

Welcome to Parsley’s documentation!

Contents:

	Parsley Tutorial Part I: Basics and Syntax
	From Regular Expressions To Grammars

	Building A Calculator

	Parsley Tutorial Part II: Parsing Structured Data

	Parsley Tutorial Part III: Parsing Network Data
	Basic parsing

	Intermezzo: error reporting

	Composing senders and receivers

	Switching rules

	Extending Grammars and Inheritance

	TermL
	Creating Terms

	Parsing Terms

	Parsley Reference
	Basic syntax

	Python API

	Built-in Parsley Rules

Parsley Tutorial Part I: Basics and Syntax

From Regular Expressions To Grammars

Parsley is a pattern matching and parsing tool for Python programmers.

Most Python programmers are familiar with regular expressions, as
provided by Python’s re module. To use it, you provide a string that
describes the pattern you want to match, and your input.

For example:

>>> import re
>>> x = re.compile("a(b|c)d+e")
>>> x.match("abddde")
<_sre.SRE_Match object at 0x7f587af54af8>

You can do exactly the same sort of thing in Parsley:

>>> import parsley
>>> x = parsley.makeGrammar("foo = 'a' ('b' | 'c') 'd'+ 'e'", {})
>>> x("abdde").foo()
'e'

From this small example, a couple differences between regular
expressions and Parsley grammars can be seen:

Parsley Grammars Have Named Rules

A Parsley grammar can have many rules, and each has a name. The
example above has a single rule named foo. Rules can call each
other; calling rules in Parsley works like calling functions in
Python. Here is another way to write the grammar above:

foo = 'a' baz 'd'+ 'e'
baz = 'b' | 'c'

Parsley Grammars Are Expressions

Calling match for a regular expression returns a match object if the
match succeeds or None if it fails. Parsley parsers return the value
of last expression in the rule. Behind the scenes, Parsley turns each
rule in your grammar into Python methods. In pseudo-Python code, it
looks something like this:

def foo(self):
 match('a')
 self.baz()
 match_one_or_more('d')
 return match('e')

def baz(self):
 return match('b') or match('c')

The value of the last expression in the rule is what the rule
returns. This is why our example returns ‘e’.

The similarities to regular expressions pretty much end here,
though. Having multiple named rules composed of expressions makes for
a much more powerful tool, and now we’re going to look at some more
features that go even further.

Rules Can Embed Python Expressions

Since these rules just turn into Python code eventually, we can stick
some Python code into them ourselves. This is particularly useful for
changing the return value of a rule. The Parsley expression for this
is ->. We can also bind the results of expressions to variable names
and use them in Python code. So things like this are possible:

x = parsley.makeGrammar("""
foo = 'a':one baz:two 'd'+ 'e' -> (one, two)
baz = 'b' | 'c'
""", {})
print x("abdde").foo()

('a', 'b')

Literal match expressions like ‘a’ return the character they
match. Using a colon and a variable name after an expression is like
assignment in Python. As a result, we can use those names in a Python
expression - in this case, creating a tuple.

Another way to use Python code in a rule is to write custom tests for
matching. Sometimes it’s more convenient to write some Python that
determines if a rule matches than to stick to Parsley expressions
alone. For those cases, we can use ?(). Here, we use the builtin
rule anything to match a single character, then a Python predicate
to decide if it’s the one we want:

digit = anything:x ?(x in '0123456789') -> x

This rule digit will match any decimal digit. We need the -> x on
the end to return the character rather than the value of the predicate
expression, which is just True.

