
Flask Documentation
Release 0.13.dev

Apr 12, 2018

Contents

1 User’s Guide 1
1.1 Foreword . 1
1.2 Foreword for Experienced Programmers 2
1.3 Installation . 3
1.4 Quickstart . 6
1.5 Tutorial . 22
1.6 Templates . 63
1.7 Testing Flask Applications . 67
1.8 Application Errors . 75
1.9 Debugging Application Errors . 78
1.10 Logging . 79
1.11 Configuration Handling . 82
1.12 Signals . 93
1.13 Pluggable Views . 96
1.14 The Application Context . 101
1.15 The Request Context . 103
1.16 Modular Applications with Blueprints 108
1.17 Extensions . 113
1.18 Command Line Interface . 114
1.19 Development Server . 122
1.20 Working with the Shell . 123
1.21 Patterns for Flask . 125
1.22 Deployment Options . 181
1.23 Becoming Big . 195

2 API Reference 197
2.1 API . 197

3 Additional Notes 275
3.1 Design Decisions in Flask . 275
3.2 HTML/XHTML FAQ . 278

i

3.3 Security Considerations . 282
3.4 Unicode in Flask . 287
3.5 Flask Extension Development . 289
3.6 Pocoo Styleguide . 295
3.7 Upgrading to Newer Releases . 299
3.8 Flask Changelog . 307
3.9 License . 324
3.10 How to contribute to Flask . 326

Python Module Index 331

ii

CHAPTER 1

User’s Guide

This part of the documentation, which is mostly prose, begins with some background
information about Flask, then focuses on step-by-step instructions for web develop-
ment with Flask.

1.1 Foreword

Read this before you get started with Flask. This hopefully answers some questions
about the purpose and goals of the project, and when you should or should not be
using it.

1.1.1 What does “micro” mean?

“Micro” does not mean that your whole web application has to fit into a single Python
file (although it certainly can), nor does it mean that Flask is lacking in functionality.
The “micro” in microframework means Flask aims to keep the core simple but exten-
sible. Flask won’t make many decisions for you, such as what database to use. Those
decisions that it does make, such as what templating engine to use, are easy to change.
Everything else is up to you, so that Flask can be everything you need and nothing
you don’t.

By default, Flask does not include a database abstraction layer, form validation or any-
thing else where different libraries already exist that can handle that. Instead, Flask
supports extensions to add such functionality to your application as if it was imple-
mented in Flask itself. Numerous extensions provide database integration, form val-

1

Flask Documentation, Release 0.13.dev

idation, upload handling, various open authentication technologies, and more. Flask
may be “micro”, but it’s ready for production use on a variety of needs.

1.1.2 Configuration and Conventions

Flask has many configuration values, with sensible defaults, and a few conventions
when getting started. By convention, templates and static files are stored in subdi-
rectories within the application’s Python source tree, with the names templates and
static respectively. While this can be changed, you usually don’t have to, especially
when getting started.

1.1.3 Growing with Flask

Once you have Flask up and running, you’ll find a variety of extensions available in
the community to integrate your project for production. The Flask core team reviews
extensions and ensures approved extensions do not break with future releases.

As your codebase grows, you are free to make the design decisions appropriate for
your project. Flask will continue to provide a very simple glue layer to the best that
Python has to offer. You can implement advanced patterns in SQLAlchemy or an-
other database tool, introduce non-relational data persistence as appropriate, and take
advantage of framework-agnostic tools built for WSGI, the Python web interface.

Flask includes many hooks to customize its behavior. Should you need more cus-
tomization, the Flask class is built for subclassing. If you are interested in that, check
out the Becoming Big chapter. If you are curious about the Flask design principles, head
over to the section about Design Decisions in Flask.

Continue to Installation, the Quickstart, or the Foreword for Experienced Programmers.

1.2 Foreword for Experienced Programmers

1.2.1 Thread-Locals in Flask

One of the design decisions in Flask was that simple tasks should be simple; they
should not take a lot of code and yet they should not limit you. Because of that, Flask
has a few design choices that some people might find surprising or unorthodox. For
example, Flask uses thread-local objects internally so that you don’t have to pass ob-
jects around from function to function within a request in order to stay threadsafe.
This approach is convenient, but requires a valid request context for dependency in-
jection or when attempting to reuse code which uses a value pegged to the request.
The Flask project is honest about thread-locals, does not hide them, and calls out in
the code and documentation where they are used.

