
Parsl Documentation
Release 1.3.0-dev

The Parsl Team

Apr 26, 2024

CONTENTS

1 Why use Parsl? 3
1.1 Parsl is Python . 3
1.2 Parsl works everywhere . 3
1.3 Parsl is flexible . 3
1.4 Parsl handles data . 3
1.5 Parsl is fast . 3
1.6 Parsl is a community . 4

2 Indices and tables 273

Index 275

i

ii

Parsl Documentation, Release 1.3.0-dev

Parsl extends parallelism in Python beyond a single computer.

You can use Parsl just like Python’s parallel executors but across multiple cores and nodes. However, the real power of
Parsl is in expressing multi-step workflows of functions. Parsl lets you chain functions together and will launch each
function as inputs and computing resources are available.

import parsl
from parsl import python_app

Start Parsl on a single computer
parsl.load()

Make functions parallel by decorating them
@python_app
def f(x):

return x + 1

@python_app
def g(x):

return x * 2

These functions now return Futures, and can be chained
future = f(1)
assert future.result() == 2

future = g(f(1))
assert future.result() == 4

Start with the configuration quickstart to learn how to tell Parsl how to use your computing resource, see if a template
configuration for your supercomputer is already available, then explore the parallel computing patterns to determine
how to use parallelism best in your application.

Parsl is an open-source code, and available on GitHub: https://github.com/parsl/parsl/

CONTENTS 1

userguide/workflow.html#parallel-workflows-with-loops
quickstart.html#getting-started
userguide/configuring.html
userguide/configuring.html
userguide/workflow.html
https://github.com/parsl/parsl/

Parsl Documentation, Release 1.3.0-dev

2 CONTENTS

CHAPTER

ONE

WHY USE PARSL?

1.1 Parsl is Python

Everything about a Parsl program is written in Python. Parsl follows Python’s native parallelization approach and
functions, how they combine into workflows, and where they run are all described in Python.

1.2 Parsl works everywhere

Parsl can run parallel functions on a laptop and the world’s fastest supercomputers. Scaling from laptop to supercom-
puter is often as simple as changing the resource configuration. Parsl is tested on many of the top supercomputers.

1.3 Parsl is flexible

Parsl supports many kinds of applications. Functions can be pure Python or invoke external codes, be single- or multi-
threaded or GPUs.

1.4 Parsl handles data

Parsl has first-class support for workflows involving files. Data will be automatically moved between workers, even if
they reside on different filesystems.

1.5 Parsl is fast

Parsl was built for speed. Workflows can manage tens of thousands of parallel tasks and process thousands of tasks per
second.

3

userguide/configuring.html

Parsl Documentation, Release 1.3.0-dev

1.6 Parsl is a community

Parsl is part of a large, experienced community.

The Parsl Project was launched by researchers with decades of experience in workflows as part of a National Science
Foundation project to create sustainable research software.

The Parsl team is guided by the community through its GitHub, conversations on Slack, Bi-Weekly developer calls,
and engagement with the Workflows Community Initiative.

1.6.1 Table of Contents

Quickstart

To try Parsl now (without installing any code locally), experiment with our hosted tutorial notebooks on Binder.

Installation

Parsl is available on PyPI and conda-forge.

Parsl requires Python3.8+ and has been tested on Linux and macOS.

Installation using Pip

While pip can be used to install Parsl, we suggest the following approach for reliable installation when many Python
environments are available.

1. Install Parsl:

$ python3 -m pip install parsl

To update a previously installed parsl to a newer version, use: python3 -m pip install -U parsl

Installation using Conda

1. Create and activate a new conda environment:

$ conda create --name parsl_py38 python=3.8
$ source activate parsl_py38

2. Install Parsl:

$ python3 -m pip install parsl

or

$ conda config --add channels conda-forge
$ conda install parsl

The conda documentation provides instructions for installing conda on macOS and Linux.

4 Chapter 1. Why use Parsl?

https://join.slack.com/t/parsl-project/shared_invite/enQtMzg2MDAwNjg2ODY1LTUyYmViOTY1ZTU2ZDUwZTVmOWQ1M2IzZTE5MTM3YWZlM2RhM2IyZjk4ODgwNGRhOGE1MzJlNTYyYjNkYzIzZWE
https://workflows.community/
https://mybinder.org/v2/gh/Parsl/parsl-tutorial/master
https://pypi.org/project/parsl/
https://anaconda.org/conda-forge/parsl
https://docs.conda.io/projects/conda/en/latest/user-guide/install/

Parsl Documentation, Release 1.3.0-dev

Getting started

Parsl has much in common with Python’s native concurrency library, but unlocking Parsl’s potential requires under-
standing a few major concepts.

A Parsl program submits tasks to run on Workers distributed across remote computers. The instructions for these
tasks are contained within “apps” that users define using Python functions. Each remote computer (e.g., a node on a
supercomputer) has a single “Executor” which manages the workers. Remote resources available to Parsl are acquired
by a “Provider”, which places the executor on a system with a “Launcher”. Task execution is brokered by a “Data
Flow Kernel” that runs on your local system.

We describe these components briefly here, and link to more details in the User Guide.

Note: Parsl’s documentation includes templates for many supercomputers. Even though you may not need to write a
configuration from a blank slate, understanding the basic terminology below will be very useful.

Application Types

Parsl enables concurrent execution of Python functions (python_app) or external applications (bash_app). The logic
for both are described by Python functions marked with Parsl decorators. When decorated functions are invoked, they
run asynchronously on other resources. The result of a call to a Parsl app is an AppFuture, which behaves like a Python
Future.

The following example shows how to write a simple Parsl program with hello world Python and Bash apps.

import parsl
from parsl import python_app, bash_app

@python_app
def hello_python (message):

return 'Hello %s' % message

@bash_app
def hello_bash(message, stdout='hello-stdout'):

return 'echo "Hello %s"' % message

with parsl.load():
invoke the Python app and print the result
print(hello_python('World (Python)').result())

invoke the Bash app and read the result from a file
(continues on next page)

1.6. Parsl is a community 5

userguide/index.html
userguide/configuring.html

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

hello_bash('World (Bash)').result()

with open('hello-stdout', 'r') as f:
print(f.read())

Learn more about the types of Apps and their options here.

Executors

Executors define how Parsl deploys work on a computer. Many types are available, each with different advantages.

The HighThroughputExecutor, like Python’s ProcessPoolExecutor, creates workers that are separate Python
processes. However, you have much more control over how the work is deployed. You can dynamically set the number
of workers based on available memory and pin each worker to specific GPUs or CPU cores among other powerful
features.

Learn more about Executors here.

Execution Providers

Resource providers allow Parsl to gain access to computing power. For supercomputers, gaining resources often re-
quires requesting them from a scheduler (e.g., Slurm). Parsl Providers write the requests to requisition “Blocks” (e.g.,
supercomputer nodes) on your behalf. Parsl comes pre-packaged with Providers compatible with most supercomputers
and some cloud computing services.

Another key role of Providers is defining how to start an Executor on a remote computer. Often, this simply involves
specifying the correct Python environment and (described below) how to launch the Executor on each acquired com-
puters.

Learn more about Providers here.

Launchers

The Launcher defines how to spread workers across all nodes available in a Block. A common example is an
MPILauncher, which uses MPI’s mechanism for starting a single program on multiple computing nodes. Like
Providers, Parsl comes packaged with Launchers for most supercomputers and clouds.

Learn more about Launchers here.

Benefits of a Data-Flow Kernel

The Data-Flow Kernel (DFK) is the behind-the-scenes engine behind Parsl. The DFK determines when tasks can be
started and sends them to open resources, receives results, restarts failed tasks, propagates errors to dependent tasks,
and performs the many other functions needed to execute complex workflows. The flexibility and performance of the
DFK enables applications with intricate dependencies between tasks to execute on thousands of parallel workers.

Start with the Tutorial or the parallel patterns to see the complex types of workflows you can make with Parsl.

6 Chapter 1. Why use Parsl?

userguide/apps.html
userguide/execution.html#executors
userguide/execution.html#execution-providers
userguide/execution.html#launchers
userguide/workflow.html

Parsl Documentation, Release 1.3.0-dev

Starting Parsl

A Parsl script must contain the function definitions, resource configuration, and a call to parsl.load before launching
tasks. This script runs on a system that must stay on-line until all of your tasks complete but need not have much
computing power, such as the login node for a supercomputer.

The Config object holds definitions of Executors and the Providers and Launchers they rely on. An example which
launches 512 workers on 128 nodes of the Polaris supercomputer looks like

config = Config(
retires=1, # Restart task if they fail once
executors=[

HighThroughputExecutor(
available_accelerators=4, # Maps one worker per GPU
address=address_by_hostname(),
cpu_affinity="alternating", # Prevents thread contention
provider=PBSProProvider(

account="example",
worker_init="module load conda; conda activate parsl",
walltime="1:00:00",
queue="prod",
scheduler_options="#PBS -l filesystems=home:eagle", # Change if data on␣

→˓other filesystem
launcher=MpiExecLauncher(

bind_cmd="--cpu-bind", overrides="--depth=64 --ppn 1"
), # Ensures 1 manger per node and allows it to divide work to all 64␣

→˓cores
select_options="ngpus=4",
nodes_per_block=128,
cpus_per_node=64,

),
),

]
)

The documentation has examples for other supercomputers here.

The next step is to load the configuration

parsl.load(config)

You are then ready to use 10 PFLOPS of computing power through Python!

Tutorial

The best way to learn more about Parsl is by reviewing the Parsl tutorials. There are several options for following the
tutorial:

1. Use Binder to follow the tutorial online without installing or writing any code locally.

2. Clone the Parsl tutorial repository using a local Parsl installation.

3. Read through the online tutorial documentation.

1.6. Parsl is a community 7

userguide/configuring.html
https://mybinder.org/v2/gh/Parsl/parsl-tutorial/master
https://github.com/Parsl/parsl-tutorial
1-parsl-introduction.html

Parsl Documentation, Release 1.3.0-dev

Usage Tracking

To help support the Parsl project, we ask that users opt-in to anonymized usage tracking whenever possible. Usage
tracking allows us to measure usage, identify bugs, and improve usability, reliability, and performance. Only aggregate
usage statistics will be used for reporting purposes.

As an NSF-funded project, our ability to track usage metrics is important for continued funding.

You can opt-in by setting PARSL_TRACKING=true in your environment or by setting usage_tracking=True in the
configuration object (parsl.config.Config).

To read more about what information is collected and how it is used see Usage statistics collection.

For Developers

Parsl is an open source community that encourages contributions from users and developers. A guide for contributing
to Parsl is available in the Parsl GitHub repository.

The following instructions outline how to set up Parsl from source.

1. Download Parsl:

$ git clone https://github.com/Parsl/parsl

2. Install:

$ cd parsl
$ pip install .
(To install specific extra options from the source :)
$ pip install '.[<optional_package1>...]'

3. Use Parsl!

Parsl tutorial

Parsl is a native Python library that allows you to write functions that execute in parallel and tie them together with
dependencies to create workflows. Parsl wraps Python functions as “Apps” using the @python_app decorator, and
Apps that call external applications using the @bash_app decorator. Decorated functions can run in parallel when all
their inputs are ready.

For more comprehensive documentation and examples, please refer our documentation.

[]: import parsl
import os
from parsl.app.app import python_app, bash_app
from parsl.configs.local_threads import config

#parsl.set_stream_logger() # <-- log everything to stdout

print(parsl.__version__)

8 Chapter 1. Why use Parsl?

https://github.com/Parsl/parsl/blob/master/CONTRIBUTING.rst
https://github.com/Parsl/parsl
http://parsl.readthedocs.io/en/latest/

Parsl Documentation, Release 1.3.0-dev

Configuring Parsl

Parsl separates code and execution. To do so, it relies on a configuration model to describe the pool of resources to be
used for execution (e.g., clusters, clouds, threads).

We’ll come back to configuration later in this tutorial. For now, we configure this example to use a local pool of threads
to facilitate local parallel execution.

[]: parsl.load(config)

Apps

In Parsl an app is a piece of code that can be asynchronously executed on an execution resource (e.g., cloud, cluster, or
local PC). Parsl provides support for pure Python apps (python_app) and also command-line apps executed via Bash
(bash_app).

Python Apps

As a first example, let’s define a simple Python function that returns the string ‘Hello World!’. This function is made
into a Parsl App using the @python_app decorator.

[]: @python_app
def hello ():

return 'Hello World!'

print(hello().result())

As can be seen above, Apps wrap standard Python function calls. As such, they can be passed arbitrary arguments and
return standard Python objects.

[]: @python_app
def multiply(a, b):

return a * b

print(multiply(5, 9).result())

As Parsl apps are potentially executed remotely, they must contain all required dependencies in the function body. For
example, if an app requires the time library, it should import that library within the function.

[]: @python_app
def slow_hello ():

import time
time.sleep(5)
return 'Hello World!'

print(slow_hello().result())

1.6. Parsl is a community 9

https://en.wikipedia.org/wiki/Thread_computing

Parsl Documentation, Release 1.3.0-dev

Bash Apps

Parsl’s Bash app allows you to wrap execution of external applications from the command-line as you would in a Bash
shell. It can also be used to execute Bash scripts directly. To define a Bash app, the wrapped Python function must
return the command-line string to be executed.

As a first example of a Bash app, let’s use the Linux command echo to return the string ‘Hello World!’. This function
is made into a Bash App using the @bash_app decorator.

Note that the echo command will print ‘Hello World!’ to stdout. In order to use this output, we need to tell Parsl to
capture stdout. This is done by specifying the stdout keyword argument in the app function. The same approach can
be used to capture stderr.

[]: @bash_app
def echo_hello(stdout='echo-hello.stdout', stderr='echo-hello.stderr'):

return 'echo "Hello World!"'

echo_hello().result()

with open('echo-hello.stdout', 'r') as f:
print(f.read())

Passing data

Parsl Apps can exchange data as Python objects (as shown above) or in the form of files. In order to enforce dataflow
semantics, Parsl must track the data that is passed into and out of an App. To make Parsl aware of these dependencies,
the app function includes inputs and outputs keyword arguments.

We first create three test files named hello1.txt, hello2.txt, and hello3.txt containing the text “hello 1”, “hello 2”, and
“hello 3”.

[]: for i in range(3):
with open(os.path.join(os.getcwd(), 'hello-{}.txt'.format(i)), 'w') as f:

f.write('hello {}\n'.format(i))

We then write an App that will concentate these files using cat. We pass in the list of hello files (inputs) and
concatenate the text into a new file named all_hellos.txt (outputs). As we describe below we use Parsl File objects to
abstract file locations in the event the cat app is executed on a different computer.

[]: from parsl.data_provider.files import File

@bash_app
def cat(inputs=[], outputs=[]):

return 'cat {} > {}'.format(" ".join([i.filepath for i in inputs]), outputs[0])

concat = cat(inputs=[File(os.path.join(os.getcwd(), 'hello-0.txt')),
File(os.path.join(os.getcwd(), 'hello-1.txt')),
File(os.path.join(os.getcwd(), 'hello-2.txt'))],

outputs=[File(os.path.join(os.getcwd(), 'all_hellos.txt'))])

Open the concatenated file
with open(concat.outputs[0].result(), 'r') as f:

print(f.read())

10 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Futures

When a normal Python function is invoked, the Python interpreter waits for the function to complete execution and
returns the results. In case of long running functions, it may not be desirable to wait for completion. Instead, it
is preferable that functions are executed asynchronously. Parsl provides such asynchronous behavior by returning a
future in lieu of results. A future is essentially an object that allows Parsl to track the status of an asynchronous task so
that it may, in the future, be interrogated to find the status, results, exceptions, etc.

Parsl provides two types of futures: AppFutures and DataFutures. While related, these two types of futures enable
subtly different workflow patterns, as we will see.

AppFutures

AppFutures are the basic building block upon which Parsl scripts are built. Every invocation of a Parsl app returns an
AppFuture, which may be used to manage execution of the app and control the workflow.

Here we show how AppFutures are used to wait for the result of a Python App.

[]: @python_app
def hello ():

import time
time.sleep(5)
return 'Hello World!'

app_future = hello()

Check if the app_future is resolved, which it won't be
print('Done: {}'.format(app_future.done()))

Print the result of the app_future. Note: this
call will block and wait for the future to resolve
print('Result: {}'.format(app_future.result()))
print('Done: {}'.format(app_future.done()))

DataFutures

While AppFutures represent the execution of an asynchronous app, DataFutures represent the files it produces. Parsl’s
dataflow model, in which data flows from one app to another via files, requires such a construct to enable apps to validate
creation of required files and to subsequently resolve dependencies when input files are created. When invoking an app,
Parsl requires that a list of output files be specified (using the outputs keyword argument). A DataFuture for each file
is returned by the app when it is executed. Throughout execution of the app, Parsl will monitor these files to 1) ensure
they are created, and 2) pass them to any dependent apps.

[]: # App that echos an input message to an output file
@bash_app
def slowecho(message, outputs=[]):

return 'sleep 5; echo %s &> %s' % (message, outputs[0])

Call slowecho specifying the output file
hello = slowecho('Hello World!', outputs=[File(os.path.join(os.getcwd(), 'hello-world.txt
→˓'))])

(continues on next page)

1.6. Parsl is a community 11

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

The AppFuture's outputs attribute is a list of DataFutures
print(hello.outputs)

Also check the AppFuture
print('Done: {}'.format(hello.done()))

Print the contents of the output DataFuture when complete
with open(hello.outputs[0].result(), 'r') as f:

print(f.read())

Now that this is complete, check the DataFutures again, and the Appfuture
print(hello.outputs)
print('Done: {}'.format(hello.done()))

Data Management

Parsl is designed to enable implementation of dataflow patterns. These patterns enable workflows, in which the data
passed between apps manages the flow of execution, to be defined. Dataflow programming models are popular as they
can cleanly express, via implicit parallelism, the concurrency needed by many applications in a simple and intuitive
way.

Files

Parsl’s file abstraction abstracts access to a file irrespective of where the app is executed. When referencing a Parsl file
in an app (by calling filepath), Parsl translates the path to the file’s location relative to the file system on which the
app is executing.

[]: from parsl.data_provider.files import File

App that copies the contents of a file to another file
@bash_app
def copy(inputs=[], outputs=[]):

return 'cat %s &> %s' % (inputs[0], outputs[0])

Create a test file
open(os.path.join(os.getcwd(), 'cat-in.txt'), 'w').write('Hello World!\n')

Create Parsl file objects
parsl_infile = File(os.path.join(os.getcwd(), 'cat-in.txt'),)
parsl_outfile = File(os.path.join(os.getcwd(), 'cat-out.txt'),)

Call the copy app with the Parsl file
copy_future = copy(inputs=[parsl_infile], outputs=[parsl_outfile])

Read what was redirected to the output file
with open(copy_future.outputs[0].result(), 'r') as f:

print(f.read())

12 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Remote Files

The Parsl file abstraction can also represent remotely accessible files. In this case, you can instantiate a file object using
the remote location of the file. Parsl will implictly stage the file to the execution environment before executing any
dependent apps. Parsl will also translate the location of the file into a local file path so that any dependent apps can
access the file in the same way as a local file. Parsl supports files that are accessible via Globus, FTP, and HTTP.

Here we create a File object using a publicly accessible file with random numbers. We can pass this file to the
sort_numbers app in the same way we would a local file.

[]: from parsl.data_provider.files import File

@python_app
def sort_numbers(inputs=[]):

with open(inputs[0].filepath, 'r') as f:
strs = [n.strip() for n in f.readlines()]
strs.sort()
return strs

unsorted_file = File('https://raw.githubusercontent.com/Parsl/parsl-tutorial/master/
→˓input/unsorted.txt')

f = sort_numbers(inputs=[unsorted_file])
print (f.result())

Composing a workflow

Now that we understand all the building blocks, we can create workflows with Parsl. Unlike other workflow systems,
Parsl creates implicit workflows based on the passing of control or data between Apps. The flexibility of this model
allows for the creation of a wide range of workflows from sequential through to complex nested, parallel workflows.
As we will see below, a range of workflows can be created by passing AppFutures and DataFutures between Apps.

Sequential workflow

Simple sequential or procedural workflows can be created by passing an AppFuture from one task to another. The
following example shows one such workflow, which first generates a random number and then writes it to a file.

[]: # App that generates a random number
@python_app
def generate(limit):

from random import randint
return randint(1,limit)

App that writes a variable to a file
@bash_app
def save(variable, outputs=[]):

return 'echo %s &> %s' % (variable, outputs[0])

Generate a random number between 1 and 10
random = generate(10)
print('Random number: %s' % random.result())

(continues on next page)

1.6. Parsl is a community 13

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

Save the random number to a file
saved = save(random, outputs=[File(os.path.join(os.getcwd(), 'sequential-output.txt'))])

Print the output file
with open(saved.outputs[0].result(), 'r') as f:

print('File contents: %s' % f.read())

Parallel workflow

The most common way that Parsl Apps are executed in parallel is via looping. The following example shows how a
simple loop can be used to create many random numbers in parallel. Note that this takes 5 seconds to run (the time
needed for the longest delay), not the 15 seconds that would be needed if these generate functions were called and
returned in sequence.

[]: # App that generates a random number after a delay
@python_app
def generate(limit,delay):

from random import randint
import time
time.sleep(delay)
return randint(1,limit)

Generate 5 random numbers between 1 and 10
rand_nums = []
for i in range(5):

rand_nums.append(generate(10,i))

Wait for all apps to finish and collect the results
outputs = [i.result() for i in rand_nums]

Print results
print(outputs)

Parallel dataflow

Parallel dataflows can be developed by passing data between Apps. In this example we create a set of files, each with
a random number, we then concatenate these files into a single file and compute the sum of all numbers in that file.
The calls to the first App each create a file, and the second App reads these files and creates a new one. The final App
returns the sum as a Python integer.

[]: # App that generates a semi-random number between 0 and 32,767
@bash_app
def generate(outputs=[]):

return "echo $((RANDOM)) &> {}".format(outputs[0])

App that concatenates input files into a single output file
@bash_app
def concat(inputs=[], outputs=[]):

(continues on next page)

14 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

return "cat {0} > {1}".format(" ".join([i.filepath for i in inputs]), outputs[0])

App that calculates the sum of values in a list of input files
@python_app
def total(inputs=[]):

total = 0
with open(inputs[0], 'r') as f:

for l in f:
total += int(l)

return total

Create 5 files with semi-random numbers in parallel
output_files = []
for i in range (5):

output_files.append(generate(outputs=[File(os.path.join(os.getcwd(), 'random-{}.txt
→˓'.format(i)))]))

Concatenate the files into a single file
cc = concat(inputs=[i.outputs[0] for i in output_files],

outputs=[File(os.path.join(os.getcwd(), 'all.txt'))])

Calculate the sum of the random numbers
total = total(inputs=[cc.outputs[0]])
print (total.result())

Dynamic workflows with apps that generate other apps

Often there is a need for a workflow to launch apps based on results from prior apps, but it doesn’t know what those
apps are until some earlier apps are completed. For example, a pre-processing stage might be followed by n middle
stages, but the value of n is not known until pre-processing is complete; or the choice of app to run might depend on
the output of pre-processing.

Parsl’s join_app is designed to address this situation by allowing you to define sub-workflows. Rather than return a
value (like python_app) a join_app instead returns a future. When invoked, the join_app will not complete until
the future has completed and the return value will be the return value from the future.

The following example shows how recursive Fibonacci can be implemented using a join_app. Here the fibonacci
app makes calls to a seperate add app for each pair of numbers.

[]: from parsl.app.app import join_app, python_app

@python_app
def add(*args):

"""Add all of the arguments together. If no arguments, then
zero is returned (the neutral element of +)
"""
accumulator = 0
for v in args:

accumulator += v
return accumulator

(continues on next page)

1.6. Parsl is a community 15

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

@join_app
def fibonacci(n):

if n == 0:
return add()

elif n == 1:
return add(1)

else:
return add(fibonacci(n - 1), fibonacci(n - 2))

print(fibonacci(10).result())

Examples

Monte Carlo workflow

Many scientific applications use the Monte Carlo method to compute results.

One example is calculating 𝜋 by randomly placing points in a box and using the ratio that are placed inside the circle.

Specifically, if a circle with radius 𝑟 is inscribed inside a square with side length 2𝑟, the area of the circle is 𝜋𝑟2 and
the area of the square is (2𝑟)2.

Thus, if 𝑁 uniformly-distributed random points are dropped within the square, approximately 𝑁𝜋/4 will be inside the
circle.

Each call to the function pi() is executed independently and in parallel. The avg_three() app is used to compute
the average of the futures that were returned from the pi() calls.

The dependency chain looks like this:

App Calls pi() pi() pi()
\ | /

Futures a b c
\ | /

App Call avg_points()
|

Future avg_pi

[]: # App that estimates pi by placing points in a box
@python_app
def pi(num_points):

from random import random

inside = 0
for i in range(num_points):

x, y = random(), random() # Drop a random point in the box.
if x**2 + y**2 < 1: # Count points within the circle.

inside += 1

return (inside*4 / num_points)

App that computes the mean of three values
(continues on next page)

16 Chapter 1. Why use Parsl?

https://en.wikipedia.org/wiki/Monte_Carlo_method#History

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

@python_app
def mean(a, b, c):

return (a + b + c) / 3

Estimate three values for pi
a, b, c = pi(10**6), pi(10**6), pi(10**6)

Compute the mean of the three estimates
mean_pi = mean(a, b, c)

Print the results
print("a: {:.5f} b: {:.5f} c: {:.5f}".format(a.result(), b.result(), c.result()))
print("Average: {:.5f}".format(mean_pi.result()))

Execution and configuration

Parsl is designed to support arbitrary execution providers (e.g., PCs, clusters, supercomputers, clouds) and execution
models (e.g., threads, pilot jobs). The configuration used to run the script tells Parsl how to execute apps on the desired
environment. Parsl provides a high level abstraction, called a Block, for describing the resource configuration for a
particular app or script.

Information about the different execution providers and executors supported is included in the Parsl documentation.

So far in this tutorial, we’ve used a built-in configuration for running with threads. Below, we will illustrate how to
create configs for different environments.

Local execution with threads

As we saw above, we can configure Parsl to execute apps on a local thread pool. This is a good way to parallelize
execution on a local PC. The configuration object defines the executors that will be used as well as other options such
as authentication method (e.g., if using SSH), checkpoint files, and executor specific configuration. In the case of
threads we define the maximum number of threads to be used.

[]: from parsl.config import Config
from parsl.executors.threads import ThreadPoolExecutor

local_threads = Config(
executors=[

ThreadPoolExecutor(
max_threads=8,
label='local_threads'

)
]

)

1.6. Parsl is a community 17

https://parsl.readthedocs.io/en/latest/userguide/execution.html

Parsl Documentation, Release 1.3.0-dev

Local execution with pilot jobs

We can also define a configuration that uses Parsl’s HighThroughputExecutor. In this mode, pilot jobs are used to
manage the submission. Parsl creates an interchange to manage execution and deploys one or more workers to execute
tasks. The following config will instantiate this infrastructure locally, it can be extended to include a remote provider
(e.g., the Cori or Theta supercomputers) for execution.

[]: from parsl.providers import LocalProvider
from parsl.channels import LocalChannel
from parsl.config import Config
from parsl.executors import HighThroughputExecutor

local_htex = Config(
executors=[

HighThroughputExecutor(
label="htex_Local",
worker_debug=True,
cores_per_worker=1,
provider=LocalProvider(

channel=LocalChannel(),
init_blocks=1,
max_blocks=1,

),
)

],
strategy=None,

)

[]: parsl.clear()
#parsl.load(local_threads)
parsl.load(local_htex)

[]: @bash_app
def generate(outputs=[]):

return "echo $((RANDOM)) &> {}".format(outputs[0])

@bash_app
def concat(inputs=[], outputs=[]):

return "cat {0} > {1}".format(" ".join(i.filepath for i in inputs), outputs[0])

@python_app
def total(inputs=[]):

total = 0
with open(inputs[0], 'r') as f:

for l in f:
total += int(l)

return total

Create 5 files with semi-random numbers
output_files = []
for i in range (5):

output_files.append(generate(outputs=[File(os.path.join(os.getcwd(), 'random-%s.txt
(continues on next page)

18 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

→˓' % i))]))

Concatenate the files into a single file
cc = concat(inputs=[i.outputs[0] for i in output_files],

outputs=[File(os.path.join(os.getcwd(), 'combined.txt'))])

Calculate the sum of the random numbers
total = total(inputs=[cc.outputs[0]])

print (total.result())

User guide

Overview

Parsl is designed to enable straightforward parallelism and orchestration of asynchronous tasks into dataflow-based
workflows, in Python. Parsl manages the concurrent execution of these tasks across various computation resources,
from laptops to supercomputers, scheduling each task only when its dependencies (e.g., input data dependencies) are
met.

Developing a Parsl program is a two-step process:

1. Define Parsl apps by annotating Python functions to indicate that they can be executed concurrently.

2. Use standard Python code to invoke Parsl apps, creating asynchronous tasks and adhering to dependencies defined
between apps.

We aim in this section to provide a mental model of how Parsl programs behave. We discuss how Parsl programs create
concurrent tasks, how tasks communicate, and the nature of the environment on which Parsl programs can perform
operations. In each case, we compare and contrast the behavior of Python programs that use Parsl constructs with
those of conventional Python programs.

Note: The behavior of a Parsl program can vary in minor respects depending on the Executor used (see Execution).
We focus here on the behavior seen when using the recommended parsl.executors.HighThroughputExecutor
(HTEX).

Parsl and Concurrency

Any call to a Parsl app creates a new task that executes concurrently with the main program and any other task(s)
that are currently executing. Different tasks may execute on the same nodes or on different nodes, and on the same or
different computers.

The Parsl execution model thus differs from the Python native execution model, which is inherently sequential. A
Python program that does not contain Parsl constructs, or make use of other concurrency mechanisms, executes state-
ments one at a time, in the order that they appear in the program. This behavior is illustrated in the following figure,
which shows a Python program on the left and, on the right, the statements executed over time when that program is
run, from top to bottom. Each time that the program calls a function, control passes from the main program (in black)
to the function (in red). Execution of the main program resumes only after the function returns.

1.6. Parsl is a community 19

Parsl Documentation, Release 1.3.0-dev

In contrast, the Parsl execution model is inherently concurrent. Whenever a program calls an app, a separate thread
of execution is created, and the main program continues without pausing. Thus in the example shown in the figure
below. There is initially a single task: the main program (black). The first call to double creates a second task (red)
and the second call to double creates a third task (orange). The second and third task terminate as the function that
they execute returns. (The dashed lines represent the start and finish of the tasks). The calling program will only block
(wait) when it is explicitly told to do so (in this case by calling result())

Note: Note: We talk here about concurrency rather than parallelism for a reason. Two activities are concurrent if they
can execute at the same time. Two activities occur in parallel if they do run at the same time. If a Parsl program creates
more tasks that there are available processors, not all concurrent activities may run in parallel.

Parsl and Execution

We have now seen that Parsl tasks are executed concurrently alongside the main Python program and other Parsl tasks.
We now turn to the question of how and where are those tasks executed. Given the range of computers on which parallel
programs may be executed, Parsl allows tasks to be executed using different executors (parsl.executors). Executors
are responsible for taking a queue of tasks and executing them on local or remote resources.

We briefly describe two of Parsl’s most commonly used executors. Other executors are described in Execution.

The parsl.executors.HighThroughputExecutor (HTEX) implements a pilot job model that enables fine-grain
task execution using across one or more provisioned nodes. HTEX can be used on a single node (e.g., a laptop) and
will make use of multiple processes for concurrent execution. As shown in the following figure, HTEX uses Parsl’s
provider abstraction (parsl.providers) to communicate with a resource manager (e.g., batch scheduler or cloud

20 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

API) to provision a set of nodes (e.g., Parsl will use Slurm’s qsub command to request nodes on a Slurm cluster) for the
duration of execution. HTEX deploys a lightweight worker agent on the nodes which subsequently connects back to
the main Parsl process. Parsl tasks are then sent from the main program to the connected workers for execution and the
results are sent back via the same mechanism. This approach has a number of advantages over other methods: it avoids
long job scheduler queue delays by acquiring one set of resources for the entire program and it allows for scheduling
of many tasks on individual nodes.

The parsl.executors.ThreadPoolExecutor allows tasks to be executed on a pool of locally accessible threads.
As execution occurs on the same computer, on a pool of threads forked from the main program, the tasks share memory
with one another (this is discussed further in the following sections).

Parsl and Communication

Parsl tasks typically need to communicate in order to perform useful work. Parsl provides for two forms of communica-
tion: by parameter passing and by file passing. As described in the next section, Parsl programs may also communicate
by interacting with shared filesystems and services its environment.

Parameter Passing

The figure above illustrates communication via parameter passing. The call double(3) to the app double in the main
program creates a new task and passes the parameter value, 3, to that new task. When the task completes execution,
its return value, 6, is returned to the main program. Similarly, the second task is passed the value 5 and returns the
value 10. In this case, the parameters passed are simple primitive types (i.e., integers); however, complex objects (e.g.,
Numpy Arrays, Pandas DataFrames, custom objects) can also be passed to/from tasks.

1.6. Parsl is a community 21

Parsl Documentation, Release 1.3.0-dev

File Passing

Parsl supports communication via files in both Bash apps and Python apps. Files may be used in place of parameter
passing for many reasons, such as for apps are designed to support files, when data to be exchanged are large, or when
data cannot be easily serialized into Python objects. As Parsl tasks may be executed on remote nodes, without shared
file systems, Parsl offers a Parsl parsl.data_provider.files.File construct for location-independent reference
to files. Parsl will translate file objects to worker-accessible paths when executing dependent apps. Parsl is also able to
transfer files in, out, and between Parsl apps using one of several methods (e.g., FTP, HTTP(S), Globus and rsync). To
accommodate the asynchronous nature of file transfer, Parsl treats data movement like a Parsl app, adding a dependency
to the execution graph and waiting for transfers to complete before executing dependent apps. More information is
provided in Passing Python objects).

Futures

Communication via parameter and file passing also serves a second purpose, namely synchronization. As we discuss
in more detail in Futures, a call to an app returns a special object called a future that has a special unassigned state
until such time as the app returns, at which time it takes the return value. (In the example program, two futures are thus
created, d1 and d2.) The AppFuture function result() blocks until the future to which it is applied takes a value. Thus
the print statement in the main program blocks until both child tasks created by the calls to the double app return. The
following figure captures this behavior, with time going from left to right rather than top to bottom as in the preceding
figure. Task 1 is initially active as it starts Tasks 2 and 3, then blocks as a result of calls to d1.result() and d2.result(),
and when those values are available, is active again.

The Parsl Environment

Regular Python and Parsl-enhanced Python differ in terms of the environment in which code executes. We use the term
environment here to refer to the variables and modules (the memory environment), the file system(s) (the file system
environment), and the services (the service environment) that are accessible to a function.

An important question when it comes to understanding the behavior of Parsl programs is the environment in which this
new task executes: does it have the same or different memory, file system, or service environment as its parent task or any
other task? The answer, depends on the executor used, and (in the case of the file system environment) where the task
executes. Below we describe behavior for the most commonly used parsl.executors.HighThroughputExecutor
which is representative of all Parsl executors except the parsl.executors.ThreadPoolExecutor.

22 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Memory environment

In Python, the variables and modules that are accessible to a function are defined by Python scoping rules, by which
a function has access to both variables defined within the function (local variables) and those defined outside the
function (global variables). Thus in the following code, the print statement in the print_answer function accesses the
global variable “answer”, and we see as output “the answer is 42.”

answer = 42

def print_answer():
print('the answer is', answer)

print_answer()

In Parsl (except when using the parsl.executors.ThreadPoolExecutor) a Parsl app is executed in a distinct envi-
ronment that only has access to local variables associated with the app function. Thus, if the program above is executed
with say the parsl.executors.HighThroughputExecutor, will print “the answer is 0” rather than “the answer is
42,” because the print statement in provide_answer does not have access to the global variable that has been assigned
the value 42. The program will run without errors when using the parsl.executors.ThreadPoolExecutor.

Similarly, the same scoping rules apply to import statements, and thus the following program will run without errors
with the parsl.executors.ThreadPoolExecutor, but raise errors when run with any other executor, because the
return statement in ambiguous_double refers to a variable (factor) and a module (random) that are not known to the
function.

import random
factor = 5

@python_app
def ambiguous_double(x):

return x * random.random() * factor

print(ambiguous_double(42))

To allow this program to run correctly with all Parsl executors, the random library must be imported within the app,
and the factor variable must be passed as an argument, as follows.

import random
factor = 5

@python_app
def good_double(factor, x):

import random
return x * random.random() * factor

print(good_double(factor, 42))

1.6. Parsl is a community 23

Parsl Documentation, Release 1.3.0-dev

File system environment

In a regular Python program the environment that is accessible to a Python program also includes the file system(s) of
the computer on which it is executing. Thus in the following code, a value written to a file “answer.txt” in the current
directory can be retrieved by reading the same file, and the print statement outputs “the answer is 42.”

def print_answer_file():
with open('answer.txt','r') as f:

print('the answer is', f.read())

with open('answer.txt','w') as f:
f.write('42')
f.close()

print_answer_file()

The question of which file system environment is accessible to a Parsl app depends on where the app executes. If two
tasks run on nodes that share a file system, then those tasks (e.g., tasks A and B in the figure below, but not task C)
share a file system environment. Thus the program above will output “the answer is 42” if the parent task and the child
task run on nodes 1 and 2, but not if they run on nodes 2 and 3.

Service Environment

We use the term service environment to refer to network services that may be accessible to a Parsl program, such as a
Redis server or Globus data management service. These services are accessible to any task.

24 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Environment Summary

As we summarize in the table, if tasks execute with the parsl.executors.ThreadPoolExecutor, they share the
memory and file system environment of the parent task. If they execute with any other executor, they have a separate
memory environment, and may or may not share their file system environment with other tasks, depending on where
they are placed. All tasks typically have access to the same network services.

Share memory en-
vironment with par-
ent/other tasks

Share file system
environment with
parent

Share file system environ-
ment with other tasks

Share service
environment with
other tasks

Python
without
Parsl

Yes Yes N/A N/A

Parsl
Thread-
PoolEx-
ecutor

Yes Yes Yes N/A

Other
Parsl
executors

No If executed on the
same node with file
system access

If tasks are executed on the
same node or with access to
the same file system

N/A

Apps

An App defines a computation that will be executed asynchronously by Parsl. Apps are Python functions marked with
a decorator which designates that the function will run asynchronously and cause it to return a Future instead of the
result.

Apps can be one of three types of functions, each with their own type of decorator

• @python_app: Most Python functions

• @bash_app: A Python function which returns a command line program to execute

• @join_app: A function which launches one or more new Apps

The intricacies of Python and Bash apps are documented below. Join apps are documented in a later section (see Join
Apps).

Python Apps

@python_app
def hello_world(name: str) -> str:

return f'Hello, {name}!'

print(hello_world('user').result())

Python Apps run Python functions. The code inside a function marked by @python_app is what will be executed either
locally or on a remote system.

Most functions can run without modification. Limitations on the content of the functions and their inputs/outputs are
described below.

1.6. Parsl is a community 25

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future

Parsl Documentation, Release 1.3.0-dev

Rules for Function Contents

Parsl apps have access to less information from the script that defined them than functions run via Python’s native
multiprocessing libraries. The reason is that functions are executed on workers that lack access to the global variables
in the script that defined them. Practically, this means

1. Functions may need to re-import libraries. Place the import statements that define functions or classes inside the
function. Type annotations should not use libraries defined in the function.

import numpy as np

BAD: Assumes library has been imported
@python_app
def linear_model(x: list[float] | np.ndarray, m: float, b: float):

return np.multiply(x, m) + b

GOOD: Function imports libraries on remote worker
@python_app
def linear_model(x: list[float] | 'np.ndarray', m: float, b: float):

import numpy as np
return np.multiply(x, m) + b

2. Global variables are inaccessible. Functions should not use variables defined outside the function. Likewise,
do not assume that variables created inside the function are visible elsewhere.

BAD: Uses global variables
global_var = {'a': 0}

@python_app
def counter_func(string: str, character: str = 'a'):

global_var[character] += string.count(character) # `global_var` will not be␣
→˓accessible

GOOD
@python_app
def counter_func(string: str, character: str = 'a'):

return {character: string.count(character)}

for ch, co in good_global('parsl', 'a').result().items():
global_var[ch] += co

3. Outputs are only available through return statements. Parsl does not support generator functions (i.e., those
which use yield statements) and any changes to input arguments will not be communicated.

BAD: Assumes changes to inputs will be communicated
@python_app
def append_to_list(input_list: list, new_val):

input_list.append(new_val)

GOOD: Changes to inputs are returned
@python_app
def append_to_list(input_list: list, new_val) -> list:

(continues on next page)

26 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

input_list.append(new_val)
return input_list

Functions from Modules

The above rules assume that the user is running the example code from a standalone script or Jupyter Notebook.
Functions that are defined in an installed Python module do not need to abide by these guidelines, as they are sent to
workers differently than functions defined locally within a script.

Directly convert a function from a library to a Python App by passing it as an argument to python_app:

from module import function
function_app = python_app(function)

function_app will act as Parsl App function of function.

It is also possible to create wrapped versions of functions, such as ones with pinned arguments. Parsl just requires first
calling update_wrapped() with the wrapped function to include attributes from the original function (e.g., its name).

from functools import partial, update_wrapped
import numpy as np
my_max = partial(np.max, axis=0, keepdims=True)
my_max = update_wrapper(my_max, max) # Copy over the names
my_max_app = python_app(my_max)

The above example is equivalent to creating a new function (as below)

@python_app
def my_max_app(*args, **kwargs):

import numpy as np
return np.max(*args, keepdims=True, axis=0, **kwargs)

Inputs and Outputs

Python apps may be passed any Python type as an input and return any Python type, with a few exceptions. There are
several classes of allowed types, each with different rules.

• Python Objects: Any Python object that can be saved with pickle or dill can be used as an import or output. All
primitive types (e.g., floats, strings) are valid as are many complex types (e.g., numpy arrays).

• Files: Pass files as inputs as a File object. Parsl can transfer them to a remote system and update the File object
with a new path. Access the new path with File.filepath attribute.

@python_app
def read_first_line(x: File):

with open(x.filepath, 'r') as fp:
return fp.readline()

Files can also be outputs of a function, but only through the outputs kwargs (described below).

• Parsl Futures. Functions can receive results from other Apps as Parsl Future objects. Parsl will establish a
dependency on the App(s) which created the Future(s) and start executing as soon as the preceding ones complete.

1.6. Parsl is a community 27

https://docs.python.org/3/library/pickle.html
https://dill.readthedocs.io/

Parsl Documentation, Release 1.3.0-dev

@python_app
def capitalize(x: str):

return x.upper()

input_file = File('text.txt')
first_line_future = read_first_line(input_file)
capital_future = capitalize(first_line_future)
print(capital_future.result())

See the section on Futures for more details.

Learn more about the types of data allowed in the data section.

Note: Any changes to mutable input arguments will be ignored.

Special Keyword Arguments

Some keyword arguments to the Python function are treated differently by Parsl

1. inputs: (list) This keyword argument defines a list of input Futures or files. Parsl will wait for the results of any
listed Futures to be resolved before executing the app. The inputs argument is useful both for passing files as
arguments and when one wishes to pass in an arbitrary number of futures at call time.

@python_app()
def map_app(x):

return x * 2

@python_app()
def reduce_app(inputs = ()):

return sum(inputs)

map_futures = [map_app(x) for x in range(3)]
reduce_future = reduce_app(inputs=map_futures)

print(reduce_future.result()) # 0 + 1 * 2 + 2 * 2 = 6

2. outputs: (list) This keyword argument defines a list of files that will be produced by the app. For each file thus
listed, Parsl will create a future, track the file, and ensure that it is correctly created. The future can then be
passed to other apps as an input argument.

@python_app()
def write_app(message, outputs=()):

"""Write a single message to every file in outputs"""
for path in outputs:

with open(path, 'w') as fp:
print(message, file=fp)

to_write = [
File(Path(tmpdir) / 'output-0.txt'),
File(Path(tmpdir) / 'output-1.txt')

]
(continues on next page)

28 Chapter 1. Why use Parsl?

futures.html
data.html

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

write_app('Hello!', outputs=to_write).result()
for path in to_write:

with open(path) as fp:
assert fp.read() == 'Hello!\n'

3. walltime: (int) This keyword argument places a limit on the app’s runtime in seconds. If the walltime is exceed,
Parsl will raise an parsl.app.errors.AppTimeout exception.

Outputs

A Python app returns an AppFuture (see Futures) as a proxy for the results that will be returned by the app once it is
executed. This future can be inspected to obtain task status; and it can be used to wait for the result, and when complete,
present the output Python object(s) returned by the app. In case of an error or app failure, the future holds the exception
raised by the app.

Options for Python Apps

The python_app() decorator has a few options which controls how Parsl executes all tasks run with that application.
For example, you can ensure that Parsl caches the results of the function and executes tasks on specific sites.

@python_app(cache=True, executors=['gpu'])
def expensive_gpu_function():

...
return

See the Parsl documentation for full details.

Limitations

To summarize, any Python function can be made a Python App with a few restrictions

1. Functions should act only on defined input arguments. That is, they should not use script-level or global variables.

2. Functions must explicitly import any required modules if they are defined in script which starts Parsl.

3. Parsl uses dill and pickle to serialize Python objects to/from apps. Therefore, Parsl require that all input and
output objects can be serialized by dill or pickle. See Addressing SerializationError.

4. STDOUT and STDERR produced by Python apps remotely are not captured.

Bash Apps

@bash_app
def echo(

name: str,
stdout=parsl.AUTO_LOGNAME # Requests Parsl to return the stdout

):
return f'echo "Hello, {name}!"'

future = echo('user')
(continues on next page)

1.6. Parsl is a community 29

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

future.result() # block until task has completed

with open(future.stdout, 'r') as f:
print(f.read())

A Parsl Bash app executes an external application by making a command-line execution. Parsl will execute the string
returned by the function as a command-line script on a remote worker.

Rules for Function Contents

Bash Apps follow the same rules as Python Apps. For example, imports may need to be inside functions and global
variables will be inaccessible.

Inputs and Outputs

Bash Apps can use the same kinds of inputs as Python Apps, but only communicate results with Files.

The Bash Apps, unlike Python Apps, can also return the content printed to the Standard Output and Error.

Special Keywords Arguments

In addition to the inputs, outputs, and walltime keyword arguments described above, a Bash app can accept the
following keywords:

1. stdout: (string, tuple or parsl.AUTO_LOGNAME) The path to a file to which standard output should be redi-
rected. If set to parsl.AUTO_LOGNAME, the log will be automatically named according to task id and saved
under task_logs in the run directory. If set to a tuple (filename, mode), standard output will be redirected
to the named file, opened with the specified mode as used by the Python open function.

2. stderr: (string or parsl.AUTO_LOGNAME) Like stdout, but for the standard error stream.

3. label: (string) If the app is invoked with stdout=parsl.AUTO_LOGNAME or stderr=parsl.AUTO_LOGNAME,
this argument will be appended to the log name.

Outputs

If the Bash app exits with Unix exit code 0, then the AppFuture will complete. If the Bash app exits with any other
code, Parsl will treat this as a failure, and the AppFuture will instead contain an BashExitFailure exception. The
Unix exit code can be accessed through the exitcode attribute of that BashExitFailure.

Execution Options

Bash Apps have the same execution options (e.g., pinning to specific sites) as the Python Apps.

30 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/functions.html#open

Parsl Documentation, Release 1.3.0-dev

MPI Apps

Applications which employ MPI to span multiple nodes are a special case of Bash apps, and require special modification
of Parsl’s execution environment to function. Support for MPI applications is described in a later section.

Futures

When an ordinary Python function is invoked in a Python program, the Python interpreter waits for the function to
complete execution before proceeding to the next statement. But if a function is expected to execute for a long period
of time, it may be preferable not to wait for its completion but instead to proceed immediately with executing subsequent
statements. The function can then execute concurrently with that other computation.

Concurrency can be used to enhance performance when independent activities can execute on different cores or nodes
in parallel. The following code fragment demonstrates this idea, showing that overall execution time may be reduced
if the two function calls are executed concurrently.

v1 = expensive_function(1)
v2 = expensive_function(2)
result = v1 + v2

However, concurrency also introduces a need for synchronization. In the example, it is not possible to compute the sum
of v1 and v2 until both function calls have completed. Synchronization provides a way of blocking execution of one ac-
tivity (here, the statement result = v1 + v2) until other activities (here, the two calls to expensive_function())
have completed.

Parsl supports concurrency and synchronization as follows. Whenever a Parsl program calls a Parsl app (a function
annotated with a Parsl app decorator, see Apps), Parsl will create a new task and immediately return a future in lieu
of that function’s result(s). The program will then continue immediately to the next statement in the program. At some
point, for example when the task’s dependencies are met and there is available computing capacity, Parsl will execute
the task. Upon completion, Parsl will set the value of the future to contain the task’s output.

A future can be used to track the status of an asynchronous task. For example, after creation, the future may be
interrogated to determine the task’s status (e.g., running, failed, completed), access results, and capture exceptions.
Further, futures may be used for synchronization, enabling the calling Python program to block until the future has
completed execution.

Parsl provides two types of futures: AppFuture and DataFuture. While related, they enable subtly different parallel
patterns.

AppFutures

AppFutures are the basic building block upon which Parsl programs are built. Every invocation of a Parsl app returns
an AppFuture that may be used to monitor and manage the task’s execution. AppFutures are inherited from Python’s
concurrent library. They provide three key capabilities:

1. An AppFuture’s result() function can be used to wait for an app to complete, and then access any result(s).
This function is blocking: it returns only when the app completes or fails. The following code fragment implements
an example similar to the expensive_function() example above. Here, the sleep_double app simply doubles
the input value. The program invokes the sleep_double app twice, and returns futures in place of results. The
example shows how the future’s result() function can be used to wait for the results from the two sleep_double
app invocations to be computed.

1.6. Parsl is a community 31

execution.html
mpi_apps.html
https://en.wikipedia.org/wiki/Futures_and_promises
https://docs.python.org/3/library/concurrent.futures.html

Parsl Documentation, Release 1.3.0-dev

@python_app
def sleep_double(x):

import time
time.sleep(2) # Sleep for 2 seconds
return x*2

Start two concurrent sleep_double apps. doubled_x1 and doubled_x2 are AppFutures
doubled_x1 = sleep_double(10)
doubled_x2 = sleep_double(5)

The result() function will block until each of the corresponding app calls have␣
→˓completed
print(doubled_x1.result() + doubled_x2.result())

2. An AppFuture’s done() function can be used to check the status of an app, without blocking. The following example
shows that calling the future’s done() function will not stop execution of the main Python program.

@python_app
def double(x):

return x*2

doubled_x is an AppFuture
doubled_x = double(10)

Check status of doubled_x, this will print True if the result is available, else False
print(doubled_x.done())

3. An AppFuture provides a safe way to handle exceptions and errors while asynchronously executing apps. The
example shows how exceptions can be captured in the same way as a standard Python program when calling the future’s
result() function.

@python_app
def bad_divide(x):

return 6/x

Call bad divide with 0, to cause a divide by zero exception
doubled_x = bad_divide(0)

Catch and handle the exception.
try:

doubled_x.result()
except ZeroDivisionError as ze:

print('Oops! You tried to divide by 0')
except Exception as e:

print('Oops! Something really bad happened')

In addition to being able to capture exceptions raised by a specific app, Parsl also raises DependencyErrors when
apps are unable to execute due to failures in prior dependent apps. That is, an app that is dependent upon the successful
completion of another app will fail with a dependency error if any of the apps on which it depends fail.

32 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

DataFutures

While an AppFuture represents the execution of an asynchronous app, a DataFuture represents a file to be produced by
that app. Parsl’s dataflow model requires such a construct so that it can determine when dependent apps, apps that that
are to consume a file produced by another app, can start execution.

When calling an app that produces files as outputs, Parsl requires that a list of output files be specified (as a list of
File objects passed in via the outputs keyword argument). Parsl will return a DataFuture for each output file as part
AppFuture when the app is executed. These DataFutures are accessible in the AppFuture’s outputs attribute.

Each DataFuture will complete when the App has finished executing, and the corresponding file has been created (and
if specified, staged out).

When a DataFuture is passed as an argument to a subsequent app invocation, that subsequent app will not begin exe-
cution until the DataFuture is completed. The input argument will then be replaced with an appropriate File object.

The following code snippet shows how DataFutures are used. In this example, the call to the echo Bash app specifies
that the results should be written to an output file (“hello1.txt”). The main program inspects the status of the output file
(via the future’s outputs attribute) and then blocks waiting for the file to be created (hello.outputs[0].result()).

This app echoes the input string to the first file specified in the
outputs list
@bash_app
def echo(message, outputs=()):

return 'echo {} &> {}'.format(message, outputs[0])

Call echo specifying the output file
hello = echo('Hello World!', outputs=[File('hello1.txt')])

The AppFuture's outputs attribute is a list of DataFutures
print(hello.outputs)

Print the contents of the output DataFuture when complete
with open(hello.outputs[0].result().filepath, 'r') as f:

print(f.read())

Passing Python objects

Parsl apps can communicate via standard Python function parameter passing and return statements. The following
example shows how a Python string can be passed to, and returned from, a Parsl app.

@python_app
def example(name):

return 'hello {0}'.format(name)

r = example('bob')
print(r.result())

Parsl uses the dill and pickle libraries to serialize Python objects into a sequence of bytes that can be passed over a
network from the submitting machine to executing workers.

Thus, Parsl apps can receive and return standard Python data types such as booleans, integers, tuples, lists, and dictio-
naries. However, not all objects can be serialized with these methods (e.g., closures, generators, and system objects),
and so those objects cannot be used with all executors.

1.6. Parsl is a community 33

Parsl Documentation, Release 1.3.0-dev

Parsl will raise a SerializationError if it encounters an object that it cannot serialize. This applies to objects passed
as arguments to an app, as well as objects returned from an app. See Addressing SerializationError.

Staging data files

Parsl apps can take and return data files. A file may be passed as an input argument to an app, or returned from an app
after execution. Parsl provides support to automatically transfer (stage) files between the main Parsl program, worker
nodes, and external data storage systems.

Input files can be passed as regular arguments, or a list of them may be specified in the special inputs keyword
argument to an app invocation.

Inside an app, the filepath attribute of a File can be read to determine where on the execution-side file system the
input file has been placed.

Output File objects must also be passed in at app invocation, through the outputs parameter. In this case, the File
object specifies where Parsl should place output after execution.

Inside an app, the filepath attribute of an output File provides the path at which the corresponding output file should
be placed so that Parsl can find it after execution.

If the output from an app is to be used as the input to a subsequent app, then a DataFuture that represents whether
the output file has been created must be extracted from the first app’s AppFuture, and that must be passed to the second
app. This causes app executions to be properly ordered, in the same way that passing AppFutures to subsequent apps
causes execution ordering based on an app returning.

In a Parsl program, file handling is split into two pieces: files are named in an execution-location independent manner
using File objects, and executors are configured to stage those files in to and out of execution locations using instances
of the Staging interface.

Parsl files

Parsl uses a custom File to provide a location-independent way of referencing and accessing files. Parsl files are
defined by specifying the URL scheme and a path to the file. Thus a file may represent an absolute path on the submit-
side file system or a URL to an external file.

The scheme defines the protocol via which the file may be accessed. Parsl supports the following schemes: file, ftp,
http, https, and globus. If no scheme is specified Parsl will default to the file scheme.

The following example shows creation of two files with different schemes: a locally-accessible data.txt file and an
HTTPS-accessible README file.

File('file://home/parsl/data.txt')
File('https://github.com/Parsl/parsl/blob/master/README.rst')

Parsl automatically translates the file’s location relative to the environment in which it is accessed (e.g., the Parsl
program or an app). The following example shows how a file can be accessed in the app irrespective of where that app
executes.

@python_app
def print_file(inputs=()):

with open(inputs[0].filepath, 'r') as inp:
content = inp.read()
return(content)

create an remote Parsl file
(continues on next page)

34 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

f = File('https://github.com/Parsl/parsl/blob/master/README.rst')

call the print_file app with the Parsl file
r = print_file(inputs=[f])
r.result()

As described below, the method by which this files are transferred depends on the scheme and the staging providers
specified in the Parsl configuration.

Staging providers

Parsl is able to transparently stage files between at-rest locations and execution locations by specifying a list of Staging
instances for an executor. These staging instances define how to transfer files in and out of an execution location. This
list should be supplied as the storage_access parameter to an executor when it is constructed.

Parsl includes several staging providers for moving files using the schemes defined above. By default, Parsl executors
are created with three common staging providers: the NoOpFileStaging provider for local and shared file systems and
the HTTP(S) and FTP staging providers for transferring files to and from remote storage locations. The following
example shows how to explicitly set the default staging providers.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.data_provider.data_manager import default_staging

config = Config(
executors=[

HighThroughputExecutor(
storage_access=default_staging,
equivalent to the following
storage_access=[NoOpFileStaging(), FTPSeparateTaskStaging(),␣

→˓HTTPSeparateTaskStaging()],
)

]
)

Parsl further differentiates when staging occurs relative to the app invocation that requires or produces files. Staging
either occurs with the executing task (in-task staging) or as a separate task (separate task staging) before app execution.
In-task staging uses a wrapper that is executed around the Parsl task and thus occurs on the resource on which the task
is executed. Separate task staging inserts a new Parsl task in the graph and associates a dependency between the staging
task and the task that depends on that file. Separate task staging may occur on either the submit-side (e.g., when using
Globus) or on the execution-side (e.g., HTTPS, FTP).

1.6. Parsl is a community 35

Parsl Documentation, Release 1.3.0-dev

NoOpFileStaging for Local/Shared File Systems

The NoOpFileStaging provider assumes that files specified either with a path or with the fileURL scheme are available
both on the submit and execution side. This occurs, for example, when there is a shared file system. In this case, files
will not moved, and the File object simply presents the same file path to the Parsl program and any executing tasks.

Files defined as follows will be handled by the NoOpFileStaging provider.

File('file://home/parsl/data.txt')
File('/home/parsl/data.txt')

The NoOpFileStaging provider is enabled by default on all executors. It can be explicitly set as the only staging provider
as follows.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.data_provider.file_noop import NoOpFileStaging

config = Config(
executors=[

HighThroughputExecutor(
storage_access=[NoOpFileStaging()]

)
]

)

FTP, HTTP, HTTPS: separate task staging

Files named with the ftp, http or https URL scheme will be staged in using HTTP GET or anonymous FTP com-
mands. These commands will be executed as a separate Parsl task that will complete before the corresponding app
executes. These providers cannot be used to stage out output files.

The following example defines a file accessible on a remote FTP server.

File('ftp://www.iana.org/pub/mirror/rirstats/arin/ARIN-STATS-FORMAT-CHANGE.txt')

When such a file object is passed as an input to an app, Parsl will download the file to whatever location is selected
for the app to execute. The following example illustrates how the remote file is implicitly downloaded from an FTP
server and then converted. Note that the app does not need to know the location of the downloaded file on the remote
computer, as Parsl abstracts this translation.

@python_app
def convert(inputs=(), outputs=()):

with open(inputs[0].filepath, 'r') as inp:
content = inp.read()
with open(outputs[0].filepath, 'w') as out:

out.write(content.upper())

create an remote Parsl file
inp = File('ftp://www.iana.org/pub/mirror/rirstats/arin/ARIN-STATS-FORMAT-CHANGE.txt')

create a local Parsl file
out = File('file:///tmp/ARIN-STATS-FORMAT-CHANGE.txt')

(continues on next page)

36 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

call the convert app with the Parsl file
f = convert(inputs=[inp], outputs=[out])
f.result()

HTTP and FTP separate task staging providers can be configured as follows.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.data_provider.http import HTTPSeparateTaskStaging
from parsl.data_provider.ftp import FTPSeparateTaskStaging

config = Config(
executors=[

HighThroughputExecutor(
storage_access=[HTTPSeparateTaskStaging(), FTPSeparateTaskStaging()]

)
]

)

FTP, HTTP, HTTPS: in-task staging

These staging providers are intended for use on executors that do not have a file system shared between each executor
node.

These providers will use the same HTTP GET/anonymous FTP as the separate task staging providers described above,
but will do so in a wrapper around individual app invocations, which guarantees that they will stage files to a file system
visible to the app.

A downside of this staging approach is that the staging tasks are less visible to Parsl, as they are not performed as
separate Parsl tasks.

