nid : "example",
//	nss : "foo",
//}






URN UUID Support

URI.parse("urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6");
//returns:
//{
//	scheme : "urn",
//	nid : "example",
//	uuid : "f81d4fae-7dec-11d0-a765-00a0c91e6bf6",
//}












Usage

To load in a browser, use the following tag:

<script type="text/javascript" src="uri-js/dist/es5/uri.all.min.js"></script>





To load in a CommonJS (Node.js) environment, first install with npm by running on the command line:

npm install uri-js





Then, in your code, load it using:

const URI = require("uri-js");





If you are writing your code in ES6+ (ESNEXT) or TypeScript, you would load it using:

import * as URI from "uri-js";





Or you can load just what you need using named exports:

import { parse, serialize, resolve, resolveComponents, normalize, equal, removeDotSegments, pctEncChar, pctDecChars, escapeComponent, unescapeComponent } from "uri-js";








Breaking changes


Breaking changes from 3.x

URN parsing has been completely changed to better align with the specification. Scheme is now always urn, but has two new properties: nid which contains the Namspace Identifier, and nss which contains the Namespace Specific String. The nss property will be removed by higher order scheme handlers, such as the UUID URN scheme handler.

The UUID of a URN can now be found in the uuid property.




Breaking changes from 2.x

URI validation has been removed as it was slow, exposed a vulnerabilty, and was generally not useful.




Breaking changes from 1.x

The errors array on parsed components is now an error string.






License (Simplified BSD [http://en.wikipedia.org/wiki/BSD_licenses#2-clause])

Copyright 2011 Gary Court. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:


	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.


	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.




THIS SOFTWARE IS PROVIDED BY GARY COURT “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GARY COURT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of Gary Court.







          

      

      

    

  

  
    
    Change Log
    

    
 
  

    
      
          
            
  
Change Log

All notable changes to this project will be documented in this file. See standard-version [https://github.com/conventional-changelog/standard-version] for commit guidelines.

[bookmark: 3.3.2]


3.3.2 [https://github.com/kelektiv/node-uuid/compare/v3.3.1...v3.3.2] (2018-06-28)


Bug Fixes


	typo (305d877 [https://github.com/kelektiv/node-uuid/commit/305d877])




[bookmark: 3.3.1]






3.3.1 [https://github.com/kelektiv/node-uuid/compare/v3.3.0...v3.3.1] (2018-06-28)


Bug Fixes


	fix #284 [https://github.com/kelektiv/node-uuid/issues/284] by setting function name in try-catch (f2a60f2 [https://github.com/kelektiv/node-uuid/commit/f2a60f2])




[bookmark: 3.3.0]








3.3.0 [https://github.com/kelektiv/node-uuid/compare/v3.2.1...v3.3.0] (2018-06-22)


Bug Fixes


	assignment to readonly property to allow running in strict mode (#270 [https://github.com/kelektiv/node-uuid/issues/270]) (d062fdc [https://github.com/kelektiv/node-uuid/commit/d062fdc])


	fix #229 [https://github.com/kelektiv/node-uuid/issues/229] (c9684d4 [https://github.com/kelektiv/node-uuid/commit/c9684d4])


	Get correct version of IE11 crypto (#274 [https://github.com/kelektiv/node-uuid/issues/274]) (153d331 [https://github.com/kelektiv/node-uuid/commit/153d331])


	mem issue when generating uuid (#267 [https://github.com/kelektiv/node-uuid/issues/267]) (c47702c [https://github.com/kelektiv/node-uuid/commit/c47702c])







Features


	enforce Conventional Commit style commit messages (#282 [https://github.com/kelektiv/node-uuid/issues/282]) (cc9a182 [https://github.com/kelektiv/node-uuid/commit/cc9a182])




[bookmark: 3.2.1]




3.2.1 [https://github.com/kelektiv/node-uuid/compare/v3.2.0...v3.2.1] (2018-01-16)


Bug Fixes


	use msCrypto if available. Fixes #241 [https://github.com/kelektiv/node-uuid/issues/241] (#247 [https://github.com/kelektiv/node-uuid/issues/247]) (1fef18b [https://github.com/kelektiv/node-uuid/commit/1fef18b])