2 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

1.2.2 Develop for the Web with Caution

Always keep security in mind when building web applications.

If you write a web application, you are probably allowing users to register and leave
their data on your server. The users are entrusting you with data. And even if you are
the only user that might leave data in your application, you still want that data to be
stored securely.

Unfortunately, there are many ways the security of a web application can be com-
promised. Flask protects you against one of the most common security problems of
modern web applications: cross-site scripting (XSS). Unless you deliberately mark in-
secure HTML as secure, Flask and the underlying Jinja2 template engine have you
covered. But there are many more ways to cause security problems.

The documentation will warn you about aspects of web development that require at-
tention to security. Some of these security concerns are far more complex than one
might think, and we all sometimes underestimate the likelihood that a vulnerability
will be exploited - until a clever attacker figures out a way to exploit our applications.
And don’t think that your application is not important enough to attract an attacker.
Depending on the kind of attack, chances are that automated bots are probing for ways
to fill your database with spam, links to malicious software, and the like.

Flask is no different from any other framework in that you the developer must build
with caution, watching for exploits when building to your requirements.

1.3 Installation

1.3.1 Python Version

We recommend using the latest version of Python 3. Flask supports Python 3.4 and
newer, Python 2.7, and PyPy.

1.3.2 Dependencies

These distributions will be installed automatically when installing Flask.

• Werkzeug implements WSGI, the standard Python interface between applica-
tions and servers.

• Jinja is a template language that renders the pages your application serves.

• MarkupSafe comes with Jinja. It escapes untrusted input when rendering tem-
plates to avoid injection attacks.

• ItsDangerous securely signs data to ensure its integrity. This is used to protect
Flask’s session cookie.

• Click is a framework for writing command line applications. It provides the
flask command and allows adding custom management commands.

1.3. Installation 3

http://werkzeug.pocoo.org/
http://jinja.pocoo.org/
https://pypi.python.org/pypi/MarkupSafe
https://pythonhosted.org/itsdangerous/
http://click.pocoo.org/

Flask Documentation, Release 0.13.dev

Optional dependencies

These distributions will not be installed automatically. Flask will detect and use them
if you install them.

• Blinker provides support for Signals.

• SimpleJSON is a fast JSON implementation that is compatible with Python’s json
module. It is preferred for JSON operations if it is installed.

• python-dotenv enables support for Environment Variables From dotenv when run-
ning flask commands.

• Watchdog provides a faster, more efficient reloader for the development server.

1.3.3 Virtual environments

Use a virtual environment to manage the dependencies for your project, both in de-
velopment and in production.

What problem does a virtual environment solve? The more Python projects you have,
the more likely it is that you need to work with different versions of Python libraries, or
even Python itself. Newer versions of libraries for one project can break compatibility
in another project.

Virtual environments are independent groups of Python libraries, one for each project.
Packages installed for one project will not affect other projects or the operating sys-
tem’s packages.

Python 3 comes bundled with the venv module to create virtual environments. If
you’re using a modern version of Python, you can continue on to the next section.

If you’re using Python 2, see Install virtualenv first.

Create an environment

Create a project folder and a venv folder within:

mkdir myproject
cd myproject
python3 -m venv venv

On Windows:

py -3 -m venv venv

If you needed to install virtualenv because you are on an older version of Python, use
the following command instead:

virtualenv venv

4 Chapter 1. User’s Guide

https://pythonhosted.org/blinker/
https://simplejson.readthedocs.io/
https://github.com/theskumar/python-dotenv#readme
https://pythonhosted.org/watchdog/
https://docs.python.org/3/library/venv.html#module-venv

Flask Documentation, Release 0.13.dev

On Windows:

\Python27\Scripts\virtualenv.exe venv

Activate the environment

Before you work on your project, activate the corresponding environment:

. venv/bin/activate

On Windows:

venv\Scripts\activate

Your shell prompt will change to show the name of the activated environment.

