

party

Plain text (JSON) parts libraries for open hardware projects.

WARNING : party is currently in work in progress status

party aims at creating and handling parts libraries defined in a single text (JSON) file where the metadata, the data, the
geometry creation logic and the anchors creation logic are defined.

The anchors concept is a set of vectors attached to a part geometry that can be used to place the part in an assembly.

[image: ISO 4032 M2.5 Nut from a parts library file (the small yellow arrow represents the anchor)]
ISO 4032 M2.5 Nut from a parts library file (the small yellow arrow represents the anchor)

Contents:

	Part libraries
	The need for part libraries

	The problems

	Lightweight and self-contained part libraries

	Definition of a parts library

	party
	What is party ?

	Installing

	Parts libraries creation

	Parts libraries use

	Dependencies

	Parts libraries JSON format
	General

	The metadata section

	The generators section

	The rules section

	The data section

	Assembling the parts library JSON (PLJSON) files
	Roles

	Template files (T-PLJSON)

	Checks

	Using parts library JSON (PLJSON) files
	Create library CAD files

	Create the library documentation

	Use the parts in other projects

Indices and tables

	Index

	Module Index

	Search Page

Part libraries

The need for part libraries

Any hardware design project is expected to use an important number of standardized parts (screws, bolts, washers, bearings ...) and
of catalog/off-the-self components. The designer should not have to redesign these kinds of components that should be available and
chosen from part libraries.
Industrial CAD softwares include such libraries but unfortunately they are very expensive and not open source.

The problems

Part libraries, when available, are offered under a variety of neutral formats (STEP, IGES ...) and proprietary formats.
These files are usually heavyweight and not always in the format expected by the designer.
Moreover, these files contain no design intent information nor any means to functionally link them to other
parts, assemblies or systems in the project.

Lightweight and self-contained part libraries

The party package aims at providing a way to define parts libraries in text files, as well as the tools to use these text files
to generate the geometry and the means to attach the parts (anchors/constraints) in a hardware design project.
party can also generate the documentation in various formats for the parts libraries.
The parts library JSON files created and used by party are self-contained: all the required information, including the geometry and
‘anchoring’ logic is defined in the JSON file.

Definition of a parts library

In the context of the party Python package, a parts library is a JSON file where every part
can be defined by using the same set of fields.

party

What is party ?

party is a Python package that handles parts libraries creation and use.

Installing

Installing from the git repo:

git clone https://github.com/guillaume-florent/party
cd party
python setup.py install

Parts libraries creation

A parts library might contain a lot of duplicated information (e.g. all the M3 screws will have the data defined for their threading).
party provides standard mechanisms to avoid this duplication and to create the parts libraries JSON files from template files
where no data is duplicated.

The parts library files must also contain the part geometry creation logic. party deals with inserting the geometry creation defined
in a Python script into the parts library JSON file. As we will see, the geometry creation logic can also define anchors that allow to attach
the parts from the library in a wider project.

Parts libraries use

party can generate CAD files from the parts library JSON file (PLJSON)
and documentation in several formats for the parts library (HTML, PDF, ePub, Latex..) using Sphinx.

Dependencies

party depends on:

	ccad [https://github.com/guillaume-florent/ccad] (which itself depends on PythonOCC [http://www.pythonocc.org/])

	jinja2 [http://jinja.pocoo.org/]

Parts libraries JSON format

We must distinguish:

	the final parts library JSON files, that are to be publicly released for use in open hardware projects (PLJSON)

	the ‘template’ files (T-PLJSON) that are used to create PLJSON files. These ‘template’ files are only precursors for the PLJSON files.

The ‘template’ T-PLJSON files (see Assembling the parts library JSON (PLJSON) files) are used to make maintenance easier by:

	avoiding duplicated information

	allowing to keep the geometry and anchors creation logic in a separate Python file (more readable and easier to debug)

This paragraph describes the PLJSON file format.

General

A PLJSON file is made of 4 sections:

	the metadata section;

	the generators section;

	the rules section;

	the data section.

