Papyrus Docs Documentation

Papyrus

Jun 08, 2022

Contents:

Vision (or Why I should run my dApp on Papyrus instead of Ethereum?)

1.1~ Which challenges does Papyrus Network solve?
1.2 Howweaddress these iSSUes o i e
1.3 The main advantages of Papyrus Network
Governance

2.1 Papyrus Network User Agreement it
2.2 Definitions L . e e e e e e e e
2.3 Adding new Authority Node e
2.4 Authority Nodes Management v v v v v v v e e e e e e e e e e e e e e e e
25 1LElection
2.6 2.Blacklist L e
2.7 Changing BIOS contract parameters v v vttt e e e e e e e e e e e
2.8 Authority Nodes token reward recommendation oL
2.9 Governance attack considerationsl e e e

Comparison of Public Blockchain Networks

Consensus

Authority Nodes

5.1 Recommended Authority Node configuration:
5.2 How to deploy Authority Node
5.3 Expected Authority Node rewards:,
Staking

6.1 Howtostake tokens e e e e e e e e
6.2 Code Examples o e e e e
Network Performance

7.1 Results . . . o o e e e e e e e
Papyrus API

8.1 BIOS Contract i e e e e e e
82 APL Staking
83 APL VOtING o e e e e
Tools

A~ bW W

O 000 J 13O L L

11

13

15
16
16
16

17
17
21

23
25

29
29
30
32

35

10 FAQ
10.1 What is Papyrus Network? o e e e e e e e
10.2 What is the prospects of Papyrus Network?
10.3 What differs Papyrus Network from Ethereum, EOS and TRON?
10.4 What are Authority nodes? L e e

11 Papyrus Network key facts
12 Work in progress

13 Indices and tables

37
37
37
37
38

39

41

43

Papyrus Docs Documentation

Papyrus Network is a blockchain and decentralised applications platform, based on the Papyrus protocol, which was
created as refined vesrion of Ethereum protocol with Proof-of-Authority consensus for better scalability, security,
robustness and user-friendly application interfaces.

Mission of Papyrus Network is to stimulate adoption of decentralized applications in B2C and enterprise segments
across the globe by resolving issues, which are slowing down their practical adoption, such as limited network through-
put, security risks, volatile transactional fees, complicated user onboarding process.

Papyrus Network is compatible with Ethereum ecosystem of 3rd party software, user wallets, developer libraries and
productivity tools. Ethereum dApps can be launched within Papyrus Network, achieving improved stability, scalability,
speed and security, while also simplifying user onboarding process by removing barriers like calculation of gas limit
and gas price, and enabling removal of transactional fees for users completely.

Major advantages of Papyrus Network are:

¢ Proof-of-Authority conesnsus with variable Authority Nodes count, which is energy-efficient (no PoW waste),
faster (one second blocks interval and fast block finality), cheaper (no need to store thousands of data replicas
and involve thousands of nodes to consensus protocol, if protocol have governance model, which deliver same
or higher level of security by utilising small number of credible Authority Nodes) and more secure (small scale
PoW networks are subject to 51% reorg attacks, dPoS networks are subject to the power of minority (“whales’)
of large token holders), than other approaches for the public distributed ledger network consensus.

» Token staking as a way to allocate network resources, similar to the one in EOS network, where network
resources are tokenised and application developers are able to use subscriptional model to pay for network re-
sources by staking resource tokens. Staking enables developers to have predictable cost on their application
operations, ability to have reliable models for their financials, and allows developers to provide free-of-charge
transactions for their application users, so that dApp can be accessed even by those with empty wallet, if appli-
cation smart contract allows it. That is a major step for building user-friendly dApp interfaces and improving
user onboarding conversions.

* Programmed decentralized governance and high network security, based on Constitution and Network
BIOS contract, which splits power between Authority Nodes and token holders, and tries to establish system of
checks and balances to ensure that everyone is incentivised to behave in a best way to achieve better Papyrus
Network service and wider Papyrus Network adoption, also providing instruments to tolerate attack attempts
and maintain efficient self-governance. Papyrus Network sets initial governance vision and implementation and
supports evolution of it by BIOS contract upgrades, which might be executed by the community according to
certain rules, as likely there will be new things to address as network develops.

¢ Support of Ethereum ecosystem of developer libraries and productivity tools, wallets and Solidity smart con-
tracts. It enables usage of Papyrus Network by the Ethereum developers community.

Contents: 1

Papyrus Docs Documentation

2 Contents:

CHAPTER 1

Vision (or Why | should run my dApp on Papyrus instead of Ethereum?)

Papyrus Network is a new Ethereum-based public blockchain designed for ultimate mass adoption of decentralised
applications. Main idea of Papyrus Network design was to make a perfect ecosystem, which removes limitations,
which slow down growth of the user base in existing public blockchain networks such as Ethereum and EOS.

Papyrus Network have couple of characterisitics, which makes it a great choice for application developers, as it reduces
network costs, while improving at the same time network robustness, scalability, and ability to serve for user-friendly
applications with easy user onboarding.

Major changes to Ethereum, which we implemented in Papyrus Network, are:

* Instead of energy intensive Proof-of-Work a lightweight Proof-of-Authority consensus is used, where fixed
amount of network nodes called “Authority Nodes” are elected and operated by credible organizations. Papyrus
Network has native system of checks and balances, which lead to better and secure governance.

¢ Instead of gas transaction fee model token staking model is implemented, where token supply represents avail-
able network throughput and each token represents fraction of it. Application developers need to stake tokens
(locking them for specific period of time) to receive access to required network bandwidth and may adjust staked
amount from time to time accordingly to their needs. Developers don’t need to worry about token price volatility
between revisions of their bandwidth requirements.

1.1 Which challenges does Papyrus Network solve?

Nowadays there are a lot of challenges of using public blockchains as application platforms:

e Lack of trust (network is usually controlled by anonymous elite, which control largest mining pools or use
coalitions of network nodes in own interest).

 Lack of reliability (network is not protected from failures and application developer may experience large losses
due to mistakes of others).

 Lack of responsibility (there is no any formal responsibility by network operators for application developers).

 Lack of support (application developers need to find solution for every problem themselves).

Papyrus Docs Documentation

* Poor user experience (existing solutions are too complex and push users away by requiring them to use sophis-
ticated wallets and plugins).

» Extreme costs and volatility (application developers need to care about cryptocurrency prices because they
are used to pay network fees, they cannot build stable business model because of too high dependence on
cryptocurrency market).

1.2 How we address these issues

By introducing elements of permissioned blockchain networks to public network setup.

* Trust — control of the network authority nodes belongs to decentralized consortium of credible organizations
with full public disclosure of governance processes, by having multiple different organizations in the consortium
network achieves trust that they won’t collude and risk their reputation by attacking the network

* Reliability — network architecture ensures network resources allocation between registered application develop-
ers to avoid network overload

» Responsibility — being publicly exposed and having their business and reputation at risk authority nodes owners
are accountable for their activities

* Great user experience — moving obligation to pay network fees from user to application developer, significantly
improve user experience as now users don’t need to care about keeping positive crypto wallet balance, calculat-
ing transaction fees and confirming them

* Reasonable and predictable costs — application developers are able to reserve necessary network bandwidth
for specified period of time with reasonable upfront payment, it allows them to provision their expenses and
eliminate crypto volatility impact on their business models; overall cost of ownership is low because of limited
amount of authority nodes in the network

1.3 The main advantages of Papyrus Network

¢ Compatibility with existing Ethereum ecosystem including wallets, smart contracts, and other tools; no need
to study new languages and frameworks.

* Increased Network speed and reliability: no more worries about application scalability and availability issues.

+ High standard of network security provided by the authority nodes managed by credible organizations, which
cannot be achieved in the environment of anonymous mining pools.

e An Unprecedented level of user experience — token staking model with no need to install complex plugins
or browsers, pay various fees and make gas calculations; just use your application like any other — Facebook
or Amazon.

* An easy way of making money without building complex token economies—you can simply sell subscriptions
or in-app services to your application users, accepting both traditional payments and cryptocurrencies.

* Low network resource cost and low volatility: you can plan your infrastructure expenses in advance thanks to
token staking resource allocation model.

* Network reliability network is protected from spam and DoS attacks by having staking procedure to consume
network resources.

