
zebra2-server Documentation
Release 0.0

Michael Abbott, Tom Cobb

Dec 07, 2018

Contents

1 Zebra2 3

2 Block functional documentation 5
2.1 BITS - Soft inputs and constant bits . 5
2.2 CLOCKS - Configurable clocks . 6
2.3 PULSE - One-shot pulse delay and stretch [x4] . 7
2.4 DIV - Pulse divider [x4] . 14
2.5 SRGATE - Set Reset Gate . 14
2.6 LUT - 5 Input lookup table [x8] . 23
2.7 SEQ - Sequencer . 28
2.8 COUNTER [x8] . 41
2.9 PCOMP - Position Compare [x4] . 45
2.10 PCAP - Position Capture . 58
2.11 PGEN - Position Generator [x2] . 81
2.12 INENC - Input encoder . 82
2.13 LVDSIN - LVDS Input . 83
2.14 LVDSOUT - LVDS Output . 84
2.15 OUTENC - Output encoder . 84
2.16 POSENC - Quadrature and step/direction encoder . 85
2.17 QDEC - Quadrature Decoder . 85
2.18 TTLIN - TTL Input . 86
2.19 FILTER - Filter . 86
2.20 TTLOUT - TTL Output . 86

3 Triggering schemes 91
3.1 Fixed exposure gate and trigger . 91

4 Unit testing FPGA blocks 93
4.1 Python block simulation . 93
4.2 Unit test sequences . 94
4.3 Running the test . 94
4.4 The generated FPGA test vectors . 95
4.5 Running the FPGA test vectors . 95
4.6 Generating the plots for the block level documentation . 95

5 API doc for configparser 97

i

ii

zebra2-server Documentation, Release 0.0

Contents:

Contents 1

zebra2-server Documentation, Release 0.0

2 Contents

CHAPTER 1

Zebra2

This is what Zebra2 is

3

zebra2-server Documentation, Release 0.0

4 Chapter 1. Zebra2

CHAPTER 2

Block functional documentation

Each block is documented with examples

2.1 BITS - Soft inputs and constant bits

The BITS block contains 4 soft values A..D. Each of these soft values can be set to 0 or 1 by using the SET_A..SET_D
parameters.

2.1.1 Parameters

Name Dir Type Description
A R/W Bit The value that output A should take
B R/W Bit The value that output B should take
C R/W Bit The value that output C should take
D R/W Bit The value that output D should take
OUTA Out Bit The value of A on the bit bus
OUTB Out Bit The value of B on the bit bus
OUTC Out Bit The value of C on the bit bus
OUTD Out Bit The value of D on the bit bus

2.1.2 Outputs follow parameters

This example shows how the values on the bit bus follow the parameter values after a 1 clock tick propogation delay

5

zebra2-server Documentation, Release 0.0

0 2 4 6 8 10 12 14
Timestamp (125MHz FPGA clock ticks)

A

B

OUTA

OUTB

Outputs follow inputs

2.2 CLOCKS - Configurable clocks

The CLOCKS block contains 4 user-settable 50% duty cycle clocks. The period can be set for each clock separately.
When any clock period is set, all clocks restart from a common synchronous point.

2.2.1 Parameters

Name Dir Type Description
A_PERIOD R/W Time The period of clock output A, 0 or 1 = off
B_PERIOD R/W Time The period of clock output B, 0 or 1 = off
C_PERIOD R/W Time The period of clock output C, 0 or 1 = off
D_PERIOD R/W Time The period of clock output D, 0 or 1 = off
A Out Bit The current value of clock A
B Out Bit The current value of clock B
C Out Bit The current value of clock C
D Out Bit The current value of clock D

2.2.2 Setting clock period parameters

Each time a clock parameter is set, the clock restarts from that point with the new period value.

2.2.3 All clocks have the same starting point

When any period parameter is set, all clocks restart from that point.

6 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

9 4 0A_PERIOD

OUTA

Setting a parameter starts clock

0 10 20 30 40 50 60
Timestamp (125MHz FPGA clock ticks)

8 0A_PERIOD

6 0B_PERIOD

OUTA

OUTB

Clocks restart whenever parameter set

2.3 PULSE - One-shot pulse delay and stretch [x4]

A PULSE block produces configurable width output pulses with an optional delay based on its parameters. If WIDTH
is non-zero, the output pulse width will be the specified amount. If DELAY is non-zero, the pulse train will be
delayed by that amount. If both are non-zero, the pulses are stretched and delayed as long as the resulting output
would still contain the same number of distinct pulses. If this is not the case, then the PERR signal is raised, and the
MISSED_CNT counter is incremented. Change of any parameter causes the block to be reset.

2.3. PULSE - One-shot pulse delay and stretch [x4] 7

zebra2-server Documentation, Release 0.0

2.3.1 Parameters

Name Dir Type Description
DELAY R/W Time Output pulse delay. Must

be either 0 (no delay) or
>4 clock ticks

WIDTH R/W Time Output pulse width. If
0, the width of the input
pulse is used

FORCE_RESET W Action Reset QUEUE and ERR
outputs

INP In Bit Input pulse train
RESET In Bit On edge defined by

EDGE, reset QUEUE and
ERR outputs

EDGE R/W Enum

0 - rising edgee
1 - falling edg
2 - either edge

OUT Out Bit Output pulse train
PERR Out Bit Error output. If a pulse

could not be generated
This will be set to 1 until
the block is RESET

ERR_OVERFLOW R Bit Indicates a missed pulse
was due to overflow of the
internal queue. If DE-
LAY is non-zero then up
to 1023 pulse edges can be
queued waiting for output.

ERR_PERIOD R Bit If producing a pulse
would cause it to overlap
with the previous pulse
(WIDTH > time between
pulses), then this flag is
set.

QUEUE R UInt32 Length of the delay queue
in range [0..1023]

MISSED_CNT R UInt32 Number of pulses that
have not been produced
because of an ERR con-
dition. Will only be non-
zero when PERR is 1

2.3.2 Zero Delay

If DELAY=0, then the INP pulse will be stretched with only the propogation delay of the block (1 clock tick). WIDTH
may take any value, as long as input pulses are spaced enough to allow stretched pulses to be produced.

8 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 2 4 6 8 10 12 14
Timestamp (125MHz FPGA clock ticks)

5WIDTH

0DELAY

0TRIG_EDGE

1ENABLE

TRIG

QUEUED

OUT

Pulse stretching with no delay activate on rising edge

2.3.3 Zero Width

If WIDTH=0, then the INP pulse width will be used. DELAY must be >4 clock ticks.

2.3.4 Width and Delay

In this mode, pulses are placed onto an output queue, so a number of restrictions apply:

• There must not be more than 1023 pulses on the output queue

• WIDTH must be >3 clock ticks

• There must be >3 clock ticks where output is 0 between pulses. This means that WIDTH < T - 3 where T is the
minimum INP pulse period

2.3.5 Different Edge Activation

When there is a width specified, it is possible to also specify which edge of the input pulse activates the output.

2.3.6 Pulse period error

The following example shows what happens when the period between pulses is too short.

2.3. PULSE - One-shot pulse delay and stretch [x4] 9

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

0WIDTH

10DELAY

1ENABLE

TRIG

OUT

1 2 1 0QUEUED

Pulse delay with no stretch

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

10WIDTH

10DELAY

1ENABLE

TRIG

OUT

2 1 0QUEUED

Pulse delay and stretch

10 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30 35 40
Timestamp (125MHz FPGA clock ticks)

5WIDTH

10DELAY

1ENABLE

TRIG

OUT

2 4 3 2 1 0QUEUED

Pulse train stretched and delayed

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

0WIDTH

0DELAY

1ENABLE

TRIG

OUT

No delay or stretch

2.3. PULSE - One-shot pulse delay and stretch [x4] 11

zebra2-server Documentation, Release 0.0

0 2 4 6 8 10 12 14
Timestamp (125MHz FPGA clock ticks)

5WIDTH

0DELAY

0TRIG_EDGE

1ENABLE

TRIG

QUEUED

OUT

Pulse stretching with no delay activate on rising edge

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

5WIDTH

0DELAY

1TRIG_EDGE

1ENABLE

TRIG

OUT

2 1 0QUEUED

Pulse stretching with no delay activate on falling edge

12 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

5WIDTH

0DELAY

2TRIG_EDGE

1ENABLE

TRIG

OUT

1 0 2 1 0QUEUED

Pulse stretching with no delay activate on both edges

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

5WIDTH

10DELAY

ENABLE

TRIG

ERR_PERIOD

DROPPED

OUT

2 1 3 2 1 0QUEUED

Stretched and delayed pulses too close together

2.3. PULSE - One-shot pulse delay and stretch [x4] 13

zebra2-server Documentation, Release 0.0

2.4 DIV - Pulse divider [x4]

A DIV block is a 32-bit pulse divider that can divide a pulse train between two outputs. It has an internal counter that
counts from 0 to DIVISOR-1. On each rising edge of INP, if counter = DIVISOR-1, then it is set to 0 and the pulse is
sent to OUTD, otherwise it is sent to OUTN. Change in any parameter causes the block to be reset.

