
Paste Deploy
Release 1.5.2

June 07, 2017

Contents

1 Paste Deployment News 3

2 paste.deploy.loadwsgi – Load WSGI applications from config files 7

3 paste.deploy.config – Configuration and Environment middleware 9

4 paste.deploy.converters – Conversion helpers for String Configuration 11

5 Introduction 13

6 Status 15

7 Installation 17

8 From the User Perspective 19

9 Basic Usage 23

10 config: URIs 25

11 egg: URIs 29

12 Defining Factories 31

13 Outstanding Issues 35

i

ii

Paste Deploy, Release 1.5.2

author Ian Bicking <ianb@colorstudy.com>

Contents

• Paste Deployment

– Introduction

– Status

– Installation

– From the User Perspective

* The Config File

– Basic Usage

– config: URIs

* Config Format

* Applications

* Configuration

* Global Configuration

* Composite Applications

* Other Objects

* Filter Composition

* Getting Configuration

– egg: URIs

– Defining Factories

* paste.app_factory

* paste.composite_factory

* paste.filter_factory

* paste.filter_app_factory

* paste.server_factory

* paste.server_runner

– Outstanding Issues

Documents:

Contents 1

mailto:ianb@colorstudy.com

Paste Deploy, Release 1.5.2

2 Contents

CHAPTER 1

Paste Deployment News

1.5.2

• Fixed Python 3 issue in paste.deploy.util.fix_type_error()

1.5.1

• Fixed use of the wrong variable when determining the context protocol

• Fixed invalid import of paste.deploy.Config to paste.deploy.config.Config

• Fixed multi proxy IPs bug in X-Forwarded-For header in PrefixMiddleware

• Fixed TypeError when trying to raise LookupError on Python 3

• Fixed exception reraise on Python 3

Thanks to Alexandre Conrad, Atsushi Odagiri, Pior Bastida and Tres Seaver for their contributions.

1.5.0

• Project is now maintained by Alex Grönholm <alex.gronholm@nextday.fi>

• Was printing extraneous data when calling setup.py

• Fixed missing paster template files (fixes “paster create -t paste.deploy”)

• Excluded tests from release distributions

• Added support for the “call:” protocol for loading apps directly as functions (contributed by Jason Stitt)

• Added Python 3.x support

• Dropped Python 2.4 support

3

mailto:alex.gronholm@nextday.fi

Paste Deploy, Release 1.5.2

• Removed the paste.deploy.epdesc and paste.deploy.interfaces modules – contact the main-
tainer if you actually needed them

1.3.4

• Fix loadconfig path handling on Jython on Windows.

1.3.3

• In paste.deploy.config.PrefixMiddleware the headers X-Forwarded-Scheme and
X-Forwarded-Proto are now translated to the key environ['wsgi.url_scheme']. Also
X-Forwarded-For is translated to environ['REMOTE_ADDR']

• Also in PrefixMiddleware, if X-Forwarded-Host has multiple (comma-separated) values, use only the first value.

1.3.2

• Added paste.deploy.converters.asint().

• fixed use sections overwriting the config’s __file__ value with the use’d filename.

• paste.deploy.loadwsgi now supports variable expansion in the DEFAULT section of config files (unlike
plain ConfigParser).

1.3.1

• Fix appconfig config loading when using a config file with filter-with in it (previously you’d get
TypeError: iteration over non-sequence)

1.3

• Added scheme option to PrefixMiddleware, so you can force a scheme (E.g., when proxying an HTTPS
connection over HTTP).

• Pop proper values into environ['paste.config'] in ConfigMiddleware.

1.1

• Any global_conf extra keys you pass to loadapp (or the other loaders) will show up as though they were
in [DEFAULT], so they can be used in variable interpolation. Note: this won’t overwrite any existing values in
[DEFAULT].

• Added force_port option to paste.deploy.config.PrefixMiddleware. Also the prefix ar-
gument is stripped of any trailing /, which can’t be valid in that position.

4 Chapter 1. Paste Deployment News

Paste Deploy, Release 1.5.2

1.0

• Added some documentation for the different kinds of entry points Paste Deploy uses.