* Authority node owners are all identified credible organizations which put their reputation and business at
risk in case of abuse.

4 Chapter 1. Vision (or Why | should run my dApp on Papyrus instead of Ethereum?)

CHAPTER 2

Governance

There are many issues with governance paradigms used in other blockchain solutions, which lead to unacceptable
level of centralization. For instance, EOS network is governed by Constitution and 21 Block Producers, which execute
EOS protocol and are elected using dPoS mechanism. But voting thresholds to become elected BPs are low due to
absence of quorum requirements, and power is consolidated in the hands of few people with significant token holdings
and influence over BP decisions. Political systems, where power is consolidated in the hands of richest, are called
plutocracy. In another dPoS network - TRON - situation is even worse, as not only BPs are elected by elite token
holders with large stakes, but BPs are allowed to buy votes from token holders, and they spend their mining rewards
to attract votes, instead of investments in better service and infrastructure. On the opposite, POW networks have an
issue with consolidation of power in large mining pools, controlling a significant percentage of network’s hashpower
and effectively controlling the network itself.

Our design goal in Papyrus Network was to construct governance protocol, which is aligned with Proof-of-Authority
consensus for network scalability reasons, in a way to maintain greater level of decentralization and incentivize benefit
of everyone: token holders, miners (authority nodes) and network customers (application developers and users). To
achieve this goal we implemented flexible governance protocol, which somewhat reflects how corporations are man-
aged in the modern world by shareholders and the board of directors. We believe that this is the best construction to
be used as the network evolves to stimulate its growth.

2.1 Papyrus Network User Agreement

2.2 Definitions

Papyrus Network User Agreement: This document (PNUA)
Chain ID: 32328

BIOS Contract: An Papyrus Network smart contract with a dynamic permissions structure, which defines network
governance procedures.

User: Any person or organization of persons who maintain(s) direct or indirect ownership of an Papyrus Network
address, or property connected to an Papyrus Network address.

Papyrus Docs Documentation

Ownership: Direct or indirect access to an Papyrus Network address through one or more valid permissions checks.
Ownership may be partially shared between Users through the use of multi-signature permissions.

Authority Nodes: Users who have created new blocks in Papyrus Network.

On-Chain: Any transaction, smart contract, or Ricardian contract which is located within a block that is irreversible
and appended to the Papyrus Network.

Papyrus Network-based Property: Anything that requires a valid permission in order to directly manipulate, alter,
transfer, influence, or otherwise effect on the Papyrus Network

Call: To submit an action to the Papyrus Network.

Authorizations & Permissions: Permissions are arbitrary names used to define the requirements for a transaction sent
on behalf of that permission. Permissions can be assigned for authority over specific contract actions.

Article I - User Acknowledgement of Risks If User loses access to their Papyrus Network address on chain_id and
has not taken appropriate measures to secure access to their Papyrus Network address by other means, the User
acknowledges and agrees that that Papyrus Network address will become inaccessible. Users acknowledge that the
User has an adequate understanding of the risks, usage and intricacies of cryptographic tokens and blockchain-based
software. The User acknowledges and agrees that the User is using the Papyrus Network at their sole risk.

Article II-Consent of the PNUA The nature of the Papyrus Network User Agreement is such that it serves as a descrip-
tion of the current Papyrus Network Mainnet governance functions that are in place. These functions, enforced by
code, do not require the consent of Users as these functions are inherent and systemic to the Papyrus Network Mainnet
itself.

Article III-Governing Documents Current version of PNUA is referred by its SHA256 hash in Papyrus Network BIOS
Contract and modifications to the PNUA may be made using BIOS Contract.

Article IV-Native Unit of Value The native unit of value on Papyrus Network chain_id shall be the PPR token as
defined by Papyrus Network software.

Article V-Maintaining the Papyrus Network Papyrus Network code is published in open GitHub repositories and open
source developers community is supposed to maintain the active blockchain codebase which includes, but is not limited
to, the implementation of all modifications of all features, optimizations, and upgrades: present and future.

Article VI-No Fiduciary No User shall have a fiduciary purpose to support the value of the PPR token. No User can
authorize anyone to hold assets, borrow, speak, contract on behalf of other Papyrus Network Users or the Papyrus
Network chain_id collectively. Papyrus Network shall have no owners, managers, or fiduciaries.

Article VII-User Security All items pertaining to personal account security, including but not limited to the safekeeping
of private keys, is solely the responsibility of the User to secure.

Article VIII - Authority Nodes Limited Liability The User acknowledges and agrees that, to the fullest extent permitted
by any applicable law, this disclaimer of liability applies to any and all damages or injury whatsoever caused by or
related to risks of, use of, or inability to use, the PPR token or the Papyrus Network under any cause of action
whatsoever of any kind in any jurisdiction, including, without limitation, actions for breach of warranty, breach of
contract or tort (including negligence) and that Authority Nodes shall not be liable for any indirect, incidental, special,
exemplary or consequential damages, including for loss of profits, goodwill or data.

2.3 Adding new Authority Node

Any Authority Node can make proposal on adding new Authority Node to the network, which follows the approval
process. Any Authority Node can vote for proposed Authority Node candidate, if it is not blacklisted in either authority
nodes blacklist or stakeholders blacklist. In total each Authority Node can vote for a maximum of 7 other Authority
Nodes or candidates. Authority Node can move their votes from one Node to another at any time. Candidate Node
becomes Authority Node if it keeps minimum 3 votes and holds in the top 47 Candidate and Authority Nodes by
received votes number for continuous 7 days. Only votes from Authority Nodes are counted.

6 Chapter 2. Governance

Papyrus Docs Documentation

2.4 Authority Nodes Management

2.5 1. Election

New Authority Nodes are elected by existing Authority Nodes.

Authority Node candidate can be proposed by any of existing Authority Nodes. After Authority Node candidate is
proposed, voting for the Authority Node candidate begins and last 14 days.

Any Authority Nodes is able to vote for other Authority Nodes and Authority Node candidates. The following con-
traints are applied in network BIOS contract:

* Authority Node have maximum of 7 votes to be casted for different Authority Nodes
* Authority Node can’t cast more than 1 vote for the same Node

* Authority Node can cast one vote for itself

* Authority Node can withdraw a vote from any node with immediate effect

» Withdrawed votes can be casted again only after 14 days vote cooldown period

After 14 days of voting for a new candidate Authority Node, decision is made based on received votes. If by the end
of voting period candidate received minimum of 3 votes from Authority Nodes AND is not added to the blacklist (see
below), than candidate becomes Authority Node.

Additional rule to be implemented by upgrading BIOS contract in the near time:
If by the end of voting period candidate fits with ALL of the following:

* received minimum of 3 votes from Authority Nodes

¢ is not added to the blacklist (see below)

e current number of Authorty Nodes < 47 OR there is an Authority Node, which have less received votes than
candidate node

Than candidate is promoted to Authority Node. If number of Authority Nodes = 47, than simulatneously existing
Authority Node with lowest amount of received votes is excluded from Authority Nodes. This logic ensures that
maximum number of Authority Nodes is limited with 47.

ek

Otherwise, candidate node is rejected and not promoted to Authority Node.

2.6 2. Blacklist

Authority Node and candidate for Authority Node can be blacklisted by existing Authority Nodes.

To add candidate or Authority Node to the blacklist, any Authority Node can create blacklist proposal and initiate
proposal voting. Voting period for blacklist proposal is 5 days, which enables ability of blacklisting for Authority
Node candidates before candidate voting period of 14 days ends. Only Authority Nodes can cast votes in the blacklist
voting. Each Authority Node can cast 1 vote for the proposal.

After 5 days of blacklist proposal voting, proposal is deemed successful, if:

* amount of votes for proposal is > 50% of Authority Nodes count

2.4. Authority Nodes Management 7

Papyrus Docs Documentation

Otherwise, proposal is rejected.

If proposal is successful, Authority Node or Authority Node candidate is added to the blacklist. Any node inlcuded
into the blacklist can’t be Authority Node.

Community blacklist to be implemented by upgrading BIOS contract in the near time:

Authority Node and candidate for Authority Node can be blacklisted by owners of PPR token stakes. Blacklist formed
based on PPR token stake holders voting is called community blacklist.