{
 "metadata": {},
 "generators": {},
 "rules": {},
 "data": {}
}

The metadata section

The metadata section must contain the following entries:

	name : the name of the parts library, without spaces (i.e. ‘iso4014-screws-library’ is ok, ‘iso4014 screws library’ is not). The characters used must be valid file name characters for the OS.

	description : a plain text description of the library. Spaces, punctuation marks and special characters (outside of JSON specific characters) are allowed.

	units : for each type of unit, the unit and the variables in that unit are defined:

For example:

{
 "metadata": {
 "units": {
 "length": ["mm", ["p", "b_ref_b", "b_ref_c", "b_ref_d", "c_max"....]],
 "force": ["N", []],
 "weight": ["g", []],
 "dimensionless": ["", ["threading", "generics", "grade_specifics"]]
 },

 }
}

defines ‘p’ as a length in mm (millimeters). ‘threading’ is data without a dimension nor a unit. A forces would be in newtons if one was defined, but none is.

	authors defines the list of library authors.

{
 "metadata": {
 ...
 "authors": ["Guillaume Florent", "Thomas Paviot", "Bernard Uguen"],
 ...
 }
}

	url : url is the well ... the url from which the file was downloaded

	license : license is the short name of the license of the library (e.g. GPLv3)

The metadata section may contain the following entries:

	nomenclature : the naming convention for the parts defined in the data section. The naming convention is defined as a Python expression that evaluates to a string.

For example (threading and l_max are parts data definition identifiers):

{
 "metadata": {
 ...
 "nomenclature": "'ISO4014_' + threading + 'x' + str(int(l_max))",
 ...
 }
 ...
}

The nomenclature can be used to check that every entry in the data section has an id that respects the nomenclature.

The generators section

The generators section contains one entry per potential geometry and anchors generator (every entry in the
data section is linked to a generator by its ‘generator’ field).

The value of each entry is a list a Python instructions using the ccad [https://github.com/guillaume-florent/ccad] package. Library creators are not expected to
directly write the Python instructions in the PLJSON file. Instead, the templates mechanism allows including a Python script in the final PLJSON file)

Here is an example generators section:

{
 ...
 "generators": {
 "iso4014_screw": [
 "r'''Generation script for ISO 4014 screw'''",
 "",
 "from ccad.model import prism, filling, ngon, cylinder, translated",
 "",
 "k_max = {{ k_max }}",
 "s_max = {{ s_max }}",
 "l_g_max = {{ l_g_max }}",
 "d_s_max = {{ d_s_max }}",
 "d_s_min = {{ d_s_min }}",
 "l_max = {{ l_max }}",
 "",
 "head = translated(prism(filling(ngon(2 / 3**.5 * s_max / 2., 6)), (0, 0, k_max)), (0., 0., -k_max))",
 "",
 "threaded = cylinder(d_s_min / 2., l_max)",
 "unthreaded = cylinder(d_s_max / 2., l_g_max)",
 "",
 "part = head + threaded + unthreaded",
 "anchors = {1: {'position': (0., 0., 0.),",
 " 'direction': (0., 0., -1.),",
 " 'dimension': d_s_max,",
 " 'description': 'screw head on plane'}}"
]
 },
...
}

Values in double curly bracket (e.g. {{ k_max }}) are placeholders for the values defined in each entry of the data section.

The rules section

The rules section contain a list of Python expressions that must all evaluate to True for
each entry of the data section for the PLJSON file to be considered correct.

Here is an example rules section:

{
 ...
 "rules": ["c_max > c_min", "d_a_max > d_a_min", "m_max > m_min", "s_max > s_min"],
 ...
}

The first rule in this example states that c_max must be strictly superior to c_min in each entry of the data section.

Any Python expression that evaluates to a boolean can be used.

The data section

The data section defines the possible values for each part contained in the parts library.

Every entry must contain the same set of fields. If this is not possible, another parts library must be created.

2 fields are compulsory : ‘generator’ (and its value must be in the ids defined in the generators section) and description.