In-task staging providers can be configured as follows.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.data_provider.http import HTTPInTaskStaging
from parsl.data_provider.ftp import FTPInTaskStaging

config = Config(
executors=[

HighThroughputExecutor(
storage_access=[HTTPInTaskStaging(), FTPInTaskStaging()]

)
]

)

1.6. Parsl is a community 37

Parsl Documentation, Release 1.3.0-dev

Globus

The Globus staging provider is used to transfer files that can be accessed using Globus. A guide to using Globus is
available here).

A file using the Globus scheme must specify the UUID of the Globus endpoint and a path to the file on the endpoint,
for example:

File('globus://037f054a-15cf-11e8-b611-0ac6873fc732/unsorted.txt')

Note: a Globus endpoint’s UUID can be found in the Globus Manage Endpoints page.

There must also be a Globus endpoint available with access to a execute-side file system, because Globus file transfers
happen between two Globus endpoints.

Globus Configuration

In order to manage where files are staged, users must configure the default working_dir on a remote location. This
information is specified in the ParslExecutor via the working_dir parameter in the Config instance. For example:

from parsl.config import Config
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
working_dir="/home/user/data"

)
]

)

Parsl requires knowledge of the Globus endpoint that is associated with an executor. This is done by specifying the
endpoint_name (the UUID of the Globus endpoint that is associated with the system) in the configuration.

In some cases, for example when using a Globus shared endpoint or when a Globus endpoint is mounted on a su-
percomputer, the path seen by Globus is not the same as the local path seen by Parsl. In this case the configuration
may optionally specify a mapping between the endpoint_path (the common root path seen in Globus), and the
local_path (the common root path on the local file system), as in the following. In most cases, endpoint_path and
local_path are the same and do not need to be specified.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.data_provider.globus import GlobusStaging
from parsl.data_provider.data_manager import default_staging

config = Config(
executors=[

HighThroughputExecutor(
working_dir="/home/user/parsl_script",
storage_access=default_staging + [GlobusStaging(

endpoint_uuid="7d2dc622-2edb-11e8-b8be-0ac6873fc732",
endpoint_path="/",
local_path="/home/user"

)]
(continues on next page)

38 Chapter 1. Why use Parsl?

https://docs.globus.org/how-to/get-started/
https://app.globus.org/endpoints
https://www.globus.org/data-sharing

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

)
]

)

Globus Authorization

In order to transfer files with Globus, the user must first authenticate. The first time that Globus is used with Parsl on
a computer, the program will prompt the user to follow an authentication and authorization procedure involving a web
browser. Users can authorize out of band by running the parsl-globus-auth utility. This is useful, for example, when
running a Parsl program in a batch system where it will be unattended.

$ parsl-globus-auth
Parsl Globus command-line authorizer
If authorization to Globus is necessary, the library will prompt you now.
Otherwise it will do nothing
Authorization complete

rsync

The rsync utility can be used to transfer files in the file scheme in configurations where workers cannot access the
submit-side file system directly, such as when executing on an AWS EC2 instance or on a cluster without a shared file
system. However, the submit-side file system must be exposed using rsync.

rsync Configuration

rsync must be installed on both the submit and worker side. It can usually be installed by using the operating system
package manager: for example, by apt-get install rsync.

An RSyncStaging option must then be added to the Parsl configuration file, as in the following. The parameter to
RSyncStaging should describe the prefix to be passed to each rsync command to connect from workers to the submit-
side host. This will often be the username and public IP address of the submitting system.

from parsl.data_provider.rsync import RSyncStaging

config = Config(
executors=[

HighThroughputExecutor(
storage_access=[HTTPInTaskStaging(), FTPInTaskStaging(), RSyncStaging("benc@

→˓" + public_ip)],
...

)
)

1.6. Parsl is a community 39

Parsl Documentation, Release 1.3.0-dev

rsync Authorization

The rsync staging provider delegates all authentication and authorization to the underlying rsync command. This
command must be correctly authorized to connect back to the submit-side system. The form of this authorization will
depend on the systems in question.

The following example installs an ssh key from the submit-side file system and turns off host key checking, in the
worker_init initialization of an EC2 instance. The ssh key must have sufficient privileges to run rsync over ssh on
the submit-side system.

with open("rsync-callback-ssh", "r") as f:
private_key = f.read()

ssh_init = """
mkdir .ssh
chmod go-rwx .ssh

cat > .ssh/id_rsa <<EOF
{private_key}
EOF

cat > .ssh/config <<EOF
Host *
StrictHostKeyChecking no

EOF

chmod go-rwx .ssh/id_rsa
chmod go-rwx .ssh/config

""".format(private_key=private_key)

config = Config(
executors=[

HighThroughputExecutor(
storage_access=[HTTPInTaskStaging(), FTPInTaskStaging(), RSyncStaging("benc@

→˓" + public_ip)],
provider=AWSProvider(
...
worker_init = ssh_init
...
)

)
)

40 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Execution

Contemporary computing environments may include a wide range of computational platforms or execution providers,
from laptops and PCs to various clusters, supercomputers, and cloud computing platforms. Different execution
providers may require or allow for the use of different execution models, such as threads (for efficient parallel exe-
cution on a multicore processor), processes, and pilot jobs for running many small tasks on a large parallel system.

Parsl is designed to abstract these low-level details so that an identical Parsl program can run unchanged on different
platforms or across multiple platforms. To this end, Parsl uses a configuration file to specify which execution provider(s)
and execution model(s) to use. Parsl provides a high level abstraction, called a block, for providing a uniform description
of a compute resource irrespective of the specific execution provider.

Note: Refer to Configuration for information on how to configure the various components described below for specific
scenarios.

Execution providers

Clouds, supercomputers, and local PCs offer vastly different modes of access. To overcome these differences, and
present a single uniform interface, Parsl implements a simple provider abstraction. This abstraction is key to Parsl’s
ability to enable scripts to be moved between resources. The provider interface exposes three core actions: submit a
job for execution (e.g., sbatch for the Slurm resource manager), retrieve the status of an allocation (e.g., squeue), and
cancel a running job (e.g., scancel). Parsl implements providers for local execution (fork), for various cloud platforms
using cloud-specific APIs, and for clusters and supercomputers that use a Local Resource Manager (LRM) to manage
access to resources, such as Slurm, HTCondor, and Cobalt.

Each provider implementation may allow users to specify additional parameters for further configuration. Parameters
are generally mapped to LRM submission script or cloud API options. Examples of LRM-specific options are partition,
wall clock time, scheduler options (e.g., #SBATCH arguments for Slurm), and worker initialization commands (e.g.,
loading a conda environment). Cloud parameters include access keys, instance type, and spot bid price

Parsl currently supports the following providers:

1. parsl.providers.LocalProvider: The provider allows you to run locally on your laptop or workstation.

2. parsl.providers.CobaltProvider: This provider allows you to schedule resources via the Cobalt scheduler.
This provider is deprecated and will be removed by 2024.04.

3. parsl.providers.SlurmProvider: This provider allows you to schedule resources via the Slurm scheduler.

4. parsl.providers.CondorProvider: This provider allows you to schedule resources via the Condor sched-
uler.

5. parsl.providers.GridEngineProvider: This provider allows you to schedule resources via the GridEngine
scheduler.

6. parsl.providers.TorqueProvider: This provider allows you to schedule resources via the Torque scheduler.

7. parsl.providers.AWSProvider: This provider allows you to provision and manage cloud nodes from Ama-
zon Web Services.

8. parsl.providers.GoogleCloudProvider: This provider allows you to provision and manage cloud nodes
from Google Cloud.

9. parsl.providers.KubernetesProvider: This provider allows you to provision and manage containers on a
Kubernetes cluster.

10. parsl.providers.AdHocProvider: This provider allows you manage execution over a collection of nodes to
form an ad-hoc cluster.

1.6. Parsl is a community 41

Parsl Documentation, Release 1.3.0-dev

11. parsl.providers.LSFProvider: This provider allows you to schedule resources via IBM’s LSF scheduler.

Executors

Parsl programs vary widely in terms of their execution requirements. Individual Apps may run for milliseconds or
days, and available parallelism can vary between none for sequential programs to millions for “pleasingly parallel”
programs. Parsl executors, as the name suggests, execute Apps on one or more target execution resources such as
multi-core workstations, clouds, or supercomputers. As it appears infeasible to implement a single execution strategy
that will meet so many diverse requirements on such varied platforms, Parsl provides a modular executor interface and
a collection of executors that are tuned for common execution patterns.

Parsl executors extend the Executor class offered by Python’s concurrent.futures library, which allows Parsl to use
existing solutions in the Python Standard Library (e.g., ThreadPoolExecutor) and from other packages such as Work
Queue. Parsl extends the concurrent.futures executor interface to support additional capabilities such as automatic
scaling of execution resources, monitoring, deferred initialization, and methods to set working directories. All executors
share a common execution kernel that is responsible for deserializing the task (i.e., the App and its input arguments)
and executing the task in a sandboxed Python environment.

Parsl currently supports the following executors:

1. parsl.executors.ThreadPoolExecutor: This executor supports multi-thread execution on local resources.

2. parsl.executors.HighThroughputExecutor: This executor implements hierarchical scheduling and batch-
ing using a pilot job model to deliver high throughput task execution on up to 4000 Nodes.

3. parsl.executors.WorkQueueExecutor: This executor integrates Work Queue as an execution backend.
Work Queue scales to tens of thousands of cores and implements reliable execution of tasks with dynamic re-
source sizing.

4. parsl.executors.taskvine.TaskVineExecutor: This executor uses TaskVine as the execution backend.
TaskVine scales up to tens of thousands of cores and actively uses local storage on compute nodes to offer a diverse
array of performance-oriented features, including: smart caching and sharing common large files between tasks and
compute nodes, reliable execution of tasks, dynamic resource sizing, automatic Python environment detection and
sharing. These executors cover a broad range of execution requirements. As with other Parsl components, there is a
standard interface (ParslExecutor) that can be implemented to add support for other executors.

Note: Refer to Configuration for information on how to configure these executors.

Launchers

Many LRMs offer mechanisms for spawning applications across nodes inside a single job and for specifying the re-
sources and task placement information needed to execute that application at launch time. Common mechanisms
include srun (for Slurm), aprun (for Crays), and mpirun (for MPI). Thus, to run Parsl programs on such systems, we
typically want first to request a large number of nodes and then to launch “pilot job” or worker processes using the
system launchers. Parsl’s Launcher abstraction enables Parsl programs to use these system-specific launcher systems
to start workers across cores and nodes.

Parsl currently supports the following set of launchers:

1. parsl.launchers.SrunLauncher: Srun based launcher for Slurm based systems.

2. parsl.launchers.AprunLauncher: Aprun based launcher for Crays.

3. parsl.launchers.SrunMPILauncher: Launcher for launching MPI applications with Srun.

42 Chapter 1. Why use Parsl?

http://ccl.cse.nd.edu/software/workqueue/
https://ccl.cse.nd.edu/software/taskvine/
https://slurm.schedmd.com/srun.html
https://cug.org/5-publications/proceedings_attendee_lists/2006CD/S06_Proceedings/pages/Authors/Karo-4C/Karo_alps_paper.pdf
https://www.open-mpi.org/doc/v2.0/man1/mpirun.1.php

Parsl Documentation, Release 1.3.0-dev

4. parsl.launchers.GnuParallelLauncher: Launcher using GNU parallel to launch workers across nodes
and cores.

5. parsl.launchers.MpiExecLauncher: Uses Mpiexec to launch.

6. parsl.launchers.SimpleLauncher: The launcher default to a single worker launch.

7. parsl.launchers.SingleNodeLauncher: This launcher launches workers_per_node count workers on a
single node.

Additionally, the launcher interface can be used to implement specialized behaviors in custom environments (for exam-
ple, to launch node processes inside containers with customized environments). For example, the following launcher
uses Srun to launch worker-wrapper, passing the command to be run as parameters to worker-wrapper. It is the
responsibility of worker-wrapper to launch the command it is given inside the appropriate environment.

class MyShifterSRunLauncher:
def __init__(self):

self.srun_launcher = SrunLauncher()

def __call__(self, command, tasks_per_node, nodes_per_block):
new_command="worker-wrapper {}".format(command)
return self.srun_launcher(new_command, tasks_per_node, nodes_per_block)

Blocks

One challenge when making use of heterogeneous execution resource types is the need to provide a uniform repre-
sentation of resources. Consider that single requests on clouds return individual nodes, clusters and supercomputers
provide batches of nodes, grids provide cores, and workstations provide a single multicore node

Parsl defines a resource abstraction called a block as the most basic unit of resources to be acquired from a provider.
A block contains one or more nodes and maps to the different provider abstractions. In a cluster, a block corresponds
to a single allocation request to a scheduler. In a cloud, a block corresponds to a single API request for one or more
instances. Parsl can then execute tasks (instances of apps) within and across (e.g., for MPI jobs) nodes within a block.
Blocks are also used as the basis for elasticity on batch scheduling systems (see Elasticity below). Three different
examples of block configurations are shown below.

1. A single block comprised of a node executing one task:

2. A single block with one node executing several tasks. This configuration is most suitable for single threaded apps
running on multicore target systems. The number of tasks executed concurrently is proportional to the number

1.6. Parsl is a community 43

Parsl Documentation, Release 1.3.0-dev

of cores available on the system.

3. A block comprised of several nodes and executing several tasks, where a task can span multiple nodes. This
configuration is generally used by MPI applications. Starting a task requires using a specific MPI launcher that
is supported on the target system (e.g., aprun, srun, mpirun, mpiexec). The MPI Apps documentation page
describes how to configure Parsl for this case.

The configuration options for specifying the shape of each block are:

1. workers_per_node: Number of workers started per node, which corresponds to the number of tasks that can
execute concurrently on a node.

2. nodes_per_block: Number of nodes requested per block.

44 Chapter 1. Why use Parsl?

mpi_apps.html

Parsl Documentation, Release 1.3.0-dev

Elasticity

Workload resource requirements often vary over time. For example, in the map-reduce paradigm the map phase may
require more resources than the reduce phase. In general, reserving sufficient resources for the widest parallelism
will result in underutilization during periods of lower load; conversely, reserving minimal resources for the thinnest
parallelism will lead to optimal utilization but also extended execution time. Even simple bag-of-task applications may
have tasks of different durations, leading to trailing tasks with a thin workload.

To address dynamic workload requirements, Parsl implements a cloud-like elasticity model in which resource blocks
are provisioned/deprovisioned in response to workload pressure. Given the general nature of the implementation, Parsl
can provide elastic execution on clouds, clusters, and supercomputers. Of course, in an HPC setting, elasticity may be
complicated by queue delays.

Parsl’s elasticity model includes a flow control system that monitors outstanding tasks and available compute capacity.
This flow control monitor determines when to trigger scaling (in or out) events to match workload needs.

The animated diagram below shows how blocks are elastically managed within an executor. The Parsl configuration
for an executor defines the minimum, maximum, and initial number of blocks to be used.

The configuration options for specifying elasticity bounds are:

1. min_blocks: Minimum number of blocks to maintain per executor.

2. init_blocks: Initial number of blocks to provision at initialization of workflow.

3. max_blocks: Maximum number of blocks that can be active per executor.

Parallelism

Parsl provides a user-managed model for controlling elasticity. In addition to setting the minimum and maximum
number of blocks to be provisioned, users can also define the desired level of parallelism by setting a parameter (p).
Parallelism is expressed as the ratio of task execution capacity to the sum of running tasks and available tasks (tasks
with their dependencies met, but waiting for execution). A parallelism value of 1 represents aggressive scaling where
the maximum resources needed are used (i.e., max_blocks); parallelism close to 0 represents the opposite situation in
which as few resources as possible (i.e., min_blocks) are used. By selecting a fraction between 0 and 1, the provisioning
aggressiveness can be controlled.

For example:

• When p = 0: Use the fewest resources possible. If there is no workload then no blocks will be provisioned,
otherwise the fewest blocks specified (e.g., min_blocks, or 1 if min_blocks is set to 0) will be provisioned.

if active_tasks == 0:
blocks = min_blocks

else:
blocks = max(min_blocks, 1)

• When p = 1: Use as many resources as possible. Provision sufficient nodes to execute all running and available
tasks concurrently up to the max_blocks specified.

blocks = min(max_blocks,
ceil((running_tasks + available_tasks) / (workers_per_node * nodes_per_

→˓block))

• When p = 1/2: Queue up to 2 tasks per worker before requesting a new block.

1.6. Parsl is a community 45

Parsl Documentation, Release 1.3.0-dev

Configuration

The example below shows how elasticity and parallelism can be configured. Here, a parsl.executors.
HighThroughputExecutor is used with a minimum of 1 block and a maximum of 2 blocks, where each block may
host up to 2 workers per node. Thus this setup is capable of servicing 2 tasks concurrently. Parallelism of 0.5 means
that when more than 2 * the total task capacity (i.e., 4 tasks) are queued a new block will be requested. An example
Config is:

from parsl.config import Config
from libsubmit.providers.local.local import Local
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
label='local_htex',
workers_per_node=2,
provider=Local(

min_blocks=1,
init_blocks=1,
max_blocks=2,
nodes_per_block=1,
parallelism=0.5

)
)

]
)

The animated diagram below illustrates the behavior of this executor. In the diagram, the tasks are allocated to the first
block, until 5 tasks are submitted. At this stage, as more than double the available task capacity is used, Parsl provisions
a new block for executing the remaining tasks.

Multi-executor

Parsl supports the use of one or more executors as specified in the configuration. In this situation, individual apps may
indicate which executors they are able to use.

The common scenarios for this feature are:

• A workflow has an initial simulation stage that runs on the compute heavy nodes of an HPC system followed by
an analysis and visualization stage that is better suited for GPU nodes.

• A workflow follows a repeated fan-out, fan-in model where the long running fan-out tasks are computed on a
cluster and the quick fan-in computation is better suited for execution using threads on a login node.

• A workflow includes apps that wait and evaluate the results of a computation to determine whether the app
should be relaunched. Only apps running on threads may launch other apps. Often, simulations have stochastic
behavior and may terminate before completion. In such cases, having a wrapper app that checks the exit code
and determines whether or not the app has completed successfully can be used to automatically re-execute the
app (possibly from a checkpoint) until successful completion.

The following code snippet shows how apps can specify suitable executors in the app decorator.

46 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

#(CPU heavy app) (CPU heavy app) (CPU heavy app) <--- Run on compute queue
| | |
(data) (data) (data)
\ | /
(Analysis and visualization phase) <--- Run on GPU node

A mock molecular dynamics simulation app
@bash_app(executors=["Theta.Phi"])
def MD_Sim(arg, outputs=()):

return "MD_simulate {} -o {}".format(arg, outputs[0])

Visualize results from the mock MD simulation app
@bash_app(executors=["Cooley.GPU"])
def visualize(inputs=(), outputs=()):

bash_array = " ".join(inputs)
return "viz {} -o {}".format(bash_array, outputs[0])

Encryption

Users can enable encryption for the HighThroughputExecutor by setting its encrypted initialization argument to
True.

For example,

from parsl.config import Config
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
encrypted=True

)
]

)

Under the hood, we use CurveZMQ to encrypt all communication channels between the executor and related nodes.

Encryption performance

CurveZMQ depends on libzmq and libsodium, which pyzmq (a Parsl dependency) includes as part of its installation via
pip. This installation path should work on most systems, but users have reported significant performance degradation
as a result.

If you experience a significant performance hit after enabling encryption, we recommend installing pyzmq with conda:

conda install conda-forge::pyzmq

Alternatively, you can install libsodium, then install libzmq, then build pyzmq from source:

pip3 install parsl --no-binary pyzmq

1.6. Parsl is a community 47

http://curvezmq.org/
https://github.com/zeromq/libzmq
https://github.com/jedisct1/libsodium
https://github.com/zeromq/pyzmq
https://doc.libsodium.org/installation
https://zeromq.org/download/

Parsl Documentation, Release 1.3.0-dev

MPI Apps

MPI applications run multiple copies of a program that complete a single task by coordinating using messages passed
within or across nodes. Starting MPI application requires invoking a “launcher” code (e.g., mpiexec) from one node
with options that define how the copies of a program should be distributed to others. Parsl simplifies this by composing
the “launcher” command from the resources specified at the time each app is invoked.

The broad strokes of a complete solution involves the following components:

1. Configuring the HighThroughputExecutor with:
enable_mpi_mode=True

2. Specify an MPI Launcher from one of the supported launchers (“aprun”, “srun”, “mpiexec”) for the
HighThroughputExecutor with: mpi_launcher="srun"

3. Specify the provider that matches your cluster, (eg. user SlurmProvider for Slurm clusters)

4. Set the non-mpi launcher to SingleNodeLauncher

5. Specify resources required by the application via resource_specification as shown below:

Define HighThroughputExecutor(enable_mpi_mode=True, mpi_launcher="mpiexec", ...)

@bash_app
def lammps_mpi_application(infile: File, parsl_resource_specification: Dict):

PARSL_MPI_PREFIX will resolve to `mpiexec -n 4 -ppn 2 -hosts NODE001,NODE002`
return f"$PARSL_MPI_PREFIX lmp_mpi -in {infile.filepath}"

Resources in terms of nodes and how ranks are to be distributed are set on a per app
basis via the resource_spec dictionary.
resource_spec = {

"num_nodes" = 2,
"ranks_per_node" = 2,
"num_ranks" = 4,

}
future = lammps_mpi_application(File('in.file'), resource_specification=resource_spec)

HTEX and MPI Tasks

The HighThroughputExecutor (HTEX) is the default executor available through Parsl. Parsl Apps which invoke
MPI code require MPI specific configuration such that:

1. All workers are started on the lead-node (mom-node in case of Crays)

2. Resource requirements of Apps are propagated to workers who provision the required number of nodes from
within the batch job.

48 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Configuring the Provider

Parsl must be configured to deploy workers on exactly one node per block. This part is simple. Instead of defining
a launcher which will place an executor on each node in the block, simply use the SingleNodeLauncher. The MPI
Launcher that the application will use is to be specified via HighThroughputExecutor(mpi_launcher="LAUNCHER
")

It is also necessary to specify the desired number of blocks for the executor. Parsl cannot determine the number of
blocks needed to run a set of MPI Tasks, so they must bet set explicitly (see Issue #1647). The easiest route is to set
the max_blocks and min_blocks of the provider to the desired number of blocks.

Configuring the Executor

Here are the steps for configuring the executor:

1. Set HighThroughputExecutor(enable_mpi_mode=True)

2. Set HighThroughputExecutor(mpi_launcher="LAUNCHER") to one from (“srun”, “aprun”, “mpiexec”)

3. Set the max_workers to the number of MPI Apps you expect to run per scheduler job (block).

4. Set cores_per_worker=1e-6 to prevent HTEx from reducing the number of workers if you request more work-
ers than cores.

Example Configuration

Here’s an example configuration which runs MPI tasks on ALCF’s Polaris Supercomputer

import parsl
from typing import Dict
from parsl.config import Config

PBSPro is the right provider for Polaris:
from parsl.providers import PBSProProvider
The high throughput executor is for scaling to HPC systems:
from parsl.executors import HighThroughputExecutor
address_by_interface is needed for the HighThroughputExecutor:
from parsl.addresses import address_by_interface
For checkpointing:
from parsl.utils import get_all_checkpoints

Adjust your user-specific options here:
run_dir="/lus/grand/projects/yourproject/yourrundir/"

user_opts = {
"worker_init": "module load conda; conda activate parsl_mpi_py310",
"scheduler_options":"#PBS -l filesystems=home:eagle:grand\n#PBS -l place=scatter" ,
"account": SET_YOUR_ALCF_ALLOCATION_HERE,
"queue": "debug-scaling",
"walltime": "1:00:00",
"nodes_per_block": 8,
"available_accelerators": 4, # Each Polaris node has 4 GPUs, setting this ensures␣

→˓one worker per GPU
(continues on next page)

1.6. Parsl is a community 49

https://github.com/Parsl/parsl/issues/1647

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

"cores_per_worker": 8, # this will set the number of cpu hardware threads per worker.
}

config = Config(
executors=[

HighThroughputExecutor(
label="htex",
enable_mpi_mode=True,
mpi_launcher="mpiexec",
cores_per_worker=user_opts["cores_per_worker"],
address=address_by_interface("bond0"),
provider=PBSProProvider(

account=user_opts["account"],
queue=user_opts["queue"],
PBS directives (header lines): for array jobs pass '-J' option
scheduler_options=user_opts["scheduler_options"],
Command to be run before starting a worker, such as:
worker_init=user_opts["worker_init"],
number of compute nodes allocated for each block
nodes_per_block=user_opts["nodes_per_block"],
init_blocks=1,
min_blocks=0,
max_blocks=1, # Can increase more to have more parallel jobs
walltime=user_opts["walltime"]

),
),

],

Writing MPI-Compatible Apps

In MPI mode, the HighThroughputExecutor can execute both Python or Bash Apps which invokes the MPI appli-
cation. However, it is important to note that Python Apps that directly use mpi4py is not supported.

For multi-node MPI applications, especially when running multiple applications within a single batch job, it is important
to specify the resource requirements for the app so that the Parsl worker can provision the appropriate resources before
the application starts. For eg, your Parsl script might contain a molecular dynamics application that requires 8 ranks over
1 node for certain inputs and 32 ranks over 4 nodes for some depending on the size of the molecules being simulated. By
specifying resources via resource_specification, parsl workers will provision the requested resources and then
compose MPI launch command prefixes (Eg: mpiexec -n <ranks> -ppn <ranks_per_node> -hosts <node1.
.nodeN>). These launch command prefixes are shared with the app via environment variables.

@bash_app
def echo_hello(n: int, stderr='std.err', stdout='std.out', parsl_resource_specification:␣
→˓Dict):
return f'$PARSL_MPI_PREFIX hostname'

The following app will echo the hostname from several MPI ranks
Alternatively, you could also use the resource_specification to compose a launch
command using env vars set by Parsl from the resource_specification like this:
@bash_app
def echo_hostname(n: int, stderr='std.err', stdout='std.out', parsl_resource_

(continues on next page)

50 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

→˓specification: Dict):
total_ranks = os.environ("")
return f'aprun -N $PARSL_RANKS_PER_NODE -n {total_ranks} /bin/hostname'

All valid key-value pairs set in the resource_specification are exported to the application via env vars,
for eg. parsl_resource_specification = {'RANKS_PER_NODE': 4} `` will set the env var
``PARSL_RANKS_PER_NODE

However, the following options are required for MPI applications :

resource_specification = {
'num_nodes': <int>, # Number of nodes required for the application instance
'ranks_per_node': <int>, # Number of ranks / application elements to be launched per␣

→˓node
'num_ranks': <int>, # Number of ranks in total

}

The above are made available in the worker env vars:
echo $PARSL_NUM_NODES, $PARSL_RANKS_PER_NODE, $PARSL_NUM_RANKS

When the above are supplied, the following launch command prefixes are set:

PARSL_MPIEXEC_PREFIX: mpiexec launch command which works for a large number of batch␣
→˓systems especially PBS systems
PARSL_SRUN_PREFIX: srun launch command for Slurm based clusters
PARSL_APRUN_PREFIX: aprun launch command prefix for some Cray machines
PARSL_MPI_PREFIX: Parsl sets the MPI prefix to match the mpi_launcher specified to␣
→˓`HighThroughputExecutor`
PARSL_MPI_NODELIST: List of assigned nodes separated by commas (Eg, NODE1,NODE2)
PARSL_WORKER_POOL_ID: Alphanumeric string identifier for the worker pool
PARSL_WORKER_BLOCK_ID: Batch job ID that the worker belongs to

Example Application: CosmicTagger

TODO: Blurb about what CosmicTagger does CosmicTagger implements models and training utilities to train convo-
lutional networks to separate cosmic pixels, background pixels, and neutrino pixels in a neutrinos dataset. There are
several variations. A detailed description of the code can be found in:

Cosmic Background Removal with Deep Neural Networks in SBND

Cosmic Background Removal with Deep Neural Networks in SBND This network is implemented in both PyTorch and
TensorFlow. To select between the networks, you can use the –framework parameter. It accepts either tensorflow or
torch. The model is available in a development version with sparse convolutions in the torch framework.

This example is broken down into three components. First, configure the Executor for Polaris at ALCF. The configu-
ration will use the PBSProProvider to connect to the batch scheduler. With the goal of running MPI applications, we
set the

import parsl
from typing import Dict
from parsl.config import Config

PBSPro is the right provider for Polaris:
(continues on next page)

1.6. Parsl is a community 51

https://www.frontiersin.org/articles/10.3389/frai.2021.649917/full

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

from parsl.providers import PBSProProvider
The high throughput executor is for scaling to HPC systems:
from parsl.executors import HighThroughputExecutor
address_by_interface is needed for the HighThroughputExecutor:
from parsl.addresses import address_by_interface

user_opts = {
Make sure to setup a conda environment before using this config
"worker_init": "module load conda; conda activate parsl_mpi_py310",
"scheduler_options":"#PBS -l filesystems=home:eagle:grand\n#PBS -l place=scatter" ,
"account": <SET_YOUR_ALLOCATION>,
"queue": "debug-scaling",
"walltime": "1:00:00",
"nodes_per_block": 8,
"available_accelerators": 4, # Each Polaris node has 4 GPUs, setting this ensures␣

→˓one worker per GPU
"cores_per_worker": 8, # this will set the number of cpu hardware threads per worker.

}

config = Config(
executors=[

HighThroughputExecutor(
label="htex",
enable_mpi_mode=True,
mpi_launcher="mpiexec",
cores_per_worker=user_opts["cores_per_worker"],
address=address_by_interface("bond0"),
provider=PBSProProvider(

account=user_opts["account"],
queue=user_opts["queue"],
PBS directives (header lines): for array jobs pass '-J' option
scheduler_options=user_opts["scheduler_options"],
Command to be run before starting a worker, such as:
worker_init=user_opts["worker_init"],
number of compute nodes allocated for each block
nodes_per_block=user_opts["nodes_per_block"],
init_blocks=1,
min_blocks=0,
max_blocks=1, # Can increase more to have more parallel jobs
walltime=user_opts["walltime"]

),
),

],
)

Next we define the CosmicTagger MPI application. TODO: Ask Khalid for help.

@parsl.bash_app
def cosmic_tagger(workdir: str,

datatype: str = "float32",
batchsize: int = 8,
framework: str = "torch",

(continues on next page)

52 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

iterations: int = 500,
trial: int = 2,
stdout=parsl.AUTO_LOGNAME,
stderr=parsl.AUTO_LOGNAME,
parsl_resource_specification:Dict={}):

NRANKS = parsl_resource_specification['num_ranks']

return f"""
module purge
module use /soft/modulefiles/
module load conda/2023-10-04
conda activate

echo "PARSL_MPI_PREFIX : $PARSL_MPI_PREFIX"

$PARSL_MPI_PREFIX --cpu-bind numa \
python {workdir}/bin/exec.py --config-name a21 \

run.id=run_plrs_ParslDemo_g${NRANKS}_{datatype}_b{batchsize}_{framework}_i
→˓{iterations}_T{trial} \

run.compute_mode=GPU \
run.distributed=True \
framework={framework} \
run.minibatch_size={batchsize} \
run.precision={datatype} \
mode.optimizer.loss_balance_scheme=light \
run.iterations={iterations}

"""

In this example, we run a simple test that does an exploration over the batchsize parameter while launching the
application over 2-4 nodes.

def run_cosmic_tagger():
futures = {}
for num_nodes in [2, 4]:

for batchsize in [2, 4, 8]:

parsl_res_spec = {"num_nodes": num_nodes,
"num_tasks": num_nodes * 4,
"ranks_per_node": 4}

future = cosmic_tagger(workdir="/home/yadunand/CosmicTagger",
datatype="float32",
batchsize=str(batchsize),
parsl_resource_specification=parsl_res_spec)

print(f"Stdout : {future.stdout}")
print(f"Stderr : {future.stderr}")
futures[(num_nodes, batchsize)] = future

for key in futures:
print(f"Got result for {key}: {futures[key].result()}")

(continues on next page)

1.6. Parsl is a community 53

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

run_cosmic_tagger()

Limitations

Support for MPI tasks in HTEX is limited. It is designed for running many multi-node MPI applications within a single
batch job.

1. MPI tasks may not span across nodes from more than one block.

2. Parsl does not correctly determine the number of execution slots per block (Issue #1647)

3. The executor uses a Python process per task, which can use a lot of memory (Issue #2264)

Error handling

Parsl provides various mechanisms to add resiliency and robustness to programs.

Exceptions

Parsl is designed to capture, track, and handle various errors occurring during execution, including those related to
the program, apps, execution environment, and Parsl itself. It also provides functionality to appropriately respond to
failures during execution.

Failures might occur for various reasons:

1. A task failed during execution.

2. A task failed to launch, for example, because an input dependency was not met.

3. There was a formatting error while formatting the command-line string in Bash apps.

4. A task completed execution but failed to produce one or more of its specified outputs.

5. Task exceeded the specified walltime.

Since Parsl tasks are executed asynchronously and remotely, it can be difficult to determine when errors have occurred
and to appropriately handle them in a Parsl program.

For errors occurring in Python code, Parsl captures Python exceptions and returns them to the main Parsl program.
For non-Python errors, for example when a node or worker fails, Parsl imposes a timeout, and considers a task to have
failed if it has not heard from the task by that timeout. Parsl also considers a task to have failed if it does not meet the
contract stated by the user during invocation, such as failing to produce the stated output files.

Parsl communicates these errors by associating Python exceptions with task futures. These exceptions are raised only
when a result is called on the future of a failed task. For example:

@python_app
def bad_divide(x):

return 6 / x

Call bad divide with 0, to cause a divide by zero exception
doubled_x = bad_divide(0)

(continues on next page)

54 Chapter 1. Why use Parsl?

https://github.com/Parsl/parsl/issues/1647
https://github.com/Parsl/parsl/issues/2264

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

Catch and handle the exception.
try:

doubled_x.result()
except ZeroDivisionError as e:

print('Oops! You tried to divide by 0.')
except Exception as e:

print('Oops! Something really bad happened.')

Retries

Often errors in distributed/parallel environments are transient. In these cases, retrying failed tasks can be a simple way
of overcoming transient (e.g., machine failure, network failure) and intermittent failures. When retries are enabled
(and set to an integer > 0), Parsl will automatically re-launch tasks that have failed until the retry limit is reached. By
default, retries are disabled and exceptions will be communicated to the Parsl program.

The following example shows how the number of retries can be set to 2:

import parsl
from parsl.configs.htex_local import config

config.retries = 2

parsl.load(config)

More specific retry handling can be specified using retry handlers, documented below.

Lazy fail

Parsl implements a lazy failure model through which a workload will continue to execute in the case that some tasks
fail. That is, the program will not halt as soon as it encounters a failure, rather it will continue to execute unaffected
apps.

The following example shows how lazy failures affect execution. In this case, task C fails and therefore tasks E and F
that depend on results from C cannot be executed; however, Parsl will continue to execute tasks B and D as they are
unaffected by task C’s failure.

Here's a workflow graph, where
(X) is runnable,
[X] is completed,
(X*) is failed.
(!X) is dependency failed

(A) [A] (A)
/ \ / \ / \

(B) (C) [B] (C*) [B] (C*)
| | => | | => | |
(D) (E) (D) (E) [D] (!E)
\ / \ / \ /
(F) (F) (!F)

time ----->

1.6. Parsl is a community 55

Parsl Documentation, Release 1.3.0-dev

Retry handlers

The basic parsl retry mechanism keeps a count of the number of times a task has been (re)tried, and will continue
retrying that task until the configured retry limit is reached.

Retry handlers generalize this to allow more expressive retry handling: parsl keeps a retry cost for a task, and the task
will be retried until the configured retry limit is reached. Instead of the cost being 1 for each failure, user-supplied code
can examine the failure and compute a custom cost.

This allows user knowledge about failures to influence the retry mechanism: an exception which is almost definitely a
non-recoverable failure (for example, due to bad parameters) can be given a high retry cost (so that it will not be retried
many times, or at all), and exceptions which are likely to be transient (for example, where a worker node has died) can
be given a low retry cost so they will be retried many times.

A retry handler can be specified in the parsl configuration like this:

Config(
retries=2,
retry_handler=example_retry_handler
)

example_retry_handler should be a function defined by the user that will compute the retry cost for a particular
failure, given some information about the failure.

For example, the following handler will give a cost of 1 to all exceptions, except when a bash app exits with unix
exitcode 9, in which case the cost will be 100. This will have the effect that retries will happen as normal for most
errors, but the bash app can indicate that there is little point in retrying by exiting with exitcode 9.

def example_retry_handler(exception, task_record):
if isinstance(exception, BashExitFailure) and exception.exitcode == 9:

return 100
else

return 1

The retry handler is given two parameters: the exception from execution, and the parsl internal task_record. The task
record contains details such as the app name, parameters and executor.

If a retry handler raises an exception itself, then the task will be aborted and no further tries will be attempted.

Memoization and checkpointing

When an app is invoked several times with the same parameters, Parsl can reuse the result from the first invocation
without executing the app again.

This can save time and computational resources.

This is done in two ways:

• Firstly, app caching will allow reuse of results within the same run.

• Building on top of that, checkpointing will store results on the filesystem and reuse those results in later runs.

56 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

App caching

There are many situations in which a program may be re-executed over time. Often, large fragments of the program will
not have changed and therefore, re-execution of apps will waste valuable time and computation resources. Parsl’s app
caching solves this problem by storing results from apps that have successfully completed so that they can be re-used.

App caching is enabled by setting the cache argument in the python_app() or bash_app() decorator to True (by
default it is False).

@bash_app(cache=True)
def hello (msg, stdout=None):

return 'echo {}'.format(msg)

App caching can be globally disabled by setting app_cache=False in the Config.

App caching can be particularly useful when developing interactive programs such as when using a Jupyter notebook.
In this case, cells containing apps are often re-executed during development. Using app caching will ensure that only
modified apps are re-executed.

App equivalence

Parsl determines app equivalence by storing the hash of the app function. Thus, any changes to the app code (e.g., its
signature, its body, or even the docstring within the body) will invalidate cached values.

However, Parsl does not traverse the call graph of the app function, so changes inside functions called by an app will
not invalidate cached values.

Invocation equivalence

Two app invocations are determined to be equivalent if their input arguments are identical.

In simple cases, this follows obvious rules:

these two app invocations are the same and the second invocation will
reuse any cached input from the first invocation
x = 7
f(x).result()

y = 7
f(y).result()

Internally, equivalence is determined by hashing the input arguments, and comparing the hash to hashes from previous
app executions.

This approach can only be applied to data types for which a deterministic hash can be computed.

By default Parsl can compute sensible hashes for basic data types: str, int, float, None, as well as more some complex
types: functions, and dictionaries and lists containing hashable types.

Attempting to cache apps invoked with other, non-hashable, data types will lead to an exception at invocation.

In that case, mechanisms to hash new types can be registered by a program by implementing the parsl.dataflow.
memoization.id_for_memo function for the new type.

1.6. Parsl is a community 57

Parsl Documentation, Release 1.3.0-dev

Ignoring arguments

On occasion one may wish to ignore particular arguments when determining app invocation equivalence - for example,
when generating log file names automatically based on time or run information. Parsl allows developers to list the
arguments to be ignored in the ignore_for_cache app decorator parameter:

@bash_app(cache=True, ignore_for_cache=['stdout'])
def hello (msg, stdout=None):

return 'echo {}'.format(msg)

Caveats

It is important to consider several important issues when using app caching:

• Determinism: App caching is generally useful only when the apps are deterministic. If the outputs may be
different for identical inputs, app caching will obscure this non-deterministic behavior. For instance, caching an
app that returns a random number will result in every invocation returning the same result.

• Timing: If several identical calls to an app are made concurrently having not yet cached a result, many instances
of the app will be launched. Once one invocation completes and the result is cached all subsequent calls will
return immediately with the cached result.

• Performance: If app caching is enabled, there may be some performance overhead especially if a large number
of short duration tasks are launched rapidly. This overhead has not been quantified.

Checkpointing

Large-scale Parsl programs are likely to encounter errors due to node failures, application or environment errors, and
myriad other issues. Parsl offers an application-level checkpointing model to improve resilience, fault tolerance, and
efficiency.

Note: Checkpointing builds on top of app caching, and so app caching must be enabled. If app caching is disabled in
the config Config.app_cache, checkpointing will not work.

Parsl follows an incremental checkpointing model, where each checkpoint file contains all results that have been updated
since the last checkpoint.

When a Parsl program loads a checkpoint file and is executed, it will use checkpointed results for any apps that have
been previously executed. Like app caching, checkpoints use the hash of the app and the invocation input parameters
to identify previously computed results. If multiple checkpoints exist for an app (with the same hash) the most recent
entry will be used.

Parsl provides four checkpointing modes:

1. task_exit: a checkpoint is created each time an app completes or fails (after retries if enabled). This mode
minimizes the risk of losing information from completed tasks.

from parsl.configs.local_threads import config
config.checkpoint_mode = 'task_exit'

2. periodic: a checkpoint is created periodically using a user-specified checkpointing interval. Results will be
saved to the checkpoint file for all tasks that have completed during this period.

58 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

from parsl.configs.local_threads import config
config.checkpoint_mode = 'periodic'
config.checkpoint_period = "01:00:00"

3. dfk_exit: checkpoints are created when Parsl is about to exit. This reduces the risk of losing results due to pre-
mature program termination from exceptions, terminate signals, etc. However it is still possible that information
might be lost if the program is terminated abruptly (machine failure, SIGKILL, etc.)

from parsl.configs.local_threads import config
config.checkpoint_mode = 'dfk_exit'

4. manual: in addition to these automated checkpointing modes, it is also possible to manually initiate a checkpoint
by calling DataFlowKernel.checkpoint() in the Parsl program code.

import parsl
from parsl.configs.local_threads import config
dfk = parsl.load(config)
....
dfk.checkpoint()

In all cases the checkpoint file is written out to the runinfo/RUN_ID/checkpoint/ directory.

Note: Checkpoint modes periodic, dfk_exit, and manual can interfere with garbage collection. In these modes
task information will be retained after completion, until checkpointing events are triggered.

Creating a checkpoint

Automated checkpointing must be explicitly enabled in the Parsl configuration. There is no need to modify a Parsl
program as checkpointing will occur transparently. In the following example, checkpointing is enabled at task exit.
The results of each invocation of the slow_double app will be stored in the checkpoint file.

import parsl
from parsl.app.app import python_app
from parsl.configs.local_threads import config

config.checkpoint_mode = 'task_exit'

parsl.load(config)

@python_app(cache=True)
def slow_double(x):

import time
time.sleep(5)
return x * 2

d = []
for i in range(5):

d.append(slow_double(i))

print([d[i].result() for i in range(5)])

1.6. Parsl is a community 59

Parsl Documentation, Release 1.3.0-dev

Alternatively, manual checkpointing can be used to explictly specify when the checkpoint file should be saved. The
following example shows how manual checkpointing can be used. Here, the dfk.checkpoint() function will save
the results of the prior invocations of the slow_double app.

import parsl
from parsl import python_app
from parsl.configs.local_threads import config

dfk = parsl.load(config)

@python_app(cache=True)
def slow_double(x, sleep_dur=1):

import time
time.sleep(sleep_dur)
return x * 2

N = 5 # Number of calls to slow_double
d = [] # List to store the futures
for i in range(0, N):

d.append(slow_double(i))

Wait for the results
[i.result() for i in d]

cpt_dir = dfk.checkpoint()
print(cpt_dir) # Prints the checkpoint dir

Resuming from a checkpoint

When resuming a program from a checkpoint Parsl allows the user to select which checkpoint file(s) to use. Checkpoint
files are stored in the runinfo/RUNID/checkpoint directory.

The example below shows how to resume using all available checkpoints. Here, the program re-executes the same calls
to the slow_double app as above and instead of waiting for results to be computed, the values from the checkpoint
file are are immediately returned.

import parsl
from parsl.tests.configs.local_threads import config
from parsl.utils import get_all_checkpoints

config.checkpoint_files = get_all_checkpoints()

parsl.load(config)

Rerun the same workflow
d = []
for i in range(5):

d.append(slow_double(i))

wait for results
print([d[i].result() for i in range(5)])

60 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Configuration

Parsl separates program logic from execution configuration, enabling programs to be developed entirely independently
from their execution environment. Configuration is described by a Python object (Config) so that developers can
introspect permissible options, validate settings, and retrieve/edit configurations dynamically during execution. A
configuration object specifies details of the provider, executors, connection channel, allocation size, queues, durations,
and data management options.

The following example shows a basic configuration object (Config) for the Frontera supercomputer at TACC. This con-
fig uses the parsl.executors.HighThroughputExecutor to submit tasks from a login node (parsl.channels.
LocalChannel). It requests an allocation of 128 nodes, deploying 1 worker for each of the 56 cores per node, from
the normal partition. To limit network connections to just the internal network the config specifies the address used by
the infiniband interface with address_by_interface('ib0')

from parsl.config import Config
from parsl.channels import LocalChannel
from parsl.providers import SlurmProvider
from parsl.executors import HighThroughputExecutor
from parsl.launchers import SrunLauncher
from parsl.addresses import address_by_interface

config = Config(
executors=[

HighThroughputExecutor(
label="frontera_htex",
address=address_by_interface('ib0'),
max_workers_per_node=56,
provider=SlurmProvider(

channel=LocalChannel(),
nodes_per_block=128,
init_blocks=1,
partition='normal',
launcher=SrunLauncher(),

),
)

],
)

Configuration How-To and Examples:

• Configuration

– Creating and Using Config Objects

– How to Configure

– Heterogeneous Resources

– Accelerators

– Multi-Threaded Applications

– Ad-Hoc Clusters

– Amazon Web Services

– ASPIRE 1 (NSCC)

1.6. Parsl is a community 61

Parsl Documentation, Release 1.3.0-dev

– Illinois Campus Cluster (UIUC)

– Bridges (PSC)

– CC-IN2P3

– CCL (Notre Dame, TaskVine)

– Expanse (SDSC)

– Perlmutter (NERSC)

– Frontera (TACC)

– Kubernetes Clusters

– Midway (RCC, UChicago)

– Open Science Grid

– Polaris (ALCF)

– Stampede2 (TACC)

– Summit (ORNL)

– TOSS3 (LLNL)

– Further help

Creating and Using Config Objects

Config objects are loaded to define the “Data Flow Kernel” (DFK) that will manage tasks. All Parsl applications start
by creating or importing a configuration then calling the load function.

from parsl.configs.htex_local import config
import parsl

with parsl.load(config):

The load statement can happen after Apps are defined but must occur before tasks are started. Loading the Config
object within context manager like with is recommended for implicit cleaning of DFK on exiting the context manager

The Config object may not be used again after loaded. Consider a configuration function if the application will shut
down and re-launch the DFK.

from parsl.config import Config
import parsl

def make_config() -> Config:
return Config(...)

with parsl.load(make_config()):
Your workflow here

parsl.clear() # Stops Parsl
with parsl.load(make_config()): # Re-launches with a fresh configuration

Your workflow here

62 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

How to Configure

Note: All configuration examples below must be customized for the user’s allocation, Python environment, file system,
etc.

The configuration specifies what, and how, resources are to be used for executing the Parsl program and its apps. It
is important to carefully consider the needs of the Parsl program and its apps, and the characteristics of the compute
resources, to determine an ideal configuration. Aspects to consider include: 1) where the Parsl apps will execute; 2)
how many nodes will be used to execute the apps, and how long the apps will run; 3) should Parsl request multiple
nodes in an individual scheduler job; and 4) where will the main Parsl program run and how will it communicate with
the apps.

Stepping through the following question should help formulate a suitable configuration object.

1. Where should apps be executed?

1.6. Parsl is a community 63

Parsl Documentation, Release 1.3.0-dev

Target Executor Provider
Laptop/Workstation • parsl.executors.

HighThroughputExecutor
• parsl.executors.
ThreadPoolExecutor

• parsl.executors.
WorkQueueExecutor

• parsl.executors.
taskvine.
TaskVineExecutor

parsl.providers.
LocalProvider

Amazon Web Services • parsl.executors.
HighThroughputExecutor

parsl.providers.AWSProvider

Google Cloud • parsl.executors.
HighThroughputExecutor

parsl.providers.
GoogleCloudProvider

Slurm based system • parsl.executors.
HighThroughputExecutor

• parsl.executors.
WorkQueueExecutor

• parsl.executors.
taskvine.
TaskVineExecutor

parsl.providers.
SlurmProvider

Torque/PBS based system • parsl.executors.
HighThroughputExecutor

• parsl.executors.
WorkQueueExecutor

parsl.providers.
TorqueProvider

Cobalt based system • parsl.executors.
HighThroughputExecutor

• parsl.executors.
WorkQueueExecutor

parsl.providers.
CobaltProvider

GridEngine based system • parsl.executors.
HighThroughputExecutor

• parsl.executors.
WorkQueueExecutor

parsl.providers.
GridEngineProvider

Condor based cluster or grid • parsl.executors.
HighThroughputExecutor

• parsl.executors.
WorkQueueExecutor

• parsl.executors.
taskvine.
TaskVineExecutor

parsl.providers.
CondorProvider

Kubernetes cluster • parsl.executors.
HighThroughputExecutor

parsl.providers.
KubernetesProvider

64 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

2. How many nodes will be used to execute the apps? What task durations are necessary to achieve good perfor-
mance?

Executor Number of
Nodes0

Task duration for good performance

*parsl.executors.
ThreadPoolExecutor

1 (Only local) Any

parsl.executors.
HighThroughputExecutor

<=2000 Task duration(s)/#nodes >= 0.01 longer tasks needed
at higher scale

parsl.executors.
WorkQueueExecutor

<=1000†0 10s+

parsl.executors.taskvine.
TaskVineExecutor

<=1000‡0 10s+

3. Should Parsl request multiple nodes in an individual scheduler job? (Here the term block is equivalent to a single
scheduler job.)

nodes_per_block = 1
Provider Executor choice Suitable Launchers
Systems that don’t use Aprun Any

• parsl.launchers.
SingleNodeLauncher

• parsl.launchers.
SimpleLauncher

Aprun based systems Any
• parsl.launchers.
AprunLauncher

0 Assuming 32 workers per node. If there are fewer workers launched per node, a larger number of nodes could be supported.
0 The maximum number of nodes tested for the parsl.executors.WorkQueueExecutor is 10,000 GPU cores and 20,000 CPU cores.
0 The maximum number of nodes tested for the parsl.executors.taskvine.TaskVineExecutor is 10,000 GPU cores and 20,000 CPU

cores.

1.6. Parsl is a community 65

Parsl Documentation, Release 1.3.0-dev

nodes_per_block > 1
Provider Executor choice Suitable Launchers
parsl.providers.
TorqueProvider

Any
• parsl.launchers.
AprunLauncher

• parsl.launchers.
MpiExecLauncher

parsl.providers.
CobaltProvider

Any
• parsl.launchers.
AprunLauncher

parsl.providers.
SlurmProvider

Any
• parsl.launchers.
SrunLauncher if native
slurm

• parsl.launchers.
AprunLauncher, otherwise

Note: If using a Cray system, you most likely need to use the parsl.launchers.AprunLauncher to launch workers
unless you are on a native Slurm system like Perlmutter (NERSC)

4) Where will the main Parsl program run and how will it communicate with the apps?

Parsl program location App execution target Suitable channel
Laptop/Workstation Laptop/Workstation parsl.channels.LocalChannel
Laptop/Workstation Cloud Resources No channel is needed
Laptop/Workstation Clusters with no 2FA parsl.channels.SSHChannel
Laptop/Workstation Clusters with 2FA parsl.channels.SSHInteractiveLoginChannel
Login node Cluster/Supercomputer parsl.channels.LocalChannel

Heterogeneous Resources

In some cases, it can be difficult to specify the resource requirements for running a workflow. For example, if the
compute nodes a site provides are not uniform, there is no “correct” resource configuration; the amount of parallelism
depends on which node (large or small) each job runs on. In addition, the software and filesystem setup can vary from
node to node. A Condor cluster may not provide shared filesystem access at all, and may include nodes with a variety
of Python versions and available libraries.

The parsl.executors.WorkQueueExecutor provides several features to work with heterogeneous resources. By
default, Parsl only runs one app at a time on each worker node. However, it is possible to specify the requirements for a
particular app, and Work Queue will automatically run as many parallel instances as possible on each node. Work Queue
automatically detects the amount of cores, memory, and other resources available on each execution node. To activate
this feature, add a resource specification to your apps. A resource specification is a dictionary with the following three
keys: cores (an integer corresponding to the number of cores required by the task), memory (an integer corresponding
to the task’s memory requirement in MB), and disk (an integer corresponding to the task’s disk requirement in MB),
passed to an app via the special keyword argument parsl_resource_specification. The specification can be set
for all app invocations via a default, for example:

66 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

@python_app
def compute(x, parsl_resource_specification={'cores': 1, 'memory': 1000, 'disk
→˓': 1000}):
return x*2

or updated when the app is invoked:

spec = {'cores': 1, 'memory': 500, 'disk': 500}
future = compute(x, parsl_resource_specification=spec)

This parsl_resource_specification special keyword argument will inform Work Queue about the resources this
app requires. When placing instances of compute(x), Work Queue will run as many parallel instances as possible
based on each worker node’s available resources.

If an app’s resource requirements are not known in advance, Work Queue has an auto-labeling feature that measures
the actual resource usage of your apps and automatically chooses resource labels for you. With auto-labeling, it is not
necessary to provide parsl_resource_specification; Work Queue collects stats in the background and updates
resource labels as your workflow runs. To activate this feature, add the following flags to your executor config:

config = Config(
executors=[

WorkQueueExecutor(
...other options go here
autolabel=True,
autocategory=True

)
]

)

The autolabel flag tells Work Queue to automatically generate resource labels. By default, these labels are shared
across all apps in your workflow. The autocategory flag puts each app into a different category, so that Work Queue
will choose separate resource requirements for each app. This is important if e.g. some of your apps use a single core
and some apps require multiple cores. Unless you know that all apps have uniform resource requirements, you should
turn on autocategory when using autolabel.

The Work Queue executor can also help deal with sites that have non-uniform software environments across nodes.
Parsl assumes that the Parsl program and the compute nodes all use the same Python version. In addition, any packages
your apps import must be available on compute nodes. If no shared filesystem is available or if node configuration
varies, this can lead to difficult-to-trace execution problems.

If your Parsl program is running in a Conda environment, the Work Queue executor can automatically scan the imports
in your apps, create a self-contained software package, transfer the software package to worker nodes, and run your
code inside the packaged and uniform environment. First, make sure that the Conda environment is active and you have
the required packages installed (via either pip or conda):

• python

• parsl

• ndcctools

• conda-pack

Then add the following to your config:

config = Config(
executors=[

(continues on next page)

1.6. Parsl is a community 67

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

WorkQueueExecutor(
...other options go here
pack=True

)
]

)

Note: There will be a noticeable delay the first time Work Queue sees an app; it is creating and packaging a complete
Python environment. This packaged environment is cached, so subsequent app invocations should be much faster.

Using this approach, it is possible to run Parsl applications on nodes that don’t have Python available at all. The
packaged environment includes a Python interpreter, and Work Queue does not require Python to run.

Note: The automatic packaging feature only supports packages installed via pip or conda. Importing from other
locations (e.g. via $PYTHONPATH) or importing other modules in the same directory is not supported.

Accelerators

Many modern clusters provide multiple accelerators per compute note, yet many applications are best suited
to using a single accelerator per task. Parsl supports pinning each worker to difference accelerators using
available_accelerators option of the HighThroughputExecutor. Provide either the number of executors (Parsl
will assume they are named in integers starting from zero) or a list of the names of the accelerators available on the
node.

local_config = Config(
executors=[

HighThroughputExecutor(
label="htex_Local",
worker_debug=True,
available_accelerators=2,
provider=LocalProvider(

channel=LocalChannel(),
init_blocks=1,
max_blocks=1,

),
)

],
strategy='none',

)

68 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Multi-Threaded Applications

Workflows which launch multiple workers on a single node which perform multi-threaded tasks (e.g., NumPy, Tensor-
flow operations) may run into thread contention issues. Each worker may try to use the same hardware threads, which
leads to performance penalties. Use the cpu_affinity feature of the HighThroughputExecutor to assign workers
to specific threads. Users can pin threads to workers either with a strategy method or an explicit list.

The strategy methods will auto assign all detected hardware threads to workers. Allowed strategies that can be assigned
to cpu_affinity are block, block-reverse, and alternating. The block method pins threads to workers in
sequential order (ex: 4 threads are grouped (0, 1) and (2, 3) on two workers); block-reverse pins threads in reverse
sequential order (ex: (3, 2) and (1, 0)); and alternating alternates threads among workers (ex: (0, 2) and (1, 3)).

Select the best blocking strategy for processor’s cache hierarchy (choose alternating if in doubt) to ensure workers
to not compete for cores.

local_config = Config(
executors=[

HighThroughputExecutor(
label="htex_Local",
worker_debug=True,
cpu_affinity='alternating',
provider=LocalProvider(

channel=LocalChannel(),
init_blocks=1,
max_blocks=1,

),
)

],
strategy='none',

)

Users can also use cpu_affinity to assign explicitly threads to workers with a string that has the format of
cpu_affinity="list:<worker1_threads>:<worker2_threads>:<worker3_threads>".

Each worker’s threads can be specified as a comma separated list or a hyphenated range: thread1,thread2,thread3
or thread_start-thread_end.

An example for 12 workers on a node with 208 threads is:

cpu_affinity="list:0-7,104-111:8-15,112-119:16-23,120-127:24-31,128-135:32-39,136-143:40-
→˓47,144-151:52-59,156-163:60-67,164-171:68-75,172-179:76-83,180-187:84-91,188-195:92-99,
→˓196-203"

This example assigns 16 threads each to 12 workers. Note that in this example there are threads that are skipped. If a
thread is not explicitly assigned to a worker, it will be left idle. The number of thread “ranks” (colon separated thread
lists/ranges) must match the total number of workers on the node; otherwise an exception will be raised.

Thread affinity is accomplished in two ways. Each worker first sets the affinity for the Python process using the affinity
mask, which may not be available on all operating systems. It then sets environment variables to control OpenMP
thread affinity so that any subprocesses launched by a worker which use OpenMP know which processors are valid.
These include OMP_NUM_THREADS, GOMP_COMP_AFFINITY, and KMP_THREAD_AFFINITY.

1.6. Parsl is a community 69

https://docs.python.org/3/library/os.html#os.sched_setaffinity
https://docs.python.org/3/library/os.html#os.sched_setaffinity
https://hpc-tutorials.llnl.gov/openmp/ProcessThreadAffinity.pdf
https://hpc-tutorials.llnl.gov/openmp/ProcessThreadAffinity.pdf

Parsl Documentation, Release 1.3.0-dev

Ad-Hoc Clusters

Any collection of compute nodes without a scheduler can be considered an ad-hoc cluster. Often these machines have a
shared file system such as NFS or Lustre. In order to use these resources with Parsl, they need to set-up for password-less
SSH access.