Repeated Matches Make Lists

Like regular expressions, Parsley supports repeating matches. You can
match an expression zero or more times with ‘* ‘, one or more times
with ‘+’, and a specific number of times with ‘{n, m}’ or just
‘{n}’. Since all expressions in Parsley return a value, these
repetition operators return a list containing each match they made.

x = parsley.makeGrammar("""
digit = anything:x ?(x in '0123456789') -> x
number = digit+
""", {})
print x("314159").number()

['3', '1', '4', '1', '5', '9']

The number rule repeatedly matches digit and collects the matches
into a list. This gets us part way to turning a string like 314159
into an integer. All we need now is to turn the list back into a
string and call int():

x = parsley.makeGrammar("""
digit = anything:x ?(x in '0123456789') -> x
number = digit+:ds -> int(''.join(ds))
""", {})
print x("8675309").number()

8675309

Collecting Chunks Of Input

If it seemed kind of strange to break our input string up into a list
and then reassemble it into a string using join, you’re not
alone. Parsley has a shortcut for this since it’s a common case: you
can use <> around a rule to make it return the slice of input it
consumes, ignoring the actual return value of the rule. For example:

x = parsley.makeGrammar("""
digit = anything:x ?(x in '0123456789')
number = <digit+>:ds -> int(ds)
""", {})
print x("11235").number()

11235

Here, <digit+> returns the string “11235”, since that’s the
portion of the input that digit+ matched. (In this case it’s the
entire input, but we’ll see some more complex cases soon.) Since it
ignores the list returned by digit+, leaving the -> x out of
digit doesn’t change the result.

Building A Calculator

Now let’s look at using these rules in a more complicated parser. We
have support for parsing numbers; let’s do addition, as well.

x = parsley.makeGrammar("""
digit = anything:x ?(x in '0123456789')
number = <digit+>:ds -> int(ds)
expr = number:left ('+' number:right -> left + right
 | -> left)
""", {})
print x("17+34").expr()
print x("18").expr()

51
18

Parentheses group expressions just like in Python. the ‘|‘ operator
is like or in Python - it short-circuits. It tries each expression
until it finds one that matches. For “17+34”, the number rule
matches “17”, then Parsley tries to match + followed by another
number. Since “+” and “34” are the next things in the input, those
match, and it then runs the Python expression left + right and
returns its value. For the input “18” it does the same, but + does
not match, so Parsley tries the next thing after |. Since this is
just a Python expression, the match succeeds and the number 18 is
returned.

Now let’s add subtraction:

digit = anything:x ?(x in '0123456789')
number = <digit+>:ds -> int(ds)
expr = number:left ('+' number:right -> left + right
 | '-' number:right -> left - right
 | -> left)

This will accept things like ‘5-4’ now.

Since parsing numbers is so common and useful, Parsley actually has
‘digit’ as a builtin rule, so we don’t even need to define it
ourselves. We’ll leave it out in further examples and rely on the
version Parsley provides.

Normally we like to allow whitespace in our expressions, so let’s add
some support for spaces:

number = <digit+>:ds -> int(ds)
ws = ' '*
expr = number:left ws ('+' ws number:right -> left + right
 |'-' ws number:right -> left - right
 | -> left)

Now we can handle “17 +34”, “2 - 1”, etc.

We could go ahead and add multiplication and division here (and
hopefully it’s obvious how that would work), but let’s complicate
things further and allow multiple operations in our expressions –
things like “1 - 2 + 3”.

There’s a couple different ways to do this. Possibly the easiest is to
build a list of numbers and operations, then do the math.:

x = parsley.makeGrammar("""
number = <digit+>:ds -> int(ds)
ws = ' '*
add = '+' ws number:n -> ('+', n)
sub = '-' ws number:n -> ('-', n)
addsub = ws (add | sub)
expr = number:left (addsub+:right -> right
 | -> left)
""", {})
print x("1 + 2 - 3").expr()

[('+', 2), ('-, 3)]

Oops, this is only half the job done. We’re collecting the operators
and values, but now we need to do the actual calculation. The easiest
way to do it is probably to write a Python function and call it from
inside the grammar.