The other fields are application/standard dependant.

{
 ...
 "data": {
 "ISO4014_M1.6_grade_Ax12": {
 "description": "M1.6 ISO 4014 screw, 12 mm, grade A",
 "generator": "iso4014_screw",
 "l_min": 11.65,
 "l_max": 12.35,
 "l_s_min": 1.2,
 "l_g_max": 3.0,
 "threading": "M1.6_grade_A",
 "generics": "M1.6_generics",
 "grade_specifics": "M1.6_grade_A_specifics",
 "p": 0.35,
 "b_ref_b": 9.0,
 "b_ref_c": 15.0,
 "b_ref_d": 28.0,
 "c_max": 0.25,
 "c_min": 0.1,
 "d_a": 2.0,
 "d_s_max": 1.6,
 "l_f_max": 0.6,
 "k_nominal": 1.1,
 "r_min": 0.1,
 "s_max": 3.2,
 "d_s_min": 1.46,
 "d_w_min": 2.27,
 "e": 3.41,
 "k_max": 1.225,
 "k_min": 0.975,
 "k_w_e_min": 0.68,
 "s_min": 3.02
 },
 "ISO4014_M1.6_grade_Ax16": {
 "description": "M1.6 ISO 4014 screw, 16 mm, grade A",
 "generator": "iso4014_screw",
 "l_min": 15.65,
 "l_max": 16.35,
 "l_s_min": 5.2,
 "l_g_max": 7.0,
 "threading": "M1.6_grade_A",
 "generics": "M1.6_generics",
 "grade_specifics": "M1.6_grade_A_specifics",
 "p": 0.35,
 "b_ref_b": 9.0,
 "b_ref_c": 15.0,
 "b_ref_d": 28.0,
 "c_max": 0.25,
 "c_min": 0.1,
 "d_a": 2.0,
 "d_s_max": 1.6,
 "l_f_max": 0.6,
 "k_nominal": 1.1,
 "r_min": 0.1,
 "s_max": 3.2,
 "d_s_min": 1.46,
 "d_w_min": 2.27,
 "e": 3.41,
 "k_max": 1.225,
 "k_min": 0.975,
 "k_w_e_min": 0.68,
 "s_min": 3.02
 },
 ...
 }
}

Assembling the parts library JSON (PLJSON) files

From the previous chapter (Parts libraries JSON format), it is obvious that a
PLJSON file contains duplicated information. This is intentional as it greatly simplifies
the exploitation of the PLJSON files.

Though, if we have 200 screws using the same threading, correcting an error for
one of the threading definition values will be a very repetitive task
as it will have to be corrected for each screw.

To simplify the creation of PLJSON files, party provides a set of so-called
‘standard-mechanisms’ (see Standard mechanisms).

Creating a PLJSON file might use any kind of logic and information sources as
long as the resulting PLJSON file conforms to the PLJSON file format (Parts libraries JSON format)
but these standard mechanisms are offered as a guided way to create the PLJSON files.

Roles

Library creators

Parts library creators are expected to know and use the T-PLJSON template files
possibilities and the accompanying Standard mechanisms

Library users

If your intention is only to use a parts library (PLJSON) file for a project,
you do not need to know about what follows.

Template files (T-PLJSON)

Parts library templates skeleton creation

The create_skeleton() function
of the party.library_creation module creates a starting point for a parts library
project based on template files.

Standard mechanisms

party provides the following mechanisms to create parts library (PLJSON) files from
part library template files:

	geometry and anchors code inclusion

	alias mechanism

	include mechanism (in development)

Geometry and anchors code inclusion

This mechanism is handled by the template_handle_generators()
function of the party.library_creation module.

It expects:

	a {{ generators }} tag as the value of the ‘generators’ id in the template file

{
 "metadata": {...},
 "generators": { {{ generators }} },
 "rules": {...},
 "data": {...}
}

	the geometry and anchors generation scripts in a generators subfolder of the folder containing the template file.