To use these ssh-accessible collection of nodes as an ad-hoc cluster, we use the parsl.providers.AdHocProvider
with an parsl.channels.SSHChannel to each node. An example configuration follows.

from parsl.providers import AdHocProvider
from parsl.channels import SSHChannel
from parsl.executors import HighThroughputExecutor
from parsl.config import Config
from typing import Any, Dict

user_opts: Dict[str, Dict[str, Any]]
user_opts = {'adhoc':

{'username': 'YOUR_USERNAME',
'script_dir': 'YOUR_SCRIPT_DIR',
'remote_hostnames': ['REMOTE_HOST_URL_1', 'REMOTE_HOST_URL_2']
}
}

config = Config(
executors=[

HighThroughputExecutor(
label='remote_htex',
max_workers_per_node=2,
worker_logdir_root=user_opts['adhoc']['script_dir'],
provider=AdHocProvider(

Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',
channels=[SSHChannel(hostname=m,

username=user_opts['adhoc']['username'],
script_dir=user_opts['adhoc']['script_dir'],
) for m in user_opts['adhoc']['remote_hostnames']]

)
)

],
AdHoc Clusters should not be setup with scaling strategy.
strategy='none',

)

Note: Multiple blocks should not be assigned to each node when using the parsl.executors.
HighThroughputExecutor

70 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Amazon Web Services

Note: To use AWS with Parsl, install Parsl with AWS dependencies via python3 -m pip install 'parsl[aws]'

Amazon Web Services is a commercial cloud service which allows users to rent a range of computers and other com-
puting services. The following snippet shows how Parsl can be configured to provision nodes from the Elastic Com-
pute Cloud (EC2) service. The first time this configuration is used, Parsl will configure a Virtual Private Cloud and
other networking and security infrastructure that will be re-used in subsequent executions. The configuration uses the
parsl.providers.AWSProvider to connect to AWS.

from parsl.config import Config
from parsl.providers import AWSProvider
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
label='ec2_single_node',
provider=AWSProvider(

Specify your EC2 AMI id
'YOUR_AMI_ID',
Specify the AWS region to provision from
eg. us-east-1
region='YOUR_AWS_REGION',

Specify the name of the key to allow ssh access to nodes
key_name='YOUR_KEY_NAME',
profile="default",
state_file='awsproviderstate.json',
nodes_per_block=1,
init_blocks=1,
max_blocks=1,
min_blocks=0,
walltime='01:00:00',

),
(continues on next page)

1.6. Parsl is a community 71

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

)
],

)

ASPIRE 1 (NSCC)

The following snippet shows an example configuration for accessing NSCC’s ASPIRE 1 supercomputer. This example
uses the parsl.executors.HighThroughputExecutor executor and connects to ASPIRE1’s PBSPro scheduler. It
also shows how scheduler_options parameter could be used for scheduling array jobs in PBSPro.

from parsl.providers import PBSProProvider
from parsl.launchers import MpiRunLauncher
from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.addresses import address_by_interface
from parsl.monitoring.monitoring import MonitoringHub

config = Config(
executors=[

HighThroughputExecutor(
label="htex",
heartbeat_period=15,
heartbeat_threshold=120,
worker_debug=True,
max_workers_per_node=4,
address=address_by_interface('ib0'),
provider=PBSProProvider(

launcher=MpiRunLauncher(),
PBS directives (header lines): for array jobs pass '-J' option
scheduler_options='#PBS -J 1-10',
Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',
number of compute nodes allocated for each block
nodes_per_block=3,
min_blocks=3,
max_blocks=5,
cpus_per_node=24,
medium queue has a max walltime of 24 hrs
walltime='24:00:00'

),
),

],
monitoring=MonitoringHub(

hub_address=address_by_interface('ib0'),
hub_port=55055,
resource_monitoring_interval=10,

),
strategy='simple',
retries=3,
app_cache=True,

(continues on next page)

72 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

checkpoint_mode='task_exit'
)

Illinois Campus Cluster (UIUC)

The following snippet shows an example configuration for executing on the Illinois Campus Cluster. The configuration
assumes the user is running on a login node and uses the parsl.providers.SlurmProvider to interface with the
scheduler, and uses the parsl.launchers.SrunLauncher to launch workers.

from parsl.config import Config
from parsl.providers import SlurmProvider
from parsl.executors import HighThroughputExecutor
from parsl.launchers import SrunLauncher

""" This config assumes that it is used to launch parsl tasks from the login nodes
of the Campus Cluster at UIUC. Each job submitted to the scheduler will request 2 nodes␣
→˓for 10 minutes.
"""
config = Config(

executors=[
HighThroughputExecutor(

label="CC_htex",
worker_debug=False,
cores_per_worker=16.0, # each worker uses a full node
provider=SlurmProvider(

partition='secondary-fdr', # partition
nodes_per_block=2, # number of nodes
init_blocks=1,
max_blocks=1,
scheduler_options='',
cmd_timeout=60,
walltime='00:10:00',
launcher=SrunLauncher(),
worker_init='conda activate envParsl', # requires conda environment␣

→˓with parsl
),

)
],

)

1.6. Parsl is a community 73

Parsl Documentation, Release 1.3.0-dev

Bridges (PSC)

The following snippet shows an example configuration for executing on the Bridges supercomputer at the Pittsburgh Su-
percomputing Center. The configuration assumes the user is running on a login node and uses the parsl.providers.
SlurmProvider to interface with the scheduler, and uses the parsl.launchers.SrunLauncher to launch workers.

from parsl.config import Config
from parsl.providers import SlurmProvider
from parsl.launchers import SrunLauncher
from parsl.executors import HighThroughputExecutor
from parsl.addresses import address_by_interface

""" This config assumes that it is used to launch parsl tasks from the login nodes
of Bridges at PSC. Each job submitted to the scheduler will request 2 nodes for 10␣
→˓minutes.
"""

config = Config(
executors=[

HighThroughputExecutor(
label='Bridges_HTEX_multinode',
address=address_by_interface('ens3f0'),
max_workers_per_node=1,
provider=SlurmProvider(

'YOUR_PARTITION_NAME', # Specify Partition / QOS, for eg. RM-small
nodes_per_block=2,
init_blocks=1,
string to prepend to #SBATCH blocks in the submit
script to the scheduler eg: '#SBATCH --gres=gpu:type:n'
scheduler_options='',

Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',

We request all hyperthreads on a node.
launcher=SrunLauncher(),
walltime='00:10:00',

(continues on next page)

74 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

Slurm scheduler on Cori can be slow at times,
increase the command timeouts
cmd_timeout=120,

),
)

]
)

CC-IN2P3

The snippet below shows an example configuration for executing from a login node on IN2P3’s Computing Centre. The
configuration uses the parsl.providers.LocalProvider to run on a login node primarily to avoid GSISSH, which
Parsl does not support yet. This system uses Grid Engine which Parsl interfaces with using the parsl.providers.
GridEngineProvider.

from parsl.config import Config
from parsl.channels import LocalChannel
from parsl.providers import GridEngineProvider
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
label='cc_in2p3_htex',
max_workers_per_node=2,
provider=GridEngineProvider(

channel=LocalChannel(),
nodes_per_block=1,
init_blocks=2,
max_blocks=2,
walltime="00:20:00",
scheduler_options='', # Input your scheduler_options if needed
worker_init='', # Input your worker_init if needed

(continues on next page)

1.6. Parsl is a community 75

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

),
)

],
)

CCL (Notre Dame, TaskVine)

To utilize TaskVine with Parsl, please install the full CCTools software package within an appropriate Anaconda or
Miniconda environment (instructions for installing Miniconda can be found in the Conda install guide):

$ conda create -y --name <environment> python=<version> conda-pack
$ conda activate <environment>
$ conda install -y -c conda-forge ndcctools parsl

This creates a Conda environment on your machine with all the necessary tools and setup needed to utilize TaskVine
with the Parsl library.

The following snippet shows an example configuration for using the Parsl/TaskVine executor to run applications on the
local machine. This examples uses the parsl.executors.taskvine.TaskVineExecutor to schedule tasks, and
a local worker will be started automatically. For more information on using TaskVine, including configurations for
remote execution, visit the TaskVine/Parsl documentation online.

from parsl.config import Config
from parsl.executors.taskvine import TaskVineExecutor
from parsl.executors.taskvine import TaskVineManagerConfig
import uuid

config = Config(
executors=[

TaskVineExecutor(
label="parsl-vine-example",

If a project_name is given, then TaskVine will periodically
report its status and performance back to the global TaskVine catalog,
which can be viewed here: http://ccl.cse.nd.edu/software/taskvine/status

To disable status reporting, comment out the project_name.
manager_config=TaskVineManagerConfig(project_name="parsl-vine-" + str(uuid.

→˓uuid4())),
)

(continues on next page)

76 Chapter 1. Why use Parsl?

https://docs.conda.io/projects/conda/en/latest/user-guide/install/
https://cctools.readthedocs.io/en/latest/taskvine/#parsl

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

]
)

TaskVine’s predecessor, WorkQueue, may continue to be used with Parsl. For more information on using WorkQueue
visit the CCTools documentation online.

Expanse (SDSC)

The following snippet shows an example configuration for executing remotely on San Diego Supercomputer Center’s
Expanse supercomputer. The example is designed to be executed on the login nodes, using the parsl.providers.
SlurmProvider to interface with the Slurm scheduler used by Comet and the parsl.launchers.SrunLauncher to
launch workers.

from parsl.config import Config
from parsl.launchers import SrunLauncher
from parsl.providers import SlurmProvider
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
label='Expanse_CPU_Multinode',
max_workers_per_node=32,
provider=SlurmProvider(

'compute',
account='YOUR_ALLOCATION_ON_EXPANSE',
launcher=SrunLauncher(),
string to prepend to #SBATCH blocks in the submit
script to the scheduler
scheduler_options='',
Command to be run before starting a worker, such as:

(continues on next page)

1.6. Parsl is a community 77

https://cctools.readthedocs.io/en/latest/help/

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

'module load Anaconda; source activate parsl_env'.
worker_init='',
walltime='01:00:00',
init_blocks=1,
max_blocks=1,
nodes_per_block=2,

),
)

]
)

Perlmutter (NERSC)

NERSC provides documentation on how to use Parsl on Perlmutter.

Frontera (TACC)

Deployed in June 2019, Frontera is the 5th most powerful supercomputer in the world. Frontera replaces the NSF
Blue Waters system at NCSA and is the first deployment in the National Science Foundation’s petascale computing
program. The configuration below assumes that the user is running on a login node and uses the parsl.providers.
SlurmProvider to interface with the scheduler, and uses the parsl.launchers.SrunLauncher to launch workers.

from parsl.config import Config
from parsl.channels import LocalChannel
from parsl.providers import SlurmProvider
from parsl.executors import HighThroughputExecutor
from parsl.launchers import SrunLauncher

""" This config assumes that it is used to launch parsl tasks from the login nodes
of Frontera at TACC. Each job submitted to the scheduler will request 2 nodes for 10␣
→˓minutes.
"""
config = Config(

executors=[
(continues on next page)

78 Chapter 1. Why use Parsl?

https://docs.nersc.gov/jobs/workflow/parsl/

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

HighThroughputExecutor(
label="frontera_htex",
max_workers_per_node=1, # Set number of workers per node
provider=SlurmProvider(

cmd_timeout=60, # Add extra time for slow scheduler responses
channel=LocalChannel(),
nodes_per_block=2,
init_blocks=1,
min_blocks=1,
max_blocks=1,
partition='normal', # Replace with␣

→˓partition name
scheduler_options='#SBATCH -A <YOUR_ALLOCATION>', # Enter scheduler_

→˓options if needed

Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',

Ideally we set the walltime to the longest supported walltime.
walltime='00:10:00',
launcher=SrunLauncher(),

),
)

],
)

Kubernetes Clusters

Kubernetes is an open-source system for container management, such as automating deployment and scaling of con-
tainers. The snippet below shows an example configuration for deploying pods as workers on a Kubernetes cluster.
The KubernetesProvider exploits the Python Kubernetes API, which assumes that you have kube config in ~/.kube/
config.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.providers import KubernetesProvider
from parsl.addresses import address_by_route

(continues on next page)

1.6. Parsl is a community 79

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

config = Config(
executors=[

HighThroughputExecutor(
label='kube-htex',
cores_per_worker=1,
max_workers_per_node=1,
worker_logdir_root='YOUR_WORK_DIR',

Address for the pod worker to connect back
address=address_by_route(),
provider=KubernetesProvider(

namespace="default",

Docker image url to use for pods
image='YOUR_DOCKER_URL',

Command to be run upon pod start, such as:
'module load Anaconda; source activate parsl_env'.
or 'pip install parsl'
worker_init='',

The secret key to download the image
secret="YOUR_KUBE_SECRET",

Should follow the Kubernetes naming rules
pod_name='YOUR-POD-Name',

nodes_per_block=1,
init_blocks=1,
Maximum number of pods to scale up
max_blocks=10,

),
),

]
)

80 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Midway (RCC, UChicago)

This Midway cluster is a campus cluster hosted by the Research Computing Center at the University of Chicago. The
snippet below shows an example configuration for executing remotely on Midway. The configuration assumes the user
is running on a login node and uses the parsl.providers.SlurmProvider to interface with the scheduler, and uses
the parsl.launchers.SrunLauncher to launch workers.

from parsl.config import Config
from parsl.providers import SlurmProvider
from parsl.launchers import SrunLauncher
from parsl.executors import HighThroughputExecutor
from parsl.addresses import address_by_interface

config = Config(
executors=[

HighThroughputExecutor(
label='Midway_HTEX_multinode',
address=address_by_interface('bond0'),
worker_debug=False,
max_workers_per_node=2,
provider=SlurmProvider(

'YOUR_PARTITION', # Partition name, e.g 'broadwl'
launcher=SrunLauncher(),
nodes_per_block=2,
init_blocks=1,
min_blocks=1,
max_blocks=1,
string to prepend to #SBATCH blocks in the submit
script to the scheduler eg: '#SBATCH --constraint=knl,quad,cache'
scheduler_options='',
Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',
walltime='00:30:00'

),
(continues on next page)

1.6. Parsl is a community 81

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

)
],

)

Open Science Grid

The Open Science Grid (OSG) is a national, distributed computing Grid spanning over 100 individual sites to pro-
vide tens of thousands of CPU cores. The snippet below shows an example configuration for executing remotely
on OSG. You will need to have a valid project name on the OSG. The configuration uses the parsl.providers.
CondorProvider to interface with the scheduler.

from parsl.config import Config
from parsl.providers import CondorProvider
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
label='OSG_HTEX',
max_workers_per_node=1,
provider=CondorProvider(

nodes_per_block=1,
init_blocks=4,
max_blocks=4,
This scheduler option string ensures that the compute nodes provisioned

(continues on next page)

82 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

will have modules
scheduler_options="""
+ProjectName = "MyProject"
Requirements = HAS_MODULES=?=TRUE
""",
Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='''unset HOME; unset PYTHONPATH; module load python/3.7.0;

python3 -m venv parsl_env; source parsl_env/bin/activate; python3 -m pip install parsl''
→˓',

walltime="00:20:00",
),
worker_logdir_root='$OSG_WN_TMP',
worker_ports=(31000, 31001)

)
]

)

Polaris (ALCF)

ALCF provides documentation on how to use Parsl on Polaris.

Stampede2 (TACC)

The following snippet shows an example configuration for accessing TACC’s Stampede2 supercomputer. This example
uses theHighThroughput executor and connects to Stampede2’s Slurm scheduler.

from parsl.config import Config
from parsl.providers import SlurmProvider
from parsl.launchers import SrunLauncher
from parsl.executors import HighThroughputExecutor
from parsl.data_provider.globus import GlobusStaging
from parsl.addresses import address_by_interface

config = Config(
executors=[

HighThroughputExecutor(
label='Stampede2_HTEX',
address=address_by_interface('em3'),
max_workers_per_node=2,
provider=SlurmProvider(

nodes_per_block=2,
init_blocks=1,
min_blocks=1,
max_blocks=1,
partition='YOUR_PARTITION',
string to prepend to #SBATCH blocks in the submit
script to the scheduler eg: '#SBATCH --constraint=knl,quad,cache'

(continues on next page)

1.6. Parsl is a community 83

https://docs.alcf.anl.gov/polaris/workflows/parsl/

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

scheduler_options='',
Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',
launcher=SrunLauncher(),
walltime='00:30:00'

),
storage_access=[GlobusStaging(

endpoint_uuid='ceea5ca0-89a9-11e7-a97f-22000a92523b',
endpoint_path='/',
local_path='/'

)]
)

],
)

Summit (ORNL)

The following snippet shows an example configuration for executing from the login node on Summit, the lead-
ership class supercomputer hosted at the Oak Ridge National Laboratory. The example uses the parsl.
providers.LSFProvider to provision compute nodes from the LSF cluster scheduler and the parsl.launchers.
JsrunLauncher to launch workers across the compute nodes.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor

from parsl.launchers import JsrunLauncher
from parsl.providers import LSFProvider

from parsl.addresses import address_by_interface

config = Config(
executors=[

HighThroughputExecutor(
label='Summit_HTEX',
On Summit ensure that the working dir is writeable from the compute nodes,
for eg. paths below /gpfs/alpine/world-shared/
working_dir='YOUR_WORKING_DIR_ON_SHARED_FS',
address=address_by_interface('ib0'), # This assumes Parsl is running on␣

→˓login node
worker_port_range=(50000, 55000),
provider=LSFProvider(

launcher=JsrunLauncher(),
walltime="00:10:00",
nodes_per_block=2,
init_blocks=1,
max_blocks=1,
worker_init='', # Input your worker environment initialization commands
project='YOUR_PROJECT_ALLOCATION',
cmd_timeout=60

(continues on next page)

84 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

),
)

],
)

TOSS3 (LLNL)

The following snippet shows an example configuration for executing on one of LLNL’s TOSS3 machines, such as
Quartz, Ruby, Topaz, Jade, or Magma. This example uses the parsl.executors.FluxExecutor and connects to
Slurm using the parsl.providers.SlurmProvider. This configuration assumes that the script is being executed
on the login nodes of one of the machines.

from parsl.config import Config
from parsl.executors import FluxExecutor
from parsl.providers import SlurmProvider
from parsl.launchers import SrunLauncher

config = Config(
executors=[

FluxExecutor(
provider=SlurmProvider(

partition="YOUR_PARTITION", # e.g. "pbatch", "pdebug"
account="YOUR_ACCOUNT",
launcher=SrunLauncher(overrides="--mpibind=off"),

(continues on next page)

1.6. Parsl is a community 85

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

nodes_per_block=1,
init_blocks=1,
min_blocks=1,
max_blocks=1,
walltime="00:30:00",
string to prepend to #SBATCH blocks in the submit
script to the scheduler, e.g.: '#SBATCH -t 50'
scheduler_options='',
Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',
cmd_timeout=120,

),
)

]
)

Further help

For help constructing a configuration, you can click on class names such as Config or HighThroughputExecutor to
see the associated class documentation. The same documentation can be accessed interactively at the python command
line via, for example:

from parsl.config import Config
help(Config)

Monitoring

Parsl includes a monitoring system to capture task state as well as resource usage over time. The Parsl monitoring
system aims to provide detailed information and diagnostic capabilities to help track the state of your programs, down
to the individual apps that are executed on remote machines.

The monitoring system records information to an SQLite database while a workflow runs. This information can then
be visualised in a web dashboard using the parsl-visualize tool, or queried using SQL using regular SQLite tools.

Monitoring configuration

Parsl monitoring is only supported with the parsl.executors.HighThroughputExecutor.

The following example shows how to enable monitoring in the Parsl configuration. Here the parsl.monitoring.
MonitoringHub is specified to use port 55055 to receive monitoring messages from workers every 10 seconds.

import parsl
from parsl.monitoring.monitoring import MonitoringHub
from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.addresses import address_by_hostname

import logging
(continues on next page)

86 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

config = Config(
executors=[

HighThroughputExecutor(
label="local_htex",
cores_per_worker=1,
max_workers_per_node=4,
address=address_by_hostname(),

)
],
monitoring=MonitoringHub(

hub_address=address_by_hostname(),
hub_port=55055,
monitoring_debug=False,
resource_monitoring_interval=10,

),
strategy='none'

)

Visualization

To run the web dashboard utility parsl-visualize you first need to install its dependencies:

$ pip install ‘parsl[monitoring,visualization]’

To view the web dashboard while or after a Parsl program has executed, run the parsl-visualize utility:

$ parsl-visualize

By default, this command expects that the default monitoring.db database is used in the runinfo directory. Other
databases can be loaded by passing the database URI on the command line. For example, if the full path to the database
is /tmp/my_monitoring.db, run:

$ parsl-visualize sqlite:////tmp/my_monitoring.db

By default, the visualization web server listens on 127.0.0.1:8080. If the web server is deployed on a machine with
a web browser, the dashboard can be accessed in the browser at 127.0.0.1:8080. If the web server is deployed on a
remote machine, such as the login node of a cluster, you will need to use an ssh tunnel from your local machine to the
cluster:

$ ssh -L 50000:127.0.0.1:8080 username@cluster_address

This command will bind your local machine’s port 50000 to the remote cluster’s port 8080. The dashboard can then
be accessed via the local machine’s browser at 127.0.0.1:50000.

Warning: Alternatively you can deploy the visualization server on a public interface. However, first check that
this is allowed by the cluster’s security policy. The following example shows how to deploy the web server on a
public port (i.e., open to Internet via public_IP:55555):

$ parsl-visualize --listen 0.0.0.0 --port 55555

1.6. Parsl is a community 87

Parsl Documentation, Release 1.3.0-dev

Workflows Page

The workflows page lists all Parsl workflows that have been executed with monitoring enabled with the selected
database. It provides a high level summary of workflow state as shown below:

Throughout the dashboard, all blue elements are clickable. For example, clicking a specific worklow name from the
table takes you to the Workflow Summary page described in the next section.

Workflow Summary

The workflow summary page captures the run level details of a workflow, including start and end times as well as task
summary statistics. The workflow summary section is followed by the App Summary that lists the various apps and
invocation count for each.

88 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

The workflow summary also presents three different views of the workflow:

• Workflow DAG - with apps differentiated by colors: This visualization is useful to visually inspect the depen-
dency structure of the workflow. Hovering over the nodes in the DAG shows a tooltip for the app represented by
the node and it’s task ID.

• Workflow DAG - with task states differentiated by colors: This visualization is useful to identify what tasks have
been completed, failed, or are currently pending.

1.6. Parsl is a community 89

Parsl Documentation, Release 1.3.0-dev

• Workflow resource usage: This visualization provides resource usage information at the workflow level. For
example, cumulative CPU/Memory utilization across workers over time.

90 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

1.6. Parsl is a community 91

Parsl Documentation, Release 1.3.0-dev

Example parallel patterns

Parsl can be used to implement a wide range of parallel programming patterns, from bag of tasks through to nested
workflows. Parsl implicitly assembles a dataflow dependency graph based on the data shared between apps. The
flexibility of this model allows for the implementation of a wide range of parallel programming and workflow patterns.

Parsl is also designed to address broad execution requirements, from programs that run many short tasks to those that
run a few long tasks.

Below we illustrate a range of parallel programming and workflow patterns. It is important to note that this set of
examples is by no means comprehensive.

Bag of Tasks

Parsl can be used to execute a large bag of tasks. In this case, Parsl assembles the set of tasks (represented as Parsl
apps) and manages their concurrent execution on available resources.

from parsl import python_app

parsl.load()

Map function that returns double the input integer
@python_app
def app_random():

import random
return random.random()

results = []
for i in range(0, 10):

x = app_random()
results.append(x)

for r in results:
print(r.result())

Sequential workflows

Sequential workflows can be created by passing an AppFuture from one task to another. For example, in the following
program the generate app (a Python app) generates a random number that is consumed by the save app (a Bash app),
which writes it to a file. Because save cannot execute until it receives the message produced by generate, the two
apps execute in sequence.

from parsl import python_app

parsl.load()

Generate a random number
@python_app
def generate(limit):

from random import randint
"""Generate a random integer and return it"""
return randint(1, limit)

(continues on next page)

92 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

Write a message to a file
@bash_app
def save(message, outputs=()):

return 'echo {} &> {}'.format(message, outputs[0])

message = generate(10)

saved = save(message, outputs=['output.txt'])

with open(saved.outputs[0].result(), 'r') as f:
print(f.read())

Parallel workflows

Parallel execution occurs automatically in Parsl, respecting dependencies among app executions. In the following
example, three instances of the wait_sleep_double app are created. The first two execute concurrently, as they have
no dependencies; the third must wait until the first two complete and thus the doubled_x and doubled_y futures have
values. Note that this sequencing occurs even though wait_sleep_double does not in fact use its second and third
arguments.

from parsl import python_app

parsl.load()

@python_app
def wait_sleep_double(x, foo_1, foo_2):

import time
time.sleep(2) # Sleep for 2 seconds
return x*2

Launch two apps, which will execute in parallel, since they do not have to
wait on any futures
doubled_x = wait_sleep_double(10, None, None)
doubled_y = wait_sleep_double(10, None, None)

The third app depends on the first two:
doubled_x doubled_y (2 s)
\ /
doublex_z (2 s)
doubled_z = wait_sleep_double(10, doubled_x, doubled_y)

doubled_z will be done in ~4s
print(doubled_z.result())

1.6. Parsl is a community 93

Parsl Documentation, Release 1.3.0-dev

Parallel workflows with loops

A common approach to executing Parsl apps in parallel is via loops. The following example uses a loop to create many
random numbers in parallel.

from parsl import python_app

parsl.load()

@python_app
def generate(limit):

"""Generate a random integer and return it"""
from random import randint
return randint(1, limit)

rand_nums = []
for i in range(1,5):

rand_nums.append(generate(i))

Wait for all apps to finish and collect the results
outputs = [r.result() for r in rand_nums]

The ParslPoolExecutor simplifies this pattern using the same interface as Python’s native Executors.

from parsl.concurrent import ParslPoolExecutor
from parsl.configs.htex_local import config

NOTE: Functions used by the ParslPoolExecutor do _not_ use decorators
def generate(limit):

"""Generate a random integer and return it"""
from random import randint
return randint(1, limit)

with ParslPoolExecutor(config) as exec:
outputs = pool.map(generate, range(1, 5))

In the preceding example, the execution of different tasks is coordinated by passing Python objects from producers to
consumers. In other cases, it can be convenient to pass data in files, as in the following reformulation. Here, a set of
files, each with a random number, is created by the generate app. These files are then concatenated into a single file,
which is subsequently used to compute the sum of all numbers.

from parsl import python_app, bash_app

parsl.load()

@bash_app
def generate(outputs=()):

return 'echo $((RANDOM % (10 - 5 + 1) + 5)) &> {}'.format(outputs[0])

@bash_app
def concat(inputs=(), outputs=(), stdout='stdout.txt', stderr='stderr.txt'):

return 'cat {0} >> {1}'.format(' '.join(inputs), outputs[0])
(continues on next page)

94 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/concurrent.futures.html#executor-objects

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

@python_app
def total(inputs=()):

total = 0
with open(inputs[0].filepath, 'r') as f:

for l in f:
total += int(l)

return total

Create 5 files with random numbers
output_files = []
for i in range (5):

output_files.append(generate(outputs=['random-%s.txt' % i]))

Concatenate the files into a single file
cc = concat(inputs=[i.outputs[0] for i in output_files], outputs=['all.txt'])

Calculate the average of the random numbers
totals = total(inputs=[cc.outputs[0]])

print(totals.result())

MapReduce

MapReduce is a common pattern used in data analytics. It is composed of a map phase that filters values and a reduce
phase that aggregates values. The following example demonstrates how Parsl can be used to specify a MapReduce
computation in which the map phase doubles a set of input integers and the reduce phase computes the sum of those
results.

from parsl import python_app

parsl.load()

Map function that returns double the input integer
@python_app
def app_double(x):

return x*2

Reduce function that returns the sum of a list
@python_app
def app_sum(inputs=()):

return sum(inputs)

Create a list of integers
items = range(0,4)

Map phase: apply the double *app* function to each item in list
mapped_results = []
for i in items:

x = app_double(i)
mapped_results.append(x)

(continues on next page)

1.6. Parsl is a community 95

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

Reduce phase: apply the sum *app* function to the set of results
total = app_sum(inputs=mapped_results)

print(total.result())

The program first defines two Parsl apps, app_double and app_sum. It then makes calls to the app_double app with
a set of input values. It then passes the results from app_double to the app_sum app to aggregate values into a single
result. These tasks execute concurrently, synchronized by the mapped_results variable. The following figure shows
the resulting task graph.

Caching expensive initialisation between tasks

Many tasks in workflows require a expensive “initialization” steps that, once performed, can be used across successive
invocations for that task. For example, you may want to reuse a machine learning model for multiple interface tasks
and avoid loading it onto GPUs more than once.

This ExaWorks tutorial gives examples of how to do this.

96 Chapter 1. Why use Parsl?

https://github.com/ExaWorks/warmable-function-calls

Parsl Documentation, Release 1.3.0-dev

Structuring Parsl programs

Parsl programs can be developed in many ways. When developing a simple program it is often convenient to include
the app definitions and control logic in a single script. However, as a program inevitably grows and changes, like any
code, there are significant benefits to be obtained by modularizing the program, including:

1. Better readability

2. Logical separation of components (e.g., apps, config, and control logic)

3. Ease of reuse of components

The following example illustrates how a Parsl project can be organized into modules.

The configuration(s) can be defined in a module or file (e.g., config.py) which can be imported into the control script
depending on which execution resources should be used.

from parsl.config import Config
from parsl.channels import LocalChannel
from parsl.executors import HighThroughputExecutor
from parsl.providers import LocalProvider

htex_config = Config(
executors=[

HighThroughputExecutor(
label="htex_local",
cores_per_worker=1,
provider=LocalProvider(

channel=LocalChannel(),
),

)
],

)

Parsl apps can be defined in separate file(s) or module(s) (e.g., library.py) grouped by functionality.

from parsl import python_app

@python_app
def increment(x):

return x + 1

Finally, the control logic for the Parsl program can then be implemented in a separate file (e.g., run_increment.py).
This file must the import the configuration from config.py before calling the increment app from library.py:

import parsl
from config import htex_config
from library import increment

parsl.load(htex_config)

for i in range(5):
print('{} + 1 = {}'.format(i, increment(i).result()))

Which produces the following output:

1.6. Parsl is a community 97

Parsl Documentation, Release 1.3.0-dev

0 + 1 = 1
1 + 1 = 2
2 + 1 = 3
3 + 1 = 4
4 + 1 = 5

Lifted operators

Parsl allows some operators ([] and .) to be used on an AppFuture in a way that makes sense with those operators on
the eventually returned result.

Lifted [] operator

When an app returns a complex structure such as a dict or a list, it is sometimes useful to pass an element of that
structure to a subsequent task, without waiting for that subsequent task to complete.

To help with this, Parsl allows the [] operator to be used on an AppFuture. This operator will return another
AppFuture that will complete after the initial future, with the result of [] on the value of the initial future.

The end result is that this assertion will hold:

fut = my_app()
assert fut['x'].result() == fut.result()[x]

but more concurrency will be available, as execution of the main workflow code will not stop to wait for result() to
complete on the initial future.

AppFuture does not implement other methods commonly associated with dicts and lists, such as len, because those
methods should return a specific type of result immediately, and that is not possible when the results are not available
until the future.

If a key does not exist in the returned result, then the exception will appear in the Future returned by [], rather than
at the point that the [] operator is applied. This is because the valid values that can be used are not known until the
underlying result is available.

Lifted . operator

The . operator works similarly to [] described above:

fut = my_app
assert fut.x.result() == fut.result().x

Attributes beginning with _ are not lifted as this usually indicates an attribute that is used for internal purposes, and
to try to avoid mixing protocols (such as iteration in for loops) defined on AppFutures vs protocols defined on the
underlying result object.

98 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Join Apps

Join apps, defined with the @join_app decorator, are a form of app that can launch other pieces of a workflow: for
example a Parsl sub-workflow, or a task that runs in some other system.

Parsl sub-workflows

One reason for launching Parsl apps from inside a join app, rather than directly in the main workflow code, is because
the definitions of those tasks are not known well enough at the start of the workflow.

For example, a workflow might run an expensive step to detect some objects in an image, and then on each object, run
a further expensive step. Because the number of objects is not known at the start of the workflow, but instead only after
an expensive step has completed, the subsequent tasks cannot be defined until after that step has completed.

In simple cases, the main workflow script can be stopped using Future.result() and join apps are not necessary,
but in more complicated cases, that approach can severely limit concurrency.

Join apps allow more naunced dependencies to be expressed that can help with:

• increased concurrency - helping with strong scaling

• more focused error propagation - allowing more of an ultimately failing workflow to complete

• more useful monitoring information

Using Futures from other components

Sometimes, a workflow might need to incorporate tasks from other systems that run asynchronously but do not need
a Parsl worker allocated for their entire run. An example of this is delegating some work into Globus Compute: work
can be given to Globus Compute, but Parsl does not need to keep a worker allocated to that task while it runs. Instead,
Parsl can be told to wait for the Future returned by Globus Compute to complete.

Usage

A join_app looks quite like a python_app, but should return one or more Future objects, rather than a value. Once
the Python code has run, the app will wait for those Futures to complete without occuping a Parsl worker, and when
those Futures complete, their contents will be the return value of the join_app.

For example:

@python_app
def some_app():
return 3

@join_app
def example():
x: Future = some_app()
return x # note that x is a Future, not a value

assert example.result() == 3

1.6. Parsl is a community 99

Parsl Documentation, Release 1.3.0-dev

Example of a Parsl sub-workflow

This example workflow shows a preprocessing step, followed by a middle stage that is chosen by the result of the
pre-processing step (either option 1 or option 2) followed by a know post-processing step.

@python_app
def pre_process():
return 3

@python_app
def option_one(x):
return x*2

@python_app
def option_two(x):
return (-x) * 2

@join_app
def process(x):
if x > 0:
return option_one(x)

else:
return option_two(x)

@python_app
def post_process(x):
return str(x)

assert post_process(process(pre_process()))).result() == "6"

• Why can’t process be a regular python function?

process needs to inspect the value of x to make a decision about what app to launch. So it needs to defer execution
until after the pre-processing stage has completed. In Parsl, the way to defer that is using apps: even though process
is invoked at the start of the workflow, it will execute later on, when the Future returned by pre_process has a value.

• Why can’t process be a @python_app?

A Python app, if run in a parsl.executors.ThreadPoolExecutor, can launch more parsl apps; so a python_app
implementation of process() would be able to inspect x and choose and invoke the appropriate option_{one, two}.

From launching the option_{one, two} app, the app body python code would get a Future[int] - a Future that
will eventually contain int.

But, we want to invoke post_process at submission time near the start of workflow so that Parsl knows about as many
tasks as possible. But we don’t want it to execute until the value of the chosen option_{one, two} app is known.

If we don’t have join apps, how can we do this?

We could make process wait for option_{one, two} to complete, before returning, like this:

@python_app
def process(x):
if x > 0:
f = option_one(x)

else:
(continues on next page)

100 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

f = option_two(x)
return f.result()

but this will block the worker running process until option_{one, two} has completed. If there aren’t enough
workers to run option_{one, two} this can even deadlock. (principle: apps should not wait on completion of other
apps and should always allow parsl to handle this through dependencies)

We could make process return the Future to the main workflow thread:

@python_app
def process(x):
if x > 0:
f = option_one(x)

else:
f = option_two(x)

return f # f is a Future[int]

process(3) is a Future[Future[int]]

What comes out of invoking process(x) now is a nested Future[Future[int]] - it’s a promise that eventually
process will give you a promise (from option_one, two}) that will eventually give you an int.

We can’t pass that future into post_process. . . because post_process wants the final int, and that future will complete
before the int is ready, and that (outer) future will have as its value the inner future (which won’t be complete yet).

So we could wait for the result in the main workflow thread:

f_outer = process(pre_process()) # Future[Future[int]]
f_inner = f_outer.result # Future[int]
result = post_process(f_inner)
result == "6"

But this now blocks the main workflow thread. If we really only need to run these three lines, that’s fine, but what about
if we are in a for loop that sets up 1000 parametrised iterations:

for x in [1..1000]:
f_outer = process(pre_process(x)) # Future[Future[int]]
f_inner = f_outer.result() # Future[int]
result = post_process(f_inner)

The for loop can only iterate after pre_processing is done for each iteration - it is unnecessarily serialised by the
.result() call, so that pre_processing cannot run in parallel.

So, the rule about not calling .result() applies in the main workflow thread too.

What join apps add is the ability for parsl to unwrap that Future[Future[int]] into a Future[int] in a “sensible” way (eg
it doesn’t need to block a worker).

1.6. Parsl is a community 101

Parsl Documentation, Release 1.3.0-dev

Example of invoking a Futures-driven task from another system

This example shows launching some activity in another system, without occupying a Parsl worker while that activity
happens: in this example, work is delegated to Globus Compute, which performs the work elsewhere. When the work
is completed, Globus Compute will put the result into the future that it returns, and then (because the Parsl app is a
@join_app), that result will be used as the result of the Parsl app.

As above, the motivation for doing this inside an app, rather than in the top level is that sufficient information to launch
the Globus Compute task might not be available at start of the workflow.

This workflow will run a first stage, const_five, on a Parsl worker, then using the result of that stage, pass the result
as a parameter to a Globus Compute task, getting a Future from that submission. Then, the results of the Globus
Compute task will be passed onto a second Parsl local task, times_two.

import parsl
from globus_compute_sdk import Executor

tutorial_endpoint_uuid = '4b116d3c-1703-4f8f-9f6f-39921e5864df'
gce = Executor(endpoint_id=tutorial_endpoint_uuid)

def increment_in_funcx(n):
return n+1

@parsl.join_app
def increment_in_parsl(n):

future = gce.submit(increment_in_funcx, n)
return future

@parsl.python_app
def times_two(n):

return n*2

@parsl.python_app
def const_five():

return 5

parsl.load()

workflow = times_two(increment_in_parsl(const_five()))

r = workflow.result()

assert r == (5+1)*2

102 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Terminology

The term “join” comes from use of monads in functional programming, especially Haskell.

Usage statistics collection

Parsl uses an Opt-in model to send usage statistics back to the Parsl development team to measure worldwide usage
and improve reliability and usability. The usage statistics are used only for improvements and reporting. They are not
shared in raw form outside of the Parsl team.

Why are we doing this?

The Parsl development team receives support from government funding agencies. For the team to continue to receive
such funding, and for the agencies themselves to argue for funding, both the team and the agencies must be able to
demonstrate that the scientific community is benefiting from these investments. To this end, it is important that we
provide aggregate usage data about such things as the following:

• How many people use Parsl

• Average job length

• Parsl exit codes

By participating in this project, you help justify continuing support for the software on which you rely. (see What is
sent? below).

Opt-In

We have chosen opt-in collection rather than opt-out with the hope that developers and researchers will choose to send
us this information. The reason is that we need this data - it is a requirement for funding.

By opting-in, and allowing these statistics to be reported back, you are explicitly supporting the further development
of Parsl.

If you wish to opt in to usage reporting, set PARSL_TRACKING=true in your environment or set
usage_tracking=True in the configuration object (parsl.config.Config).

What is sent?

• IP address

• Run UUID

• Start and end times

• Number of executors used

• Number of failures

• Parsl and Python version

• OS and OS version

1.6. Parsl is a community 103

Parsl Documentation, Release 1.3.0-dev

How is the data sent?

The data is sent via UDP. While this may cause us to lose some data, it drastically reduces the possibility that the usage
statistics reporting will adversely affect the operation of the software.

When is the data sent?

The data is sent twice per run, once when Parsl starts a script, and once when the script is completed.

What will the data be used for?

The data will be used for reporting purposes to answer questions such as:

• How many unique users are using Parsl?

• To determine patterns of usage - is activity increasing or decreasing?

We will also use this information to improve Parsl by identifying software faults.

• What percentage of tasks complete successfully?

• Of the tasks that fail, what is the most common fault code returned?

Feedback

Please send us your feedback at parsl@googlegroups.com. Feedback from our user communities will be useful in
determining our path forward with usage tracking in the future.

Plugins

Parsl has several places where code can be plugged in. Parsl usually provides several implementations that use each
plugin point.

This page gives a brief summary of those places and why you might want to use them, with links to the API guide.

Executors

When the parsl dataflow kernel is ready for a task to run, it passes that task to an ParslExecutor. The executor is then
responsible for running the task’s Python code and returning the result. This is the abstraction that allows one executor
to run code on the local submitting host, while another executor can run the same code on a large supercomputer.

Providers, Launchers and Channels

Some executors are based on blocks of workers (for example the parsl.executors.HighThroughputExecutor:
the submit side requires a batch system (eg slurm, kubernetes) to start worker processes, which then execute tasks.

The particular way in which a system makes those workers start is implemented by providers and launchers.

An ExecutionProvider allows a command line to be submitted as a request to the underlying batch system to be run
inside an allocation of nodes.

104 Chapter 1. Why use Parsl?

mailto:parsl@googlegroups.com

Parsl Documentation, Release 1.3.0-dev

A Launcher modifies that command line when run inside the allocation to add on any wrappers that are needed to
launch the command (eg srun inside slurm). Providers and launchers are usually paired together for a particular system
type.

A Channel allows the commands used to interact with an ExecutionProvider to be executed on a remote system.
The default channel executes commands on the local system, but a few variants of an parsl.channels.SSHChannel
are provided.

File staging

Parsl can copy input files from an arbitrary URL into a task’s working environment, and copy output files from a task’s
working environment to an arbitrary URL. A small set of data staging providers is installed by default, for file://
http:// and ftp:// URLs. More data staging providers can be added in the workflow configuration, in the storage
parameter of the relevant ParslExecutor. Each provider should subclass the Staging class.

Default stdout/stderr name generation

Parsl can choose names for your bash apps stdout and stderr streams automatically, with the parsl.AUTO_LOGNAME
parameter. The choice of path is made by a function which can be configured with the std_autopath parameter of
Parsl Config. By default, DataFlowKernel.default_std_autopath will be used.

Memoization/checkpointing

When parsl memoizes/checkpoints an app parameter, it does so by computing a hash of that parameter that should be
the same if that parameter is the same on subsequent invocations. This isn’t straightforward to do for arbitrary objects,
so parsl implements a checkpointing hash function for a few common types, and raises an exception on unknown types:

ValueError("unknown type for memoization ...")

You can plug in your own type-specific hash code for additional types that you need and understand using
id_for_memo.

Invoking other asynchronous components

Parsl code can invoke other asynchronous components which return Futures, and integrate those Futures into the task
graph: Parsl apps can be given any concurrent.futures.Future as a dependency, even if those futures do not come
from invoking a Parsl app. This includes as the return value of a join_app.

An specific example of this is integrating Globus Compute tasks into a Parsl task graph. See Example of invoking a
Futures-driven task from another system

1.6. Parsl is a community 105

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future

Parsl Documentation, Release 1.3.0-dev

Measuring performance with parsl-perf

parsl-perf is tool for making basic performance measurements of Parsl configurations.

It runs increasingly large numbers of no-op apps until a batch takes (by default) 120 seconds, giving a measurement of
tasks per second.

This can give a basic measurement of some of the overheads in task execution.

parsl-perf must be invoked with a configuration file, which is a Python file containing a variable config which
contains a Config object, or a function fresh_config which returns a Config object. The fresh_config format is
the same as used with the pytest test suite.

To specify a parsl_resource_specification for tasks, add a --resources argument.

To change the target runtime from the default of 120 seconds, add a --time parameter.

For example:

$ python -m parsl.benchmark.perf --config parsl/tests/configs/workqueue_ex.py --
→˓resources '{"cores":1, "memory":0, "disk":0}'
==== Iteration 1 ====
Will run 10 tasks to target 120 seconds runtime
Submitting tasks / invoking apps
warning: using plain-text when communicating with workers.
warning: use encryption with a key and cert when creating the manager.
All 10 tasks submitted ... waiting for completion
Submission took 0.008 seconds = 1248.676 tasks/second
Runtime: actual 3.668s vs target 120s
Tasks per second: 2.726

[...]

==== Iteration 4 ====
Will run 57640 tasks to target 120 seconds runtime
Submitting tasks / invoking apps
All 57640 tasks submitted ... waiting for completion
Submission took 34.839 seconds = 1654.487 tasks/second
Runtime: actual 364.387s vs target 120s
Tasks per second: 158.184
Cleaning up DFK
The end

FAQ

How can I debug a Parsl script?

Parsl interfaces with the Python logger and automatically logs Parsl-related messages a runinfo directory. The
runinfo directory will be created in the folder from which you run the Parsl script and it will contain a series of
subfolders for each time you run the code. Your latest run will be the largest number.

Alternatively, you can configure the file logger to write to an output file.

import parsl

(continues on next page)

106 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

Emit log lines to the screen
parsl.set_stream_logger()

Write log to file, specify level of detail for logs
parsl.set_file_logger(FILENAME, level=logging.DEBUG)

Note: Parsl’s logging will not capture STDOUT/STDERR from the apps themselves. Follow instructions below for
application logs.

How can I view outputs and errors from apps?

Parsl apps include keyword arguments for capturing stderr and stdout in files.

@bash_app
def hello(msg, stdout=None):

return 'echo {}'.format(msg)

When hello() runs the STDOUT will be written to 'hello.txt'
hello('Hello world', stdout='hello.txt')

How can I make an App dependent on multiple inputs?

You can pass any number of futures in to a single App either as positional arguments or as a list of futures via the
special keyword inputs=(). The App will wait for all inputs to be satisfied before execution.

Can I pass any Python object between apps?

This depends on the executor in use. The parsl.executors.threads.ThreadPoolExecutor can receive and return
any Python object. Other executors will serialize their parameters and return values, so only objects which Parsl knows
how to serialize can be passed.

Parsl knows how to serialize objects using the Pickle and Dill libraries.

Pickle provides a list of objects that it knows how to serialize: What can be pickled and unpickled?.

Dill can serialize much more than Pickle, documented in the dill documentation.

For objects that can’t be pickled, use object specific methods to write the object into a file and use files to communicate
between apps.

1.6. Parsl is a community 107

https://docs.python.org/3/library/pickle.html#what-can-be-pickled-and-unpickled
https://dill.readthedocs.io/en/latest/

Parsl Documentation, Release 1.3.0-dev

How do I specify where apps should be run?

Parsl’s multi-executor support allows you to define the executor (including local threads) on which an App should be
executed. For example:

@python_app(executors=['SuperComputer1'])
def BigSimulation(...):

...

@python_app(executors=['GPUMachine'])
def Visualize (...)

...

Workers do not connect back to Parsl

If you are running via ssh to a remote system from your local machine, or from the login node of a cluster/supercomputer,
it is necessary to have a public IP to which the workers can connect back. While our remote execution systems can
identify the IP address automatically in certain cases, it is safer to specify the address explicitly. Parsl provides a few
heuristic based address resolution methods that could be useful, however with complex networks some trial and error
might be necessary to find the right address or network interface to use.

For parsl.executors.HighThroughputExecutor the address is specified in the Config as shown below :

THIS IS A CONFIG FRAGMENT FOR ILLUSTRATION
from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.addresses import address_by_route, address_by_query, address_by_hostname
config = Config(

executors=[
HighThroughputExecutor(

label='ALCF_theta_local',
address='<AA.BB.CC.DD>' # specify public ip here
address=address_by_route() # Alternatively you can try this
address=address_by_query() # Alternatively you can try this
address=address_by_hostname() # Alternatively you can try this

)
],

)

Note: Another possibility that can cause workers not to connect back to Parsl is an incompatibility between the
system and the pre-compiled bindings used for pyzmq. As a last resort, you can try: pip install --upgrade
--no-binary pyzmq pyzmq, which forces re-compilation.

For the parsl.executors.HighThroughputExecutor, address is a keyword argument taken at initialization. Here
is an example for the parsl.executors.HighThroughputExecutor:

THIS IS A CONFIG FRAGMENT FOR ILLUSTRATION
from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.addresses import address_by_route, address_by_query, address_by_hostname

(continues on next page)

108 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

config = Config(
executors=[

HighThroughputExecutor(
label='NERSC_Cori',
address='<AA.BB.CC.DD>' # specify public ip here
address=address_by_route() # Alternatively you can try this
address=address_by_query() # Alternatively you can try this
address=address_by_hostname() # Alternatively you can try this

)
],

)

Note: On certain systems such as the Midway RCC cluster at UChicago, some network interfaces have an active
intrusion detection system that drops connections that persist beyond a specific duration (~20s). If you get repeated
ManagerLost exceptions, it would warrant taking a closer look at networking.

parsl.errors.ConfigurationError

The Parsl configuration model underwent a major and non-backward compatible change in the transition to v0.6.0.
Prior to v0.6.0 the configuration object was a python dictionary with nested dictionaries and lists. The switch to a
class based configuration allowed for well-defined options for each specific component being configured as well as
transparency on configuration defaults. The following traceback indicates that the old style configuration was passed
to Parsl v0.6.0+ and requires an upgrade to the configuration.

File "/home/yadu/src/parsl/parsl/dataflow/dflow.py", line 70, in __init__
'Expected `Config` class, received dictionary. For help, '

parsl.errors.ConfigurationError: Expected `Config` class, received dictionary. For help,
see http://parsl.readthedocs.io/en/stable/stubs/parsl.config.Config.html

For more information on how to update your configuration script, please refer to: Configuration.

Remote execution fails with SystemError(unknown opcode)

When running with Ipyparallel workers, it is important to ensure that the Python version on the client side matches
that on the side of the workers. If there’s a mismatch, the apps sent to the workers will fail with the following error:
ipyparallel.error.RemoteError: SystemError(unknown opcode)

Caution: It is required that both the parsl script and all workers are set to use python with the same Major.Minor
version numbers. For example, use Python3.5.X on both local and worker side.

1.6. Parsl is a community 109

Parsl Documentation, Release 1.3.0-dev

Parsl complains about missing packages

If parsl is cloned from a Github repository and added to the PYTHONPATH, it is possible to miss the installation of
some dependent libraries. In this configuration, parsl will raise errors such as:

ModuleNotFoundError: No module named 'ipyparallel'

You should usually install parsl using a package managment tool such as pip or conda, ideally in a restricted environ-
ment such a virtualenv or a conda environment.

For instance, with conda, follow this cheatsheet to create a virtual environment:

Activate an environmentconda install
source activate <my_env>

Install packages:
conda install <ipyparallel, dill, boto3...>

How do I run code that uses Python2.X?

Modules or code that require Python2.X cannot be run as python apps, however they may be run via bash apps. The pri-
mary limitation with python apps is that all the inputs and outputs including the function would be mangled when being
transmitted between python interpreters with different version numbers (also see parsl.errors.ConfigurationError)

Here is an example of running a python2.7 code as a bash application:

@bash_app
def python_27_app (arg1, arg2 ...):

return '''conda activate py2.7_env # Use conda to ensure right env
python2.7 my_python_app.py -arg {0} -d {1}
'''.format(arg1, arg2)

Parsl hangs

There are a few common situations in which a Parsl script might hang:

1. Circular Dependency in code: If an app takes a list as an input argument and the future returned is added to
that list, it creates a circular dependency that cannot be resolved. This situation is described in issue 59 in more
detail.

2. Workers requested are unable to contact the Parsl client due to one or more issues listed below:

• Parsl client does not have a public IP (e.g. laptop on wifi). If your network does not provide public IPs, the
simple solution is to ssh over to a machine that is public facing. Machines provisioned from cloud-vendors
setup with public IPs are another option.

• Parsl hasn’t autodetected the public IP. See Workers do not connect back to Parsl for more details.

• Firewall restrictions that block certain port ranges. If there is a certain port range that is not blocked, you
may specify that via configuration:

from libsubmit.providers import Cobalt
from parsl.config import Config
from parsl.executors import HighThroughputExecutor

(continues on next page)

110 Chapter 1. Why use Parsl?

https://conda.io/docs/_downloads/conda-cheatsheet.pdf
https://github.com/Parsl/parsl/issues/59

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

config = Config(
executors=[

HighThroughputExecutor(
label='ALCF_theta_local',
provider=Cobalt(),
worer_port_range=('50000,55000'),
interchange_port_range=('50000,55000')

)
],

)

How can I start a Jupyter notebook over SSH?

Run

jupyter notebook --no-browser --ip=`/sbin/ip route get 8.8.8.8 | awk '{print $NF;exit}'`

for a Jupyter notebook, or

jupyter lab --no-browser --ip=`/sbin/ip route get 8.8.8.8 | awk '{print $NF;exit}'`

for Jupyter lab (recommended). If that doesn’t work, see these instructions.

How can I sync my conda environment and Jupyter environment?

Run:

conda install nb_conda

Now all available conda environments (for example, one created by following the instructions in the quickstart guide)
will automatically be added to the list of kernels.

Addressing SerializationError

As of v1.0.0, Parsl will raise a SerializationError when it encounters an object that Parsl cannot serialize. This
applies to objects passed as arguments to an app, as well as objects returned from the app.

Parsl uses dill and pickle to serialize Python objects to/from functions. Therefore, Python apps can only use input and
output objects that can be serialized by dill or pickle. For example the following data types are known to have issues
with serializability :

• Closures

• Objects of complex classes with no __dict__ or __getstate__ methods defined

• System objects such as file descriptors, sockets and locks (e.g threading.Lock)

If Parsl raises a SerializationError, first identify what objects are problematic with a quick test:

import pickle
If non-serializable you will get a TypeError
pickle.dumps(YOUR_DATA_OBJECT)

1.6. Parsl is a community 111

https://techtalktone.wordpress.com/2017/03/28/running-jupyter-notebooks-on-a-remote-server-via-ssh/

Parsl Documentation, Release 1.3.0-dev

If the data object simply is complex, please refer here for more details on adding custom mechanisms for supporting
serialization.

How do I cite Parsl?

To cite Parsl in publications, please use the following:

Babuji, Y., Woodard, A., Li, Z., Katz, D. S., Clifford, B., Kumar, R., Lacinski, L., Chard, R., Wozniak, J., Foster, I.,
Wilde, M., and Chard, K., Parsl: Pervasive Parallel Programming in Python. 28th ACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC). 2019. https://doi.org/10.1145/3307681.3325400

or

@inproceedings{babuji19parsl,
author = {Babuji, Yadu and

Woodard, Anna and
Li, Zhuozhao and
Katz, Daniel S. and
Clifford, Ben and
Kumar, Rohan and
Lacinski, Lukasz and
Chard, Ryan and
Wozniak, Justin and
Foster, Ian and
Wilde, Mike and
Chard, Kyle},

title = {Parsl: Pervasive Parallel Programming in Python},
booktitle = {28th ACM International Symposium on High-Performance Parallel and␣

→˓Distributed Computing (HPDC)},
doi = {10.1145/3307681.3325400},
year = {2019},
url = {https://doi.org/10.1145/3307681.3325400}

}

API Reference guide

Core

parsl.app.app.python_app Decorator function for making python apps.
parsl.app.app.bash_app Decorator function for making bash apps.
parsl.app.app.join_app Decorator function for making join apps
parsl.dataflow.futures.AppFuture An AppFuture wraps a sequence of Futures which may

fail and be retried.
parsl.dataflow.dflow.DataFlowKernelLoader Manage which DataFlowKernel is active.
parsl.monitoring.MonitoringHub

112 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/pickle.html#handling-stateful-objects
https://doi.org/10.1145/3307681.3325400

Parsl Documentation, Release 1.3.0-dev

parsl.app.app.python_app

parsl.app.app.python_app(function: Callable | None = None, data_flow_kernel: DataFlowKernel | None =
None, cache: bool = False, executors: List[str] | Literal['all'] = 'all',
ignore_for_cache: Sequence[str] | None = None)→ Callable

Decorator function for making python apps.

Parameters

• function (function) – Do not pass this keyword argument directly. This is needed in
order to allow for omitted parenthesis, for example, @python_app if using all defaults or
@python_app(walltime=120). If the decorator is used alone, function will be the actual
function being decorated, whereas if it is called with arguments, function will be None.
Default is None.

• data_flow_kernel (DataFlowKernel) – The DataFlowKernel responsible for man-
aging this app. This can be omitted only after calling parsl.dataflow.dflow.
DataFlowKernelLoader.load(). Default is None.

• executors (string or list) – Labels of the executors that this app can execute over.
Default is ‘all’.

• cache (bool) – Enable caching of the app call. Default is False.

• ignore_for_cache ((sequence|None)) – Names of arguments which will be ignored by
the caching mechanism.

parsl.app.app.bash_app

parsl.app.app.bash_app(function: Callable | None = None, data_flow_kernel: DataFlowKernel | None = None,
cache: bool = False, executors: List[str] | Literal['all'] = 'all', ignore_for_cache:
Sequence[str] | None = None)→ Callable

Decorator function for making bash apps.

Parameters

• function (function) – Do not pass this keyword argument directly. This is needed in
order to allow for omitted parenthesis, for example, @bash_app if using all defaults or
@bash_app(walltime=120). If the decorator is used alone, function will be the actual
function being decorated, whereas if it is called with arguments, function will be None. De-
fault is None.

• data_flow_kernel (DataFlowKernel) – The DataFlowKernel responsible for man-
aging this app. This can be omitted only after calling parsl.dataflow.dflow.
DataFlowKernelLoader.load(). Default is None.

• walltime (int) – Walltime for app in seconds. Default is 60.

• executors (string or list) – Labels of the executors that this app can execute over.
Default is ‘all’.

• cache (bool) – Enable caching of the app call. Default is False.

• ignore_for_cache ((list|None)) – Names of arguments which will be ignored by the
caching mechanism.

1.6. Parsl is a community 113

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

Parsl Documentation, Release 1.3.0-dev

parsl.app.app.join_app

parsl.app.app.join_app(function: Callable | None = None, data_flow_kernel: DataFlowKernel | None = None,
cache: bool = False, ignore_for_cache: Sequence[str] | None = None)→ Callable

Decorator function for making join apps

Parameters

• function (function) – Do not pass this keyword argument directly. This is needed in
order to allow for omitted parenthesis, for example, @python_app if using all defaults or
@python_app(walltime=120). If the decorator is used alone, function will be the actual
function being decorated, whereas if it is called with arguments, function will be None.
Default is None.

• data_flow_kernel (DataFlowKernel) – The DataFlowKernel responsible for man-
aging this app. This can be omitted only after calling parsl.dataflow.dflow.
DataFlowKernelLoader.load(). Default is None.

• cache (bool) – Enable caching of the app call. Default is False.

• ignore_for_cache ((sequence|None)) – Names of arguments which will be ignored by
the caching mechanism.

parsl.dataflow.futures.AppFuture

class parsl.dataflow.futures.AppFuture(task_record: TaskRecord)
An AppFuture wraps a sequence of Futures which may fail and be retried.

The AppFuture will wait for the DFK to provide a result from an appropriate parent future, through
parent_callback. It will set its result to the result of that parent future, if that parent future completes without
an exception. This result setting should cause .result(), .exception() and done callbacks to fire as expected.

The AppFuture will not set its result to the result of the parent future, if that parent future completes with an
exception, and if that parent future has retries left. In that case, no result(), exception() or done callbacks should
report a result.

The AppFuture will set its result to the result of the parent future, if that parent future completes with an exception
and if that parent future has no retries left, or if it has no retry field. .result(), .exception() and done callbacks
should give a result as expected when a Future has a result set

The parent future may return a RemoteExceptionWrapper as a result and AppFuture will treat this an an exception
for the above retry and result handling behaviour.

__init__(task_record: TaskRecord)→ None
Initialize the AppFuture.

Args:

KWargs:

• task_record : The TaskRecord for the task represented by this future.

114 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

Methods

__init__(task_record) Initialize the AppFuture.
add_done_callback(fn) Attaches a callable that will be called when the future

finishes.
cancel() Cancel the future if possible.
cancelled() Return True if the future was cancelled.
done() Return True if the future was cancelled or finished

executing.
exception([timeout]) Return the exception raised by the call that the future

represents.
result([timeout]) Return the result of the call that the future represents.
running() Return True if the future is currently executing.
set_exception(exception) Sets the result of the future as being the given excep-

tion.
set_result(result) Sets the return value of work associated with the fu-

ture.
set_running_or_notify_cancel() Mark the future as running or process any cancel no-

tifications.
task_status() Returns the status of the task that will provide the

value for this future.

Attributes

outputs

stderr Return app stderr.
stdout Return app stdout.
tid

cancel()→ bool
Cancel the future if possible.

Returns True if the future was cancelled, False otherwise. A future cannot be cancelled if it is running or
has already completed.

cancelled()→ bool
Return True if the future was cancelled.

property outputs: Sequence[DataFuture]

property stderr: None | str | DataFuture

Return app stderr. If stdout was specified as a string, then this property will return that string. If stdout was
specified as a File, then this property will return a DataFuture representing that file stageout. TODO: this
can be a tuple too I think?

property stdout: None | str | DataFuture

Return app stdout. If stdout was specified as a string, then this property will return that string. If stdout
was specified as a File, then this property will return a DataFuture representing that file stageout. TODO:
this can be a tuple too I think?

1.6. Parsl is a community 115

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

task_status()→ str
Returns the status of the task that will provide the value for this future. This may not be in-sync with the
result state of this future - for example, task_status might return ‘done’ but self.done() might not be true
(which in turn means self.result() and self.exception() might block).

The actual status description strings returned by this method are likely to change over subsequent versions
of parsl, as use-cases and infrastructure are worked out.

It is expected that the status values will be from a limited set of strings (so that it makes sense, for example,
to group and count statuses from many futures).

It is expected that might be a non-trivial cost in acquiring the status in future (for example, by communi-
cating with a remote worker).

Returns: str

property tid: int

parsl.dataflow.dflow.DataFlowKernelLoader

class parsl.dataflow.dflow.DataFlowKernelLoader

Manage which DataFlowKernel is active.

This is a singleton class containing only class methods. You should not need to instantiate this class.

__init__()

Methods

__init__()

clear() Clear the active DataFlowKernel so that a new one
can be loaded.

dfk() Return the currently-loaded DataFlowKernel.
load([config]) Load a DataFlowKernel.
wait_for_current_tasks() Waits for all tasks in the task list to be completed, by

waiting for their AppFuture to be completed.

classmethod clear()→ None
Clear the active DataFlowKernel so that a new one can be loaded.

classmethod dfk()→ DataFlowKernel
Return the currently-loaded DataFlowKernel.

classmethod load(config: Config | None = None)→ DataFlowKernel
Load a DataFlowKernel.