So far we have been passing an empty dict as the second argument to
makeGrammar. This is a dict of variable bindings that can be used
in Python expressions in the grammar. So we can pass Python objects,
such as functions, this way:

def calculate(start, pairs):
 result = start
 for op, value in pairs:
 if op == '+':
 result += value
 elif op == '-':
 result -= value
 return result
x = parsley.makeGrammar("""
number = <digit+>:ds -> int(ds)
ws = ' '*
add = '+' ws number:n -> ('+', n)
sub = '-' ws number:n -> ('-', n)
addsub = ws (add | sub)
expr = number:left (addsub+:right -> calculate(left, right)
 | -> left)
""", {"calculate": calculate})
print x("4 + 5 - 6").expr()

3

Introducing this function lets us simplify even further: instead of
using addsub+, we can use addsub*, since calculate(left, [])
will return left – so now expr becomes:

expr = number:left addsub*:right -> calculate(left, right)

So now let’s look at adding multiplication and division. Here, we run
into precedence rules: should “4 * 5 + 6” give us 26, or 44? The
traditional choice is for multiplication and division to take
precedence over addition and subtraction, so the answer should
be 26. We’ll resolve this by making sure multiplication and division
happen before addition and subtraction are considered:

def calculate(start, pairs):
 result = start
 for op, value in pairs:
 if op == '+':
 result += value
 elif op == '-':
 result -= value
 elif op == '*':
 result *= value
 elif op == '/':
 result /= value
 return result
x = parsley.makeGrammar("""
number = <digit+>:ds -> int(ds)
ws = ' '*
add = '+' ws expr2:n -> ('+', n)
sub = '-' ws expr2:n -> ('-', n)
mul = '*' ws number:n -> ('*', n)
div = '/' ws number:n -> ('/', n)

addsub = ws (add | sub)
muldiv = ws (mul | div)

expr = expr2:left addsub*:right -> calculate(left, right)
expr2 = number:left muldiv*:right -> calculate(left, right)
""", {"calculate": calculate})
print x("4 * 5 + 6").expr()

26

Notice particularly that add, sub, and expr all call the
expr2 rule now where they called number before. This means
that all the places where a number was expected previously, a
multiplication or division expression can appear instead.

Finally let’s add parentheses, so you can override the precedence and
write “4 * (5 + 6)” when you do want 44. We’ll do this by adding a
value rule that accepts either a number or an expression in
parentheses, and replace existing calls to number with calls to
value.

def calculate(start, pairs):
 result = start
 for op, value in pairs:
 if op == '+':
 result += value
 elif op == '-':
 result -= value
 elif op == '*':
 result *= value
 elif op == '/':
 result /= value
 return result
x = parsley.makeGrammar("""
number = <digit+>:ds -> int(ds)
parens = '(' ws expr:e ws ')' -> e
value = number | parens
ws = ' '*
add = '+' ws expr2:n -> ('+', n)
sub = '-' ws expr2:n -> ('-', n)
mul = '*' ws value:n -> ('*', n)
div = '/' ws value:n -> ('/', n)

addsub = ws (add | sub)
muldiv = ws (mul | div)

expr = expr2:left addsub*:right -> calculate(left, right)
expr2 = value:left muldiv*:right -> calculate(left, right)
""", {"calculate": calculate})

print x("4 * (5 + 6) + 1").expr()

45

And there you have it: a four-function calculator with precedence and
parentheses.

Parsley Tutorial Part II: Parsing Structured Data

Now that you are familiar with the basics of Parsley syntax, let’s
look at a more realistic example: a JSON parser.

The JSON spec on http://json.org/ describes the format, and we can
adapt its description to a parser. We’ll write the Parsley rules in
the same order as the grammar rules in the right sidebar on the JSON
site, starting with the top-level rule, ‘object’.

object = ws '{' members:m ws '}' -> dict(m)

Parsley defines a builtin rule ws which consumes any spaces, tabs,
or newlines it can.

Since JSON objects are represented in Python as dicts, and dict
takes a list of pairs, we need a rule to collect name/value pairs
inside an object expression.

members = (pair:first (ws ',' pair)*:rest -> [first] + rest)
 | -> []

This handles the three cases for object contents: one, multiple, or
zero pairs. A name/value pair is separated by a colon. We use the
builtin rule spaces to consume any whitespace after the colon:

pair = ws string:k ws ':' value:v -> (k, v)

Arrays, similarly, are sequences of array elements, and are
represented as Python lists.

array = '[' elements:xs ws ']' -> xs
elements = (value:first (ws ',' value)*:rest -> [first] + rest) | -> []