2.4.1 Parameters

Name Dir Type Description
DIVISOR R/W UInt32 Divisor value
FIRST_PULSE R/W Enum

0 - OutN: Send first pulse
to OUTN
1 - OutD: Send first pulse
to OUTD

FORCE_RESET W Action Reset internal counter
state machine

INP In Bit Input pulse train
RESET In Bit On rising edge, reset

counter state machine
OUTD Out Bit Divided pulse output
OUTN Out Bit Non-divided pulse output
OUT R UInt32 Internal counter value in

range [0..DIVISOR-1)

2.4.2 Which output do pulses go to

With a DIVISOR of 3, the block will send 1 of 3 INP pulses to OUTD and 2 of 3 INP pulses to OUTN. The following
two examples illustrate how the FIRST_PULSE parameter controls the initial value of OUT, which controls whether
OUTD or OUTN gets the next pulse.

2.4.3 Reset conditions

If an ENABLE falling edge is received at the same time as an INP rising edge, the input signal is ignored and the block
reset.

2.5 SRGATE - Set Reset Gate

An SRGATE block produces either a high (SET) or low (RST) output. It has configurable inputs and an option to
force its output independently. Both Set and Rst inputs can be selected from bit bus, and the active-edge of its inputs
is configurable. An enable signal allows the block to ignore its inputs.

14 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

3DIVISOR

1ENABLE

INP

OUTN

OUTD

1 2 0COUNT

Start on OUTN

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

3DIVISOR

1ENABLE

1FIRST_PULSE

INP

OUTD

OUTN

2 0 1 2 0COUNT

Start on OUTD

2.5. SRGATE - Set Reset Gate 15

zebra2-server Documentation, Release 0.0

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

3DIVISOR

ENABLE

INP

COUNT

OUTN

Reset conditions

16 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

2.5.1 Parameters

Name Dir Type Description
WHEN_DISABLED R/W Enum

What to do with the
output when Enable is
low
0 Set output low
1 Set output high
2 Keep current output

SET_EDGE R/W Enum

0 - Sets the output to 1 on
rising edge
1 - Sets the output to 1 on
falling edge
2 - Sets the output to 1 on
either edge

RESET_EDGE R/W Enum

0 - Resets the output on
rising edge
1 - Resets the output on
falling edge
2 - Resets the output on
either edge

FORCE_RESET W Action Reset output to 0
FORCE_SET W Action Set output to 0
ENABLE In Bit Whether to listen to

SET/RST events
SET In Bit A falling/rising edge sets

the output to 1
RESET In Bit A falling/rising edge re-

sets the output to 0
OUT Out Bit Output value

2.5.2 Normal conditions

The normal behaviour is to set the output OUT on the configured edge of the SET or RESET input.

2.5.3 Disabling the block

The default behaviour is to force the block output low when disabled, ignoring any SET/RST events:

The disabled value can also be set high:

Or left at its current value:

2.5. SRGATE - Set Reset Gate 17

zebra2-server Documentation, Release 0.0

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

1ENABLE

1FORCE_RST

SET

OUT

Set on rising Edge

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

1SET_EDGE

1ENABLE

1FORCE_RST

SET

OUT

Set on falling Edge

18 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 2 4 6 8 10 12 14
Timestamp (125MHz FPGA clock ticks)

2SET_EDGE

1ENABLE

1FORCE_RST

SET

RST

OUT

Set on either Edge RST default

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

1ENABLE

SET

RST

OUT

Reset on rising Edge

2.5. SRGATE - Set Reset Gate 19

zebra2-server Documentation, Release 0.0

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

1RST_EDGE

1ENABLE

SET

RST

OUT

Reset on falling Edge

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

ENABLE

SET

OUT

Output low while disabled

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

1WHEN_DISABLED

ENABLE

RST

OUT

Output high while disabled

20 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

2WHEN_DISABLED

ENABLE

SET

RST

1OUT

Output left at current while disabled

2.5.4 Active edge configure conditions

if the active edge is ‘rising’ then reset to ‘falling’ at the same time as a rising edge on the SET input, the block will
ignore the rising edge and set the output OUT on the falling edge of the SET input.

0 2 4 6 8 10 12 14
Timestamp (125MHz FPGA clock ticks)

1ENABLE

1SET_EDGE

SET

FORCE_RST

OUT

Rising SET with SET_EDGE reconfigure

If the active edge changes to ‘falling’ at the same time as a falling edge on the SET input, the output OUT will be set
following this.

2.5.5 Set-reset conditions

When determining the output if two values are set simultaneously, FORCE_SET and FORCE_RESET registers take
priority over the input bus, and reset takes priority over set.

2.5. SRGATE - Set Reset Gate 21

zebra2-server Documentation, Release 0.0

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

1ENABLE

1SET_EDGE

SET

FORCE_RST

OUT

Falling SET with SET_EDGE reconfigure

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

1ENABLE

1SET_EDGE

RST_EDGE

SET

RST

OUT

Falling RST with with reset edge reconfigure

22 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

1ENABLE

1FORCE_SET

RST

SET

FORCE_RST

OUT

Set-reset conditions

2.6 LUT - 5 Input lookup table [x8]

An LUT block produces an output that is determined by a user-programmable 5-input logic function, set with the
FUNC register.

2.6. LUT - 5 Input lookup table [x8] 23

zebra2-server Documentation, Release 0.0

2.6.1 Parameters

Name Dir Type Description
FUNC R/W UInt32 LUT logic function
A R/W Enum

Source of the value of A
for calculation
0 - Input Value
1 - Rising Edge
2 - Falling Edge
3 - Either Edge

B R/W Enum Source of the value of B
for calculation

C R/W Enum Source of the value of C
for calculation

D R/W Enum Source of the value of D
for calculation

E R/W Enum Source of the value of E
for calculation

INPA In Bit Input A
INPB In Bit Input B
INPC In Bit Input C
INPD In Bit Input D
INPE In Bit Input E
OUT Out Bit Output port from the

block

2.6.2 Testing Function Output

This set of tests sets the function value and checks whether the output is as expected

A&B&C&D&E (FUNC= 0x80000000). Setting all inputs to 1 results in an output of 1, and changing any inputs
produces an output of 0

~A&~B&~C&~D&~E (FUNC= 0x00000001). Setting all inputs to 0 results in an output of 1, and changing any inputs
produces an output of 0

A (FUNC= 0xffff0000). The output should only be 1 if A is 1 irrespective of any other input.

A&B|C&~D (FUNC= 0xff303030)

A?(B):D&E (FUNC= 0xff008888)

2.6.3 Changing the function in a test

If a function is changed, the output will take effect on the next clock tick

24 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

0x80000000FUNC

INPA

INPC

INPB

INPE

INPD

OUT

A&B&C&D&E Output

0 2 4 6 8 10 12 14
Timestamp (125MHz FPGA clock ticks)

0x00000001FUNC

INPA

INPC

INPB

INPE

INPD

OUT

~A&~B&~C&~D&~E Output

2.6. LUT - 5 Input lookup table [x8] 25

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

0xffff0000FUNC

INPE

INPA

INPC

INPB

INPD

OUT

A output

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

0xff303030FUNC

INPA

INPB

INPC

INPD

OUT

A&B|C&~D output

26 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 2 4 6 8 10 12 14
Timestamp (125MHz FPGA clock ticks)

0xff008888FUNC

INPE

INPD

INPC

INPA

INPB

OUT

A?(B):D&E output

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

0x80000000 0x00000001FUNC

INPA

INPC

INPB

INPE

INPD

OUT

Changing function

2.6. LUT - 5 Input lookup table [x8] 27

zebra2-server Documentation, Release 0.0

2.6.4 Edge triggered inputs

We can also use the LUT to convert edges into levels by changing A..E to be one clock tick wide pulses based on
edges rather than the current level of INPA..INPE.