Parameters
config (-) – Configuration to load. This config will be passed to a new DataFlowKernel
instantiation which will be set as the active DataFlowKernel.

Returns
The loaded DataFlowKernel object.

Return type

116 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

• DataFlowKernel

classmethod wait_for_current_tasks()→ None
Waits for all tasks in the task list to be completed, by waiting for their AppFuture to be completed. This
method will not necessarily wait for any tasks added after cleanup has started such as data stageout.

parsl.monitoring.MonitoringHub

class parsl.monitoring.MonitoringHub(hub_address: str, hub_port: int | None = None, hub_port_range:
Tuple[int, int] = (55050, 56000), workflow_name: str | None =
None, workflow_version: str | None = None, logging_endpoint: str |
None = None, logdir: str | None = None, monitoring_debug: bool =
False, resource_monitoring_enabled: bool = True,
resource_monitoring_interval: float = 30)

__init__(hub_address: str, hub_port: int | None = None, hub_port_range: Tuple[int, int] = (55050, 56000),
workflow_name: str | None = None, workflow_version: str | None = None, logging_endpoint: str |
None = None, logdir: str | None = None, monitoring_debug: bool = False,
resource_monitoring_enabled: bool = True, resource_monitoring_interval: float = 30)

Parameters

• hub_address (str) – The ip address at which the workers will be able to reach the Hub.

• hub_port (int) – The UDP port to which workers will be able to deliver messages to the
monitoring router. Note that despite the similar name, this is not related to hub_port_range.
Default: None

• hub_port_range (tuple(int, int)) – The port range for a ZMQ channel from an ex-
ecutor process (for example, the interchange in the High Throughput Executor) to deliver
monitoring messages to the monitoring router. Note that despite the similar name, this is
not related to hub_port. Default: (55050, 56000)

• workflow_name (str) – The name for the workflow. Default to the name of the parsl
script

• workflow_version (str) – The version of the workflow. Default to the beginning date-
time of the parsl script

• logging_endpoint (str) – The database connection url for monitoring to log the infor-
mation. These URLs follow RFC-1738, and can include username, password, hostname,
database name. Default: sqlite, in the configured run_dir.

• logdir (str) – Parsl log directory paths. Logs and temp files go here. Default: ‘.’

• monitoring_debug (Bool) – Enable monitoring debug logging. Default: False

• resource_monitoring_enabled (boolean) – Set this field to True to enable logging of
information from the worker side. This will include environment information such as start
time, hostname and block id, along with periodic resource usage of each task. Default:
True

• resource_monitoring_interval (float) – The time interval, in seconds, at which
the monitoring records the resource usage of each task. If set to 0, only start and end
information will be logged, and no periodic monitoring will be made. Default: 30 seconds

1.6. Parsl is a community 117

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Parsl Documentation, Release 1.3.0-dev

Methods

__init__(hub_address[, hub_port, ...])
param hub_address

The ip address at which the workers
will be able to reach the Hub.

close()

send(mtype, message)

start(run_id, dfk_run_dir, config_run_dir)

close()→ None

send(mtype: MessageType, message: Any)→ None

start(run_id: str, dfk_run_dir: str, config_run_dir: str | PathLike)→ int

Configuration

parsl.config.Config Specification of Parsl configuration options.
parsl.set_stream_logger Add a stream log handler.
parsl.set_file_logger Add a file log handler.
parsl.addresses.address_by_hostname Returns the hostname of the local host.
parsl.addresses.address_by_interface Returns the IP address of the given interface name, e.g.
parsl.addresses.address_by_query Finds an address for the local host by querying ipify.
parsl.addresses.address_by_route Finds an address for the local host by querying the local

routing table for the route to Google DNS.
parsl.utils.get_all_checkpoints Finds the checkpoints from all runs in the rundir.
parsl.utils.get_last_checkpoint Finds the checkpoint from the last run, if one exists.

parsl.config.Config

class parsl.config.Config(executors: Iterable[ParslExecutor] | None = None, app_cache: bool = True,
checkpoint_files: Sequence[str] | None = None, checkpoint_mode: None |
Literal['task_exit'] | Literal['periodic'] | Literal['dfk_exit'] | Literal['manual'] =
None, checkpoint_period: str | None = None, garbage_collect: bool = True,
internal_tasks_max_threads: int = 10, retries: int = 0, retry_handler:
Callable[[Exception, TaskRecord], float] | None = None, run_dir: str = 'runinfo',
std_autopath: Callable | None = None, strategy: str | None = 'simple',
strategy_period: float | int = 5, max_idletime: float = 120.0, monitoring:
MonitoringHub | None = None, usage_tracking: bool = False, initialize_logging:
bool = True)

Specification of Parsl configuration options.

Parameters

118 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.3.0-dev

• executors (sequence of ParslExecutor, optional) – List (or other it-
erable) of ParslExecutor instances to use for executing tasks. Default is
(ThreadPoolExecutor(),).

• app_cache (bool, optional) – Enable app caching. Default is True.

• checkpoint_files (sequence of str, optional) – List of paths to check-
point files. See parsl.utils.get_all_checkpoints() and parsl.utils.
get_last_checkpoint() for helpers. Default is None.

• checkpoint_mode (str, optional) – Checkpoint mode to use, can be 'dfk_exit',
'task_exit', 'periodic' or 'manual'. If set to None, checkpointing will be disabled.
Default is None.

• checkpoint_period (str, optional) – Time interval (in “HH:MM:SS”) at which to
checkpoint completed tasks. Only has an effect if checkpoint_mode='periodic'.

• garbage_collect (bool. optional.) – Delete task records from DFK when tasks have
completed. Default: True

• internal_tasks_max_threads (int, optional) – Maximum number of threads to al-
locate for submit side internal tasks such as some data transfers or @joinapps Default is
10.

• monitoring (MonitoringHub, optional) – The config to use for database monitoring.
Default is None which does not log to a database.

• retries (int, optional) – Set the number of retries (or available retry budget when
using retry_handler) in case of failure. Default is 0.

• retry_handler (function, optional) – A user pluggable handler to decide if/how a
task retry should happen. If no handler is specified, then each task failure incurs a retry cost
of 1.

• run_dir (str, optional) – Path to run directory. Default is ‘runinfo’.

• std_autopath (function, optional) – Sets the function used to generate stdout/stderr
specifications when parsl.AUTO_LOGPATH is used. If no function is specified, generates
paths that look like: rundir/NNN/task_logs/X/task_{id}_{name}{label}.{out/
err}

• strategy (str, optional) – Strategy to use for scaling blocks according to workflow
needs. Can be ‘simple’, ‘htex_auto_scale’, ‘none’ or None. If ‘none’ or None, dynamic
scaling will be disabled. Default is ‘simple’. The literal value None is deprecated.

• strategy_period (float or int, optional) – How often the scaling strategy should
be executed. Default is 5 seconds.

• max_idletime (float, optional) – The maximum idle time allowed for an executor
before strategy could shut down unused blocks. Default is 120.0 seconds.

• usage_tracking (bool, optional) – Set this field to True to opt-in to Parsl’s usage track-
ing system. Parsl only collects minimal, non personally-identifiable, information used for
reporting to our funding agencies. Default is False.

• initialize_logging (bool, optional) – Make DFK optionally not initialize any log-
ging. Log messages will still be passed into the python logging system under the parsl
logger name, but the logging system will not by default perform any further log system con-
figuration. Most noticeably, it will not create a parsl.log logfile. The use case for this is when
parsl is used as a library in a bigger system which wants to configure logging in a way that
makes sense for that bigger system as a whole.

1.6. Parsl is a community 119

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.3.0-dev

__init__(executors: Iterable[ParslExecutor] | None = None, app_cache: bool = True, checkpoint_files:
Sequence[str] | None = None, checkpoint_mode: None | Literal['task_exit'] | Literal['periodic'] |
Literal['dfk_exit'] | Literal['manual'] = None, checkpoint_period: str | None = None,
garbage_collect: bool = True, internal_tasks_max_threads: int = 10, retries: int = 0,
retry_handler: Callable[[Exception, TaskRecord], float] | None = None, run_dir: str = 'runinfo',
std_autopath: Callable | None = None, strategy: str | None = 'simple', strategy_period: float | int =
5, max_idletime: float = 120.0, monitoring: MonitoringHub | None = None, usage_tracking: bool
= False, initialize_logging: bool = True)→ None

Methods

__init__([executors, app_cache, ...])

get_usage_information()

Attributes

executors

property executors: Sequence[ParslExecutor]

get_usage_information()

parsl.set_stream_logger

parsl.set_stream_logger(name: str = 'parsl', level: int = 10, format_string: str | None = None, stream:
TextIOWrapper | None = None)→ Logger

Add a stream log handler.

Parameters

• name (-) – Set the logger name.

• level (-) – Set to logging.DEBUG by default.

• format_string (-) – Set to None by default.

• stream (-) – Specify sys.stdout or sys.stderr for stream. If not specified, the default stream
for logging.StreamHandler is used.

Returns

• logger for specified name

120 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/logging.html#logging.Logger

Parsl Documentation, Release 1.3.0-dev

parsl.set_file_logger

parsl.set_file_logger(filename: str, name: str = 'parsl', level: int = 10, format_string: str | None = None)→
Logger

Add a file log handler.

Parameters

• filename (-) – Name of the file to write logs to

• name (-) – Logger name

• level (-) – Set the logging level.

• format_string (-) – Set the format string

Returns

• logger for specified name

parsl.addresses.address_by_hostname

parsl.addresses.address_by_hostname()→ str
Returns the hostname of the local host.

This will return an unusable value when the hostname cannot be resolved from workers.

parsl.addresses.address_by_interface

parsl.addresses.address_by_interface(ifname: str)→ str
Returns the IP address of the given interface name, e.g. ‘eth0’

This is taken from a Stack Overflow answer: https://stackoverflow.com/questions/24196932/
how-can-i-get-the-ip-address-of-eth0-in-python#24196955

Parameters
ifname (str) – Name of the interface whose address is to be returned. Required.

parsl.addresses.address_by_query

parsl.addresses.address_by_query(timeout: float = 30)→ str
Finds an address for the local host by querying ipify. This may return an unusable value when the host is behind
NAT, or when the internet-facing address is not reachable from workers. Parameters: ———–

timeout
[float] Timeout for the request in seconds. Default: 30s

1.6. Parsl is a community 121

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://stackoverflow.com/questions/24196932/how-can-i-get-the-ip-address-of-eth0-in-python#24196955
https://stackoverflow.com/questions/24196932/how-can-i-get-the-ip-address-of-eth0-in-python#24196955
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

parsl.addresses.address_by_route

parsl.addresses.address_by_route()→ str
Finds an address for the local host by querying the local routing table for the route to Google DNS.

This will return an unusable value when the internet-facing address is not reachable from workers.

parsl.utils.get_all_checkpoints

parsl.utils.get_all_checkpoints(rundir: str = 'runinfo')→ Sequence[str]
Finds the checkpoints from all runs in the rundir.

Kwargs:

• rundir(str) : Path to the runinfo directory

Returns

• a list suitable for the checkpoint_files parameter of Config

parsl.utils.get_last_checkpoint

parsl.utils.get_last_checkpoint(rundir: str = 'runinfo')→ Sequence[str]
Finds the checkpoint from the last run, if one exists.

Note that checkpoints are incremental, and this helper will not find previous checkpoints from earlier than the
most recent run. If you want that behaviour, see get_all_checkpoints.

Kwargs:

• rundir(str) : Path to the runinfo directory

Returns

• a list suitable for the checkpoint_files parameter of Config, with 0 or 1 elements

Channels

parsl.channels.base.Channel Channels are abstractions that enable Execution-
Providers to talk to resource managers of remote
compute facilities.

parsl.channels.LocalChannel This is not even really a channel, since opening a local
shell is not heavy and done so infrequently that they do
not need a persistent channel

parsl.channels.SSHChannel SSH persistent channel.
parsl.channels.OAuthSSHChannel SSH persistent channel.
parsl.channels.SSHInteractiveLoginChannel SSH persistent channel.

122 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

parsl.channels.base.Channel

class parsl.channels.base.Channel

Channels are abstractions that enable ExecutionProviders to talk to resource managers of remote compute facil-
ities.

For certain resources such as campus clusters or supercomputers at research laboratories, resource requirements
may require authentication. For instance some resources may allow access to their job schedulers from only their
login-nodes which require you to authenticate through SSH, or require two factor authentication.

The simplest Channel, LocalChannel, executes commands locally in a shell, while the SSHChannel authenticates
you to remote systems.

Channels provide the ability to execute commands remotely, using the execute_wait method, and manipulate the
remote file system using methods such as push_file, pull_file and makedirs.

Channels should ensure that each launched command runs in a new process group, so that providers (such as
AdHocProvider and LocalProvider) which terminate long running commands using process groups can do so.

__init__()

Methods

__init__()

abspath (path) Return the absolute path.
close() Closes the channel.
execute_wait(cmd[, walltime, envs]) Executes the cmd, with a defined walltime.
isdir(path) Return true if the path refers to an existing directory.
makedirs(path[, mode, exist_ok]) Create a directory.
pull_file(remote_source, local_dir) Transport file on the remote side to a local directory
push_file(source, dest_dir) Channel will take care of moving the file from source

to the destination directory

Attributes

script_dir This is a property.

abstract abspath(path: str)→ str
Return the absolute path.

Parameters
path (str) – Path for which the absolute path will be returned.

abstract close()→ bool
Closes the channel. Clean out any auth credentials.

Parameters
None –

Returns
Bool

1.6. Parsl is a community 123

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.3.0-dev

abstract execute_wait(cmd: str, walltime: int = 0, envs: Dict[str, str] = {})→ Tuple[int, str, str]
Executes the cmd, with a defined walltime.

Parameters

• cmd (-) – Command string to execute over the channel

• walltime (-) – Timeout in seconds

KWargs:

• envs (Dict[str, str]) : Environment variables to push to the remote side

Returns

• (exit_code, stdout, stderr) (int, string, string)

abstract isdir(path: str)→ bool
Return true if the path refers to an existing directory.

Parameters
path (str) – Path of directory to check.

abstract makedirs(path: str, mode: int = 329, exist_ok: bool = False)→ None
Create a directory.

If intermediate directories do not exist, they will be created.

Parameters

• path (str) – Path of directory to create.

• mode (int) – Permissions (posix-style) for the newly-created directory.

• exist_ok (bool) – If False, raise an OSError if the target directory already exists.

abstract pull_file(remote_source: str, local_dir: str)→ str
Transport file on the remote side to a local directory

Parameters

• remote_source (string) – remote_source

• local_dir (string) – Local directory to copy to

Returns
destination_path (string)

abstract push_file(source: str, dest_dir: str)→ str
Channel will take care of moving the file from source to the destination directory

Parameters

• source (string) – Full filepath of the file to be moved

• dest_dir (string) – Absolute path of the directory to move to

Returns
destination_path (string)

abstract property script_dir: str

This is a property. Returns the directory assigned for storing all internal scripts such as scheduler submit
scripts. This is usually where error logs from the scheduler would reside on the channel destination side.

124 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

Parameters
None (-) –

Returns

• Channel script dir

parsl.channels.LocalChannel

class parsl.channels.LocalChannel(userhome='.', envs={}, script_dir=None)
This is not even really a channel, since opening a local shell is not heavy and done so infrequently that they do
not need a persistent channel

__init__(userhome='.', envs={}, script_dir=None)
Initialize the local channel. script_dir is required by set to a default.

KwArgs:

• userhome (string): (default=’.’) This is provided as a way to override and set a specific userhome

• envs (dict) : A dictionary of env variables to be set when launching the shell

• script_dir (string): Directory to place scripts

Methods

__init__([userhome, envs, script_dir]) Initialize the local channel.
abspath (path) Return the absolute path.
close() There's nothing to close here, and this really doesn't

do anything
execute_wait(cmd[, walltime, envs]) Synchronously execute a commandline string on the

shell.
isdir(path) Return true if the path refers to an existing directory.
makedirs(path[, mode, exist_ok]) Create a directory.
pull_file(remote_source, local_dir) Transport file on the remote side to a local directory
push_file(source, dest_dir) If the source files dirpath is the same as dest_dir, a

copy is not necessary, and nothing is done.

Attributes

script_dir This is a property.

abspath(path)
Return the absolute path.

Parameters
path (str) – Path for which the absolute path will be returned.

close()

There’s nothing to close here, and this really doesn’t do anything

Returns

1.6. Parsl is a community 125

https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

• False, because it really did not “close” this channel.

execute_wait(cmd, walltime=None, envs={})
Synchronously execute a commandline string on the shell.

Parameters

• cmd (-) – Commandline string to execute

• walltime (-) – walltime in seconds, this is not really used now.

Kwargs:

• envs (dict) : Dictionary of env variables. This will be used to override the envs set at channel
initialization.

Returns
Return code from the execution, -1 on fail - stdout : stdout string - stderr : stderr string

Return type

• retcode

Raises: None.

isdir(path)
Return true if the path refers to an existing directory.

Parameters
path (str) – Path of directory to check.

makedirs(path, mode=448, exist_ok=False)
Create a directory.

If intermediate directories do not exist, they will be created.

Parameters

• path (str) – Path of directory to create.

• mode (int) – Permissions (posix-style) for the newly-created directory.

• exist_ok (bool) – If False, raise an OSError if the target directory already exists.

pull_file(remote_source, local_dir)
Transport file on the remote side to a local directory

Parameters

• remote_source (string) – remote_source

• local_dir (string) – Local directory to copy to

Returns
destination_path (string)

push_file(source, dest_dir)
If the source files dirpath is the same as dest_dir, a copy is not necessary, and nothing is done. Else a copy
is made.

Parameters

• source (-) – Path to the source file

• dest_dir (-) – Path to the directory to which the files is to be copied

126 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.3.0-dev

Returns
Absolute path of the destination file

Return type

• destination_path (String)

Raises
- FileCopyException – If file copy failed.

property script_dir

This is a property. Returns the directory assigned for storing all internal scripts such as scheduler submit
scripts. This is usually where error logs from the scheduler would reside on the channel destination side.

Parameters
None (-) –

Returns

• Channel script dir

parsl.channels.SSHChannel

class parsl.channels.SSHChannel(hostname, username=None, password=None, script_dir=None,
envs=None, gssapi_auth=False, skip_auth=False, port=22,
key_filename=None, host_keys_filename=None)

SSH persistent channel. This enables remote execution on sites accessible via ssh. It is assumed that the user
has setup host keys so as to ssh to the remote host. Which goes to say that the following test on the commandline
should work:

>>> ssh <username>@<hostname>

__init__(hostname, username=None, password=None, script_dir=None, envs=None, gssapi_auth=False,
skip_auth=False, port=22, key_filename=None, host_keys_filename=None)

Initialize a persistent connection to the remote system. We should know at this point whether ssh connec-
tivity is possible

Parameters
hostname (-) – Hostname

KWargs:

• username (string) : Username on remote system

• password (string) : Password for remote system

• port : The port designated for the ssh connection. Default is 22.

• script_dir (string) : Full path to a script dir where generated scripts could be sent to.

• envs (dict) : A dictionary of environment variables to be set when executing commands

• key_filename (string or list): the filename, or list of filenames, of optional private key(s)

Raises:

1.6. Parsl is a community 127

Parsl Documentation, Release 1.3.0-dev

Methods

__init__(hostname[, username, password, ...]) Initialize a persistent connection to the remote sys-
tem.

abspath (path) Return the absolute path on the remote side.
close() Closes the channel.
execute_wait(cmd[, walltime, envs]) Synchronously execute a commandline string on the

shell.
isdir(path) Return true if the path refers to an existing directory.
makedirs(path[, mode, exist_ok]) Create a directory on the remote side.
prepend_envs(cmd[, env])

pull_file(remote_source, local_dir) Transport file on the remote side to a local directory
push_file(local_source, remote_dir) Transport a local file to a directory on a remote ma-

chine

Attributes

script_dir This is a property.

abspath(path)
Return the absolute path on the remote side.

Parameters
path (str) – Path for which the absolute path will be returned.

close()

Closes the channel. Clean out any auth credentials.

Parameters
None –

Returns
Bool

execute_wait(cmd, walltime=2, envs={})
Synchronously execute a commandline string on the shell.

Parameters

• cmd (-) – Commandline string to execute

• walltime (-) – walltime in seconds

Kwargs:

• envs (dict) : Dictionary of env variables

Returns
Return code from the execution, -1 on fail - stdout : stdout string - stderr : stderr string

Return type

• retcode

128 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

Raises: None.

isdir(path)
Return true if the path refers to an existing directory.

Parameters
path (str) – Path of directory on the remote side to check.

makedirs(path, mode=448, exist_ok=False)
Create a directory on the remote side.

If intermediate directories do not exist, they will be created.

Parameters

• path (str) – Path of directory on the remote side to create.

• mode (int) – Permissions (posix-style) for the newly-created directory.

• exist_ok (bool) – If False, raise an OSError if the target directory already exists.

prepend_envs(cmd, env={})

pull_file(remote_source, local_dir)
Transport file on the remote side to a local directory

Parameters

• remote_source (-) – remote_source

• local_dir (-) – Local directory to copy to

Returns
Local path to file

Return type

• str

Raises

• - FileExists – Name collision at local directory.

• - FileCopyException – FileCopy failed.

push_file(local_source, remote_dir)
Transport a local file to a directory on a remote machine

Parameters

• local_source (-) – Path

• remote_dir (-) – Remote path

Returns
Path to copied file on remote machine

Return type

• str

Raises

• - BadScriptPath – if script path on the remote side is bad

• - BadPermsScriptPath – You do not have perms to make the channel script dir

• - FileCopyException – FileCopy failed.

1.6. Parsl is a community 129

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.3.0-dev

property script_dir

This is a property. Returns the directory assigned for storing all internal scripts such as scheduler submit
scripts. This is usually where error logs from the scheduler would reside on the channel destination side.

Parameters
None (-) –

Returns

• Channel script dir

parsl.channels.OAuthSSHChannel

class parsl.channels.OAuthSSHChannel(hostname, username=None, script_dir=None, envs=None, port=22)
SSH persistent channel. This enables remote execution on sites accessible via ssh. This channel uses Globus
based OAuth tokens for authentication.

__init__(hostname, username=None, script_dir=None, envs=None, port=22)
Initialize a persistent connection to the remote system. We should know at this point whether ssh connec-
tivity is possible

Parameters
hostname (-) – Hostname

KWargs:

• username (string) : Username on remote system

• script_dir (string) : Full path to a script dir where generated scripts could be sent to.

• envs (dict) : A dictionary of env variables to be set when executing commands

• port (int) : Port at which the SSHService is running

Raises:

Methods

__init__(hostname[, username, script_dir, ...]) Initialize a persistent connection to the remote sys-
tem.

abspath(path) Return the absolute path on the remote side.
close() Closes the channel.
execute_wait(cmd[, walltime, envs]) Synchronously execute a commandline string on the

shell.
isdir(path) Return true if the path refers to an existing directory.
makedirs(path[, mode, exist_ok]) Create a directory on the remote side.
prepend_envs(cmd[, env])

pull_file(remote_source, local_dir) Transport file on the remote side to a local directory
push_file(local_source, remote_dir) Transport a local file to a directory on a remote ma-

chine

130 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Attributes

script_dir This is a property.

close()

Closes the channel. Clean out any auth credentials.

Parameters
None –

Returns
Bool

execute_wait(cmd, walltime=60, envs={})
Synchronously execute a commandline string on the shell.

This command does NOT honor walltime currently.

Parameters
cmd (-) – Commandline string to execute

Kwargs:

• walltime (int) : walltime in seconds

• envs (dict) : Dictionary of env variables

Returns
Return code from the execution, -1 on fail - stdout : stdout string - stderr : stderr string

Return type

• retcode

Raises: None.

parsl.channels.SSHInteractiveLoginChannel

class parsl.channels.SSHInteractiveLoginChannel(hostname, username=None, password=None,
script_dir=None, envs=None)

SSH persistent channel. This enables remote execution on sites accessible via ssh. This channel supports inter-
active login and is appropriate when keys are not set up.

__init__(hostname, username=None, password=None, script_dir=None, envs=None)
Initialize a persistent connection to the remote system. We should know at this point whether ssh connec-
tivity is possible

Parameters
hostname (-) – Hostname

KWargs:

• username (string) : Username on remote system

• password (string) : Password for remote system

• script_dir (string) : Full path to a script dir where generated scripts could be sent to.

1.6. Parsl is a community 131

Parsl Documentation, Release 1.3.0-dev

• envs (dict) : A dictionary of env variables to be set when executing commands

Raises:

Methods

__init__(hostname[, username, password, ...]) Initialize a persistent connection to the remote sys-
tem.

abspath(path) Return the absolute path on the remote side.
close() Closes the channel.
execute_wait(cmd[, walltime, envs]) Synchronously execute a commandline string on the

shell.
isdir(path) Return true if the path refers to an existing directory.
makedirs(path[, mode, exist_ok]) Create a directory on the remote side.
prepend_envs(cmd[, env])

pull_file(remote_source, local_dir) Transport file on the remote side to a local directory
push_file(local_source, remote_dir) Transport a local file to a directory on a remote ma-

chine

Attributes

script_dir This is a property.

Data management

parsl.app.futures.DataFuture A datafuture points at an AppFuture.
parsl.data_provider.data_manager.
DataManager

The DataManager is responsible for transferring input
and output data.

parsl.data_provider.staging.Staging This class defines the interface for file staging providers.
parsl.data_provider.files.File The Parsl File Class.
parsl.data_provider.ftp.
FTPSeparateTaskStaging

Performs FTP staging as a separate parsl level task.

parsl.data_provider.ftp.FTPInTaskStaging Performs FTP staging as a wrapper around the applica-
tion task.

parsl.data_provider.file_noop.
NoOpFileStaging
parsl.data_provider.globus.GlobusStaging Specification for accessing data on a remote executor via

Globus.
parsl.data_provider.http.
HTTPSeparateTaskStaging

A staging provider that Performs HTTP and HTTPS
staging as a separate parsl-level task.

parsl.data_provider.http.HTTPInTaskStaging A staging provider that performs HTTP and HTTPS
staging as in a wrapper around each task.

parsl.data_provider.rsync.RSyncStaging This staging provider will execute rsync on worker nodes
to stage in files from a remote location.

132 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

parsl.app.futures.DataFuture

class parsl.app.futures.DataFuture(fut: Future, file_obj: File, tid: int | None = None)
A datafuture points at an AppFuture.

We are simply wrapping a AppFuture, and adding the specific case where, if the future is resolved i.e file exists,
then the DataFuture is assumed to be resolved.

__init__(fut: Future, file_obj: File, tid: int | None = None)→ None
Construct the DataFuture object.

If the file_obj is a string convert to a File.

Parameters

• fut (-) – AppFuture that this DataFuture will track

• file_obj (-) – Something representing file(s)

Kwargs:

• tid (task_id) : Task id that this DataFuture tracks

Methods

__init__(fut, file_obj[, tid]) Construct the DataFuture object.
add_done_callback(fn) Attaches a callable that will be called when the future

finishes.
cancel() Cancel the future if possible.
cancelled() Return True if the future was cancelled.
done() Return True if the future was cancelled or finished

executing.
exception([timeout]) Return the exception raised by the call that the future

represents.
parent_callback(parent_fu) Callback from executor future to update the parent.
result([timeout]) Return the result of the call that the future represents.
running() Return True if the future is currently executing.
set_exception(exception) Sets the result of the future as being the given excep-

tion.
set_result(result) Sets the return value of work associated with the fu-

ture.
set_running_or_notify_cancel() Mark the future as running or process any cancel no-

tifications.

Attributes

filename Filepath of the File object this datafuture represents.
filepath Filepath of the File object this datafuture represents.
tid Returns the task_id of the task that will resolve this

DataFuture.

1.6. Parsl is a community 133

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

cancel()

Cancel the future if possible.

Returns True if the future was cancelled, False otherwise. A future cannot be cancelled if it is running or
has already completed.

cancelled()

Return True if the future was cancelled.

property filename

Filepath of the File object this datafuture represents.

property filepath

Filepath of the File object this datafuture represents.

parent_callback(parent_fu)
Callback from executor future to update the parent.

Updates the future with the result (the File object) or the parent future’s exception.

Parameters
parent_fu (-) – Future returned by the executor along with callback

Returns

• None

running()

Return True if the future is currently executing.

property tid

Returns the task_id of the task that will resolve this DataFuture.

parsl.data_provider.data_manager.DataManager

class parsl.data_provider.data_manager.DataManager(dfk: DataFlowKernel)
The DataManager is responsible for transferring input and output data.

__init__(dfk: DataFlowKernel)→ None
Initialize the DataManager.

Parameters
dfk (-) – The DataFlowKernel that this DataManager is managing data for.

134 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

Methods

__init__(dfk) Initialize the DataManager.
optionally_stage_in(input, func, executor)

replace_task(file, func, executor) This will give staging providers the chance to wrap
(or replace entirely!) the task function.

replace_task_stage_out(file, func, executor) This will give staging providers the chance to wrap
(or replace entirely!) the task function.

stage_in(file, input, executor) Transport the input from the input source to the ex-
ecutor, if it is file-like, returning a DataFuture that
wraps the stage-in operation.

stage_out(file, executor, app_fu) Transport the file from the local filesystem to the re-
mote Globus endpoint.

optionally_stage_in(input, func, executor)

replace_task(file: File, func: Callable, executor: str)→ Callable
This will give staging providers the chance to wrap (or replace entirely!) the task function.

replace_task_stage_out(file: File, func: Callable, executor: str)→ Callable
This will give staging providers the chance to wrap (or replace entirely!) the task function.

stage_in(file: File, input: Any, executor: str)→ Any
Transport the input from the input source to the executor, if it is file-like, returning a DataFuture that wraps
the stage-in operation.

If no staging in is required - because the file parameter is not file-like, then return that parameter unaltered.

Parameters

• self (-) –

• input (-) – input to stage in. If this is a File or a DataFuture, stage in tasks will be launched
with appropriate dependencies. Otherwise, no stage-in will be performed.

• executor (-) – an executor the file is going to be staged in to.

stage_out(file: File, executor: str, app_fu: Future)→ Future | None
Transport the file from the local filesystem to the remote Globus endpoint.

This function returns either a Future which should complete when the stageout is complete, or None, if no
staging needs to be waited for.

Parameters

• self (-) –

• file (-) –

• executor (-) –

• app_fu (-) – complete before stageout begins.

1.6. Parsl is a community 135

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

parsl.data_provider.staging.Staging

class parsl.data_provider.staging.Staging

This class defines the interface for file staging providers.

For each file to be staged in, the data manager will present the file to each configured Staging provider in turn:
first, it will ask if the provider can stage this file by calling can_stage_in, and if so, it will call both stage_in
and replace_task to give the provider the opportunity to perform staging.

For each file to be staged out, the data manager will follow the same pattern using the corresponding stage out
methods of this class.

The default implementation of this class rejects all files, and performs no staging actions.

To implement a concrete provider, one or both of the can_stage_* methods should be overridden to match the
appropriate files, and then the corresponding stage_* and/or replace_task*methods should be implemented.

__init__()

Methods

__init__()

can_stage_in(file) Given a File object, decide if this staging provider can
stage the file.

can_stage_out(file) Like can_stage_in, but for staging out.
replace_task(dm, executor, file, func) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
func)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, app_fu) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

can_stage_in(file: File)→ bool
Given a File object, decide if this staging provider can stage the file. Usually this is be based on the URL
scheme, but does not have to be. If this returns True, then other methods of this Staging object will be
called to perform the staging.

can_stage_out(file: File)→ bool
Like can_stage_in, but for staging out.

replace_task(dm: DataManager, executor: str, file: File, func: Callable)→ Callable | None
For a file to be staged in, optionally return a replacement app function, which usually should be the original
app function wrapped in staging code.

136 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

replace_task_stage_out(dm: DataManager, executor: str, file: File, func: Callable)→ Callable | None
For a file to be staged out, optionally return a replacement app function, which usually should be the original
app function wrapped in staging code.

stage_in(dm: DataManager, executor: str, file: File, parent_fut: Future | None)→ DataFuture | None
This call gives the staging provider an opportunity to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

This call will be made with a fresh copy of the File that may be modified for the purposes of this par-
ticular staging operation, rather than the original application-provided File. This allows staging specific
information (primarily localpath) to be set on the File without interfering with other stagings of the same
File.

The call can return a:

• DataFuture: the corresponding task input parameter will be replaced by the DataFuture, and the
main task will not run until that DataFuture is complete. The DataFuture result should be the file
object as passed in.

• None: the corresponding task input parameter will be replaced by a suitable automatically gener-
ated replacement that container the File fresh copy, or is the fresh copy.

stage_out(dm: DataManager, executor: str, file: File, app_fu: Future)→ Future | None
This call gives the staging provider an opportunity to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

Even though it should set up stageout, it will be invoked before the task executes. Any work which needs
to happen after the main task should depend on app_fu.

For a given file, either return a Future which completes when stageout is complete, or return None to indicate
that no stageout action need be waited for. When that Future completes, parsl will mark the relevant output
DataFuture complete.

Note the asymmetry here between stage_in and stage_out: this can return any Future, while stage_in must
return a DataFuture.

parsl.data_provider.files.File

class parsl.data_provider.files.File(url: PathLike | str)
The Parsl File Class.

This represents the global, and sometimes local, URI/path to a file.

Staging-in mechanisms may annotate a file with a local path recording the path at the far end of a staging action.
It is up to the user of the File object to track which local scope that local path actually refers to.

__init__(url: PathLike | str)
Construct a File object from a url string.

Parameters
url (-) – url of the file e.g. - ‘input.txt’ - pathlib.Path(‘input.txt’) - ‘file:///scratch/
proj101/input.txt’ - ‘globus://go#ep1/~/data/input.txt’ - ‘globus://ddb59aef-6d04-11e5-ba46-
22000b92c6ec/home/johndoe/data/input.txt’

1.6. Parsl is a community 137

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
file:///scratch/proj101/input.txt
file:///scratch/proj101/input.txt

Parsl Documentation, Release 1.3.0-dev

Methods

__init__(url) Construct a File object from a url string.
cleancopy() Returns a copy of the file containing only the global

immutable state, without any mutable site-local lo-
cal_path information.

Attributes

filepath Return the resolved filepath on the side where it is
called from.

cleancopy()→ File
Returns a copy of the file containing only the global immutable state, without any mutable site-local lo-
cal_path information. The returned File object will be as the original object was when it was constructed.

property filepath: str

Return the resolved filepath on the side where it is called from.

The appropriate filepath will be returned when called from within an app running remotely as well as regular
python on the submit side.

Only file: scheme URLs make sense to have a submit-side path, as other URLs are not accessible through
POSIX file access.

Returns

• filepath

parsl.data_provider.ftp.FTPSeparateTaskStaging

class parsl.data_provider.ftp.FTPSeparateTaskStaging

Performs FTP staging as a separate parsl level task.

__init__()

138 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

Methods

__init__()

can_stage_in(file) Given a File object, decide if this staging provider can
stage the file.

can_stage_out(file) Like can_stage_in, but for staging out.
replace_task(dm, executor, file, func) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
func)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, app_fu) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

can_stage_in(file)
Given a File object, decide if this staging provider can stage the file. Usually this is be based on the URL
scheme, but does not have to be. If this returns True, then other methods of this Staging object will be
called to perform the staging.

stage_in(dm, executor, file, parent_fut)
This call gives the staging provider an opportunity to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

This call will be made with a fresh copy of the File that may be modified for the purposes of this par-
ticular staging operation, rather than the original application-provided File. This allows staging specific
information (primarily localpath) to be set on the File without interfering with other stagings of the same
File.

The call can return a:

• DataFuture: the corresponding task input parameter will be replaced by the DataFuture, and the
main task will not run until that DataFuture is complete. The DataFuture result should be the file
object as passed in.

• None: the corresponding task input parameter will be replaced by a suitable automatically gener-
ated replacement that container the File fresh copy, or is the fresh copy.

parsl.data_provider.ftp.FTPInTaskStaging

class parsl.data_provider.ftp.FTPInTaskStaging

Performs FTP staging as a wrapper around the application task.

__init__()

1.6. Parsl is a community 139

Parsl Documentation, Release 1.3.0-dev

Methods

__init__()

can_stage_in(file) Given a File object, decide if this staging provider can
stage the file.

can_stage_out(file) Like can_stage_in, but for staging out.
replace_task(dm, executor, file, f) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
func)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, app_fu) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

can_stage_in(file)
Given a File object, decide if this staging provider can stage the file. Usually this is be based on the URL
scheme, but does not have to be. If this returns True, then other methods of this Staging object will be
called to perform the staging.

replace_task(dm, executor, file, f)
For a file to be staged in, optionally return a replacement app function, which usually should be the original
app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut)
This call gives the staging provider an opportunity to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

This call will be made with a fresh copy of the File that may be modified for the purposes of this par-
ticular staging operation, rather than the original application-provided File. This allows staging specific
information (primarily localpath) to be set on the File without interfering with other stagings of the same
File.

The call can return a:

• DataFuture: the corresponding task input parameter will be replaced by the DataFuture, and the
main task will not run until that DataFuture is complete. The DataFuture result should be the file
object as passed in.

• None: the corresponding task input parameter will be replaced by a suitable automatically gener-
ated replacement that container the File fresh copy, or is the fresh copy.

140 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

parsl.data_provider.file_noop.NoOpFileStaging

class parsl.data_provider.file_noop.NoOpFileStaging

__init__()

Methods

__init__()

can_stage_in(file) Given a File object, decide if this staging provider can
stage the file.

can_stage_out(file) Like can_stage_in, but for staging out.
replace_task(dm, executor, file, func) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
func)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, app_fu) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

can_stage_in(file)
Given a File object, decide if this staging provider can stage the file. Usually this is be based on the URL
scheme, but does not have to be. If this returns True, then other methods of this Staging object will be
called to perform the staging.

can_stage_out(file)
Like can_stage_in, but for staging out.

parsl.data_provider.globus.GlobusStaging

class parsl.data_provider.globus.GlobusStaging(endpoint_uuid: str, endpoint_path: str | None = None,
local_path: str | None = None)

Specification for accessing data on a remote executor via Globus.

Parameters

• endpoint_uuid (str) – Universally unique identifier of the Globus endpoint at which the
data can be accessed. This can be found in the Manage Endpoints page.

• endpoint_path (str, optional) – FIXME

• local_path (str, optional) – FIXME

__init__(endpoint_uuid: str, endpoint_path: str | None = None, local_path: str | None = None)

1.6. Parsl is a community 141

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.globus.org/app/endpoints
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

Methods

__init__(endpoint_uuid[, endpoint_path, ...])

can_stage_in(file) Given a File object, decide if this staging provider can
stage the file.

can_stage_out(file) Like can_stage_in, but for staging out.
initialize_globus()

replace_task(dm, executor, file, func) For a file to be staged in, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
func)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, app_fu) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

can_stage_in(file)
Given a File object, decide if this staging provider can stage the file. Usually this is be based on the URL
scheme, but does not have to be. If this returns True, then other methods of this Staging object will be
called to perform the staging.

can_stage_out(file)
Like can_stage_in, but for staging out.

initialize_globus()

stage_in(dm, executor, file, parent_fut)
This call gives the staging provider an opportunity to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

This call will be made with a fresh copy of the File that may be modified for the purposes of this par-
ticular staging operation, rather than the original application-provided File. This allows staging specific
information (primarily localpath) to be set on the File without interfering with other stagings of the same
File.

The call can return a:

• DataFuture: the corresponding task input parameter will be replaced by the DataFuture, and the
main task will not run until that DataFuture is complete. The DataFuture result should be the file
object as passed in.

• None: the corresponding task input parameter will be replaced by a suitable automatically gener-
ated replacement that container the File fresh copy, or is the fresh copy.

stage_out(dm, executor, file, app_fu)
This call gives the staging provider an opportunity to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

Even though it should set up stageout, it will be invoked before the task executes. Any work which needs
to happen after the main task should depend on app_fu.

142 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

For a given file, either return a Future which completes when stageout is complete, or return None to indicate
that no stageout action need be waited for. When that Future completes, parsl will mark the relevant output
DataFuture complete.

Note the asymmetry here between stage_in and stage_out: this can return any Future, while stage_in must
return a DataFuture.

parsl.data_provider.http.HTTPSeparateTaskStaging

class parsl.data_provider.http.HTTPSeparateTaskStaging

A staging provider that Performs HTTP and HTTPS staging as a separate parsl-level task. This requires a shared
file system on the executor.

__init__()

Methods

__init__()

can_stage_in(file) Given a File object, decide if this staging provider can
stage the file.

can_stage_out(file) Like can_stage_in, but for staging out.
replace_task(dm, executor, file, func) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
func)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, app_fu) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

can_stage_in(file)
Given a File object, decide if this staging provider can stage the file. Usually this is be based on the URL
scheme, but does not have to be. If this returns True, then other methods of this Staging object will be
called to perform the staging.

stage_in(dm, executor, file, parent_fut)
This call gives the staging provider an opportunity to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

This call will be made with a fresh copy of the File that may be modified for the purposes of this par-
ticular staging operation, rather than the original application-provided File. This allows staging specific
information (primarily localpath) to be set on the File without interfering with other stagings of the same
File.

The call can return a:

1.6. Parsl is a community 143

Parsl Documentation, Release 1.3.0-dev

• DataFuture: the corresponding task input parameter will be replaced by the DataFuture, and the
main task will not run until that DataFuture is complete. The DataFuture result should be the file
object as passed in.

• None: the corresponding task input parameter will be replaced by a suitable automatically gener-
ated replacement that container the File fresh copy, or is the fresh copy.

parsl.data_provider.http.HTTPInTaskStaging

class parsl.data_provider.http.HTTPInTaskStaging

A staging provider that performs HTTP and HTTPS staging as in a wrapper around each task. In contrast to
HTTPSeparateTaskStaging, this provider does not require a shared file system.

__init__()

Methods

__init__()

can_stage_in(file) Given a File object, decide if this staging provider can
stage the file.

can_stage_out(file) Like can_stage_in, but for staging out.
replace_task(dm, executor, file, f) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
func)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, app_fu) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

can_stage_in(file)
Given a File object, decide if this staging provider can stage the file. Usually this is be based on the URL
scheme, but does not have to be. If this returns True, then other methods of this Staging object will be
called to perform the staging.

replace_task(dm, executor, file, f)
For a file to be staged in, optionally return a replacement app function, which usually should be the original
app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut)
This call gives the staging provider an opportunity to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

This call will be made with a fresh copy of the File that may be modified for the purposes of this par-
ticular staging operation, rather than the original application-provided File. This allows staging specific
information (primarily localpath) to be set on the File without interfering with other stagings of the same
File.

144 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

The call can return a:

• DataFuture: the corresponding task input parameter will be replaced by the DataFuture, and the
main task will not run until that DataFuture is complete. The DataFuture result should be the file
object as passed in.

• None: the corresponding task input parameter will be replaced by a suitable automatically gener-
ated replacement that container the File fresh copy, or is the fresh copy.

parsl.data_provider.rsync.RSyncStaging

class parsl.data_provider.rsync.RSyncStaging(hostname)
This staging provider will execute rsync on worker nodes to stage in files from a remote location.

Worker nodes must be able to authenticate to the rsync server without interactive authentication - for example,
worker initialization could include an appropriate SSH key configuration.

The submit side will need to run an rsync-compatible server (for example, an ssh server with the rsync binary
installed)

__init__(hostname)

Methods

__init__(hostname)

can_stage_in(file) Given a File object, decide if this staging provider can
stage the file.

can_stage_out(file) Like can_stage_in, but for staging out.
replace_task(dm, executor, file, f) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file, f) For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

can_stage_in(file)
Given a File object, decide if this staging provider can stage the file. Usually this is be based on the URL
scheme, but does not have to be. If this returns True, then other methods of this Staging object will be
called to perform the staging.

can_stage_out(file)
Like can_stage_in, but for staging out.

replace_task(dm, executor, file, f)
For a file to be staged in, optionally return a replacement app function, which usually should be the original
app function wrapped in staging code.

1.6. Parsl is a community 145

Parsl Documentation, Release 1.3.0-dev

replace_task_stage_out(dm, executor, file, f)
For a file to be staged out, optionally return a replacement app function, which usually should be the original
app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut)
This call gives the staging provider an opportunity to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

This call will be made with a fresh copy of the File that may be modified for the purposes of this par-
ticular staging operation, rather than the original application-provided File. This allows staging specific
information (primarily localpath) to be set on the File without interfering with other stagings of the same
File.

The call can return a:

• DataFuture: the corresponding task input parameter will be replaced by the DataFuture, and the
main task will not run until that DataFuture is complete. The DataFuture result should be the file
object as passed in.

• None: the corresponding task input parameter will be replaced by a suitable automatically gener-
ated replacement that container the File fresh copy, or is the fresh copy.

stage_out(dm, executor, file, parent_fut)
This call gives the staging provider an opportunity to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

Even though it should set up stageout, it will be invoked before the task executes. Any work which needs
to happen after the main task should depend on app_fu.

For a given file, either return a Future which completes when stageout is complete, or return None to indicate
that no stageout action need be waited for. When that Future completes, parsl will mark the relevant output
DataFuture complete.

Note the asymmetry here between stage_in and stage_out: this can return any Future, while stage_in must
return a DataFuture.

Executors

parsl.executors.base.ParslExecutor Executors are abstractions that represent available com-
pute resources to which you could submit arbitrary App
tasks.

parsl.executors.status_handling.
BlockProviderExecutor

A base class for executors which scale using blocks.

parsl.executors.ThreadPoolExecutor A thread-based executor.
parsl.executors.HighThroughputExecutor Executor designed for cluster-scale
parsl.executors.WorkQueueExecutor Executor to use Work Queue batch system
parsl.executors.taskvine.TaskVineExecutor Executor to use TaskVine dynamic workflow system
parsl.executors.FluxExecutor Executor that uses Flux to schedule and run jobs.
parsl.executors.radical.
RadicalPilotExecutor

Executor is designed for executing heterogeneous tasks

146 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

parsl.executors.base.ParslExecutor

class parsl.executors.base.ParslExecutor(*, hub_address: str | None = None, hub_port: int | None =
None, monitoring_radio: MonitoringRadio | None = None,
run_dir: str = '.', run_id: str | None = None)

Executors are abstractions that represent available compute resources to which you could submit arbitrary App
tasks.

This is an abstract base class that only enforces concrete implementations of functionality by the child classes.

Can be used as a context manager. On exit, calls self.shutdown() with no arguments and re-raises any thrown
exception.

In addition to the listed methods, a ParslExecutor instance must always have a member field:

label: str - a human readable label for the executor, unique
with respect to other executors.

Per-executor monitoring behaviour can be influenced by exposing:

radio_mode: str - a string describing which radio mode should be used to
send task resource data back to the submit side.

An executor may optionally expose:

storage_access: List[parsl.data_provider.staging.Staging] - a list of staging
providers that will be used for file staging. In the absence of this attribute, or if this attribute
is None, then a default value of parsl.data_provider.staging.default_staging will be
used by the staging code.

Typechecker note: Ideally storage_access would be declared on executor __init__ methods as
List[Staging] - however, lists are by default invariant, not co-variant, and it looks like @typeguard
cannot be persuaded otherwise. So if you’re implementing an executor and want to @typeguard
the constructor, you’ll have to use List[Any] here.

__init__(*, hub_address: str | None = None, hub_port: int | None = None, monitoring_radio:
MonitoringRadio | None = None, run_dir: str = '.', run_id: str | None = None)

Methods

__init__(*[, hub_address, hub_port, ...])

monitor_resources() Should resource monitoring happen for tasks on run-
ning on this executor?

shutdown() Shutdown the executor.
start() Start the executor.
submit(func, resource_specification, *args, ...) Submit.

1.6. Parsl is a community 147

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

Attributes

hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
label

monitoring_radio Local radio for sending monitoring messages
radio_mode

run_dir Path to the run directory.
run_id UUID for the enclosing DFK.

property hub_address: str | None

Address to the Hub for monitoring.

property hub_port: int | None

Port to the Hub for monitoring.

label: str = 'undefined'

monitor_resources()→ bool
Should resource monitoring happen for tasks on running on this executor?

Parsl resource monitoring conflicts with execution styles which use threads, and can deadlock while run-
ning.

This function allows resource monitoring to be disabled per executor implementation.

property monitoring_radio: MonitoringRadio | None

Local radio for sending monitoring messages

radio_mode: str = 'udp'

property run_dir: str

Path to the run directory.

property run_id: str | None

UUID for the enclosing DFK.

abstract shutdown()→ None
Shutdown the executor.

This includes all attached resources such as workers and controllers.

abstract start()→ None
Start the executor.

Any spin-up operations (for example: starting thread pools) should be performed here.

abstract submit(func: Callable, resource_specification: Dict[str, Any], *args: Any, **kwargs: Any)→
Future

Submit.

The executor can optionally set a parsl_executor_task_id attribute on the Future that it returns, and in that
case, parsl will log a relationship between the executor’s task ID and parsl level try/task IDs.

148 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

Parsl Documentation, Release 1.3.0-dev

parsl.executors.status_handling.BlockProviderExecutor

class parsl.executors.status_handling.BlockProviderExecutor(*, provider: ExecutionProvider |
None, block_error_handler: bool |
Callable[[BlockProviderExecutor,
Dict[str, JobStatus]], None])

A base class for executors which scale using blocks.

This base class is intended to help with executors which:

• use blocks of workers to execute tasks

• blocks of workers are launched on a batch system through an ExecutionProvider

An implementing class should implement the abstract methods required by ParslExecutor to submit tasks,
as well as BlockProviderExecutor abstract methods to provide the executor-specific command to start a block
of workers (the _get_launch_command method), and some basic scaling information (outstanding and
workers_per_node properties).

This base class provides a scale_out method which will launch new blocks. It does not provide a scale_in
method, because scale-in behaviour is not well defined in the Parsl scaling model and so behaviour is left to
individual executors.

Parsl scaling will provide scaling between min_blocks and max_blocks by invoking scale_out, but it will not ini-
tialize the blocks requested by any init_blocks parameter. Subclasses must implement that behaviour themselves.

BENC: TODO: block error handling: maybe I want this more user pluggable? I’m not sure of use cases for
switchability at the moment beyond “yes or no”

__init__(*, provider: ExecutionProvider | None, block_error_handler: bool |
Callable[[BlockProviderExecutor, Dict[str, JobStatus]], None])

1.6. Parsl is a community 149

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

Methods

__init__(*, provider, block_error_handler)

create_monitoring_info(status) Create a monitoring message for each block based on
the poll status.

handle_errors(status) This method is called by the error management in-
frastructure after a status poll.

monitor_resources() Should resource monitoring happen for tasks on run-
ning on this executor?

poll_facade()

scale_in(blocks) Scale in method.
scale_in_facade(n[, max_idletime])

scale_out([blocks]) Scales out the number of blocks by "blocks"
scale_out_facade(n)

send_monitoring_info(status)

set_bad_state_and_fail_all(exception) Allows external error handlers to mark this executor
as irrecoverably bad and cause all tasks submitted to
it now and in the future to fail.

shutdown() Shutdown the executor.
start() Start the executor.
status() Return the status of all jobs/blocks currently known

to this executor.
submit(func, resource_specification, *args, ...) Submit.

150 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Attributes

bad_state_is_set Returns true if this executor is in an irrecoverable er-
ror state.

executor_exception Returns an exception that indicates why this executor
is in an irrecoverable state.

hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
label

monitoring_radio Local radio for sending monitoring messages
outstanding This should return the number of tasks that the execu-

tor has been given to run (waiting to run, and running
now)

provider

radio_mode

run_dir Path to the run directory.
run_id UUID for the enclosing DFK.
status_facade Return the status of all jobs/blocks of the executor of

this poller.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.
tasks

workers_per_node

property bad_state_is_set

Returns true if this executor is in an irrecoverable error state. If this method returns true, :prop-
erty:executor_exception should contain an exception indicating the cause.

create_monitoring_info(status: Dict[str, JobStatus])→ Sequence[object]
Create a monitoring message for each block based on the poll status.

property executor_exception

Returns an exception that indicates why this executor is in an irrecoverable state.

handle_errors(status: Dict[str, JobStatus])→ None
This method is called by the error management infrastructure after a status poll. The executor implementing
this method is then responsible for detecting abnormal conditions based on the status of submitted jobs. If
the executor does not implement any special error handling, this method should return False, in which case
a generic error handling scheme will be used. :param status: status of all jobs launched by this executor

abstract property outstanding: int

This should return the number of tasks that the executor has been given to run (waiting to run, and running
now)

poll_facade()→ None

property provider

1.6. Parsl is a community 151

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

abstract scale_in(blocks: int)→ List[str]
Scale in method.

Cause the executor to reduce the number of blocks by count.

Returns
A list of block ids corresponding to the blocks that were removed.

scale_in_facade(n: int, max_idletime: float | None = None)→ List[str]

scale_out(blocks: int = 1)→ List[str]
Scales out the number of blocks by “blocks”

scale_out_facade(n: int)→ List[str]

send_monitoring_info(status: Dict)→ None

set_bad_state_and_fail_all(exception: Exception)
Allows external error handlers to mark this executor as irrecoverably bad and cause all tasks submitted
to it now and in the future to fail. The executor is responsible for checking :method:bad_state_is_set()
in the :method:submit() method and raising the appropriate exception, which is available through
:method:executor_exception().

status()→ Dict[str, JobStatus]
Return the status of all jobs/blocks currently known to this executor.

Returns
a dictionary mapping block ids (in string) to job status

property status_facade: Dict[str, JobStatus]

Return the status of all jobs/blocks of the executor of this poller.

Returns
a dictionary mapping block ids (in string) to job status

property status_polling_interval

Returns the interval, in seconds, at which the status method should be called. The assumption here is that,
once initialized, an executor’s polling interval is fixed. In practice, at least given the current situation,
the executor uses a single task provider and this method is a delegate to the corresponding method in the
provider.

Returns
the number of seconds to wait between calls to status() or zero if no polling should be done

property tasks: Dict[object, Future]

abstract property workers_per_node: int | float

parsl.executors.ThreadPoolExecutor

class parsl.executors.ThreadPoolExecutor(label: str = 'threads', max_threads: int | None = 2,
thread_name_prefix: str = '', storage_access: List[Staging] |
None = None, working_dir: str | None = None)

A thread-based executor.

Parameters

• max_threads (Optional[int]) – Number of threads. Default is 2.

152 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.3.0-dev

• thread_name_prefix (string) – Thread name prefix

• storage_access (list of Staging) – Specifications for accessing data this executor re-
motely.

__init__(label: str = 'threads', max_threads: int | None = 2, thread_name_prefix: str = '', storage_access:
List[Staging] | None = None, working_dir: str | None = None)

Methods

__init__([label, max_threads, ...])

monitor_resources() Resource monitoring sometimes deadlocks when us-
ing threads, so this function returns false to disable it.

shutdown([block]) Shutdown the ThreadPool.
start() Start the executor.
submit(func, resource_specification, *args, ...) Submits work to the thread pool.

Attributes

hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
label

monitoring_radio Local radio for sending monitoring messages
radio_mode

run_dir Path to the run directory.
run_id UUID for the enclosing DFK.

monitor_resources()

Resource monitoring sometimes deadlocks when using threads, so this function returns false to disable it.

shutdown(block=True)
Shutdown the ThreadPool. The underlying concurrent.futures thread pool implementation will not termi-
nate tasks that are being executed, because it does not provide a mechanism to do that. With block set to
false, this will return immediately and it will appear as if the DFK is shut down, but the python process will
not be able to exit until the thread pool has emptied out by task completions. In either case, this can be a
very long wait.

Kwargs:

• block (Bool): To block for confirmations or not

start()

Start the executor.

Any spin-up operations (for example: starting thread pools) should be performed here.

submit(func, resource_specification, *args, **kwargs)
Submits work to the thread pool.

This method is simply pass through and behaves like a submit call as described here Python docs:

1.6. Parsl is a community 153

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor

Parsl Documentation, Release 1.3.0-dev

parsl.executors.HighThroughputExecutor

class parsl.executors.HighThroughputExecutor(label: str = 'HighThroughputExecutor', provider:
ExecutionProvider =
LocalProvider(channel=LocalChannel(envs={},
script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
cmd_timeout=30, init_blocks=1,
launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), max_blocks=1, min_blocks=0,
move_files=None, nodes_per_block=1, parallelism=1,
worker_init=''), launch_cmd: str | None = None, address:
str | None = None, worker_ports: Tuple[int, int] | None =
None, worker_port_range: Tuple[int, int] | None =
(54000, 55000), interchange_port_range: Tuple[int, int] |
None = (55000, 56000), storage_access: List[Staging] |
None = None, working_dir: str | None = None,
worker_debug: bool = False, cores_per_worker: float =
1.0, mem_per_worker: float | None = None, max_workers:
int | float | None = None, max_workers_per_node: int |
float | None = None, cpu_affinity: str = 'none',
available_accelerators: int | Sequence[str] = (),
prefetch_capacity: int = 0, heartbeat_threshold: int =
120, heartbeat_period: int = 30, drain_period: int | None
= None, poll_period: int = 10, address_probe_timeout:
int | None = None, worker_logdir_root: str | None =
None, enable_mpi_mode: bool = False, mpi_launcher: str
= 'mpiexec', block_error_handler: bool |
Callable[[BlockProviderExecutor, Dict[str, JobStatus]],
None] = True, encrypted: bool = False)

Executor designed for cluster-scale

The HighThroughputExecutor system has the following components:

1. The HighThroughputExecutor instance which is run as part of the Parsl script.

2. The Interchange which acts as a load-balancing proxy between workers and Parsl

3. The multiprocessing based worker pool which coordinates task execution over several cores on a node.

4. ZeroMQ pipes connect the HighThroughputExecutor, Interchange and the process_worker_pool

Here is a diagram

| Data | Executor | Interchange | External Process(es)
| Flow | | |

Task | Kernel | | |
+----->|-------->|------------>|->outgoing_q---|-> process_worker_pool
| | | | batching | | |

Parsl<---Fut-| | | load-balancing| result exception
^ | | | watchdogs | | |
| | | Q_mngmnt | | V V
| | | Thread<--|-incoming_q<---|--- +---------+
| | | | | |
| | | | | |
+----update_fut-----+

154 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.3.0-dev

Each of the workers in each process_worker_pool has access to its local rank through an environmental variable,
PARSL_WORKER_RANK. The local rank is unique for each process and is an integer in the range from 0 to the
number of workers per in the pool minus 1. The workers also have access to the ID of the worker pool as
PARSL_WORKER_POOL_ID and the size of the worker pool as PARSL_WORKER_COUNT.

Parameters

• provider (ExecutionProvider) –

Provider to access computation resources. Can be one of EC2Provider,
Cobalt, Condor, GoogleCloud, GridEngine, Local, GridEngine, Slurm, or Torque.

• label (str) – Label for this executor instance.

• launch_cmd (str) – Command line string to launch the process_worker_pool
from the provider. The command line string will be formatted with appropri-
ate values for the following values (debug, task_url, result_url, cores_per_worker,
nodes_per_block, heartbeat_period ,heartbeat_threshold, logdir). For exam-
ple: launch_cmd=”process_worker_pool.py {debug} -c {cores_per_worker}
–task_url={task_url} –result_url={result_url}”

• address (string) – An address to connect to the main Parsl process which is reachable
from the network in which workers will be running. This field expects an IPv4 address
(xxx.xxx.xxx.xxx). Most login nodes on clusters have several network interfaces available,
only some of which can be reached from the compute nodes. This field can be used to limit
the executor to listen only on a specific interface, and limiting connections to the internal
network. By default, the executor will attempt to enumerate and connect through all possible
addresses. Setting an address here overrides the default behavior. default=None

• worker_ports ((int, int)) – Specify the ports to be used by workers to connect to Parsl.
If this option is specified, worker_port_range will not be honored.

• worker_port_range ((int, int)) – Worker ports will be chosen between the two inte-
gers provided.

• interchange_port_range ((int, int)) – Port range used by Parsl to communicate with
the Interchange.

• working_dir (str) – Working dir to be used by the executor.

• worker_debug (Bool) – Enables worker debug logging.