To add candidate or Authority Node to the blacklist, any owner of PPR token stake can create community blacklist
proposal and initiate proposal voting by staking minimum amount of PPR tokens towards the proposal (minimum is
to be determined).

Voting period for community blacklist proposal is 5 days, which enables ability of blacklisting for Authority Node
candidates before candidate voting period of 14 days ends. Only owners of PPR token stakes can cast votes in the
community blacklist voting. Each owner of PPR token stake can cast vote proportional to their token stake. In case
of voting for blacklist proposal stake withdrawal period for stake owner is increased to 5 days starting at the time of
voting, so he can never vote twice in the same voting using the same stake. Each vote for community blacklist can be
either positive (for) or negative (against).

After 5 days of blacklist proposal voting, proposal is deemed successful, if: - amount of positive votes is bigger, than
amount of negative votes - total amount of votes is > 10% of total token stake owner votes possible in the network
based on existing network-wide amount of token stakes (quorum)

If proposal is successful, Authority Node or Authority Node candidate is added to the community blacklist. Any node
inlcuded into the community blacklist can’t be Authority Node.

ek

2.7 Changing BIOS contract parameters

BIOS contract refers to Papyrus Network User Agreement using its SHA-256 hash code, linking network operations
with the agreement.

Parameters such as maximum amount of Authority Nodes or mining rewards are configured in BIOS contract as well.

Upon network launch Papyrus have ownership rights on BIOS contract and can override / reconfigure it in case of
network issues. In the future Papyrus will surrender ownership of BIOS contract so that no party will be controlling it.

To achieve decentralised governance, BIOS contract may be upgraded by supermajority decision of Authority Nodes,
which is not objected by voting of the community of token stake owners.

Implementation of this voting will be deployed to BIOS contract in the near time.

2.8 Authority Nodes token reward recommendation

To incentivize Authority Nodes participation, they shall receive token rewards for each block, which they include in
the blockchain. With 1 seconds block interval it is recommended to set block reward at 1.5*K PPR tokens per block,
where K = {AMOUNT OF AUTHORITY NODES}/47. 1t will keep annual inflation of PPR token supply under 5% for
the network with 47 Authority Nodes, and it will avoid Authority Node reward dilution due to new nodes joining the
network. As rewards aren’t diluted, Authority Nodes will be incentivized to propose new nodes inclusion to increase
trust and adoption of the network, influencing token value.

8 Chapter 2. Governance

Papyrus Docs Documentation

2.9 Governance attack considerations

Network governance and resistance to attacks is considered sufficient, assuming that >50% of Authority Nodes are
controlled by honest owners at all times. When amount of Authority Nodes in the network is between 5 and 47, three or
more nodes can collude to include more their allies as nodes into the network with the idea of eventually getting control
over 50%+ Authority Nodes and performing network attack. Assuming that honest Nodes represent at least 50% of
the Authority Nodes at the moment of attack preparation suspicion, they shall blacklist proposed node candidates to
tolerate potential attack. In case of very unlikely situation, where network attack such as double spending is made
by attackers, which manged to get control over more than 50% of Authority Nodes, token stake owners together with
honest Authority Nodes can make hard fork of the blockchain and use media to distribute incident information and
guides on necessary updates for network customers.

2.9. Governance attack considerations 9

Papyrus Docs Documentation

10 Chapter 2. Governance

11

Papyrus Docs Documentation

CHAPTER 3

Comparison of Public Blockchain Networks

Energy
consumption

Block Time

Consensus

Resource
Management

Average tx fee

Smart Contracts

Usage complexity

Developer
community

Network
availability

Ethereum

19.07 TWh / year (0.09%
of world’s electricity
consumption)

15

12s

Proof-of-Work

~ $0.13 USD per average
transaction

EVM/Solidity

Very difficult for both
app developers and
users

Strongest community
globally, estimated as
250 000 developers by
ConsenSys

EOS

Negligible

3900

Delegated Proof-of-Stake

Token staking

~ $0.1 USD to reserve
CPU for average
transaction; ~ $0.159
USD - Cost to persist 1
Kb of data in RAM; ~
$0.1 USD/ms/Day - Cost
to reserve 1 ms/Day CPU
Bandwidth; ~ $0.001
USD/Kb/Day - Cost to
reserve 1 Kb/Day
Network Bandwidth

Token staking
significantly improves
app developers and user
experience

Growth stage, but much
smaller than in
Ethereum

TRON

Negligible

Delegated Proof-of-Stake

Gas and Token Staking

~ $0.7 USD to reserve
bandwidth for average
transaction; ~ $0.14
USD/ms/Day - Cost to
reserve 1 ms/Day CPU
Bandwidth; ~ $3.5
USD/Kb/Day - Cost to
reserve 1 Kb/Day
Network Bandwidth

TUM/Solidity

Token staking
significantly improves
app developers and user
experience

Potentially equal to
Ethereum community, but
TRON have many

differences and rgeuire

Papyrus Network

Negligible

1500

3s

Proof-of-Authority

Token staking

< 0.001 USD

EVM/Solidity

Token staking
significantly improves
app developers and user
experience

Equal to Ethereum
community, as network is
fully compatible with
Ethereum applications

Not guaranteed, network
clogging can paralyze

R P

Chapter 3.

Ensured by having
active and reserve

T

Colfip4tison &t Publik Blockchain Networ

Ensured by having
active and reserve

Ensured by having

Authority Node

Lt

CHAPTER 4

Consensus

Papyrus Network is a distributed computing system, where network nodes has to agree on transactions, before they are
included in the distributed ledger, to maintain synchronized copies of the ledger and avoid inappropriate transactions.
How network nodes reach the agreement is determined by consensus protocol, deisgned with the goal to maintain
system reliability in the presence of a number of faulty processes.

Assumptions used in Papyrus Network design

Cost of network protocol manipulation should exceed potential benefit for an attacker;
If total amount of value stored in the network is X, than cost of an attack on the network should be >X;
Economy processes within the network is complemented with economy processes outside the network:

poor behaviour of network node owned by some business entity, may be covered in the media and cause reputa-
tional damage to the entity’s other businesses, leading to its financial losses;

attack on the network by a group of network nodes will cause their removal from the network and possible hard
fork, meaning that they will lose ability to receive mining rewards in the network;

There are governance rules, initially established as constitutional for the network, which require agreement not
only between network nodes, but also between token holders, to change protocol;

Technically collusion/agreement between minimum of >50% of active network nodes should be required to ma-
nipulate/change the protocol, but it is not enough to run a successful attack, as it will be detected and considered
as constitution violation, if change was not approved by token holders according to established policy.

Keeping in mind these assumptions we developed a Proof-of-Authority consensus for Papyrus Network, which have
the following features:

Network nodes allowed to participate in consensus protocol for network transactions confirmation are called
Authority Nodes;

Amount of Authority Nodes is allowed to be in a range of 5 to 47 nodes, upper limit of 47 is chosen as reasonable
to avoid excessive infrastructure cost, while keeping network security at high level;

We use the same logic as in EIP225 (https://eips.ethereum.org/EIPS/eip-225) Clique consensus to reach an
agreement between Authority Nodes, but change the voting logic to elect Authority Nodes (see http://docs.
papyrus.network/en/latest/doc/network_architecture.html for more details).

13

https://eips.ethereum.org/EIPS/eip-225
http://docs.papyrus.network/en/latest/doc/network_architecture.html
http://docs.papyrus.network/en/latest/doc/network_architecture.html

Papyrus Docs Documentation

14 Chapter 4. Consensus

CHAPTER B

Authority Nodes

Papyrus Network is operated by Authority Nodes, which provide their hardware capacities to run Papyrus Network
software, which implements Papyrus Network protocol. Authority Nodes are operated by identified business entities
and are elected by other Authority Nodes according to established network governance model (see http://docs.papyrus.
network/en/latest/doc/network_architecture.html for more details).

Papyrus Network protocol allows up to 47 Authority Nodes to be a part of the network.

In exchange for maintaining network operations Authority Nodes get mining rewards equal to 1.5*K PPR tokens per
block, where K = {AMOUNT OF AUTHORITY NODES}/47. This formula ensures that existing Authority Nodes
will keep receiving same amount of daily/monthly rewards with the growth of amount of Authority Nodes in the
network. It fact, Authority Nodes are incentivised to make network more decentralised and invite new nodes to the
network without losing own rewards.

