
parserator Documentation
Release 0.4.1

Cathy Deng, Forest Gregg

Mar 29, 2018





Contents

1 What a probabilistic parser does 3

2 Use cases for a probabilistic parser 5

3 Installation 7

4 How to make a parser using parserator 9

5 Important links 13

6 Indices and tables 15

i



ii



parserator Documentation, Release 0.4.1

Contents:

Parserator is a toolkit for making domain-specific probabilistic parsers, built on python-crfsuite. To create a parser, all
you need is some training data to teach your parser about its domain.

Parserator will help you:

• initialize a parser module

• create labeled training data from unlabeled strings

• train your parser model on labeled training data

Contents 1



parserator Documentation, Release 0.4.1

2 Contents



CHAPTER 1

What a probabilistic parser does

A probabilistic parser makes informed guesses about the structure of messy, unstructured text. Given a string, a parser
will break it out into labeled components.

Parserator creates parsers that use conditional random fields to label components based on (1) features of the compo-
nent string and (2) the order of labels. A probabilistic parser learns about features and labels from labeled training
data.

3



parserator Documentation, Release 0.4.1

4 Chapter 1. What a probabilistic parser does



CHAPTER 2

Use cases for a probabilistic parser

A probabilistic parser is particularly useful for sets of strings that have common structure/patterns, but can deviate
from those patterns in ways that are difficult to anticipate with hard coded rules.

For example, in most cases, US addresses start with street number. But there are exceptions: sometimes valid addresses
deviate from this pattern (e.g. addresses starting with building name, PO box) and furthermore, addresses in real
datasets often include typos & errors. Because there are infinitely many patterns and possible typos to account for, a
probabilistic parser is well-suited to parse US addresses.

A neat thing about a probabilistic approach (as opposed to a rule-based approach) is that the parser can continually
learn from new training data, and continually improve its performance.

Some examples of existing parsers that use parserator:

• usaddress - Our first probabilistic parser and the basis for the parserator toolkit, it parses any address in the
United States. Read our blog post on how it works.

• probablepeople - A parser for romanized person names.

Try out these parsers on our web interface!

Examples of other domains where a probabilistic parser can be useful:

• addresses in another country

• product names/descriptions (e.g. parsing ‘Twizzlers Twists, Strawberry, 16-Ounce Bags (Pack of 6)’ into brand,
item, flavor, weight, etc)

• citations

5

https://github.com/datamade/usaddress
http://datamade.us/blog/parsing-addresses-with-usaddress
https://github.com/datamade/probablepeople
http://parserator.datamade.us


parserator Documentation, Release 0.4.1

6 Chapter 2. Use cases for a probabilistic parser



CHAPTER 3

Installation

pip install parserator

7



parserator Documentation, Release 0.4.1

8 Chapter 3. Installation



CHAPTER 4

How to make a parser using parserator

1. Initialize a new parser

parserator init [YOUR PARSER NAME]
python setup.py develop

The init command will initialize a new parser in your current directory. For example, running
parserator init foo will generate the following directories and files:

foo/
foo/__init__.py
foo_data/
foo_data/labeled_xml/
foo_data/unlabeled/
setup.py
tests/
tests/test_tokenizing.py

2. Configure the parser to your domain

• configure labels

– The labels (i.e. the set of possible tags for the tokens) are defined by LABELS in __init__.
py

• configure tokenizer

– The tokenize function in __init__.py determines how any given string will be split into a
sequence of tokens to be tagged, via a regex pattern object. In defining the regex pattern, it’s
helpful to consider what characters should split tokens (e.g. should the string ‘foo;bar’ be one
token or two) and if so, how characters should be captured in tokens (e.g. should ‘foo;bar’ be
split into [‘foo;’, ‘bar’] or [‘foo’, ‘;bar’]

– In the tests repo, there is a test file for testing the performance of the tokenize function. You
can adapt it to your needs & run the test w/ nosetests . to ensure that you are splitting
strings properly.

9



parserator Documentation, Release 0.4.1

• optional: additional config

– PARENT_LABEL and GROUP_LABEL are training data XML tags (see #4 for more info on
the training data format). For example, the name parser has PARENT_LABEL = ‘Name’ &
GROUP_LABEL = ‘NameCollection’

3. Define features relevant to your domain

• In __init__.py, features are defined in the tokens2features and tokenFeatures functions. Given
an individual token, tokenFeatures should return features of that token - for example, a length feature
and a word shape (casing) feature.

