

 Navigation

 	
 index

 	
 next |

 	Paris 1.2.3 documentation

Welcome to Paris’s documentation!

Contents:

	Philosophy

	Installation
	Packagist

	Download

	Configuration
	Setup

	Model prefixing

	Further Configuration

	Query logging

	Models
	Model Classes

	Database Tables

	ID Column

	Associations
	Summary

	Has-one

	Has many

	Belongs to

	Has many through

	Querying
	Getting data from objects, updating and inserting data

	Filters
	Filters with arguments

	Transactions

	A word on validation

	Migrations

	Mulitple Connections

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Jamie Matthews, Simon Holywell, Durham Hale.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	develop

 	v1.3.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Paris 1.2.3 documentation

Philosophy

Paris is built with the same less is more philosophy as Idiorm [http://github.com/j4mie/idiorm/].

 Copyright 2012, Jamie Matthews, Simon Holywell, Durham Hale.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	develop

 	v1.3.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Paris 1.2.3 documentation

Installation

Packagist

This library is available through Packagist with the vendor and package
identifier of j4mie/paris

Please see the Packagist documentation [http://packagist.org/] for further information.

Download

You can clone the git repository, download idiorm.php or a release tag
and then drop the idiorm.php file in the vendors/3rd party/libs
directory of your project.

 Copyright 2012, Jamie Matthews, Simon Holywell, Durham Hale.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	develop

 	v1.3.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Paris 1.2.3 documentation

Configuration

Setup

Paris requires Idiorm [http://github.com/j4mie/idiorm/]. Install Idiorm and Paris somewhere in your
project directory, and require both.

require_once 'your/path/to/idiorm.php';
require_once 'your/path/to/paris.php';

Then, you need to tell Idiorm how to connect to your database. For
full details of how to do this, see `Idiorm’s documentation`_.

Briefly, you need to pass a Data Source Name connection string to the
configure method of the ORM class.

ORM::configure('sqlite:./example.db');

You may also need to pass a username and password to your database
driver, using the username and password configuration options.
For example, if you are using MySQL:

ORM::configure('mysql:host=localhost;dbname=my_database');
ORM::configure('username', 'database_user');
ORM::configure('password', 'top_secret');

Model prefixing

Setting: Model::$auto_prefix_models

To save having type out model class name prefixes whenever code utilises Model::for_table()
it is possible to specify a prefix that will be prepended onto the class name.

The model prefix is treated the same way as any other class name when Paris
attempts to convert it to a table name. This is documented in the Models
section of the documentation.

Here is a namespaced example to make it clearer:

Model::$auto_prefix_models = '\\Tests\\';
Model::factory('Simple')->find_many(); // SQL executed: SELECT * FROM `tests_simple`
Model::factory('SimpleUser')->find_many(); // SQL executed: SELECT * FROM `tests_simple_user`

Note

It is possible to define the table name by setting $_table in your
individual model classes. As documented in the Models section of
the documentation.

Further Configuration

The only other configuration options provided by Paris itself are the
$_table and $_id_column static properties on model classes. To
configure the database connection, you should use Idiorm’s configuration
system via the ORM::configure method.

If you are using multiple connections, the optional $_connection_key static property may also be used to provide a default string key indicating which database connection in ORM should be used.

See `Idiorm’s documentation`_ for full details.

Query logging

Idiorm can log all queries it executes. To enable query logging, set the
logging option to true (it is false by default).

ORM::configure('logging', true);

When query logging is enabled, you can use two static methods to access
the log. ORM::get_last_query() returns the most recent query
executed. ORM::get_query_log() returns an array of all queries
executed.

 Copyright 2012, Jamie Matthews, Simon Holywell, Durham Hale.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	develop

 	v1.3.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Paris 1.2.3 documentation

Models

Model Classes

You should create a model class for each entity in your application. For
example, if you are building an application that requires users, you
should create a User class. Your model classes should extend the
base Model class:

class User extends Model {
}

Paris takes care of creating instances of your model classes, and
populating them with data from the database. You can then add
behaviour to this class in the form of public methods which implement
your application logic. This combination of data and behaviour is the
essence of the Active Record pattern [http://martinfowler.com/eaaCatalog/activeRecord.html].

Database Tables

Your User class should have a corresponding user table in your
database to store its data.