[bookmark: 3.2.0]








3.2.0 [https://github.com/kelektiv/node-uuid/compare/v3.1.0...v3.2.0] (2018-01-16)


Bug Fixes


	remove mistakenly added typescript dependency, rollback version (standard-version will auto-increment) (09fa824 [https://github.com/kelektiv/node-uuid/commit/09fa824])


	use msCrypto if available. Fixes #241 [https://github.com/kelektiv/node-uuid/issues/241] (#247 [https://github.com/kelektiv/node-uuid/issues/247]) (1fef18b [https://github.com/kelektiv/node-uuid/commit/1fef18b])







Features


	Add v3 Support (#217 [https://github.com/kelektiv/node-uuid/issues/217]) (d94f726 [https://github.com/kelektiv/node-uuid/commit/d94f726])









3.1.0 [https://github.com/kelektiv/node-uuid/compare/v3.1.0...v3.0.1] (2017-06-17)


Bug Fixes


	(fix) Add .npmignore file to exclude test/ and other non-essential files from packing. (#183)


	Fix typo (#178)


	Simple typo fix (#165)







Features


	v5 support in CLI (#197)


	V5 support (#188)









3.0.1 (2016-11-28)


	split uuid versions into separate files







3.0.0 (2016-11-17)


	remove .parse and .unparse







2.0.0


	Removed uuid.BufferClass







1.4.0


	Improved module context detection


	Removed public RNG functions







1.3.2


	Improve tests and handling of v1() options (Issue #24)


	Expose RNG option to allow for perf testing with different generators







1.3.0


	Support for version 1 ids, thanks to @ctavan [https://github.com/ctavan]!


	Support for node.js crypto API


	De-emphasizing performance in favor of a) cryptographic quality PRNGs where available and b) more manageable code








          

      

      

    

  

  
    
    <no title>
    

    
 
  

    
      
          
            
  The MIT License (MIT)

Copyright (c) 2010-2016 Robert Kieffer and other contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.



          

      

      

    

  

  
    
    uuid
    

    
 
  

    
      
          
            
  
  
    
    uuid
    

    
 
  

    
      
          
            
  runmd.onRequire = path => path.replace(/^uuid/, './');






uuid [image: ../../../_images/node-uuid.svg]Build Status [http://travis-ci.org/kelektiv/node-uuid]

Simple, fast generation of RFC4122 [http://www.ietf.org/rfc/rfc4122.txt] UUIDS.

Features:


	Support for version 1, 3, 4 and 5 UUIDs


	Cross-platform


	Uses cryptographically-strong random number APIs (when available)


	Zero-dependency, small footprint (… but not this small [https://gist.github.com/982883])




[Deprecation warning: The use of require('uuid') is deprecated and will not be
supported after version 3.x of this module.  Instead, use require('uuid/[v1|v3|v4|v5]') as shown in the examples below.]


Quickstart - CommonJS (Recommended)

npm install uuid





Then generate your uuid version of choice …

Version 1 (timestamp):

const uuidv1 = require('uuid/v1');
uuidv1(); // RESULT





Version 3 (namespace):

const uuidv3 = require('uuid/v3');

// ... using predefined DNS namespace (for domain names)
uuidv3('hello.example.com', uuidv3.DNS); // RESULT

// ... using predefined URL namespace (for, well, URLs)
uuidv3('http://example.com/hello', uuidv3.URL); // RESULT

// ... using a custom namespace
//
// Note: Custom namespaces should be a UUID string specific to your application!
// E.g. the one here was generated using this modules `uuid` CLI.
const MY_NAMESPACE = '1b671a64-40d5-491e-99b0-da01ff1f3341';
uuidv3('Hello, World!', MY_NAMESPACE); // RESULT





Version 4 (random):

const uuidv4 = require('uuid/v4');
uuidv4(); // RESULT





Version 5 (namespace):

const uuidv5 = require('uuid/v5');

// ... using predefined DNS namespace (for domain names)
uuidv5('hello.example.com', uuidv5.DNS); // RESULT

// ... using predefined URL namespace (for, well, URLs)
uuidv5('http://example.com/hello', uuidv5.URL); // RESULT

// ... using a custom namespace
//
// Note: Custom namespaces should be a UUID string specific to your application!
// E.g. the one here was generated using this modules `uuid` CLI.
const MY_NAMESPACE = '1b671a64-40d5-491e-99b0-da01ff1f3341';
uuidv5('Hello, World!', MY_NAMESPACE); // RESULT








Quickstart - Browser-ready Versions

Browser-ready versions of this module are available via wzrd.in [https://github.com/jfhbrook/wzrd.in].