• cores_per_worker (float) – cores to be assigned to each worker. Oversubscription is
possible by setting cores_per_worker < 1.0. Default=1

• mem_per_worker (float) – GB of memory required per worker. If this option is specified,
the node manager will check the available memory at startup and limit the number of workers
such that the there’s sufficient memory for each worker. Default: None

• max_workers (int) – Deprecated. Please use max_workers_per_node instead.

• max_workers_per_node (int) – Caps the number of workers launched per node. Default:
None

• cpu_affinity (string) – Whether or how each worker process sets thread affinity. Options
include “none” to forgo any CPU affinity configuration, “block” to assign adjacent cores to
workers (ex: assign 0-1 to worker 0, 2-3 to worker 1), and “alternating” to assign cores to
workers in round-robin (ex: assign 0,2 to worker 0, 1,3 to worker 1). The “block-reverse”
option assigns adjacent cores to workers, but assigns the CPUs with large indices to low
index workers (ex: assign 2-3 to worker 1, 0,1 to worker 2)

1.6. Parsl is a community 155

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.3.0-dev

• available_accelerators (int | list) – Accelerators available for workers to use.
Each worker will be pinned to exactly one of the provided accelerators, and no more workers
will be launched than the number of accelerators.

Either provide the list of accelerator names or the number available. If a number is provided,
Parsl will create names as integers starting with 0.

default: empty list

• prefetch_capacity (int) – Number of tasks that could be prefetched over available
worker capacity. When there are a few tasks (<100) or when tasks are long running, this
option should be set to 0 for better load balancing. Default is 0.

• address_probe_timeout (int | None) – Managers attempt connecting over many dif-
ferent addresses to determine a viable address. This option sets a time limit in seconds on
the connection attempt. Default of None implies 30s timeout set on worker.

• heartbeat_threshold (int) – Seconds since the last message from the counterpart in the
communication pair: (interchange, manager) after which the counterpart is assumed to be
un-available. Default: 120s

• heartbeat_period (int) – Number of seconds after which a heartbeat message indicating
liveness is sent to the counterpart (interchange, manager). Default: 30s

• poll_period (int) – Timeout period to be used by the executor components in millisec-
onds. Increasing poll_periods trades performance for cpu efficiency. Default: 10ms

• drain_period (int) – The number of seconds after start when workers will begin to drain
and then exit. Set this to a time that is slightly less than the maximum walltime of batch jobs
to avoid killing tasks while they execute. For example, you could set this to the walltime
minus a grace period for the batch job to start the workers, minus the expected maximum
length of an individual task.

• worker_logdir_root (string) – In case of a remote file system, specify the path to where
logs will be kept.

• enable_mpi_mode (bool) – If enabled, MPI launch prefixes will be composed for the batch
scheduler based on the nodes available in each batch job and the resource_specification dict
passed from the app. This is an experimental feature, please refer to the following doc section
before use: https://parsl.readthedocs.io/en/stable/userguide/mpi_apps.html

• mpi_launcher (str) – This field is only used if enable_mpi_mode is set. Select one from
the list of supported MPI launchers = (“srun”, “aprun”, “mpiexec”). default: “mpiexec”

• encrypted (bool) – Flag to enable/disable encryption (CurveZMQ). Default is False.

156 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://parsl.readthedocs.io/en/stable/userguide/mpi_apps.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.3.0-dev

__init__(label: str = 'HighThroughputExecutor', provider: ExecutionProvider =
LocalProvider(channel=LocalChannel(envs={}, script_dir=None,
userhome='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
cmd_timeout=30, init_blocks=1, launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), max_blocks=1, min_blocks=0, move_files=None, nodes_per_block=1,
parallelism=1, worker_init=''), launch_cmd: str | None = None, address: str | None = None,
worker_ports: Tuple[int, int] | None = None, worker_port_range: Tuple[int, int] | None = (54000,
55000), interchange_port_range: Tuple[int, int] | None = (55000, 56000), storage_access:
List[Staging] | None = None, working_dir: str | None = None, worker_debug: bool = False,
cores_per_worker: float = 1.0, mem_per_worker: float | None = None, max_workers: int | float |
None = None, max_workers_per_node: int | float | None = None, cpu_affinity: str = 'none',
available_accelerators: int | Sequence[str] = (), prefetch_capacity: int = 0, heartbeat_threshold:
int = 120, heartbeat_period: int = 30, drain_period: int | None = None, poll_period: int = 10,
address_probe_timeout: int | None = None, worker_logdir_root: str | None = None,
enable_mpi_mode: bool = False, mpi_launcher: str = 'mpiexec', block_error_handler: bool |
Callable[[BlockProviderExecutor, Dict[str, JobStatus]], None] = True, encrypted: bool = False)

1.6. Parsl is a community 157

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.3.0-dev

Methods

__init__([label, provider, launch_cmd, ...])

connected_blocks() List of connected block ids
connected_managers() Returns a list of dicts one for each connected man-

agers.
create_monitoring_info(status) Create a monitoring message for each block based on

the poll status.
get_usage_information()

handle_errors(status) This method is called by the error management in-
frastructure after a status poll.

hold_worker(worker_id) Puts a worker on hold, preventing scheduling of ad-
ditional tasks to it.

initialize_scaling() Compose the launch command and scale out the ini-
tial blocks.

monitor_resources() Should resource monitoring happen for tasks on run-
ning on this executor?

poll_facade()

scale_in(blocks[, max_idletime]) Scale in the number of active blocks by specified
amount.

scale_in_facade(n[, max_idletime])

scale_out([blocks]) Scales out the number of blocks by "blocks"
scale_out_facade(n)

send_monitoring_info(status)

set_bad_state_and_fail_all(exception) Allows external error handlers to mark this executor
as irrecoverably bad and cause all tasks submitted to
it now and in the future to fail.

shutdown([timeout]) Shutdown the executor, including the interchange.
start() Create the Interchange process and connect to it.
status() Return the status of all jobs/blocks currently known

to this executor.
submit(func, resource_specification, *args, ...) Submits work to the outgoing_q.

158 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Attributes

bad_state_is_set Returns true if this executor is in an irrecoverable er-
ror state.

connected_workers Returns the count of workers across all connected
managers

executor_exception Returns an exception that indicates why this executor
is in an irrecoverable state.

hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
label

logdir

max_workers

monitoring_radio Local radio for sending monitoring messages
outstanding Returns the count of tasks outstanding across the in-

terchange and managers
provider

radio_mode

run_dir Path to the run directory.
run_id UUID for the enclosing DFK.
status_facade Return the status of all jobs/blocks of the executor of

this poller.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.
tasks

worker_logdir

workers_per_node

connected_blocks()→ List[str]
List of connected block ids

connected_managers()→ List[Dict[str, Any]]
Returns a list of dicts one for each connected managers. The dict contains info on manager(str:manager_id),
block_id, worker_count, tasks(int), idle_durations(float), active(bool)

property connected_workers: int

Returns the count of workers across all connected managers

get_usage_information()

hold_worker(worker_id: str)→ None
Puts a worker on hold, preventing scheduling of additional tasks to it.

This is called “hold” mostly because this only stops scheduling of tasks, and does not actually kill the
worker.

1.6. Parsl is a community 159

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

Parameters
worker_id (str) – Worker id to be put on hold

initialize_scaling()

Compose the launch command and scale out the initial blocks.

property logdir

property max_workers

property outstanding: int

Returns the count of tasks outstanding across the interchange and managers

radio_mode: str = 'htex'

scale_in(blocks: int, max_idletime: float | None = None)→ List[str]
Scale in the number of active blocks by specified amount.

The scale in method here is very rude. It doesn’t give the workers the opportunity to finish current tasks or
cleanup. This is tracked in issue #530

Parameters

• blocks (int) – Number of blocks to terminate and scale_in by

• max_idletime (float) – A time to indicate how long a block should be idle to be a
candidate for scaling in.

If None then blocks will be force scaled in even if they are busy.

If a float, then only idle blocks will be terminated, which may be less than the requested
number.

Return type
List of block IDs scaled in

shutdown(timeout: float = 10.0)
Shutdown the executor, including the interchange. This does not shut down any workers directly - workers
should be terminated by the scaling mechanism or by heartbeat timeout.

Parameters
timeout (float) – Amount of time to wait for the Interchange process to terminate before
we forcefully kill it.

start()

Create the Interchange process and connect to it.

status()→ Dict[str, JobStatus]
Return the status of all jobs/blocks currently known to this executor.

Returns
a dictionary mapping block ids (in string) to job status

submit(func, resource_specification, *args, **kwargs)
Submits work to the outgoing_q.

The outgoing_q is an external process listens on this queue for new work. This method behaves like a
submit call as described here Python docs:

Parameters

• func (-) – Callable function

160 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor

Parsl Documentation, Release 1.3.0-dev

• resource_specification (-) – Dictionary containing relevant info about task that is
needed by underlying executors.

• args (-) – List of arbitrary positional arguments.

Kwargs:

• kwargs (dict) : A dictionary of arbitrary keyword args for func.

Returns
Future

property worker_logdir

property workers_per_node: int | float

parsl.executors.WorkQueueExecutor

class parsl.executors.WorkQueueExecutor(label: str = 'WorkQueueExecutor', provider: ExecutionProvider
= LocalProvider(channel=LocalChannel(envs={},
script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
cmd_timeout=30, init_blocks=1,
launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), max_blocks=1, min_blocks=0,
move_files=None, nodes_per_block=1, parallelism=1,
worker_init=''), working_dir: str = '.', project_name: str | None
= None, project_password_file: str | None = None, address: str |
None = None, port: int = 0, env: Dict | None = None, shared_fs:
bool = False, storage_access: List[Staging] | None = None,
use_cache: bool = False, source: bool = False, pack: bool =
False, extra_pkgs: List[str] | None = None, autolabel: bool =
False, autolabel_window: int = 1, autocategory: bool = True,
max_retries: int = 1, init_command: str = '', worker_options:
str = '', full_debug: bool = True, worker_executable: str =
'work_queue_worker', function_dir: str | None = None,
coprocess: bool = False)

Executor to use Work Queue batch system

The WorkQueueExecutor system utilizes the Work Queue framework to efficiently delegate Parsl apps to remote
machines in clusters and grids using a fault-tolerant system. Users can run the work_queue_worker program on
remote machines to connect to the WorkQueueExecutor, and Parsl apps will then be sent out to these machines
for execution and retrieval.

Parameters

• label (str) – A human readable label for the executor, unique with respect to other Work
Queue master programs. Default is “WorkQueueExecutor”.

• working_dir (str) – Location for Parsl to perform app delegation to the Work Queue sys-
tem. Defaults to current directory.

• project_name (str) – If a project_name is given, then Work Queue will periodically report
its status and performance back to the global WQ catalog, which can be viewed here: http:
//ccl.cse.nd.edu/software/workqueue/status Default is None. Overrides address.

1.6. Parsl is a community 161

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://ccl.cse.nd.edu/software/workqueue/status
http://ccl.cse.nd.edu/software/workqueue/status

Parsl Documentation, Release 1.3.0-dev

• project_password_file (str) – Optional password file for the work queue project. De-
fault is None.

• address (str) – The ip to contact this work queue master process. If not given, uses the
address of the current machine as returned by socket.gethostname(). Ignored if project_name
is specified.

• port (int) – TCP port on Parsl submission machine for Work Queue workers to connect to.
Workers will connect to Parsl using this port.

If 0, Work Queue will allocate a port number automatically. In this case, environment vari-
ables can be used to influence the choice of port, documented here: https://ccl.cse.nd.edu/
software/manuals/api/html/work__queue_8h.html#a21714a10bcdfcf5c3bd44a96f5dcbda6
Default: WORK_QUEUE_DEFAULT_PORT.

• env (dict{str}) – Dictionary that contains the environmental variables that need to be set
on the Work Queue worker machine.

• shared_fs (bool) – Define if working in a shared file system or not. If Parsl and the Work
Queue workers are on a shared file system, Work Queue does not need to transfer and rename
files for execution. Default is False.

• use_cache (bool) – Whether workers should cache files that are common to tasks. Warn-
ing: Two files are considered the same if they have the same filepath name. Use with care
when reusing the executor instance across multiple parsl workflows. Default is False.

• source (bool) – Choose whether to transfer parsl app information as source code. (Note:
this increases throughput for @python_apps, but the implementation does not include
functionality for @bash_apps, and thus source=False must be used for programs utilizing
@bash_apps.) Default is False. Set to True if pack is True

• pack (bool) – Use conda-pack to prepare a self-contained Python evironment for each task.
This greatly increases task latency, but does not require a common environment or shared
FS on execution nodes. Implies source=True.

• extra_pkgs (list) – List of extra pip/conda package names to include when packing the
environment. This may be useful if the app executes other (possibly non-Python) programs
provided via pip or conda. Scanning the app source for imports would not detect these de-
pendencies, so they need to be manually specified.

• autolabel (bool) – Use the Resource Monitor to automatically determine resource labels
based on observed task behavior.

• autolabel_window (int) – Set the number of tasks considered for autolabeling. Work
Queue will wait for a series of N tasks with steady resource requirements before making a
decision on labels. Increasing this parameter will reduce the number of failed tasks due to
resource exhaustion when autolabeling, at the cost of increased resources spent collecting
stats.

• autocategory (bool) – Place each app in its own category by default. If all invocations of
an app have similar performance characteristics, this will provide a reasonable set of cate-
gories automatically.

• max_retries (int) – Set the number of retries that Work Queue will make when a task
fails. This is distinct from Parsl level retries configured in parsl.config.Config. Set to None
to allow Work Queue to retry tasks forever. By default, this is set to 1, so that all retries will
be managed by Parsl.

• init_command (str) – Command line to run before executing a task in a worker. Default
is ‘’.

162 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://ccl.cse.nd.edu/software/manuals/api/html/work__queue_8h.html#a21714a10bcdfcf5c3bd44a96f5dcbda6
https://ccl.cse.nd.edu/software/manuals/api/html/work__queue_8h.html#a21714a10bcdfcf5c3bd44a96f5dcbda6
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

• worker_options (str) – Extra options passed to work_queue_worker. Default is ‘’.

• worker_executable (str) – The command used to invoke work_queue_worker. This can
be used when the worker needs to be wrapped inside some other command (for example, to
run the worker inside a container). Default is ‘work_queue_worker’.

• function_dir (str) – The directory where serialized function invocations are placed
to be sent to workers. If undefined, this defaults to a directory under runinfo/. If
shared_filesystem=True, then this directory must be visible from both the submitting side
and workers.

• coprocess (bool) – Use Work Queue’s coprocess facility to avoid launching a new Python
process for each task. Experimental. This requires a version of Work Queue / cctools after
commit 874df524516441da531b694afc9d591e8b134b73 (release 7.5.0 is too early). Default
is False.

__init__(label: str = 'WorkQueueExecutor', provider: ExecutionProvider =
LocalProvider(channel=LocalChannel(envs={}, script_dir=None,
userhome='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
cmd_timeout=30, init_blocks=1, launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), max_blocks=1, min_blocks=0, move_files=None, nodes_per_block=1,
parallelism=1, worker_init=''), working_dir: str = '.', project_name: str | None = None,
project_password_file: str | None = None, address: str | None = None, port: int = 0, env: Dict |
None = None, shared_fs: bool = False, storage_access: List[Staging] | None = None, use_cache:
bool = False, source: bool = False, pack: bool = False, extra_pkgs: List[str] | None = None,
autolabel: bool = False, autolabel_window: int = 1, autocategory: bool = True, max_retries: int =
1, init_command: str = '', worker_options: str = '', full_debug: bool = True, worker_executable:
str = 'work_queue_worker', function_dir: str | None = None, coprocess: bool = False)

1.6. Parsl is a community 163

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.3.0-dev

Methods

__init__([label, provider, working_dir, ...])

atexit_cleanup()

create_monitoring_info(status) Create a monitoring message for each block based on
the poll status.

handle_errors(status) This method is called by the error management in-
frastructure after a status poll.

initialize_scaling() Compose the launch command and call scale out
monitor_resources() Should resource monitoring happen for tasks on run-

ning on this executor?
poll_facade()

scale_in(count) Scale in method.
scale_in_facade(n[, max_idletime])

scale_out([blocks]) Scales out the number of blocks by "blocks"
scale_out_facade(n)

send_monitoring_info(status)

set_bad_state_and_fail_all(exception) Allows external error handlers to mark this executor
as irrecoverably bad and cause all tasks submitted to
it now and in the future to fail.

shutdown(*args, **kwargs) Shutdown the executor.
start() Create submit process and collector thread to create,

send, and retrieve Parsl tasks within the Work Queue
system.

status() Return the status of all jobs/blocks currently known
to this executor.

submit(func, resource_specification, *args, ...) Processes the Parsl app by its arguments and submits
the function information to the task queue, to be exe-
cuted using the Work Queue system.

164 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Attributes

bad_state_is_set Returns true if this executor is in an irrecoverable er-
ror state.

executor_exception Returns an exception that indicates why this executor
is in an irrecoverable state.

hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
label

monitoring_radio Local radio for sending monitoring messages
outstanding Count the number of outstanding tasks.
provider

radio_mode

run_dir Path to the run directory.
run_id UUID for the enclosing DFK.
status_facade Return the status of all jobs/blocks of the executor of

this poller.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.
tasks

workers_per_node

atexit_cleanup()

initialize_scaling()

Compose the launch command and call scale out

Scales the workers to the appropriate nodes with provider

property outstanding: int

Count the number of outstanding tasks. This is inefficiently implemented and probably could be replaced
with a counter.

radio_mode: str = 'filesystem'

scale_in(count: int)→ List[str]
Scale in method.

shutdown(*args, **kwargs)
Shutdown the executor. Sets flag to cancel the submit process and collector thread, which shuts down the
Work Queue system submission.

start()

Create submit process and collector thread to create, send, and retrieve Parsl tasks within the Work Queue
system.

submit(func, resource_specification, *args, **kwargs)
Processes the Parsl app by its arguments and submits the function information to the task queue, to be
executed using the Work Queue system. The args and kwargs are processed for input and output files to the
Parsl app, so that the files are appropriately specified for the Work Queue task.

1.6. Parsl is a community 165

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

Parameters

• func (function) – Parsl app to be submitted to the Work Queue system

• args (list) – Arguments to the Parsl app

• kwargs (dict) – Keyword arguments to the Parsl app

property workers_per_node: int | float

parsl.executors.taskvine.TaskVineExecutor

class parsl.executors.taskvine.TaskVineExecutor(label: str = 'TaskVineExecutor',
worker_launch_method: Literal['provider'] |
Literal['factory'] | Literal['manual'] = 'factory',
function_exec_mode: Literal['regular'] |
Literal['serverless'] = 'regular', manager_config:
TaskVineManagerConfig =
TaskVineManagerConfig(port=0, address=None,
project_name=None, project_password_file=None,
env_vars=None, init_command='', env_pack=None,
app_pack=False, extra_pkgs=None, max_retries=1,
library_config=None, shared_fs=False,
autolabel=False, autolabel_algorithm='max-xput',
autolabel_window=None, autocategory=True,
enable_peer_transfers=True,
wait_for_workers=None, vine_log_dir=None),
factory_config: TaskVineFactoryConfig =
TaskVineFactoryConfig(factory_timeout=300,
scratch_dir=None, min_workers=1, max_workers=1,
workers_per_cycle=1, worker_options=None,
worker_executable='vine_worker',
worker_timeout=300, cores=None, gpus=None,
memory=None, disk=None, python_env=None,
batch_type='local', condor_requirements=None,
batch_options=None, _project_port=0,
_project_address=None, _project_name=None,
_project_password_file=None), provider:
ExecutionProvider | None =
LocalProvider(channel=LocalChannel(envs={},
script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
cmd_timeout=30, init_blocks=1,
launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), max_blocks=1, min_blocks=0,
move_files=None, nodes_per_block=1,
parallelism=1, worker_init=''), storage_access:
List[Staging] | None = None)

Executor to use TaskVine dynamic workflow system

The TaskVineExecutor system utilizes the TaskVine framework to efficiently delegate Parsl apps to remote ma-
chines in clusters and grids using a fault-tolerant system. Users can run the vine_worker program on remote
machines to connect to the TaskVineExecutor, and Parsl apps will then be sent out to these machines for execu-
tion and retrieval.

166 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

This Executor sets up configurations for the TaskVine manager, TaskVine factory, and run both in separate pro-
cesses. Sending tasks and receiving results are done through multiprocessing module native to Python.

Parameters

• label (str) – A human readable label for the executor, unique with respect to other execu-
tors. Default is “TaskVineExecutor”.

• worker_launch_method (Union[Literal['provider'], Literal['factory'],
Literal['manual']]) – Choose to use Parsl provider, TaskVine factory, or manual user-
provided workers to scale workers. Options are among {‘provider’, ‘factory’, ‘manual’}.
Default is ‘factory’.

• function_exec_mode (Union[Literal['regular'], Literal['serverless']]) –
Choose to execute functions with a regular fresh python process or a pre-warmed forked
python process. Default is ‘regular’.

• manager_config (TaskVineManagerConfig) – Configuration for the TaskVine manager.
Default

• factory_config (TaskVineFactoryConfig) – Configuration for the TaskVine factory.
Use of factory is disabled by default.

• provider (ExecutionProvider) – The Parsl provider that will spawn worker processes.
Default to spawning one local vine worker process.

• storage_access (List[Staging]) – Define Parsl file staging providers for this executor.
Default is None.

__init__(label: str = 'TaskVineExecutor', worker_launch_method: Literal['provider'] | Literal['factory'] |
Literal['manual'] = 'factory', function_exec_mode: Literal['regular'] | Literal['serverless'] =
'regular', manager_config: TaskVineManagerConfig = TaskVineManagerConfig(port=0,
address=None, project_name=None, project_password_file=None, env_vars=None,
init_command='', env_pack=None, app_pack=False, extra_pkgs=None, max_retries=1,
library_config=None, shared_fs=False, autolabel=False, autolabel_algorithm='max-xput',
autolabel_window=None, autocategory=True, enable_peer_transfers=True,
wait_for_workers=None, vine_log_dir=None), factory_config: TaskVineFactoryConfig =
TaskVineFactoryConfig(factory_timeout=300, scratch_dir=None, min_workers=1,
max_workers=1, workers_per_cycle=1, worker_options=None, worker_executable='vine_worker',
worker_timeout=300, cores=None, gpus=None, memory=None, disk=None, python_env=None,
batch_type='local', condor_requirements=None, batch_options=None, _project_port=0,
_project_address=None, _project_name=None, _project_password_file=None), provider:
ExecutionProvider | None = LocalProvider(channel=LocalChannel(envs={}, script_dir=None,
userhome='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
cmd_timeout=30, init_blocks=1, launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), max_blocks=1, min_blocks=0, move_files=None, nodes_per_block=1,
parallelism=1, worker_init=''), storage_access: List[Staging] | None = None)

1.6. Parsl is a community 167

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

Methods

__init__([label, worker_launch_method, ...])

atexit_cleanup()

create_monitoring_info(status) Create a monitoring message for each block based on
the poll status.

handle_errors(status) This method is called by the error management in-
frastructure after a status poll.

initialize_scaling() Compose the launch command and call scale out
monitor_resources() Should resource monitoring happen for tasks on run-

ning on this executor?
poll_facade()

scale_in(count) Scale in method.
scale_in_facade(n[, max_idletime])

scale_out([blocks]) Scales out the number of blocks by "blocks"
scale_out_facade(n)

send_monitoring_info(status)

set_bad_state_and_fail_all(exception) Allows external error handlers to mark this executor
as irrecoverably bad and cause all tasks submitted to
it now and in the future to fail.

shutdown(*args, **kwargs) Shutdown the executor.
start() Create submit process and collector thread to create,

send, and retrieve Parsl tasks within the TaskVine sys-
tem.

status() Return the status of all jobs/blocks currently known
to this executor.

submit(func, resource_specification, *args, ...) Processes the Parsl app by its arguments and submits
the function information to the task queue, to be exe-
cuted using the TaskVine system.

168 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Attributes

bad_state_is_set Returns true if this executor is in an irrecoverable er-
ror state.

executor_exception Returns an exception that indicates why this executor
is in an irrecoverable state.

hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
label

monitoring_radio Local radio for sending monitoring messages
outstanding Count the number of outstanding tasks.
provider

radio_mode

run_dir Path to the run directory.
run_id UUID for the enclosing DFK.
status_facade Return the status of all jobs/blocks of the executor of

this poller.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.
tasks

workers_per_node

atexit_cleanup()

initialize_scaling()

Compose the launch command and call scale out

Scales the workers to the appropriate nodes with provider

property outstanding: int

Count the number of outstanding tasks.

radio_mode: str = 'filesystem'

scale_in(count: int)→ List[str]
Scale in method. Cancel a given number of blocks

shutdown(*args, **kwargs)
Shutdown the executor. Sets flag to cancel the submit process and collector thread, which shuts down the
TaskVine system submission.

start()

Create submit process and collector thread to create, send, and retrieve Parsl tasks within the TaskVine
system.

submit(func, resource_specification, *args, **kwargs)
Processes the Parsl app by its arguments and submits the function information to the task queue, to be
executed using the TaskVine system. The args and kwargs are processed for input and output files to the
Parsl app, so that the files are appropriately specified for the TaskVine task.

1.6. Parsl is a community 169

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

Parameters

• func (function) – Parsl app to be submitted to the TaskVine system

• resource_specification (dict) – Dictionary containing relevant info about task. In-
clude information about resources of task, execution mode of task (out of {regular, server-
less}).

• args (list) – Arguments to the Parsl app

• kwargs (dict) – Keyword arguments to the Parsl app

property workers_per_node: int | float

parsl.executors.FluxExecutor

class parsl.executors.FluxExecutor(provider: ExecutionProvider | None = None, working_dir: str | None =
None, label: str = 'FluxExecutor', flux_executor_kwargs: Mapping =
{}, flux_path: str | None = None, launch_cmd: str | None = None)

Executor that uses Flux to schedule and run jobs.

Every callable submitted to the executor is wrapped into a Flux job.

This executor requires that there be a Flux installation available locally, and that it can be located either in PATH
or through the flux_path argument.

Flux jobs are fairly heavyweight. As of Flux v0.25, a single Flux instance is (on many systems) capped at 50
jobs per second. As such, this executor is not a good fit for use-cases consisting of large numbers of small, fast
jobs.

However, Flux is great at handling jobs with large resource requirements, and collections of jobs with varying
resource requirements.

Note that due to vendor-specific extensions, on certain Cray machines like ALCF’s Theta or LANL’s Trini-
tite/Trinity, Flux cannot run applications that use the default MPI library. Generally the only workaround is to
recompile with another MPI library like OpenMPI.

This executor acts as a sort of wrapper around a flux.job.FluxExecutor, which can be confusing since both
wrapped and wrapper classes share the same name. Whenever possible, the underlying executor is referred by
its fully qualified name, flux.job.FluxExecutor.

Parameters

• working_dir (str) – Directory in which the executor should place its files, possibly over-
writing existing files. If None, generate a unique directory.

• label (str) – Label for this executor instance.

• flux_handle_args (collections.abc.Sequence) – Positional arguments to flux.
Flux() instance, if any. The first positional argument, url, is provided by this executor.

• flux_executor_kwargs (collections.abc.Mapping) – Keyword arguments to pass to
the underlying flux.job.FluxExecutor() instance, if any. Note that the handle_args
keyword argument is provided by this executor, in order to supply the URL of a remote Flux
instance.

• flux_path (str) – Path to flux installation to use, or None to search PATH for flux.

• launch_cmd (str) – The command to use when launching the executor’s backend. The de-
fault command is available as the DEFAULT_LAUNCH_COMMAND attribute. The default com-
mand starts a new Flux instance, which may not be desirable if a Flux instance will already
be provisioned (this is not likely).

170 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

__init__(provider: ExecutionProvider | None = None, working_dir: str | None = None, label: str =
'FluxExecutor', flux_executor_kwargs: Mapping = {}, flux_path: str | None = None, launch_cmd:
str | None = None)

Methods

__init__([provider, working_dir, label, ...])

monitor_resources() Should resource monitoring happen for tasks on run-
ning on this executor?

shutdown([wait]) Shut down the executor, causing further calls to
submit to fail.

start() Called when DFK starts the executor when the config
is loaded.

submit(func, resource_specification, *args, ...) Wrap a callable in a Flux job and submit it to Flux.

Attributes

DEFAULT_LAUNCH_CMD

hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
label

monitoring_radio Local radio for sending monitoring messages
radio_mode

run_dir Path to the run directory.
run_id UUID for the enclosing DFK.

DEFAULT_LAUNCH_CMD = '{flux} start {python} {manager} {protocol} {hostname} {port}'

shutdown(wait=True)
Shut down the executor, causing further calls to submit to fail.

Parameters
wait – If True, do not return until all submitted Futures are done.

start()

Called when DFK starts the executor when the config is loaded.

submit(func: Callable, resource_specification: Dict[str, Any], *args: Any, **kwargs: Any)
Wrap a callable in a Flux job and submit it to Flux.

Parameters

• func – The callable to submit as a job to Flux

• resource_specification – A mapping defining the resources to allocate to the Flux
job.

Only the following keys are checked for:

1.6. Parsl is a community 171

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

Parsl Documentation, Release 1.3.0-dev

– num_tasks: the number of tasks to launch (MPI ranks for an MPI job), default 1

– cores_per_task: cores per task, default 1

– gpus_per_task: gpus per task, default 1

– num_nodes: if > 0, evenly distribute the allocated cores/gpus across the given number
of nodes. Does not give the job exclusive access to those nodes; this option only affects
distribution.

• args – positional arguments for the callable

• kwargs – keyword arguments for the callable

parsl.executors.radical.RadicalPilotExecutor

class parsl.executors.radical.RadicalPilotExecutor(resource: str, label: str = 'RPEX', bulk_mode:
bool = False, working_dir: str | None = None,
rpex_cfg: ResourceConfig | None = None,
**rpex_pilot_kwargs)

Executor is designed for executing heterogeneous tasks
in terms of type/resource.

The RadicalPilotExecutor system has the following main components:

1. “start”: Create and start the RADICAL-Pilot runtime components rp.Session,
rp.PilotManager and rp.TaskManager.

2. “translate”: Unwrap, identify, and parse Parsl apps into rp.TaskDescription.

3. “submit”: Submit Parsl apps to rp.TaskManager.

4. “shut_down”: Shut down the RADICAL-Pilot runtime and all associated components.

Here is a diagram

--
Parsl Data Flow Kernel | Task Translator | rp.TaskManager

---------------------------------------|-------------------|----------------
| |

-> Dep. check ------> Parsl_tasks{} <--+--> Parsl Task |
Data management +dfk.submit | | |

| v |
| RP Task(s) -> | submit(task)

--

The RadicalPilotExecutor creates a rp.Session, rp.TaskManager, and rp.PilotManager. The executor
receives the Parsl apps from the DFK and translates these apps (in-memory) into rp.TaskDescription object
to be passed to the rp.TaskManager. This executor has two submission mechanisms:

1. Default_mode: where the executor submits the tasks directly to RADICAL-Pilot.

2. Bulk_mode: where the executor accumulates N tasks (functions and executables) and submit them.

Parameters

• rpex_cfg – a dataclass specifying resource configuration. Default is ResourceConfig in-
stance.

• label (str) – Label for this executor instance. Default is “RPEX”.

172 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

• bulk_mode (bool) – Enable bulk mode submission and execution. Default is False (stream).

• resource (Optional[str]) – The resource name of the targeted HPC machine or cluster.
Default is local.localhost (user local machine).

• runtime (int) – The maximum runtime for the entire job in minutes. Default is 30.

• working_dir (str) – The working dir to be used by the executor.

• rpex_pilot_kwargs (Dict of kwargs that are passed directly to the
rp.PilotDescription object.) –

• information (For more) –

__init__(resource: str, label: str = 'RPEX', bulk_mode: bool = False, working_dir: str | None = None,
rpex_cfg: ResourceConfig | None = None, **rpex_pilot_kwargs)

Methods

__init__(resource[, label, bulk_mode, ...])

monitor_resources() Should resource monitoring happen for tasks on run-
ning on this executor?

shutdown([hub, targets, block]) Shutdown the executor, including all RADICAL-
Pilot components.

start() Create the Pilot component and pass it.
submit(func, resource_specification, *args, ...) Submits tasks in stream mode or bulks (bulk mode)

to RADICAL-Pilot rp.TaskManager.
task_state_cb(task, state) Update the state of Parsl Future apps Based on RP

task state callbacks.
task_translate(tid, func, ...) Convert Parsl function to RADICAL-Pilot

rp.TaskDescription
unwrap(func, args) Unwrap a Parsl app and its args for further processing.

Attributes

hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
label

monitoring_radio Local radio for sending monitoring messages
radio_mode

run_dir Path to the run directory.
run_id UUID for the enclosing DFK.

shutdown(hub=True, targets='all', block=False)
Shutdown the executor, including all RADICAL-Pilot components.

start()

Create the Pilot component and pass it.

1.6. Parsl is a community 173

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

submit(func, resource_specification, *args, **kwargs)
Submits tasks in stream mode or bulks (bulk mode) to RADICAL-Pilot rp.TaskManager.

task_state_cb(task, state)
Update the state of Parsl Future apps Based on RP task state callbacks.

task_translate(tid, func, parsl_resource_specification, args, kwargs)
Convert Parsl function to RADICAL-Pilot rp.TaskDescription

unwrap(func, args)
Unwrap a Parsl app and its args for further processing.

Parameters

• func (callable) – The function to be unwrapped.

• args (tuple) – The arguments associated with the function.

Returns
A tuple containing the unwrapped function, adjusted arguments, and task type information.

Return type
tuple

Launchers

parsl.launchers.base.Launcher Launchers are basically wrappers for user submitted
scripts as they are submitted to a specific execution re-
source.

parsl.launchers.SimpleLauncher Does no wrapping.
parsl.launchers.SingleNodeLauncher Worker launcher that wraps the user's command with the

framework to launch multiple command invocations in
parallel.

parsl.launchers.SrunLauncher Worker launcher that wraps the user's command with the
SRUN launch framework to launch multiple cmd invo-
cations in parallel on a single job allocation.

parsl.launchers.AprunLauncher Worker launcher that wraps the user's command with the
Aprun launch framework to launch multiple cmd invoca-
tions in parallel on a single job allocation

parsl.launchers.SrunMPILauncher Launches as many workers as MPI tasks to be executed
concurrently within a block.

parsl.launchers.GnuParallelLauncher Worker launcher that wraps the user's command with the
framework to launch multiple command invocations via
GNU parallel sshlogin.

parsl.launchers.MpiExecLauncher Worker launcher that wraps the user's command with the
framework to launch multiple command invocations via
mpiexec.

parsl.launchers.JsrunLauncher Worker launcher that wraps the user's command with the
Jsrun launch framework to launch multiple cmd invoca-
tions in parallel on a single job allocation

parsl.launchers.WrappedLauncher Wraps the command by prepending commands before a
user's command

174 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Parsl Documentation, Release 1.3.0-dev

parsl.launchers.base.Launcher

class parsl.launchers.base.Launcher(debug: bool = True)
Launchers are basically wrappers for user submitted scripts as they are submitted to a specific execution resource.

__init__(debug: bool = True)

Methods

__init__([debug])

parsl.launchers.SimpleLauncher

class parsl.launchers.SimpleLauncher(debug: bool = True)
Does no wrapping. Just returns the command as-is

__init__(debug: bool = True)→ None

Methods

__init__([debug])

parsl.launchers.SingleNodeLauncher

class parsl.launchers.SingleNodeLauncher(debug: bool = True, fail_on_any: bool = False)
Worker launcher that wraps the user’s command with the framework to launch multiple command invocations
in parallel. This wrapper sets the bash env variable CORES to the number of cores on the machine. By setting
task_blocks to an integer or to a bash expression the number of invocations of the command to be launched can
be controlled.

__init__(debug: bool = True, fail_on_any: bool = False)

Methods

__init__([debug, fail_on_any])

1.6. Parsl is a community 175

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.3.0-dev

parsl.launchers.SrunLauncher

class parsl.launchers.SrunLauncher(debug: bool = True, overrides: str = '')
Worker launcher that wraps the user’s command with the SRUN launch framework to launch multiple cmd in-
vocations in parallel on a single job allocation.

__init__(debug: bool = True, overrides: str = '')

Parameters
overrides (str) – This string will be passed to the srun launcher. Default: ‘’

Methods

__init__([debug, overrides])
param overrides

This string will be passed to the srun
launcher. Default: ''

parsl.launchers.AprunLauncher

class parsl.launchers.AprunLauncher(debug: bool = True, overrides: str = '')
Worker launcher that wraps the user’s command with the Aprun launch framework to launch multiple cmd invo-
cations in parallel on a single job allocation

__init__(debug: bool = True, overrides: str = '')

Parameters
overrides (str) – This string will be passed to the aprun launcher. Default: ‘’

Methods

__init__([debug, overrides])
param overrides

This string will be passed to the aprun
launcher. Default: ''

parsl.launchers.SrunMPILauncher

class parsl.launchers.SrunMPILauncher(debug: bool = True, overrides: str = '')
Launches as many workers as MPI tasks to be executed concurrently within a block.

Use this launcher instead of SrunLauncher if each block will execute multiple MPI applications at the same time.
Workers should be launched with independent Srun calls so as to setup the environment for MPI application
launch.

176 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

__init__(debug: bool = True, overrides: str = '')

Parameters
overrides (str) – This string will be passed to the launcher. Default: ‘’

Methods

__init__([debug, overrides])
param overrides

This string will be passed to the
launcher. Default: ''

parsl.launchers.GnuParallelLauncher

class parsl.launchers.GnuParallelLauncher(debug: bool = True)
Worker launcher that wraps the user’s command with the framework to launch multiple command invocations
via GNU parallel sshlogin.

This wrapper sets the bash env variable CORES to the number of cores on the machine.

This launcher makes the following assumptions:

• GNU parallel is installed and can be located in $PATH

• Paswordless SSH login is configured between the controller node and the target nodes.

• The provider makes available the $PBS_NODEFILE environment variable

__init__(debug: bool = True)

Methods

__init__([debug])

parsl.launchers.MpiExecLauncher

class parsl.launchers.MpiExecLauncher(debug: bool = True, bind_cmd: str = '--bind-to', overrides: str =
'')

Worker launcher that wraps the user’s command with the framework to launch multiple command invocations
via mpiexec.

This wrapper sets the bash env variable CORES to the number of cores on the machine.

This launcher makes the following assumptions: - mpiexec is installed and can be located in $PATH - The
provider makes available the $PBS_NODEFILE environment variable

1.6. Parsl is a community 177

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

__init__(debug: bool = True, bind_cmd: str = '--bind-to', overrides: str = '')

Parameters

• bind_cmd (str) – Name of the argument for binding ranks to CPUs

• overrides (str) – Additional arguments to add to the invocation

Methods

__init__([debug, bind_cmd, overrides])
param bind_cmd

Name of the argument for binding
ranks to CPUs

parsl.launchers.JsrunLauncher

class parsl.launchers.JsrunLauncher(debug: bool = True, overrides: str = '')
Worker launcher that wraps the user’s command with the Jsrun launch framework to launch multiple cmd invo-
cations in parallel on a single job allocation

__init__(debug: bool = True, overrides: str = '')

Parameters
overrides (str) – This string will be passed to the JSrun launcher. Default: ‘’

Methods

__init__([debug, overrides])
param overrides

This string will be passed to the JSrun
launcher. Default: ''

parsl.launchers.WrappedLauncher

class parsl.launchers.WrappedLauncher(prepend: str, debug: bool = True)
Wraps the command by prepending commands before a user’s command

As an example, the wrapped launcher can be used to launch a command inside a docker container by prepending
the proper docker invocation

__init__(prepend: str, debug: bool = True)

Parameters
prepend (str) – Command to use before the launcher (e.g., time)

178 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

Methods

__init__(prepend[, debug])
param prepend

Command to use before the launcher
(e.g., time)

Providers

parsl.providers.AdHocProvider Ad-hoc execution provider
parsl.providers.AWSProvider A provider for using Amazon Elastic Compute Cloud

(EC2) resources.
parsl.providers.CobaltProvider Cobalt Execution Provider
parsl.providers.CondorProvider HTCondor Execution Provider.
parsl.providers.GoogleCloudProvider A provider for using resources from the Google Compute

Engine.
parsl.providers.GridEngineProvider A provider for the Grid Engine scheduler.
parsl.providers.LocalProvider Local Execution Provider
parsl.providers.LSFProvider LSF Execution Provider
parsl.providers.SlurmProvider Slurm Execution Provider
parsl.providers.TorqueProvider Torque Execution Provider
parsl.providers.KubernetesProvider Kubernetes execution provider
parsl.providers.PBSProProvider PBS Pro Execution Provider
parsl.providers.base.ExecutionProvider Execution providers are responsible for managing exe-

cution resources that have a Local Resource Manager
(LRM).

parsl.providers.cluster_provider.
ClusterProvider

This class defines behavior common to all
cluster/supercompute-style scheduler systems.

parsl.providers.AdHocProvider

class parsl.providers.AdHocProvider(channels=[], worker_init='', cmd_timeout=30, parallelism=1,
move_files=None)

Ad-hoc execution provider

This provider is used to provision execution resources over one or more ad hoc nodes that are each accessible
over a Channel (say, ssh) but otherwise lack a cluster scheduler.

Parameters

• channels (list of Channel ojects) – Each channel represents a connection to a re-
mote node

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’. Since this provider calls the same worker_init across all
nodes in the ad-hoc cluster, it is recommended that a single script is made available across
nodes such as ~/setup.sh that can be invoked.

• cmd_timeout (int) – Duration for which the provider will wait for a command to be invoked
on a remote system. Defaults to 30s

1.6. Parsl is a community 179

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.3.0-dev

• parallelism (float) – Determines the ratio of workers to tasks as managed by the strategy
component

__init__(channels=[], worker_init='', cmd_timeout=30, parallelism=1, move_files=None)

Methods

__init__([channels, worker_init, ...])

cancel(job_ids) Cancel a list of jobs with job_ids
status(job_ids) Get status of the list of jobs with job_ids
submit(command, tasks_per_node[, job_name]) Submits the command onto a channel from the list of

channels

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

cancel(job_ids)
Cancel a list of jobs with job_ids

Parameters
job_ids (list of strings) – List of job id strings

Returns
list of confirmation bools

Return type
[True, False. . .]

property label

Provides the label for this provider

status(job_ids)
Get status of the list of jobs with job_ids

Parameters
job_ids (list of strings) – List of job id strings

Return type
list of JobStatus objects

property status_polling_interval

Returns the interval, in seconds, at which the status method should be called.

Returns
the number of seconds to wait between calls to status()

180 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Parsl Documentation, Release 1.3.0-dev

submit(command, tasks_per_node, job_name='parsl.adhoc')
Submits the command onto a channel from the list of channels

Submit returns an ID that corresponds to the task that was just submitted.

Parameters

• command ((String)) – Commandline invocation to be made on the remote side.

• tasks_per_node ((int)) – command invocations to be launched per node

• job_name ((String)) – Name of the job. Default : parsl.adhoc

Returns

• None – At capacity, cannot provision more

• job_id ((string)) – Identifier for the job

parsl.providers.AWSProvider

class parsl.providers.AWSProvider(image_id, key_name, init_blocks=1, min_blocks=0, max_blocks=10,
nodes_per_block=1, parallelism=1, worker_init='',
instance_type='t2.small', region='us-east-2', spot_max_bid=0,
key_file=None, profile=None, iam_instance_profile_arn='',
state_file=None, walltime='01:00:00', linger=False,
launcher=SingleNodeLauncher(debug=True, fail_on_any=False))

A provider for using Amazon Elastic Compute Cloud (EC2) resources.

One of 3 methods are required to authenticate: keyfile, profile or environment variables. If neither keyfile
or profile are set, the following environment variables must be set: AWS_ACCESS_KEY_ID (the access key for
your AWS account), AWS_SECRET_ACCESS_KEY (the secret key for your AWS account), and (optionaly) the
AWS_SESSION_TOKEN (the session key for your AWS account).

Parameters

• image_id (str) – Identification of the Amazon Machine Image (AMI).

• worker_init (str) – String to append to the Userdata script executed in the cloudinit phase
of instance initialization.

• walltime (str) – Walltime requested per block in HH:MM:SS.

• key_file (str) – Path to json file that contains ‘AWSAccessKeyId’ and ‘AWSSecretKey’.

• nodes_per_block (int) – This is always 1 for ec2. Nodes to provision per block.

• profile (str) – Profile to be used from the standard aws config file ~/.aws/config.

• nodes_per_block – Nodes to provision per block. Default is 1.

• init_blocks (int) – Number of blocks to provision at the start of the run. Default is 1.

• min_blocks (int) – Minimum number of blocks to maintain. Default is 0.

• max_blocks (int) – Maximum number of blocks to maintain. Default is 10.

• instance_type (str) – EC2 instance type. Instance types comprise varying combinations
of CPU, memory, storage, and networking capacity For more information on possible in-
stance types, see here. Default is ‘t2.small’.

• region (str) – Amazon Web Service (AWS) region to launch machines. Default is ‘us-
east-2’.

1.6. Parsl is a community 181

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://aws.amazon.com/ec2/instance-types/
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

• key_name (str) – Name of the AWS private key (.pem file) that is usually generated on the
console to allow SSH access to the EC2 instances. This is mostly used for debugging.

• spot_max_bid (float) – Maximum bid price (if requesting spot market machines).

• iam_instance_profile_arn (str) – Launch instance with a specific role.

• state_file (str) – Path to the state file from a previous run to re-use.

• walltime – Walltime requested per block in HH:MM:SS. This option is not currently hon-
ored by this provider.

• launcher (Launcher) – Launcher for this provider. With AWS, usually the default
SingleNodeLauncher will be appropriate.

• linger (Bool) – When set to True, the workers will not halt. The user is responsible for
shutting down the node.

__init__(image_id, key_name, init_blocks=1, min_blocks=0, max_blocks=10, nodes_per_block=1,
parallelism=1, worker_init='', instance_type='t2.small', region='us-east-2', spot_max_bid=0,
key_file=None, profile=None, iam_instance_profile_arn='', state_file=None, walltime='01:00:00',
linger=False, launcher=SingleNodeLauncher(debug=True, fail_on_any=False))

Methods

__init__(image_id, key_name[, init_blocks, ...])

cancel(job_ids) Cancel the jobs specified by a list of job ids.
config_route_table(vpc, internet_gateway) Configure route table for Virtual Private Cloud

(VPC).
create_name_tag_spec(resource_type, name) Create a new tag specification for a resource name.
create_session() Create a session.
create_vpc() Create and configure VPC
generate_aws_id() Generate a new ID for AWS resources.
get_instance_state([instances]) Get states of all instances on EC2 which were started

by this file.
goodbye()

initialize_boto_client() Initialize the boto client.
read_state_file(state_file) Read the state file, if it exists.
security_group(vpc, name) Create and configure a new security group.
show_summary() Print human readable summary of current AWS state

to log and to console.
shut_down_instance([instances]) Shut down a list of instances, if provided.
spin_up_instance(command, job_name) Start an instance in the VPC in the first available sub-

net.
status(job_ids) Get the status of a list of jobs identified by their ids.
submit([command, tasks_per_node, job_name]) Submit the command onto a freshly instantiated AWS

EC2 instance.
teardown() Teardown the EC2 infastructure.
write_state_file() Save information that must persist to a file.
xstr(s)

182 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

cancel(job_ids)
Cancel the jobs specified by a list of job ids.

Parameters
job_ids (list of str) – List of of job identifiers

Returns
Each entry in the list will contain False if the operation fails. Otherwise, the entry will be
True.

Return type
list of bool

config_route_table(vpc, internet_gateway)
Configure route table for Virtual Private Cloud (VPC).

Parameters

• vpc (dict) – Representation of the VPC (created by create_vpc()).

• internet_gateway (dict) – Representation of the internet gateway (created by cre-
ate_vpc()).

create_name_tag_spec(resource_type, name)
Create a new tag specification for a resource name.

Parameters

• resource_type (str) – The AWS resource type

• name (str) – The name to assign to the resource

Returns
A TagSpecifications record to be passed into the creation of a new AWS resource.

Return type
record

create_session()

Create a session.

First we look in self.key_file for a path to a json file with the credentials. The key file should have ‘AWSAc-
cessKeyId’ and ‘AWSSecretKey’.

Next we look at self.profile for a profile name and try to use the Session call to automatically pick up the
keys for the profile from the user default keys file ~/.aws/config.

Finally, boto3 will look for the keys in environment variables: AWS_ACCESS_KEY_ID: The access
key for your AWS account. AWS_SECRET_ACCESS_KEY: The secret key for your AWS account.
AWS_SESSION_TOKEN: The session key for your AWS account. This is only needed when you are using
temporary credentials. The AWS_SECURITY_TOKEN environment variable can also be used, but is only

1.6. Parsl is a community 183

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

supported for backwards compatibility purposes. AWS_SESSION_TOKEN is supported by multiple AWS
SDKs besides python.

create_vpc()

Create and configure VPC

We create a VPC with CIDR 10.0.0.0/16, which provides up to 64,000 instances.

We attach a subnet for each availability zone within the region specified in the config. We give each subnet
an ip range like 10.0.X.0/20, which is large enough for approx. 4000 instances.

Security groups are configured in function security_group.

generate_aws_id()

Generate a new ID for AWS resources.

Returns
An ID of the form ‘parsl.aws.123456.789’ for giving resources unique identifiers.

Return type
str

get_instance_state(instances=None)
Get states of all instances on EC2 which were started by this file.

goodbye()

initialize_boto_client()

Initialize the boto client.

property label

Provides the label for this provider

read_state_file(state_file)
Read the state file, if it exists.

If this script has been run previously, resource IDs will have been written to a state file. On starting a run, a
state file will be looked for before creating new infrastructure. Information on VPCs, security groups, and
subnets are saved, as well as running instances and their states.

AWS has a maximum number of VPCs per region per account, so we do not want to clutter users’ AWS
accounts with security groups and VPCs that will be used only once.

security_group(vpc, name)
Create and configure a new security group.

Allows all ICMP in, all TCP and UDP in within VPC.

This security group is very open. It allows all incoming ping requests on all ports. It also allows all outgoing
traffic on all ports. This can be limited by changing the allowed port ranges.

Parameters

• vpc (VPC instance) – VPC in which to set up security group.

• name (str) – Name tag for the newly created security group.

show_summary()

Print human readable summary of current AWS state to log and to console.

184 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

shut_down_instance(instances=None)
Shut down a list of instances, if provided.

If no instance is provided, the last instance started up will be shut down.

spin_up_instance(command, job_name)
Start an instance in the VPC in the first available subnet.

N instances will be started if nodes_per_block > 1. Not supported. We only do 1 node per block.

Parameters

• command (str) – Command string to execute on the node.

• job_name (str) – Name associated with the instances.

status(job_ids)
Get the status of a list of jobs identified by their ids.

Parameters
job_ids (list of str) – Identifiers for the jobs.

Returns
The status codes of the requsted jobs.

Return type
list of int

property status_polling_interval

Returns the interval, in seconds, at which the status method should be called.

Returns
the number of seconds to wait between calls to status()

submit(command='sleep 1', tasks_per_node=1, job_name='parsl.aws')
Submit the command onto a freshly instantiated AWS EC2 instance.

Submit returns an ID that corresponds to the task that was just submitted.

Parameters

• command (str) – Command to be invoked on the remote side.

• tasks_per_node (int (default=1)) – Number of command invocations to be
launched per node

• job_name (str) – Prefix for the job name.

Returns
If at capacity, None will be returned. Otherwise, the job identifier will be returned.

Return type
None or str

teardown()

Teardown the EC2 infastructure.

Terminate all EC2 instances, delete all subnets, delete security group, delete VPC, and reset all instance
variables.

write_state_file()

Save information that must persist to a file.

We do not want to create a new VPC and new identical security groups, so we save information about them
in a file between runs.

1.6. Parsl is a community 185

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

xstr(s)

parsl.providers.CobaltProvider

class parsl.providers.CobaltProvider(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
nodes_per_block=1, init_blocks=0, min_blocks=0, max_blocks=1,
parallelism=1, walltime='00:10:00', account=None, queue=None,
scheduler_options='', worker_init='',
launcher=AprunLauncher(debug=True, overrides=''),
cmd_timeout=10)

Cobalt Execution Provider

WARNING: CobaltProvider is deprecated and will be removed by 2024.04

This provider uses cobalt to submit (qsub), obtain the status of (qstat), and cancel (qdel) jobs. Theo script to be
used is created from a template file in this same module.

Parameters

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• nodes_per_block (int) – Nodes to provision per block.

• min_blocks (int) – Minimum number of blocks to maintain.

• max_blocks (int) – Maximum number of blocks to maintain.

• walltime (str) – Walltime requested per block in HH:MM:SS.

• account (str) – Account that the job will be charged against.

• queue (str) – Torque queue to request blocks from.

• scheduler_options (str) – String to prepend to the submit script to the scheduler.

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’.

• launcher (Launcher) – Launcher for this provider. Possible launchers include
AprunLauncher (the default) or, SingleNodeLauncher

__init__(channel=LocalChannel(envs={}, script_dir=None,
userhome='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
nodes_per_block=1, init_blocks=0, min_blocks=0, max_blocks=1, parallelism=1,
walltime='00:10:00', account=None, queue=None, scheduler_options='', worker_init='',
launcher=AprunLauncher(debug=True, overrides=''), cmd_timeout=10)

186 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

Methods

__init__([channel, nodes_per_block, ...])

cancel(job_ids) Cancels the jobs specified by a list of job ids
execute_wait(cmd[, timeout])

status(job_ids) Get the status of a list of jobs identified by the job
identifiers returned from the submit request.

submit(command, tasks_per_node[, job_name]) Submits the command onto an Local Resource Man-
ager job of parallel elements.

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

cancel(job_ids)
Cancels the jobs specified by a list of job ids

Args: job_ids : [<job_id> . . .]

Returns : [True/False. . .] : If the cancel operation fails the entire list will be False.

property status_polling_interval

Returns the interval, in seconds, at which the status method should be called.

Returns
the number of seconds to wait between calls to status()

submit(command, tasks_per_node, job_name='parsl.cobalt')
Submits the command onto an Local Resource Manager job of parallel elements. Submit returns an ID that
corresponds to the task that was just submitted.

If tasks_per_node < 1 : ! This is illegal. tasks_per_node should be integer

If tasks_per_node == 1:
A single node is provisioned

If tasks_per_node > 1 :
tasks_per_node number of nodes are provisioned.

Parameters

• command (-) – (String) Commandline invocation to be made on the remote side.

• tasks_per_node (-) – command invocations to be launched per node

Kwargs:

• job_name (String): Name for job, must be unique

1.6. Parsl is a community 187

Parsl Documentation, Release 1.3.0-dev

Returns
At capacity, cannot provision more - job_id: (string) Identifier for the job

Return type

• None

parsl.providers.CondorProvider

class parsl.providers.CondorProvider(channel: Channel = LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
nodes_per_block: int = 1, cores_per_slot: int | None = None,
mem_per_slot: float | None = None, init_blocks: int = 1,
min_blocks: int = 0, max_blocks: int = 1, parallelism: float = 1,
environment: Dict[str, str] | None = None, project: str = '',
scheduler_options: str = '', transfer_input_files: List[str] = [],
walltime: str = '00:10:00', worker_init: str = '', launcher: Launcher
= SingleNodeLauncher(debug=True, fail_on_any=False),
requirements: str = '', cmd_timeout: int = 60, cmd_chunk_size: int
= 100)

HTCondor Execution Provider.

Parameters

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• nodes_per_block (int) – Nodes to provision per block.

• cores_per_slot (int) – Specify the number of cores to provision per slot. If set to None,
executors will assume all cores on the node are available for computation. Default is None.

• mem_per_slot (float) – Specify the real memory to provision per slot in GB. If set to
None, no explicit request to the scheduler will be made. Default is None.

• init_blocks (int) – Number of blocks to provision at time of initialization

• min_blocks (int) – Minimum number of blocks to maintain

• max_blocks (int) – Maximum number of blocks to maintain.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism value
of 1 represents aggressive scaling where as many resources as possible are used; paral-
lelism close to 0 represents the opposite situation in which as few resources as possible (i.e.,
min_blocks) are used.

• environment (dict of str) – A dictionary of environmant variable name and value pairs
which will be set before running a task.

• project (str) – Project which the job will be charged against

• scheduler_options (str) – String to add specific condor attributes to the HTCondor sub-
mit script.

• transfer_input_files (list(str)) – List of strings of paths to additional files or di-
rectories to transfer to the job

• worker_init (str) – Command to be run before starting a worker.

• requirements (str) – Condor requirements.

188 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

• launcher (Launcher) – Launcher for this provider. Possible launchers include
SingleNodeLauncher (the default),

• cmd_timeout (int) – Timeout for commands made to the scheduler in seconds.

• cmd_chunk_size (int) – Calls to the scheduler will be made for chunks of blocks with this
size.

__init__(channel: Channel = LocalChannel(envs={}, script_dir=None,
userhome='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
nodes_per_block: int = 1, cores_per_slot: int | None = None, mem_per_slot: float | None = None,
init_blocks: int = 1, min_blocks: int = 0, max_blocks: int = 1, parallelism: float = 1, environment:
Dict[str, str] | None = None, project: str = '', scheduler_options: str = '', transfer_input_files:
List[str] = [], walltime: str = '00:10:00', worker_init: str = '', launcher: Launcher =
SingleNodeLauncher(debug=True, fail_on_any=False), requirements: str = '', cmd_timeout: int =
60, cmd_chunk_size: int = 100)→ None

Methods

__init__([channel, nodes_per_block, ...])

cancel(job_ids) Cancels the jobs specified by a list of job IDs.
execute_wait(cmd[, timeout])

status(job_ids) Get the status of a list of jobs identified by their ids.
submit(command, tasks_per_node[, job_name]) Submits the command onto an Local Resource Man-

ager job.

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

cancel(job_ids)
Cancels the jobs specified by a list of job IDs.

Parameters
job_ids (list of str) – The job IDs to cancel.

Returns
Each entry in the list will be True if the job is cancelled succesfully, otherwise False.

Return type
list of bool

status(job_ids)
Get the status of a list of jobs identified by their ids.

Parameters
job_ids (list of int) – Identifiers of jobs for which the status will be returned.

1.6. Parsl is a community 189

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.3.0-dev

Returns
Status codes for the requested jobs.

Return type
List of int

property status_polling_interval

Returns the interval, in seconds, at which the status method should be called.

Returns
the number of seconds to wait between calls to status()

submit(command, tasks_per_node, job_name='parsl.condor')
Submits the command onto an Local Resource Manager job.

example file with the complex case of multiple submits per job:
Universe =vanilla output = out.$(Cluster).$(Process) error = err.$(Cluster).$(Process) log =
log.$(Cluster) leave_in_queue = true executable = test.sh queue 5 executable = foo queue 1

$ condor_submit test.sub Submitting job(s). 5 job(s) submitted to cluster 118907. 1 job(s) submitted
to cluster 118908.

Parameters

• command (str) – Command to execute

• job_name (str) – Job name prefix.

• tasks_per_node (int) – command invocations to be launched per node

Returns
None if at capacity and cannot provision more; otherwise the identifier for the job.

Return type
None or str

parsl.providers.GoogleCloudProvider

class parsl.providers.GoogleCloudProvider(project_id, key_file, region, os_project, os_family,
google_version='v1', instance_type='n1-standard-1',
init_blocks=1, min_blocks=0, max_blocks=10,
launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), parallelism=1)

A provider for using resources from the Google Compute Engine.

Parameters

• project_id (str) – Project ID from Google compute engine.

• key_file (str) – Path to authorization private key json file. This is required for auth. A
new one can be generated here: https://console.cloud.google.com/apis/credentials

• region (str) – Region in which to start instances

• os_project (str) – OS project code for Google compute engine.

• os_family (str) – OS family to request.

• google_version (str) – Google compute engine version to use. Possibilies include ‘v1’
(default) or ‘beta’.

• instance_type (str) – ‘n1-standard-1’,

190 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://console.cloud.google.com/apis/credentials
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

• init_blocks (int) – Number of blocks to provision immediately. Default is 1.

• min_blocks (int) – Minimum number of blocks to maintain. Default is 0.

• max_blocks (int) – Maximum number of blocks to maintain. Default is 10.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism value
of 1 represents aggressive scaling where as many resources as possible are used; paral-
lelism close to 0 represents the opposite situation in which as few resources as possible (i.e.,
min_blocks) are used.