• Added a feature to PrefixMiddleware that translates the X-Forwarded-Server header to Host.

0.9.6

• Added PrefixMiddleware which compensates for cases where the wsgi app is behind a proxy of some sort
that isn’t moving the prefix into the SCRIPT_NAME in advance.

• Changed _loadconfig() so that it works with Windows absolute paths.

• Make the error messages prettier when you call a function and fail to give an argument, like a required function
argument.

0.5

• Made the paste_deploy template (used with paster create --template=paste_deploy) more
useful, with an example application and entry point.

0.4

• Allow filters to have filter-with values, just like applications.

• Renamed composit to composite (old names still work, but aren’t documented).

• Added appconfig() to load along with loadapp(), but return the configuration without invoking the
application.

0.3

• Allow variable setting like:

get local_var = global_var_name

To bring in global variables to the local scope.

• Allow interpolation in files, like %(here)s. Anything in the [DEFAULTS] section will be available to sub-
stitute into a value, as will variables in the same section. Also, the special value here will be the directory the
configuration file is located in.

0.2

Released 26 August 2004

• Added a filter-with setting to applications.

• Removed the 1 from all the protocol names (e.g., paste.app_factory1 is not paste.app_factory).

1.10. 1.0 5

Paste Deploy, Release 1.5.2

• Added filter-app: and pipeline: sections. Docs.

• Added paste.filter_app_factory1 (doc) and paste.server_runner1 (doc) protocols.

• Added paste.deploy.converters module for handling the string values that are common with this sys-
tem.

0.1

Released 22 August 2004

Initial version released. It’s all new.

6 Chapter 1. Paste Deployment News

CHAPTER 2

paste.deploy.loadwsgi – Load WSGI applications from config files

Module Contents

7

Paste Deploy, Release 1.5.2

8 Chapter 2. paste.deploy.loadwsgi – Load WSGI applications from config files

CHAPTER 3

paste.deploy.config – Configuration and Environment middleware

Module Contents

9

Paste Deploy, Release 1.5.2

10 Chapter 3. paste.deploy.config – Configuration and Environment middleware

CHAPTER 4

paste.deploy.converters – Conversion helpers for String
Configuration

Module Contents

Copyright (c) 2006-2007 Ian Bicking and Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

11

Paste Deploy, Release 1.5.2

12 Chapter 4. paste.deploy.converters – Conversion helpers for String Configuration

CHAPTER 5

Introduction

Paste Deployment is a system for finding and configuring WSGI applications and servers. For WSGI application
consumers it provides a single, simple function (loadapp) for loading a WSGI application from a configuration file
or a Python Egg. For WSGI application providers it only asks for a single, simple entry point to your application, so
that application users don’t need to be exposed to the implementation details of your application.

The result is something a system administrator can install and manage without knowing any Python, or the details of
the WSGI application or its container.

Paste Deployment currently does not require other parts of Paste, and is distributed as a separate package.

To see updates that have been made to Paste Deploy see the news file.

Paste Deploy is released under the MIT license.

13

http://pythonpaste.org
http://www.opensource.org/licenses/mit-license.php

Paste Deploy, Release 1.5.2

14 Chapter 5. Introduction

CHAPTER 6

Status

Paste Deploy has passed version 1.0. Paste Script is an actively maintained project. As of 1.0, we’ll make a strong
effort to maintain backward compatibility (this actually started happening long before 1.0, but now it is explicit). This
will include deprecation warnings when necessary. Major changes will take place under new functions or with new
entry points.

Note that the most key aspect of Paste Deploy is the entry points it defines (such as paste.app_factory). Paste
Deploy is not the only consumer of these entry points, and many extensions can best take place by utilizing the entry
points instead of using Paste Deploy directly. The entry points will not change; if changes are necessary, new entry
points will be defined.

15

Paste Deploy, Release 1.5.2

16 Chapter 6. Status

CHAPTER 7

Installation

First make sure you have either setuptools or its modern replacement distribute installed. For Python 3.x you need
distribute as setuptools does not work on it.