For version 1 uuids:

<script src="http://wzrd.in/standalone/uuid%2Fv1@latest"></script>
<script>
uuidv1(); // -> v1 UUID
</script>





For version 3 uuids:

<script src="http://wzrd.in/standalone/uuid%2Fv3@latest"></script>
<script>
uuidv3('http://example.com/hello', uuidv3.URL); // -> v3 UUID
</script>





For version 4 uuids:

<script src="http://wzrd.in/standalone/uuid%2Fv4@latest"></script>
<script>
uuidv4(); // -> v4 UUID
</script>





For version 5 uuids:

<script src="http://wzrd.in/standalone/uuid%2Fv5@latest"></script>
<script>
uuidv5('http://example.com/hello', uuidv5.URL); // -> v5 UUID
</script>








API


Version 1

const uuidv1 = require('uuid/v1');

// Incantations
uuidv1();
uuidv1(options);
uuidv1(options, buffer, offset);





Generate and return a RFC4122 v1 (timestamp-based) UUID.


	options - (Object) Optional uuid state to apply. Properties may include:


	node - (Array) Node id as Array of 6 bytes (per 4.1.6). Default: Randomly generated ID.  See note 1.


	clockseq - (Number between 0 - 0x3fff) RFC clock sequence.  Default: An internally maintained clockseq is used.


	msecs - (Number) Time in milliseconds since unix Epoch.  Default: The current time is used.


	nsecs - (Number between 0-9999) additional time, in 100-nanosecond units. Ignored if msecs is unspecified. Default: internal uuid counter is used, as per 4.2.1.2.






	buffer - (Array | Buffer) Array or buffer where UUID bytes are to be written.


	offset - (Number) Starting index in buffer at which to begin writing.




Returns buffer, if specified, otherwise the string form of the UUID

Note: The  id is generated guaranteed to stay constant for the lifetime of the current JS runtime. (Future versions of this module may use persistent storage mechanisms to extend this guarantee.)
  
    
    Changelog
    

    
 
  

    
      
          
            
  
Changelog


Not yet released

None yet.




v1.10.0


	#49 want convenience functions for MultiErrors







v1.9.0


	#47 could use VError.hasCauseWithName()







v1.8.1


	#39 captureStackTrace lost when inheriting from WError







v1.8.0


	#23 Preserve original stack trace(s)







v1.7.0


	#10 better support for extra properties on Errors


	#11 make it easy to find causes of a particular kind


	#29 No documentation on how to Install this package


	#36 elide development-only files from npm package










          

      

      

    

  

  
    
    Contributing
    

    
 
  

    
      
          
            
  
Contributing

This repository uses cr.joyent.us [https://cr.joyent.us] (Gerrit) for new
changes.  Anyone can submit changes.  To get started, see the cr.joyent.us user
guide [https://github.com/joyent/joyent-gerrit/blob/master/docs/user/README].
This repo does not use GitHub pull requests.

See the Joyent Engineering
Guidelines [https://github.com/joyent/eng/blob/master/docs/index] for general
best practices expected in this repository.

Contributions should be “make prepush” clean.  The “prepush” target runs the
“check” target, which requires these separate tools:


	https://github.com/davepacheco/jsstyle


	https://github.com/davepacheco/javascriptlint




If you’re changing something non-trivial or user-facing, you may want to submit
an issue first.





          

      

      

    

  

  
    
    verror: rich JavaScript errors
    

    
 
  

    
      
          
            
  
verror: rich JavaScript errors

This module provides several classes in support of Joyent’s Best Practices for
Error Handling in Node.js [http://www.joyent.com/developers/node/design/errors].
If you find any of the behavior here confusing or surprising, check out that
document first.