Alias mechanism

This mechanism is handled by the template_handle_aliases()
function of the party.library_creation module.

It expects:

	an alias entry in the template file where the aliases are defined

{
 "metadata": {...},
 "generators": { {{ generators }} },
 "rules": {...},
 "aliases": {
 "M1.6_grade_A": {
 "generics": "__alias__M1.6_generics",
 "grade_specifics": "__alias__M1.6_grade_A_specifics"
 },
 "M1.6_grade_B":{
 "generics": "__alias__M1.6_generics",
 "grade_specifics": "__alias__M1.6_grade_B_specifics"
 },
 "M1.6_generics": {
 "p": 0.35,
 "b_ref_b": 9.00,
 "b_ref_c": 15.00,
 "b_ref_d": 28.00,
 "c_max": 0.25,
 "c_min": 0.10,
 "d_a": 2.00,
 "d_s_max": 1.60,
 "l_f_max": 0.60,
 "k_nominal": 1.10,
 "r_min": 0.10,
 "s_max": 3.20
 },
 "M1.6_grade_A_specifics": {
 "d_s_min": 1.46,
 "d_w_min": 2.27,
 "e": 3.41,
 "k_max": 1.225,
 "k_min": 0.975,
 "k_w_e_min": 0.68,
 "s_min": 3.02
 },
 "M1.6_grade_B_specifics": {
 "d_s_min": 1.35,
 "d_w_min": 2.30,
 "e": 3.28,
 "k_max": 1.30,
 "k_min": 0.9,
 "k_w_e_min": 0.63,
 "s_min": 2.90
 },

 "M2_grade_A": {
 "generics": "__alias__M2_generics",
 "grade_specifics": "__alias__M2_grade_A_specifics"
 },
 "M2_grade_B":{
 "generics": "__alias__M2_generics",
 "grade_specifics": "__alias__M2_grade_B_specifics"
 },
 "M2_generics": {
 "p": 0.40,
 "b_ref_b": 10.00,
 "b_ref_c": 16.00,
 "b_ref_d": 29.00,
 "c_max": 0.25,
 "c_min": 0.10,
 "d_a": 2.60,
 "d_s_max": 2.00,
 "l_f_max": 0.80,
 "k_nominal": 1.40,
 "r_min": 0.10,
 "s_max": 4.00
 },
 "M2_grade_A_specifics": {
 "d_s_min": 1.86,
 "d_w_min": 3.07,
 "e": 4.32,
 "k_max": 1.525,
 "k_min": 1.275,
 "k_w_e_min": 0.89,
 "s_min": 3.82
 },
 "M2_grade_B_specifics": {
 "d_s_min": 1.75,
 "d_w_min": 2.95,
 "e": 4.18,
 "k_max": 1.6,
 "k_min": 1.2,
 "k_w_e_min": 0.84,
 "s_min": 3.70
 },
 "data": {...}
}

As illustrated by the example, aliases can be nested.

	the use of the defined aliases in the data section with an ‘__alias__’ prefix.

{
 "metadata": {...},
 "generators": { {{ generators }} },
 "rules": {...},
 "data": {
 "M1.6x12_A": {
 "description": "M1.6 ISO 4014 screw, 12 mm, grade A",
 "generator": "iso4014_screw",
 "l_min": 11.65,
 "l_max": 12.35,
 "l_s_min": 1.20,
 "l_g_max": 3.00,
 "threading": "__alias__M1.6_grade_A"
 },
 ...
 }
}

Include mechanism

This mechanism is handled by the template_handle_includes()
function of the party.library_creation module.

The include mechanism is currently in development.

Automation

The template_handle_includes()
function of the party.library_creation module analyzes the template file and uses the standard
mechanisms in the right order to create the parts library (PLJSON) file.

Checks

When the parts library JSON (PLJSON) file has been assembled, the party.library_checking module provides functions
which goal is to check that the PLJSON file complies with the PLJSON file specification and that the data is correct.

Constant data schema

The check_library_fields() function checks that the metadata for each entry in the
data section is the same.