1.3.4 Install Flask

Within the activated environment, use the following command to install Flask:

pip install Flask

Living on the edge

If you want to work with the latest Flask code before it’s released, install or update the
code from the master branch:

pip install -U https://github.com/pallets/flask/archive/master.tar.gz

1.3.5 Install virtualenv

If you are using Python 2, the venv module is not available. Instead, install virtualenv.

On Linux, virtualenv is provided by your package manager:

Debian, Ubuntu
sudo apt-get install python-virtualenv

CentOS, Fedora
sudo yum install python-virtualenv

Arch
sudo pacman -S python-virtualenv

If you are on Mac OS X or Windows, download get-pip.py, then:

1.3. Installation 5

https://virtualenv.pypa.io/
https://bootstrap.pypa.io/get-pip.py

Flask Documentation, Release 0.13.dev

sudo python2 Downloads/get-pip.py
sudo python2 -m pip install virtualenv

On Windows, as an administrator:

\Python27\python.exe Downloads\get-pip.py
\Python27\python.exe -m pip install virtualenv

Now you can continue to Create an environment.

1.4 Quickstart

Eager to get started? This page gives a good introduction to Flask. It assumes you
already have Flask installed. If you do not, head over to the Installation section.

1.4.1 A Minimal Application

A minimal Flask application looks something like this:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():

return 'Hello, World!'

So what did that code do?

1. First we imported the Flask class. An instance of this class will be our WSGI
application.

2. Next we create an instance of this class. The first argument is the name of the
application’s module or package. If you are using a single module (as in this
example), you should use __name__ because depending on if it’s started as ap-
plication or imported as module the name will be different ('__main__' versus
the actual import name). This is needed so that Flask knows where to look for
templates, static files, and so on. For more information have a look at the Flask
documentation.

3. We then use the route() decorator to tell Flask what URL should trigger our
function.

4. The function is given a name which is also used to generate URLs for that partic-
ular function, and returns the message we want to display in the user’s browser.

Just save it as hello.py or something similar. Make sure to not call your application
flask.py because this would conflict with Flask itself.

6 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

To run the application you can either use the flask command or python’s -m switch
with Flask. Before you can do that you need to tell your terminal the application to
work with by exporting the FLASK_APP environment variable:

$ export FLASK_APP=hello.py
$ flask run
* Running on http://127.0.0.1:5000/

If you are on Windows, the environment variable syntax depends on command line
interpreter. On Command Prompt:

C:\path\to\app>set FLASK_APP=hello.py

And on PowerShell:

PS C:\path\to\app> $env:FLASK_APP = "hello.py"

Alternatively you can use python -m flask:

$ export FLASK_APP=hello.py
$ python -m flask run
* Running on http://127.0.0.1:5000/

This launches a very simple builtin server, which is good enough for testing but prob-
ably not what you want to use in production. For deployment options see Deployment
Options.

Now head over to http://127.0.0.1:5000/, and you should see your hello world greet-
ing.

Externally Visible Server

If you run the server you will notice that the server is only accessible from your own
computer, not from any other in the network. This is the default because in debugging
mode a user of the application can execute arbitrary Python code on your computer.

If you have the debugger disabled or trust the users on your network, you can make
the server publicly available simply by adding --host=0.0.0.0 to the command line:

flask run --host=0.0.0.0

This tells your operating system to listen on all public IPs.

1.4.2 What to do if the Server does not Start

In case the python -m flask fails or flask does not exist, there are multiple reasons
this might be the case. First of all you need to look at the error message.

1.4. Quickstart 7

http://127.0.0.1:5000/

Flask Documentation, Release 0.13.dev

Old Version of Flask

Versions of Flask older than 0.11 use to have different ways to start the application. In
short, the flask command did not exist, and neither did python -m flask. In that case
you have two options: either upgrade to newer Flask versions or have a look at the
Development Server docs to see the alternative method for running a server.

Invalid Import Name

The FLASK_APP environment variable is the name of the module to import at flask run.
In case that module is incorrectly named you will get an import error upon start (or if
debug is enabled when you navigate to the application). It will tell you what it tried
to import and why it failed.

The most common reason is a typo or because you did not actually create an app object.

1.4.3 Debug Mode

(Want to just log errors and stack traces? See Application Errors)

The flask script is nice to start a local development server, but you would have to
restart it manually after each change to your code. That is not very nice and Flask can
do better. If you enable debug support the server will reload itself on code changes,
and it will also provide you with a helpful debugger if things go wrong.