The error classes here support:


	printf-style arguments for the message


	chains of causes


	properties to provide extra information about the error


	creating your own subclasses that support all of these




The classes here are:


	VError, for chaining errors while preserving each one’s error message.
This is useful in servers and command-line utilities when you want to
propagate an error up a call stack, but allow various levels to add their own
context.  See examples below.


	WError, for wrapping errors while hiding the lower-level messages from the
top-level error.  This is useful for API endpoints where you don’t want to
expose internal error messages, but you still want to preserve the error chain
for logging and debugging.


	SError, which is just like VError but interprets printf-style arguments
more strictly.


	MultiError, which is just an Error that encapsulates one or more other
errors.  (This is used for parallel operations that return several errors.)







Quick start

First, install the package:

npm install verror





If nothing else, you can use VError as a drop-in replacement for the built-in
JavaScript Error class, with the addition of printf-style messages:

var err = new VError('missing file: "%s"', '/etc/passwd');
console.log(err.message);





This prints:

missing file: "/etc/passwd"





You can also pass a cause argument, which is any other Error object:

var fs = require('fs');
var filename = '/nonexistent';
fs.stat(filename, function (err1) {
	var err2 = new VError(err1, 'stat "%s"', filename);
	console.error(err2.message);
});





This prints out:

stat "/nonexistent": ENOENT, stat '/nonexistent'





which resembles how Unix programs typically report errors:

$ sort /nonexistent
sort: open failed: /nonexistent: No such file or directory





To match the Unixy feel, when you print out the error, just prepend the
program’s name to the VError’s message.  Or just call
node-cmdutil.fail(your_verror) [https://github.com/joyent/node-cmdutil], which
does this for you.

You can get the next-level Error using err.cause():

console.error(err2.cause().message);





prints:

ENOENT, stat '/nonexistent'





Of course, you can chain these as many times as you want, and it works with any
kind of Error:

var err1 = new Error('No such file or directory');
var err2 = new VError(err1, 'failed to stat "%s"', '/junk');
var err3 = new VError(err2, 'request failed');
console.error(err3.message);





This prints:

request failed: failed to stat "/junk": No such file or directory





The idea is that each layer in the stack annotates the error with a description
of what it was doing.  The end result is a message that explains what happened
at each level.

You can also decorate Error objects with additional information so that callers
can not only handle each kind of error differently, but also construct their own
error messages (e.g., to localize them, format them, group them by type, and so
on).  See the example below.




Deeper dive

The two main goals for VError are:


	Make it easy to construct clear, complete error messages intended for
people.  Clear error messages greatly improve both user experience and
debuggability, so we wanted to make it easy to build them.  That’s why the
constructor takes printf-style arguments.


	Make it easy to construct objects with programmatically-accessible
metadata (which we call informational properties).  Instead of just saying
“connection refused while connecting to 192.168.1.2:80”, you can add
properties like "ip": "192.168.1.2" and "tcpPort": 80.  This can be used
for feeding into monitoring systems, analyzing large numbers of Errors (as
from a log file), or localizing error messages.




To really make this useful, it also needs to be easy to compose Errors:
higher-level code should be able to augment the Errors reported by lower-level
code to provide a more complete description of what happened.  Instead of saying
“connection refused”, you can say “operation X failed: connection refused”.
That’s why VError supports causes.

In order for all this to work, programmers need to know that it’s generally safe
to wrap lower-level Errors with higher-level ones.  If you have existing code
that handles Errors produced by a library, you should be able to wrap those
Errors with a VError to add information without breaking the error handling
code.  There are two obvious ways that this could break such consumers:


	The error’s name might change.  People typically use name to determine what
kind of Error they’ve got.  To ensure compatibility, you can create VErrors
with custom names, but this approach isn’t great because it prevents you from
representing complex failures.  For this reason, VError provides
findCauseByName, which essentially asks: does this Error or any of its
causes have this specific type?  If error handling code uses
findCauseByName, then subsystems can construct very specific causal chains
for debuggability and still let people handle simple cases easily.  There’s an
example below.