Then you can install Paste Deployment using pip by running:

$ sudo pip install PasteDeploy

If you want to track development, do:

$ hg clone http://bitbucket.org/ianb/pastedeploy
$ cd pastedeploy
$ sudo python setup.py develop

This will install the package globally, but will load the files in the checkout. You can also simply install
PasteDeploy==dev.

For downloads and other information see the Cheese Shop PasteDeploy page.

A complimentary package is Paste Script. To install that, use pip install PasteScript (or pip install
PasteScript==dev).

17

http://peak.telecommunity.com/DevCenter/setuptools
http://pypi.python.org/pypi/distribute
http://www.pip-installer.org/en/latest/installing.html
http://cheeseshop.python.org/pypi/PasteDeploy

Paste Deploy, Release 1.5.2

18 Chapter 7. Installation

CHAPTER 8

From the User Perspective

In the following sections, the Python API for using Paste Deploy is given. This isn’t what users will be using (but it is
useful for Python developers and useful for setting up tests fixtures).

The primary interaction with Paste Deploy is through its configuration files. The primary thing you want to do with
a configuration file is serve it. To learn about serving configuration files, see the ‘‘paster serve‘ command <http:
//pythonpaste.org/script/#paster-serve>‘_.

The Config File

A config file has different sections. The only sections Paste Deploy cares about have prefixes, like app:main or
filter:errors – the part after the : is the “name” of the section, and the part before gives the “type”. Other
sections are ignored.

The format is a simple INI format: name = value. You can extend the value by indenting subsequent lines. # is a
comment.

Typically you have one or two sections, named “main”: an application section ([app:main]) and a server section
([server:main]). [composite:...] signifies something that dispatches to multiple applications (example
below).

Here’s a typical configuration file that also shows off mounting multiple applications using paste.urlmap:

[composite:main]
use = egg:Paste#urlmap
/ = home
/blog = blog
/wiki = wiki
/cms = config:cms.ini

[app:home]
use = egg:Paste#static
document_root = %(here)s/htdocs

19

http://pythonpaste.org/script/#paster-serve
http://pythonpaste.org/script/#paster-serve
http://en.wikipedia.org/wiki/INI_file
http://pythonpaste.org/module-paste.urlmap.html

Paste Deploy, Release 1.5.2

[filter-app:blog]
use = egg:Authentication#auth
next = blogapp
roles = admin
htpasswd = /home/me/users.htpasswd

[app:blogapp]
use = egg:BlogApp
database = sqlite:/home/me/blog.db

[app:wiki]
use = call:mywiki.main:application
database = sqlite:/home/me/wiki.db

I’ll explain each section in detail now:

[composite:main]
use = egg:Paste#urlmap
/ = home
/blog = blog
/cms = config:cms.ini

That this is a composite section means it dispatches the request to other applications. use =
egg:Paste#urlmap means to use the composite application named urlmap from the Paste package. urlmap
is a particularly common composite application – it uses a path prefix to map your request to another application.
These are the applications like “home”, “blog”, “wiki” and “config:cms.ini”. The last one just refers to another file
cms.ini in the same directory.

Next up:

[app:home]
use = egg:Paste#static
document_root = %(here)s/htdocs

egg:Paste#static is another simple application, in this case it just serves up non-dynamic files. It takes one bit
of configuration: document_root. You can use variable substitution, which will pull variables from the section
[DEFAULT] (case sensitive!) with markers like %(var_name)s. The special variable %(here)s is the direc-
tory containing the configuration file; you should use that in lieu of relative filenames (which depend on the current
directory, which can change depending how the server is run).

Then:

[filter-app:blog]
use = egg:Authentication#auth
next = blogapp
roles = admin
htpasswd = /home/me/users.htpasswd

[app:blogapp]
use = egg:BlogApp
database = sqlite:/home/me/blog.db

The [filter-app:blog] section means that you want an application with a filter applied. The application being
filtered is indicated with next (which refers to the next section). The egg:Authentication#auth filter doesn’t
actually exist, but one could imagine it logs people in and checks permissions.

That last section is just a reference to an application that you probably installed with pip install BlogApp, and
one bit of configuration you passed to it (database).