__init__(project_id, key_file, region, os_project, os_family, google_version='v1',
instance_type='n1-standard-1', init_blocks=1, min_blocks=0, max_blocks=10,
launcher=SingleNodeLauncher(debug=True, fail_on_any=False), parallelism=1)

Methods

__init__(project_id, key_file, region, ...)

bye()

cancel(job_ids) Cancels the resources identified by the job_ids pro-
vided by the user.

create_instance([command])

delete_instance(name)

get_zone(region)

status(job_ids) Get the status of a list of jobs identified by the job
identifiers returned from the submit request.

submit(command, tasks_per_node[, job_name]) The submit method takes the command string to be
executed upon instantiation of a resource most often
to start a pilot.

Attributes

status_polling_interval

bye()

cancel(job_ids)
Cancels the resources identified by the job_ids provided by the user.

Parameters
job_ids (-) – A list of job identifiers

Returns

• A list of status from cancelling the job which can be True, False

1.6. Parsl is a community 191

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Parsl Documentation, Release 1.3.0-dev

Raises
- ExecutionProviderException or its subclasses –

create_instance(command='')

delete_instance(name)

get_zone(region)

status(job_ids)
Get the status of a list of jobs identified by the job identifiers returned from the submit request.

Parameters
job_ids (-) – A list of job identifiers

Returns

• A list of JobStatus objects corresponding to each job_id in the job_ids list.

Raises
- ExecutionProviderException or its subclasses –

property status_polling_interval

submit(command, tasks_per_node, job_name='parsl.gcs')
The submit method takes the command string to be executed upon instantiation of a resource most often to
start a pilot.

Args :

• command (str) : The bash command string to be executed.

• tasks_per_node (int) : command invocations to be launched per node

KWargs:

• job_name (str) : Human friendly name to be assigned to the job request

Returns

• A job identifier, this could be an integer, string etc

Raises
- ExecutionProviderException or its subclasses –

parsl.providers.GridEngineProvider

class parsl.providers.GridEngineProvider(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
nodes_per_block=1, init_blocks=1, min_blocks=0,
max_blocks=1, parallelism=1, walltime='00:10:00',
scheduler_options='', worker_init='',
launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), cmd_timeout: int = 60, queue=None)

A provider for the Grid Engine scheduler.

Parameters

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

192 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.3.0-dev

• nodes_per_block (int) – Nodes to provision per block.

• min_blocks (int) – Minimum number of blocks to maintain.

• max_blocks (int) – Maximum number of blocks to maintain.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism value
of 1 represents aggressive scaling where as many resources as possible are used; paral-
lelism close to 0 represents the opposite situation in which as few resources as possible (i.e.,
min_blocks) are used.

• walltime (str) – Walltime requested per block in HH:MM:SS.

• scheduler_options (str) – String to prepend to the #$$ blocks in the submit script to the
scheduler.

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’.

• launcher (Launcher) – Launcher for this provider. Possible launchers include
SingleNodeLauncher (the default),

• cmd_timeout (int) – Timeout for commands made to the scheduler in seconds

__init__(channel=LocalChannel(envs={}, script_dir=None,
userhome='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
nodes_per_block=1, init_blocks=1, min_blocks=0, max_blocks=1, parallelism=1,
walltime='00:10:00', scheduler_options='', worker_init='',
launcher=SingleNodeLauncher(debug=True, fail_on_any=False), cmd_timeout: int = 60,
queue=None)

Methods

__init__([channel, nodes_per_block, ...])

cancel(job_ids) Cancels the resources identified by the job_ids pro-
vided by the user.

execute_wait(cmd[, timeout])

get_configs(command, tasks_per_node) Compose a dictionary with information for writing
the submit script.

status(job_ids) Get the status of a list of jobs identified by the job
identifiers returned from the submit request.

submit(command, tasks_per_node[, job_name]) The submit method takes the command string to be
executed upon instantiation of a resource most often
to start a pilot.

1.6. Parsl is a community 193

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.3.0-dev

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

cancel(job_ids)
Cancels the resources identified by the job_ids provided by the user.

Parameters
job_ids (-) – A list of job identifiers

Returns

• A list of status from cancelling the job which can be True, False

Raises
- ExecutionProviderException or its subclasses –

get_configs(command, tasks_per_node)
Compose a dictionary with information for writing the submit script.

property status_polling_interval

Returns the interval, in seconds, at which the status method should be called.

Returns
the number of seconds to wait between calls to status()

submit(command, tasks_per_node, job_name='parsl.sge')
The submit method takes the command string to be executed upon instantiation of a resource most often to
start a pilot.

Args :

• command (str) : The bash command string to be executed.

• tasks_per_node (int) : command invocations to be launched per node

KWargs:

• job_name (str) : Human friendly name to be assigned to the job request

Returns

• A job identifier, this could be an integer, string etc

Raises
- ExecutionProviderException or its subclasses –

194 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

parsl.providers.LocalProvider

class parsl.providers.LocalProvider(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
nodes_per_block=1, launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), init_blocks=1, min_blocks=0, max_blocks=1,
worker_init='', cmd_timeout=30, parallelism=1, move_files=None)

Local Execution Provider

This provider is used to provide execution resources from the localhost.

Parameters

• min_blocks (int) – Minimum number of blocks to maintain.

• max_blocks (int) – Maximum number of blocks to maintain.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism value
of 1 represents aggressive scaling where as many resources as possible are used; paral-
lelism close to 0 represents the opposite situation in which as few resources as possible (i.e.,
min_blocks) are used.

• move_files (Optional[Bool]) – Should files be moved? By default, Parsl will try to
figure this out itself (= None). If True, then will always move. If False, will never move.

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’.

__init__(channel=LocalChannel(envs={}, script_dir=None,
userhome='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
nodes_per_block=1, launcher=SingleNodeLauncher(debug=True, fail_on_any=False),
init_blocks=1, min_blocks=0, max_blocks=1, worker_init='', cmd_timeout=30, parallelism=1,
move_files=None)

Methods

__init__([channel, nodes_per_block, ...])

cancel(job_ids) Cancels the jobs specified by a list of job ids
status(job_ids) Get the status of a list of jobs identified by their ids.
submit(command, tasks_per_node[, job_name]) Submits the command onto an Local Resource Man-

ager job.

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

1.6. Parsl is a community 195

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

cancel(job_ids)
Cancels the jobs specified by a list of job ids

Args: job_ids : [<job_id> . . .]

Returns: [True] Always returns true for every job_id, regardless of
whether an individual cancel failed (unless an exception is raised)

property label

Provides the label for this provider

status(job_ids)
Get the status of a list of jobs identified by their ids.

Parameters
job_ids (-) – List of identifiers for the jobs

Returns

• List of status codes.

property status_polling_interval

Returns the interval, in seconds, at which the status method should be called.

Returns
the number of seconds to wait between calls to status()

submit(command, tasks_per_node, job_name='parsl.localprovider')
Submits the command onto an Local Resource Manager job. Submit returns an ID that corresponds to the
task that was just submitted.

If tasks_per_node < 1:
1/tasks_per_node is provisioned

If tasks_per_node == 1:
A single node is provisioned

If tasks_per_node > 1 :
tasks_per_node nodes are provisioned.

Parameters

• command (-) – (String) Commandline invocation to be made on the remote side.

• tasks_per_node (-) – command invocations to be launched per node

Kwargs:

• job_name (String): Name for job, must be unique

Returns
At capacity, cannot provision more - job_id: (string) Identifier for the job

Return type

• None

196 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

parsl.providers.LSFProvider

class parsl.providers.LSFProvider(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
nodes_per_block=1, cores_per_block=None, cores_per_node=None,
init_blocks=1, min_blocks=0, max_blocks=1, parallelism=1,
walltime='00:10:00', scheduler_options='', worker_init='',
project=None, queue=None, cmd_timeout=120, move_files=True,
bsub_redirection=False, request_by_nodes=True,
launcher=SingleNodeLauncher(debug=True, fail_on_any=False))

LSF Execution Provider

This provider uses bsub to submit, bjobs for status and bkill to cancel jobs. The bsub script to be used is created
from a template file in this same module.

Parameters

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• nodes_per_block (int) – Nodes to provision per block. When request_by_nodes is False,
it is computed by cores_per_block / cores_per_node.

• cores_per_block (int) – Cores to provision per block. Enabled only when re-
quest_by_nodes is False.

• cores_per_node (int) – Cores to provision per node. Enabled only when re-
quest_by_nodes is False.

• init_blocks (int) – Number of blocks to request at the start of the run.

• min_blocks (int) – Minimum number of blocks to maintain.

• max_blocks (int) – Maximum number of blocks to maintain.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism value
of 1 represents aggressive scaling where as many resources as possible are used; paral-
lelism close to 0 represents the opposite situation in which as few resources as possible (i.e.,
min_blocks) are used.

• walltime (str) – Walltime requested per block in HH:MM:SS.

• project (str) – Project to which the resources must be charged

• queue (str) – Queue to which to submit the job request

• scheduler_options (str) – String to prepend to the #BSUB blocks in the submit script
to the scheduler.

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’.

• cmd_timeout (int) – Seconds after which requests to the scheduler will timeout. Default:
120s

• launcher (Launcher) – Launcher for this provider. Possible launchers include
SingleNodeLauncher (the default), SrunLauncher, or AprunLauncher

• move_files (Optional[Bool]: should files be moved? by default, Parsl
will try to move files.) –

• bsub_redirection (Bool) – Should a redirection symbol “<” be included when submitting
jobs, i.e., Bsub < job_script.

1.6. Parsl is a community 197

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.3.0-dev

• request_by_nodes (Bool) – Request by nodes or request by cores per block. When this is
set to false, nodes_per_block is computed by cores_per_block / cores_per_node. Default is
True.

__init__(channel=LocalChannel(envs={}, script_dir=None,
userhome='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
nodes_per_block=1, cores_per_block=None, cores_per_node=None, init_blocks=1,
min_blocks=0, max_blocks=1, parallelism=1, walltime='00:10:00', scheduler_options='',
worker_init='', project=None, queue=None, cmd_timeout=120, move_files=True,
bsub_redirection=False, request_by_nodes=True, launcher=SingleNodeLauncher(debug=True,
fail_on_any=False))

Methods

__init__([channel, nodes_per_block, ...])

cancel(job_ids) Cancels the jobs specified by a list of job ids
execute_wait(cmd[, timeout])

status(job_ids) Get the status of a list of jobs identified by the job
identifiers returned from the submit request.

submit(command, tasks_per_node[, job_name]) Submit the command as an LSF job.

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

cancel(job_ids)
Cancels the jobs specified by a list of job ids

Args: job_ids : [<job_id> . . .]

Returns : [True/False. . .] : If the cancel operation fails the entire list will be False.

property status_polling_interval

Returns the interval, in seconds, at which the status method should be called.

Returns
the number of seconds to wait between calls to status()

submit(command, tasks_per_node, job_name='parsl.lsf')
Submit the command as an LSF job.

Parameters

• command (str) – Command to be made on the remote side.

• tasks_per_node (int) – Command invocations to be launched per node

• job_name (str) – Name for the job (must be unique).

198 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

Returns
If at capacity, returns None; otherwise, a string identifier for the job

Return type
None or str

parsl.providers.SlurmProvider

class parsl.providers.SlurmProvider(partition: str | None = None, account: str | None = None, qos: str |
None = None, constraint: str | None = None, channel: Channel =
LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
nodes_per_block: int = 1, cores_per_node: int | None = None,
mem_per_node: int | None = None, init_blocks: int = 1, min_blocks:
int = 0, max_blocks: int = 1, parallelism: float = 1, walltime: str =
'00:10:00', scheduler_options: str = '', regex_job_id: str = 'Submitted
batch job (?P<id>\\S*)', worker_init: str = '', cmd_timeout: int = 10,
exclusive: bool = True, move_files: bool = True, launcher: Launcher
= SingleNodeLauncher(debug=True, fail_on_any=False))

Slurm Execution Provider

This provider uses sbatch to submit, squeue for status and scancel to cancel jobs. The sbatch script to be used is
created from a template file in this same module.

Parameters

• partition (str) – Slurm partition to request blocks from. If unspecified or None, no par-
tition slurm directive will be specified.

• account (str) – Slurm account to which to charge resources used by the job. If unspecified
or None, the job will use the user’s default account.

• qos (str) – Slurm queue to place job in. If unspecified or None, no queue slurm directive
will be specified.

• constraint (str) – Slurm job constraint, often used to choose cpu or gpu type. If unspec-
ified or None, no constraint slurm directive will be added.

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• nodes_per_block (int) – Nodes to provision per block.

• cores_per_node (int) – Specify the number of cores to provision per node. If set to None,
executors will assume all cores on the node are available for computation. Default is None.

• mem_per_node (int) – Specify the real memory to provision per node in GB. If set to None,
no explicit request to the scheduler will be made. Default is None.

• init_blocks (int) – Number of blocks to provision at the start of the run. Default is 1.

• min_blocks (int) – Minimum number of blocks to maintain.

• max_blocks (int) – Maximum number of blocks to maintain.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism value
of 1 represents aggressive scaling where as many resources as possible are used; paral-
lelism close to 0 represents the opposite situation in which as few resources as possible (i.e.,
min_blocks) are used.

• walltime (str) – Walltime requested per block in HH:MM:SS.

1.6. Parsl is a community 199

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

• scheduler_options (str) – String to prepend to the #SBATCH blocks in the submit script
to the scheduler.

• regex_job_id (str) – The regular expression used to extract the job ID from the sbatch
standard output. The default is r"Submitted batch job (?P<id>\S*)", where id is the
regular expression symbolic group for the job ID.

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’.

• exclusive (bool (Default = True)) – Requests nodes which are not shared with other
running jobs.

• launcher (Launcher) – Launcher for this provider. Possible launchers include
SingleNodeLauncher (the default), SrunLauncher, or AprunLauncher

• move_files (Optional[Bool]: should files be moved? by default, Parsl
will try to move files.) –

__init__(partition: str | None = None, account: str | None = None, qos: str | None = None, constraint: str |
None = None, channel: Channel = LocalChannel(envs={}, script_dir=None,
userhome='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
nodes_per_block: int = 1, cores_per_node: int | None = None, mem_per_node: int | None = None,
init_blocks: int = 1, min_blocks: int = 0, max_blocks: int = 1, parallelism: float = 1, walltime: str
= '00:10:00', scheduler_options: str = '', regex_job_id: str = 'Submitted batch job (?P<id>\\S*)',
worker_init: str = '', cmd_timeout: int = 10, exclusive: bool = True, move_files: bool = True,
launcher: Launcher = SingleNodeLauncher(debug=True, fail_on_any=False))

Methods

__init__([partition, account, qos, ...])

cancel(job_ids) Cancels the jobs specified by a list of job ids
execute_wait(cmd[, timeout])

status(job_ids) Get the status of a list of jobs identified by the job
identifiers returned from the submit request.

submit(command, tasks_per_node[, job_name]) Submit the command as a slurm job.

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

cancel(job_ids)
Cancels the jobs specified by a list of job ids

Args: job_ids : [<job_id> . . .]

Returns : [True/False. . .] : If the cancel operation fails the entire list will be False.

200 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.3.0-dev

property status_polling_interval

Returns the interval, in seconds, at which the status method should be called.

Returns
the number of seconds to wait between calls to status()

submit(command: str, tasks_per_node: int, job_name='parsl.slurm')→ str
Submit the command as a slurm job.

Parameters

• command (str) – Command to be made on the remote side.

• tasks_per_node (int) – Command invocations to be launched per node

• job_name (str) – Name for the job

Returns
job id – A string identifier for the job

Return type
str

parsl.providers.TorqueProvider

class parsl.providers.TorqueProvider(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
account=None, queue=None, scheduler_options='', worker_init='',
nodes_per_block=1, init_blocks=1, min_blocks=0, max_blocks=1,
parallelism=1, launcher=AprunLauncher(debug=True,
overrides=''), walltime='00:20:00', cmd_timeout=120)

Torque Execution Provider

This provider uses qsub to submit, qstat for status, and qdel to cancel jobs. The qsub script to be used is created
from a template file in this same module.

Parameters

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• account (str) – Account the job will be charged against.

• queue (str) – Torque queue to request blocks from.

• nodes_per_block (int) – Nodes to provision per block.

• init_blocks (int) – Number of blocks to provision at the start of the run. Default is 1.

• min_blocks (int) – Minimum number of blocks to maintain. Default is 0.

• max_blocks (int) – Maximum number of blocks to maintain.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism value
of 1 represents aggressive scaling where as many resources as possible are used; paral-
lelism close to 0 represents the opposite situation in which as few resources as possible (i.e.,
min_blocks) are used.

• walltime (str) – Walltime requested per block in HH:MM:SS.

1.6. Parsl is a community 201

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

• scheduler_options (str) – String to prepend to the #PBS blocks in the submit script to
the scheduler. WARNING: scheduler_options should only be given #PBS strings, and should
not have trailing newlines.

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’.

• launcher (Launcher) – Launcher for this provider. Possible launchers include
AprunLauncher (the default), or SingleNodeLauncher,

__init__(channel=LocalChannel(envs={}, script_dir=None,
userhome='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
account=None, queue=None, scheduler_options='', worker_init='', nodes_per_block=1,
init_blocks=1, min_blocks=0, max_blocks=1, parallelism=1,
launcher=AprunLauncher(debug=True, overrides=''), walltime='00:20:00', cmd_timeout=120)

Methods

__init__([channel, account, queue, ...])

cancel(job_ids) Cancels the jobs specified by a list of job ids
execute_wait(cmd[, timeout])

status(job_ids) Get the status of a list of jobs identified by the job
identifiers returned from the submit request.

submit(command, tasks_per_node[, job_name]) Submits the command onto an Local Resource Man-
ager job.

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

cancel(job_ids)
Cancels the jobs specified by a list of job ids

Args: job_ids : [<job_id> . . .]

Returns : [True/False. . .] : If the cancel operation fails the entire list will be False.

property status_polling_interval

Returns the interval, in seconds, at which the status method should be called.

Returns
the number of seconds to wait between calls to status()

submit(command, tasks_per_node, job_name='parsl.torque')
Submits the command onto an Local Resource Manager job. Submit returns an ID that corresponds to the
task that was just submitted.

202 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

If tasks_per_node < 1 : ! This is illegal. tasks_per_node should be integer

If tasks_per_node == 1:
A single node is provisioned

If tasks_per_node > 1 :
tasks_per_node number of nodes are provisioned.

Parameters

• command (-) – (String) Commandline invocation to be made on the remote side.

• tasks_per_node (-) – command invocations to be launched per node

Kwargs:

• job_name (String): Name for job, must be unique

Returns
At capacity, cannot provision more - job_id: (string) Identifier for the job

Return type

• None

parsl.providers.KubernetesProvider

class parsl.providers.KubernetesProvider(image: str, namespace: str = 'default', nodes_per_block: int =
1, init_blocks: int = 4, min_blocks: int = 0, max_blocks: int =
10, max_cpu: float = 2, max_mem: str = '500Mi', init_cpu:
float = 1, init_mem: str = '250Mi', parallelism: float = 1,
worker_init: str = '', pod_name: str | None = None, user_id:
str | None = None, group_id: str | None = None,
run_as_non_root: bool = False, secret: str | None = None,
persistent_volumes: List[Tuple[str, str]] = [])

Kubernetes execution provider

Parameters

• namespace (str) – Kubernetes namespace to create deployments.

• image (str) – Docker image to use in the deployment.

• nodes_per_block (int) – Nodes to provision per block.

• init_blocks (int) – Number of blocks to provision at the start of the run. Default is 1.

• min_blocks (int) – Minimum number of blocks to maintain.

• max_blocks (int) – Maximum number of blocks to maintain.

• max_cpu (float) – CPU limits of the blocks (pods), in cpu units. This is the cpu “limits”
option for resource specification. Check kubernetes docs for more details. Default is 2.

• max_mem (str) – Memory limits of the blocks (pods), in Mi or Gi. This is the memory
“limits” option for resource specification on kubernetes. Check kubernetes docs for more
details. Default is 500Mi.

• init_cpu (float) – CPU limits of the blocks (pods), in cpu units. This is the cpu “requests”
option for resource specification. Check kubernetes docs for more details. Default is 1.

1.6. Parsl is a community 203

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Parsl Documentation, Release 1.3.0-dev

• init_mem (str) – Memory limits of the blocks (pods), in Mi or Gi. This is the memory
“requests” option for resource specification on kubernetes. Check kubernetes docs for more
details. Default is 250Mi.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism value
of 1 represents aggressive scaling where as many resources as possible are used; paral-
lelism close to 0 represents the opposite situation in which as few resources as possible (i.e.,
min_blocks) are used.

• worker_init (str) – Command to be run first for the workers, such as python start.py.

• secret (str) – The Kubernetes ImagePullSecret secret to use to pull images

• pod_name (str) – The name for the pod, will be appended with a timestamp. Default is
None, meaning parsl automatically names the pod.

• user_id (str) – Unix user id to run the container as.

• group_id (str) – Unix group id to run the container as.

• run_as_non_root (bool) – Run as non-root (True) or run as root (False).

• persistent_volumes (list[(str, str)]) – List of tuples describing persistent vol-
umes to be mounted in the pod. The tuples consist of (PVC Name, Mount Directory).

__init__(image: str, namespace: str = 'default', nodes_per_block: int = 1, init_blocks: int = 4, min_blocks:
int = 0, max_blocks: int = 10, max_cpu: float = 2, max_mem: str = '500Mi', init_cpu: float = 1,
init_mem: str = '250Mi', parallelism: float = 1, worker_init: str = '', pod_name: str | None =
None, user_id: str | None = None, group_id: str | None = None, run_as_non_root: bool = False,
secret: str | None = None, persistent_volumes: List[Tuple[str, str]] = [])→ None

Methods

__init__(image[, namespace, ...])

cancel(job_ids) Cancels the jobs specified by a list of job ids Args:
job_ids : [<job_id> ...] Returns : [True/False...] : If
the cancel operation fails the entire list will be False.

status(job_ids) Get the status of a list of jobs identified by the job
identifiers returned from the submit request.

submit(cmd_string, tasks_per_node[, job_name]) Submit a job :param - cmd_string: (String) - Name
of the container to initiate :param - tasks_per_node:
command invocations to be launched per node :type
- tasks_per_node: int

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

204 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

cancel(job_ids)
Cancels the jobs specified by a list of job ids Args: job_ids : [<job_id> . . .] Returns : [True/False. . .] : If
the cancel operation fails the entire list will be False.

property label

Provides the label for this provider

status(job_ids)
Get the status of a list of jobs identified by the job identifiers returned from the submit request. :param -
job_ids: A list of job identifiers :type - job_ids: list

Returns

• A list of JobStatus objects corresponding to each job_id in the job_ids list.

Raises
- ExecutionProviderExceptions or its subclasses –

property status_polling_interval

Returns the interval, in seconds, at which the status method should be called.

Returns
the number of seconds to wait between calls to status()

submit(cmd_string, tasks_per_node, job_name='parsl')
Submit a job :param - cmd_string: (String) - Name of the container to initiate :param - tasks_per_node:
command invocations to be launched per node :type - tasks_per_node: int

Kwargs:

• job_name (String): Name for job, must be unique

Returns
At capacity, cannot provision more - job_id: (string) Identifier for the job

Return type

• None

parsl.providers.PBSProProvider

class parsl.providers.PBSProProvider(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
account=None, queue=None, scheduler_options='',
select_options='', worker_init='', nodes_per_block=1,
cpus_per_node=1, init_blocks=1, min_blocks=0, max_blocks=1,
parallelism=1, launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), walltime='00:20:00', cmd_timeout=120)

PBS Pro Execution Provider

Parameters

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• account (str) – Account the job will be charged against.

• queue (str) – Queue to request blocks from.

• nodes_per_block (int) – Nodes to provision per block.

1.6. Parsl is a community 205

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.3.0-dev

• cpus_per_node (int) – CPUs to provision per node.

• init_blocks (int) – Number of blocks to provision at the start of the run. Default is 1.

• min_blocks (int) – Minimum number of blocks to maintain. Default is 0.

• max_blocks (int) – Maximum number of blocks to maintain.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism value
of 1 represents aggressive scaling where as many resources as possible are used; paral-
lelism close to 0 represents the opposite situation in which as few resources as possible (i.e.,
min_blocks) are used.

• walltime (str) – Walltime requested per block in HH:MM:SS.

• scheduler_options (str) – String to prepend to the #PBS blocks in the submit script to
the scheduler.

• select_options (str) – String to append to the #PBS -l select block in the submit script
to the scheduler. This can be used to specify ngpus.

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’.

• launcher (Launcher) – Launcher for this provider. The default is SingleNodeLauncher.

__init__(channel=LocalChannel(envs={}, script_dir=None,
userhome='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/latest/docs'),
account=None, queue=None, scheduler_options='', select_options='', worker_init='',
nodes_per_block=1, cpus_per_node=1, init_blocks=1, min_blocks=0, max_blocks=1,
parallelism=1, launcher=SingleNodeLauncher(debug=True, fail_on_any=False),
walltime='00:20:00', cmd_timeout=120)

Methods

__init__([channel, account, queue, ...])

cancel(job_ids) Cancels the jobs specified by a list of job ids
execute_wait(cmd[, timeout])

status(job_ids) Get the status of a list of jobs identified by the job
identifiers returned from the submit request.

submit(command, tasks_per_node[, job_name]) Submits the command job.

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

206 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

property status_polling_interval

Returns the interval, in seconds, at which the status method should be called.

Returns
the number of seconds to wait between calls to status()

submit(command, tasks_per_node, job_name='parsl')
Submits the command job.

Parameters

• command (str) – Command to be executed on the remote side.

• tasks_per_node (int) – Command invocations to be launched per node.

• job_name (str) – Identifier for job.

Returns

• None – If at capacity and cannot provision more

• job_id (str) – Identifier for the job

parsl.providers.base.ExecutionProvider

class parsl.providers.base.ExecutionProvider

Execution providers are responsible for managing execution resources that have a Local Resource Manager
(LRM). For instance, campus clusters and supercomputers generally have LRMs (schedulers) such as Slurm,
Torque/PBS, Condor and Cobalt. Clouds, on the other hand, have API interfaces that allow much more fine-
grained composition of an execution environment. An execution provider abstracts these types of resources and
provides a single uniform interface to them.

The providers abstract away the interfaces provided by various systems to request, monitor, and cancel compute
resources.

+------------------
|

script_string ------->| submit
id <--------|---+

|
[ids] ------->| status
[statuses] <--------|----+

|
[ids] ------->| cancel
[cancel] <--------|----+

|
+-------------------

abstract __init__()→ None

1.6. Parsl is a community 207

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

Methods

__init__()

cancel(job_ids) Cancels the resources identified by the job_ids pro-
vided by the user.

status(job_ids) Get the status of a list of jobs identified by the job
identifiers returned from the submit request.

submit(command, tasks_per_node[, job_name]) The submit method takes the command string to be
executed upon instantiation of a resource most often
to start a pilot (such as for HighThroughputExecutor
or WorkQueueExecutor).

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

abstract cancel(job_ids: List[object])→ List[bool]
Cancels the resources identified by the job_ids provided by the user.

Parameters
job_ids (-) – A list of job identifiers

Returns

• A list of status from cancelling the job which can be True, False

Raises
- ExecutionProviderException or its subclasses –

property cores_per_node: int | None

Number of cores to provision per node.

Providers which set this property should ask for cores_per_node cores when provisioning resources, and
set the corresponding environment variable PARSL_CORES before executing submitted commands.

If this property is set, executors may use it to calculate how many tasks can run concurrently per node.

abstract property label: str

Provides the label for this provider

property mem_per_node: float | None

Real memory to provision per node in GB.

Providers which set this property should ask for mem_per_node of memory when provisioning resources,
and set the corresponding environment variable PARSL_MEMORY_GB before executing submitted com-
mands.

If this property is set, executors may use it to calculate how many tasks can run concurrently per node.

208 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

abstract status(job_ids: List[object])→ List[JobStatus]
Get the status of a list of jobs identified by the job identifiers returned from the submit request.

Parameters
job_ids (-) – A list of job identifiers

Returns

• A list of JobStatus objects corresponding to each job_id in the job_ids list.

Raises
- ExecutionProviderException or its subclasses –

abstract property status_polling_interval: int

Returns the interval, in seconds, at which the status method should be called.

Returns
the number of seconds to wait between calls to status()

abstract submit(command: str, tasks_per_node: int, job_name: str = 'parsl.auto')→ object
The submit method takes the command string to be executed upon instantiation of a resource most often to
start a pilot (such as for HighThroughputExecutor or WorkQueueExecutor).

Args :

• command (str) : The bash command string to be executed

• tasks_per_node (int) : command invocations to be launched per node

KWargs:

• job_name (str) : Human friendly name to be assigned to the job request

Returns

• A job identifier, this could be an integer, string etc or None or any other object that evaluates
to boolean false if submission failed but an exception isn’t thrown.

Raises
- ExecutionProviderException or its subclasses –

parsl.providers.cluster_provider.ClusterProvider

class parsl.providers.cluster_provider.ClusterProvider(label, channel, nodes_per_block, init_blocks,
min_blocks, max_blocks, parallelism,
walltime, launcher, cmd_timeout=10)

This class defines behavior common to all cluster/supercompute-style scheduler systems.

Parameters

• label (str) – Label for this provider.

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• walltime (str) – Walltime requested per block in HH:MM:SS.

• launcher (Launcher) – Launcher for this provider.

• cmd_timeout (int) – Timeout for commands made to the scheduler in seconds

1.6. Parsl is a community 209

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.3.0-dev

+------------------
|

script_string ------->| submit
id <--------|---+

|
[ids] ------->| status
[statuses] <--------|----+

|
[ids] ------->| cancel
[cancel] <--------|----+

|
+-------------------

__init__(label, channel, nodes_per_block, init_blocks, min_blocks, max_blocks, parallelism, walltime,
launcher, cmd_timeout=10)

Methods

__init__(label, channel, nodes_per_block, ...)

cancel(job_ids) Cancels the resources identified by the job_ids pro-
vided by the user.

execute_wait(cmd[, timeout])

status(job_ids) Get the status of a list of jobs identified by the job
identifiers returned from the submit request.

submit(command, tasks_per_node[, job_name]) The submit method takes the command string to be
executed upon instantiation of a resource most often
to start a pilot (such as for HighThroughputExecutor
or WorkQueueExecutor).

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

execute_wait(cmd, timeout=None)

property label

Provides the label for this provider

status(job_ids)
Get the status of a list of jobs identified by the job identifiers returned from the submit request.

Parameters
job_ids (-) – A list of job identifiers

210 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Returns

• A list of JobStatus objects corresponding to each job_id in the job_ids list.

Raises
- ExecutionProviderException or its subclasses –

Batch jobs

parsl.jobs.states.JobState Defines a set of states that a job can be in
parsl.jobs.states.JobStatus Encapsulates a job state together with other details:
parsl.jobs.error_handlers.
noop_error_handler
parsl.jobs.error_handlers.
simple_error_handler
parsl.jobs.error_handlers.
windowed_error_handler

parsl.jobs.states.JobState

class parsl.jobs.states.JobState(value, names=None, *, module=None, qualname=None, type=None,
start=1, boundary=None)

Defines a set of states that a job can be in

__init__(*args, **kwds)

Methods

__init__(*args, **kwds)

as_integer_ratio() Return integer ratio.
bit_count() Number of ones in the binary representation of the

absolute value of self.
bit_length() Number of bits necessary to represent self in binary.
conjugate Returns self, the complex conjugate of any int.
from_bytes([byteorder, signed]) Return the integer represented by the given array of

bytes.
to_bytes([length, byteorder, signed]) Return an array of bytes representing an integer.

1.6. Parsl is a community 211

Parsl Documentation, Release 1.3.0-dev

Attributes

UNKNOWN The batch provider is unable to determinate a state for
this job

PENDING "This job is in the batch queue but has not started run-
ning

RUNNING This job is running in the batch system
CANCELLED This job has been cancelled
COMPLETED This job has completed
FAILED This job has failed
TIMEOUT This job has ended due to walltime expiry.
HELD This job is held/suspended in the batch system
MISSING This job has reached a terminal state without the re-

sources(managers/workers) launched in the job con-
necting back to the Executor.

denominator the denominator of a rational number in lowest terms
imag the imaginary part of a complex number
numerator the numerator of a rational number in lowest terms
real the real part of a complex number

CANCELLED = 3

This job has been cancelled

COMPLETED = 4

This job has completed

FAILED = 5

This job has failed

HELD = 7

This job is held/suspended in the batch system

MISSING = 8

This job has reached a terminal state without the resources(managers/workers) launched in the job connect-
ing back to the Executor. This state is set by HTEX when it is able to infer that the block failed to start
workers for eg due to bad worker environment or network connectivity issues.

PENDING = 1

“This job is in the batch queue but has not started running

RUNNING = 2

This job is running in the batch system

TIMEOUT = 6

This job has ended due to walltime expiry. This is different from other error states, because in the pilot job
model, a timeout is usually expected and not a failure. Timeouts should not be reported with FAILED state:
if they are reported as FAILED, Parsl’s error handling code in simple_error_handler will eventually
regard the batch system as broken and shut down.

UNKNOWN = 0

The batch provider is unable to determinate a state for this job

212 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

parsl.jobs.states.JobStatus

class parsl.jobs.states.JobStatus(state: JobState, message: str | None = None, exit_code: int | None =
None, stdout_path: str | None = None, stderr_path: str | None = None)

Encapsulates a job state together with other details:

Parameters

• state – The machine-readable state of the job this status refers to

• message – Optional human readable message

• exit_code – Optional exit code

• stdout_path – Optional path to a file containing the job’s stdout

• stderr_path – Optional path to a file containing the job’s stderr

__init__(state: JobState, message: str | None = None, exit_code: int | None = None, stdout_path: str | None
= None, stderr_path: str | None = None)

Methods

__init__(state[, message, exit_code, ...])

Attributes

SUMMARY_TRUNCATION_THRESHOLD

status_name

stderr

stderr_summary

stdout

stdout_summary

terminal

SUMMARY_TRUNCATION_THRESHOLD = 2048

property status_name: str

property stderr: str | None

property stderr_summary: str | None

property stdout: str | None

1.6. Parsl is a community 213

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

property stdout_summary: str | None

property terminal: bool

parsl.jobs.error_handlers.noop_error_handler

parsl.jobs.error_handlers.noop_error_handler(executor: BlockProviderExecutor, status: Dict[str,
JobStatus], threshold: int = 3)→ None

parsl.jobs.error_handlers.simple_error_handler

parsl.jobs.error_handlers.simple_error_handler(executor: BlockProviderExecutor, status: Dict[str,
JobStatus], threshold: int = 3)→ None

parsl.jobs.error_handlers.windowed_error_handler

parsl.jobs.error_handlers.windowed_error_handler(executor: BlockProviderExecutor, status: Dict[str,
JobStatus], threshold: int = 3)→ None

Exceptions

parsl.app.errors.AppBadFormatting An error raised during formatting of a bash function.
parsl.app.errors.AppException An error raised during execution of an app.
parsl.app.errors.AppTimeout An error raised during execution of an app when it ex-

ceeds its allotted walltime.
parsl.app.errors.BadStdStreamFile Error raised due to bad filepaths specified for STDOUT/

STDERR.
parsl.app.errors.BashAppNoReturn Bash app returned no string.
parsl.app.errors.BashExitFailure A non-zero exit code returned from a @bash_app
parsl.app.errors.MissingOutputs Error raised at the end of app execution due to missing

output files.
parsl.app.errors.ParslError Base class for all exceptions.
parsl.errors.ConfigurationError Raised when a component receives an invalid configura-

tion.
parsl.errors.OptionalModuleMissing Error raised when a required module is missing for a op-

tional/extra component
parsl.executors.errors.ExecutorError Base class for executor related exceptions.
parsl.executors.errors.ScalingFailed Scaling failed due to error in Execution provider.
parsl.executors.errors.BadMessage Mangled/Poorly formatted/Unsupported message re-

ceived
parsl.dataflow.errors.DataFlowException Base class for all exceptions.
parsl.dataflow.errors.BadCheckpoint Error raised at the end of app execution due to missing

output files.
parsl.dataflow.errors.DependencyError Error raised if an app cannot run because there was an

error
parsl.dataflow.errors.JoinError Error raised if apps joining into a join_app raise excep-

tions.
continues on next page

214 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

Table 1 – continued from previous page
parsl.launchers.errors.BadLauncher Error raised when an object of inappropriate type is sup-

plied as a Launcher
parsl.providers.errors.
ExecutionProviderException

Base class for all exceptions Only to be invoked when
only a more specific error is not available.

parsl.providers.errors.ScaleOutFailed Scale out failed in the submit phase on the provider side
parsl.providers.errors.
SchedulerMissingArgs

Error raised when the template used to compose the sub-
mit script to the local resource manager is missing re-
quired arguments

parsl.providers.errors.ScriptPathError Error raised when the template used to compose the sub-
mit script to the local resource manager is missing re-
quired arguments

parsl.channels.errors.ChannelError Base class for all exceptions
parsl.channels.errors.BadHostKeyException SSH channel could not be created since server's host keys

could not be verified
parsl.channels.errors.BadScriptPath An error raised during execution of an app.
parsl.channels.errors.BadPermsScriptPath User does not have permissions to access the script_dir

on the remote site
parsl.channels.errors.FileExists Push or pull of file over channel fails since a file of the

name already exists on the destination.
parsl.channels.errors.AuthException An error raised during execution of an app.
parsl.channels.errors.SSHException if there was any other error connecting or establishing an

SSH session
parsl.channels.errors.FileCopyException File copy operation failed
parsl.executors.high_throughput.errors.
WorkerLost

Exception raised when a worker is lost

parsl.executors.high_throughput.
interchange.ManagerLost

Task lost due to manager loss.

parsl.serialize.errors.
DeserializationError

Failure at the deserialization of results/exceptions from
remote workers.

parsl.serialize.errors.SerializationError Failure to serialize task objects.

parsl.app.errors.AppBadFormatting

exception parsl.app.errors.AppBadFormatting

An error raised during formatting of a bash function.

1.6. Parsl is a community 215

Parsl Documentation, Release 1.3.0-dev

parsl.app.errors.AppException

exception parsl.app.errors.AppException

An error raised during execution of an app.

What this exception contains depends entirely on context

parsl.app.errors.AppTimeout

exception parsl.app.errors.AppTimeout

An error raised during execution of an app when it exceeds its allotted walltime.

parsl.app.errors.BadStdStreamFile

exception parsl.app.errors.BadStdStreamFile(reason: str)
Error raised due to bad filepaths specified for STDOUT/ STDERR.

Contains:
reason(string)

parsl.app.errors.BashAppNoReturn

exception parsl.app.errors.BashAppNoReturn(reason: str)
Bash app returned no string.

Contains: reason(string)

parsl.app.errors.BashExitFailure

exception parsl.app.errors.BashExitFailure(app_name: str, exitcode: int)
A non-zero exit code returned from a @bash_app

Contains: app name (str) exitcode (int)

parsl.app.errors.MissingOutputs

exception parsl.app.errors.MissingOutputs(reason: str, outputs: List[File])
Error raised at the end of app execution due to missing output files.

Contains: reason(string) outputs(List of files)

216 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List

Parsl Documentation, Release 1.3.0-dev

parsl.app.errors.ParslError

exception parsl.app.errors.ParslError

Base class for all exceptions.

Only to be invoked when a more specific error is not available.

parsl.errors.ConfigurationError

exception parsl.errors.ConfigurationError

Raised when a component receives an invalid configuration.

parsl.errors.OptionalModuleMissing

exception parsl.errors.OptionalModuleMissing(module_names: List[str], reason: str)
Error raised when a required module is missing for a optional/extra component

parsl.executors.errors.ExecutorError

exception parsl.executors.errors.ExecutorError(executor: ParslExecutor, reason: str)
Base class for executor related exceptions.

Only to be invoked when only a more specific error is not available.

parsl.executors.errors.ScalingFailed

exception parsl.executors.errors.ScalingFailed(executor: ParslExecutor, reason: str)
Scaling failed due to error in Execution provider.

parsl.executors.errors.BadMessage

exception parsl.executors.errors.BadMessage(reason)
Mangled/Poorly formatted/Unsupported message received

parsl.dataflow.errors.DataFlowException

exception parsl.dataflow.errors.DataFlowException

Base class for all exceptions.

Only to be invoked when only a more specific error is not available.

1.6. Parsl is a community 217

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

parsl.dataflow.errors.BadCheckpoint

exception parsl.dataflow.errors.BadCheckpoint(reason: str)
Error raised at the end of app execution due to missing output files.

Parameters
reason (-) –

Contains: reason (string) dependent_exceptions

parsl.dataflow.errors.DependencyError

exception parsl.dataflow.errors.DependencyError(dependent_exceptions_tids:
Sequence[Tuple[Exception, str]], task_id: int)

Error raised if an app cannot run because there was an error
in a dependency.

Parameters

• dependent_exceptions_tids (-) – List of exceptions and identifiers for dependencies
which failed. The identifier might be a task ID or the repr of a non-DFK Future.

• task_id (-) – Task ID of the task that failed because of the dependency error

parsl.dataflow.errors.JoinError

exception parsl.dataflow.errors.JoinError(dependent_exceptions_tids: Sequence[Tuple[BaseException,
str | None]], task_id: int)

Error raised if apps joining into a join_app raise exceptions. There can be several exceptions (one from each
joining app), and JoinError collects them all together.

parsl.launchers.errors.BadLauncher

exception parsl.launchers.errors.BadLauncher(launcher: Launcher)
Error raised when an object of inappropriate type is supplied as a Launcher

parsl.providers.errors.ExecutionProviderException

exception parsl.providers.errors.ExecutionProviderException

Base class for all exceptions Only to be invoked when only a more specific error is not available.

218 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.3.0-dev

parsl.providers.errors.ScaleOutFailed

exception parsl.providers.errors.ScaleOutFailed(provider, reason)
Scale out failed in the submit phase on the provider side

parsl.providers.errors.SchedulerMissingArgs

exception parsl.providers.errors.SchedulerMissingArgs(missing_keywords, sitename)
Error raised when the template used to compose the submit script to the local resource manager is missing
required arguments

parsl.providers.errors.ScriptPathError

exception parsl.providers.errors.ScriptPathError(script_path, reason)
Error raised when the template used to compose the submit script to the local resource manager is missing
required arguments

parsl.channels.errors.ChannelError

exception parsl.channels.errors.ChannelError(reason: str, e: Exception, hostname: str)
Base class for all exceptions

Only to be invoked when only a more specific error is not available.

parsl.channels.errors.BadHostKeyException

exception parsl.channels.errors.BadHostKeyException(e: Exception, hostname: str)
SSH channel could not be created since server’s host keys could not be verified

Contains: reason(string) e (paramiko exception object) hostname (string)

parsl.channels.errors.BadScriptPath

exception parsl.channels.errors.BadScriptPath(e: Exception, hostname: str)
An error raised during execution of an app. What this exception contains depends entirely on context Contains:
reason(string) e (paramiko exception object) hostname (string)

parsl.channels.errors.BadPermsScriptPath

exception parsl.channels.errors.BadPermsScriptPath(e: Exception, hostname: str)
User does not have permissions to access the script_dir on the remote site

Contains: reason(string) e (paramiko exception object) hostname (string)

1.6. Parsl is a community 219

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

parsl.channels.errors.FileExists

exception parsl.channels.errors.FileExists(e: Exception, hostname: str, filename: str | None = None)
Push or pull of file over channel fails since a file of the name already exists on the destination.

Contains: reason(string) e (paramiko exception object) hostname (string)

parsl.channels.errors.AuthException

exception parsl.channels.errors.AuthException(e: Exception, hostname: str)
An error raised during execution of an app. What this exception contains depends entirely on context Contains:
reason(string) e (paramiko exception object) hostname (string)

parsl.channels.errors.SSHException

exception parsl.channels.errors.SSHException(e: Exception, hostname: str)
if there was any other error connecting or establishing an SSH session

Contains: reason(string) e (paramiko exception object) hostname (string)

parsl.channels.errors.FileCopyException

exception parsl.channels.errors.FileCopyException(e: Exception, hostname: str)
File copy operation failed

Contains: reason(string) e (paramiko exception object) hostname (string)

parsl.executors.high_throughput.errors.WorkerLost

exception parsl.executors.high_throughput.errors.WorkerLost(worker_id, hostname)
Exception raised when a worker is lost

parsl.executors.high_throughput.interchange.ManagerLost

exception parsl.executors.high_throughput.interchange.ManagerLost(manager_id: bytes, hostname:
str)

Task lost due to manager loss. Manager is considered lost when multiple heartbeats have been missed.

parsl.serialize.errors.DeserializationError

exception parsl.serialize.errors.DeserializationError(reason: str)
Failure at the deserialization of results/exceptions from remote workers.

220 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

parsl.serialize.errors.SerializationError

exception parsl.serialize.errors.SerializationError(fname: str)
Failure to serialize task objects.

Internal

parsl.app.app.AppBase This is the base class that defines the two external facing
functions that an App must define.

parsl.app.bash.BashApp

parsl.app.python.PythonApp Extends AppBase to cover the Python App.
parsl.dataflow.dflow.DataFlowKernel The DataFlowKernel adds dependency awareness to an

existing executor.
parsl.dataflow.memoization.id_for_memo This should return a byte sequence which identifies the

supplied value for memoization purposes: for any two
calls of id_for_memo, the byte sequence should be the
same when the "same" value is supplied, and different
otherwise.

parsl.dataflow.memoization.Memoizer Memoizer is responsible for ensuring that identical work
is not repeated.

parsl.dataflow.states.FINAL_STATES States from which we will never move to another state,
because the job has either definitively completed or
failed.

parsl.dataflow.states.States Enumerates the states a parsl task may be in.
parsl.dataflow.taskrecord.TaskRecord This stores most information about a Parsl task
parsl.jobs.job_status_poller.
JobStatusPoller
parsl.jobs.strategy.Strategy Scaling strategy.
parsl.utils.Timer This class will make a callback periodically, with a pe-

riod specified by the interval parameter.

parsl.app.app.AppBase

class parsl.app.app.AppBase(func: Callable, data_flow_kernel: DataFlowKernel | None = None, executors:
List[str] | Literal['all'] = 'all', cache: bool = False, ignore_for_cache:
Sequence[str] | None = None)

This is the base class that defines the two external facing functions that an App must define.

The __init__ () which is called when the interpreter sees the definition of the decorated function, and the __call__
() which is invoked when a decorated function is called by the user.

__init__(func: Callable, data_flow_kernel: DataFlowKernel | None = None, executors: List[str] |
Literal['all'] = 'all', cache: bool = False, ignore_for_cache: Sequence[str] | None = None)→
None

Construct the App object.

Parameters
func (-) – Takes the function to be made into an App

Kwargs:

1.6. Parsl is a community 221

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

• data_flow_kernel (DataFlowKernel): The DataFlowKernel responsible for managing this app.
This can be omitted only after calling parsl.dataflow.dflow.DataFlowKernelLoader.
load().

• executors (str|list) : Labels of the executors that this app can execute over. Default is ‘all’.

• cache (Bool) : Enable caching of this app ?

• ignore_for_cache (sequence|None): Names of arguments which will be ignored by the caching
mechanism.

Returns

• App object.

Methods

__init__(func[, data_flow_kernel, ...]) Construct the App object.

parsl.app.bash.BashApp

class parsl.app.bash.BashApp(func, data_flow_kernel=None, cache=False, executors='all',
ignore_for_cache=None)

__init__(func, data_flow_kernel=None, cache=False, executors='all', ignore_for_cache=None)
Construct the App object.

Parameters
func (-) – Takes the function to be made into an App

Kwargs:

• data_flow_kernel (DataFlowKernel): The DataFlowKernel responsible for managing this app.
This can be omitted only after calling parsl.dataflow.dflow.DataFlowKernelLoader.
load().

• executors (str|list) : Labels of the executors that this app can execute over. Default is ‘all’.

• cache (Bool) : Enable caching of this app ?

• ignore_for_cache (sequence|None): Names of arguments which will be ignored by the caching
mechanism.

Returns

• App object.

222 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Methods

__init__(func[, data_flow_kernel, cache, ...]) Construct the App object.

parsl.app.python.PythonApp

class parsl.app.python.PythonApp(func, data_flow_kernel=None, cache=False, executors='all',
ignore_for_cache=None, join=False)

Extends AppBase to cover the Python App.

__init__(func, data_flow_kernel=None, cache=False, executors='all', ignore_for_cache=None, join=False)
Construct the App object.

Parameters
func (-) – Takes the function to be made into an App

Kwargs:

• data_flow_kernel (DataFlowKernel): The DataFlowKernel responsible for managing this app.
This can be omitted only after calling parsl.dataflow.dflow.DataFlowKernelLoader.
load().

• executors (str|list) : Labels of the executors that this app can execute over. Default is ‘all’.

• cache (Bool) : Enable caching of this app ?

• ignore_for_cache (sequence|None): Names of arguments which will be ignored by the caching
mechanism.

Returns

• App object.

Methods

__init__(func[, data_flow_kernel, cache, ...]) Construct the App object.

parsl.dataflow.dflow.DataFlowKernel

class parsl.dataflow.dflow.DataFlowKernel(config: Config)
The DataFlowKernel adds dependency awareness to an existing executor.

It is responsible for managing futures, such that when dependencies are resolved, pending tasks move to the
runnable state.

Here is a simplified diagram of what happens internally:

User | DFK | Executor
--

| |
Task-------+> +Submit |

(continues on next page)

1.6. Parsl is a community 223

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

App_Fu<------+--| |
| Dependencies met |
| task-------+--> +Submit
| Ex_Fu<------+----|

__init__(config: Config)→ None
Initialize the DataFlowKernel.

Parameters
config (Config) – A specification of all configuration options. For more details see the
:class:~`parsl.config.Config` documentation.

Methods

__init__(config) Initialize the DataFlowKernel.
add_executors(executors)

atexit_cleanup()

check_staging_inhibited(kwargs)

checkpoint([tasks]) Checkpoint the dfk incrementally to a checkpoint file.
cleanup() DataFlowKernel cleanup.
default_std_autopath (taskrecord, kw)

handle_app_update(task_record, future) This function is called as a callback when an AppFu-
ture is in its final state.

handle_exec_update(task_record, future) This function is called only as a callback from an ex-
ecution attempt reaching a final state (either success-
fully or failing).

handle_join_update(task_record, in-
ner_app_future)
launch_if_ready(task_record) launch_if_ready will launch the specified task, if it is

ready to run (for example, without dependencies, and
in pending state).

launch_task(task_record) Handle the actual submission of the task to the execu-
tor layer.

load_checkpoints(checkpointDirs) Load checkpoints from the checkpoint files into a dic-
tionary.

log_task_states()

submit(func, app_args, executors, cache, ...) Add task to the dataflow system.
update_task_state(task_record, new_state) Updates a task record state, and recording an appro-

priate change to task state counters.
wait_for_current_tasks() Waits for all tasks in the task list to be completed, by

waiting for their AppFuture to be completed.
wipe_task(task_id) Remove task with task_id from the internal tasks table

224 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

Attributes

config Returns the fully initialized config that the DFK is
actively using.

add_executors(executors: Sequence[ParslExecutor])→ None

atexit_cleanup()→ None

static check_staging_inhibited(kwargs: Dict[str, Any])→ bool

checkpoint(tasks: Sequence[TaskRecord] | None = None)→ str
Checkpoint the dfk incrementally to a checkpoint file.

When called, every task that has been completed yet not checkpointed is checkpointed to a file.

Kwargs:

• tasks (List of task records)
[List of task ids to checkpoint. Default=None] if set to None, we iterate over all tasks held by
the DFK.

Note: Checkpointing only works if memoization is enabled

Returns
Checkpoint dir if checkpoints were written successfully. By default the checkpoints are writ-
ten to the RUNDIR of the current run under RUNDIR/checkpoints/{tasks.pkl, dfk.pkl}

cleanup()→ None
DataFlowKernel cleanup.

This involves releasing all resources explicitly.

We call scale_in on each of the executors and call executor.shutdown.

property config: Config

Returns the fully initialized config that the DFK is actively using.

Returns

• Config object

default_std_autopath(taskrecord, kw)

handle_app_update(task_record: TaskRecord, future: AppFuture)→ None
This function is called as a callback when an AppFuture is in its final state.

It will trigger post-app processing such as checkpointing.

Parameters

• task_record – Task record

• future (Future) – The relevant app future (which should be consistent with the task
structure ‘app_fu’ entry

1.6. Parsl is a community 225

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

handle_exec_update(task_record: TaskRecord, future: Future)→ None
This function is called only as a callback from an execution attempt reaching a final state (either successfully
or failing).

It will launch retries if necessary, and update the task structure.

Parameters

• task_record (dict) – Task record

• future (Future) – The future object corresponding to the task which

• callback (makes this) –

handle_join_update(task_record: TaskRecord, inner_app_future: AppFuture | None)→ None

launch_if_ready(task_record: TaskRecord)→ None
launch_if_ready will launch the specified task, if it is ready to run (for example, without dependencies, and
in pending state).

This should be called by any piece of the DataFlowKernel that thinks a task may have become ready to run.

It is not an error to call launch_if_ready on a task that is not ready to run - launch_if_ready will not incor-
rectly launch that task.

It is also not an error to call launch_if_ready on a task that has already been launched - launch_if_ready
will not re-launch that task.

launch_if_ready is thread safe, so may be called from any thread or callback.

launch_task(task_record: TaskRecord)→ Future
Handle the actual submission of the task to the executor layer.

Parameters
task_record – The task record

Returns
Future that tracks the execution of the submitted function

load_checkpoints(checkpointDirs: Sequence[str] | None)→ Dict[str, Future]
Load checkpoints from the checkpoint files into a dictionary.

The results are used to pre-populate the memoizer’s lookup_table

Kwargs:

• checkpointDirs (list) : List of run folder to use as checkpoints Eg. [‘runinfo/001’, ‘runinfo/002’]

Returns

• dict containing, hashed -> future mappings

log_task_states()→ None

submit(func: Callable, app_args: Sequence[Any], executors: str | Sequence[str], cache: bool,
ignore_for_cache: Sequence[str] | None, app_kwargs: Dict[str, Any], join: bool = False)→
AppFuture

Add task to the dataflow system.

If the app task has the executors attributes not set (default==’all’) the task will be launched on a randomly
selected executor from the list of executors. If the app task specifies a particular set of executors, it will be
targeted at the specified executors.

226 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.3.0-dev

Parameters
func (-) – A function object

KWargs :

• app_args : Args to the function

• executors (list or string)
[List of executors this call could go to.] Default=’all’

• cache (Bool) : To enable memoization or not

• ignore_for_cache (sequence) : List of kwargs to be ignored for memoization/checkpointing

• app_kwargs (dict) : Rest of the kwargs to the fn passed as dict.

Returns
(AppFuture) [DataFutures,]

update_task_state(task_record: TaskRecord, new_state: States)→ None
Updates a task record state, and recording an appropriate change to task state counters.

wait_for_current_tasks()→ None
Waits for all tasks in the task list to be completed, by waiting for their AppFuture to be completed. This
method will not necessarily wait for any tasks added after cleanup has started (such as data stageout?)

wipe_task(task_id: int)→ None
Remove task with task_id from the internal tasks table

parsl.dataflow.memoization.id_for_memo

parsl.dataflow.memoization.id_for_memo(obj: object, output_ref: bool = False)→ bytes
parsl.dataflow.memoization.id_for_memo(obj: object, output_ref: bool = False)→ bytes
parsl.dataflow.memoization.id_for_memo(obj: object, output_ref: bool = False)→ bytes
parsl.dataflow.memoization.id_for_memo(obj: object, output_ref: bool = False)→ bytes
parsl.dataflow.memoization.id_for_memo(obj: object, output_ref: bool = False)→ bytes
parsl.dataflow.memoization.id_for_memo(denormalized_list: list, output_ref: bool = False)→ bytes
parsl.dataflow.memoization.id_for_memo(denormalized_tuple: tuple, output_ref: bool = False)→ bytes
parsl.dataflow.memoization.id_for_memo(denormalized_dict: dict, output_ref: bool = False)→ bytes
parsl.dataflow.memoization.id_for_memo(f: function, output_ref: bool = False)→ bytes

This should return a byte sequence which identifies the supplied value for memoization purposes: for any two
calls of id_for_memo, the byte sequence should be the same when the “same” value is supplied, and different
otherwise.

“same” is in quotes about because sameness is not as straightforward as serialising out the content.

For example, for two dicts x, y:

x = {“a”:3, “b”:4} y = {“b”:4, “a”:3}

then: x == y, but their serialization is not equal, and some other functions on x and y are not equal: list(x.keys())
!= list(y.keys())

id_for_memo is invoked with output_ref=True when the parameter is an output reference (a value in the out-
puts=[] parameter of an app invocation).

1.6. Parsl is a community 227

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes

Parsl Documentation, Release 1.3.0-dev

Memo hashing might be different for such parameters: for example, a user might choose to hash input File content
so that changing the content of an input file invalidates memoization. This does not make sense to do for output
files: there is no meaningful content stored where an output filename points at memoization time.

parsl.dataflow.memoization.Memoizer

class parsl.dataflow.memoization.Memoizer(dfk: DataFlowKernel, memoize: bool = True, checkpoint:
Dict[str, Future[Any]] = {})

Memoizer is responsible for ensuring that identical work is not repeated.

When a task is repeated, i.e., the same function is called with the same exact arguments, the result from a previous
execution is reused. wiki

The memoizer implementation here does not collapse duplicate calls at call time, but works only when the result
of a previous call is available at the time the duplicate call is made.

For instance:

No advantage from Memoization helps
memoization here: here:

TaskA TaskB
| TaskA |
| | TaskA done (TaskB)
| | | (TaskB)

done | |
done |

done

The memoizer creates a lookup table by hashing the function name and its inputs, and storing the results of the
function.

When a task is ready for launch, i.e., all of its arguments have resolved, we add its hash to the task datastructure.

__init__(dfk: DataFlowKernel, memoize: bool = True, checkpoint: Dict[str, Future[Any]] = {})
Initialize the memoizer.

Parameters
dfk (-) – The DFK object

KWargs:

• memoize (Bool): enable memoization or not.

• checkpoint (Dict): A checkpoint loaded as a dict.

228 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://en.wikipedia.org/wiki/Memoization
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.3.0-dev

Methods

__init__(dfk[, memoize, checkpoint]) Initialize the memoizer.
check_memo(task) Create a hash of the task and its inputs and check the

lookup table for this hash.
hash_lookup(hashsum) Lookup a hash in the memoization table.
make_hash (task) Create a hash of the task inputs.
update_memo(task, r) Updates the memoization lookup table with the result

from a task.

check_memo(task: TaskRecord)→ Future[Any] | None
Create a hash of the task and its inputs and check the lookup table for this hash.

If present, the results are returned.

Parameters
task (-) – task from the dfk.tasks table

Returns

• Result of the function if present in table, wrapped in a Future

This call will also set task[‘hashsum’] to the unique hashsum for the func+inputs.

hash_lookup(hashsum: str)→ Future[Any]
Lookup a hash in the memoization table.

Parameters
hashsum (-) – The same hashes used to uniquely identify apps+inputs

Returns

• Lookup result

Raises
- KeyError – if hash not in table

make_hash(task: TaskRecord)→ str
Create a hash of the task inputs.

Parameters
task (-) – Task dictionary from dfk.tasks

Returns
A unique hash string

Return type

• hash (str)

update_memo(task: TaskRecord, r: Future[Any])→ None
Updates the memoization lookup table with the result from a task.

Parameters

• task (-) – A task dict from dfk.tasks

• r (-) – Result future

1.6. Parsl is a community 229

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

parsl.dataflow.states.FINAL_STATES

parsl.dataflow.states.FINAL_STATES = [<States.exec_done: 3>, <States.memo_done: 9>,
<States.failed: 4>, <States.dep_fail: 5>]

States from which we will never move to another state, because the job has either definitively completed or failed.

parsl.dataflow.states.States

class parsl.dataflow.states.States(value, names=None, *, module=None, qualname=None, type=None,
start=1, boundary=None)

Enumerates the states a parsl task may be in.

These states occur inside the task record for a task inside a DataFlowKernel and in the monitoring database.

In a single successful task execution, tasks will progress in this sequence:

pending -> launched -> running -> running_ended -> exec_done

Other states represent deviations from this path, either due to failures, or to deliberate changes to how tasks are
executed (for example due to join_app, or memoization).

All tasks should end up in one of the states listed in FINAL_STATES.