	The error’s properties might change.  People often hang additional properties
off of Error objects.  If we wrap an existing Error in a new Error, those
properties would be lost unless we copied them.  But there are a variety of
both standard and non-standard Error properties that should not be copied in
this way: most obviously name, message, and stack, but also fileName,
lineNumber, and a few others.  Plus, it’s useful for some Error subclasses
to have their own private properties – and there’d be no way to know whether
these should be copied.  For these reasons, VError first-classes these
information properties.  You have to provide them in the constructor, you can
only fetch them with the info() function, and VError takes care of making
sure properties from causes wind up in the info() output.




Let’s put this all together with an example from the node-fast RPC library.
node-fast implements a simple RPC protocol for Node programs.  There’s a server
and client interface, and clients make RPC requests to servers.  Let’s say the
server fails with an UnauthorizedError with message “user ‘bob’ is not
authorized”.  The client wraps all server errors with a FastServerError.  The
client also wraps all request errors with a FastRequestError that includes the
name of the RPC call being made.  The result of this failed RPC might look like
this:

name: FastRequestError
message: "request failed: server error: user 'bob' is not authorized"
rpcMsgid: <unique identifier for this request>
rpcMethod: GetObject
cause:
    name: FastServerError
    message: "server error: user 'bob' is not authorized"
    cause:
        name: UnauthorizedError
        message: "user 'bob' is not authorized"
        rpcUser: "bob"





When the caller uses VError.info(), the information properties are collapsed
so that it looks like this:

message: "request failed: server error: user 'bob' is not authorized"
rpcMsgid: <unique identifier for this request>
rpcMethod: GetObject
rpcUser: "bob"





Taking this apart:


	The error’s message is a complete description of the problem.  The caller can
report this directly to its caller, which can potentially make its way back to
an end user (if appropriate).  It can also be logged.


	The caller can tell that the request failed on the server, rather than as a
result of a client problem (e.g., failure to serialize the request), a
transport problem (e.g., failure to connect to the server), or something else
(e.g., a timeout).  They do this using findCauseByName('FastServerError')
rather than checking the name field directly.


	If the caller logs this error, the logs can be analyzed to aggregate
errors by cause, by RPC method name, by user, or whatever.  Or the
error can be correlated with other events for the same rpcMsgid.


	It wasn’t very hard for any part of the code to contribute to this Error.
Each part of the stack has just a few lines to provide exactly what it knows,
with very little boilerplate.




It’s not expected that you’d use these complex forms all the time.  Despite
supporting the complex case above, you can still just do:

new VError(“my service isn’t working”);

for the simple cases.




Reference: VError, WError, SError

VError, WError, and SError are convenient drop-in replacements for Error that
support printf-style arguments, first-class causes, informational properties,
and other useful features.


Constructors

The VError constructor has several forms:

/*
 * This is the most general form.  You can specify any supported options
 * (including "cause" and "info") this way.
 */
new VError(options, sprintf_args...)

/*
 * This is a useful shorthand when the only option you need is "cause".
 */
new VError(cause, sprintf_args...)

/*
 * This is a useful shorthand when you don't need any options at all.
 */
new VError(sprintf_args...)





All of these forms construct a new VError that behaves just like the built-in
JavaScript Error class, with some additional methods described below.

In the first form, options is a plain object with any of the following
optional properties:

Option name      | Type             | Meaning
—————- | —————- | ——-
name           | string           | Describes what kind of error this is.  This is intended for programmatic use to distinguish between different kinds of errors.  Note that in modern versions of Node.js, this name is ignored in the stack property value, but callers can still use the name property to get at it.
cause          | any Error object | Indicates that the new error was caused by cause.  See cause() below.  If unspecified, the cause will be null.
strict         | boolean          | If true, then null and undefined values in sprintf_args are passed through to sprintf().  Otherwise, these are replaced with the strings 'null', and ‘undefined’, respectively.
constructorOpt | function         | If specified, then the stack trace for this error ends at function constructorOpt.  Functions called by constructorOpt will not show up in the stack.  This is useful when this class is subclassed.
info           | object           | Specifies arbitrary informational properties that are available through the VError.info(err) static class method.  See that method for details.

The second form is equivalent to using the first form with the specified cause
as the error’s cause.  This form is distinguished from the first form because
the first argument is an Error.

The third form is equivalent to using the first form with all default option
values.  This form is distinguished from the other forms because the first
argument is not an object or an Error.