PPR token is a native token of Papyrus Network required to allocate network resources to execute transactions. There
are 1 000 000 000 PPR tokens distributed at the genesis block, and according to mining rewards schedule with 1
second block interval annual inflation is limited with a maximum amount of new tokens equal to (60 blocks per
minute)*60*24*365%1.5*(47/47)= 47 304 000 PPR, ie ~ 4.7% of total emission.

Mining rewards are subject to change only based on community voting (see Governance documentation).

Initially Papyrus Network mainnet is launched with 5 Authority Nodes chosen by Papyrus, few of them will be initially
operated by Papyrus.

After the launch Authority Nodes election procedures are activated, network governance becomes decentralised and
existing Authority Nodes are able to elect new Authority Nodes. To make proper decisions as Authority Node owner
Papyrus will audit each current and potential node owner entity’s mission, executive leadership, net annual revenue,
number of full-time employees, years in business, organizational structure, and the industry they are a part of, to ensure
that existing network Authority Nodes are reliable enough.

Following network launch Papyrus team will be pursuing full network decentralisation, where all Authority Nodes
will be operated by other organisations without Papyrus involvement. To achieve that Papyrus will be removing own
nodes from the network, when new Authority Nodes are joining it.

It is strongly recommended in the interest of network reliability that all existing Authority Nodes do a regular audit
of current and potential Authority Node owner entity’s mission, executive leadership, net annual revenue, number of
full-time employees, years in business, organizational structure, and the industry they are a part of. In case of doubt in

15

http://docs.papyrus.network/en/latest/doc/network_architecture.html
http://docs.papyrus.network/en/latest/doc/network_architecture.html

Papyrus Docs Documentation

other Authority Node reliability, Authority Nodes should use BIOS Contract to set a vote on adding suspicious Nodes
to the Blacklist. Papyrus Wallet and Papyrus Explorer support necessary functionality.

If you would like to run an Authority Node and receive mining rewards in Papyrus Network, you can apply here:
https://papyrusglobal.typeform.com/to/Va9wX5

Instruction on how to set up a node can be found here: https://github.com/papyrusglobal/papyrus

5.1 Recommended Authority Node configuration:

CPU - Intel® Core™ i7 or more powerful
RAM: 64Gb+

Hard drive: 512Gb+ (SSD recommended)
Connection: 100 MBit/s+ port

5.2 How to deploy Authority Node

Prerequisites You need have Docker and Docker Compose installed.

To start a node, run the following docker command. It will download the image and start it. Optionally, you may add
keys such as —rpc or —ws (see the ‘geth’ command line options) to the end of the command.

docker run -d --name=my-node -p 33309:33309 -p 33309:33309/udp -v my-node-volume:/
—root/.ethereum —--restart unless-stopped papyrusglobal/geth-papyrus:latest —-port,
—33309 ——ethstats="'my-node-public-name:ante litteram@status—-server.papyrus.
—network:3800"'

Additionally, if you are authority node: You will then need to copy your <account.json> to the container where node
runs.

docker cp account.json my-node:/root/.ethereum/keystore/

docker exec -it my-node ./console.sh 'personal.unlockAccount (eth.accounts[0], "<<
—<passphrase>>>", 0)'

docker exec —-it my-node ./console.sh 'miner.setEtherbase (eth.accounts[0]); miner.
—start ()"

5.3 Expected Authority Node rewards:

Expected monthly PPR reward for active Authority Node is equal to 60*60%24*30*(K/47)*(1.5/K) = ~82,723 PPR

16 Chapter 5. Authority Nodes

https://papyrusglobal.typeform.com/to/Va9wX5
https://github.com/papyrusglobal/papyrus

CHAPTER O

Staking

Why we implemented token staking in Papyrus Network?

Token staking is the method to allocate network bandwidth to specific user or application developer needs. We use
idea of tokenisation to manage network resources and avoid network flood and sybil attacks on the network.

There is a fixed amount of network bandwidth tokens issued at every point in time (every block formed in the network).
Imagine that to get right to use X% of network bandwidth you have to freeze X% of issued tokens, making them
unavailable to transfers and any other usage. You can always unfreeze them by requesting that, but you will have
to wait 3 days and will lose ability to use X% of network bandwidth. That is the simple illustration, how network
bandwidth may be tokenised with fixed amount of tokens.

In Papyrus Network native token is called PPR and it is used for network bandwidth tokenisation. Rules around token
staking/unstaking and resource allocation are slightly more complex in the real Papyrus Network and are described
below. Also Papyrus Network supports delegation of allocated bandwidth, meaning that application developer can
make own stake to allocate network bandwidth for his application and then allow to use it for free for their smart
contract users.

If existing stake provides bandwidth, that is not enough to run required transactions for the user or smart contract,
it will result in transaction failure. Still transaction can be retried again, as bandwidth allocation for the stake be-
comes refilled with the time. Application developers and users should plan their bandwidth allocation in advance and
increase/decrease their stakes as necessary.

Ultimately stake-based resource management allows application developers to plan network resources cost in advance
and build reliable business models for their dApps. As an example, dApp developer could charge users off-chain (via
Google Play or Apple App Store) and put them into on-chain whitelist to execute smart contract functions for free
using developer’s stake, thus significantly simplifying their onboarding to dApp.

6.1 How to stake tokens

The easyest way to stake/unstake tokens is to use Papyrus Wallet. Papyrus Wallet works with MetaMask extension and
gives you a particularly user-friendly interface for all features of Papyrus Network. To stake your tokens just chose
staking tab and then fill the fields with stakes or gaslimit and press Stakes button. By default - stake will be processed

17

https://docs.papyrus.network/en/latest/doc/tools.html

Papyrus Docs Documentation

onto your address. To stake on smartcontract - just fill its address to the field and push stake button! Remember that
only one stake is available to the one smartcontract. Main Papyrus Wallet inteface you could see on the screenshot:

18 Chapter 6. Staking

Papyrus Docs Documentation

STAKING

. PAPYRUS

"R di NETWORK

VOTING

L

Ox4a2D0F1EBb52E130d4C5ebF9d59563E0F 7129734

0 PPR-wei
0 PPR-weil 0 gas 0 PPR-weil
Stake Unstake
- —_

PPR-wel at stake
100

Gas you receive

: 18168576307200

It will increase your gas limit at
18168576307200 gas per 3 days

To address

Ox4a2D0F1EBb52E130d4C5ebF9d59563E0F7129734

6.1. How to stake tokens

19

Papyrus Docs Documentation

You can easily unstake your tokens, just go to the Unstake tab and enter value for unstaking. When unstaking is done
your tokens are frozen and you have to wait for some time to process with withdraw.

“» PAPYRUS

i
“%ed? NETWORK

STAKING VOTING

h P

O0x4a2D0F1EBb52E130d4C5ebF9d59563E0F7129734

0 PPR-wei
0 PPR-wei 0 gas 0 PPR-wei
Stake Unstake
PPR-wei to unstake Gas you lose

To address

Ox4a2D0F1EBb52E130d4C5ebF9d59563E0F 7129734

20 Chapter 6. Staking

Papyrus Docs Documentation

6.2 Code Examples

Examples - how to use stakes in your DApp you could find in the API section

6.2. Code Examples

21

https://papyrus-network.readthedocs.io/en/latest/doc/api/api-staking.html

Papyrus Docs Documentation

22

Chapter 6. Staking

CHAPTER /

Network Performance

Papyrus network designed as high loaded solution that should be able to process more than 1000 tps. To achieve these
performance results we reimplement batching and buffers to allow them to aggregate more data. To do that first of all
we had to increase potential number of transaction in queue.

* peer.go class that contains constants that are responsible for queue sizes.

We conducted a series of load tests and, after internal modeling, we stopped at the following set of values:

// maxQueuedTxs 1s the maximum number of transaction 1lists to queue up before
// dropping broadcasts. This 1is a sensitive number as a transaction list might
// contain a single transaction, or thousands.

maxQueuedTxs = /#128x/ 16384

// maxQueuedProps 1s the maximum number of block propagations to queue up before

// dropping broadcasts. There's not much point in queueing stale blocks, so a_
—few

// that might cover uncles should be enough.

maxQueuedProps = /#4x/ 32

// maxQueuedAnns is the maximum number of block announcements to queue up before

// dropping broadcasts. Similarly to block propagations, there's no point to,,
—queue

// above some healthy uncle limit, so use that.

maxQueuedAnns = /*4x/ 32

handshakeTimeout = 5 * time.Second

Next step was in increasing up to ten times size of transaction chain. For that reason few more classes were tuned by
changing its constant values

e sync.go - here where have overridden result size of our tansactions pack.