By default, Paris assumes your class names are in CapWords style, and
your table names are in lowercase_with_underscores style. It will
convert between the two automatically. For example, if your class is
called CarTyre, Paris will look for a table named car_tyre.

If you are using namespaces then they will be converted to a table name
in a similar way. For example \Models\CarTyre would be converted to
models_car_tyre. Note here that backslashes are replaced with underscores
in addition to the CapWords replacement discussed in the previous paragraph.

To override this default behaviour, add a public static property to
your class called $_table:

class User extends Model {
 public static $_table = 'my_user_table';
}

Auto Prefixing

To save having type out model class name prefixes whenever code utilises Model::for_table()
it is possible to specify a prefix that will be prepended onto the class name.

See the Configuration documentation for more details.

ID Column

Paris requires that your database tables have a unique primary key
column. By default, Paris will use a column called id. To override
this default behaviour, add a public static property to your class
called $_id_column:

class User extends Model {
 public static $_id_column = 'my_id_column';
}

Note - Paris has its own default ID column name mechanism, and
does not respect column names specified in Idiorm’s configuration.

 Copyright 2012, Jamie Matthews, Simon Holywell, Durham Hale.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	develop

 	v1.3.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Paris 1.2.3 documentation

Associations

Paris provides a simple API for one-to-one, one-to-many and many-to-many
relationships (associations) between models. It takes a different
approach to many other ORMs, which use associative arrays to add
configuration metadata about relationships to model classes. These
arrays can often be deeply nested and complex, and are therefore quite
error-prone.

Instead, Paris treats the act of querying across a relationship as a
behaviour, and supplies a family of helper methods to help generate
such queries. These helper methods should be called from within
methods on your model classes which are named to describe the
relationship. These methods return ORM instances (rather than actual
Model instances) and so, if necessary, the relationship query can be
modified and added to before it is run.

Summary

The following list summarises the associations provided by Paris, and
explains which helper method supports each type of association:

One-to-one

Use has_one in the base, and belongs_to in the associated model.

One-to-many

Use has_many in the base, and belongs_to in the associated
model.

Many-to-many

Use has_many_through in both the base and associated models.

Below, each association helper method is discussed in detail.

Has-one

One-to-one relationships are implemented using the has_one method.
For example, say we have a User model. Each user has a single
Profile, and so the user table should be associated with the
profile table. To be able to find the profile for a particular user,
we should add a method called profile to the User class (note
that the method name here is arbitrary, but should describe the
relationship). This method calls the protected has_one method
provided by Paris, passing in the class name of the related object. The
profile method should return an ORM instance ready for (optional)
further filtering.

class Profile extends Model {
}

class User extends Model {
 public function profile() {
 return $this->has_one('Profile');
 }
}

The API for this method works as follows:

// Select a particular user from the database
$user = Model::factory('User')->find_one($user_id);

// Find the profile associated with the user
$profile = $user->profile()->find_one();

By default, Paris assumes that the foreign key column on the related
table has the same name as the current (base) table, with _id
appended. In the example above, Paris will look for a foreign key column
called user_id on the table used by the Profile class. To
override this behaviour, add a second argument to your has_one call,
passing the name of the column to use.

Has many

One-to-many relationships are implemented using the has_many method.
For example, say we have a User model. Each user has several
Post objects. The user table should be associated with the
post table. To be able to find the posts for a particular user, we
should add a method called posts to the User class (note that
the method name here is arbitrary, but should describe the
relationship). This method calls the protected has_many method
provided by Paris, passing in the class name of the related objects.
Pass the model class name literally, not a pluralised version. The
posts method should return an ORM instance ready for (optional)
further filtering.

class Post extends Model {
}

class User extends Model {
 public function posts() {
 return $this->has_many('Post'); // Note we use the model name literally - not a pluralised version
 }
}

The API for this method works as follows:

// Select a particular user from the database
$user = Model::factory('User')->find_one($user_id);

// Find the posts associated with the user
$posts = $user->posts()->find_many();

By default, Paris assumes that the foreign key column on the related
table has the same name as the current (base) table, with _id
appended. In the example above, Paris will look for a foreign key column
called user_id on the table used by the Post class. To override
this behaviour, add a second argument to your has_many call, passing
the name of the column to use.