20 Chapter 8. From the User Perspective

Paste Deploy, Release 1.5.2

Lastly:

[app:wiki]
use = call:mywiki.main:application
database = sqlite:/home/me/wiki.db

This section is similar to the previous one, with one important difference. Instead of an entry point in an egg, it refers
directly to the application variable in the mywiki.main module. The reference consist of two parts, separated
by a colon. The left part is the full name of the module and the right part is the path to the variable, as a Python
expression relative to the containing module.

So, that’s most of the features you’ll use.

8.1. The Config File 21

Paste Deploy, Release 1.5.2

22 Chapter 8. From the User Perspective

CHAPTER 9

Basic Usage

The basic way you’ll use Paste Deployment is to load WSGI applications. Many Python frameworks now support
WSGI, so applications written for these frameworks should be usable.

The primary function is paste.deploy.loadapp. This loads an application given a URI. You can use it like:

from paste.deploy import loadapp
wsgi_app = loadapp('config:/path/to/config.ini')

There’s two URI formats currently supported: config: and egg:.

23

http://www.python.org/peps/pep-3333.html

Paste Deploy, Release 1.5.2

24 Chapter 9. Basic Usage

CHAPTER 10

config: URIs

URIs that being with config: refer to configuration files. These filenames can be relative if you pass the
relative_to keyword argument to loadapp().

Note: Filenames are never considered relative to the current working directory, as that is a unpredictable location.
Generally when a URI has a context it will be seen as relative to that context; for example, if you have a config:
URI inside another configuration file, the path is considered relative to the directory that contains that configuration
file.

Config Format

Configuration files are in the INI format. This is a simple format that looks like:

[section_name]
key = value
another key = a long value

that extends over multiple lines

All values are strings (no quoting is necessary). The keys and section names are case-sensitive, and may contain
punctuation and spaces (though both keys and values are stripped of leading and trailing whitespace). Lines can be
continued with leading whitespace.

Lines beginning with # (preferred) or ; are considered comments.

Applications

You can define multiple applications in a single file; each application goes in its own section. Even if you have just
one application, you must put it in a section.

25

Paste Deploy, Release 1.5.2

Each section name defining an application should be prefixed with app:. The “main” section (when just defining one
application) would go in [app:main] or just [app].

There’s two ways to indicate the Python code for the application. The first is to refer to another URI or name:

[app:myapp]
use = config:another_config_file.ini#app_name

or any URI:
[app:myotherapp]
use = egg:MyApp

or a callable from a module:
[app:mythirdapp]
use = call:my.project:myapplication

or even another section:
[app:mylastapp]
use = myotherapp

It would seem at first that this was pointless; just a way to point to another location. However, in addition to loading
the application from that location, you can also add or change the configuration.

The other way to define an application is to point exactly to some Python code:

[app:myapp]
paste.app_factory = myapp.modulename:app_factory

You must give an explicit protocol (in this case paste.app_factory), and the value is something to import. In
this case the module myapp.modulename is loaded, and the app_factory object retrieved from it.

See Defining Factories for more about the protocols.

Configuration

Configuration is done through keys besides use (or the protocol names). Any other keys found in the section will be
passed as keyword arguments to the factory. This might look like:

[app:blog]
use = egg:MyBlog
database = mysql://localhost/blogdb
blogname = This Is My Blog!

You can override these in other sections, like:

[app:otherblog]
use = blog
blogname = The other face of my blog

This way some settings could be defined in a generic configuration file (if you have use =
config:other_config_file) or you can publish multiple (more specialized) applications just by adding a
section.

26 Chapter 10. config: URIs

Paste Deploy, Release 1.5.2

Global Configuration

Often many applications share the same configuration. While you can do that a bit by using other config sections
and overriding values, often you want that done for a bunch of disparate configuration values. And typically appli-
cations can’t take “extra” configuration parameters; with global configuration you do something equivalent to “if this
application wants to know the admin email, this is it”.

Applications are passed the global configuration separately, so they must specifically pull values out of it; typically the
global configuration serves as the basis for defaults when no local configuration is passed in.

Global configuration to apply to every application defined in a file should go in a special section named [DEFAULT].
You can override global configuration locally like:

[DEFAULT]
admin_email = webmaster@example.com

[app:main]
use = ...
set admin_email = bob@example.com

That is, by using set in front of the key.