23

Papyrus Docs Documentation

// This 1is the target size for the packs of transactions sent by txsyncLoop.
// A pack can get larger than this if a single transactions exceeds this size.
txsyncPackSize = /x100 * 1024/ 1000 » 1024

In the next three classes - ethstats.go, server.go, worker.go we need to increase the size of chain head
size.

* ethstats.go

// The number is referenced from the size of tx pool.

txChanSize = 4096

// chainHeadChanSize is the size of channel listening to ChainHeadEvent.
chainHeadChanSize = /x10+/ 100

® server.go

func (pm *ProtocolManager) blockLoop () {
pm.wg.Add (1)
headCh := make (chan core.ChainHeadEvent, /*10/% 100)
headSub := pm.blockchain.SubscribeChainHeadEvent (headCh)

* worker.go

txChanSize = 4096

// chainHeadChanSize is the size of channel listening to ChainHeadEvent.
chainHeadChanSize = /#10x/ 100

* tx_pool.go class that contains most of logic for the transaction pool. As in previous classes - we had to
override chain size and after that, according to our model, we significantly reworked the sizes of the slots

DefaultTxPoolConfig = TxPoolConfig{
PriceLimit: 1,
PriceBump: 10,

AccountSlots: /#*16%/ 8192,
GlobalSlots: /%4096+/ 131072,
AccountQueue: /#64x/ 4096,
GlobalQueue: /x1024%/ 32768,

After that we added transaction batching and overhauled buffers. This kind of transaction packaging lets us to dras-
tically increase network performance without compromising security. In order to unlock the full potential of this
approach, we also had to rework the queue sizes for pending and queued transactions. While these changes implied
new changes in parameters of the maximum number of permissible transactions, and, most importantly, in the total
number of transactions.

* tx_pool.go

// feedLoop continuously sends batches of txs from the txFeedBuf to the txFeed.
func (pool *TxPool) feedLoop () {
defer pool.wg.Done ()

const batchSize = 1000
for {
select {
case <-pool.chainHeadSub.Err():

(continues on next page)

24 Chapter 7. Network Performance

Papyrus Docs Documentation

(continued from previous page)

return
case tx := <-pool.txFeedBuf:
var event NewTxsEvent
event.Txs = append (event.Txs, tx)
for i := 1; 1 < batchSize; i++ {
select {
case tx :=
event.Txs =
default:
break

<-pool.txFeedBuf:
append (event .Txs,

}
pool.txFeed.Send (event)

// feedSend queues tx to eventually be sent on the txFeed.
(pool »TxPool) feedSend(tx *types.Transaction) {
select {

case pool.txFeedBuf <- tx:

func

return
default:

go func() { pool.txFeedBuf <- tx 1} ()

tx)

The result is a tenfold increase in performance. For multiple tests, we used a specific utility to load the network with
1500 transactions every second. The test results showed that the network successfully handles 1500 transactions per
second and works stably at such a load for a long period of time. Below you can find the logs of the utility and the
logs of the node. The logs show that all 1500 transactions fall into a block, which is generated every second. During
the test, we used the type of configuration, suggesting the entire load to be applied to one gateway node, while the
gateway-node is not engaged in the generation of blocks. Blocks are generated by several sealer nodes.

7.1 Results

Utility logs:

7.1. Results

25

Papyrus Docs Documentation

1. aholodov@Ubuntu-1804-bionic-B4-minimal: ~fload (ssh)

T I~y

2015/91/11 19:01:28 start sender Loop

2019/91/11 19:91:38 send bathc signal for accounts:

—

2019/91/11 19:91:29 send bathe signal for accounts: batchSize: 1500

botchSize: 1500

2019791411 19:91:31 send bathc signal for occounts: botchSize: 1509

2819/01/11 19:81:32 send bathc signal for occounts:

batchfize:

2019/81/11 19:81:33 send bathc signal for occounts: batchSize: 150@

2016591711 19:81:34 send bathc signal for accounts:

batchSize: 1580

Z2019/91411 19:91:35 send bathe signal for accounts: batchSize: 1580
2019/91/11 19:91:36 send bathc signal for occounts: botchSize: 1580

281981411 19:81:37 send bathc signal for occounts:
2819/91711 19:91:38 send bathc signal for occounts:
2819/81/11 19:81:39 send bathc signal for occounts:

batchSize:
batchSize:
batchSize:

2019/91/11 19:01:48 send bathc signal for accounts: batchSize: 15089

019/91/11 19:91:41 send bathe signal for accounts:

batchSize: 1580

2019/91/11 19:91:42 send bathe signal for accounts: botchSize: 1580

2819/91/11 19:91:43 send bathc signal for occounts:

batchSize:

2019791711 19:91:44 send bathc signal for occounts: botchSize: 150@

2819/81/11 19:01:45 send bathc signal for occounts:
2019/91/11 19:91:46 send bathc signal for accounts:

2019/91/11 19:@1:47

2019/91/11 19:91:48 send bathc signal for occounts:

batchfize:
batchSize: 158@

send bathc signal for accounts: botchSize: 1580

batchSize: 150@

2019/91/11 19:91:49 send bathc signal for occounts: botchSize: 1580

281981711 19:81:50 send bathc signal for occounts:

batchSize:

2919/01-11 19:81:51 send bathc signal for occounts: botchSize: 1508@

2815/81/11 19:81:52 send bathc signal for occounts:

batchSize:

Z019/91/11 19:81:53 send bathe signal for accounts: batchSize: 1500

7019/91/11 19:91:54 send bathc signal for accounts:

batchSize: 1580

2019/91/11 19:81:55 send bathe signal for occounts: batchSize: 1500

2819/91711 19:91:56 send bathc signal for occounts:
2019781711 19:81:57 send bathc signal for occounts:

batchSize:
batchSize:

2019/01/11 19:01:58 send bathc signal for occounts: batchSize: 158@

2019/01/11 19:01:58 Report - total
2019701711 19:91:58 Report - recent
2019/91/11 19:91:58 Report - latest

dureils txs=43500 errse@ tps=1450
dur=30% txs=-43500 errs-0 tps-1450
dur=38s txs5=43500 errs=0 tps=1458

£919/91411 19:91:59 send bathc signal for occounts: botchSize: 1509

2819781711 19:82:80 send bathc signal for occounts:

batchSize: 158@

2019/91/11 19:82:81 send bathc signal for occounts: batchSize: 1500

Node logs:

minkmal: ~flond (ssh) M2

TNFD [B1-11116:@1:42 816 % mined potential black

INFO [@1-11118:@1:42.82E] Commit nem mining work

TNFD [B0-11115:@1:43.143] Commit rum mining work

INFO [B1-11118:@1:43 812] Successfully seoled new block
INFD [R1-11116:81:43. 2] & block reached conanical chain
INFO [B1-11116:@1:43 012] “y mined potentiol block

INFD [B1-11118:@1:-43. 807) Commit rem mining work

INFO [B1-1111E:@1:43 2882] Cowsit rem mining work

INFO [B1-11118:@1-44. 8127 Successfully seoled new block
THFOD [R1-11116:@1:44.812] & block reached conomical chain
INFO [B0-11118:@1:44.003] “\ mined potential block

TNFD [B1-11118:@1:44 823] Commit rim mining work

INFO [B1-11118:@1-44 18] Commit rem mining work

INFD [Rd-11118:@1:45.807] Successfully sealed new bleck
INFO [B1-11116:@1:45 817 A7 block ~eached conteical chain
INFO [B1-11118:@1:45.847] “ mined potentiol block

INFO [R1-11118:@1:45 B29] Commit rem mining work

INFO [B1-11118:@1-4%.152] Cowsit nem mining work

TNFD [Bd-11116:@1:46.201] Successfully sealed miw Block
INFO [B0-11118:@1:46.011] 4 block resched canonical chain
TNFO [B1-11116:@1:46. 8117 “, wined potentiol block