If we wanted to produce a pulse only if INPA had a rising edge on the same clock tick as INPB had a falling edge we
could set FUNC=0xff000000 (A&B) and A=1 (rising edge of INPA) and B=1 (falling edge of INPB):

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

0xff000000FUNC

1A

2B

INPA

INPB

OUT

Rising A & Falling B

We could also use this for generating pulses on every transition of A:

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

0xffff0000FUNC

3A

INPA

OUT

Either edge A

2.7 SEQ - Sequencer

The sequencer block performs automatic execution of sequenced lines to produce timing signals. Each line optionally
waits for an external trigger condition and runs for an optional phase1, then a mandatory phase2 before moving to the

28 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

next line. Each line sets the block outputs during phase1 and phase2 as defined by user-configured mask. Individual
lines can be repeated, and the whole table can be repeated, with a value of 0 meaning repeat forever.

2.7.1 Parameters

Name Dir Type Description
TABLE W Table Sequencer table of lines
PRESCALE W UInt32 Prescalar for system clock
ENABLE In Bit Stop on falling edge, reset

and enable on rising edge
INPA In Bit BITA for optional trigger

condition
INPB In Bit BITB for optional trigger

condition
INPC In Bit BITC for optional trigger

condition
POSA In Pos POSA for optional trigger

condition
POSB In Pos POSB for optional trigger

condition
POSC In Pos POSC for optional trigger

condition
ACTIVE Out Bit Sequencer Active Flag
OUTA Out Bit Output A for phase out-

puts
OUTB Out Bit Output B for phase out-

puts
OUTC Out Bit Output C for phase out-

puts
OUTD Out Bit Output D for phase out-

puts
OUTE Out Bit Output E for phase out-

puts
OUTF Out Bit Output F for phase outputs
TABLE_REPEAT R UInt32 Current iteration through

the entire table
TABLE_LINE R UInt32 Current line in the table

that is active
LINE_REPEAT R UInt32 Current iteration of the ac-

tive table line
STATE R Enum

Internal statemachine
state
0: WAIT_ENABLE
1: LOAD_TABLE
2: WAIT_TRIGGER
3: PHASE1
4: PHASE2

2.7. SEQ - Sequencer 29

zebra2-server Documentation, Release 0.0

2.7.2 Sequencer Table Line Composition

Bit Field Name Description
[15:0] REPEATS Number of times the line will repeat
[19:16] TRIGGER

The trigger condition to start the
phases
0: Immediate
1: BITA=0
2: BITA=1
3: BITB=0
4: BITB=1
5: BITC=0
6: BITC=1
7: POSA>=POSITION
8: POSA<=POSITION
9: POSB>=POSITION
10: POSB<=POSITION
11: POSC>=POSITION
12: POSC<=POSITION

[63:32] POSITION The position that can be used in trig-
ger condition

[95:64] TIME1 The time the optional phase 1
should take

[20:20] OUTA1 Output A value during phase 1
[21:21] OUTB1 Output B value during phase 1
[22:22] OUTC1 Output C value during phase 1
[23:23] OUTD1 Output D value during phase 1
[24:24] OUTE1 Output E value during phase 1
[25:25] OUTF1 Output F value during phase 1
[127:96] TIME2 The time the mandatory phase 2

should take
[26:26] OUTA2 Output A value during phase 2
[27:27] OUTB2 Output B value during phase 2
[28:28] OUTC2 Output C value during phase 2
[29:29] OUTD2 Output D value during phase 2
[30:30] OUTE2 Output E value during phase 2
[31:31] OUTF2 Output F value during phase 2

2.7.3 Generating fixed pulse trains

The basic use case is for generating fixed pulse trains when enabled. For example we can ask for 3x 50% duty cycle
pulses by writing a single line table that is repeated 3 times. When enabled it will become active and immediately start
producing pulses, remaining active until the pulses have been produced:

30 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

3 Imme-
diate

0 5 1 0 0 0 0 0 5 0 0 0 0 0 0

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

1REPEATS

load... T1TABLE

ENABLE

ACTIVE

OUTA

1 2 3LINE_REPEAT

3 evenly spaced pulses

We can also use it to generate irregular streams of pulses on different outputs by adding more lines to the table. Note
that OUTB which was high at the end of Phase2 of the first line remains high in Phase1 of the second line:

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

2 Imme-
diate

0 5 1 0 0 0 0 0 2 0 1 0 0 0 0

3 Imme-
diate

0 1 1 1 0 0 0 0 2 0 0 0 0 0 0

And we can set repeats on the entire table too. Note that in the second line of this table we have suppressed phase1 by
setting its time to 0:

2.7. SEQ - Sequencer 31

zebra2-server Documentation, Release 0.0

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

1REPEATS

load... T1TABLE

ENABLE

ACTIVE

OUTA

OUTB

1 2TABLE_LINE

1 2 1 2 3LINE_REPEAT

Irregular pulses

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

2 Imme-
diate

0 5 1 0 0 0 0 0 2 0 0 0 0 0 0

1 Imme-
diate

0 0 0 0 0 0 0 0 5 0 1 0 0 0 0

There are 6 outputs which allow for complex patterns to be generated:

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

1 Imme-
diate

0 3 1 0 0 0 0 0 4 1 1 0 0 0 0

1 Imme-
diate

0 5 1 1 1 0 0 0 6 1 1 1 1 0 0

1 Imme-
diate

0 7 1 1 1 1 1 0 8 1 1 1 1 1 1

32 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 10 20 30 40 50 60
Timestamp (125MHz FPGA clock ticks)

2REPEATS

load... T1TABLE

ENABLE

ACTIVE

OUTA

OUTB

1 2 1 2TABLE_LINE

1 2 1 2 1LINE_REPEAT

1 2TABLE_REPEAT

Table repeats

2.7. SEQ - Sequencer 33

zebra2-server Documentation, Release 0.0

0 10 20 30 40 50 60 70
Timestamp (125MHz FPGA clock ticks)

1REPEATS

load... T1TABLE

ENABLE

ACTIVE

OUTA

OUTB

OUTC

OUTD

OUTE

OUTF

1 2 3TABLE_LINE

Using all 6 outputs

34 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

2.7.4 Statemachine

There is an internal statemachine that controls which phase is currently being output. It has a number of transitions
that allow it to skip PHASE1 if there is none, or skip WAIT_TRIGGER if there is no trigger condition.

State 0
WAIT_ENABLE

State 1
LOAD_TABLE

 TABLE load started

State 2
WAIT_TRIGGER

 rising ENABLE and trigger not met

State 3
PHASE1

 rising ENABLE and trigger met

State 4
PHASE2

 rising ENABLE and trigger met and no phase1

 TABLE load complete

 TABLE load started

 trigger met

 trigger met and no phase1

 TABLE load started

 time1 elapsed

 TABLE load started

 next trigger not met

 next trigger met

 next trigger met and no phase1

2.7.5 External trigger sources

The trigger column in the table allows an optional trigger condition to be waited on before the phased times are started.
The trigger condition is checked on each repeat of the line, but not checked during phase1 and phase2. You can see
when the Block is waiting for a trigger signal as it will enter the WAIT_TRIGGER(2) state:

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

3 BITA=1 0 2 1 0 0 0 0 0 1 0 0 0 0 0 0
1 BITB=1 0 3 0 1 0 0 0 0 2 0 0 0 0 0 0

You can also use a position field as a trigger condition in the same way, this is useful to do a table based position
compare:

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Condition Po-
si-
tion

Time A B C D E F Time A B C D E F

1 POSA>=POSITION20 0 0 0 0 0 0 0 4 0 1 0 0 0 0
3 Immedi-

ate
0 1 1 1 0 0 0 0 3 0 1 0 0 0 0

2 POSA<=POSITION10 1 1 0 0 0 0 0 3 0 0 0 0 0 0

2.7. SEQ - Sequencer 35

zebra2-server Documentation, Release 0.0

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

1REPEATS

load... T1TABLE

ENABLE

BITA

BITB

ACTIVE

OUTA

OUTB

1 0 2 3 4 2 3 4 3 4 3 4 0STATE

1 2TABLE_LINE

1 2 3 1LINE_REPEAT

Waiting on bit inputs

36 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 10 20 30 40 50 60
Timestamp (125MHz FPGA clock ticks)

1REPEATS

load... T1TABLE

19 20 19 16 12 9 7POSA

ENABLE

ACTIVE

OUTB

OUTA

1 2 3TABLE_LINE

1 2 3 1 2LINE_REPEAT

Table based position compare

2.7. SEQ - Sequencer 37

zebra2-server Documentation, Release 0.0

2.7.6 Prescaler

Each row of the table gives a time value for the phases. This value can be scaled with a block wide prescaler to allow
a frame to be longer than 2**32 * 8e-9 = about 34 seconds. For example:

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

2 Imme-
diate

0 1 1 0 0 0 0 0 1 0 0 0 0 0 0

0 10 20 30 40 50 60
Timestamp (125MHz FPGA clock ticks)

1REPEATS

10PRESCALE

load... T1TABLE

ENABLE

ACTIVE

OUTA

1 2LINE_REPEAT

Prescaled pulses

2.7.7 Interrupting a sequence

Setting the repeats on a table row to 0 will cause it to iterate until interrupted by a falling ENABLE signal:

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

0 Imme-
diate

0 5 1 0 0 0 0 0 5 0 0 0 0 0 0

In a similar way, REPEATS=0 on a table will cause the whole table to be iterated until interrupted by a falling ENABLE
signal:

38 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30 35 40
Timestamp (125MHz FPGA clock ticks)

1REPEATS

load... T1TABLE

ENABLE

ACTIVE

OUTA

1 2 3LINE_REPEAT

Infinite repeats of a row interrupted

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

1 Imme-
diate

0 0 0 0 0 0 0 0 5 1 0 0 0 0 0

2 Imme-
diate

0 0 0 0 0 0 0 0 3 0 0 0 0 0 0

And a rising edge of the ENABLE will re-run the same table from the start:

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

1 Imme-
diate

0 5 1 0 0 0 0 0 5 0 0 0 0 0 0

2.7.8 Table rewriting

If a table is written while enabled, the outputs and table state are reset and operation begins again from the first repeat
of the first line of the table:

2.7. SEQ - Sequencer 39

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30 35 40 45
Timestamp (125MHz FPGA clock ticks)

load... T1TABLE

ENABLE

ACTIVE

OUTA

1 2 1 2 1TABLE_LINE

1 2 1 2 1LINE_REPEAT

1 2 3TABLE_REPEAT

Infinite repeats of a table interrupted

0 5 10 15 20 25 30 35 40 45
Timestamp (125MHz FPGA clock ticks)

load... T1TABLE

ENABLE

ACTIVE

OUTA

1LINE_REPEAT

1 2 1 2TABLE_REPEAT

Restarting the same table

40 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

1 Imme-
diate

0 5 1 0 0 0 0 0 5 0 0 0 0 0 0

T2
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

1 Imme-
diate

0 8 1 0 0 0 0 0 2 0 0 0 0 0 0

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

load... T1 load... T2TABLE

ENABLE

ACTIVE

OUTA

1 0 3 4 3 1 0 3 4 3 0STATE

1 2 1 2TABLE_REPEAT

Rewriting a table

2.8 COUNTER [x8]

Each counter block, when enabled, can count up/down with user-defined step value on the rising edge on input trigger.
The counters can also be initialised to a user-defined START value.

2.8. COUNTER [x8] 41

zebra2-server Documentation, Release 0.0

2.8.1 Parameters

Name Dir Type Description
START W UInt32 Counter start value
STEP W UInt32 Up/Down step value
ENABLE In Bit Halt on falling edge, reset and enable on rising
TRIG In Bit Rising edge ticks the counter up/down by STEP
DIR In Bit Up/Down direction (0 = Up, 1 = Down)
CARRY Out Bit Internal counter overflow status
OUT Out Pos Current counter value

2.8.2 Counting pulses

The most common use of a counter block is when you would like to track the number of rising edges received while
enabled:

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

ENABLE

TRIG

1 2 3 4OUT

Count Up only when enabled

You can also set the start value to be loaded on enable, and step up by a number other than one:

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

6START

4STEP

ENABLE

TRIG

6 10 14 18OUT

Non-zero start and step values

42 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

You can also set the direction that a pulse should apply step, so it becomes an up/down counter. The direction is
sampled on the same clock tick as the pulse rising edge:

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

ENABLE

TRIG

DIR

1 2 1 2OUT

Setting direction

2.8.3 Rollover

If the count goes higher than the max value for an int32 (2147483647) the CARRY output gets set high and the counter
rolls. The CARRY output stays high for as long as the trigger input stays high.

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

2147483645START

ENABLE

TRIG

CARRY

2147483645 2147483646 2147483647 -2147483648OUT

Overflow

A similar thing happens for a negative overflow:

2.8.4 Edge cases

If the Enable input goes low at the same time as a trigger, there will be no output value on the next clock tick.

2.8. COUNTER [x8] 43

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

-2147483645START

3STEP

1DIR

ENABLE

TRIG

CARRY

-2147483645 -2147483648 2147483645OUT

Overflow negative

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

20START

ENABLE

TRIG

20 21OUT

Disable and trigger

44 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

If the step size is changed at the same time as a trigger input rising edge, the output value for that trigger will be the
new step size.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

20START

1 2STEP

ENABLE

TRIG

20 21 23OUT

Change step and trigger

2.9 PCOMP - Position Compare [x4]

The position compare block takes a position input and allows a regular number of threshold comparisons to take place
on a position input. The normal order of operations is something like this:

• If PRE_START > 0 then wait until position has passed START - PRE_START

• If START > 0 then wait until position has passed START and set OUT=1

• Wait until position has passed START + WIDTH and set OUT=0

• Wait until position has passed START + STEP and set OUT=1

• Wait until position has passed START + STEP + WIDTH and set OUT=0

• Continue until PULSES have been produced

It can be used to generate a position based pulse train against an input encoder or analogue system, or to work as
repeating comparator.

2.9. PCOMP - Position Compare [x4] 45

zebra2-server Documentation, Release 0.0

46 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

2.9.1 Parameters

Name Dir Type Description
PRE_START RW Pos INP must be this far from

START before waiting for
START

START RW Pos Pulse absolute/relative
start position value

WIDTH RW Pos The relative distance be-
tween a rising and falling
edge

STEP RW Pos The relative distance be-
tween successive rising
edges

PULSES RW UInt32 The number of pulses to
produce, 0 means infinite

RELATIVE RW Enum

If 1 then START is
relative to the position of
INP at enable
* 0: Absolute
* 1: Relative

DIR RW Enum

Direction to apply all
relative offsets to
- 0: Positive
- 1: Negative
- 2: Either

ENABLE In Bit Stop on falling edge, reset
and enable on rising edge

INP In Pos Position data from
position-data bus

ACTIVE Out Bit Active output is high
while block is in opera-
tion

OUT Out Bit Output pulse train
HEALTH R Enum

0: OK
1: Error: Position jumped
by more than STEP

PRODUCED R UInt32 The number of pulses pro-
duced

STATE R Enum

The internal statemachine
state
- 0: WAIT_ENABLE
- 1: WAIT_PRE_START
- 2: WAIT_START
- 3: WAIT_WIDTH
- 4: WAIT_STEP

2.9. PCOMP - Position Compare [x4] 47

zebra2-server Documentation, Release 0.0

2.9.2 Position compare is directional

A typical example would setup the parameters, enable the block, then start moving a motor to trigger a series of pulses:

0 5 10 15 20 25 30 35 40
Timestamp (125MHz FPGA clock ticks)

4START

3STEP

3PULSES

2WIDTH

2 3 4 5 6 7 8 9 10 11 12 13INP

1ENABLE

ACTIVE

OUT

1 2 3PRODUCED

3 Pulses in a +ve direction

But if we get the direction wrong, we won’t get the first pulse until we cross START in the correct direction:

Moving in a negative direction works in a similar way. Note that WIDTH and PULSE still have positive values:

2.9.3 Internal statemachine

The Block has an internal statemachine that is exposed as a parameter, allowing the user to see what the Block is
currently doing:

48 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

4START

3STEP

2PULSES

2WIDTH

5 4 3 4 5 6 7 8 9INP

1ENABLE

ACTIVE

OUT

1 2PRODUCED

Enabled while crossing in wrong direction

State 0
WAIT_ENABLE

State 1
WAIT_DIR

 rising ENABLE & DIR=EITHER

State 2
WAIT_PRE_START

 rising ENABLE

 Can't guess DIR
 or Disabled

 DIR calculated

State 4
WAIT_FALLING

 DIR calculated no PRE_START

 Disabled

State 3
WAIT_RISING

 < PRE_START

 jump > WIDTH + STEP
 or Disabled

 >= pulse

 jump > WIDTH + STEP
 or Finished
 or Disabled

 >= pulse + WIDTH

2.9. PCOMP - Position Compare [x4] 49

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

2START

3STEP

2PULSES

1DIR

2WIDTH

3 2 1 0 -1 -2 -3 -4INP

1ENABLE

ACTIVE

OUT

1 2PRODUCED

2 Pulses in a -ve direction

50 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

2.9.4 Not generating a pulse more than once

A key part of position compare is not generating a pulse at a position more than once. This is to deal with noisy
encoders:

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

4START

3STEP

2PULSES

1WIDTH

2 3 4 5 6 5 4 3 4 5 6 7 8INP

1ENABLE

ACTIVE

OUT

1 2PRODUCED

Only produce pulse once

This means that care is needed if using direction sensing or relying on the directionality of the encoder when passing
the start position. For example, if we approach START from the negative direction while doing a positive position
compare, then jitter back over the start position, we will generate start at the wrong place. If you look carefully at the
statemachine you will see that the Block crossed into WAIT_START when INP < 4 (START), which is too soon for
this amount of jitter:

We can fix this by adding to the PRE_START deadband which the encoder has to cross in order to advance to the
WAIT_START state. Now INP < 2 (START-PRE_START) is used for the condition of crossing into WAIT_START:

2.9.5 Guessing the direction

We can also ask to the Block to calculate direction for us:

This is a one time calculation of direction at the start of operation, once the encoder has been moved enough to guess
the direction then it is fixed until the Block has finished producing pulses:

2.9.6 Interrupting a scan

When the ENABLE input is set low the output will cease. This will happen even if the ENABLE is set low when there
are still cycles of the output pulse to generate, or if the ENABLE = 0 is set at the same time as a position match.

2.9. PCOMP - Position Compare [x4] 51

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30 35 40
Timestamp (125MHz FPGA clock ticks)

4START

3STEP

2PULSES

2WIDTH

5 4 3 4 3 2 1 0 1 2 3 4 5 6 7 8 9INP

1ENABLE

ACTIVE

OUT

2 3 4 3 4 0STATE

1 2PRODUCED

Jittering over the start position

52 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30 35 40
Timestamp (125MHz FPGA clock ticks)

4START

3STEP

2PRE_START

2PULSES

2WIDTH

5 4 3 4 3 2 1 0 1 2 3 4 5 6 7 8 9INP

1ENABLE

ACTIVE

OUT

2 3 4 3 4 0STATE

1 2PRODUCED

Avoiding jitter problem with PRE_START

2.9. PCOMP - Position Compare [x4] 53

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

2START

3STEP

2PULSES

2DIR

2WIDTH

3 2 1 0 -1 -2 -3 -4INP

1ENABLE

ACTIVE

OUT

1 2PRODUCED

Calculate direction to be -ve

54 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

4START

3STEP

3PULSES

2DIR

2WIDTH

2 3 4 3 1 -1 1 3 5 6 7 8 9 10 11 12 13INP

1ENABLE

ACTIVE

OUT

1 2 3PRODUCED

Calculate direction to be +ve

2.9. PCOMP - Position Compare [x4] 55

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

10 9 8 7 6 5 4INP

5START

10STEP

7WIDTH

3PULSES

1DIR

ENABLE

ACTIVE

OUT

1PRODUCED

Disable after start

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

10 9 8 7 6 5 4 3INP

5START

10STEP

7WIDTH

1DIR

ENABLE

ACTIVE

Disable with start

56 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

2.9.7 Position compare on absolute values

Doing position compare on an absolute value adds additional challenges, as we are not guaranteed to see every transi-
tion. It works in much the same way as the previous examples, but we trigger on greater than or equal rather than just
greater than:

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

4START

5STEP

2PULSES

2WIDTH

9 1 5 7 8 9 15INP

1ENABLE

ACTIVE

OUT

1 2PRODUCED

Absolute Pulses in a +ve direction

But what should the Block do if the output is 0 and the position jumps by enough to trigger a transition to 1 and
then back to 0? We handle this by setting HEALTH=”Error: Position jumped by more than STEP” and aborting the
compare:

Likewise if the output is 1 and the position causes us to need to produce a 0 then 1:

And if we skipped a larger number of points we get the same error:

2.9.8 Relative position compare

We may want to nest position compare blocks, or respond to some external event. In which case, we expose the option
to a position compare relative to the latched position at the start:

We can also guess the direction in relative mode:

This works when going negative too:

And with a PRE_START value we guess the direction to be the opposite to the direction the motor is travelling when
it exceeds PRE_START:

We cannot guess the direction when RELATIVE mode is set with no START or PRE_START though, the Block will
error in this case:

2.9. PCOMP - Position Compare [x4] 57

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

4START

5STEP

2WIDTH

9 1 5 7 8 11INP

1ENABLE

ACTIVE

OUT

1PRODUCED

1HEALTH

Error skipping when OUT=0

2.9.9 Use as a Schmitt trigger

We can also make use of a special case with STEP=0 and a negative WIDTH to create a Schmitt trigger that will
always trigger at START, and turn off when INP has dipped WIDTH below START:

We can use this same special case with a positive width to make a similar comparator that turns on at START and off
at START+WIDTH, triggering again when INP <= START:

2.10 PCAP - Position Capture

Position capture has the capability to capture anything that is happening on the pos_bus or bit_bus. It listens to
ENABLE, GATE and CAPTURE signals, and can capture the value at capture, sum, min and max.

58 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

4START

5STEP

2WIDTH

9 1 5 9INP

1ENABLE

ACTIVE

OUT

1PRODUCED

1HEALTH

Error skipping when OUT=1

2.10. PCAP - Position Capture 59

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

4START

5STEP

2WIDTH

9 1 5 7 8 80INP

1ENABLE

ACTIVE

OUT

1PRODUCED

1HEALTH

Error is produced after skipping more than 2 compare points

2.10.1 Parameters

Name Dir Type Description
ENABLE In Bit After arm, when high start

capture, when low disarm
GATE In Bit After enable, only process

gated values if high
CAPTURE In Bit On selected edge capture

current value and gated
data

CAPTURE_EDGE R/W Enum

Which edge of capture
input signal triggers
capture
0 - Rising
1 - Falling
2 - Rising or Falling

SHIFT_SUM R/W Int Shift sum data, use if >
2**32 samples required in
sum/average

HEALTH R Enum

Was last capture
successful?
0 - OK
1 - Capture events too
close together
2 - Samples overflow

ACTIVE Out Bit Data capture in progress
TS_START Out Extra Timestamp of first gate

high in current capture rel-
ative to enable

TS_END Out Extra Timestamp of last gate
high + 1 in current capture
relative to enable

TS_CAPTURE Out Extra Timestamp of capture
event relative to enable

SAMPLES Out Extra Number of gated samples
in the current capture

BITS0 Out Extra Quadrant 0 of bit_bus
BITS1 Out Extra Quadrant 1 of bit_bus
BITS2 Out Extra Quadrant 2 of bit_bus
BITS3 Out Extra Quadrant 3 of bit_bus

60 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

2WIDTH

1RELATIVE

3START

4STEP

2PULSES

1DIR

1 2 3 2 1 0 -1 -2 -3 -4 -5 -6 -7INP

1ENABLE

ACTIVE

OUT

1 2PRODUCED

Relative position compare

2.10. PCAP - Position Capture 61

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

2WIDTH

1RELATIVE

3START

4STEP

2PULSES

2DIR

1 2 3 4 5 6 7 8 9 10 11INP

1ENABLE

ACTIVE

OUT

1 2PRODUCED

Guess relative direction +ve

62 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

2WIDTH

1RELATIVE

3START

4STEP

2PULSES

2DIR

1 2 3 2 1 0 -1 -2 -3 -4 -5 -6 -7INP

1ENABLE

ACTIVE

OUT

1 2PRODUCED

Guess relative direction -ve

2.10. PCAP - Position Capture 63

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

1RELATIVE

2WIDTH

4STEP

2PULSES

2PRE_START

2DIR

5 4 3 2 1 2 3 4 5 6 7 8 10INP

1ENABLE

ACTIVE

OUT

1 2 3 4 3 4 0STATE

1 2PRODUCED

Guess relative direction +ve with PRE_START

64 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 1 2 3 4 5 6 7 8
Timestamp (125MHz FPGA clock ticks)

1RELATIVE

2WIDTH

4STEP

2PULSES

2DIR

1 2INP

1ENABLE

ACTIVE

2HEALTH

Guess relative direction with no START

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

4START

2PULSES

-2WIDTH

2 3 4 3 2 3 4 5 6 5 4 3 2INP

1ENABLE

ACTIVE

OUT

1 2PRODUCED

Schmitt trigger

2.10. PCAP - Position Capture 65

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

3START

2PULSES

2WIDTH

2 3 4 5 6 5 4 3 2 3 4 5 6INP

1ENABLE

ACTIVE

OUT

1 2PRODUCED

Repeating comparator

2.10.2 Arming

To start off the block an arm signal is required with a write to *PCAP.ARM=. The active signal is raised immediately
on ARM, and dropped either on *PCAP.DISARM:

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

0ARM

0DISARM

ENABLE

ACTIVE

Arming and soft disarm

Or on the falling edge of ENABLE:

66 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 1 2 3 4 5 6 7 8
Timestamp (125MHz FPGA clock ticks)

0ARM

ENABLE

ACTIVE

Arming and hard disarm

2.10.3 Capturing fields

Capturing fields is done by specifying a series of WRITE addresses. These are made up of a mode in the bottom 4
bits, and an index in the 6 bits above them. Indexes < 32 refer to entries on the pos_bus, while indexes >= 32 are extra
entries specific to PCAP, like timestamps and number of gated samples. The values sent via the WRITE register are
written from the TCP server, so will not be visible to end users.