Composite Applications

“Composite” applications are things that act like applications, but are made up of other applications. One example
would be a URL mapper, where you mount applications at different URL paths. This might look like:

[composite:main]
use = egg:Paste#urlmap
/ = mainapp
/files = staticapp

[app:mainapp]
use = egg:MyApp

[app:staticapp]
use = egg:Paste#static
document_root = /path/to/docroot

The composite application “main” is just like any other application from the outside (you load it with loadapp for
instance), but it has access to other applications defined in the configuration file.

Other Objects

In addition to sections with app:, you can define filters and servers in a configuration file, with server: and
filter: prefixes. You load these with loadserver and loadfilter. The configuration works just the same;
you just get back different kinds of objects.

10.4. Global Configuration 27

Paste Deploy, Release 1.5.2

Filter Composition

There are several ways to apply filters to applications. It mostly depends on how many filters, and in what order you
want to apply them.

The first way is to use the filter-with setting, like:

[app:main]
use = egg:MyEgg
filter-with = printdebug

[filter:printdebug]
use = egg:Paste#printdebug
and you could have another filter-with here, and so on...

Also, two special section types exist to apply filters to your applications: [filter-app:...] and [pipeline:.
..]. Both of these sections define applications, and so can be used wherever an application is needed.

filter-app defines a filter (just like you would in a [filter:...] section), and then a special key next which
points to the application to apply the filter to.

pipeline: is used when you need apply a number of filters. It takes one configuration key pipeline (plus any
global configuration overrides you want). pipeline is a list of filters ended by an application, like:

[pipeline:main]
pipeline = filter1 egg:FilterEgg#filter2 filter3 app

[filter:filter1]
...

Getting Configuration

If you want to get the configuration without creating the application, you can use the appconfig(uri) function,
which is just like the loadapp() function except it returns the configuration that would be used, as a dictionary.
Both global and local configuration is combined into a single dictionary, but you can look at just one or the other with
the attributes .local_conf and .global_conf.

28 Chapter 10. config: URIs

CHAPTER 11

egg: URIs

Python Eggs are a distribution and installation format produced by setuptools and distribute that adds metadata to a
normal Python package (among other things).

You don’t need to understand a whole lot about Eggs to use them. If you have a distutils setup.py script, just
change:

from distutils.core import setup

to:

from setuptools import setup

Now when you install the package it will be installed as an egg.

The first important part about an Egg is that it has a specification. This is formed from the name of your distribution
(the name keyword argument to setup()), and you can specify a specific version. So you can have an egg named
MyApp, or MyApp==0.1 to specify a specific version.

The second is entry points. These are references to Python objects in your packages that are named and have a specific
protocol. “Protocol” here is just a way of saying that we will call them with certain arguments, and expect a specific
return value. We’ll talk more about the protocols later. The important part here is how we define entry points. You’ll
add an argument to setup() like:

setup(
name='MyApp',
...
entry_points={

'paste.app_factory': [
'main=myapp.mymodule:app_factory',
'ob2=myapp.mymodule:ob_factory'],

},
)

This defines two applications named main and ob2. You can then refer to these by egg:MyApp#main (or just
egg:MyApp, since main is the default) and egg:MyApp#ob2.

29

http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/setuptools
http://packages.python.org/distribute/
http://python.org/doc/current/lib/module-distutils.html

Paste Deploy, Release 1.5.2

The values are instructions for importing the objects. main is located in the myapp.mymodule module, in an object
named app_factory.

There’s no way to add configuration to objects imported as Eggs.

30 Chapter 11. egg: URIs

CHAPTER 12

Defining Factories

This lets you point to factories (that obey the specific protocols we mentioned). But that’s not much use unless you
can create factories for your applications.

There’s a few protocols: paste.app_factory, paste.composite_factory, paste.filter_factory,
and lastly paste.server_factory. Each of these expects a callable (like a function, method, or class).

paste.app_factory

The application is the most common. You define one like:

def app_factory(global_config, **local_conf):
return wsgi_app

The global_config is a dictionary, and local configuration is passed as keyword arguments. The function returns
a WSGI application.

paste.composite_factory

Composites are just slightly more complex:

def composite_factory(loader, global_config, **local_conf):
return wsgi_app

The loader argument is an object that has a couple interesting methods. get_app(name_or_uri,
global_conf=None) return a WSGI application with the given name. get_filter and get_server work
the same way.