To enable all development features (including debug mode) you can export the
FLASK_ENV environment variable and set it to development before running the server:

$ export FLASK_ENV=development
$ flask run

(On Windows you need to use set instead of export.)

This does the following things:

1. it activates the debugger

2. it activates the automatic reloader

3. it enables the debug mode on the Flask application.

You can also control debug mode separately from the environment by exporting
FLASK_DEBUG=1.

There are more parameters that are explained in the Development Server docs.

Attention

Even though the interactive debugger does not work in forking environments (which
makes it nearly impossible to use on production servers), it still allows the execution

8 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

of arbitrary code. This makes it a major security risk and therefore it must never be
used on production machines.

Screenshot of the debugger in action:

More information on using the debugger can be found in the Werkzeug documenta-
tion.

Have another debugger in mind? See Working with Debuggers.

1.4.4 Routing

Modern web applications use meaningful URLs to help users. Users are more likely
to like a page and come back if the page uses a meaningful URL they can remember
and use to directly visit a page.

Use the route() decorator to bind a function to a URL.

1.4. Quickstart 9

http://werkzeug.pocoo.org/docs/debug/#using-the-debugger
http://werkzeug.pocoo.org/docs/debug/#using-the-debugger

Flask Documentation, Release 0.13.dev

@app.route('/')
def index():

return 'Index Page'

@app.route('/hello')
def hello():

return 'Hello, World'

You can do more! You can make parts of the URL dynamic and attach multiple rules
to a function.

Variable Rules

You can add variable sections to a URL by marking sections with <variable_name>.
Your function then receives the <variable_name> as a keyword argument. Op-
tionally, you can use a converter to specify the type of the argument like
<converter:variable_name>.

@app.route('/user/<username>')
def show_user_profile(username):

show the user profile for that user
return 'User %s' % username

@app.route('/post/<int:post_id>')
def show_post(post_id):

show the post with the given id, the id is an integer
return 'Post %d' % post_id

@app.route('/path/<path:subpath>')
def show_subpath(subpath):

show the subpath after /path/
return 'Subpath %s' % subpath

Converter types:

string (default) accepts any text without a slash
int accepts positive integers
float accepts positive floating point values
path like string but also accepts slashes
uuid accepts UUID strings

Unique URLs / Redirection Behavior

The following two rules differ in their use of a trailing slash.

@app.route('/projects/')
def projects():

10 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

return 'The project page'

@app.route('/about')
def about():

return 'The about page'

The canonical URL for the projects endpoint has a trailing slash. It’s similar to a
folder in a file system. If you access the URL without a trailing slash, Flask redirects
you to the canonical URL with the trailing slash.

The canonical URL for the about endpoint does not have a trailing slash. It’s similar
to the pathname of a file. Accessing the URL with a trailing slash produces a 404 “Not
Found” error. This helps keep URLs unique for these resources, which helps search
engines avoid indexing the same page twice.

URL Building

To build a URL to a specific function, use the url_for() function. It accepts the name
of the function as its first argument and any number of keyword arguments, each cor-
responding to a variable part of the URL rule. Unknown variable parts are appended
to the URL as query parameters.

Why would you want to build URLs using the URL reversing function url_for() in-
stead of hard-coding them into your templates?

1. Reversing is often more descriptive than hard-coding the URLs.

2. You can change your URLs in one go instead of needing to remember to
manually change hard-coded URLs.

3. URL building handles escaping of special characters and Unicode data
transparently.

4. The generated paths are always absolute, avoiding unexpected behavior of rela-
tive paths in browsers.

5. If your application is placed outside the URL root, for example, in /
myapplication instead of /, url_for() properly handles that for you.