Data is ticked out one at a time from the DATA attribute, then sent to the TCP server over DMA, before being sent to
the user. It is reconstructed into a table in each of the examples below for ease of reading.

The following example shows PCAP being configured to capture the timestamp when CAPTURE goes high (0x24 is
the bottom 32-bits of TS_CAPTURE).

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x240WRITE

0ARM

ENABLE

TRIG

ACTIVE

Row1 Row2DATA

Capture timestamp

2.10. PCAP - Position Capture 67

zebra2-server Documentation, Release 0.0

Row 0x240
0 2
1 6

2.10.4 Pos bus capture

As well as general fields like the timestamp, any pos_bus index can be captured. Pos bus fields have multiple modes
that they can capture in.

Mode 0 - Value

This gives an instantaneous capture of value no matter what the state of GATE:

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x50WRITE

20 100 6 2POS[5]

0ARM

ENABLE

TRIG

ACTIVE

Row1 Row2 Row3DATA

Capture pos bus entry 5 Value

Row 0x50
0 20
1 100
2 6

Mode 1 - Difference

This is mainly used for something like an incrementing counter value. It will only count the differences while GATE
was high:

68 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0xB1WRITE

0ARM

10 20 24 30 22 13POS[11]

ENABLE

GATE

TRIG

ACTIVE

Row1 Row2DATA

Capture pos bus entry 11 Difference

2.10. PCAP - Position Capture 69

zebra2-server Documentation, Release 0.0

Row 0xB1
0 10
1 -5

Mode 2/3 - Sum Lo/Hi

Mode 2 is the lower 32-bits of the sum of all samples while GATE was high:

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

3 4 5 6 9 103 102POS[3]

0START_WRITE

0x32WRITE

0ARM

ENABLE

GATE

TRIG

ACTIVE

Row1 Row2 Row3DATA

Capture pos bus entry 3 Sum

Row 0x32
0 6
1 21
2 206

Mode 2 and 3 together gives the full 64-bits of sum, needed for any sizeable values on the pos_bus:

Row 0x22 0x23
0 1073741824 0
1 -1073741824 0
2 -2147483648 2
3 -1073741824 -1
4 -1073741824 -2

70 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30 35 40 45
Timestamp (125MHz FPGA clock ticks)

0x40000000 -0x40000000POS[2]

0START_WRITE

0x22 0x23WRITE

0ARM

ENABLE

GATE

TRIG

ACTIVE

Row0Row1 Row2Row3 Row4DATA

Capture pos bus entry 2 Sum large values

2.10. PCAP - Position Capture 71

zebra2-server Documentation, Release 0.0

If long frame times (> 2**32 SAMPLES, > 30s), are to be used, then SHIFT_SUM can be used to shift both the sum
and SAMPLES field by up to 8-bits to accomodate up to 125 hour frames. This example demonstrates the effect with
smaller numbers:

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

1SHIFT_SUM

0START_WRITE

0x92 0x260WRITE

27 19 -13 -9POS[9]

0ARM

GATE

ENABLE

TRIG

ACTIVE

Row0 Row1 Row2Row3DATA

Capture pos bus entry 9 Sum shifted

Row 0x92 0x260
0 40 1
1 36 1
2 -13 1
3 0 0

Mode 4/5 - Min/Max

Both of these modes calculate statistics on the value while GATE is high.

Mode 4 produces the min of all values or zero if the gate was low for all of the current capture:

72 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x84WRITE

35 10 20 8 30 22 21POS[8]

0ARM

GATE

ENABLE

TRIG

ACTIVE

Row1 Row2 Row3Row4DATA

Capture pos bus entry 8 Min

2.10. PCAP - Position Capture 73

zebra2-server Documentation, Release 0.0

Row 0x84
0 10
1 20
2 21
3 2147483647

Mode 5 produces the max of all values in a similar way:

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x45WRITE

35 10 20 24 30 22 21POS[4]

0ARM

GATE

ENABLE

TRIG

ACTIVE

Row1 Row2 Row3Row4DATA

Capture pos bus entry 4 Max

Row 0x45
0 20
1 20
2 22
3 -2147483648

2.10.5 Number of samples

There is a SAMPLES field that can be captured that will give the number of clock ticks that GATE was high during a
single CAPTURE. This field allows the TCP server to offer “Mean” as a capture option, dividing “Sum” by SAMPLES
to get the mean value of the field during the capture period. It can also be captured separately to give the gate length:

74 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x260WRITE

0ARM

GATE

ENABLE

TRIG

ACTIVE

Row1 Row2 Row3Row4DATA

Capture gate length

Row 0x260
0 4
1 3
2 2
3 0

2.10.6 Timestamps

As well as the timestamp of the capture signal, timestamps can also be generated for the start of each capture period
(first gate high signal) and end (the tick after the last gate high). These are again split into two 32-bit segments so
only the lower bits need to be captured for short captures. In the following example we capture TS_START (0x20),
TS_END (0x22) and TS_CAPTURE (0x24) lower bits:

Row 0x200 0x220 0x240
0 0 4 4
1 4 8 9
2 11 13 13
3 -1 -1 16

2.10. PCAP - Position Capture 75

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x200 0x220 0x240WRITE

0ARM

GATE

ENABLE

TRIG

ACTIVE

Row0 Row1 Row2 Row3DATA

Capture more timestamps

2.10.7 Bit bus capture

The state of the bit bus at capture can also be captured. It is split into 4 quadrants of 32-bits each. For example, to
capture signals 0..31 on the bit bus we would use BITS0 (0x27):

Row 0x270
0 0
1 4
2 20
3 16

By capturing all 4 quadrants (0x27..0x2A) we get the whole bit bus:

Row 0x270 0x280 0x290 0x2A0
0 4 0 0 0
1 4 67108864 0 0
2 4 67108864 0 32
3 1028 67108864 0 32

2.10.8 Triggering options

ENABLE and GATE are level triggered, with ENABLE used for marking the start and end of the entire acquisition,
and GATE used to accept or reject samples within a single capture from the acquisition. CAPTURE is edge triggered

76 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x270WRITE

0ARM

1BIT[4]

ENABLE

TRIG

BIT[2]

ACTIVE

Row1Row2 Row3 Row4DATA

Capture bit bus quadrant 0

2.10. PCAP - Position Capture 77

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x270 0x280 0x290 0x2A0WRITE

0ARM

1BIT[2]

1BIT[58]

1BIT[101]

1BIT[10]

ENABLE

TRIG

ACTIVE

Row0 Row1 Row2 Row3DATA

Capture bit bus all quadrants

78 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

with an option to trigger on rising, falling or both edges.

Triggering on rising is the default, explored in the preceding examples. Triggering on falling edge would be used if
you have a gate signal that marks the capture boundaries and want sum or difference data within. For example, to
capture the amount POS[1] changes in each capture gate we could connect GATE and CAPTURE to the same signal:

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x11WRITE

1TRIG_EDGE

0ARM

10 20 24 30 22 13POS[1]

ENABLE

GATE

TRIG

ACTIVE

Row1 Row2DATA

Gate and capture signals the same

Row 0x11
0 10
1 -9

Another option would be a gap-less acquisition of sum while gate is high with capture boundaries marked with a toggle
of CAPTURE:

Row 0x12
0 30
1 178
2 39

2.10. PCAP - Position Capture 79

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x12WRITE

2TRIG_EDGE

0ARM

10 20 24 30 22 13POS[1]

ENABLE

GATE

TRIG

ACTIVE

Row1 Row2 Row3DATA

Gap-less sum

80 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

2.10.9 Error conditions

The distance between capture signals must be at least the number of 32-bit capture fields. If 2 capture signals are too
close together HEALTH will be set to 1 (Capture events too close together).