A more interesting example might be a composite factory that does something. For instance, consider a “pipeline”
application:

31

Paste Deploy, Release 1.5.2

def pipeline_factory(loader, global_config, pipeline):
space-separated list of filter and app names:
pipeline = pipeline.split()
filters = [loader.get_filter(n) for n in pipeline[:-1]]
app = loader.get_app(pipeline[-1])
filters.reverse() # apply in reverse order!
for filter in filters:

app = filter(app)
return app

Then we use it like:

[composite:main]
use = <pipeline_factory_uri>
pipeline = egg:Paste#printdebug session myapp

[filter:session]
use = egg:Paste#session
store = memory

[app:myapp]
use = egg:MyApp

paste.filter_factory

Filter factories are just like app factories (same signature), except they return filters. Filters are callables that take a
WSGI application as the only argument, and return a “filtered” version of that application.

Here’s an example of a filter that checks that the REMOTE_USER CGI variable is set, creating a really simple authen-
tication filter:

def auth_filter_factory(global_conf, req_usernames):
space-separated list of usernames:
req_usernames = req_usernames.split()
def filter(app):

return AuthFilter(app, req_usernames)
return filter

class AuthFilter(object):
def __init__(self, app, req_usernames):

self.app = app
self.req_usernames = req_usernames

def __call__(self, environ, start_response):
if environ.get('REMOTE_USER') in self.req_usernames:

return self.app(environ, start_response)
start_response(

'403 Forbidden', [('Content-type', 'text/html')])
return ['You are forbidden to view this resource']

32 Chapter 12. Defining Factories

Paste Deploy, Release 1.5.2

paste.filter_app_factory

This is very similar to paste.filter_factory, except that it also takes a wsgi_app argument, and returns a
WSGI application. So if you changed the above example to:

class AuthFilter(object):
def __init__(self, app, global_conf, req_usernames):

....

Then AuthFilter would serve as a filter_app_factory (req_usernames is a required local configuration key in
this case).

paste.server_factory

This takes the same signature as applications and filters, but returns a server.

A server is a callable that takes a single argument, a WSGI application. It then serves the application.

An example might look like:

def server_factory(global_conf, host, port):
port = int(port)
def serve(app):

s = Server(app, host=host, port=port)
s.serve_forever()

return serve

The implementation of Server is left to the user.

paste.server_runner

Like paste.server_factory, except wsgi_app is passed as the first argument, and the server should run
immediately.

12.4. paste.filter_app_factory 33

Paste Deploy, Release 1.5.2

34 Chapter 12. Defining Factories

CHAPTER 13

Outstanding Issues

• Should there be a “default” protocol for each type of object? Since there’s currently only one protocol, it seems
like it makes sense (in the future there could be multiple). Except that paste.app_factory and paste.
composite_factory overlap considerably.

• ConfigParser’s INI parsing is kind of annoying. I’d like it both more constrained and less constrained. Some
parts are sloppy (like the way it interprets [DEFAULT]).

• config: URLs should be potentially relative to other locations, e.g., config:$docroot/.... Maybe
using variables from global_conf?

• Should other variables have access to global_conf?

• Should objects be Python-syntax, instead of always strings? Lots of code isn’t usable with Python strings
without a thin wrapper to translate objects into their proper types.

• Some short-form for a filter/app, where the filter refers to the “next app”. Maybe like:

[app-filter:app_name]
use = egg:...
next = next_app

[app:next_app]
...

35

	Paste Deployment News
	paste.deploy.loadwsgi – Load WSGI applications from config files
	paste.deploy.config – Configuration and Environment middleware
	paste.deploy.converters – Conversion helpers for String Configuration
	Introduction
	Status
	Installation
	From the User Perspective
	Basic Usage
	config: URIs
	egg: URIs
	Defining Factories
	Outstanding Issues