Values can be any JSON expression.

value = ws (string | number | object | array
 | 'true' -> True
 | 'false' -> False
 | 'null' -> None)

Strings are sequences of zero or more characters between double
quotes. Of course, we need to deal with escaped characters as
well. This rule introduces the operator ~, which does negative
lookahead; if the expression following it succeeds, its parse will
fail. If the expression fails, the rest of the parse continues. Either
way, no input will be consumed.

string = '"' (escapedChar | ~'"' anything)*:c '"' -> ''.join(c)

This is a common pattern, so let’s examine it step by step. This will
match leading whitespace and then a double quote character. It then
matches zero or more characters. If it’s not an escapedChar (which
will start with a backslash), we check to see if it’s a double quote,
in which case we want to end the loop. If it’s not a double quote, we
match it using the rule anything, which accepts a single character
of any kind, and continue. Finally, we match the ending double quote
and return the characters in the string. We cannot use the <>
syntax in this case because we don’t want a literal slice of the input
– we want escape sequences to be replaced with the character they
represent.

It’s very common to use ~ for “match until” situations where you
want to keep parsing only until an end marker is found. Similarly,
~~ is positive lookahead: it succeed if its expression succeeds
but not consume any input.

The escapedChar rule should not be too surprising: we match a
backslash then whatever escape code is given.

escapedChar = '\\' (('"' -> '"') |('\\' -> '\\')
 |('/' -> '/') |('b' -> '\b')
 |('f' -> '\f') |('n' -> '\n')
 |('r' -> '\r') |('t' -> '\t')
 |('\'' -> '\'') | escapedUnicode)

Unicode escapes (of the form \u2603) require matching four hex
digits, so we use the repetition operator {}, which works like +
or * except taking either a {min, max} pair or simply a
{number} indicating the exact number of repetitions.

hexdigit = :x ?(x in '0123456789abcdefABCDEF') -> x
escapedUnicode = 'u' <hexdigit{4}>:hs -> unichr(int(hs, 16))

With strings out of the way, we advance to numbers, both integer and
floating-point.

number = spaces ('-' | -> ''):sign (intPart:ds (floatPart(sign ds)
 | -> int(sign + ds)))

Here we vary from the json.org description a little and move sign
handling up into the number rule. We match either an intPart
followed by a floatPart or just an intPart by itself.

digit = :x ?(x in '0123456789') -> x
digits = <digit*>
digit1_9 = :x ?(x in '123456789') -> x

intPart = (digit1_9:first digits:rest -> first + rest) | digit
floatPart :sign :ds = <('.' digits exponent?) | exponent>:tail
 -> float(sign + ds + tail)
exponent = ('e' | 'E') ('+' | '-')? digits

In JSON, multi-digit numbers cannot start with 0 (since that is
Javascript’s syntax for octal numbers), so intPart uses digit1_9
to exclude it in the first position.

The floatPart rule takes two parameters, sign and ds. Our
number rule passes values for these when it invokes floatPart,
letting us avoid duplication of work within the rule. Note that
pattern matching on arguments to rules works the same as on the string
input to the parser. In this case, we provide no pattern, just a name:
:ds is the same as anything:ds.

(Also note that our float rule cheats a little: it does not really
parse floating-point numbers, it merely recognizes them and passes
them to Python’s float builtin to actually produce the value.)

The full version of this parser and its test cases can be found in the
examples directory in the Parsley distribution.

Parsley Tutorial Part III: Parsing Network Data

This tutorial assumes basic knowledge of writing Twisted [http://twistedmatrix.com/trac/] TCP clients [http://twistedmatrix.com/documents/current/core/howto/clients.html] or
servers [http://twistedmatrix.com/documents/current/core/howto/servers.html].

Basic parsing

Parsing data that comes in over the network can be difficult due to that there
is no guarantee of receiving whole messages. Buffering is often complicated by
protocols switching between using fixed-width messages and delimiters for
framing. Fortunately, Parsley can remove all of this tedium.