Rules

The check_library_json_rules() function checks that the rules defined in
the rules section are respected in the data section of the PLJSON file.

Units definition

The check_library_units_definition() function checks that the units defined
in the metadata/units are properly defined and that each fields describing a part characteristic are present in the units definition.

Using parts library JSON (PLJSON) files

Now that we have a proper PLJSON file, what can we do with it?

Create library CAD files

The generate() function of the party.library_use
module will create ccad [https://github.com/guillaume-florent/ccad] scripts and CAD files
(depending on the optional arguments values) in subfolders of
the folder containing the parts library JSON (PLJSON) file.

Formats

From the parts library JSON (PLJSON) file, it is possible to create one CAD file
per entry in the data section of the PLJSON file in the following formats:

	STEP (AP203)

	STL

	HTML (to view the part in the browser using X3DOM)

Example

See the examples/ISO_4014/use_library_json.py script for an example of
how to generate the CAD files from the parts library (PLJSON) file.

#!/usr/bin/python
coding: utf-8

r"""Example use of the library.json file to create geometry_scripts and
cad files

"""

import logging
from os.path import join, dirname

from party.library_use import generate

logging.basicConfig(level=logging.DEBUG,
 format='%(asctime)s :: %(levelname)6s :: '
 '%(module)20s :: %(lineno)3d :: %(message)s')

generate(json_library_filepath=join(dirname(__file__), "library.json"),
 generate_steps=True,
 generate_stls=True,
 generate_htmls=True,
 generate_svgs=True)

Create the library documentation

The generate() function of the party.library_documentation
module will create HTML documentation of the parts library JSON (PLJSON) file in the folder passed as a parameter.

Formats

Currently, only HTML documentation generation is implemented.

Example

See the examples/create_documentation_example.py script for an example of
how to generate the documentation of the parts library (PLJSON) file.

#!/usr/bin/python
coding: utf-8

r"""Parts library documentation creation example"""

from os.path import dirname, join
import logging

from party.library_documentation import create_libraries_sphinx_sources

def main():
 r"""Main function for the parts library documentation example"""
 create_libraries_sphinx_sources(join(dirname(__file__), "../examples"),
 join(dirname(__file__), "../examples/doc"))

if __name__ == "__main__":
 logging.basicConfig(level=logging.DEBUG,
 format='%(asctime)s :: %(levelname)6s :: '
 '%(module)20s :: %(lineno)3d :: %(message)s')

 main()

Use the parts in other projects

Work in progress to use the parts library JSON (PLJSON) files in:

	a new (in development) CAD project definition structure based on acyclic directed graphs.

	other CAD softwares that offer scripting/plugin capabilities

Index

party

	party package
	Submodules

	party.library_checking module

	party.library_creation module

	party.library_documentation module

	party.library_use module

	party.scripts_checking module

	party.templating module

	Module contents

party package

Submodules

party.library_checking module

party.library_creation module

party.library_documentation module

party.library_use module

party.scripts_checking module

party.templating module

Module contents

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		party

 		Part libraries

 		The need for part libraries

 		The problems

 		Lightweight and self-contained part libraries

 		Definition of a parts library

 		party

 		What is party ?

 		Installing

 		Parts libraries creation

 		Parts libraries use

 		Dependencies

 		Parts libraries JSON format

 		General

 		The metadata section

 		The generators section

 		The rules section

 		The data section

 		Assembling the parts library JSON (PLJSON) files

 		Roles

 		Library creators

 		Library users

 		Template files (T-PLJSON)

 		Parts library templates skeleton creation

 		Standard mechanisms

 		Geometry and anchors code inclusion

 		Alias mechanism

 		Include mechanism

 		Automation

 		Checks

 		Constant data schema

 		Rules

 		Units definition

 		Using parts library JSON (PLJSON) files

 		Create library CAD files

 		Formats

 		Example

 		Create the library documentation

 		Formats

 		Example

 		Use the parts in other projects

_static/up.png

_static/up-pressed.png