INFO [B1-11118:@1°46 221] Commit rem mining work

INFD [Rd-11116:@1-46.123] Comit rem mining work

INFO [@1-11116:@1:47.812] Successfully sealed nea bBleck
INFO [81-11118:@1:47.812] A block resched cononical chain
TNFO [B1-11116:@1:47.002] %, wined potential black

INFO [Bd-11118:@1-47 @17) Comwwit res mining work

TNFD [Bd-11118:@1:47.136] Commit rem mining work

INFO [B0-11118:@1:-48 0117 Successfully sealed new block
INFO [B1-11118:@1:48.841] 4 block reached cananical chain
INFO [1-11118:@1:4%. 8117 mined potentiol block

INFD [@d-11116:@1-4& 817 Commit mem mining work

INFO [@1-11116:@1:48.158] Commik rem mining work

INFO [8d-11118:@1:-49.004] Successfully sealed new bleck
TNFD [B1-11116:@1:49.814] &7 block reached conamical chain
INFO [@1-11118:@1-49. 8147 % mined potentiol block

TNFD [B0-11116:@1:4% . 813] Commit rem mining work

INFO [B1-11118:@1:49.114] Commit rem mining work

INFO [8d-11118:@1:-58.004] Successfully seoled mew block
INFO [B1-1111E:@1:50. 214] &hlut Femchad congkcal Chaln
INFO [Rd-11116:@1-50. 8447 “ mined potentiol block

INFO [@1-11115:@1:58.026] Commit rem mining work

INFO [81-11116:91-50.155] Cowmit nem mining work

WARN [8-11118 @150, WG] Tnvalid stets history regeest
INFO [B0-11118:@1-51.005] Successfully sealed mes block

rusher=73 hash=35dc06. Flecin

ramber=74 seolhash=60bAbE_@3d6Fe uncles=# txz-Q gos=&

Faaz=f elopsed=5.61%:

rambars74 sealhashe3d3825.B2007d unclossl txe=l467 gos=30700000 Feess=3, T6I7Be-1R elopseds=177 557ms
rumber="4 sealhash=3d3825_B20ald hoshe=dbcoe? PS37Y elopsed=Bid 475

rusbersi? hashed3c3dl BBobac
nismher=74 haskedoced 74T
ramrbar=75 seolhash=T27BR 11553F unclas-d txg-R gos-@

Fanil elopdad=t 4Emi

rumher=75 sealhasheol5319 a7cie? unclosel bxseldld gos=23654000 Fees=3. 622710-10 elopsed=&3. 717
rusber=75 sealhash=015919_o07c3e? hosh=82edfd_37bb1% elopsed=931. 2im

rusbir=hl haghe1433el. 07 450a
number=75 hash-82e@fd 32bbF
rabir=76 coolFash=108025 BATECE unclossd txge@ gossd
rumber=76 seolhask=TBibb!

Feus=i wlopsedss, 4 Fms

5_BEDASA uncles=i Exs=1457 gos=38597000 fees=1. 72797e-10 elopsed=82 XS

rumbers?6 sealhashaTBbbb5 B hoshefc FIZe 918%™ elopsed=917. 36dam

rumber=63 hash=219305_c20515
ragmber=76 hash=Ecf2c_01dE34
risbars77 Sealhashe] 71100 506750 unclass bis=d gossd

Faus el #lopsed=R . 350

rumber=7? sealhasheobd5edl_oa?33c uncles=# tos=1524 gos=32804000 fees=1.92427e-10 elopsed=131.500ns
ramtiers77 sealhaiheobd5el0al 33 hoshed?1d3e FIG122 olapsed=kS9. 351m

number= hash=rESESE_ 98108
rambers77 hashedTld0e. FR6122

rumber=78 seolhashedd585 0e0060 unclossd Lis=0 gose@

Feeswlt elopseds5 . 2lns

rusbera?l seolhasheedIc08 G413 unclesed txtalbil Gos=307E0M0 fecsad. 184456-10 elopsed=185. s
rishar="0 snolhasheei3c98 641341 hosh=RRYG T _chlold olopsned=FE. 300

rumber=71 hash-28Ed3e 005896
rusbiar=7h hath00@FES . chiof
rumber=7"9 seolhashebGE7cieeSi unclos=# o=l goss=@

Feas=f elopsedsS . Ak

rumtier=1 seal hasbedGhB16. 79068 wniclessl b4l Gos=31060000 Feess=. 7765e-10 elopseds=173. Bibas
ramber=73 seolhash-dbbi1E 23008 hash=272634 dd3054 elopsed=876. E54ms

rarbera7? hasheladdle BA3T06
fimber=79 hath=2T2E04_0d3d54
rumher=88 weolhathe=21fEd]_dbdiba uncles=§ tow-f gos=8

feea=@ elopsed=5. 934m

rasher=01 sealhasheTIRaCR.5efelc unclosell Exse]45 gus-30010000 Fessed, 72267%-10 #lopsed=146.7 3000
rurber-88 sealhash=T3och Sefelc hosh-53eSPL 07038 elopsed-ESE. 30

ramlir=73 haghs35dc06. Floce
rumber=88 hosh=51a571_hM8cSE
rurbersf] sedlhashed1ef27. 9070 unclessd txssd gus i

[#lopsedss . BFms.

rumber=81 sealhash=3eB52d. 342713 uncles= txs=1484 gos-311154000 fees-1.8262e-10 elopsed=33.718ns
rusberafl sealhashegelSld 042713 heshe13605 7oedbd elopsed-01. 199

o= hathedioonl FRI47E
rumber-f1 hosh=1F3685_Fcednd
rusbers87 sealhashe]lbd?E. o4 FiRd unclessd trssd (R

elopseds5, 87 3ms.

Fres=f
ramber=82 seolhash-58cH13 d3leld uncles-dl trs=1564 gos-3292B000 fees-d,BUB0EC-10 clopsed=135.510ns

mig=folse
K dcHld dilekd

11e IS elopsed=B61. 8%

26

Chapter 7. Network Performance

Papyrus Docs Documentation

A visual representation, which can be seen on our monitor explorer (screenshot):

[https:/fraw.githubusercontent X | # Ethereum Network Status x [clixplorer X o+

<« C (@ Henapexnsiii | explorer.papyrus.network aQ & © @v\m o

Clixplorer Tx Hash, Address, or Block #

The test shows, that 1500 transactions fall into a block every second it is generated.

As a result, we got the desired and unique combination of a quality network.

7.1. Results 27

Papyrus Docs Documentation

28

Chapter 7. Network Performance

CHAPTER 8

Papyrus API

The following are the core APIs that could be used in the development of Papyrus Dapps:

8.1 BIOS Contract

8.1.1 Overview

Bios.sol - is the main kernel smartcontract with all the logic about consensus, staking and voting. Its based on the
QueueHelper that brings queue implementation code. Latest version of the Bios contact you can always find in our
repo

8.1.2 BIOS Addresses

To track the current address of the Bios contract, there is a Versioner contract located at fixed address
0x0000000000000000000000000000000000000022. To query it for the Bios contract address, use bios
public method. Here is an example in javascript:

const versionerAbi = [
{
constant: true,
inputs: [],
name: 'bios',
outputs: [{ name: '', type: 'address' }1],
payable: false,
stateMutability: 'view',
type: 'function'
}
1i
const versionerAddress = '0x0000000000000000000000000000000000000022";
const versioner = new web3.eth.Contract (versionerAbi, versionerAddress);
const biosAddress = await versioner.methods.bios () .call({ from: account });

29

https://github.com/papyrusglobal/papyrus/blob/master/papyrus-stuff/contracts/Bios.sol
https://github.com/papyrusglobal/papyrus/blob/master/papyrus-stuff/contracts/Bios.sol
https://github.com/papyrusglobal/papyrus/blob/master/papyrus-stuff/contracts/Versioner.sol

Papyrus Docs Documentation

Note that the resulting address may be zero, this means that the Bios contract is not yet installed.