With parsley.makeProtocol(), Parsley can generate a Twisted [http://twistedmatrix.com/trac/]
IProtocol [http://twistedmatrix.com/documents/current/api/twisted.internet.interfaces.IProtocol.html]-implementing class which will match incoming network data using
Parsley grammar rules. Before getting started with makeProtocol(), let’s
build a grammar for netstrings [http://cr.yp.to/proto/netstrings.txt]. The netstrings protocol is very simple:

4:spam,4:eggs,

This stream contains two netstrings: spam, and eggs. The data is
prefixed with one or more ASCII digits followed by a :, and suffixed with a
,. So, a Parsley grammar to match a netstring would look like:

nonzeroDigit = digit:x ?(x != '0')
digits = <'0' | nonzeroDigit digit*>:i -> int(i)

netstring = digits:length ':' <anything{length}>:string ',' -> string

makeProtocol() takes, in addition to a grammar, a factory for a “sender”
and a factory for a “receiver”. In the system of objects managed by the
ParserProtocol, the sender is in charge of writing data to the wire,
and the receiver has methods called on it by the Parsley rules. To demonstrate
it, here is the final piece needed in the Parsley grammar for netstrings:

receiveNetstring = netstring:string -> receiver.netstringReceived(string)

The receiver is always available in Parsley rules with the name receiver,
allowing Parsley rules to call methods on it.

When data is received over the wire, the ParserProtocol tries to
match the received data against the current rule. If the current rule requires
more data to finish matching, the ParserProtocol stops and waits
until more data comes in, then tries to continue matching. This repeats until
the current rule is completely matched, and then the ParserProtocol
starts matching any leftover data against the current rule again.

One specifies the current rule by setting a currentRule attribute on
the receiver, which the ParserProtocol looks at before doing any
parsing. Changing the current rule is addressed in the Switching rules section.

Since the ParserProtocol will never modify the currentRule
attribute itself, the default behavior is to keep using the same rule. Parsing
netstrings doesn’t require any rule changing, so, the default behavior of
continuing to use the same rule is fine.

Both the sender factory and receiver factory are constructed when the
ParserProtocol‘s connection is established. The sender factory is a
one-argument callable which will be passed the ParserProtocol‘s
Transport [http://twistedmatrix.com/documents/current/api/twisted.internet.interfaces.ITransport.html]. This allows the sender to send data over the transport. For
example:

class NetstringSender(object):
 def __init__(self, transport):
 self.transport = transport

 def sendNetstring(self, string):
 self.transport.write('%d:%s,' % (len(string), string))

The receiver factory is another one-argument callable which is passed the
constructed sender. The returned object must at least have
prepareParsing() and finishParsing() methods.
prepareParsing() is called with the ParserProtocol instance
when a connection is established (i.e. in the connectionMade of the
ParserProtocol) and finishParsing() is called when a
connection is closed (i.e. in the connectionLost of the
ParserProtocol).

Note

Both the receiver factory and its returned object’s prepareParsing()
are called at in the ParserProtocol‘s connectionMade method;
this separation is for ease of testing receivers.

To demonstrate a receiver, here is a simple receiver that receives netstrings
and echos the same netstrings back:

class NetstringReceiver(object):
 currentRule = 'receiveNetstring'

 def __init__(self, sender):
 self.sender = sender

 def prepareParsing(self, parser):
 pass

 def finishParsing(self, reason):
 pass

 def netstringReceived(self, string):
 self.sender.sendNetstring(string)

Putting it all together, the Protocol is constructed using the grammar, sender
factory, and receiver factory:

NetstringProtocol = makeProtocol(
 grammar, NetstringSender, NetstringReceiver)

The complete script is also available for download.

Intermezzo: error reporting

If an exception is raised from within Parsley during parsing, whether it’s due
to input not matching the current rule or an exception being raised from code
the grammar calls, the connection will be immediately closed. The traceback
will be captured as a Failure [http://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] and passed to the finishParsing()
method of the receiver.

At present, there is no way to recover from failure.

Composing senders and receivers

The design of senders and receivers is intentional to make composition easy: no
subclassing is required. While the composition is easy enough to do on your
own, Parsley provides a function: stack(). It takes a base factory
followed by zero or more wrappers.