For example, here we use the test_request_context() method to try out url_for().
test_request_context() tells Flask to behave as though it’s handling a request even
while we use a Python shell. See Context Locals.

from flask import Flask, url_for

app = Flask(__name__)

@app.route('/')
def index():

return 'index'

@app.route('/login')

1.4. Quickstart 11

Flask Documentation, Release 0.13.dev

def login():
return 'login'

@app.route('/user/<username>')
def profile(username):

return '{}'s profile'.format(username)

with app.test_request_context():
print(url_for('index'))
print(url_for('login'))
print(url_for('login', next='/'))
print(url_for('profile', username='John Doe'))

/
/login
/login?next=/
/user/John%20Doe

HTTP Methods

Web applications use different HTTP methods when accessing URLs. You should fa-
miliarize yourself with the HTTP methods as you work with Flask. By default, a route
only answers to GET requests. You can use the methods argument of the route() deco-
rator to handle different HTTP methods.

@app.route('/login', methods=['GET', 'POST'])
def login():

if request.method == 'POST':
return do_the_login()

else:
return show_the_login_form()

If GET is present, Flask automatically adds support for the HEAD method and handles
HEAD requests according to the the HTTP RFC. Likewise, OPTIONS is automatically im-
plemented for you.

1.4.5 Static Files

Dynamic web applications also need static files. That’s usually where the CSS and
JavaScript files are coming from. Ideally your web server is configured to serve them
for you, but during development Flask can do that as well. Just create a folder called
static in your package or next to your module and it will be available at /static on
the application.

To generate URLs for static files, use the special 'static' endpoint name:

url_for('static', filename='style.css')

12 Chapter 1. User’s Guide

https://www.ietf.org/rfc/rfc2068.txt

Flask Documentation, Release 0.13.dev

The file has to be stored on the filesystem as static/style.css.

1.4.6 Rendering Templates

Generating HTML from within Python is not fun, and actually pretty cumbersome be-
cause you have to do the HTML escaping on your own to keep the application secure.
Because of that Flask configures the Jinja2 template engine for you automatically.

To render a template you can use the render_template() method. All you have to do
is provide the name of the template and the variables you want to pass to the template
engine as keyword arguments. Here’s a simple example of how to render a template:

from flask import render_template

@app.route('/hello/')
@app.route('/hello/<name>')
def hello(name=None):

return render_template('hello.html', name=name)

Flask will look for templates in the templates folder. So if your application is a module,
this folder is next to that module, if it’s a package it’s actually inside your package:

Case 1: a module:

/application.py
/templates

/hello.html

Case 2: a package:

/application
/__init__.py
/templates

/hello.html

For templates you can use the full power of Jinja2 templates. Head over to the official
Jinja2 Template Documentation for more information.

Here is an example template:

<!doctype html>
<title>Hello from Flask</title>
{% if name %}
<h1>Hello {{ name }}!</h1>

{% else %}
<h1>Hello, World!</h1>

{% endif %}

Inside templates you also have access to the request, session and g1 objects as well as

1 Unsure what that g object is? It’s something in which you can store information for your own
needs, check the documentation of that object (g) and the Using SQLite 3 with Flask for more information.

1.4. Quickstart 13

http://jinja.pocoo.org/
http://jinja.pocoo.org/docs/templates

Flask Documentation, Release 0.13.dev

the get_flashed_messages() function.

Templates are especially useful if inheritance is used. If you want to know how that
works, head over to the Template Inheritance pattern documentation. Basically tem-
plate inheritance makes it possible to keep certain elements on each page (like header,
navigation and footer).

Automatic escaping is enabled, so if name contains HTML it will be escaped automati-
cally. If you can trust a variable and you know that it will be safe HTML (for example
because it came from a module that converts wiki markup to HTML) you can mark
it as safe by using the Markup class or by using the |safe filter in the template. Head
over to the Jinja 2 documentation for more examples.

Here is a basic introduction to how the Markup class works:

>>> from flask import Markup
>>> Markup('Hello %s!') % '<blink>hacker</blink>'
Markup(u'Hello <blink>hacker</blink>!')
>>> Markup.escape('<blink>hacker</blink>')
Markup(u'<blink>hacker</blink>')
>>> Markup('Marked up » HTML').striptags()
u'Marked up \xbb HTML'

Changed in version 0.5: Autoescaping is no longer enabled for all templates. The
following extensions for templates trigger autoescaping: .html, .htm, .xml, .xhtml.
Templates loaded from a string will have autoescaping disabled.

