
Parsetoml Documentation
Release 0.2.0

Maurizio Tomasi

May 18, 2018

Contents

1 Introduction 3
1.1 Parsing a TOML file . 3
1.2 Navigating through the contents of a TOML file . 4

2 Installation 5

3 Parse functions 7
3.1 Data types . 7
3.2 Procedures . 8

4 Accessing keys and values in a parsed TOML tree 11
4.1 TOML addresses . 11
4.2 Generic functions . 12
4.3 Tree traversal . 13

5 Indices and tables 15

i

ii

Parsetoml Documentation, Release 0.2.0

Parsetoml is a Nim library that parses text files written in TOML format.

Contents 1

Parsetoml Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Introduction

This manual describes Parsetoml, a Nim library to parse TOML files. The library is meant to be compatible with
version 0.3.1 of the TOML specification. It implements a streaming parser, i.e., a parser which does not hold the
whole file to parse in memory but rather reads one character at a time. The parser outputs a tree data structure based
on the type TomlTableRef.

In this section we provide a short overview of the usage of the library. We will use the following TOML file as an
example:

[files]
input_file_name = "test.txt"
output_file_name = "output.txt"

[[filters]]
command = "head"
lines = 5

[[filters]]
command = "cut"
fields = [1,2,4]

The purpose of this TOML file is to specify how to apply certain filters to an input text file, and where the result should
be saved. It describes the following shell command:

cat test.txt | head -n 5 | cut -f 1,2,4 > output.txt

1.1 Parsing a TOML file

To parse a file, there are a few functions that can be used. We’ll use the most straightforward one, parseFile():
it can either accept a File object or a string containing the name of the file to read. Assuming that the name of the
TOML file above is test.toml, we can therefore read the file in memory and dump its internal representation with
the following code:

3

Parsetoml Documentation, Release 0.2.0

import parsetoml

let data = parsetoml.parseFile("test.toml")
parsetoml.dump(data)

(For the sake of clarity, we refer to functions from the Parsetoml library with a full qualification, e.g., parsetoml.
parseFile. This is however not necessary.) The output of the program is the following:

files = table
input_file_name = string("test.txt")
output_file_name = string("output.txt")

filters[0] = table
command = string("head")
lines = int(5)

filters[1] = table
command = string("cut")
fields = array(int(1)int(2)int(4))

The purpose of the dump() function is to write a readable representation of the tree of nodes created by functions
like parseFile(). It is meant primarly for debugging, and it is a good tool to understand how Parsetoml works
internally.

1.2 Navigating through the contents of a TOML file

The data variable has type TomlTableRef, which is a reference to a TomlTable object, i.e., to an ordered
table which associates strings (the keys in the TOML file, e.g., input_file_name) with values. The latter are
represented by a TomlValueRef type.

4 Chapter 1. Introduction

CHAPTER 2

Installation

To install the Parsetoml library, you can use Nimble:

nimble install parsetoml

The Git repository containing the development version is available on GitHub at the address https://github.com/
ziotom78/parsetoml.

5

https://github.com/ziotom78/parsetoml
https://github.com/ziotom78/parsetoml

Parsetoml Documentation, Release 0.2.0

6 Chapter 2. Installation

CHAPTER 3

Parse functions

In this section we provide a description of the functions in the Parsetoml library that read a textual representation of a
TOML file and return a tree of nodes.

3.1 Data types

objectTomlTableRef
A reference to a TomlTable. This is the default return value for all the functions that parse text in TOML
format.

objectTomlTable
This data type is used by Parsetoml to associate key names with TOML values. The library uses a
OrderedTable instead of a Table, so that the order of declaration of the keys in the TOML file is pre-
served.

objectTomlValueRef
A reference to a TomlValue. Objects of this kind populate TomlTable objects.

objectTomlValue
The value associated with a key in a TOML file. It is a parametric type defined by the following code:

TomlValue* = object
case kind* : TomlValueKind
of TomlValueKind.None: nil
of TomlValueKind.Int: intVal* : int64
of TomlValueKind.Float: floatVal* : float64
of TomlValueKind.Bool: boolVal* : bool
of TomlValueKind.Datetime: dateTimeVal* : TomlDateTime
of TomlValueKind.String: stringVal* : string
of TomlValueKind.Array: arrayVal* : seq[TomlValueRef]
of TomlValueKind.Table: tableVal* : TomlTableRef

objectTomlError
This exception object is used by Parsetoml to signal errors happened during the parser of text. It has just one

7

Parsetoml Documentation, Release 0.2.0

field, location, which is of type ParserState and has the following public fields:

Field Type Description
fileName string Name of the file being parsed (might be “”)
line int Number of the line where the error was detected
column int Number of the column where the error was detected
stream streams.Stream Input stream

The following example shows how to properly signal an error during the parsing of a TOML file to the user:

try:
Parse some TOML file here

except parsetoml.TomlError:
Retrieve information about the location of the error
let loc = (ref parsetoml.TomlError)(getCurrentException()).location
Print a nicely formatted string explaining what went wrong
echo(loc.fileName & ":" & $(loc.line) & ":" & $(loc.column)

& ": " & getCurrentExceptionMsg())

3.2 Procedures

The Parsetoml library provides several functions to parse text in TOML format. Here is an example of application of
the parseString() procedure:

import parsetoml

We define a "Parameters" tuple which is initialized using data
from a TOML file.
type

Parameters = tuple
foo : string
bar : int64

proc parseParams(tree : TomlTableRef) : Parameters =
result.foo = tree.getString("input.foo")
result.bar = tree.getInt("input.bar")

let tree = parsetoml.parseString("""
[input]
foo = "a"
bar = 14
""")

let params = parseParams(tree)
assert params.foo == "a"
assert params.bar == 14

procparseString(tomlStr : string, fileName : string = "")→ TomlTableRef
Assuming that tomlStr is a string containing text in TOML format, this function parses it and returns a reference
to a newly created TomlTable object.

Errors in tomlStr are signaled by raising exceptions of type TomlError. The location.fileName field
of the exception itself will be set to fileName.

8 Chapter 3. Parse functions

Parsetoml Documentation, Release 0.2.0

procparseStream(inputStream : streams.Stream, fileName : string = "")→ TomlTableRef
This function is similar to parseString(), but it reads data from inputStream. The stream is parsed while it
is being read (i.e., the parsing does not have to wait till the whole file has been read in memory).

procparseFile(f : File, fileName : string = "")→ TomlTableRef
The same as parseStream(), but this procedure accepts a File instead of a streams.Stream.

procparseFile(fileName : string)→ TomlTableRef
This is a wrapper to the previous implementation of parseFile: it handles the opening/closing of the file
named fileName automatically.

3.2. Procedures 9

Parsetoml Documentation, Release 0.2.0

10 Chapter 3. Parse functions

CHAPTER 4

Accessing keys and values in a parsed TOML tree

Once a TOML file has been parsed, the data are available in a TomlTableRef object, which implements a tree-like
structure. The Parsetoml library provides several ways to access the information encoded in the tree:

1. Generic functions (easy)

2. Tree traversal (complex but powerful)

4.1 TOML addresses

An address is a string which identifies the position of a key/value pair within a TOML file. Parsetoml allows to quickly
retrieve the value of a key given its address, without the need of traversing the whole TOML tree.

Addresses can reference sub-tables as well as elements of table arrays: the names of nested sub-tables are separated
by dots, while integer numbers within square brackets indicate elements of a table array.

As an instance, consider the following TOML table:

[[fruit]]
name = "apple"

[fruit.physical]
color = "red"
shape = "round"

[[fruit.variety]]
name = "red delicious"

[[fruit.variety]]
name = "granny smith"

[[fruit]]
name = "banana"

(continues on next page)

11

Parsetoml Documentation, Release 0.2.0

(continued from previous page)

[[fruit.variety]]
name = "plantain"

This TOML file contains an array of tables named fruit; the array contains two elements: an apple and a banana.
Each element contains an additional array of tables, named in both cases fruit.variety: the apple element has
two varieties, while the banana element has just one.

The value granny smith is associated to the key whose address is fruit[0].variety[1].name, while the
value round is associated to the key fruit[0].physical.shape. Here is a commented version of the TOML
file where each key/value pair has its address spelled explicitly:

[[fruit]]
name = "apple" # fruit[0].name

[fruit.physical]
color = "red" # fruit[0].physical.color
shape = "round" # fruit[0].physical.color

[[fruit.variety]]
name = "red delicious" # fruit[0].variety[0].name

[[fruit.variety]]
name = "granny smith" # fruit[0].variety[1].name

[[fruit]]
name = "banana" # fruit[1].name

[[fruit.variety]]
name = "plantain" # fruit[1].variety[0].name

4.2 Generic functions

Each of the functions listed in this section returns the value associated with the key whose address is passed in the
parameters named either fullAddr or address.

procgetValueFromFullAddr(table : TomlTableRef, fullAddr : string)→ TomlValueRef
Looks for an element in table that matches the address fullAddr and return the corresponding value. If no match
is found, a TomlValueRef object with kind TomlValueKind equal to None is returned.