Its use is extremely simple: stack(x, y, z) will return a callable suitable
either as a sender or receiver factory which will, when called with an
argument, return x(y(z(argument))).

An example of wrapping a sender factory:

class NetstringReversalWrapper(object):
 def __init__(self, wrapped):
 self.wrapped = wrapped

 def sendNetstring(self, string):
 self.wrapped.sendNetstring(string[::-1])

And then, constructing the Protocol:

NetstringProtocol = makeProtocol(
 grammar,
 stack(NetstringReversalWrapper, NetstringSender),
 NetstringReceiver)

A wrapper doesn’t need to call the same methods on the thing it’s wrapping.
Also note that in most cases, it’s important to forward unknown methods on to
the wrapped object. An example of wrapping a receiver:

class NetstringSplittingWrapper(object):
 def __init__(self, wrapped):
 self.wrapped = wrapped

 def netstringReceived(self, string):
 splitpoint = len(string) // 2
 self.wrapped.netstringFirstHalfReceived(string[:splitpoint])
 self.wrapped.netstringSecondHalfReceived(string[splitpoint:])

 def __getattr__(self, attr):
 return getattr(self.wrapped, attr)

The corresponding receiver and again, constructing the Protocol:

class SplitNetstringReceiver(object):
 currentRule = 'receiveNetstring'

 def __init__(self, sender):
 self.sender = sender

 def prepareParsing(self, parser):
 pass

 def finishParsing(self, reason):
 pass

 def netstringFirstHalfReceived(self, string):
 self.sender.sendNetstring(string)

 def netstringSecondHalfReceived(self, string):
 pass

NetstringProtocol = makeProtocol(
 grammar,
 stack(NetstringReversalWrapper, NetstringSender),

The complete script is also available for download.

Switching rules

As mentioned before, it’s possible to change the current rule. Imagine a
“netstrings2” protocol that looks like this:

3:foo,3;bar,4:spam,4;eggs,

That is, the protocol alternates between using : and using ; delimiting
data length and the data. The amended grammar would look something like this:

nonzeroDigit = digit:x ?(x != '0')
digits = <'0' | nonzeroDigit digit*>:i -> int(i)
netstring :delimiter = digits:length delimiter <anything{length}>:string ',' -> string

colon = digits:length ':' <anything{length}>:string ',' -> receiver.netstringReceived(':', string)
semicolon = digits:length ';' <anything{length}>:string ',' -> receiver.netstringReceived(';', string)

Changing the current rule is as simple as changing the currentRule
attribute on the receiver. So, the netstringReceived method could look like
this:

 def netstringReceived(self, delimiter, string):
 self.sender.sendNetstring(string)
 if delimiter == ':':
 self.currentRule = 'semicolon'
 else:
 self.currentRule = 'colon'

While changing the currentRule attribute can be done at any time, the
ParserProtocol only examines the currentRule at the
beginning of parsing and after a rule has finished matching. As a result, if
the currentRule changes, the ParserProtocol will wait until
the current rule is completely matched before switching rules.

The complete script is also available for download.

Extending Grammars and Inheritance

	warning:	Unfinished

Another feature taken from OMeta is grammar inheritance. We can
write a grammar with rules that override ones in a parent. If we load
the grammar from our calculator tutorial as Calc, we can extend it
with some constants:

from parsley import makeGrammar
import math
import calc
calcGrammarEx = """
value = super | constant
constant = 'pi' -> math.pi
 | 'e' -> math.e
"""
CalcEx = makeGrammar(calcGrammar, {"math": math}, extends=calc.Calc)

Invoking the rule super calls the rule value in Calc. If it
fails to match, our new value rule attempts to match a constant
name.

TermL

TermL (“term-ell”) is the Term Language, a small expression-based language for
representing arbitrary data in a simple structured format. It is ideal for
expressing abstract syntax trees (ASTs) and other kinds of primitive data
trees.

Creating Terms

>>> from terml.nodes import termMaker as t
>>> t.Term()
term('Term')

That’s it! We’ve created an empty term, Term, with nothing inside.