In this example there are 3 fields captured (TS_CAPTURE_L, TS_CAPTURE_H, SAMPLES), but only 2 clock ticks
between the 2nd and 3rd capture signals:

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x240 0x250 0x260WRITE

0ARM

ENABLE

TRIG

ACTIVE

Row0 Row1DATA

1HEALTH

Capture too close together

Row 0x240 0x250 0x260
0 1 0 0
1 5 0 0

2.11 PGEN - Position Generator [x2]

The position generator block produces an output position which is pre-defined in a table

2.11.1 Parameters

Name Dir Type Description
CYCLES W UInt32 Number of cycles
ENABLE In Bit Halt on falling edge, reset and enable on rising
TRIG In Bit Trigger a sample to be produced
OUT Out Bit Current sample
TABLE Table of positions to be output

2.11. PGEN - Position Generator [x2] 81

zebra2-server Documentation, Release 0.0

2.11.2 Normal operation

The output pulse will be generated regardless of the direction of the INP data

T1
POS
100
101
102
103
104
105
106
111
152
132

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

2CYCLES

T1TABLE

1ENABLE

TRIG

100101102103104105106111152132100101102103104105106111152132OUT

Normal operation

2.12 INENC - Input encoder

The INENC block handles the encoder input signals

82 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

2.12.1 Parameters

Name Dir Type Description
PROTOCOL R/W Enum

0 - Protocol type =
Quadrature
1 - Protocol type = SSI
2 - Protocol type = BISS
3 - Protocol type = enDat

CLK_PERIOD W UInt32 Clock rate
FRAME_PERIOD W UInt32 Frame rate
BITS W UInt63 Number of bits
SETP In Pos Set point
RST_ON_Z W Bit Zero position on Z rising

edge
STATUS R Enum

0 - Encoder status = All
OK
1 - Encoder status = Link
Down
2 - Encoder status =
Encoder Error
3 - Encoder status = Link
Down and Error

DCARD+MODE R Daughter card jumper
mode

A Out Bit Quadrature A if in incre-
memtal mode

B Out Bit Quadrature B if in incre-
mental mode

Z Out Bit Z index channel if in in-
cremental mode

CONN Out Bit Signal detected
TRANS Out Bit Position transition
VAL Out Pos Current position

2.13 LVDSIN - LVDS Input

The LVDSIN block handles the signals from the LVDS Input connectors

2.13.1 Parameters

Name Dir Type Description
VAL Out Bit LVDS Input value

2.13. LVDSIN - LVDS Input 83

zebra2-server Documentation, Release 0.0

2.14 LVDSOUT - LVDS Output

The LVDSOUT block handles the signals to the LVDS Output connectors

2.14.1 Parameters

Name Dir Type Description
VAL Out Bit LVDS Output value

2.15 OUTENC - Output encoder

The OUTENC block handles the encoder output signals

2.15.1 Parameters

Name Dir Type Description
PROTOCOL R/W Enum

0 - Protocol type =
Quadrature
1 - Protocol type = SSI
2 - Protocol type = BISS
3 - Protocol type = enDat

BITS W UInt63 Number of bits
Q_PERIOD W UInt32 Quadrature prescaler
ENABLE W BIT Halt on falling edge, reset

and enable on rising
A Out Bit Input for A (only straight

through)
B Out Bit Input for B (only straight

through)
Z Out Bit Input for Z (only straight

through)
VAL Out Pos Input for position (all

other protocols)
CONN Out Bit Input for connected
QSTATE R Enum

0 - Quadrature state =
Disabled
1 - Quadrature state = At
position
2 - Quadrature state =
Slewing

84 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

2.16 POSENC - Quadrature and step/direction encoder

The POSENC block handles the Quadrature and step/direction encoding

2.16.1 Parameters

Name Dir Type Description
INP IN Zero position on Z rising

edge
QPERIOD W Pos Set point
ENABLE In Halt on falling edge, reset

and enable on rising
PROTOCOL R/W Enum

0 - Quadrature
1 - Step/Direction

A Out Bit Quadrature A/Step output
B Out Bit Quadrature B/Direction

output
QSTATE R Enum

0 - Quadrature output
state = Disabled
1 - Quadrature output
state = At position
2 - Quadrature output
state = Slewing

2.17 QDEC - Quadrature Decoder

The QDEC block handles the encoder Decoding

2.17.1 Parameters

Name Dir Type Description
RST_ON_Z W BIT Zero position on Z rising edge
SETP W Pos Set point
A Out Bit Quadrature A
B Out Bit Quadrature B
Z Out Bit Z index channel
OUT Out Pos Output position

2.16. POSENC - Quadrature and step/direction encoder 85

zebra2-server Documentation, Release 0.0

2.18 TTLIN - TTL Input

The TTLIN block handles the signals from the TTL Input connectors

2.18.1 Parameters

Name Dir Type Description
TERM R/W Enum

0 - Sets input termination
to High-Z
1 - Sets input termination
to 50-Ohm

VAL Out Bit TTL Input value

2.19 FILTER - Filter

desc. . .

2.19.1 Parameters

Name Dir Type Description
.

2.19.2 Difference

desc. . . .

2.19.3 Average

desc.

2.20 TTLOUT - TTL Output

The TTLOUT block handles the signals to the TTL Output connectors

2.20.1 Parameters

Name Dir Type Description
VAL Out Bit TTL Output value

86 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

0MODE

5 8INP

ENABLE

TRIG

READY

3OUT

Difference mode

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

0MODE

5 7 9 11 13 15INP

ENABLE

TRIG

READY

6 4OUT

Difference mode positive ramping input

2.20. TTLOUT - TTL Output 87

zebra2-server Documentation, Release 0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

0MODE

50 45 40 35 30 25 20 15 10 5 0 -5 -10INP

ENABLE

TRIG

READY

-25 -30OUT

Difference mode negative ramping input

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

1MODE

20 40 20 10INP

ENABLE

TRIG

READY

31OUT

Average mode summing inputs

88 Chapter 2. Block functional documentation

zebra2-server Documentation, Release 0.0

0 10 20 30 40 50 60 70 80 90
Timestamp (125MHz FPGA clock ticks)

1MODE

567891011 12 13 14 15 16 17INP

ENABLE

TRIG

READY

8 13OUT

Average mode positive ramp

0 10 20 30 40 50 60 70 80 90
Timestamp (125MHz FPGA clock ticks)

1MODE

19181716151412 8 4 0 -4 -8 -10INP

ENABLE

TRIG

READY

15 1OUT

Average mode negative ramp

2.20. TTLOUT - TTL Output 89

zebra2-server Documentation, Release 0.0

90 Chapter 2. Block functional documentation

CHAPTER 3

Triggering schemes

There are a number of ways that the PandA can be used with a live/dead frame signal to trigger a detector and PCAP.

3.1 Fixed exposure gate and trigger

(Edit the diagram with draw.io, opening the png file from the docs directory).

In this scheme triggers are expected to be a fixed distance apart. The live and dead signals are used in an SRGate to
give a gapless gate signal while the detector is active. The LUT relies on the extra clock ticks it takes for the signal to
get through the SRGate so that capture signals are generated at the end of every live frame. A number of detectors can
be triggered from Pulse blocks with delay of readout/2 and width of exposure.

91

https://www.draw.io/?mode=device

zebra2-server Documentation, Release 0.0

0 5 10 15 20 25 30 35 40 45
Timestamp (125MHz FPGA clock ticks)

pcap_active

live_toggle

dead_toggle

gapless_gate

trig_gate

pcap_capture

Fixed exposure gate and trigger

92 Chapter 3. Triggering schemes

CHAPTER 4

Unit testing FPGA blocks

In order to capture block level race conditions and document behaviour at the clock tick level, there is a mechanism
for unit testing FPGA blocks. It consists of a number of parts:

• A Python simulation of the block (simulation/sim_zebra2/<block>.py)

• A number of unit test sequences (tests/sim_zebra2_sequences/<block>.seq)

• A Python test runner (tests/test_sim_zebra2.py)

• The generated FPGA test vectors (tests/fpga_sequences/<block>_*.txt)

• The block documentation plots (docs/blocks/<block>.rst)

The Python simulation models the expected behaviour of the block by returning the expected outputs from a given
set of inputs. Test sequences list specific sets of inputs at specific FPGA clock tick numbers, and list the expected
outputs. The test runner scans the sequence files and provides the given inputs to the Python simulation, checking
the responses agains the expected outputs. If this succeeds, it produces FPGA test vectors for all sequences merged
together. There is also a tool that generates plots for the documentation from named sequences, so that any examples
in the documentation have been tested to be correct.