1.4.7 Accessing Request Data

For web applications it’s crucial to react to the data a client sends to the server. In
Flask this information is provided by the global request object. If you have some
experience with Python you might be wondering how that object can be global and
how Flask manages to still be threadsafe. The answer is context locals:

Context Locals

Insider Information

If you want to understand how that works and how you can implement tests with
context locals, read this section, otherwise just skip it.

Certain objects in Flask are global objects, but not of the usual kind. These objects are
actually proxies to objects that are local to a specific context. What a mouthful. But
that is actually quite easy to understand.

Imagine the context being the handling thread. A request comes in and the web server
decides to spawn a new thread (or something else, the underlying object is capable

14 Chapter 1. User’s Guide

http://jinja.pocoo.org/docs/api/#jinja2.Markup
http://jinja.pocoo.org/docs/api/#jinja2.Markup

Flask Documentation, Release 0.13.dev

of dealing with concurrency systems other than threads). When Flask starts its inter-
nal request handling it figures out that the current thread is the active context and
binds the current application and the WSGI environments to that context (thread). It
does that in an intelligent way so that one application can invoke another application
without breaking.

So what does this mean to you? Basically you can completely ignore that this is the
case unless you are doing something like unit testing. You will notice that code which
depends on a request object will suddenly break because there is no request object. The
solution is creating a request object yourself and binding it to the context. The easiest
solution for unit testing is to use the test_request_context() context manager. In
combination with the with statement it will bind a test request so that you can interact
with it. Here is an example:

from flask import request

with app.test_request_context('/hello', method='POST'):
now you can do something with the request until the
end of the with block, such as basic assertions:
assert request.path == '/hello'
assert request.method == 'POST'

The other possibility is passing a whole WSGI environment to the request_context()
method:

from flask import request

with app.request_context(environ):
assert request.method == 'POST'

The Request Object

The request object is documented in the API section and we will not cover it here in
detail (see Request). Here is a broad overview of some of the most common operations.
First of all you have to import it from the flask module:

from flask import request

The current request method is available by using the method attribute. To access form
data (data transmitted in a POST or PUT request) you can use the form attribute. Here is
a full example of the two attributes mentioned above:

@app.route('/login', methods=['POST', 'GET'])
def login():

error = None
if request.method == 'POST':

if valid_login(request.form['username'],
request.form['password']):

return log_the_user_in(request.form['username'])

1.4. Quickstart 15

Flask Documentation, Release 0.13.dev

else:
error = 'Invalid username/password'

the code below is executed if the request method
was GET or the credentials were invalid
return render_template('login.html', error=error)

What happens if the key does not exist in the form attribute? In that case a special
KeyError is raised. You can catch it like a standard KeyError but if you don’t do that, a
HTTP 400 Bad Request error page is shown instead. So for many situations you don’t
have to deal with that problem.

To access parameters submitted in the URL (?key=value) you can use the args at-
tribute:

searchword = request.args.get('key', '')

We recommend accessing URL parameters with get or by catching the KeyError be-
cause users might change the URL and presenting them a 400 bad request page in that
case is not user friendly.

For a full list of methods and attributes of the request object, head over to the Request
documentation.

File Uploads

You can handle uploaded files with Flask easily. Just make sure not to forget to
set the enctype="multipart/form-data" attribute on your HTML form, otherwise the
browser will not transmit your files at all.

Uploaded files are stored in memory or at a temporary location on the filesystem. You
can access those files by looking at the files attribute on the request object. Each
uploaded file is stored in that dictionary. It behaves just like a standard Python file
object, but it also has a save() method that allows you to store that file on the filesys-
tem of the server. Here is a simple example showing how that works:

from flask import request

@app.route('/upload', methods=['GET', 'POST'])
def upload_file():

if request.method == 'POST':
f = request.files['the_file']
f.save('/var/www/uploads/uploaded_file.txt')

...

If you want to know how the file was named on the client before it was uploaded to
your application, you can access the filename attribute. However please keep in mind
that this value can be forged so never ever trust that value. If you want to use the file-
name of the client to store the file on the server, pass it through the secure_filename()
function that Werkzeug provides for you:

16 Chapter 1. User’s Guide

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.FileStorage.save
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.FileStorage.filename
http://werkzeug.pocoo.org/docs/utils/#werkzeug.utils.secure_filename

Flask Documentation, Release 0.13.dev

from flask import request
from werkzeug.utils import secure_filename

@app.route('/upload', methods=['GET', 'POST'])
def upload_file():

if request.method == 'POST':
f = request.files['the_file']
f.save('/var/www/uploads/' + secure_filename(f.filename))

...