The WError constructor is used exactly the same way as the VError
constructor.  The SError constructor is also used the same way as the
VError constructor except that in all cases, the strict property is
overriden to `true.




Public properties

VError, WError, and SError all provide the same public properties as
JavaScript’s built-in Error objects.

Property name | Type   | Meaning
————- | —— | ——-
name        | string | Programmatically-usable name of the error.
message     | string | Human-readable summary of the failure.  Programmatically-accessible details are provided through VError.info(err) class method.
stack       | string | Human-readable stack trace where the Error was constructed.

For all of these classes, the printf-style arguments passed to the constructor
are processed with sprintf() to form a message.  For WError, this becomes
the complete message property.  For SError and VError, this message is
prepended to the message of the cause, if any (with a suitable separator), and
the result becomes the message property.

The stack property is managed entirely by the underlying JavaScript
implementation.  It’s generally implemented using a getter function because
constructing the human-readable stack trace is somewhat expensive.




Class methods

The following methods are defined on the VError class and as exported
functions on the verror module.  They’re defined this way rather than using
methods on VError instances so that they can be used on Errors not created with
VError.


VError.cause(err)

The cause() function returns the next Error in the cause chain for err, or
null if there is no next error.  See the cause argument to the constructor.
Errors can have arbitrarily long cause chains.  You can walk the cause chain
by invoking VError.cause(err) on each subsequent return value.  If err is
not a VError, the cause is null.




VError.info(err)

Returns an object with all of the extra error information that’s been associated
with this Error and all of its causes.  These are the properties passed in using
the info option to the constructor.  Properties not specified in the
constructor for this Error are implicitly inherited from this error’s cause.

These properties are intended to provide programmatically-accessible metadata
about the error.  For an error that indicates a failure to resolve a DNS name,
informational properties might include the DNS name to be resolved, or even the
list of resolvers used to resolve it.  The values of these properties should
generally be plain objects (i.e., consisting only of null, undefined, numbers,
booleans, strings, and objects and arrays containing only other plain objects).




VError.fullStack(err)

Returns a string containing the full stack trace, with all nested errors recursively
reported as 'caused by:' + err.stack.




VError.findCauseByName(err, name)

The findCauseByName() function traverses the cause chain for err, looking
for an error whose name property matches the passed in name value. If no
match is found, null is returned.

If all you want is to know whether there’s a cause (and you don’t care what it
is), you can use VError.hasCauseWithName(err, name).

If a vanilla error or a non-VError error is passed in, then there is no cause
chain to traverse. In this scenario, the function will check the name
property of only err.




VError.hasCauseWithName(err, name)

Returns true if and only if VError.findCauseByName(err, name) would return
a non-null value.  This essentially determines whether err has any cause in
its cause chain that has name name.




VError.errorFromList(errors)

Given an array of Error objects (possibly empty), return a single error
representing the whole collection of errors.  If the list has:


	0 elements, returns null


	1 element, returns the sole error


	more than 1 element, returns a MultiError referencing the whole list




This is useful for cases where an operation may produce any number of errors,
and you ultimately want to implement the usual callback(err) pattern.  You can
accumulate the errors in an array and then invoke
callback(VError.errorFromList(errors)) when the operation is complete.




VError.errorForEach(err, func)

Convenience function for iterating an error that may itself be a MultiError.

In all cases, err must be an Error.  If err is a MultiError, then func is
invoked as func(errorN) for each of the underlying errors of the MultiError.
If err is any other kind of error, func is invoked once as func(err).  In
all cases, func is invoked synchronously.

This is useful for cases where an operation may produce any number of warnings
that may be encapsulated with a MultiError – but may not be.

This function does not iterate an error’s cause chain.