__init__(*args, **kwds)

Methods

__init__(*args, **kwds)

as_integer_ratio() Return integer ratio.
bit_count() Number of ones in the binary representation of the

absolute value of self.
bit_length() Number of bits necessary to represent self in binary.
conjugate Returns self, the complex conjugate of any int.
from_bytes([byteorder, signed]) Return the integer represented by the given array of

bytes.
to_bytes([length, byteorder, signed]) Return an array of bytes representing an integer.

230 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Attributes

unsched

pending Task is known to parsl but cannot run yet.
running Task is running on a resource.
exec_done Task has been executed successfully.
failed Task has failed and no more attempts will be made to

run it.
dep_fail Dependencies of this task failed, so it is marked as

failed without even an attempt to launch it.
launched Task has been passed to a ParslExecutor for exe-

cution.
fail_retryable Task has failed, but can be retried
memo_done Task was found in the memoization table, so it is

marked as done without even an attempt to launch it.
joining Task is a join_app, joining on internal tasks.
running_ended Like States.running, this state is also not observed by

the DFK, but instead only by monitoring.
denominator the denominator of a rational number in lowest terms
imag the imaginary part of a complex number
numerator the numerator of a rational number in lowest terms
real the real part of a complex number

dep_fail = 5

Dependencies of this task failed, so it is marked as failed without even an attempt to launch it.

exec_done = 3

Task has been executed successfully.

fail_retryable = 8

Task has failed, but can be retried

failed = 4

Task has failed and no more attempts will be made to run it.

joining = 10

Task is a join_app, joining on internal tasks. The task has run its own Python code, and is now waiting on
other tasks before it can make further progress (to a done/failed state).

launched = 7

Task has been passed to a ParslExecutor for execution.

memo_done = 9

Task was found in the memoization table, so it is marked as done without even an attempt to launch it.

pending = 0

Task is known to parsl but cannot run yet. Usually, a task cannot run because it is waiting for dependency
tasks to complete.

running = 2

Task is running on a resource. This state is special - a DFK task record never goes to States.running state;
but the monitoring database may represent a task in this state based on non-DFK information received from
monitor_wrapper.

1.6. Parsl is a community 231

Parsl Documentation, Release 1.3.0-dev

running_ended = 11

Like States.running, this state is also not observed by the DFK, but instead only by monitoring. This state
does not record anything about task success or failure, merely that the wrapper ran long enough to record
it as finished.

unsched = -1

parsl.dataflow.taskrecord.TaskRecord

class parsl.dataflow.taskrecord.TaskRecord

This stores most information about a Parsl task

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

clear()

copy()

fromkeys([value]) Create a new dictionary with keys from iterable and
values set to value.

get(key[, default]) Return the value for key if key is in the dictionary,
else default.

items()

keys()

pop(k[,d]) If the key is not found, return the default if given; oth-
erwise, raise a KeyError.

popitem() Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default]) Insert key with a value of default if key is not in the

dictionary.
update([E,]**F) If E is present and has a .keys() method, then does: for

k in E: D[k] = E[k] If E is present and lacks a .keys()
method, then does: for k, v in E: D[k] = v In either
case, this is followed by: for k in F: D[k] = F[k]

values()

232 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Attributes

dfk The DataFlowKernel which is managing this task.
func_name

status

depends

app_fu The Future which was returned to the user when an
app was invoked.

exec_fu When a task has been launched on an executor, stores
the Future returned by that executor.

executor The name of the executor which this task will be/is
being/was executed on.

retries_left

fail_count

fail_cost

fail_history

checkpoint Should this task be checkpointed?
hashsum The hash used for checkpointing and memoisation.
task_launch_lock This lock is used to ensure that task launch only hap-

pens once.
func

fn_hash

args

kwargs

time_invoked

time_returned

try_time_launched

try_time_returned

memoize Should this task be memoized?
ignore_for_cache

from_memo

id

try_id

continues on next page

1.6. Parsl is a community 233

Parsl Documentation, Release 1.3.0-dev

Table 2 – continued from previous page
resource_specification Dictionary containing relevant info for a task execu-

tion.
join Is this a join_app?
joins If this is a join app and the python body has executed,

then this contains the Future or list of Futures that the
join app will join.

join_lock Restricts access to end-of-join behavior to ensure that
joins only complete once, even if several joining Fu-
tures complete close together in time.

app_fu: AppFuture

The Future which was returned to the user when an app was invoked.

args: Sequence[Any]

checkpoint: bool

Should this task be checkpointed?

depends: List[Future]

dfk: dflow.DataFlowKernel

The DataFlowKernel which is managing this task.

exec_fu: Future | None

When a task has been launched on an executor, stores the Future returned by that executor.

executor: str

The name of the executor which this task will be/is being/was executed on.

fail_cost: float

fail_count: int

fail_history: List[str]

fn_hash: str

from_memo: bool | None

func: Callable

func_name: str

hashsum: str | None

The hash used for checkpointing and memoisation. This is not known until at least all relevant dependencies
have completed, and will be None before that.

id: int

ignore_for_cache: Sequence[str]

join: bool

Is this a join_app?

join_lock: threading.Lock

Restricts access to end-of-join behavior to ensure that joins only complete once, even if several joining
Futures complete close together in time.

234 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/threading.html#threading.Lock

Parsl Documentation, Release 1.3.0-dev

joins: None | Future | List[Future]

If this is a join app and the python body has executed, then this contains the Future or list of Futures that
the join app will join.

kwargs: Dict[str, Any]

memoize: bool

Should this task be memoized?

resource_specification: Dict[str, Any]

Dictionary containing relevant info for a task execution. Includes resources to allocate and execution mode
as a given executor permits.

retries_left: int

status: States

task_launch_lock: threading.Lock

This lock is used to ensure that task launch only happens once. A task can be launched by dependen-
cies completing from arbitrary threads, and a race condition would exist when dependencies complete in
multiple threads very close together in time, which this lock prevents.

time_invoked: datetime.datetime | None

time_returned: datetime.datetime | None

try_id: int

try_time_launched: datetime.datetime | None

try_time_returned: datetime.datetime | None

parsl.jobs.job_status_poller.JobStatusPoller

class parsl.jobs.job_status_poller.JobStatusPoller(*, strategy: str | None, max_idletime: float,
strategy_period: float | int, monitoring:
MonitoringRadio | None = None)

__init__(*, strategy: str | None, max_idletime: float, strategy_period: float | int, monitoring:
MonitoringRadio | None = None)→ None

Initialize the Timer object. We start the timer thread here

KWargs:

• interval (int or float) : number of seconds between callback events

• name (str) : a base name to use when naming the started thread

1.6. Parsl is a community 235

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/threading.html#threading.Lock
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

Methods

__init__(*, strategy, max_idletime, ...[, ...]) Initialize the Timer object.
add_executors(executors)

close([timeout]) Merge the threads and terminate.
make_callback() Makes the callback and resets the timer.
poll()

add_executors(executors: Sequence[BlockProviderExecutor])→ None

close(timeout: float | None = None)→ None
Merge the threads and terminate.

poll()→ None

parsl.jobs.strategy.Strategy

class parsl.jobs.strategy.Strategy(*, strategy: str | None, max_idletime: float)
Scaling strategy.

As a workflow dag is processed by Parsl, new tasks are added and completed asynchronously. Parsl interfaces
executors with execution providers to construct scalable executors to handle the variable work-load generated by
the workflow. This component is responsible for periodically checking outstanding tasks and available compute
capacity and trigger scaling events to match workflow needs.

Here’s a diagram of an executor. An executor consists of blocks, which are usually created by single requests to
a Local Resource Manager (LRM) such as slurm, condor, torque, or even AWS API. The blocks could contain
several task blocks which are separate instances on workers.

|<--min_blocks |<-init_blocks max_blocks-->|
+--+
| +--------block----------+ +--------block--------+ |

executor = | | task task | ... | task task | |
| +-----------------------+ +---------------------+ |
+--+

The relevant specification options are:

1. min_blocks: Minimum number of blocks to maintain

2. init_blocks: number of blocks to provision at initialization of workflow

3. max_blocks: Maximum number of blocks that can be active due to one workflow

active_tasks = pending_tasks + running_tasks

Parallelism = slots / tasks
= [0, 1] (i.e, 0 <= p <= 1)

For example:

236 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

Parsl Documentation, Release 1.3.0-dev

When p = 0,
=> compute with the least resources possible. infinite tasks are stacked per slot.

blocks = min_blocks { if active_tasks = 0
max(min_blocks, 1) { else

When p = 1,
=> compute with the most resources. one task is stacked per slot.

blocks = min (max_blocks,
ceil(active_tasks / slots))

When p = 1/2,
=> We stack upto 2 tasks per slot before we overflow and request a new block

let’s say min:init:max = 0:0:4 and task_blocks=2 Consider the following example: min_blocks = 0 init_blocks =
0 max_blocks = 4 tasks_per_node = 2 nodes_per_block = 1

In the diagram, X <- task

at 2 tasks:

+---Block---|
| |
| X X |
|slot slot|
+-----------+

at 5 tasks, we overflow as the capacity of a single block is fully used.

+---Block---| +---Block---|
X X	---->	
X X		X
slot slot		slot slot
+-----------+ +-----------+

__init__(*, strategy: str | None, max_idletime: float)→ None
Initialize strategy.

Methods

__init__(*, strategy, max_idletime) Initialize strategy.
add_executors(executors)

add_executors(executors: Sequence[ParslExecutor])→ None

1.6. Parsl is a community 237

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.3.0-dev

parsl.utils.Timer

class parsl.utils.Timer(callback: Callable, *args: Any, interval: float | int = 5, name: str | None = None)
This class will make a callback periodically, with a period specified by the interval parameter.

This is based on the following logic :

BEGIN (INTERVAL, THRESHOLD, callback) :
start = current_time()

while (current_time()-start < INTERVAL) :
wait()
break

callback()

__init__(callback: Callable, *args: Any, interval: float | int = 5, name: str | None = None)→ None
Initialize the Timer object. We start the timer thread here

KWargs:

• interval (int or float) : number of seconds between callback events

• name (str) : a base name to use when naming the started thread

Methods

__init__(callback, *args[, interval, name]) Initialize the Timer object.
close([timeout]) Merge the threads and terminate.
make_callback() Makes the callback and resets the timer.

close(timeout: float | None = None)→ None
Merge the threads and terminate.

make_callback()→ None
Makes the callback and resets the timer.

Developer documentation

Contributing

Parsl is an open source project that welcomes contributions from the community.

If you’re interested in contributing, please review our contributing guide.

238 Chapter 1. Why use Parsl?

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://github.com/Parsl/parsl/blob/master/CONTRIBUTING.rst

Parsl Documentation, Release 1.3.0-dev

Roadmap

OVERVIEW

While we follow best practices in software development processes (e.g., CI, flake8, code review), there are opportunities
to make our code more maintainable and accessible. This roadmap, written in the fall of 2023, covers our major
activities planned through 2025 to increase efficiency, productivity, user experience, and community building.

Features and improvements are documented via GitHub issues and pull requests.

Code Maintenance

• Type Annotations and Static Type Checking: Add static type annotations throughout the codebase and add
typeguard checks.

• Release Process: Improve the overall release process to synchronize docs and code releases, automatically pro-
duce changelog documentation.

• Components Maturity Model: Defines the component maturity model and tags components with their appro-
priate maturity level.

• Define and Document Interfaces: Identify and document interfaces via which external components can aug-
ment the Parsl ecosystem.

• Distributed Testing Process: All tests should be run against all possible schedulers, using different executors,
on a variety of remote systems. Explore the use of containerized schedulers and remote testing on real systems.

New Features and Integrations

• Enhanced MPI Support: Extend Parsl’s MPI model with MPI apps and runtime support capable of running
MPI apps in different environments (MPI flavor and launcher).

• Serialization Configuration: Enable users to select what serialization methods are used and enable users to
supply their own serializer.

• PSI/J integration: Integrate PSI/J as a common interface for schedulers.

• Internal Concurrency Model: Revisit and rearchitect the concurrency model to reduce areas that are not well
understood and reduce the likelihood of errors.

• Common Model for Errors: Make Parsl errors self-describing and understandable by users.

• Plug-in Model for External Components: Extend Parsl to implement interfaces defined above.

• User Configuration Validation Tool: Provide tooling to help users configure Parsl and diagnose and resolve
errors.

• Anonymized Usage Tracking: Usage tracking is crucial for our data-oriented approach to understand the adop-
tion of Parsl, which components are used, and where errors occur. This allows us to prioritize investment in
components, progress components through the maturity levels, and identify bugs. Revisit prior usage tracking
and develop a service that enables users to control tracking information.

• Support for Globus Compute: Enable execution of Parsl tasks using Globus Compute as an executor.

• Update Globus Data Management: Update Globus integration to use the new Globus Connect v5 model (i.e.,
needing specific scopes for individual endpoints).

• Performance Measurement: Improve ability to measure performance metrics and report to users.

• Enhanced Debugging: Application-level logging to understand app execution.

1.6. Parsl is a community 239

https://github.com/Parsl/parsl/issues
https://github.com/Parsl/parsl/pulls
https://github.com/Parsl/parsl/issues?q=is%3Aopen+is%3Aissue+label%3Arelease_process
https://github.com/Parsl/parsl/issues/2554
https://parsl.readthedocs.io/en/stable/userguide/plugins.html
https://github.com/Parsl/parsl/issues/1984

Parsl Documentation, Release 1.3.0-dev

Tutorials, Training, and User Support

• Configuration and Debugging: Tutorials showing how to configure Parsl for different resources and debug
execution.

• Functional Serialization 101: Tutorial describing how serialization works and how you can integrate custom
serializers.

• ProxyStore Data Management: Tutorial showing how you can use ProxyStore to manage data for both inter
and intra-site scenarios.

• Open Dev Calls on Zoom: The internal core team holds an open dev call/office hours every other Thursday to
help users troubleshoot issues, present and share their work, connect with each other, and provide community
updates.

• Project Documentation: is maintained and updated in Read the Docs.

Longer-term Objectives

• Globus Compute Integration: Once Globus Compute supports multi-tenancy, Parsl will be able to use it to run
remote tasks on initially one and then later multiple resources.

• Multi-System Optimization: Once Globus Compute integration is complete, it is best to use multiple systems
for multiple tasks as part of a single workflow.

• HPC Checkpointing and Job Migration: As new resources become available, HPC tasks will be able to be
checkpointed and moved to the system with more resources.

Packaging

Currently packaging is managed by @annawoodard and @yadudoc.

Steps to release

1. Update the version number in parsl/parsl/version.py

2. Check the following files to confirm new release information * parsl/setup.py * requirements.txt *
parsl/docs/devguide/changelog.rst * parsl/README.rst

3. Commit and push the changes to github

4. Run the tag_and_release.sh script. This script will verify that version number matches the version specified.

./tag_and_release.sh <VERSION_FOR_TAG>

Here are the steps that is taken by the tag_and_release.sh script:

Create a new git tag :
git tag <MAJOR>.<MINOR>.<BUG_REV>
Push tag to github :
git push origin <TAG_NAME>

Depending on permission all of the following might have to be run as root.
sudo su

Make sure to have twine installed
pip3 install twine

(continues on next page)

240 Chapter 1. Why use Parsl?

https://parsl.readthedocs.io/en/stable/index.html

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

Create a source distribution
python3 setup.py sdist

Create a wheel package, which is a prebuilt package
python3 setup.py bdist_wheel

Upload the package with twine
twine upload dist/*

Doc Docs

Documentation location

Documentation is maintained in Python docstrings throughout the code. These are imported via the autodoc Sphinx
extension in docs/reference.rst. Individual stubs for user-facing classes (located in stubs) are generated automat-
ically via sphinx-autogen. Parsl modules, classes, and methods can be cross-referenced from a docstring by enclosing
it in backticks (`).

Remote builds

Builds are automatically performed by readthedocs.io and published to parsl.readthedocs.io upon git commits.

Local builds

To build the documentation locally, use:

$ make clean html

To view the freshly rebuilt docs, use:

$ cd _build/html
$ python3 -m http.server 8080

Once the python http server is launched, point your browser to http://localhost:8080

Regenerate module stubs

If necessary, docstring stubs can be regenerated using:

$ sphinx-autogen reference.rst

1.6. Parsl is a community 241

http://www.sphinx-doc.org/en/stable/ext/autodoc.html
http://localhost:8080

Parsl Documentation, Release 1.3.0-dev

Historical Documents

Historical: Changelog

Note: After Parsl 1.2.0, releases moved to a lighter weight automated model. This manual changelog is no longer
updated and is now marked as historical.

Change information is delivered as commit messages on individual pull requests, which can be see using any relevant
git history browser - for example, on the web at https://github.com/Parsl/parsl/commits/master/ or on the commandline
using using git log.

Parsl 1.2.0

Release date: January 13th, 2022.

Parsl v1.2.0 includes 99 pull requests with contributions from:

Ben Clifford @benclifford, Daniel S. Katz @danielskatz, Douglas Thain @dthain, James Corbett @jameshcorbett,
Jonas Rübenach @jrueb, Logan Ward @WardLT, Matthew R. Becker @beckermr, Vladimir @vkhodygo, Yadu Nand
Babuji @yadudoc, Yo Yehudi @yochannah, Zhuozhao Li @ZhuozhaoLi, yongyanrao @yongyanrao, Tim Jenness
@timj, Darko Marinov @darko-marinov, Quentin Le Boulc’h

High Throughput Executor

• Remove htex self.tasks race condition that shows under high load (#2034)

• Fix htex scale down breakage due to overly aggressive result heartbeat (#2119) [TODO: this fixes a bug intro-
duced since 1.1.0 so note that? #2104]

• Send heartbeats via results connection (#2104)

Work Queue Executor

• Allow use of WorkQueue running_time_min resource constraint (#2113) - WQ recently introduced an additional
resource constraint: workers can be aware of their remaining wall time, and tasks can be constrained to only go
to workers with sufficient remaining time.

• Implement priority as a Work Queue resource specification (#2067) - The allows a workflow script to influence
the order in which queued tasks are executed using Work Queue’s existing priority mechanism.

• Disable WQ-level retries with an option to re-enable (#2059) - Previously by default, Work Queue will retry
tasks that fail at the WQ level (for example, because of worker failure) an infinite number of times, inside the
same parsl-level execution try. That hides the repeated tries from parsl (so monitoring does not report start/end
times as might naively be expected for a try, and parsl retry counting does not count).

• Document WorkqueueExecutor project_name remote reporting better (#2089)

• wq executor should show itself using representation mixin (#2064)

• Make WorkQueue worker command configurable (#2036)

242 Chapter 1. Why use Parsl?

https://github.com/Parsl/parsl/commits/master/

Parsl Documentation, Release 1.3.0-dev

Flux Executor

The new FluxExecutor class uses the Flux resource manager (github: flux-framework/flux-core) to launch tasks. Each
task is a Flux job.

Condor Provider

• Fix bug in condor provider for unknown jobs (#2161)

LSF Provider

• Update LSF provider to make it more friendly for different LSF-based computers (#2149)

SLURM Provider

• Improve docs and defaults for slurm partition and account parameters. (#2126)

Grid Engine Provider

• missing queue from self - causes config serialisation failure (#2042)

Monitoring

• Index task_hashsum to give cross-run query speedup (#2085)

• Fix monitoring “db locked” errors occuring at scale (#1917)

• Fix worker efficiency plot when tasks are still in progress (#2048)

• Fix use of previously removed reg_time monitoring field (#2020)

• Reorder debug message so it happens when the message is received, without necessarily blocking on the re-
source_msgs queue put (#2093)

General new features

• Workflow-pluggable retry scoring (#2068) - When a task fails, instead of causing a retry “cost” of 1 (the previous
behaviour), this PR allows that cost to be determined by a user specified function which is given some context
about the failure.

1.6. Parsl is a community 243

Parsl Documentation, Release 1.3.0-dev

General bug fixes

• Fix type error when job status output is large. (#2129)

• Fix a race condition in the local channel (#2115)

• Fix incorrect order of manager and interchange versions in error text (#2108)

• Fix to macos multiprocessing spawn and context issues (#2076)

• Tidy tasks_per_node in strategy (#2030)

• Fix and test wrong type handling for joinapp returns (#2063)

• FIX: os independent path (#2043)

Platform and packaging

• Improve support for Windows (#2107)

• Reflect python 3.9 support in setup.py metadata (#2023)

• Remove python <3.6 handling from threadpoolexecutor (#2083)

• Remove breaking .[all] install target (#2069)

Internal tidying

• Remove ipp logging hack in PR #204 (#2170)

• Remove BadRegistration exception definition which has been unused since PR #1671 (#2142)

• Remove AppFuture.__repr__, because superclass Future repr is sufficient (#2143)

• Make monitoring hub exit condition more explicit (#2131)

• Replace parsl’s logging NullHandler with python’s own NullHandler (#2114)

• Remove a commented out line of dead code in htex (#2116)

• Abstract more block handling from HighThroughputExecutor and share with WorkQueue (#2071)

• Regularise monitoring RESOURCE_INFO messages (#2117)

• Pull os x multiprocessing code into a single module (#2099)

• Describe monitoring protocols better (#2029)

• Remove task_id param from memo functions, as whole task record is available (#2080)

• remove irrelevant __main__ stub of local provider (#2026)

• remove unused weakref_cb (#2022)

• Remove unneeded task_id param from sanitize_and_wrap (#2081)

• Remove outdated IPP related comment in memoization (#2058)

• Remove unused AppBase status field (#2053)

• Do not unwrap joinapp future exceptions unnecessarily (#2084)

• Eliminate self.tasks[id] calls from joinapp callback (#2015)

• Looking at eliminating passing of task IDs and passing task records instead (#2016)

244 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

• Eliminate self.tasks[id] from launch_if_ready

• Eliminate self.tasks[id] calls from launch_task (#2061)

• Eliminate self.tasks[id] from app done callback (#2017)

• Make process_worker_pool pass mypy (#2052)

• Remove unused walltime from LocalProvider (#2057)

• Tidy human readable text/variable names around DependencyError (#2037)

• Replace old string formatting with f-strings in utils.py (#2055)

Documentation, error messages and human-readable text

• Add a documentation chapter summarizing plugin points (#2066)

• Correct docstring for set_file_logger (#2156)

• Fix typo in two db error messages and make consistent with each other (#2152)

• Update slack join links to currently unexpired link (#2146)

• small typo fix in doc (#2134)

• Update CONTRIBUTING.rst (#2144)

• trying to fix broken link in GitHub (#2133)

• Add CITATION.cff file (#2100)

• Refresh the sanitize_and_wrap docstring (#2086)

• Rephrase ad-hoc config doc now that AdHocProvider (PR #1297) is implemented (#2096)

• Add research notice to readme (#2097)

• Remove untrue claim that parsl_resource_specification keys are case insensitive (#2095)

• Use zsh compatible install syntax (#2009)

• Remove documentation that interchange is walltime aware (#2082)

• Configure sphinx to put in full documentation for each method (#2094)

• autogenerate sphinx stubs rather than requiring manual update each PR (#2087)

• Update docstring for handle_app_update (#2079)

• fix a typo (#2024)

• Switch doc verb from invocated to invoked (#2088)

• Add documentation on meanings of states (#2075)

• Fix summary sentence of ScaleOutException (#2021)

• clarify that max workers is per node (#2056)

• Tidy up slurm state comment (#2035)

• Add nscc singapore example config (#2003)

• better formatting (#2039)

• Add missing f for an f-string (#2062)

• Rework __repr__ and __str__ for OptionalModuleMissing (#2025)

1.6. Parsl is a community 245

Parsl Documentation, Release 1.3.0-dev

• Make executor bad state exception log use the exception (#2155)

CI/testing

• Make changes for CI reliability (#2118)

• Make missing worker test cleanup DFK at end (#2153)

• Tidy bash error codes tests. (#2130)

• Upgrade CI to use recent ubuntu, as old version was deprecated (#2111)

• Remove travis config, replaced by GitHub Actions in PR #2078 (#2112)

• Fix CI broken by dependency package changes (#2105)

• Adding github actions for CI (#2078)

• Test combine() pattern in joinapps (#2054)

• Assert that there should be no doc stubs in version control (#2092)

• Add monitoring dependency to local tests (#2074)

• Put viz test in a script (#2019)

• Reduce the size of recursive fibonacci joinapp testing (#2110)

• Remove disabled midway test (#2028)

Parsl 1.1.0

Released on April 26th, 2021.

Parsl v1.1.0 includes 59 closed issues and 243 pull requests with contributions (code, tests, reviews and reports) from:

Akila Ravihansa Perera @ravihansa3000, Anna Woodard @annawoodard, @bakerjl, Ben Clifford @benclifford,
Daniel S. Katz @danielskatz, Douglas Thain @dthain, @gerrick, @JG-Quarknet, Joseph Moon @jmoon1506, Kelly
L. Rowland @kellyrowland, Lars Bilke @bilke, Logan Ward @WardLT, Kirill Nagaitsev @Loonride, Marcus Schwart-
ing @meschw04, Matt Baughman @mattebaughman, Mihael Hategan @hategan, @radiantone, Rohan Kumar @ro-
hankumar42, Sohit Miglani @sohitmiglani, Tim Shaffer @trshaffer, Tyler J. Skluzacek @tskluzac, Yadu Nand Babuji
@yadudoc, and Zhuozhao Li @ZhuozhaoLi

Deprecated and Removed features

• Python 3.5 is no longer supported.

• Almost definitely broken Jetstream provider removed (#1821)

246 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

New Functionality

• Allow HTEX to set CPU affinity (#1853)

• New serialization system to replace IPP serialization (#1806)

• Support for Python 3.9

• @join_apps are a variation of @python_apps where an app can launch more apps and then complete only after
the launched apps are also completed.

These are described more fully in docs/userguide/joins.rst

• Monitoring:

– hub.log is now named monitoring_router.log

– Remove denormalised workflow duration from monitoring db (#1774)

– Remove hostname from status table (#1847)

– Clarify distinction between tasks and tries to run tasks (#1808)

– Replace ‘done’ state with ‘exec_done’ and ‘memo_done’ (#1848)

– Use repr instead of str for monitoring fail history (#1966)

• Monitoring visualization:

– Make task list appear under . . . /task/ not under . . . /app/ (#1762)

– Test that parsl-visualize does not return HTTP errors (#1700)

– Generate Gantt chart from status table rather than task table timestamps (#1767)

– Hyperlinks for app page to task pages should be on the task ID, not the app name (#1776)

– Use real final state to color DAG visualization (#1812)

• Make task record garbage collection optional. (#1909)

• Make checkpoint_files = get_all_checkpoints() by default (#1918)

Parsl 1.0.0

Released on June 11th, 2020

Parsl v1.0.0 includes 59 closed issues and 243 pull requests with contributions (code, tests, reviews and reports) from:

Akila Ravihansa Perera @ravihansa3000, Aymen Alsaadi @AymenFJA, Anna Woodard @annawoodard, Ben Clif-
ford @benclifford, Ben Glick @benhg, Benjamin Tovar @btovar, Daniel S. Katz @danielskatz, Daniel Smith @dga-
smith, Douglas Thain @dthain, Eric Jonas @ericmjonas, Geoffrey Lentner @glentner, Ian Foster @ianfoster, Kalpani
Ranasinghe @kalpanibhagya, Kyle Chard @kylechard, Lindsey Gray @lgray, Logan Ward @WardLT, Lyle Hayhurst
@lhayhurst, Mihael Hategan @hategan, Rajini Wijayawardana @rajiniw95, @saktar-unr, Tim Shaffer @trshaffer, Tom
Glanzman @TomGlanzman, Yadu Nand Babuji @yadudoc and, Zhuozhao Li @ZhuozhaoLi

1.6. Parsl is a community 247

Parsl Documentation, Release 1.3.0-dev

Deprecated and Removed features

• Python3.5 is now marked for deprecation, and will not be supported after this release. Python3.6 will be the
earliest Python3 version supported in the next release.

• App decorator deprecated in 0.8 is now removed issue#1539 bash_app and python_app are the only supported
App decorators in this release.

• IPyParallelExecutor is no longer a supported executor issue#1565

New Functionality

• parsl.executors.WorkQueueExecutor introduced in v0.9.0 is now in beta. parsl.
executors.WorkQueueExecutor is designed as a drop-in replacement for parsl.executors.
HighThroughputExecutor. Here are some key features:

– Support for packaging the python environment and shipping it to the worker side. This mechanism ad-
dresses propagating python environments in grid-like systems that lack shared-filesystems or cloud envi-
ronments.

– parsl.executors.WorkQueueExecutor supports resource function tagging and resource specification

– Support for resource specification kwarg issue#1675

• Limited type-checking in Parsl internal components (as part of an ongoing effort)

• Improvements to caching mechanism including ability to mark certain arguments to be not counted for memo-
ization.

– Normalize known types for memoization, and reject unknown types (#1291). This means that previous un-
reliable behaviour for some complex types such as dicts will become more reliable; and that other previous
unreliable behaviour for other unknown complex types will now cause an error. Handling can be added for
those types using parsl.memoization.id_for_memo.

– Add ability to label some arguments in an app invocation as not memoized using the ignore_for_cache app
keyword (PR 1568)

• Special keyword args: ‘inputs’, ‘outputs’ that are used to specify files no longer support strings and now require
File objects. For example, the following snippet is no longer supported in v1.0.0:

@bash_app
def cat(inputs=(), outputs=()):

return 'cat {} > {}'.format(inputs[0], outputs[0])

concat = cat(inputs=['hello-0.txt'],
outputs=['hello-1.txt'])

This is the new syntax:

from parsl import File

@bash_app
def cat(inputs=(), outputs=()):

return 'cat {} > {}'.format(inputs[0].filepath, outputs[0].filepath)

concat = cat(inputs=[File('hello-0.txt')],
outputs=[File('hello-1.txt')])

248 Chapter 1. Why use Parsl?

https://github.com/Parsl/parsl/issues/1539
https://github.com/Parsl/parsl/issues/1565
https://github.com/Parsl/parsl/issues/1675

Parsl Documentation, Release 1.3.0-dev

Since filenames are no longer passed to apps as strings, and the string filepath is required, it can be
accessed from the File object using the filepath attribute.

from parsl import File

@bash_app
def cat(inputs=(), outputs=()):

return 'cat {} > {}'.format(inputs[0].filepath, outputs[0].filepath)

• New launcher: parsl.launchers.WrappedLauncher for launching tasks inside containers.

• parsl.channels.SSHChannel now supports a key_filename kwarg issue#1639

• Newly added Makefile wraps several frequent developer operations such as:

– Run the test-suite: make test

– Install parsl: make install

– Create a virtualenv: make virtualenv

– Tag release and push to release channels: make deploy

• Several updates to the parsl.executors.HighThroughputExecutor:

– By default, the parsl.executors.HighThroughputExecutor will now use heuristics to detect and try
all addresses when the workers connect back to the parsl master. An address can be configured manually
using the HighThroughputExecutor(address=<address_string>) kwarg option.

– Support for Mac OS. (pull#1469, pull#1738)

– Cleaner reporting of version mismatches and automatic suppression of non-critical errors.

– Separate worker log directories by block id issue#1508

• Support for garbage collection to limit memory consumption in long-lived scripts.

• All cluster providers now use max_blocks=1 by default issue#1730 to avoid over-provisioning.

• New JobStatus class for better monitoring of Jobs submitted to batch schedulers.

Bug Fixes

• Ignore AUTO_LOGNAME for caching issue#1642

• Add batch jobs to PBS/torque job status table issue#1650

• Use higher default buffer threshold for serialization issue#1654

• Do not pass mutable default to ignore_for_cache issue#1656

• Several improvements and fixes to Monitoring

• Fix sites/test_ec2 failure when aws user opts specified issue#1375

• Fix LocalProvider to kill the right processes, rather than all processes owned by user issue#1447

• Exit htex probe loop with first working address issue#1479

• Allow slurm partition to be optional issue#1501

• Fix race condition with wait_for_tasks vs task completion issue#1607

• Fix Torque job_id truncation issue#1583

• Cleaner reporting for Serialization Errors issue#1355

1.6. Parsl is a community 249

https://github.com/Parsl/parsl/issues/1639
https://github.com/Parsl/parsl/pull/1469
https://github.com/Parsl/parsl/pull/1738
https://github.com/Parsl/parsl/issues/1508
https://github.com/Parsl/parsl/issues/1730
https://github.com/Parsl/parsl/issues/1642
https://github.com/Parsl/parsl/issues/1650
https://github.com/Parsl/parsl/issues/1654
https://github.com/Parsl/parsl/issues/1656
https://github.com/Parsl/parsl/issues/1375
https://github.com/Parsl/parsl/issues/1447
https://github.com/Parsl/parsl/issues/1479
https://github.com/Parsl/parsl/issues/1501
https://github.com/Parsl/parsl/issues/1607
https://github.com/Parsl/parsl/issues/1583
https://github.com/Parsl/parsl/issues/1355

Parsl Documentation, Release 1.3.0-dev

• Results from zombie managers do not crash the system, but will be ignored issue#1665

• Guarantee monitoring will send out at least one message issue#1446

• Fix monitoring ctrlc hang issue#1670

Parsl 0.9.0

Released on October 25th, 2019

Parsl v0.9.0 includes 199 closed issues and pull requests with contributions (code, tests, reviews and reports) from:

Andrew Litteken @AndrewLitteken, Anna Woodard @annawoodard, Ben Clifford @benclifford, Ben Glick @benhg,
Daniel S. Katz @danielskatz, Daniel Smith @dgasmith, Engin Arslan @earslan58, Geoffrey Lentner @glentner,
John Hover @jhover Kyle Chard @kylechard, TJ Dasso @tjdasso, Ted Summer @macintoshpie, Tom Glanzman
@TomGlanzman, Levi Naden @LNaden, Logan Ward @WardLT, Matthew Welborn @mattwelborn, @MatthewBM,
Raphael Fialho @rapguit, Yadu Nand Babuji @yadudoc, and Zhuozhao Li @ZhuozhaoLi

New Functionality

• Parsl will no longer do automatic keyword substitution in @bash_app in favor of deferring to Python’s format
method and newer f-strings. For example,

The following example worked until v0.8.0
@bash_app
def cat(inputs=(), outputs=()):

return 'cat {inputs[0]} > {outputs[0]}' # <-- Relies on Parsl auto␣
→˓formatting the string

Following are two mechanisms that will work going forward from v0.9.0
@bash_app
def cat(inputs=(), outputs=()):

return 'cat {} > {}'.format(inputs[0], outputs[0]) # <-- Use str.format␣
→˓method

@bash_app
def cat(inputs=(), outputs=()):

return f'cat {inputs[0]} > {outputs[0]}' # <-- OR use f-strings␣
→˓introduced in Python3.6

• @python_app now takes a walltime kwarg to limit the task execution time.

• New file staging API parsl.data_provider.staging.Staging to support pluggable file staging methods.
The methods implemented in 0.8.0 (HTTP(S), FTP and Globus) are still present, along with two new methods
which perform HTTP(S) and FTP staging on worker nodes to support non-shared-filesystem executors such as
clouds.

• Behaviour change for storage_access parameter. In 0.8.0, this was used to specify Globus staging configuration.
In 0.9.0, if this parameter is specified it must specify all desired staging providers. To keep the same staging
providers as in 0.8.0, specify:

from parsl.data_provider.data_manager import default_staging
storage_access = default_staging + [GlobusStaging(...)]

250 Chapter 1. Why use Parsl?

https://github.com/Parsl/parsl/issues/1665
https://github.com/Parsl/parsl/issues/1446
https://github.com/Parsl/parsl/issues/1670
https://docs.python.org/3.1/library/stdtypes.html#str.format
https://docs.python.org/3.1/library/stdtypes.html#str.format
https://www.python.org/dev/peps/pep-0498/

Parsl Documentation, Release 1.3.0-dev

GlobusScheme in 0.8.0 has been renamed GlobusStaging and moved to a new module,
parsl.data_provider.globus

• parsl.executors.WorkQueueExecutor: a new executor that integrates functionality from Work Queue is
now available.

• New provider to support for Ad-Hoc clusters parsl.providers.AdHocProvider

• New provider added to support LSF on Summit parsl.providers.LSFProvider

• Support for CPU and Memory resource hints to providers (github).

• The logging_level=logging.INFO in parsl.monitoring.MonitoringHub is replaced with
monitoring_debug=False:

monitoring=MonitoringHub(
hub_address=address_by_hostname(),
hub_port=55055,
monitoring_debug=False,
resource_monitoring_interval=10,

),

• Managers now have a worker watchdog thread to report task failures that crash a worker.

• Maximum idletime after which idle blocks can be relinquished can now be configured as follows:

config=Config(
max_idletime=120.0 , # float, unit=seconds
strategy='simple'

)

• Several test-suite improvements that have dramatically reduced test duration.

• Several improvements to the Monitoring interface.

• Configurable port on parsl.channels.SSHChannel.

• suppress_failure now defaults to True.

• parsl.executors.HighThroughputExecutor is the recommended executor, and IPyParallelExecutor
is deprecated.

• parsl.executors.HighThroughputExecutor will expose worker information via environment variables:
PARSL_WORKER_RANK and PARSL_WORKER_COUNT

Bug Fixes

• ZMQError: Operation cannot be accomplished in current state bug issue#1146

• Fix event loop error with monitoring enabled issue#532

• Tasks per app graph appears as a sawtooth, not as rectangles issue#1032.

• Globus status processing failure issue#1317.

• Sporadic globus staging error issue#1170.

• RepresentationMixin breaks on classes with no default parameters issue#1124.

• File localpath staging conflict issue#1197.

• Fix IndexError when using CondorProvider with strategy enabled issue#1298.

1.6. Parsl is a community 251

http://ccl.cse.nd.edu/software/workqueue/
https://github.com/Parsl/parsl/issues/942
https://github.com/Parsl/parsl/issues/1146
https://github.com/Parsl/parsl/issues/532
https://github.com/Parsl/parsl/issues/1032
https://github.com/Parsl/parsl/issues/1317
https://github.com/Parsl/parsl/issues/1170
https://github.com/Parsl/parsl/issues/1124
https://github.com/Parsl/parsl/issues/1197
https://github.com/Parsl/parsl/issues/1298

Parsl Documentation, Release 1.3.0-dev

• Improper dependency error handling causes hang issue#1285.

• Memoization/checkpointing fixes for bash apps issue#1269.

• CPU User Time plot is strangely cumulative issue#1033.

• Issue requesting resources on non-exclusive nodes issue#1246.

• parsl + htex + slurm hangs if slurm command times out, without making further progress issue#1241.

• Fix strategy overallocations issue#704.

• max_blocks not respected in SlurmProvider issue#868.

• globus staging does not work with a non-default workdir issue#784.

• Cumulative CPU time loses time when subprocesses end issue#1108.

• Interchange KeyError due to too many heartbeat missed issue#1128.

Parsl 0.8.0

Released on June 13th, 2019

Parsl v0.8.0 includes 58 closed issues and pull requests with contributions (code, tests, reviews and reports)

from: Andrew Litteken @AndrewLitteken, Anna Woodard @annawoodard, Antonio Villarreal @villarrealas, Ben
Clifford @benc, Daniel S. Katz @danielskatz, Eric Tatara @etatara, Juan David Garrido @garri1105, Kyle Chard
@@kylechard, Lindsey Gray @lgray, Tim Armstrong @timarmstrong, Tom Glanzman @TomGlanzman, Yadu Nand
Babuji @yadudoc, and Zhuozhao Li @ZhuozhaoLi

New Functionality

• Monitoring is now integrated into parsl as default functionality.

• parsl.AUTO_LOGNAME: Support for a special AUTO_LOGNAME option to auto generate stdout and stderr file
paths.

• File no longer behaves as a string. This means that operations in apps that treated a File as a string will break.
For example the following snippet will have to be updated:

Old style: " ".join(inputs) is legal since inputs will behave like a list of␣
→˓strings
@bash_app
def concat(inputs=(), outputs=(), stdout="stdout.txt", stderr='stderr.txt'):

return "cat {0} > {1}".format(" ".join(inputs), outputs[0])

New style:
@bash_app
def concat(inputs=(), outputs=(), stdout="stdout.txt", stderr='stderr.txt'):

return "cat {0} > {1}".format(" ".join(list(map(str,inputs))), outputs[0])

• Cleaner user app file log management.

• Updated configurations using parsl.executors.HighThroughputExecutor in the configuration section of
the userguide.

• Support for OAuth based SSH with parsl.channels.OAuthSSHChannel.

252 Chapter 1. Why use Parsl?

https://github.com/Parsl/parsl/issues/1285
https://github.com/Parsl/parsl/issues/1269
https://github.com/Parsl/parsl/issues/1033
https://github.com/Parsl/parsl/issues/1246
https://github.com/Parsl/parsl/issues/1241
https://github.com/Parsl/parsl/issues/704
https://github.com/Parsl/parsl/issues/868
https://github.com/Parsl/parsl/issues/784
https://github.com/Parsl/parsl/issues/1108
https://github.com/Parsl/parsl/issues/1128

Parsl Documentation, Release 1.3.0-dev

Bug Fixes

• Monitoring resource usage bug issue#975

• Bash apps fail due to missing dir paths issue#1001

• Viz server explicit binding fix issue#1023

• Fix sqlalchemy version warning issue#997

• All workflows are called typeguard issue#973

• Fix ModuleNotFoundError: No module named 'monitoring' issue#971

• Fix sqlite3 integrity error issue#920

• HTEX interchange check python version mismatch to the micro level issue#857

• Clarify warning message when a manager goes missing issue#698

• Apps without a specified DFK should use the global DFK in scope at call time, not at other times. issue#697

Parsl 0.7.2

Released on Mar 14th, 2019

New Functionality

• Monitoring: Support for reporting monitoring data to a local sqlite database is now available.

• Parsl is switching to an opt-in model for anonymous usage tracking. Read more here: Usage statistics collection.

• bash_app now supports specification of write modes for stdout and stderr.

• Persistent volume support added to parsl.providers.KubernetesProvider.

• Scaling recommendations from study on Bluewaters is now available in the userguide.

Parsl 0.7.1

Released on Jan 18th, 2019

New Functionality

• parsl.executors.LowLatencyExecutor: a new executor designed to address use-cases with tight latency require-
ments such as model serving (Machine Learning), function serving and interactive analyses is now available.

• New options in parsl.executors.HighThroughputExecutor:

– suppress_failure: Enable suppression of worker rejoin errors.

– max_workers: Limit workers spawned by manager

• Late binding of DFK, allows apps to pick DFK dynamically at call time. This functionality adds safety to cases
where a new config is loaded and a new DFK is created.

1.6. Parsl is a community 253

https://github.com/Parsl/parsl/issues/975
https://github.com/Parsl/parsl/issues/1001
https://github.com/Parsl/parsl/issues/1023
https://github.com/Parsl/parsl/issues/997
https://github.com/Parsl/parsl/issues/973
https://github.com/Parsl/parsl/issues/971
https://github.com/Parsl/parsl/issues/920
https://github.com/Parsl/parsl/issues/857
https://github.com/Parsl/parsl/issues/698
https://github.com/Parsl/parsl/issues/697

Parsl Documentation, Release 1.3.0-dev

Bug fixes

• A critical bug in parsl.executors.HighThroughputExecutor that led to debug logs overflowing channels
and terminating blocks of resource is fixed issue#738

Parsl 0.7.0

Released on Dec 20st, 2018

Parsl v0.7.0 includes 110 closed issues with contributions (code, tests, reviews and reports) from: Alex Hays
@ahayschi, Anna Woodard @annawoodard, Ben Clifford @benc, Connor Pigg @ConnorPigg, David Heise @da-
heise, Daniel S. Katz @danielskatz, Dominic Fitzgerald @djf604, Francois Lanusse @EiffL, Juan David Garrido
@garri1105, Gordon Watts @gordonwatts, Justin Wozniak @jmjwozniak, Joseph Moon @jmoon1506, Kenyi Hur-
tado @khurtado, Kyle Chard @kylechard, Lukasz Lacinski @lukaszlacinski, Ravi Madduri @madduri, Marco Govoni
@mgovoni-devel, Reid McIlroy-Young @reidmcy, Ryan Chard @ryanchard, @sdustrud, Yadu Nand Babuji @yadu-
doc, and Zhuozhao Li @ZhuozhaoLi

New functionality

• parsl.executors.HighThroughputExecutor: a new executor intended to replace the
IPyParallelExecutor is now available. This new executor addresses several limitations of
IPyParallelExecutor such as:

– Scale beyond the ~300 worker limitation of IPP.

– Multi-processing manager supports execution on all cores of a single node.

– Improved worker side reporting of version, system and status info.

– Supports failure detection and cleaner manager shutdown.

Here’s a sample configuration for using this executor locally:

from parsl.providers import LocalProvider
from parsl.channels import LocalChannel

from parsl.config import Config
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
label="htex_local",
cores_per_worker=1,
provider=LocalProvider(

channel=LocalChannel(),
init_blocks=1,
max_blocks=1,

),
)

],
)

More information on configuring is available in the Configuration section.

254 Chapter 1. Why use Parsl?

https://github.com/Parsl/parsl/issues/738

Parsl Documentation, Release 1.3.0-dev

• ExtremeScaleExecutor - a new executor targeting supercomputer scale (>1000 nodes) workflows is now available.

Here’s a sample configuration for using this executor locally:

from parsl.providers import LocalProvider
from parsl.channels import LocalChannel
from parsl.launchers import SimpleLauncher

from parsl.config import Config
from parsl.executors import ExtremeScaleExecutor

config = Config(
executors=[

ExtremeScaleExecutor(
label="extreme_local",
ranks_per_node=4,
provider=LocalProvider(

channel=LocalChannel(),
init_blocks=0,
max_blocks=1,
launcher=SimpleLauncher(),

)
)

],
strategy=None,

)

More information on configuring is available in the Configuration section.

• The libsubmit repository has been merged with Parsl to reduce overheads on maintenance with respect to doc-
umentation, testing, and release synchronization. Since the merge, the API has undergone several updates to
support the growing collection of executors, and as a result Parsl 0.7.0+ will not be backwards compatible with
the standalone libsubmit repos. The major components of libsubmit are now available through Parsl, and require
the following changes to import lines to migrate scripts to 0.7.0:

– from libsubmit.providers import <ProviderName> is now from parsl.providers
import <ProviderName>

– from libsubmit.channels import <ChannelName> is now from parsl.channels
import <ChannelName>

– from libsubmit.launchers import <LauncherName> is now from parsl.launchers
import <LauncherName>

Warning: This is a breaking change from Parsl v0.6.0

• To support resource-based requests for workers and to maintain uniformity across interfaces, tasks_per_node
is no longer a provider option. Instead, the notion of tasks_per_node is defined via executor specific options,
for eg:

– IPyParallelExecutor provides workers_per_node

– parsl.executors.HighThroughputExecutor provides cores_per_worker to allow for
worker launches to be determined based on the number of cores on the compute node.

– ExtremeScaleExecutor uses ranks_per_node to specify the ranks to launch per node.

1.6. Parsl is a community 255

Parsl Documentation, Release 1.3.0-dev

Warning: This is a breaking change from Parsl v0.6.0

• Major upgrades to the monitoring infrastructure.

– Monitoring information can now be written to a SQLite database, created on the fly by Parsl

– Web-based monitoring to track workflow progress

• Determining the correct IP address/interface given network firewall rules is often a nuisance. To simplify this,
three new methods are now supported:

– parsl.addresses.address_by_route

– parsl.addresses.address_by_query

– parsl.addresses.address_by_hostname

• parsl.launchers.AprunLauncher now supports overrides option that allows arbitrary strings to be added
to the aprun launcher call.

• DataFlowKernel has a new method wait_for_current_tasks()

• DataFlowKernel now uses per-task locks and an improved mechanism to handle task completions improving
performance for workflows with large number of tasks.

Bug fixes (highlights)

• Ctlr+C should cause fast DFK cleanup issue#641

• Fix to avoid padding in wtime_to_minutes() issue#522

• Updates to block semantics issue#557

• Updates public_ip to address for clarity issue#557

• Improvements to launcher docs issue#424

• Fixes for inconsistencies between stream_logger and file_logger issue#629

• Fixes to DFK discarding some un-executed tasks at end of workflow issue#222

• Implement per-task locks to avoid deadlocks issue#591

• Fixes to internal consistency errors issue#604

• Removed unnecessary provider labels issue#440

• Fixes to parsl.providers.TorqueProvider to work on NSCC issue#489

• Several fixes and updates to monitoring subsystem issue#471

• DataManager calls wrong DFK issue#412

• Config isn’t reloading properly in notebooks issue#549

• Cobalt provider partition should be queue issue#353

• bash AppFailure exceptions contain useful but un-displayed information issue#384

• Do not CD to engine_dir issue#543

• Parsl install fails without kubernetes config file issue#527

• Fix import error issue#533

• Change Local Database Strategy from Many Writers to a Single Writer issue#472

256 Chapter 1. Why use Parsl?

https://github.com/Parsl/parsl/issues/641
https://github.com/Parsl/parsl/issues/522
https://github.com/Parsl/parsl/issues/557
https://github.com/Parsl/parsl/issues/557
https://github.com/Parsl/parsl/issues/424
https://github.com/Parsl/parsl/issues/629
https://github.com/Parsl/parsl/issues/222
https://github.com/Parsl/parsl/issues/591
https://github.com/Parsl/parsl/issues/604
https://github.com/Parsl/parsl/issues/440
https://github.com/Parsl/parsl/issues/489
https://github.com/Parsl/parsl/issues/471
https://github.com/Parsl/parsl/issues/412
https://github.com/Parsl/parsl/issues/549
https://github.com/Parsl/parsl/issues/353
https://github.com/Parsl/parsl/issues/384
https://github.com/Parsl/parsl/issues/543
https://github.com/Parsl/parsl/issues/527
https://github.com/Parsl/parsl/issues/533
https://github.com/Parsl/parsl/issues/472

Parsl Documentation, Release 1.3.0-dev

• All run-related working files should go in the rundir unless otherwise configured issue#457

• Fix concurrency issue with many engines accessing the same IPP config issue#469

• Ensure we are not caching failed tasks issue#368

• File staging of unknown schemes fails silently issue#382

• Inform user checkpointed results are being used issue#494

• Fix IPP + python 3.5 failure issue#490

• File creation fails if no executor has been loaded issue#482

• Make sure tasks in dep_fail state are retried issue#473

• Hard requirement for CMRESHandler issue#422

• Log error Globus events to stderr issue#436

• Take ‘slots’ out of logging issue#411

• Remove redundant logging issue#267

• Zombie ipcontroller processes - Process cleanup in case of interruption issue#460

• IPyparallel failure when submitting several apps in parallel threads issue#451

• parsl.providers.SlurmProvider + parsl.launchers.SingleNodeLauncher starts all engines on a sin-
gle core issue#454

• IPP engine_dir has no effect if indicated dir does not exist issue#446

• Clarify AppBadFormatting error issue#433

• confusing error message with simple configs issue#379

• Error due to missing kubernetes config file issue#432

• parsl.configs and parsl.tests.configs missing init files issue#409

• Error when Python versions differ issue#62

• Fixing ManagerLost error in HTEX/EXEX issue#577

• Write all debug logs to rundir by default in HTEX/EXEX issue#574

• Write one log per HTEX worker issue#572

• Fixing ManagerLost error in HTEX/EXEX issue#577

Parsl 0.6.1

Released on July 23rd, 2018.

This point release contains fixes for issue#409

1.6. Parsl is a community 257

https://github.com/Parsl/parsl/issues/457
https://github.com/Parsl/parsl/issues/469
https://github.com/Parsl/parsl/issues/368
https://github.com/Parsl/parsl/issues/382
https://github.com/Parsl/parsl/issues/494
https://github.com/Parsl/parsl/issues/490
https://github.com/Parsl/parsl/issues/482
https://github.com/Parsl/parsl/issues/473
https://github.com/Parsl/parsl/issues/422
https://github.com/Parsl/parsl/issues/436
https://github.com/Parsl/parsl/issues/411
https://github.com/Parsl/parsl/issues/267
https://github.com/Parsl/parsl/issues/460
https://github.com/Parsl/parsl/issues/451
https://github.com/Parsl/parsl/issues/454
https://github.com/Parsl/parsl/issues/446
https://github.com/Parsl/parsl/issues/433
https://github.com/Parsl/parsl/issues/379
https://github.com/Parsl/parsl/issues/432
https://github.com/Parsl/parsl/issues/409
https://github.com/Parsl/parsl/issues/62
https://github.com/Parsl/parsl/issues/577
https://github.com/Parsl/parsl/issues/574
https://github.com/Parsl/parsl/issues/572
https://github.com/Parsl/parsl/issues/577
https://github.com/Parsl/parsl/issues/409

Parsl Documentation, Release 1.3.0-dev

Parsl 0.6.0

Released July 23rd, 2018.

New functionality

• Switch to class based configuration issue#133

Here’s a the config for using threads for local execution

from parsl.config import Config
from parsl.executors.threads import ThreadPoolExecutor

config = Config(executors=[ThreadPoolExecutor()])

Here’s a more complex config that uses SSH to run on a Slurm based cluster

from libsubmit.channels import SSHChannel
from libsubmit.providers import SlurmProvider

from parsl.config import Config
from parsl.executors.ipp import IPyParallelExecutor
from parsl.executors.ipp_controller import Controller

config = Config(
executors=[

IPyParallelExecutor(
provider=SlurmProvider(

'westmere',
channel=SSHChannel(

hostname='swift.rcc.uchicago.edu',
username=<USERNAME>,
script_dir=<SCRIPTDIR>

),
init_blocks=1,
min_blocks=1,
max_blocks=2,
nodes_per_block=1,
tasks_per_node=4,
parallelism=0.5,
overrides=<SPECIFY_INSTRUCTIONS_TO_LOAD_PYTHON3>

),
label='midway_ipp',
controller=Controller(public_ip=<PUBLIC_IP>),

)
]

)

• Implicit Data Staging issue#281

create an remote Parsl file
inp = File('ftp://www.iana.org/pub/mirror/rirstats/arin/ARIN-STATS-FORMAT-CHANGE.txt
→˓')

(continues on next page)

258 Chapter 1. Why use Parsl?

https://github.com/Parsl/parsl/issues/133
https://github.com/Parsl/parsl/issues/281

Parsl Documentation, Release 1.3.0-dev

(continued from previous page)

create a local Parsl file
out = File('file:///tmp/ARIN-STATS-FORMAT-CHANGE.txt')

call the convert app with the Parsl file
f = convert(inputs=[inp], outputs=[out])
f.result()

• Support for application profiling issue#5

• Real-time usage tracking via external systems issue#248, issue#251

• Several fixes and upgrades to tests and testing infrastructure issue#157, issue#159, issue#128, issue#192, is-
sue#196

• Better state reporting in logs issue#242

• Hide DFK issue#50

– Instead of passing a config dictionary to the DataFlowKernel, now you can call parsl.load(Config)

– Instead of having to specify the dfk at the time of App declaration, the DFK is a singleton loaded at call
time :

import parsl
from parsl.tests.configs.local_ipp import config
parsl.load(config)

@App('python')
def double(x):

return x * 2

fut = double(5)
fut.result()

• Support for better reporting of remote side exceptions issue#110

Bug Fixes

• Making naming conventions consistent issue#109

• Globus staging returns unclear error bug issue#178

• Duplicate log-lines when using IPP issue#204

• Usage tracking with certain missing network causes 20s startup delay. issue#220

• task_exit checkpointing repeatedly truncates checkpoint file during run bug issue#230

• Checkpoints will not reload from a run that was Ctrl-C’ed issue#232

• Race condition in task checkpointing issue#234

• Failures not to be checkpointed issue#239

• Naming inconsitencies with maxThreads, max_threads, max_workers are now resolved issue#303

• Fatal not a git repository alerts issue#326

• Default kwargs in bash apps unavailable at command-line string format time issue#349

1.6. Parsl is a community 259

https://github.com/Parsl/parsl/issues/5
https://github.com/Parsl/parsl/issues/248
https://github.com/Parsl/parsl/issues/251
https://github.com/Parsl/parsl/issues/157
https://github.com/Parsl/parsl/issues/159
https://github.com/Parsl/parsl/issues/128
https://github.com/Parsl/parsl/issues/192
https://github.com/Parsl/parsl/issues/196
https://github.com/Parsl/parsl/issues/196
https://github.com/Parsl/parsl/issues/242
https://github.com/Parsl/parsl/issues/50
https://github.com/Parsl/parsl/issues/110
https://github.com/Parsl/parsl/issues/109
https://github.com/Parsl/parsl/issues/178
https://github.com/Parsl/parsl/issues/204
https://github.com/Parsl/parsl/issues/220
https://github.com/Parsl/parsl/issues/230
https://github.com/Parsl/parsl/issues/232
https://github.com/Parsl/parsl/issues/234
https://github.com/Parsl/parsl/issues/239
https://github.com/Parsl/parsl/issues/303
https://github.com/Parsl/parsl/issues/326
https://github.com/Parsl/parsl/issues/349

Parsl Documentation, Release 1.3.0-dev

• Fix launcher class inconsistencies issue#360

• Several fixes to AWS provider issue#362

– Fixes faulty status updates

– Faulty termination of instance at cleanup, leaving zombie nodes.

Parsl 0.5.1

Released. May 15th, 2018.

New functionality

• Better code state description in logging issue#242

• String like behavior for Files issue#174

• Globus path mapping in config issue#165

Bug Fixes

• Usage tracking with certain missing network causes 20s startup delay. issue#220

• Checkpoints will not reload from a run that was Ctrl-C’ed issue#232

• Race condition in task checkpointing issue#234

• task_exit checkpointing repeatedly truncates checkpoint file during run issue#230

• Make dfk.cleanup() not cause kernel to restart with Jupyter on Mac issue#212

• Fix automatic IPP controller creation on OS X issue#206

• Passing Files breaks over IPP issue#200

• repr call after AppException instantiation raises AttributeError issue#197

• Allow DataFuture to be initialized with a str file object issue#185

• Error for globus transfer failure issue#162

Parsl 0.5.2

Released. June 21st, 2018. This is an emergency release addressing issue#347

Bug Fixes

• Parsl version conflict with libsubmit 0.4.1 issue#347

260 Chapter 1. Why use Parsl?

https://github.com/Parsl/parsl/issues/360
https://github.com/Parsl/parsl/issues/362
https://github.com/Parsl/parsl/issues/242
https://github.com/Parsl/parsl/issues/174
https://github.com/Parsl/parsl/issues/165
https://github.com/Parsl/parsl/issues/220
https://github.com/Parsl/parsl/issues/232
https://github.com/Parsl/parsl/issues/234
https://github.com/Parsl/parsl/issues/230
https://github.com/Parsl/parsl/issues/212
https://github.com/Parsl/parsl/issues/206
https://github.com/Parsl/parsl/issues/200
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/exceptions.html#AttributeError
https://github.com/Parsl/parsl/issues/197
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/Parsl/parsl/issues/185
https://github.com/Parsl/parsl/issues/162
https://github.com/Parsl/parsl/issues/347
https://github.com/Parsl/parsl/issues/347

Parsl Documentation, Release 1.3.0-dev

Parsl 0.5.0

Released. Apr 16th, 2018.

New functionality

• Support for Globus file transfers issue#71

Caution: This feature is available from Parsl v0.5.0 in an experimental state.

• PathLike behavior for Files issue#174

– Files behave like strings here :

myfile = File("hello.txt")
f = open(myfile, 'r')

• Automatic checkpointing modes issue#106

config = {
"globals": {

"lazyErrors": True,
"memoize": True,
"checkpointMode": "dfk_exit"

}
}

• Support for containers with docker issue#45

localDockerIPP = {
"sites": [

{"site": "Local_IPP",
"auth": {"channel": None},
"execution": {

"executor": "ipp",
"container": {

"type": "docker", # <----- Specify Docker
"image": "app1_v0.1", # <------Specify docker image

},
"provider": "local",
"block": {

"initBlocks": 2, # Start with 4 workers
},

}
}],

"globals": {"lazyErrors": True} }

Caution: This feature is available from Parsl v0.5.0 in an experimental state.

• Cleaner logging issue#85

1.6. Parsl is a community 261

https://github.com/Parsl/parsl/issues/71
https://github.com/Parsl/parsl/issues/174
https://github.com/Parsl/parsl/issues/106
https://github.com/Parsl/parsl/issues/45
https://github.com/Parsl/parsl/issues/85

Parsl Documentation, Release 1.3.0-dev

– Logs are now written by default to runinfo/RUN_ID/parsl.log.