Belongs to

The ‘other side’ of has_one and has_many is belongs_to. This
method call takes identical parameters as these methods, but assumes the
foreign key is on the current (base) table, not the related table.

class Profile extends Model {
 public function user() {
 return $this->belongs_to('User');
 }
}

class User extends Model {
}

The API for this method works as follows:

// Select a particular profile from the database
$profile = Model::factory('Profile')->find_one($profile_id);

// Find the user associated with the profile
$user = $profile->user()->find_one();

Again, Paris makes an assumption that the foreign key on the current
(base) table has the same name as the related table with _id
appended. In the example above, Paris will look for a column named
user_id. To override this behaviour, pass a second argument to the
belongs_to method, specifying the name of the column on the current
(base) table to use.

Has many through

Many-to-many relationships are implemented using the
has_many_through method. This method has only one required argument:
the name of the related model. Supplying further arguments allows us to
override default behaviour of the method.

For example, say we have a Book model. Each Book may have
several Author objects, and each Author may have written several
Books. To be able to find the authors for a particular book, we
should first create an intermediary model. The name for this model
should be constructed by concatenating the names of the two related
classes, in alphabetical order. In this case, our classes are called
Author and Book, so the intermediate model should be called
AuthorBook.

We should then add a method called authors to the Book class
(note that the method name here is arbitrary, but should describe the
relationship). This method calls the protected has_many_through
method provided by Paris, passing in the class name of the related
objects. Pass the model class name literally, not a pluralised
version. The authors method should return an ORM instance ready
for (optional) further filtering.

class Author extends Model {
 public function books() {
 return $this->has_many_through('Book');
 }
}

class Book extends Model {
 public function authors() {
 return $this->has_many_through('Author');
 }
}

class AuthorBook extends Model {
}

The API for this method works as follows:

// Select a particular book from the database
$book = Model::factory('Book')->find_one($book_id);

// Find the authors associated with the book
$authors = $book->authors()->find_many();

// Get the first author
$first_author = $authors[0];

// Find all the books written by this author
$first_author_books = $first_author->books()->find_many();

Overriding defaults

The has_many_through method takes up to four arguments, which allow
us to progressively override default assumptions made by the method.

First argument: associated model name - this is mandatory and should
be the name of the model we wish to select across the association.

Second argument: intermediate model name - this is optional and
defaults to the names of the two associated models, sorted
alphabetically and concatenated.

Third argument: custom key to base table on intermediate table -
this is optional, and defaults to the name of the base table with
_id appended.

Fourth argument: custom key to associated table on intermediate
table - this is optional, and defaults to the name of the associated
table with _id appended.

 Copyright 2012, Jamie Matthews, Simon Holywell, Durham Hale.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	develop

 	v1.3.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Paris 1.2.3 documentation

Querying

Querying allows you to select data from your database and populate
instances of your model classes. Queries start with a call to a static
factory method on the base Model class that takes a single
argument: the name of the model class you wish to use for your query.
This factory method is then used as the start of a method chain which
gives you full access to Idiorm [http://github.com/j4mie/idiorm/]’s fluent query API. See Idiorm’s
documentation for details of this API.

For example:

$users = Model::factory('User')
 ->where('name', 'Fred')
 ->where_gte('age', 20)
 ->find_many();

You can also use the same shortcut provided by Idiorm when looking up a
record by its primary key ID:

$user = Model::factory('User')->find_one($id);

The only differences between using Idiorm and using Paris for querying
are as follows:

	You do not need to call the for_table method to specify the
database table to use. Paris will supply this automatically based on
the class name (or the $_table static property, if present).

	The find_one and find_many methods will return instances of
your model subclass, instead of the base ORM class. Like
Idiorm, find_one will return a single instance or false if no
rows matched your query, while find_many will return an array of
instances, which may be empty if no rows matched.

	Custom filtering, see next section.

You may also retrieve a count of the number of rows returned by your
query. This method behaves exactly like Idiorm’s count method:

$count = Model::factory('User')->where_lt('age', 20)->count();

Getting data from objects, updating and inserting data

The model instances returned by your queries now behave exactly as if
they were instances of Idiorm’s raw ORM class.