8.1.3 BIOS Usages examples

Let’s take a look at the simple example of Javascript code that will get all authorities nodes from our BIOS contract.

const { eth } = require('./web3relay');
const ABI = require('../abi/bios');
const { getConfig } = require('../utils');

const config = getConfig();
if (!config.biosAddress) throw new Error ('Setup config.biosAddres');
const contract = new eth.Contract (ABI, config.biosAddress);

module.exports = function (req, res) {
if (typeof contract.methods.getAuthorities !== 'function') {
console.error ('Contract method \'getAuthorities\' not found', err);
res.send([]);
res.end () ;
}
contract.methods.getAuthorities () .call()
.then (authorities => {
res.send (authorities);
res.end () ;
1)
.catch(err => {
console.error ('Can\'t get authorities from contract. Silently return empty,,
—array', err);
res.send([]);
res.end () ;
})
}i

If you are interested to see more examples how to call BIOS contact API you could check our API documentation
sections for example - Voting API

8.2 API: Staking

8.2.1 Contract overview

Bios.sol - is the main kernel smartcontract with all the logic about consensus and staking. Its based on the
QueueHelper that brings queue implementation code.

8.2.2 Functions

« function freeze() payable public

Stake the specified amount of tokens. The value is on the contract account and thus inaccessible to the sender. Input
parameter : “msg.value” the value to be staked. Output parameter : none

* function freezeForContract(address contract_) payable public

30 Chapter 8. Papyrus API

https://papyrus-network.readthedocs.io/en/latest/doc/api/api-staking.html#api-usage-example

Papyrus Docs Documentation

Stake the specified amount of money to the given contract account. The value is on the contract account and thus
inaccessible to the sender. (address contract_) payable public { Input parameter : “msg.value” the value to be
staked. Input parameter : address - the contract to stake for. Output parameter : none

 function melt(uint224 val) public

Unstake the specified value of tokens. The value is put to the melting queue and can be withdrawn after freezeGap.
Input parameter : “val” - value to unstake. Output parameter : none

¢ function meltFromContract(address contract_, uint224 val) public

Function to unstake the specified value of money from the contract account. The value is put to the melting queue
and can be withdrawn after kFreezeStake. Input parameter : “val” - value to unstake. Input parameter :
address - the contract to unstake from. Output parameter : none

¢ function withdraw() public

Withdraw the previously unstaked amount of tokens provided the freezeGap time had passed since its unstake. Every
‘unstake’ call must match ‘withdraw’ call. Takes the latest melting queue element and transfers its tokens amoun to
the sender’s account. Input parameter : none OQutput parameter : none

¢ function getFreeMeltingSlots() view public returns (uint8)

Service function, calculates the number of queue elements (slots) is aviable in the melting conveyer for the sender’s
account. Every unstake call consumes a slot, every withdrawal releases it. Input parameter : none Output
parameter : uint8 - slots number

* function getMeltingHead() view public returns (uint224 stake, uint32 timestamp)

Service function, calculates the latest melting conveyer slot to bewithdrawn first. Return Stake and timestamp pair,
where stake is the amount of money unstaked and timestamp is the time of the unstake call. Input parameter :
none Output parameter : uint8 - stake Output parameter : uint8 - timestamp

* function getFreeMeltingSlots() view public returns (uint8)

Service function, calculates the number of queue elements (slots) is aviable in the melting conveyer for the sender’s
account. Every unstake call consumes a slot, every withdrawal releases it. Input parameter : none Output
parameter : uintd - number of free slots that could be used for the unstaking

* function getMeltingHead() view public returns (uint224 stake, uint32 timestamp)

Service function, calculates the latest melting conveyer slot to be withdrawn first. Input parameter : none
Output parameter : uint224 stake, uint32 timestamp - pair, where stake is the amount of money unstaked and
timestamp is the time of the unstake call.

8.2.3 API Usage Example

Below you can see typical JS example of usage Bios.sol smartcontract.

const gatewayUrl = 'http://148.251.152.112:18545/'; // url to the Papyrus testnet
const biosAddress = '0x142ac51e2b05a107c1482£4832b73c5bc55b6fd5"'; // Address of the
—Bios contract in the network

const ether = 10 %x 18;
let contract;
let account;

let web3;
web3 = new Web3 (window.web3.currentProvider) ;
const accounts = await web3.eth.getAccounts();

(continues on next page)

8.2. API: Staking 31

Papyrus Docs Documentation

(continued from previous page)

account = accounts[0];
const netId = await web3.eth.net.getId();
const balance = await web3.eth.getBalance (account);

contract = new web3.eth.Contract (abi, biosAddress);

//lets freeze some tokens
contract.methods.freeze () .send({ from: account, gas: 0, value })

//lets unfreeze some tokens
contract.methods.melt (value) .send({ from: account, gas: 0 })

//After freeze gap time - lets unfreeze our tokens
contract.methods.withdraw() .send ({ from: account, gas: 100000 })

8.3 API: Voting

8.3.1 Contract overview
Bios.sol - is the main kernel smartcontract with all the logic about consensus, staking and voting. Its based on the
QueueHelper that brings queue implementation code.

Voting mechanism consists of two parts - firs is “proposal call” that initiates possibility for voting for any change for
other participants (for instance - adding new Authority node or Bios contract changing etc). After that voting begins
and in the in a certain period of time Authority Nodes could vote for any active initiatives.

8.3.2 Proposal Functions

* function proposeNewAuthority(address participant) public

Propose a poll for a new authority. Input parameter : “address participant” - the address of the new Autority
Node. Output parameter : none

* function proposeBlacklistAuthority(address participant) public

Propose a poll for blacklisting the authority to the authority black list. Input parameter : “address participant” -
the address of the Autority Node that should be added to the black list. Output parameter : none

8.3.3 Proposal Examples

Below you can see JS example of usage Bios . sol smartcontract from the Papyrus Wallet implemetation:

async proposeNewAuthority (address, callbacks = {}) {
return this.process(
this.contract.methods.proposeNewAuthority (address) .send ({
from: this.account,
gas: 100000
I
callbacks
)i

32 Chapter 8. Papyrus API

Papyrus Docs Documentation

8.3.4 Voting Functions

* function voteForNewAuthority(uint slot, address participant) public

Function that could be called by existing Authority Vote for the voting for the new Authority Node Input
parameter : “slot” - number of voting slot to bet. Input parameter : “participant” - address of the proposed
authority. Output parameter : none

* function voteForBlackListAuthority(address participant) public

Function that could be called by existing Authority Vote for the voting for the adding another Authority Node to the
blacklist Input parameter : “slot” - number of voting slot to bet. Input parameter : “participant” - address
of the proposed authority. Output parameter : none

¢ function handleClosedPolls() public

Handle all pollings where time is up. Anybody could call this function. Input parameter : none Output
parameter : none

8.3.5 Voting Examples

import Web3 from 'web3';
import abi from '@/abis/abi.json';

const noop = () => {};
const cbCaller = function(fn, ...args) {
if (fn && typeof fn === 'function') {
fn(...args);

}
}i

export class Web3Service {
web3 = null;

contract = null;

provider = null;

account = null;

constructor (provider) {
this.provider = provider;
this.web3 = new Web3 (provider);
this.contract = new this.web3.eth.Contract (
abi,
process.env.VUE_APP_BIOS_ADDRESS
)

async voteForNewAuthority (votes, address, callbacks = {}) {
return this.process(
this.contract.methods.voteForNewAuthority (votes, address) .send ({
from: this.account,
gas: 100000
1)y
callbacks
)

async voteForBlackListAuthority (address, callbacks = {}) {

(continues on next page)

8.3. API: Voting 33

Papyrus Docs Documentation

(continued from previous page)

return this.process(
this.contract.methods.voteForBlackListAuthority (address) .send ({
from: this.account,
gas: 100000
1)y
callbacks
)i

34 Chapter 8. Papyrus API

CHAPTER 9

Tools

There are many tools created for developers and users of Papyrus Network.
1. Papyrus Explorer

MainNet - https://explorer.papyrus.network

TestNet - https://explorer-testnet.papyrus.network

Repository - https://github.com/papyrusglobal/explorer

2. Papyrus Network Status

MainNet - https://status.papyrus.network

TestNet - https://status.papyrus.network

3. Papyrus Wallet

MainNet - https://wallet.papyrus.network

TestNet - https://wallet-testnet.papyrus.network

Repository - https://github.com/papyrusglobal/wallet

4. Papyrus-Ethereum Bridge

MainNet<->Ethereum MainNet - https://bridge.papyrus.network
TestNet<->Rinkeby Bridge - https://bridge-testnet.papyrus.network