Examples

The “Demo” section above covers several basic cases.  Here’s a more advanced
case:

var err1 = new VError('something bad happened');
/* ... */
var err2 = new VError({
    'name': 'ConnectionError',
    'cause': err1,
    'info': {
        'errno': 'ECONNREFUSED',
        'remote_ip': '127.0.0.1',
        'port': 215
    }
}, 'failed to connect to "%s:%d"', '127.0.0.1', 215);

console.log(err2.message);
console.log(err2.name);
console.log(VError.info(err2));
console.log(err2.stack);





This outputs:

failed to connect to "127.0.0.1:215": something bad happened
ConnectionError
{ errno: 'ECONNREFUSED', remote_ip: '127.0.0.1', port: 215 }
ConnectionError: failed to connect to "127.0.0.1:215": something bad happened
    at Object.<anonymous> (/home/dap/node-verror/examples/info.js:5:12)
    at Module._compile (module.js:456:26)
    at Object.Module._extensions..js (module.js:474:10)
    at Module.load (module.js:356:32)
    at Function.Module._load (module.js:312:12)
    at Function.Module.runMain (module.js:497:10)
    at startup (node.js:119:16)
    at node.js:935:3





Information properties are inherited up the cause chain, with values at the top
of the chain overriding same-named values lower in the chain.  To continue that
example:

var err3 = new VError({
    'name': 'RequestError',
    'cause': err2,
    'info': {
        'errno': 'EBADREQUEST'
    }
}, 'request failed');

console.log(err3.message);
console.log(err3.name);
console.log(VError.info(err3));
console.log(err3.stack);





This outputs:

request failed: failed to connect to "127.0.0.1:215": something bad happened
RequestError
{ errno: 'EBADREQUEST', remote_ip: '127.0.0.1', port: 215 }
RequestError: request failed: failed to connect to "127.0.0.1:215": something bad happened
    at Object.<anonymous> (/home/dap/node-verror/examples/info.js:20:12)
    at Module._compile (module.js:456:26)
    at Object.Module._extensions..js (module.js:474:10)
    at Module.load (module.js:356:32)
    at Function.Module._load (module.js:312:12)
    at Function.Module.runMain (module.js:497:10)
    at startup (node.js:119:16)
    at node.js:935:3





You can also print the complete stack trace of combined Errors by using
VError.fullStack(err).

var err1 = new VError('something bad happened');
/* ... */
var err2 = new VError(err1, 'something really bad happened here');

console.log(VError.fullStack(err2));





This outputs:

VError: something really bad happened here: something bad happened
    at Object.<anonymous> (/home/dap/node-verror/examples/fullStack.js:5:12)
    at Module._compile (module.js:409:26)
    at Object.Module._extensions..js (module.js:416:10)
    at Module.load (module.js:343:32)
    at Function.Module._load (module.js:300:12)
    at Function.Module.runMain (module.js:441:10)
    at startup (node.js:139:18)
    at node.js:968:3
caused by: VError: something bad happened
    at Object.<anonymous> (/home/dap/node-verror/examples/fullStack.js:3:12)
    at Module._compile (module.js:409:26)
    at Object.Module._extensions..js (module.js:416:10)
    at Module.load (module.js:343:32)
    at Function.Module._load (module.js:300:12)
    at Function.Module.runMain (module.js:441:10)
    at startup (node.js:139:18)
    at node.js:968:3





VError.fullStack is also safe to use on regular Errors, so feel free to use
it whenever you need to extract the stack trace from an Error, regardless if
it’s a VError or not.






Reference: MultiError

MultiError is an Error class that represents a group of Errors.  This is used
when you logically need to provide a single Error, but you want to preserve
information about multiple underying Errors.  A common case is when you execute
several operations in parallel and some of them fail.

MultiErrors are constructed as:

new MultiError(error_list)





error_list is an array of at least one Error object.

The cause of the MultiError is the first error provided.  None of the other
VError options are supported.  The message for a MultiError consists the
message from the first error, prepended with a message indicating that there
were other errors.

For example:

err = new MultiError([
    new Error('failed to resolve DNS name "abc.example.com"'),
    new Error('failed to resolve DNS name "def.example.com"'),
]);

console.error(err.message);





outputs:

first of 2 errors: failed to resolve DNS name "abc.example.com"





See the convenience function VError.errorFromList, which is sometimes simpler
to use than this constructor.


Public methods


errors()

Returns an array of the errors used to construct this MultiError.








Contributing

See separate contribution guidelines.





          

      

      

    

  

  
    
    node-XMLHttpRequest
    

    
 
  

    
      
          
            
  
node-XMLHttpRequest

node-XMLHttpRequest is a wrapper for the built-in http client to emulate the
browser XMLHttpRequest object.