– INFO log lines are more readable and compact

• Local configs are now packaged issue#96

from parsl.configs.local import localThreads
from parsl.configs.local import localIPP

Bug Fixes

• Passing Files over IPP broken issue#200

• Fix DataFuture.__repr__ for default instantiation issue#164

• Results added to appCache before retries exhausted issue#130

• Missing documentation added for Multisite and Error handling issue#116

• TypeError raised when a bad stdout/stderr path is provided. issue#104

• Race condition in DFK issue#102

• Cobalt provider broken on Cooley.alfc issue#101

• No blocks provisioned if parallelism/blocks = 0 issue#97

• Checkpoint restart assumes rundir issue#95

• Logger continues after cleanup is called issue#93

Parsl 0.4.1

Released. Feb 23rd, 2018.

New functionality

• GoogleCloud provider support via libsubmit

• GridEngine provider support via libsubmit

Bug Fixes

• Cobalt provider issues with job state issue#101

• Parsl updates config inadvertently issue#98

• No blocks provisioned if parallelism/blocks = 0 issue#97

• Checkpoint restart assumes rundir bug issue#95

• Logger continues after cleanup called enhancement issue#93

• Error checkpointing when no cache enabled issue#92

• Several fixes to libsubmit.

262 Chapter 1. Why use Parsl?

https://github.com/Parsl/parsl/issues/96
https://github.com/Parsl/parsl/issues/200
https://github.com/Parsl/parsl/issues/164
https://github.com/Parsl/parsl/issues/130
https://github.com/Parsl/parsl/issues/116
https://github.com/Parsl/parsl/issues/104
https://github.com/Parsl/parsl/issues/102
https://github.com/Parsl/parsl/issues/101
https://github.com/Parsl/parsl/issues/97
https://github.com/Parsl/parsl/issues/95
https://github.com/Parsl/parsl/issues/93
https://github.com/Parsl/parsl/issues/101
https://github.com/Parsl/parsl/issues/98
https://github.com/Parsl/parsl/issues/97
https://github.com/Parsl/parsl/issues/95
https://github.com/Parsl/parsl/issues/93
https://github.com/Parsl/parsl/issues/92

Parsl Documentation, Release 1.3.0-dev

Parsl 0.4.0

Here are the major changes included in the Parsl 0.4.0 release.

New functionality

• Elastic scaling in response to workflow pressure. issue#46 Options minBlocks, maxBlocks, and parallelism
now work and controls workflow execution.

Documented in: Elasticity

• Multisite support, enables targetting apps within a single workflow to different sites issue#48

@App('python', dfk, sites=['SITE1', 'SITE2'])
def my_app(...):

...

• Anonymized usage tracking added. issue#34

Documented in: Usage statistics collection

• AppCaching and Checkpointing issue#43

Set cache=True to enable appCaching
@App('python', dfk, cache=True)
def my_app(...):

...

To checkpoint a workflow:
dfk.checkpoint()

Documented in: Checkpointing, App caching

• Parsl now creates a new directory under ./runinfo/ with an incrementing number per workflow invocation

• Troubleshooting guide and more documentation

• PEP8 conformance tests added to travis testing issue#72

Bug Fixes

• Missing documentation from libsubmit was added back issue#41

• Fixes for script_dir | scriptDir inconsistencies issue#64

– We now use scriptDir exclusively.

• Fix for caching not working on jupyter notebooks issue#90

• Config defaults module failure when part of the option set is provided issue#74

• Fixes for network errors with usage_tracking issue#70

• PEP8 conformance of code and tests with limited exclusions issue#72

• Doc bug in recommending max_workers instead of maxThreads issue#73

1.6. Parsl is a community 263

https://github.com/Parsl/parsl/issues/46
https://github.com/Parsl/parsl/issues/48
https://github.com/Parsl/parsl/issues/34
https://github.com/Parsl/parsl/issues/43
https://github.com/Parsl/parsl/issues/72
https://github.com/Parsl/parsl/issues/41
https://github.com/Parsl/parsl/issues/64
https://github.com/Parsl/parsl/issues/90
https://github.com/Parsl/parsl/issues/74
https://github.com/Parsl/parsl/issues/70
https://github.com/Parsl/parsl/issues/72
https://github.com/Parsl/parsl/issues/70

Parsl Documentation, Release 1.3.0-dev

Parsl 0.3.1

This is a point release with mostly minor features and several bug fixes

• Fixes for remote side handling

• Support for specifying IPythonDir for IPP controllers

• Several tests added that test provider launcher functionality from libsubmit

• This upgrade will also push the libsubmit requirement from 0.2.4 -> 0.2.5.

Several critical fixes from libsubmit are brought in:

• Several fixes and improvements to Condor from @annawoodard.

• Support for Torque scheduler

• Provider script output paths are fixed

• Increased walltimes to deal with slow scheduler system

• Srun launcher for slurm systems

• SSH channels now support file_pull() method
While files are not automatically staged, the channels provide support for bi-directional file transport.

Parsl 0.3.0

Here are the major changes that are included in the Parsl 0.3.0 release.

New functionality

• Arguments to DFK has changed:

Old dfk(executor_obj)

New, pass a list of executors dfk(executors=[list_of_executors])

Alternatively, pass the config from which the DFK will #instantiate resources
dfk(config=config_dict)

• Execution providers have been restructured to a separate repo: libsubmit

• Bash app styles have changes to return the commandline string rather than be assigned to the special keyword
cmd_line. Please refer to RFC #37 for more details. This is a non-backward compatible change.

• Output files from apps are now made available as an attribute of the AppFuture. Please refer #26 for more details.
This is a non-backward compatible change

This is the pre 0.3.0 style
app_fu, [file1, file2] = make_files(x, y, outputs=['f1.txt', 'f2.txt'])

#This is the style that will be followed going forward.
app_fu = make_files(x, y, outputs=['f1.txt', 'f2.txt'])
[file1, file2] = app_fu.outputs

• DFK init now supports auto-start of IPP controllers

• Support for channels via libsubmit. Channels enable execution of commands from execution providers either
locally, or remotely via ssh.

264 Chapter 1. Why use Parsl?

https://github.com/Parsl/libsubmit
https://github.com/Parsl/parsl/issues/37

Parsl Documentation, Release 1.3.0-dev

• Bash apps now support timeouts.

• Support for cobalt execution provider.

Bug fixes

• Futures have inconsistent behavior in bash app fn body #35

• Parsl dflow structure missing dependency information #30

Parsl 0.2.0

Here are the major changes that are included in the Parsl 0.2.0 release.

New functionality

• Support for execution via IPythonParallel executor enabling distributed execution.

• Generic executors

Parsl 0.1.0

Here are the major changes that are included in the Parsl 0.1.0 release.

New functionality

• Support for Bash and Python apps

• Support for chaining of apps via futures handled by the DataFlowKernel.

• Support for execution over threads.

• Arbitrary DAGs can be constructed and executed asynchronously.

Bug Fixes

• Initial release, no listed bugs.

Historical: Libsubmit Changelog

Note: As of Parsl 0.7.0 the libsubmit repository has been merged into Parsl and nothing more will appear in this
changelog.

1.6. Parsl is a community 265

https://github.com/Parsl/parsl/issues/35
https://github.com/Parsl/parsl/issues/30

Parsl Documentation, Release 1.3.0-dev

Libsubmit 0.4.1

Released. June 18th, 2018. This release folds in massive contributions from @annawoodard.

New functionality

• Several code cleanups, doc improvements, and consistent naming

• All providers have the initialization and actual start of resources decoupled.

Libsubmit 0.4.0

Released. May 15th, 2018. This release folds in contributions from @ahayschi, @annawoodard, @yadudoc

New functionality

• Several enhancements and fixes to the AWS cloud provider (#44, #45, #50)

• Added support for python3.4

Bug Fixes

• Condor jobs left in queue with X state at end of completion issue#26

• Worker launches on Cori seem to fail from broken ENV issue#27

• EC2 provider throwing an exception at initial run issue#46

Historical: Swift vs Parsl

Note: This section describes comparisons between Parsl and an earlier workflow system, Swift, as part of a justification
for the early prototyping stages of Parsl development. It is no longer relevant for modern Parsl users, but remains of
historical interest.

The following text is not well structured, and is mostly a brain dump that needs to be organized. Moving from Swift
to an established language (python) came with its own tradeoffs. We get the backing of a rich and very well known
language to handle the language aspects as well as the libraries. However, we lose the parallel evaluation of every
statement in a script. The thesis is that what we lose is minimal and will not affect 95% of our workflows. This is not
yet substantiated.

Please note that there are two Swift languages: Swift/K and Swift/T . These have diverged in syntax and behavior.
Swift/K is designed for grids and clusters runs the java based Karajan (hence, /K) execution framework. Swift/T is a
completely new implementation of Swift/K for high-performance computing. Swift/T uses Turbine(hence, /T) and and
ADLB runtime libraries for highly scalable dataflow processing over MPI, without single-node bottlenecks.

266 Chapter 1. Why use Parsl?

https://github.com/Parsl/libsubmit/issues/26
https://github.com/Parsl/libsubmit/issues/27
https://github.com/Parsl/parsl/issues/46
http://swift-lang.org/main/
http://swift-lang.org/Swift-T/index.php
https://wiki.cogkit.org/wiki/Karajan
http://www.mcs.anl.gov/project/adlb-asynchronous-dynamic-load-balancer

Parsl Documentation, Release 1.3.0-dev

Parallel Evaluation

In Swift (K&T), every statement is evaluated in parallel.

y = f(x);
z = g(x);

We see that y and z are assigned values in different order when we run Swift multiple times. Swift evaluates both
statements in parallel and the order in which they complete is mostly random.

We will not have this behavior in Python. Each statement is evaluated in order.

int[] array;
foreach v,i in [1:5] {

array[i] = 2*v;
}

foreach v in array {
trace(v)

}

Another consequence is that in Swift, a foreach loop that consumes results in an array need not wait for the foreach
loop that fill the array. In the above example, the second foreach loop makes progress along with the first foreach loop
as it fills the array.

In parsl, a for loop that launches tasks has to complete launches before the control may proceed to the next state-
ment. The first for loop has to simply finish iterating, and launching jobs, which should take ~length_of_iterable/1000
(items/task_launch_rate).

futures = {};

for i in range(0,10):
futures[i] = app_double(i);

for i in fut_array:
print(i, futures[i])

The first for loop first fills the futures dict before control can proceed to the second for loop that consumes the contents.

The main conclusion here is that, if the iteration space is sufficiently large (or the app launches are throttled), then it is
possible that tasks that are further down the control flow have to wait regardless of their dependencies being resolved.

Mappers

In Swift/K, a mapper is a mechanism to map files to variables. Swift need’s to know files on disk so that it could
move them to remote sites for execution or as inputs to applications. Mapped file variables also indicate to swift that,
when files are created on remote sites, they need to be staged back. Swift/K provides several mappers which makes it
convenient to map files on disk to file variables.

There are two choices here :

1. Have the user define the mappers and data objects

2. Have the data objects be created only by Apps.

In Swift, the user defines file mappings like this :

1.6. Parsl is a community 267

Parsl Documentation, Release 1.3.0-dev

Mapping a single file
file f <"f.txt">;

Array of files
file texts[] <filesys_mapper; prefix="foo", suffix=".txt">;

The files mapped to an array could be either inputs or outputs to be created. Which is the case is inferred from whether
they are on the left-hand side or right-hand side of an assignment. Variables on the left-hand side are inferred to be
outputs that have future-like behavior. To avoid conflicting values being assigned to the same variable, Swift variables
are all immutable.

For instance, the following would be a major concern if variables were not immutable:

x = 0;
x = 1;
trace(x);

The results that trace would print would be non-deterministic, if x were mutable. In Swift, the above code would raise
an error. However this is perfectly legal in python, and the x would take the last value it was assigned.

Remote-Execution

In Swift/K, remote execution is handled by coasters. This is a pilot mechanism that supports dynamic resource provi-
sioning from cluster managers such as PBS, Slurm, Condor and handles data transport from the client to the workers.
Swift/T on the other hand is designed to run as an MPI job on a single HPC resource. Swift/T utilized shared-filesystems
that almost every HPC resource has.

To be useful, Parsl will need to support remote execution and file transfers. Here we will discuss just the remote-
execution aspect.

Here is a set of features that should be implemented or borrowed :

• [Done] New remote execution system must have the executor interface.

• [Done] Executors must be memory efficient wrt to holding jobs in memory.

• [Done] Continue to support both BashApps and PythonApps.

• [Done] Capable of using templates to submit jobs to Cluster resource managers.

• [Done] Dynamically launch and shutdown workers.

Note: Since the current roadmap to remote execution is through ipython-parallel, we will limit support to Python3.5+
to avoid library naming issues.

268 Chapter 1. Why use Parsl?

http://swift-lang.org/guides/trunk/userguide/userguide.html#_how_swift_implements_the_site_execution_model
https://docs.python.org/3/library/concurrent.futures.html#executor-objects

Parsl Documentation, Release 1.3.0-dev

Design

Under construction.

Historical: Performance and Scalability

Note: This scalability review summarises results in a paper, Parsl: Pervasive Parallel Programming in Python, which
was published in 2019. The results have not been updated since then. For that reason, this section is marked as historical.

Parsl is designed to scale from small to large systems .

Scalability

We studied strong and weak scaling on the Blue Waters supercomputer. In strong scaling, the total problem size is
fixed; in weak scaling, the problem size per CPU core is fixed. In both cases, we measure completion time as a function
of number of CPU cores. An ideal framework should scale linearly, which for strong scaling means that speedup scales
with the number of cores, and for weak scaling means that completion time remains constant as the number of cores
increases.

To measure the strong and weak scaling of Parsl executors, we created Parsl programs to run tasks with different
durations, ranging from a “no-op”–a Python function that exits immediately—to tasks that sleep for 10, 100, and 1,000
ms. For each executor we deployed a worker per core on each node.

While we compare here with IPP, Fireworks, and Dask Distributed, we note that these systems are not necessarily
designed for Parsl-like workloads or scale.

Further results are presented in our HPDC paper.

Strong scaling

The figures below show the strong scaling results for 5,000 1-second sleep tasks. HTEX provides good performance
in all cases, slightly exceeding what is possible with EXEX, while EXEX scales to significantly more workers than
the other executors and frameworks. Both HTEX and EXEX remain nearly constant, indicating that they likely will
continue to perform well at larger scales.

1.6. Parsl is a community 269

https://parsl-project.org/publications/babuji19parsl.pdf

Parsl Documentation, Release 1.3.0-dev

Weak scaling

Here, we launched 10 tasks per worker, while increasing the number of workers. (We limited experiments to 10 tasks
per worker, as on 3,125 nodes, that represents 3,125 nodes × 32 workers/node × 10 tasks/worker, or 1M tasks.) The
figure below shows our results. We observe that HTEX and EXEX outperform other executors and frameworks with
more than 4,096 workers (128 nodes). All frameworks exhibit similar trends, with completion time remaining close to
constant initially and increasing rapidly as the number of workers increases.

270 Chapter 1. Why use Parsl?

Parsl Documentation, Release 1.3.0-dev

Throughput

We measured the maximum throughput of all the Parsl executors, on the UChicago Research Computing Center’s
Midway Cluster. To do so, we ran 50,000 “no-op” tasks on a varying number of workers and recorded the completion
times. The throughout is computed as the number of tasks divided by the completion time. HTEX, and EXEX achieved
maximum throughputs of 1,181 and 1,176 tasks/s, respectively.

Summary

The table below summarizes the scale at which we have tested Parsl executors. The maximum number of nodes and
workers for HTEX and EXEX is limited by the size of allocation available during testing on Blue Waters. The through-
put results are collected on Midway.

Executor Max # workers Max # nodes Max tasks/second
IPP 2,048 64 330
HTEX 65,536 2,048 1,181
EXEX 262,144 8,192 1,176

1.6. Parsl is a community 271

Parsl Documentation, Release 1.3.0-dev

272 Chapter 1. Why use Parsl?

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

273

Parsl Documentation, Release 1.3.0-dev

274 Chapter 2. Indices and tables

INDEX

Symbols
__init__() (parsl.app.app.AppBase method), 221
__init__() (parsl.app.bash.BashApp method), 222
__init__() (parsl.app.futures.DataFuture method), 133
__init__() (parsl.app.python.PythonApp method), 223
__init__() (parsl.channels.LocalChannel method), 125
__init__() (parsl.channels.OAuthSSHChannel

method), 130
__init__() (parsl.channels.SSHChannel method), 127
__init__() (parsl.channels.SSHInteractiveLoginChannel

method), 131
__init__() (parsl.channels.base.Channel method), 123
__init__() (parsl.config.Config method), 119
__init__() (parsl.data_provider.data_manager.DataManager

method), 134
__init__() (parsl.data_provider.file_noop.NoOpFileStaging

method), 141
__init__() (parsl.data_provider.files.File method), 137
__init__() (parsl.data_provider.ftp.FTPInTaskStaging

method), 139
__init__() (parsl.data_provider.ftp.FTPSeparateTaskStaging

method), 138
__init__() (parsl.data_provider.globus.GlobusStaging

method), 141
__init__() (parsl.data_provider.http.HTTPInTaskStaging

method), 144
__init__() (parsl.data_provider.http.HTTPSeparateTaskStaging

method), 143
__init__() (parsl.data_provider.rsync.RSyncStaging

method), 145
__init__() (parsl.data_provider.staging.Staging

method), 136
__init__() (parsl.dataflow.dflow.DataFlowKernel

method), 224
__init__() (parsl.dataflow.dflow.DataFlowKernelLoader

method), 116
__init__() (parsl.dataflow.futures.AppFuture method),

114
__init__() (parsl.dataflow.memoization.Memoizer

method), 228
__init__() (parsl.dataflow.states.States method), 230
__init__() (parsl.dataflow.taskrecord.TaskRecord

method), 232
__init__() (parsl.executors.FluxExecutor method), 171
__init__() (parsl.executors.HighThroughputExecutor

method), 156
__init__() (parsl.executors.ThreadPoolExecutor

method), 153
__init__() (parsl.executors.WorkQueueExecutor

method), 163
__init__() (parsl.executors.base.ParslExecutor

method), 147
__init__() (parsl.executors.radical.RadicalPilotExecutor

method), 173
__init__() (parsl.executors.status_handling.BlockProviderExecutor

method), 149
__init__() (parsl.executors.taskvine.TaskVineExecutor

method), 167
__init__() (parsl.jobs.job_status_poller.JobStatusPoller

method), 235
__init__() (parsl.jobs.states.JobState method), 211
__init__() (parsl.jobs.states.JobStatus method), 213
__init__() (parsl.jobs.strategy.Strategy method), 237
__init__() (parsl.launchers.AprunLauncher method),

176
__init__() (parsl.launchers.GnuParallelLauncher

method), 177
__init__() (parsl.launchers.JsrunLauncher method),

178
__init__() (parsl.launchers.MpiExecLauncher

method), 177
__init__() (parsl.launchers.SimpleLauncher method),

175
__init__() (parsl.launchers.SingleNodeLauncher

method), 175
__init__() (parsl.launchers.SrunLauncher method),

176
__init__() (parsl.launchers.SrunMPILauncher

method), 176
__init__() (parsl.launchers.WrappedLauncher

method), 178
__init__() (parsl.launchers.base.Launcher method),

175
__init__() (parsl.monitoring.MonitoringHub method),

275

Parsl Documentation, Release 1.3.0-dev

117
__init__() (parsl.providers.AWSProvider method), 182
__init__() (parsl.providers.AdHocProvider method),

180
__init__() (parsl.providers.CobaltProvider method),

186
__init__() (parsl.providers.CondorProvider method),

189
__init__() (parsl.providers.GoogleCloudProvider

method), 191
__init__() (parsl.providers.GridEngineProvider

method), 193
__init__() (parsl.providers.KubernetesProvider

method), 204
__init__() (parsl.providers.LSFProvider method), 198
__init__() (parsl.providers.LocalProvider method),

195
__init__() (parsl.providers.PBSProProvider method),

206
__init__() (parsl.providers.SlurmProvider method),

200
__init__() (parsl.providers.TorqueProvider method),

202
__init__() (parsl.providers.base.ExecutionProvider

method), 207
__init__() (parsl.providers.cluster_provider.ClusterProvider

method), 210
__init__() (parsl.utils.Timer method), 238

A
abspath() (parsl.channels.base.Channel method), 123
abspath() (parsl.channels.LocalChannel method), 125
abspath() (parsl.channels.SSHChannel method), 128
add_executors() (parsl.dataflow.dflow.DataFlowKernel

method), 225
add_executors() (parsl.jobs.job_status_poller.JobStatusPoller

method), 236
add_executors() (parsl.jobs.strategy.Strategy method),

237
address_by_hostname() (in module parsl.addresses),

121
address_by_interface() (in module parsl.addresses),

121
address_by_query() (in module parsl.addresses), 121
address_by_route() (in module parsl.addresses), 122
AdHocProvider (class in parsl.providers), 179
app_fu (parsl.dataflow.taskrecord.TaskRecord attribute),

234
AppBadFormatting, 215
AppBase (class in parsl.app.app), 221
AppException, 216
AppFuture (class in parsl.dataflow.futures), 114
AppTimeout, 216
AprunLauncher (class in parsl.launchers), 176

args (parsl.dataflow.taskrecord.TaskRecord attribute),
234

atexit_cleanup() (parsl.dataflow.dflow.DataFlowKernel
method), 225

atexit_cleanup() (parsl.executors.taskvine.TaskVineExecutor
method), 169

atexit_cleanup() (parsl.executors.WorkQueueExecutor
method), 165

AuthException, 220
AWSProvider (class in parsl.providers), 181

B
bad_state_is_set (parsl.executors.status_handling.BlockProviderExecutor

property), 151
BadCheckpoint, 218
BadHostKeyException, 219
BadLauncher, 218
BadMessage, 217
BadPermsScriptPath, 219
BadScriptPath, 219
BadStdStreamFile, 216
bash_app() (in module parsl.app.app), 113
BashApp (class in parsl.app.bash), 222
BashAppNoReturn, 216
BashExitFailure, 216
BlockProviderExecutor (class in

parsl.executors.status_handling), 149
bye() (parsl.providers.GoogleCloudProvider method),

191

C
can_stage_in() (parsl.data_provider.file_noop.NoOpFileStaging

method), 141
can_stage_in() (parsl.data_provider.ftp.FTPInTaskStaging

method), 140
can_stage_in() (parsl.data_provider.ftp.FTPSeparateTaskStaging

method), 139
can_stage_in() (parsl.data_provider.globus.GlobusStaging

method), 142
can_stage_in() (parsl.data_provider.http.HTTPInTaskStaging

method), 144
can_stage_in() (parsl.data_provider.http.HTTPSeparateTaskStaging

method), 143
can_stage_in() (parsl.data_provider.rsync.RSyncStaging

method), 145
can_stage_in() (parsl.data_provider.staging.Staging

method), 136
can_stage_out() (parsl.data_provider.file_noop.NoOpFileStaging

method), 141
can_stage_out() (parsl.data_provider.globus.GlobusStaging

method), 142
can_stage_out() (parsl.data_provider.rsync.RSyncStaging

method), 145

276 Index

Parsl Documentation, Release 1.3.0-dev

can_stage_out() (parsl.data_provider.staging.Staging
method), 136

cancel() (parsl.app.futures.DataFuture method), 133
cancel() (parsl.dataflow.futures.AppFuture method),

115
cancel() (parsl.providers.AdHocProvider method), 180
cancel() (parsl.providers.AWSProvider method), 183
cancel() (parsl.providers.base.ExecutionProvider

method), 208
cancel() (parsl.providers.CobaltProvider method), 187
cancel() (parsl.providers.CondorProvider method),

189
cancel() (parsl.providers.GoogleCloudProvider

method), 191
cancel() (parsl.providers.GridEngineProvider method),

194
cancel() (parsl.providers.KubernetesProvider method),

204
cancel() (parsl.providers.LocalProvider method), 195
cancel() (parsl.providers.LSFProvider method), 198
cancel() (parsl.providers.SlurmProvider method), 200
cancel() (parsl.providers.TorqueProvider method), 202
CANCELLED (parsl.jobs.states.JobState attribute), 212
cancelled() (parsl.app.futures.DataFuture method),

134
cancelled() (parsl.dataflow.futures.AppFuture

method), 115
Channel (class in parsl.channels.base), 123
ChannelError, 219
check_memo() (parsl.dataflow.memoization.Memoizer

method), 229
check_staging_inhibited()

(parsl.dataflow.dflow.DataFlowKernel static
method), 225

checkpoint (parsl.dataflow.taskrecord.TaskRecord at-
tribute), 234

checkpoint() (parsl.dataflow.dflow.DataFlowKernel
method), 225

cleancopy() (parsl.data_provider.files.File method),
138

cleanup() (parsl.dataflow.dflow.DataFlowKernel
method), 225

clear() (parsl.dataflow.dflow.DataFlowKernelLoader
class method), 116

close() (parsl.channels.base.Channel method), 123
close() (parsl.channels.LocalChannel method), 125
close() (parsl.channels.OAuthSSHChannel method),

131
close() (parsl.channels.SSHChannel method), 128
close() (parsl.jobs.job_status_poller.JobStatusPoller

method), 236
close() (parsl.monitoring.MonitoringHub method), 118
close() (parsl.utils.Timer method), 238
ClusterProvider (class in

parsl.providers.cluster_provider), 209
CobaltProvider (class in parsl.providers), 186
COMPLETED (parsl.jobs.states.JobState attribute), 212
CondorProvider (class in parsl.providers), 188
Config (class in parsl.config), 118
config (parsl.dataflow.dflow.DataFlowKernel property),

225
config_route_table() (parsl.providers.AWSProvider

method), 183
ConfigurationError, 217
connected_blocks() (parsl.executors.HighThroughputExecutor

method), 159
connected_managers()

(parsl.executors.HighThroughputExecutor
method), 159

connected_workers (parsl.executors.HighThroughputExecutor
property), 159

cores_per_node (parsl.providers.base.ExecutionProvider
property), 208

create_instance() (parsl.providers.GoogleCloudProvider
method), 192

create_monitoring_info()
(parsl.executors.status_handling.BlockProviderExecutor
method), 151

create_name_tag_spec()
(parsl.providers.AWSProvider method), 183

create_session() (parsl.providers.AWSProvider
method), 183

create_vpc() (parsl.providers.AWSProvider method),
184

D
DataFlowException, 217
DataFlowKernel (class in parsl.dataflow.dflow), 223
DataFlowKernelLoader (class in parsl.dataflow.dflow),

116
DataFuture (class in parsl.app.futures), 133
DataManager (class in

parsl.data_provider.data_manager), 134
DEFAULT_LAUNCH_CMD (parsl.executors.FluxExecutor

attribute), 171
default_std_autopath()

(parsl.dataflow.dflow.DataFlowKernel
method), 225

delete_instance() (parsl.providers.GoogleCloudProvider
method), 192

dep_fail (parsl.dataflow.states.States attribute), 231
DependencyError, 218
depends (parsl.dataflow.taskrecord.TaskRecord at-

tribute), 234
DeserializationError, 220
dfk (parsl.dataflow.taskrecord.TaskRecord attribute), 234
dfk() (parsl.dataflow.dflow.DataFlowKernelLoader

class method), 116

Index 277

Parsl Documentation, Release 1.3.0-dev

E
exec_done (parsl.dataflow.states.States attribute), 231
exec_fu (parsl.dataflow.taskrecord.TaskRecord at-

tribute), 234
execute_wait() (parsl.channels.base.Channel

method), 123
execute_wait() (parsl.channels.LocalChannel

method), 126
execute_wait() (parsl.channels.OAuthSSHChannel

method), 131
execute_wait() (parsl.channels.SSHChannel method),

128
execute_wait() (parsl.providers.cluster_provider.ClusterProvider

method), 210
ExecutionProvider (class in parsl.providers.base), 207
ExecutionProviderException, 218
executor (parsl.dataflow.taskrecord.TaskRecord at-

tribute), 234
executor_exception (parsl.executors.status_handling.BlockProviderExecutor

property), 151
ExecutorError, 217
executors (parsl.config.Config property), 120

F
fail_cost (parsl.dataflow.taskrecord.TaskRecord

attribute), 234
fail_count (parsl.dataflow.taskrecord.TaskRecord at-

tribute), 234
fail_history (parsl.dataflow.taskrecord.TaskRecord

attribute), 234
fail_retryable (parsl.dataflow.states.States attribute),

231
failed (parsl.dataflow.states.States attribute), 231
FAILED (parsl.jobs.states.JobState attribute), 212
File (class in parsl.data_provider.files), 137
FileCopyException, 220
FileExists, 220
filename (parsl.app.futures.DataFuture property), 134
filepath (parsl.app.futures.DataFuture property), 134
filepath (parsl.data_provider.files.File property), 138
FINAL_STATES (in module parsl.dataflow.states), 230
FluxExecutor (class in parsl.executors), 170
fn_hash (parsl.dataflow.taskrecord.TaskRecord at-

tribute), 234
from_memo (parsl.dataflow.taskrecord.TaskRecord

attribute), 234
FTPInTaskStaging (class in parsl.data_provider.ftp),

139
FTPSeparateTaskStaging (class in

parsl.data_provider.ftp), 138
func (parsl.dataflow.taskrecord.TaskRecord attribute),

234
func_name (parsl.dataflow.taskrecord.TaskRecord

attribute), 234

G
generate_aws_id() (parsl.providers.AWSProvider

method), 184
get_all_checkpoints() (in module parsl.utils), 122
get_configs() (parsl.providers.GridEngineProvider

method), 194
get_instance_state() (parsl.providers.AWSProvider

method), 184
get_last_checkpoint() (in module parsl.utils), 122
get_usage_information() (parsl.config.Config

method), 120
get_usage_information()

(parsl.executors.HighThroughputExecutor
method), 159

get_zone() (parsl.providers.GoogleCloudProvider
method), 192

GlobusStaging (class in parsl.data_provider.globus),
141

GnuParallelLauncher (class in parsl.launchers), 177
goodbye() (parsl.providers.AWSProvider method), 184
GoogleCloudProvider (class in parsl.providers), 190
GridEngineProvider (class in parsl.providers), 192

H
handle_app_update()

(parsl.dataflow.dflow.DataFlowKernel
method), 225

handle_errors() (parsl.executors.status_handling.BlockProviderExecutor
method), 151

handle_exec_update()
(parsl.dataflow.dflow.DataFlowKernel
method), 225

handle_join_update()
(parsl.dataflow.dflow.DataFlowKernel
method), 226

hash_lookup() (parsl.dataflow.memoization.Memoizer
method), 229

hashsum (parsl.dataflow.taskrecord.TaskRecord at-
tribute), 234

HELD (parsl.jobs.states.JobState attribute), 212
HighThroughputExecutor (class in parsl.executors),

154
hold_worker() (parsl.executors.HighThroughputExecutor

method), 159
HTTPInTaskStaging (class in parsl.data_provider.http),

144
HTTPSeparateTaskStaging (class in

parsl.data_provider.http), 143
hub_address (parsl.executors.base.ParslExecutor prop-

erty), 148
hub_port (parsl.executors.base.ParslExecutor prop-

erty), 148

278 Index

Parsl Documentation, Release 1.3.0-dev

I
id (parsl.dataflow.taskrecord.TaskRecord attribute), 234
id_for_memo() (in module

parsl.dataflow.memoization), 227
ignore_for_cache (parsl.dataflow.taskrecord.TaskRecord

attribute), 234
initialize_boto_client()

(parsl.providers.AWSProvider method), 184
initialize_globus()

(parsl.data_provider.globus.GlobusStaging
method), 142

initialize_scaling()
(parsl.executors.HighThroughputExecutor
method), 160

initialize_scaling()
(parsl.executors.taskvine.TaskVineExecutor
method), 169

initialize_scaling()
(parsl.executors.WorkQueueExecutor method),
165

isdir() (parsl.channels.base.Channel method), 124
isdir() (parsl.channels.LocalChannel method), 126
isdir() (parsl.channels.SSHChannel method), 129

J
JobState (class in parsl.jobs.states), 211
JobStatus (class in parsl.jobs.states), 213
JobStatusPoller (class in

parsl.jobs.job_status_poller), 235
join (parsl.dataflow.taskrecord.TaskRecord attribute),

234
join_app() (in module parsl.app.app), 114
join_lock (parsl.dataflow.taskrecord.TaskRecord

attribute), 234
JoinError, 218
joining (parsl.dataflow.states.States attribute), 231
joins (parsl.dataflow.taskrecord.TaskRecord attribute),

234
JsrunLauncher (class in parsl.launchers), 178

K
KubernetesProvider (class in parsl.providers), 203
kwargs (parsl.dataflow.taskrecord.TaskRecord attribute),

235

L
label (parsl.executors.base.ParslExecutor attribute),

148
label (parsl.providers.AdHocProvider property), 180
label (parsl.providers.AWSProvider property), 184
label (parsl.providers.base.ExecutionProvider prop-

erty), 208
label (parsl.providers.cluster_provider.ClusterProvider

property), 210

label (parsl.providers.KubernetesProvider property),
205

label (parsl.providers.LocalProvider property), 196
launch_if_ready() (parsl.dataflow.dflow.DataFlowKernel

method), 226
launch_task() (parsl.dataflow.dflow.DataFlowKernel

method), 226
launched (parsl.dataflow.states.States attribute), 231
Launcher (class in parsl.launchers.base), 175
load() (parsl.dataflow.dflow.DataFlowKernelLoader

class method), 116
load_checkpoints() (parsl.dataflow.dflow.DataFlowKernel

method), 226
LocalChannel (class in parsl.channels), 125
LocalProvider (class in parsl.providers), 195
log_task_states() (parsl.dataflow.dflow.DataFlowKernel

method), 226
logdir (parsl.executors.HighThroughputExecutor prop-

erty), 160
LSFProvider (class in parsl.providers), 197

M
make_callback() (parsl.utils.Timer method), 238
make_hash() (parsl.dataflow.memoization.Memoizer

method), 229
makedirs() (parsl.channels.base.Channel method), 124
makedirs() (parsl.channels.LocalChannel method), 126
makedirs() (parsl.channels.SSHChannel method), 129
ManagerLost, 220
max_workers (parsl.executors.HighThroughputExecutor

property), 160
mem_per_node (parsl.providers.base.ExecutionProvider

property), 208
memo_done (parsl.dataflow.states.States attribute), 231
memoize (parsl.dataflow.taskrecord.TaskRecord at-

tribute), 235
Memoizer (class in parsl.dataflow.memoization), 228
MISSING (parsl.jobs.states.JobState attribute), 212
MissingOutputs, 216
monitor_resources()

(parsl.executors.base.ParslExecutor method),
148

monitor_resources()
(parsl.executors.ThreadPoolExecutor method),
153

monitoring_radio (parsl.executors.base.ParslExecutor
property), 148

MonitoringHub (class in parsl.monitoring), 117
MpiExecLauncher (class in parsl.launchers), 177

N
noop_error_handler() (in module

parsl.jobs.error_handlers), 214

Index 279

Parsl Documentation, Release 1.3.0-dev

NoOpFileStaging (class in
parsl.data_provider.file_noop), 141

O
OAuthSSHChannel (class in parsl.channels), 130
optionally_stage_in()

(parsl.data_provider.data_manager.DataManager
method), 135

OptionalModuleMissing, 217
outputs (parsl.dataflow.futures.AppFuture property),

115
outstanding (parsl.executors.HighThroughputExecutor

property), 160
outstanding (parsl.executors.status_handling.BlockProviderExecutor

property), 151
outstanding (parsl.executors.taskvine.TaskVineExecutor

property), 169
outstanding (parsl.executors.WorkQueueExecutor

property), 165

P
parent_callback() (parsl.app.futures.DataFuture

method), 134
ParslError, 217
ParslExecutor (class in parsl.executors.base), 147
PBSProProvider (class in parsl.providers), 205
pending (parsl.dataflow.states.States attribute), 231
PENDING (parsl.jobs.states.JobState attribute), 212
poll() (parsl.jobs.job_status_poller.JobStatusPoller

method), 236
poll_facade() (parsl.executors.status_handling.BlockProviderExecutor

method), 151
prepend_envs() (parsl.channels.SSHChannel method),

129
provider (parsl.executors.status_handling.BlockProviderExecutor

property), 151
pull_file() (parsl.channels.base.Channel method),

124
pull_file() (parsl.channels.LocalChannel method),

126
pull_file() (parsl.channels.SSHChannel method), 129
push_file() (parsl.channels.base.Channel method),

124
push_file() (parsl.channels.LocalChannel method),

126
push_file() (parsl.channels.SSHChannel method), 129
python_app() (in module parsl.app.app), 113
PythonApp (class in parsl.app.python), 223

R
RadicalPilotExecutor (class in

parsl.executors.radical), 172
radio_mode (parsl.executors.base.ParslExecutor at-

tribute), 148

radio_mode (parsl.executors.HighThroughputExecutor
attribute), 160

radio_mode (parsl.executors.taskvine.TaskVineExecutor
attribute), 169

radio_mode (parsl.executors.WorkQueueExecutor
attribute), 165

read_state_file() (parsl.providers.AWSProvider
method), 184

replace_task() (parsl.data_provider.data_manager.DataManager
method), 135

replace_task() (parsl.data_provider.ftp.FTPInTaskStaging
method), 140

replace_task() (parsl.data_provider.http.HTTPInTaskStaging
method), 144

replace_task() (parsl.data_provider.rsync.RSyncStaging
method), 145

replace_task() (parsl.data_provider.staging.Staging
method), 136

replace_task_stage_out()
(parsl.data_provider.data_manager.DataManager
method), 135

replace_task_stage_out()
(parsl.data_provider.rsync.RSyncStaging
method), 145

replace_task_stage_out()
(parsl.data_provider.staging.Staging method),
136

resource_specification
(parsl.dataflow.taskrecord.TaskRecord at-
tribute), 235

retries_left (parsl.dataflow.taskrecord.TaskRecord
attribute), 235

RSyncStaging (class in parsl.data_provider.rsync), 145
run_dir (parsl.executors.base.ParslExecutor property),

148
run_id (parsl.executors.base.ParslExecutor property),

148
running (parsl.dataflow.states.States attribute), 231
RUNNING (parsl.jobs.states.JobState attribute), 212
running() (parsl.app.futures.DataFuture method), 134
running_ended (parsl.dataflow.states.States attribute),

231

S
scale_in() (parsl.executors.HighThroughputExecutor

method), 160
scale_in() (parsl.executors.status_handling.BlockProviderExecutor

method), 151
scale_in() (parsl.executors.taskvine.TaskVineExecutor

method), 169
scale_in() (parsl.executors.WorkQueueExecutor

method), 165
scale_in_facade() (parsl.executors.status_handling.BlockProviderExecutor

method), 152

280 Index

Parsl Documentation, Release 1.3.0-dev

scale_out() (parsl.executors.status_handling.BlockProviderExecutor
method), 152

scale_out_facade() (parsl.executors.status_handling.BlockProviderExecutor
method), 152

ScaleOutFailed, 219
ScalingFailed, 217
SchedulerMissingArgs, 219
script_dir (parsl.channels.base.Channel property),

124
script_dir (parsl.channels.LocalChannel property),

127
script_dir (parsl.channels.SSHChannel property), 129
ScriptPathError, 219
security_group() (parsl.providers.AWSProvider

method), 184
send() (parsl.monitoring.MonitoringHub method), 118
send_monitoring_info()

(parsl.executors.status_handling.BlockProviderExecutor
method), 152

SerializationError, 221
set_bad_state_and_fail_all()

(parsl.executors.status_handling.BlockProviderExecutor
method), 152

set_file_logger() (in module parsl), 121
set_stream_logger() (in module parsl), 120
show_summary() (parsl.providers.AWSProvider

method), 184
shut_down_instance() (parsl.providers.AWSProvider

method), 184
shutdown() (parsl.executors.base.ParslExecutor

method), 148
shutdown() (parsl.executors.FluxExecutor method), 171
shutdown() (parsl.executors.HighThroughputExecutor

method), 160
shutdown() (parsl.executors.radical.RadicalPilotExecutor

method), 173
shutdown() (parsl.executors.taskvine.TaskVineExecutor

method), 169
shutdown() (parsl.executors.ThreadPoolExecutor

method), 153
shutdown() (parsl.executors.WorkQueueExecutor

method), 165
simple_error_handler() (in module

parsl.jobs.error_handlers), 214
SimpleLauncher (class in parsl.launchers), 175
SingleNodeLauncher (class in parsl.launchers), 175
SlurmProvider (class in parsl.providers), 199
spin_up_instance() (parsl.providers.AWSProvider

method), 185
SrunLauncher (class in parsl.launchers), 176
SrunMPILauncher (class in parsl.launchers), 176
SSHChannel (class in parsl.channels), 127
SSHException, 220
SSHInteractiveLoginChannel (class in

parsl.channels), 131
stage_in() (parsl.data_provider.data_manager.DataManager

method), 135
stage_in() (parsl.data_provider.ftp.FTPInTaskStaging

method), 140
stage_in() (parsl.data_provider.ftp.FTPSeparateTaskStaging

method), 139
stage_in() (parsl.data_provider.globus.GlobusStaging

method), 142
stage_in() (parsl.data_provider.http.HTTPInTaskStaging

method), 144
stage_in() (parsl.data_provider.http.HTTPSeparateTaskStaging

method), 143
stage_in() (parsl.data_provider.rsync.RSyncStaging

method), 146
stage_in() (parsl.data_provider.staging.Staging

method), 137
stage_out() (parsl.data_provider.data_manager.DataManager

method), 135
stage_out() (parsl.data_provider.globus.GlobusStaging

method), 142
stage_out() (parsl.data_provider.rsync.RSyncStaging

method), 146
stage_out() (parsl.data_provider.staging.Staging

method), 137
Staging (class in parsl.data_provider.staging), 136
start() (parsl.executors.base.ParslExecutor method),

148
start() (parsl.executors.FluxExecutor method), 171
start() (parsl.executors.HighThroughputExecutor

method), 160
start() (parsl.executors.radical.RadicalPilotExecutor

method), 173
start() (parsl.executors.taskvine.TaskVineExecutor

method), 169
start() (parsl.executors.ThreadPoolExecutor method),

153
start() (parsl.executors.WorkQueueExecutor method),

165
start() (parsl.monitoring.MonitoringHub method), 118
States (class in parsl.dataflow.states), 230
status (parsl.dataflow.taskrecord.TaskRecord attribute),

235
status() (parsl.executors.HighThroughputExecutor

method), 160
status() (parsl.executors.status_handling.BlockProviderExecutor

method), 152
status() (parsl.providers.AdHocProvider method), 180
status() (parsl.providers.AWSProvider method), 185
status() (parsl.providers.base.ExecutionProvider

method), 208
status() (parsl.providers.cluster_provider.ClusterProvider

method), 210
status() (parsl.providers.CondorProvider method),

Index 281

Parsl Documentation, Release 1.3.0-dev

189
status() (parsl.providers.GoogleCloudProvider

method), 192
status() (parsl.providers.KubernetesProvider method),

205
status() (parsl.providers.LocalProvider method), 196
status_facade (parsl.executors.status_handling.BlockProviderExecutor

property), 152
status_name (parsl.jobs.states.JobStatus property), 213
status_polling_interval

(parsl.executors.status_handling.BlockProviderExecutor
property), 152

status_polling_interval
(parsl.providers.AdHocProvider property),
180

status_polling_interval
(parsl.providers.AWSProvider property),
185

status_polling_interval
(parsl.providers.base.ExecutionProvider
property), 209

status_polling_interval
(parsl.providers.CobaltProvider property),
187

status_polling_interval
(parsl.providers.CondorProvider property),
190

status_polling_interval
(parsl.providers.GoogleCloudProvider prop-
erty), 192

status_polling_interval
(parsl.providers.GridEngineProvider prop-
erty), 194

status_polling_interval
(parsl.providers.KubernetesProvider prop-
erty), 205

status_polling_interval
(parsl.providers.LocalProvider property),
196

status_polling_interval
(parsl.providers.LSFProvider property),
198

status_polling_interval
(parsl.providers.PBSProProvider property),
206

status_polling_interval
(parsl.providers.SlurmProvider property),
200

status_polling_interval
(parsl.providers.TorqueProvider property),
202

stderr (parsl.dataflow.futures.AppFuture property), 115
stderr (parsl.jobs.states.JobStatus property), 213
stderr_summary (parsl.jobs.states.JobStatus property),

213
stdout (parsl.dataflow.futures.AppFuture property), 115
stdout (parsl.jobs.states.JobStatus property), 213
stdout_summary (parsl.jobs.states.JobStatus property),

213
Strategy (class in parsl.jobs.strategy), 236
submit() (parsl.dataflow.dflow.DataFlowKernel

method), 226
submit() (parsl.executors.base.ParslExecutor method),

148
submit() (parsl.executors.FluxExecutor method), 171
submit() (parsl.executors.HighThroughputExecutor

method), 160
submit() (parsl.executors.radical.RadicalPilotExecutor

method), 173
submit() (parsl.executors.taskvine.TaskVineExecutor

method), 169
submit() (parsl.executors.ThreadPoolExecutor

method), 153
submit() (parsl.executors.WorkQueueExecutor

method), 165
submit() (parsl.providers.AdHocProvider method), 180
submit() (parsl.providers.AWSProvider method), 185
submit() (parsl.providers.base.ExecutionProvider

method), 209
submit() (parsl.providers.CobaltProvider method), 187
submit() (parsl.providers.CondorProvider method),

190
submit() (parsl.providers.GoogleCloudProvider

method), 192
submit() (parsl.providers.GridEngineProvider method),

194
submit() (parsl.providers.KubernetesProvider method),

205
submit() (parsl.providers.LocalProvider method), 196
submit() (parsl.providers.LSFProvider method), 198
submit() (parsl.providers.PBSProProvider method),

207
submit() (parsl.providers.SlurmProvider method), 201
submit() (parsl.providers.TorqueProvider method), 202
SUMMARY_TRUNCATION_THRESHOLD

(parsl.jobs.states.JobStatus attribute), 213

T
task_launch_lock (parsl.dataflow.taskrecord.TaskRecord

attribute), 235
task_state_cb() (parsl.executors.radical.RadicalPilotExecutor

method), 174
task_status() (parsl.dataflow.futures.AppFuture

method), 115
task_translate() (parsl.executors.radical.RadicalPilotExecutor

method), 174
TaskRecord (class in parsl.dataflow.taskrecord), 232

282 Index

Parsl Documentation, Release 1.3.0-dev

tasks (parsl.executors.status_handling.BlockProviderExecutor
property), 152

TaskVineExecutor (class in parsl.executors.taskvine),
166

teardown() (parsl.providers.AWSProvider method), 185
terminal (parsl.jobs.states.JobStatus property), 214
ThreadPoolExecutor (class in parsl.executors), 152
tid (parsl.app.futures.DataFuture property), 134
tid (parsl.dataflow.futures.AppFuture property), 116
time_invoked (parsl.dataflow.taskrecord.TaskRecord

attribute), 235
time_returned (parsl.dataflow.taskrecord.TaskRecord

attribute), 235
TIMEOUT (parsl.jobs.states.JobState attribute), 212
Timer (class in parsl.utils), 238
TorqueProvider (class in parsl.providers), 201
try_id (parsl.dataflow.taskrecord.TaskRecord attribute),

235
try_time_launched (parsl.dataflow.taskrecord.TaskRecord

attribute), 235
try_time_returned (parsl.dataflow.taskrecord.TaskRecord

attribute), 235

U
UNKNOWN (parsl.jobs.states.JobState attribute), 212
unsched (parsl.dataflow.states.States attribute), 232
unwrap() (parsl.executors.radical.RadicalPilotExecutor

method), 174
update_memo() (parsl.dataflow.memoization.Memoizer

method), 229
update_task_state()

(parsl.dataflow.dflow.DataFlowKernel
method), 227

W
wait_for_current_tasks()

(parsl.dataflow.dflow.DataFlowKernel
method), 227

wait_for_current_tasks()
(parsl.dataflow.dflow.DataFlowKernelLoader
class method), 117

windowed_error_handler() (in module
parsl.jobs.error_handlers), 214

wipe_task() (parsl.dataflow.dflow.DataFlowKernel
method), 227

worker_logdir (parsl.executors.HighThroughputExecutor
property), 161

WorkerLost, 220
workers_per_node (parsl.executors.HighThroughputExecutor

property), 161
workers_per_node (parsl.executors.status_handling.BlockProviderExecutor

property), 152
workers_per_node (parsl.executors.taskvine.TaskVineExecutor

property), 170

workers_per_node (parsl.executors.WorkQueueExecutor
property), 166

WorkQueueExecutor (class in parsl.executors), 161
WrappedLauncher (class in parsl.launchers), 178
write_state_file() (parsl.providers.AWSProvider

method), 185

X
xstr() (parsl.providers.AWSProvider method), 185

Index 283

	Why use Parsl?
	Parsl is Python
	Parsl works everywhere
	Parsl is flexible
	Parsl handles data
	Parsl is fast
	Parsl is a community
	Table of Contents
	Quickstart
	Installation
	Installation using Pip
	Installation using Conda

	Getting started
	Application Types
	Executors
	Execution Providers
	Launchers
	Benefits of a Data-Flow Kernel
	Starting Parsl

	Tutorial
	Usage Tracking
	For Developers

	Parsl tutorial
	Configuring Parsl
	Apps

	Python Apps
	Bash Apps
	Passing data
	Futures

	AppFutures
	DataFutures
	Data Management

	Files
	Remote Files
	Composing a workflow

	Sequential workflow
	Parallel workflow
	Parallel dataflow
	Dynamic workflows with apps that generate other apps
	Examples

	Monte Carlo workflow
	Execution and configuration

	Local execution with threads
	Local execution with pilot jobs

	User guide
	Overview
	Parsl and Concurrency
	Parsl and Execution
	Parsl and Communication
	Parameter Passing
	File Passing
	Futures
	The Parsl Environment
	Memory environment
	File system environment
	Service Environment
	Environment Summary

	Apps
	Python Apps
	Rules for Function Contents
	Functions from Modules
	Inputs and Outputs
	Special Keyword Arguments
	Outputs
	Options for Python Apps
	Limitations
	Bash Apps
	Rules for Function Contents
	Inputs and Outputs
	Special Keywords Arguments
	Outputs
	Execution Options
	MPI Apps

	Futures
	AppFutures
	DataFutures

	Passing Python objects
	Staging data files
	Parsl files
	Staging providers
	NoOpFileStaging for Local/Shared File Systems
	FTP, HTTP, HTTPS: separate task staging
	FTP, HTTP, HTTPS: in-task staging
	Globus
	Globus Configuration
	Globus Authorization
	rsync
	rsync Configuration
	rsync Authorization

	Execution
	Execution providers
	Executors
	Launchers
	Blocks
	Elasticity
	Parallelism
	Configuration
	Multi-executor
	Encryption
	Encryption performance

	MPI Apps
	HTEX and MPI Tasks
	Configuring the Provider
	Configuring the Executor
	Example Configuration
	Writing MPI-Compatible Apps
	Example Application: CosmicTagger
	Limitations

	Error handling
	Exceptions
	Retries
	Lazy fail
	Retry handlers

	Memoization and checkpointing
	App caching
	App equivalence
	Invocation equivalence
	Ignoring arguments
	Caveats
	Checkpointing
	Creating a checkpoint
	Resuming from a checkpoint

	Configuration
	Creating and Using Config Objects
	How to Configure
	Heterogeneous Resources
	Accelerators
	Multi-Threaded Applications
	Ad-Hoc Clusters
	Amazon Web Services
	ASPIRE 1 (NSCC)
	Illinois Campus Cluster (UIUC)
	Bridges (PSC)
	CC-IN2P3
	CCL (Notre Dame, TaskVine)
	Expanse (SDSC)
	Perlmutter (NERSC)
	Frontera (TACC)
	Kubernetes Clusters
	Midway (RCC, UChicago)
	Open Science Grid
	Polaris (ALCF)
	Stampede2 (TACC)
	Summit (ORNL)
	TOSS3 (LLNL)
	Further help

	Monitoring
	Monitoring configuration
	Visualization
	Workflows Page
	Workflow Summary

	Example parallel patterns
	Bag of Tasks
	Sequential workflows
	Parallel workflows
	Parallel workflows with loops
	MapReduce
	Caching expensive initialisation between tasks

	Structuring Parsl programs
	Lifted operators
	Lifted [] operator
	Lifted . operator

	Join Apps
	Parsl sub-workflows
	Using Futures from other components
	Usage
	Example of a Parsl sub-workflow
	Example of invoking a Futures-driven task from another system
	Terminology

	Usage statistics collection
	Why are we doing this?
	Opt-In
	What is sent?
	How is the data sent?
	When is the data sent?
	What will the data be used for?
	Feedback

	Plugins
	Executors
	Providers, Launchers and Channels
	File staging
	Default stdout/stderr name generation
	Memoization/checkpointing
	Invoking other asynchronous components

	Measuring performance with parsl-perf

	FAQ
	How can I debug a Parsl script?
	How can I view outputs and errors from apps?
	How can I make an App dependent on multiple inputs?
	Can I pass any Python object between apps?
	How do I specify where apps should be run?
	Workers do not connect back to Parsl
	parsl.errors.ConfigurationError
	Remote execution fails with SystemError(unknown opcode)
	Parsl complains about missing packages
	How do I run code that uses Python2.X?
	Parsl hangs
	How can I start a Jupyter notebook over SSH?
	How can I sync my conda environment and Jupyter environment?
	Addressing SerializationError
	How do I cite Parsl?

	API Reference guide
	Core
	parsl.app.app.python_app
	parsl.app.app.bash_app
	parsl.app.app.join_app
	parsl.dataflow.futures.AppFuture
	parsl.dataflow.dflow.DataFlowKernelLoader
	parsl.monitoring.MonitoringHub

	Configuration
	parsl.config.Config
	parsl.set_stream_logger
	parsl.set_file_logger
	parsl.addresses.address_by_hostname
	parsl.addresses.address_by_interface
	parsl.addresses.address_by_query
	parsl.addresses.address_by_route
	parsl.utils.get_all_checkpoints
	parsl.utils.get_last_checkpoint

	Channels
	parsl.channels.base.Channel
	parsl.channels.LocalChannel
	parsl.channels.SSHChannel
	parsl.channels.OAuthSSHChannel
	parsl.channels.SSHInteractiveLoginChannel

	Data management
	parsl.app.futures.DataFuture
	parsl.data_provider.data_manager.DataManager
	parsl.data_provider.staging.Staging
	parsl.data_provider.files.File
	parsl.data_provider.ftp.FTPSeparateTaskStaging
	parsl.data_provider.ftp.FTPInTaskStaging
	parsl.data_provider.file_noop.NoOpFileStaging
	parsl.data_provider.globus.GlobusStaging
	parsl.data_provider.http.HTTPSeparateTaskStaging
	parsl.data_provider.http.HTTPInTaskStaging
	parsl.data_provider.rsync.RSyncStaging

	Executors
	parsl.executors.base.ParslExecutor
	parsl.executors.status_handling.BlockProviderExecutor
	parsl.executors.ThreadPoolExecutor
	parsl.executors.HighThroughputExecutor
	parsl.executors.WorkQueueExecutor
	parsl.executors.taskvine.TaskVineExecutor
	parsl.executors.FluxExecutor
	parsl.executors.radical.RadicalPilotExecutor

	Launchers
	parsl.launchers.base.Launcher
	parsl.launchers.SimpleLauncher
	parsl.launchers.SingleNodeLauncher
	parsl.launchers.SrunLauncher
	parsl.launchers.AprunLauncher
	parsl.launchers.SrunMPILauncher
	parsl.launchers.GnuParallelLauncher
	parsl.launchers.MpiExecLauncher
	parsl.launchers.JsrunLauncher
	parsl.launchers.WrappedLauncher

	Providers
	parsl.providers.AdHocProvider
	parsl.providers.AWSProvider
	parsl.providers.CobaltProvider
	parsl.providers.CondorProvider
	parsl.providers.GoogleCloudProvider
	parsl.providers.GridEngineProvider
	parsl.providers.LocalProvider
	parsl.providers.LSFProvider
	parsl.providers.SlurmProvider
	parsl.providers.TorqueProvider
	parsl.providers.KubernetesProvider
	parsl.providers.PBSProProvider
	parsl.providers.base.ExecutionProvider
	parsl.providers.cluster_provider.ClusterProvider

	Batch jobs
	parsl.jobs.states.JobState
	parsl.jobs.states.JobStatus
	parsl.jobs.error_handlers.noop_error_handler
	parsl.jobs.error_handlers.simple_error_handler
	parsl.jobs.error_handlers.windowed_error_handler

	Exceptions
	parsl.app.errors.AppBadFormatting
	parsl.app.errors.AppException
	parsl.app.errors.AppTimeout
	parsl.app.errors.BadStdStreamFile
	parsl.app.errors.BashAppNoReturn
	parsl.app.errors.BashExitFailure
	parsl.app.errors.MissingOutputs
	parsl.app.errors.ParslError
	parsl.errors.ConfigurationError
	parsl.errors.OptionalModuleMissing
	parsl.executors.errors.ExecutorError
	parsl.executors.errors.ScalingFailed
	parsl.executors.errors.BadMessage
	parsl.dataflow.errors.DataFlowException
	parsl.dataflow.errors.BadCheckpoint
	parsl.dataflow.errors.DependencyError
	parsl.dataflow.errors.JoinError
	parsl.launchers.errors.BadLauncher
	parsl.providers.errors.ExecutionProviderException
	parsl.providers.errors.ScaleOutFailed
	parsl.providers.errors.SchedulerMissingArgs
	parsl.providers.errors.ScriptPathError
	parsl.channels.errors.ChannelError
	parsl.channels.errors.BadHostKeyException
	parsl.channels.errors.BadScriptPath
	parsl.channels.errors.BadPermsScriptPath
	parsl.channels.errors.FileExists
	parsl.channels.errors.AuthException
	parsl.channels.errors.SSHException
	parsl.channels.errors.FileCopyException
	parsl.executors.high_throughput.errors.WorkerLost
	parsl.executors.high_throughput.interchange.ManagerLost
	parsl.serialize.errors.DeserializationError
	parsl.serialize.errors.SerializationError

	Internal
	parsl.app.app.AppBase
	parsl.app.bash.BashApp
	parsl.app.python.PythonApp
	parsl.dataflow.dflow.DataFlowKernel
	parsl.dataflow.memoization.id_for_memo
	parsl.dataflow.memoization.Memoizer
	parsl.dataflow.states.FINAL_STATES
	parsl.dataflow.states.States
	parsl.dataflow.taskrecord.TaskRecord
	parsl.jobs.job_status_poller.JobStatusPoller
	parsl.jobs.strategy.Strategy
	parsl.utils.Timer

	Developer documentation
	Contributing
	Roadmap
	Code Maintenance
	New Features and Integrations
	Tutorials, Training, and User Support
	Longer-term Objectives

	Packaging
	Doc Docs
	Documentation location
	Remote builds
	Local builds
	Regenerate module stubs

	Historical Documents
	Historical: Changelog
	Parsl 1.2.0
	High Throughput Executor
	Work Queue Executor
	Flux Executor
	Condor Provider
	LSF Provider
	SLURM Provider
	Grid Engine Provider
	Monitoring
	General new features
	General bug fixes
	Platform and packaging
	Internal tidying
	Documentation, error messages and human-readable text
	CI/testing
	Parsl 1.1.0
	Deprecated and Removed features
	New Functionality
	Parsl 1.0.0
	Deprecated and Removed features
	New Functionality
	Bug Fixes
	Parsl 0.9.0
	New Functionality
	Bug Fixes
	Parsl 0.8.0
	New Functionality
	Bug Fixes
	Parsl 0.7.2
	New Functionality
	Parsl 0.7.1
	New Functionality
	Bug fixes
	Parsl 0.7.0
	New functionality
	Bug fixes (highlights)
	Parsl 0.6.1
	Parsl 0.6.0
	New functionality
	Bug Fixes
	Parsl 0.5.1
	New functionality
	Bug Fixes
	Parsl 0.5.2
	Bug Fixes
	Parsl 0.5.0
	New functionality
	Bug Fixes
	Parsl 0.4.1
	New functionality
	Bug Fixes
	Parsl 0.4.0
	New functionality
	Bug Fixes
	Parsl 0.3.1
	Parsl 0.3.0
	New functionality
	Bug fixes
	Parsl 0.2.0
	New functionality
	Parsl 0.1.0
	New functionality
	Bug Fixes

	Historical: Libsubmit Changelog
	Libsubmit 0.4.1
	New functionality
	Libsubmit 0.4.0
	New functionality
	Bug Fixes

	Historical: Swift vs Parsl
	Parallel Evaluation
	Mappers
	Remote-Execution
	Design

	Historical: Performance and Scalability
	Scalability
	Strong scaling
	Weak scaling
	Throughput
	Summary

	Indices and tables
	Index