You can access data:

$user = Model::factory('User')->find_one($id);
echo $user->name;

Update data and save the instance:

$user = Model::factory('User')->find_one($id);
$user->name = 'Paris';
$user->save();

To create a new (empty) instance, use the create method:

$user = Model::factory('User')->create();
$user->name = 'Paris';
$user->save();

To check whether a property has been changed since the object was
created (or last saved), call the is_dirty method:

$name_has_changed = $person->is_dirty('name'); // Returns true or false

You can also use database expressions when setting values on your model:

$user = Model::factory('User')->find_one($id);
$user->name = 'Paris';
$user->set_expr('last_logged_in', 'NOW()');
$user->save();

Of course, because these objects are instances of your base model
classes, you can also call methods that you have defined on them:

class User extends Model {
 public function full_name() {
 return $this->first_name . ' ' . $this->last_name;
 }
}

$user = Model::factory('User')->find_one($id);
echo $user->full_name();

To delete the database row associated with an instance of your model,
call its delete method:

$user = Model::factory('User')->find_one($id);
$user->delete();

You can also get the all the data wrapped by a model subclass instance
using the as_array method. This will return an associative array
mapping column names (keys) to their values.

The as_array method takes column names as optional arguments. If one
or more of these arguments is supplied, only matching column names will
be returned.

class Person extends Model {
}

$person = Model::factory('Person')->create();

$person->first_name = 'Fred';
$person->surname = 'Bloggs';
$person->age = 50;

// Returns array('first_name' => 'Fred', 'surname' => 'Bloggs', 'age' => 50)
$data = $person->as_array();

// Returns array('first_name' => 'Fred', 'age' => 50)
$data = $person->as_array('first_name', 'age');

 Copyright 2012, Jamie Matthews, Simon Holywell, Durham Hale.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	develop

 	v1.3.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Paris 1.2.3 documentation

Filters

It is often desirable to create reusable queries that can be used to
extract particular subsets of data without repeating large sections of
code. Paris allows this by providing a method called filter which
can be chained in queries alongside the existing Idiorm query API. The
filter method takes the name of a public static method on the
current Model subclass as an argument. The supplied method will be
called at the point in the chain where filter is called, and will be
passed the ORM object as the first parameter. It should return the
ORM object after calling one or more query methods on it. The method
chain can then be continued if necessary.

It is easiest to illustrate this with an example. Imagine an application
in which users can be assigned a role, which controls their access to
certain pieces of functionality. In this situation, you may often wish
to retrieve a list of users with the role ‘admin’. To do this, add a
static method called (for example) admins to your Model class:

class User extends Model {
 public static function admins($orm) {
 return $orm->where('role', 'admin');
 }
}

You can then use this filter in your queries:

$admin_users = Model::factory('User')->filter('admins')->find_many();

You can also chain it with other methods as normal:

$young_admins = Model::factory('User')
 ->filter('admins')
 ->where_lt('age', 18)
 ->find_many();

Filters with arguments

You can also pass arguments to custom filters. Any additional arguments
passed to the filter method (after the name of the filter to apply)
will be passed through to your custom filter as additional arguments
(after the ORM instance).

For example, let’s say you wish to generalise your role filter (see
above) to allow you to retrieve users with any role. You can pass the
role name to the filter as an argument:

class User extends Model {
 public static function has_role($orm, $role) {
 return $orm->where('role', $role);
 }
}

$admin_users = Model::factory('User')->filter('has_role', 'admin')->find_many();
$guest_users = Model::factory('User')->filter('has_role', 'guest')->find_many();

These examples may seem simple (filter('has_role', 'admin') could
just as easily be achieved using where('role', 'admin')), but
remember that filters can contain arbitrarily complex code - adding
raw_where clauses or even complete raw_query calls to perform
joins, etc. Filters provide a powerful mechanism to hide complexity in
your model’s query API.

 Copyright 2012, Jamie Matthews, Simon Holywell, Durham Hale.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	develop

 	v1.3.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Paris 1.2.3 documentation

Transactions

Paris (or Idiorm) doesn’t supply any extra methods to deal with
transactions, but it’s very easy to use PDO’s built-in methods:

// Start a transaction
ORM::get_db()->beginTransaction();

// Commit a transaction
ORM::get_db()->commit();

// Roll back a transaction
ORM::get_db()->rollBack();

For more details, see the PDO documentation on Transactions [http://www.php.net/manual/en/pdo.transactions.php].