>>> t.Num(1)
term('Num(1)')
>>> t.Outer(t.Inner())
term('Outer(Inner)')

We can see that terms are not just namedtuple lookalikes. They have their
own internals and store data in a slightly different and more structured way
than a normal tuple.

Parsing Terms

Parsley can parse terms from streams. Terms can contain any kind of parseable
data, including other terms. Returning to the ubiquitous calculator example:

add = Add(:x, :y) -> x + y

Here this rule matches a term called Add which has two components, bind
those components to a couple of names (x and y), and return their sum. If
this rule were applied to a term like Add(3, 5), it would return 8.

Terms can be nested, too. Here’s an example that performs a slightly contrived
match on a negated term inside an addition:

add_negate = Add(:x, Negate(:y)) -> x - y

Parsley Reference

Basic syntax

	foo =:

	Define a rule named foo.

	expr1 expr2:

	Match expr1, and then match expr2 if it succeeds, returning the value of
expr2. Like Python’s and.

	expr1 | expr2:

	Try to match expr1 — if it fails, match expr2 instead. Like Python’s
or.

	expr*:

	Match expr zero or more times, returning a list of matches.

	expr+:

	Match expr one or more times, returning a list of matches.

	expr?:

	Try to match expr. Returns None if it fails to match.

	expr{n, m}:

	Match expr at least n times, and no more than m times.

	expr{n}:

	Match expr n times exactly.

	~expr:

	Negative lookahead. Fails if the next item in the input matches
expr. Consumes no input.

	~~expr:

	Positive lookahead. Fails if the next item in the input does not
match expr. Consumes no input.

	ruleName or ruleName(arg1 arg2 etc):

	Call the rule ruleName, possibly with args.

	'x':

	Match the literal character ‘x’.

	<expr>:

	Returns the string consumed by matching expr. Good for tokenizing rules.

	expr:name:

	Bind the result of expr to the local variable name.

	-> pythonExpression:

	Evaluate the given Python expression and return its result. Can be
used inside parentheses too!

	!(pythonExpression):

	Invoke a Python expression as an action.

	?(pythonExpression):

	Fail if the Python expression is false, Returns True otherwise.

	expr ^(CustomLabel):

	If the expr fails, the exception raised will contain CustomLabel.
Good for providing more context when a rule is broken.
CustomLabel can contain any character other than “(” and ”)”.

Comments like Python comments are supported as well, starting with #
and extending to the end of the line.

Python API

	
parsley.makeGrammar(source, bindings, name='Grammar', unwrap=False, extends=<function makeParser>, tracefunc=None)

	Create a class from a Parsley grammar.

	Parameters:	
	source – A grammar, as a string.

	bindings – A mapping of variable names to objects.

	name – Name used for the generated class.

	unwrap – If True, return a parser class suitable for
subclassing. If False, return a wrapper with the
friendly API.

	extends – The superclass for the generated parser class.

	tracefunc – A 3-arg function which takes a fragment of grammar
source, the start/end indexes in the grammar of this
fragment, and a position in the input. Invoked for
terminals and rule applications.

	
parsley.unwrapGrammar(w)

	Access the internal parser class for a Parsley grammar object.

	
parsley.term(termString)

	Build a TermL term tree from a string.

	
parsley.quasiterm(termString)

	Build a quasiterm from a string.

	
parsley.makeProtocol(source, senderFactory, receiverFactory, bindings=None, name='Grammar')

	Create a Twisted Protocol factory from a Parsley grammar.

	Parameters:	
	source – A grammar, as a string.

	senderFactory – A one-argument callable that takes a twisted
Transport and returns a sender.

	receiverFactory – A one-argument callable that takes the sender
returned by the senderFactory and returns a receiver.

	bindings – A mapping of variable names to objects which will be
accessible from python code in the grammar.

	name – The name used for the generated grammar class.

	Returns:	A nullary callable which will return an instance of
ParserProtocol.

	
parsley.stack(*wrappers)

	Stack some senders or receivers for ease of wrapping.

stack(x, y, z) will return a factory usable as a sender or receiver
factory which will, when called with a transport or sender as an argument,
return x(y(z(argument))).