For some better examples, checkout the Uploading Files pattern.

Cookies

To access cookies you can use the cookies attribute. To set cookies you can use the
set_cookie method of response objects. The cookies attribute of request objects is a
dictionary with all the cookies the client transmits. If you want to use sessions, do not
use the cookies directly but instead use the Sessions in Flask that add some security on
top of cookies for you.

Reading cookies:

from flask import request

@app.route('/')
def index():

username = request.cookies.get('username')
use cookies.get(key) instead of cookies[key] to not get a
KeyError if the cookie is missing.

Storing cookies:

from flask import make_response

@app.route('/')
def index():

resp = make_response(render_template(...))
resp.set_cookie('username', 'the username')
return resp

Note that cookies are set on response objects. Since you normally just return strings
from the view functions Flask will convert them into response objects for you. If you
explicitly want to do that you can use the make_response() function and then modify
it.

Sometimes you might want to set a cookie at a point where the response object does
not exist yet. This is possible by utilizing the Deferred Request Callbacks pattern.

For this also see About Responses.

1.4. Quickstart 17

Flask Documentation, Release 0.13.dev

1.4.8 Redirects and Errors

To redirect a user to another endpoint, use the redirect() function; to abort a request
early with an error code, use the abort() function:

from flask import abort, redirect, url_for

@app.route('/')
def index():

return redirect(url_for('login'))

@app.route('/login')
def login():

abort(401)
this_is_never_executed()

This is a rather pointless example because a user will be redirected from the index to
a page they cannot access (401 means access denied) but it shows how that works.

By default a black and white error page is shown for each error code. If you want to
customize the error page, you can use the errorhandler() decorator:

from flask import render_template

@app.errorhandler(404)
def page_not_found(error):

return render_template('page_not_found.html'), 404

Note the 404 after the render_template() call. This tells Flask that the status code of
that page should be 404 which means not found. By default 200 is assumed which
translates to: all went well.

See Error handlers for more details.

1.4.9 About Responses

The return value from a view function is automatically converted into a response ob-
ject for you. If the return value is a string it’s converted into a response object with the
string as response body, a 200 OK status code and a text/html mimetype. The logic
that Flask applies to converting return values into response objects is as follows:

1. If a response object of the correct type is returned it’s directly returned from the
view.

2. If it’s a string, a response object is created with that data and the default param-
eters.

3. If a tuple is returned the items in the tuple can provide extra information. Such
tuples have to be in the form (response, status, headers) or (response,
headers) where at least one item has to be in the tuple. The status value will

18 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

override the status code and headers can be a list or dictionary of additional
header values.

4. If none of that works, Flask will assume the return value is a valid WSGI appli-
cation and convert that into a response object.

If you want to get hold of the resulting response object inside the view you can use the
make_response() function.

Imagine you have a view like this:

@app.errorhandler(404)
def not_found(error):

return render_template('error.html'), 404

You just need to wrap the return expression with make_response() and get the re-
sponse object to modify it, then return it:

@app.errorhandler(404)
def not_found(error):

resp = make_response(render_template('error.html'), 404)
resp.headers['X-Something'] = 'A value'
return resp

1.4.10 Sessions

In addition to the request object there is also a second object called session which
allows you to store information specific to a user from one request to the next. This is
implemented on top of cookies for you and signs the cookies cryptographically. What
this means is that the user could look at the contents of your cookie but not modify it,
unless they know the secret key used for signing.

In order to use sessions you have to set a secret key. Here is how sessions work:

from flask import Flask, session, redirect, url_for, escape, request

app = Flask(__name__)

Set the secret key to some random bytes. Keep this really secret!
app.secret_key = b'_5#y2L"F4Q8z\n\xec]/'

@app.route('/')
def index():

if 'username' in session:
return 'Logged in as %s' % escape(session['username'])

return 'You are not logged in'

@app.route('/login', methods=['GET', 'POST'])
def login():

if request.method == 'POST':
session['username'] = request.form['username']

1.4. Quickstart 19

Flask Documentation, Release 0.13.dev

return redirect(url_for('index'))
return '''

<form method="post">
<p><input type=text name=username>
<p><input type=submit value=Login>

</form>
'''

@app.route('/logout')
def logout():

remove the username from the session if it's there
session.pop('username', None)
return redirect(url_for('index'))

The escape() mentioned here does escaping for you if you are not using the template
engine (as in this example).