Backend repository - https://github.com/papyrusglobal/papyrus-token-bridge
Frontend repository - https://github.com/papyrusglobal/papyrus-token-bridge-web
5. Papyrus Roulette dApp demo

TestNet - https://roulette-testnet.papyrus.network/

Repository - https://github.com/papyrusglobal/roulette

35

https://explorer.papyrus.network
https://explorer-testnet.papyrus.network
https://github.com/papyrusglobal/explorer
https://status.papyrus.network
https://status.papyrus.network
https://wallet.papyrus.network
https://wallet-testnet.papyrus.network
https://github.com/papyrusglobal/wallet
https://bridge.papyrus.network
https://bridge-testnet.papyrus.network
https://github.com/papyrusglobal/papyrus-token-bridge
https://github.com/papyrusglobal/papyrus-token-bridge-web
https://roulette-testnet.papyrus.network/
https://github.com/papyrusglobal/roulette

Papyrus Docs Documentation

36

Chapter 9. Tools

cHAaPTER 10

FAQ

10.1 What is Papyrus Network?

Papyrus Network is a decentralized blockchain platform for supporting smart contracts and high throughput designed
for mass adoption and enterprise usage. Papyrus Network is an operating system which will allow developers to deploy
their own decentralized applications and will allow companies integrate custom blockchain for their business needs.

10.2 What is the prospects of Papyrus Network?

We aim to build a Papyrus Network ecosystem that everyone can participate in and benefit from. Some of the features
of Papyrus Network are:

* Users are able to reduce costs, enjoy convenience, and build fortunes by using different DApp functions deployed
in Papyrus Network. Instead of gas transaction fee model token staking model is implemented to allocate
network processing power and storage facilities.

» Developers have a vast range of rights including deploying DApp in Papyrus Network net, expanding business
and gaining traction as influencers and authority leaders.

* Authority node holders demonstrate support for Papyrus Network and its abundant returns.

Everyone will devote their energy to the construction of the Papyrus Network ecosystem, and will benefit from helping
to build Papyrus Network regardless of their role as users, developers or Papyrus Network Authority node holders.

10.3 What differs Papyrus Network from Ethereum, EOS and TRON?

Papyrus Network combines the best features of Ethereum and EOS avoiding their weaknesses and having something
different inside:

e Consensus Module

37

Papyrus Docs Documentation

Instead of energy intensive Proof-of-Work lightweight Proof-of-Authority consensus and Separation of Powers are
realised, where fixed amount of network nodes called Authority Nodes are operated by credible organizations with
public exposure. As a result resource wastage can be eliminated inherent to Proof-of-Work and ensure reasonable
transaction costs.

 Token Staking

Instead of gas transaction fee model token staking model is implemented, where token supply represents total avail-
able network throughput and each token represents fraction of it. Application developers need to stake tokens (locking
them for specific period of time) for their dApp contracts to receive access to required network bandwidth and may
adjust staked amount from time to time accordingly to their needs. Developers don’t need to worry about token price
volatility between revisions of their bandwidth requirements.

For more information on what differs Papyrus Network from others, go check Comparison page in the Docs.

10.4 What are Authority nodes?

They are active network nodes, which participate in Proof-of-Authority consensus. Initial set of Authority nodes
was appointed by Papyrus team. After network is launched Authority nodes self-elect themselves from current set
of eligible node candidates. Inclusion or exclusion of Authority nodes is based on votes from other Authority nodes.
Maximum amount of Authority nodes is fixed as 47, as in our view it is good tradeoff between network speed, scala-
bility and resistance to attacks.

38 Chapter 10. FAQ

cHAPTER 11

Papyrus Network key facts

This section presents key variables of Papyrus Network setup, which dApp developers need to know.

Chainld = 32328

Block interval = 1 second

Native token for resource allocation = PPR

Native token emission at genesis block = 1000000000 PPR

Mining rewards = (1.5 * A) / 47 PPR per mined block, where A equals to the count of Authority Nodes

Block gas limit = 210284448
Unstaking lock period = 3 * 24 hours (3 days)

Gas refill allocation for an address with X PPR stake = X in wei * blockGasLimit * 60 * 60 / totalStake in weli,
where blockGasLimit = block gas limit, totalStake = total amount of PPRs staked in the network with X included
(implementation notice: for the first stake created for the address gas is allocated immediately, for subsequent
stakes gas is allocated once in an hour by gas refill process)

Gas refill interval = 60 * 60 seconds (1 hour)

Maximum gas allocation limit for an address with X PPR stake = 3 * 24 * X in wei * blockGasLimit * 60 *
60 / totalStake in wei, where blockGasLimit = block gas limit, totalStake = total amount of PPRs staked in the
network with X included

New Authority Node voting period = 14 days

Authority Node blacklist voting period = 5 days

Minimum votes required for Authority Node candidate approval = 3

Maximum number of Authority Nodes and candidates each Authority Nodes can vote for =7

Vote withdrawal lock period = 14 days

39

Papyrus Docs Documentation

* BIOS contract versioner address: 0x0000000000000000000000000000000000000022 (see http://docs.papyrus.
network/en/latest/doc/api/api-bios.html)

* Actual version of BIOS contract:
https://github.com/papyrusglobal/papyrus/blob/master/papyrus-stuff/contracts/Bios.sol

 Current BIOS contract address (do not hardcode it in your applications, use versioner to resolve BIOS address
in all cases!): 0x196facabb6512c8343ffa8bcadc0174d7b301£9

* Actual version of Papyrus Network User Agreement:
https://github.com/papyrusglobal/papyrus/blob/master/PNUA

* SHA-256 hash of Papyrus Network User Agreement verifiable in network BIOS contract:
0x5¢366dc1{fa995d93fae49888f1283d5e8429a372757f43af315a79e84cd1583

» Network explorer provided by Papyrus:
https://explorer.papyrus.network
* MetaMask wallet extension for token staking and Authority Nodes voting provided by Papyrus:
https://wallet.papyrus.network
* Network status page:
https://status.papyrus.network
e HTTP RPC gateways provided by Papyrus:
https://gateway.papyrus.network

https://gateway?2.papyrus.network

40 Chapter 11. Papyrus Network key facts

http://docs.papyrus.network/en/latest/doc/api/api-bios.html
http://docs.papyrus.network/en/latest/doc/api/api-bios.html
https://github.com/papyrusglobal/papyrus/blob/master/papyrus-stuff/contracts/Bios.sol
https://github.com/papyrusglobal/papyrus/blob/master/PNUA
https://explorer.papyrus.network
https://wallet.papyrus.network
https://status.papyrus.network
https://gateway.papyrus.network
https://gateway2.papyrus.network

cHAPTER 12

Work in progress

Papyrus Network further development directions:

1.

SN U T

Implementation of Community blacklist voting.

Implementation of 47 Authority Nodes limit and governance improvements.

Research on Ethereum wallets compatibility and usability.
Support for dApp developers.

R&D: native enthropy beacon.

R&D: blockchain history pruning via state snapshots and epochs to reduce data storage requirements for

blockchain nodes.

R&D: performance optimisations.

41

Papyrus Docs Documentation

42

Chapter 12. Work in progress

cHAPTER 13

Indices and tables

* genindex
* modindex

e search

43

	Vision (or Why I should run my dApp on Papyrus instead of Ethereum?)
	Which challenges does Papyrus Network solve?
	How we address these issues
	The main advantages of Papyrus Network

	Governance
	Papyrus Network User Agreement
	Definitions
	Adding new Authority Node
	Authority Nodes Management
	1. Election
	2. Blacklist
	Changing BIOS contract parameters
	Authority Nodes token reward recommendation
	Governance attack considerations

	Comparison of Public Blockchain Networks
	Consensus
	Authority Nodes
	Recommended Authority Node configuration:
	How to deploy Authority Node
	Expected Authority Node rewards:

	Staking
	How to stake tokens
	Code Examples

	Network Performance
	Results

	Papyrus API
	BIOS Contract
	API: Staking
	API: Voting

	Tools
	FAQ
	What is Papyrus Network?
	What is the prospects of Papyrus Network?
	What differs Papyrus Network from Ethereum, EOS and TRON?
	What are Authority nodes?

	Papyrus Network key facts
	Work in progress
	Indices and tables