Protocol parsing API

	
class ometa.protocol.ParserProtocol

	The Twisted Protocol subclass used for parsing stream protocols
using Parsley. It has two public attributes:

	
sender

	After the connection is established, this attribute will refer to the
sender created by the sender factory of the ParserProtocol.

	
receiver

	After the connection is established, this attribute will refer to the
receiver created by the receiver factory of the ParserProtocol.

It’s common to also add a factory attribute to the
ParserProtocol from its factory’s buildProtocol method, but
this isn’t strictly required or guaranteed to be present.

Subclassing or instantiating ParserProtocol is not necessary;
makeProtocol() is sufficient and requires less boilerplate.

	
class ometa.protocol.Receiver

	Receiver is not a real class but is used here for demonstration
purposes to indicate the required API.

	
currentRule

	ParserProtocol examines the currentRule attribute at the
beginning of parsing as well as after every time a rule has completely
matched. At these times, the rule with the same name as the value of
currentRule will be selected to start parsing the incoming stream
of data.

	
prepareParsing(parserProtocol)

	prepareParsing() is called after the ParserProtocol has
established a connection, and is passed the ParserProtocol
instance itself.

	Parameters:	parserProtocol – An instance of ProtocolParser.

	
finishParsing(reason)

	finishParsing() is called if an exception was raised during
parsing, or when the ParserProtocol has lost its connection,
whichever comes first. It will only be called once.

An exception raised during parsing can be due to incoming data that
doesn’t match the current rule or an exception raised calling python code
during matching.

	Parameters:	reason – A Failure [http://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] encapsulating the reason parsing has ended.

Senders do not have any required API as ParserProtocol will never call
methods on a sender.

Built-in Parsley Rules

	anything:

	Matches a single character from the input.

	letter:

	Matches a single ASCII letter.

	digit:

	Matches a decimal digit.

	letterOrDigit:

	Combines the above.

	end:

	Matches the end of input.

	ws:

	Matches zero or more spaces, tabs, or newlines.

	exactly(char):

	Matches the character char.

 Python Module Index

 o |
 p

 		 	

 		
 o	

 	[image: -]
 	
 ometa	

 	
 	
 ometa.protocol	

 		 	

 		
 p	

 	
 	
 parsley	

Index

 C
 | F
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U

C

 	
 	currentRule (ometa.protocol.Receiver attribute)

F

 	
 	finishParsing() (ometa.protocol.Receiver method)

M

 	
 	makeGrammar() (in module parsley)

 	
 	makeProtocol() (in module parsley)

O

 	
 	ometa.protocol (module)

P

 	
 	ParserProtocol (class in ometa.protocol)

 	
 	parsley (module)

 	prepareParsing() (ometa.protocol.Receiver method)

Q

 	
 	quasiterm() (in module parsley)

R

 	
 	Receiver (class in ometa.protocol)

 	
 	receiver (ometa.protocol.ParserProtocol attribute)

S

 	
 	sender (ometa.protocol.ParserProtocol attribute)

 	
 	stack() (in module parsley)

T

 	
 	term() (in module parsley)

U

 	
 	unwrapGrammar() (in module parsley)

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Parsley's documentation!

 		Parsley Tutorial Part I: Basics and Syntax

 		From Regular Expressions To Grammars

 		Parsley Grammars Have Named Rules

 		Parsley Grammars Are Expressions

 		Rules Can Embed Python Expressions

 		Repeated Matches Make Lists

 		Collecting Chunks Of Input

 		Building A Calculator

 		Parsley Tutorial Part II: Parsing Structured Data

 		Parsley Tutorial Part III: Parsing Network Data

 		Basic parsing

 		Intermezzo: error reporting

 		Composing senders and receivers

 		Switching rules

 		Extending Grammars and Inheritance

 		TermL

 		Creating Terms

 		Parsing Terms

 		Parsley Reference

 		Basic syntax

 		Python API

 		Protocol parsing API

 		Built-in Parsley Rules

_static/comment.png

_static/down.png