 Copyright 2012, Jamie Matthews, Simon Holywell, Durham Hale.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	develop

 	v1.3.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Paris 1.2.3 documentation

A word on validation

It’s generally considered a good idea to centralise your data validation
in a single place, and a good place to do this is inside your model
classes. This is preferable to handling validation alongside form
handling code, for example. Placing validation code inside models means
that if you extend your application in the future to update your model
via an alternative route (say a REST API rather than a form) you can
re-use the same validation code.

Despite this, Paris doesn’t provide any built-in support for validation.
This is because validation is potentially quite complex, and often very
application-specific. Paris is deliberately quite ignorant about your
actual data - it simply executes queries, and gives you the
responsibility of making sure the data inside your models is valid and
correct. Adding a full validation framework to Paris would probably
require more code than Paris itself!

However, there are several simple ways that you could add validation to
your models without any help from Paris. You could override the
save() method, check the data is valid, and return false on
failure, or call parent::save() on success. You could create your
own subclass of the Model base class and add your own generic
validation methods. Or you could write your own external validation
framework which you pass model instances to for checking. Choose
whichever approach is most suitable for your own requirements.

 Copyright 2012, Jamie Matthews, Simon Holywell, Durham Hale.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	develop

 	v1.3.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Paris 1.2.3 documentation

Migrations

Paris does not have native support for migrations, but some work has been
done to integrate PHPMig [https://github.com/davedevelopment/phpmig]. If you want to have migrations in your project
then this is recommended route as Paris will never have migrations directly
implemented in the core. Please refer to the Paris and Idiorm Philosophy for
reasons why.

To integrate Paris with PHPMig you will need to follow their installation
instructions [https://github.com/davedevelopment/phpmig#getting-started] and then configure it to use the Paris PDO instance:

$container['db'] = $container->share(function(){
 return ORM::get_db();
});
$container['phpmig.adapter'] = $container->share(function() use ($container) {
 return new Adapter\PDO\Sql($container['db'], 'migrations');
});

 Copyright 2012, Jamie Matthews, Simon Holywell, Durham Hale.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	develop

 	v1.3.0

 Navigation

 	
 index

 	
 previous |

 	Paris 1.2.3 documentation

Mulitple Connections

Paris now works with multiple database conections (and necessarily relies on an updated version of Idiorm that also supports multiple connections). Database connections are identified by a string name, and default to OrmWrapper::DEFAULT_CONNECTION (which is really ORM::DEFAULT_CONNECTION).

See Idiorm’s documentation [http://github.com/j4mie/idiorm/] for information about configuring multiple connections.

The connection to use can be specified in two separate ways. To indicate a default connection key for a subclass of Model, create a public static property in your model class called $_connection_name.

// A named connection, where 'alternate' is an arbitray key name
ORM::configure('sqlite:./example2.db', null, 'alternate');

class SomeClass extends Model
{
 public static $_connection_name = 'alternate';
}

The connection to use can also be specified as an optional additional parameter to OrmWrapper::for_table(), or to Model::factory(). This will override the default setting (if any) found in the $_connection_name static property.

$person = Model::factory('Author', 'alternate')->find_one(1); // Uses connection named 'alternate'

The connection can be changed after a model is populated, should that be necessary:

$person = Model::factory('Author')->find_one(1); // Uses default connection
$person->orm = Model::factory('Author', 'alternate'); // Switches to connection named 'alternate'
$person->name = 'Foo';
$person->save(); // *Should* now save through the updated connection

Queries across multiple connections are not supported. However, as the Paris methods has_one, has_many and belongs_to don’t require joins, these should work as expected, even when the objects on opposite sides of the relation belong to diffrent connections. The has_many_through relationship requires joins, and so will not reliably work across different connections.

 Copyright 2012, Jamie Matthews, Simon Holywell, Durham Hale.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	develop

 	v1.3.0

 Navigation

 	
 index

 	Paris 1.2.3 documentation

Index

 Copyright 2012, Jamie Matthews, Simon Holywell, Durham Hale.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	develop

 	v1.3.0

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Paris 1.2.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Jamie Matthews, Simon Holywell, Durham Hale.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		develop

 		v1.3.0

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