procgetInt(table : TomlTableRef, address : string)→ int64
Wrapper to :nim:proc::getValueFromFullAddr. if address points to an key that does not exists, or if the type of
the key pointed by address is not an integer, a KeyError exception is raised.

procgetInt(table : TomlTableRef, address : string, default : int64)→ int64
Wrapper to :nim:proc::getValueFromFullAddr. if the type of the key pointed by address is not an integer, a
KeyError exception is raised. However, if the key does not exist, the value of default will be returned instead
(i.e., no KeyError exception is raised).

procgetFloat(table : TomlTableRef, address : string)→ float64
Wrapper to :nim:proc::getValueFromFullAddr. if address points to an key that does not exists, or if the type of
the key pointed by address is not a floating point value, a KeyError exception is raised.

procgetFloat(table : TomlTableRef, address : string, default : float64)→ float64
Wrapper to :nim:proc::getValueFromFullAddr. if the type of the key pointed by address is not a floating point

12 Chapter 4. Accessing keys and values in a parsed TOML tree

Parsetoml Documentation, Release 0.2.0

value, a KeyError exception is raised. However, if the key does not exist, the value of default will be returned
instead (i.e., no KeyError exception is raised).

procgetBool(table : TomlTableRef, address : string)→ bool
Wrapper to :nim:proc::getValueFromFullAddr. if address points to an key that does not exists, or if the type of
the key pointed by address is not a Boolean, a KeyError exception is raised.

procgetBool(table : TomlTableRef, address : string, default : bool)→ bool
Wrapper to :nim:proc::getValueFromFullAddr. if the type of the key pointed by address is not a Boolean, a
KeyError exception is raised. However, if the key does not exist, the value of default will be returned instead
(i.e., no KeyError exception is raised).

procgetString(table : TomlTableRef, address : string)→ string
Wrapper to :nim:proc::getValueFromFullAddr. if address points to an key that does not exists, or if the type of
the key pointed by address is not a string, a KeyError exception is raised.

procgetString(table : TomlTableRef, address : string, default : string)→ string
Wrapper to :nim:proc::getValueFromFullAddr. if the type of the key pointed by address is not a string, a
KeyError exception is raised. However, if the key does not exist, the value of default will be returned in-
stead (i.e., no KeyError exception is raised).

procgetDateTime(table : TomlTableRef, address : string)→ parsetoml.TomlDateTime
Wrapper to :nim:proc::getValueFromFullAddr. if address points to an key that does not exists, or if the type of
the key pointed by address is not a date/time, a KeyError exception is raised.

procgetDateTime(table : TomlTableRef, address : string, default : parsetoml.TomlDateTime) → parse-
toml.TomlDateTime

Wrapper to :nim:proc::getValueFromFullAddr. if the type of the key pointed by address is not a date/time, a
KeyError exception is raised. However, if the key does not exist, the value of default will be returned instead
(i.e., no KeyError exception is raised).

4.3 Tree traversal

It is possible to directly access the fields of a TomlTableRef to perform a tree traversal of the data structure. The
implementation of the dump() procedure is extremely interesting in this respect:

proc dump*(table : TomlTableRef, indentLevel : int = 0) =
let space = spaces(indentLevel)
for key, val in pairs(table):

if val.kind == TomlValueKind.Table:
echo space & key & " = table"
dump(val.tableVal, indentLevel + 4)

elif (val.kind == TomlValueKind.Array and
val.arrayVal[0].kind == TomlValueKind.Table):

for idx, val in val.arrayVal:
echo space & key & "[" & $idx & "] = table"
dump(val.tableVal, indentLevel + 4)

else:
echo space & key & " = " & $(val[])

A good source of information is the source code itself, which can be found on the GitHub website.

4.3. Tree traversal 13

https://github.com/ziotom78/parsetoml/blob/master/parsetoml.nim

Parsetoml Documentation, Release 0.2.0

14 Chapter 4. Accessing keys and values in a parsed TOML tree

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

15

Parsetoml Documentation, Release 0.2.0

16 Chapter 5. Indices and tables

Index

G
getBool (Nim procedure), 13
getDateTime (Nim procedure), 13
getFloat (Nim procedure), 12
getInt (Nim procedure), 12
getString (Nim procedure), 13
getValueFromFullAddr (Nim procedure), 12

P
parseFile (Nim procedure), 9
parseStream (Nim procedure), 8
parseString (Nim procedure), 8

17

	Introduction
	Parsing a TOML file
	Navigating through the contents of a TOML file

	Installation
	Parse functions
	Data types
	Procedures

	Accessing keys and values in a parsed TOML tree
	TOML addresses
	Generic functions
	Tree traversal

	Indices and tables