4.1 Python block simulation

Each block simulation should inherit from the Block class, implementing the on_event(event) function that returns
next_event:

• event contains the register, bit bus, position bus, and external signal changes that take place at a given FPGA
timestamp.

• next_event contains the changes that take place as a result of event, and an FPGA timestamp when the block
next needs to be called

The base class will initialiase attributes on the class for each parameter, and initialise bit_out and pos_out values to be
their position on the relevant bus.

93

zebra2-server Documentation, Release 0.0

4.2 Unit test sequences

A test sequence consists of the following grammar:

sequence-list = sequence*
sequence = header event*

header = "$" [mark] title
mark = "!"
event = ts ":" changes [":" changes]

changes = "" | assignment ["," assignment]*
assignment = name "=" value

Where:

• title is a string describing the sequence

• ts is the integer FPGA clock tick

• name is the string name of the register or signal

• value is the integer value of that register or signal

Empty lines and lines starting with # are ignored.

For example:

#########################
$ Pulse delay and stretch
1 : WIDTH=10
2 : DELAY=10
7 : INP=1 : QUEUE=2
8 : INP=0
17 : : QUEUE=1, OUT=1
27 : : QUEUE=0, OUT=0

This says:

• At FPGA clock tick 1, set reg WIDTH=10, expect no changes (apart from this register set operation)

• At tick 2, set reg DELAY=10, expect no changes

• At tick 7, set signal INP=1, expect reg QUEUE to be 2

• At tick 8, set signal INP=0, expect no changes

• At tick 17, don’t set anything, expect reg QUEUE to be 1, and signal OUT to be 1

• At tick 27, don’t set anything, expect reg QUEUE to be 0, and signal OUT to be 0

4.3 Running the test

You can invoke the test runner by doing:

python tests/test_sim_zebra2.py

This will then search for all <block>.seq files, and scan them. It will build a sequence for each one found in the
file, adding one called “All” that contains all of them one after another, and will be used to generate the FPGA test
vectors.

94 Chapter 4. Unit testing FPGA blocks

zebra2-server Documentation, Release 0.0

If a test title starts with “$!” instead of just “$”, then it will be marked, and only the marked tests will be run. No
FPGA test vectors will be generated. This is used for running just one test while debugging the Python simulation.

4.4 The generated FPGA test vectors

When the “All” test has completed successfully, the following files will exist in tests/fpga_sequences/:

• <block>_bus_in.txt: The bit and position bus inputs at each clock tick.

• <block>_reg_in.txt: The registers that should be set at each clock tick.

• <block>_bus_out.txt: The expected bit and position bus outputs at each clock tick. Note that these are 1
tick after the inputs.

• <block>_reg_out.txt: The expected register values at each clock tick. Again, note that these are 1 tick
after the inputs.

4.5 Running the FPGA test vectors

There is a new firmware commit. This includes the first block that I want you to simulate. It is the panda_pulse.vhd.

All the test stimulus vector files (generated by Tom’s framework) are already copied in the sim/panda_pulse/do direc-
tory.

The testbench is located in sim/panda_pulse/, and it is called panda_pulse_tb.v. Yes, I did use Verilog for the testbench
because the file I/O is much easier.

To run the simulations:

1. First step, you will need to re-run “build_ips.tcl” to generate the required IP for this block.

2. Run compile.do under sim/panda_pulse/do directory, and observe the windows.

As you will this, the module passes the test and does not report any error between its outputs and expected outputs.

4.6 Generating the plots for the block level documentation

In docs/block_plot.py there is a function make_block_plot(block, title) that will generate a plot
of a given sequence. You can embed this plot into the block level documentation by writing the following directive:

.. plot::

from common.python.block_plot import make_block_plot
make_block_plot("<block>", "<title>")

For instance:

.. plot::

from common.python.block_plot import make_block_plot
make_block_plot("pulse", "Pulse stretching with no delay")

4.4. The generated FPGA test vectors 95

zebra2-server Documentation, Release 0.0

96 Chapter 4. Unit testing FPGA blocks

CHAPTER 5

API doc for configparser

class common.python.pandablocks.configparser.ConfigParser(config_dir)
Parser for config/register/description file

Will populate itself with the blocks and fields described in the config files, checking for validity

Variables

• blocks (OrderedDict) – map str block_name -> ConfigBlock instance where block
name doesn’t include number (e.g. “SEQ”)

• bit_bus (OrderedDict) – map str block_name.field_name -> int bit_bus_idx for each
block and field

• pos_bus (OrderedDict) – map str block_name.field_name -> int pos_bus_idx for each
block and field

• ext_names (OrderedDict) – map int ext_bus_idx -> str block_name.field_name for
each block and field

Populate parser with files from config_dir

Parameters config_dir (str) – Path to config directory

class common.python.pandablocks.configparser.ConfigBlock(reg_line, con-
fig_line=None,
desc_line=None)

Represents a block definition in the config file.

Variables

• name (str) – The block name (e.g. PULSE)

• num (int) – The number of blocks that should be created (e.g. 2)

• base (int) – The base register offset for this block

• desc (str) – The description for this block

• fields (OrderedDict) – map str field_name -> ConfigField instance for each field
the block has

97

zebra2-server Documentation, Release 0.0

• registers (OrderedDict) – map str attr_name -> (int reg num, ConfigField)

• outputs (OrderedDict) – map str attr_name -> ([int out idx], ConfigField)

Also, there will be an attribute for each attr_name in registers.keys() that also has that string as its value. This
will allow lookup of register strings in a safe way. For example:

self.TABLE_DATA = “TABLE_DATA”

Initialise with relevant config/reg/desc lines for this block.

Should include block definition and all field definitions for this block

Parameters

• reg_line (str) – Line specifying block in registers file

• config_line (str) – Optional line specifying block in config file

• desc_line (str) – Optional line specifying block in descriptions file

add_field(field)
Add a ConfigField instance to self.fields dictionary

This also sets an attribute on itself so we can do safer lookups. E.g. self.FORCE_RST = “FORCE_RST”

Parameters field (ConfigField) – ConfigField instance

class common.python.pandablocks.configparser.ConfigField(name, reg_lines,
config_lines=None,
desc_lines=None)

Represents a field of a field definition.

The information held here spans the config, description and register files

Variables

• name (str) – The field name (e.g. OUTD)

• reg (list) – The register string (e.g. [“3”, “2”, “>3”])

• cls (str) – The field class (e.g. pos_out)

• cls_args (list) – The arguments needed to configure the cls (e.g. [“encoder”])

• cls_extra (list) – Any extra data associated with cls (e.g. enum values [“0 Falling”,
“1 Rising”])

• desc (str) – The description of the field

Initialise with relevant config/reg/desc lines for this field

Parameters

• reg_lines (list) – Lines specifying field in registers file

• config_lines (list) – Optional lines specifying field in config file

• desc_lines (list) – Optional line specifying field in descriptions

• file –

98 Chapter 5. API doc for configparser

Index

A
add_field() (common.python.pandablocks.configparser.ConfigBlock

method), 98

C
ConfigBlock (class in com-

mon.python.pandablocks.configparser), 97
ConfigField (class in com-

mon.python.pandablocks.configparser), 98
ConfigParser (class in com-

mon.python.pandablocks.configparser), 97

99

	Zebra2
	Block functional documentation
	BITS - Soft inputs and constant bits
	CLOCKS - Configurable clocks
	PULSE - One-shot pulse delay and stretch [x4]
	DIV - Pulse divider [x4]
	SRGATE - Set Reset Gate
	LUT - 5 Input lookup table [x8]
	SEQ - Sequencer
	COUNTER [x8]
	PCOMP - Position Compare [x4]
	PCAP - Position Capture
	PGEN - Position Generator [x2]
	INENC - Input encoder
	LVDSIN - LVDS Input
	LVDSOUT - LVDS Output
	OUTENC - Output encoder
	POSENC - Quadrature and step/direction encoder
	QDEC - Quadrature Decoder
	TTLIN - TTL Input
	FILTER - Filter
	TTLOUT - TTL Output

	Triggering schemes
	Fixed exposure gate and trigger

	Unit testing FPGA blocks
	Python block simulation
	Unit test sequences
	Running the test
	The generated FPGA test vectors
	Running the FPGA test vectors
	Generating the plots for the block level documentation

	API doc for configparser