This can be used with JS designed for browsers to improve reuse of code and
allow the use of existing libraries.

Note: This library currently conforms to XMLHttpRequest 1 [http://www.w3.org/TR/XMLHttpRequest/]. Version 2.0 will target XMLHttpRequest Level 2 [http://www.w3.org/TR/XMLHttpRequest2/].


Usage

Here’s how to include the module in your project and use as the browser-based
XHR object.

var XMLHttpRequest = require("xmlhttprequest").XMLHttpRequest;
var xhr = new XMLHttpRequest();





Note: use the lowercase string “xmlhttprequest” in your require(). On
case-sensitive systems (eg Linux) using uppercase letters won’t work.




Versions

Prior to 1.4.0 version numbers were arbitrary. From 1.4.0 on they conform to
the standard major.minor.bugfix. 1.x shouldn’t necessarily be considered
stable just because it’s above 0.x.

Since the XMLHttpRequest API is stable this library’s API is stable as
well. Major version numbers indicate significant core code changes.
Minor versions indicate minor core code changes or better conformity to
the W3C spec.




Supports


	Async and synchronous requests


	GET, POST, PUT, and DELETE requests


	All spec methods (open, send, abort, getRequestHeader,
getAllRequestHeaders, event methods)


	Requests to all domains







Known Issues / Missing Features

For a list of open issues or to report your own visit the github issues
page [https://github.com/driverdan/node-XMLHttpRequest/issues].


	Local file access may have unexpected results for non-UTF8 files


	Synchronous requests don’t set headers properly


	Synchronous requests freeze node while waiting for response (But that’s what you want, right? Stick with async!).


	Some events are missing, such as abort


	getRequestHeader is case-sensitive


	Cookies aren’t persisted between requests


	Missing XML support


	Missing basic auth










          

      

      

    

  

  
    
    <no title>
    

    
 
  

    
      
          
            
  The MIT License (MIT)

Copyright (c) 2012-2015 Kevin Brown, Igor Vaynberg, and Select2 contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.



          

      

      

    

  

  
    
    <no title>
    

    
 
  

    
      
          
            
  The MIT License (MIT)

Copyright (c) 2012-2015 Kevin Brown, Igor Vaynberg, and Select2 contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.



          

      

      

    

  

  
    
    <no title>
    

    
 
  

    
      
          
            
  The MIT License (MIT)

Copyright (c) 2012-2015 Kevin Brown, Igor Vaynberg, and Select2 contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.



          

      

      

    

  

  
    
    <no title>
    

    
 
  

    
      
          
            
  The MIT License (MIT)

Copyright (c) 2012-2015 Kevin Brown, Igor Vaynberg, and Select2 contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.



          

      

      

    

  
_images/is-typedarray.png
(npm|

npn install is-typedarray
© dependencies  version 1.0.0
Updated 5 years ago






_images/isstream.png
“build passing





_images/h0FVyzU.png
KunMiy)





_images/nan.png
(npm|

npn install nan
© dependencies

version 2.14.0
Updated 8 months ago






_images/kh73pbm9dsju7fgh.png
@ BUILD FAILING





_static/up-pressed.png





_static/up.png





_static/down.png





_static/minus.png





_static/file.png





_static/plus.png





_static/comment-close.png





_static/comment-bright.png





_static/down-pressed.png





_static/comment.png





_static/ajax-loader.gif





_images/chart.png
v

av

Json-schema.valdator-generator

sen

is-my json-vali

theis:

2.schema

ek

skeemas:

Json-schemarlibrary-

v

o 10 2 d 4 s 6 70 8 % 100





_images/dev-status.png
“devDependencies |up to date





_images/aws4.png
“build passing





_images/24e08a9ea84deb17ae121074d0f17125.jpg





_images/299a3d891ff1920b69c364d061007043.jpg





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_images/tough-cookie.png
npm)

8%

npn install tough-cookie
3 dependencies  version 3.0.1
Updated 3 year g0






_images/tough-cookie1.png
“build passing





_images/qs.png
npm)

a3k

npn install gs
© dependencies

version 6.8.0
Updated 5 months ago






_images/request.png
[npm)

1,505 %

npn install 