• Given a sequence of tokens, tokens2features should return all features for the tokens in the sequence,
including positional features - for example, the features of previous/next tokens, and features for
tokens that start/end a string.

• For examples of features in other domains, see features for names and features for U.S. addresses.

4. Prepare training data

• Parserator reads training data in the following XML form, where token text is wrapped in tags
representing the correct label, and sequences of tokens are wrapped in a parent label (specified by
PARENT_LABEL in __init__.py):

<Collection>
<TokenSequence><label>token</label> <label>token</label> <label>token</

→˓label></TokenSequence>
<TokenSequence><label>token</label> <label>token</label></TokenSequence>
<TokenSequence><label>token</label> <label>token</label> <label>token</

→˓label></TokenSequence>
</Collection>

• If you have labeled strings in other formats, they will need to be converted to this XML format for
parserator to read the data. In data_prep_utils.py, there are some tools that can help you do
this. For example, the sequence2XML function reads labeled sequences represented as a list of tuples
and returns the analogous XML represention: [(token, label), (token, label), ..
.] -> <TokenSequence><label>token</label> <label>token</label> ... </
TokenSequence>

• If you only have raw, unlabeled strings, parserator can help you manually label tokens through a
command line interface. To start a manual labeling task, run parserator label [infile]
[outfile] [modulename]

– The infile option should be the filepath for a csv, where each line is a string

– The outfile option should be the filepath for an xml file, where manually labeled training data
will be written. If you specify an existing xml file as the outfile, the newly labeled strings will be
appended at the end of the xml file.

– When you exit a manual labeling task, any strings from the infile that were not labeled will be
written to a separate csv, with unlabeled_ prepended to the filename, so that in the future, you
can pick up where you left off.

– Within the manual labeling task, you will be prompted with tokens to label. To label tokens, enter
the number corresponding to the correct tag. To see a mapping of numbers to labels, type ‘help’

– If the parser model (learned_settings.crfsuite by default) already exists, the console labeler will
use it to inform the manual labeling task.

5. Train your parser

10 Chapter 4. How to make a parser using parserator

https://github.com/datamade/probablepeople/blob/master/probablepeople/__init__.py#L108-L177
https://github.com/datamade/usaddress/blob/master/usaddress/__init__.py#L134-L180


parserator Documentation, Release 0.4.1

• To train your parser on your labeled training data, run parserator train [traindata]
[modulename]

• The traindata argument can be the path to a single file, a list of filepaths separated by a comma (no space), or a glob pattern representing all xml files in a directory (quoted). Examples:

parserator train mytraindata/labeled.xml usaddress
parserator train file1.xml,file2.xml,file3.xml usaddress
parserator train "my/training/data/*.xml" usaddress

• After training, your parser will have an updated model, in the form of a .crfsuite settings file
(learned_settings.crfsuite by default)

• If there was an existing .crfsuite settings file, it will be renamed with the model creation timestamp
appended

• Once the settings file exists, the parse and tag methods use it to label tokens in new strings

6. Repeat steps 3-5 as needed!

11



parserator Documentation, Release 0.4.1

12 Chapter 4. How to make a parser using parserator



CHAPTER 5

Important links

• Documentation: http://parserator.rtfd.org/

• Web interface for trying out parsers: http://parserator.datamade.us/

• Blog post: http://datamade.us/blog/parse-name-or-parse-anything-really/

• Repository: https://github.com/datamade/parserator

• Issues: https://github.com/datamade/parserator/issues

• Distribution: https://pypi.python.org/pypi/parserator

13

http://parserator.rtfd.org/
http://parserator.datamade.us/
http://datamade.us/blog/parse-name-or-parse-anything-really/
https://github.com/datamade/parserator
https://github.com/datamade/parserator/issues
https://pypi.python.org/pypi/parserator


parserator Documentation, Release 0.4.1

14 Chapter 5. Important links



CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15


	What a probabilistic parser does
	Use cases for a probabilistic parser
	Installation
	How to make a parser using parserator
	Important links
	Indices and tables