How to generate good secret keys

A secret key should be as random as possible. Your operating system has ways to
generate pretty random data based on a cryptographic random generator. Use the
following command to quickly generate a value for Flask.secret_key (or SECRET_KEY):

$ python -c 'import os; print(os.urandom(16))'
b'_5#y2L"F4Q8z\n\xec]/'

A note on cookie-based sessions: Flask will take the values you put into the session
object and serialize them into a cookie. If you are finding some values do not per-
sist across requests, cookies are indeed enabled, and you are not getting a clear error
message, check the size of the cookie in your page responses compared to the size
supported by web browsers.

Besides the default client-side based sessions, if you want to handle sessions on the
server-side instead, there are several Flask extensions that support this.

1.4.11 Message Flashing

Good applications and user interfaces are all about feedback. If the user does not get
enough feedback they will probably end up hating the application. Flask provides a
really simple way to give feedback to a user with the flashing system. The flashing
system basically makes it possible to record a message at the end of a request and
access it on the next (and only the next) request. This is usually combined with a
layout template to expose the message.

To flash a message use the flash() method, to get hold of the messages you can use
get_flashed_messages() which is also available in the templates. Check out the Mes-
sage Flashing for a full example.

20 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

1.4.12 Logging

New in version 0.3.

Sometimes you might be in a situation where you deal with data that should be correct,
but actually is not. For example you may have some client-side code that sends an
HTTP request to the server but it’s obviously malformed. This might be caused by a
user tampering with the data, or the client code failing. Most of the time it’s okay to
reply with 400 Bad Request in that situation, but sometimes that won’t do and the
code has to continue working.

You may still want to log that something fishy happened. This is where loggers come
in handy. As of Flask 0.3 a logger is preconfigured for you to use.

Here are some example log calls:

app.logger.debug('A value for debugging')
app.logger.warning('A warning occurred (%d apples)', 42)
app.logger.error('An error occurred')

The attached logger is a standard logging Logger, so head over to the official logging
documentation for more information.

Read more on Application Errors.

1.4.13 Hooking in WSGI Middlewares

If you want to add a WSGI middleware to your application you can wrap the internal
WSGI application. For example if you want to use one of the middlewares from the
Werkzeug package to work around bugs in lighttpd, you can do it like this:

from werkzeug.contrib.fixers import LighttpdCGIRootFix
app.wsgi_app = LighttpdCGIRootFix(app.wsgi_app)

1.4.14 Using Flask Extensions

Extensions are packages that help you accomplish common tasks. For example, Flask-
SQLAlchemy provides SQLAlchemy support that makes it simple and easy to use
with Flask.

For more on Flask extensions, have a look at Extensions.

1.4.15 Deploying to a Web Server

Ready to deploy your new Flask app? Go to Deployment Options.

1.4. Quickstart 21

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/library/logging.html
https://docs.python.org/library/logging.html

Flask Documentation, Release 0.13.dev

1.5 Tutorial

1.5.1 Project Layout

Create a project directory and enter it:

mkdir flask-tutorial
cd flask-tutorial

Then follow the installation instructions to set up a Python virtual environment and
install Flask for your project.

The tutorial will assume you’re working from the flask-tutorial directory from now
on. The file names at the top of each code block are relative to this directory.

A Flask application can be as simple as a single file.

Listing 1.1: hello.py

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello():

return 'Hello, World!'

However, as a project get bigger, it becomes overwhelming to keep all the code in one
file. Python projects use packages to organize code into multiple modules that can be
imported where needed, and the tutorial will do this as well.

The project directory will contain:

• flaskr/, a Python package containing your application code and files.

• tests/, a directory containing test modules.

• venv/, a Python virtual environment where Flask and other dependencies are
installed.

• Installation files telling Python how to install your project.

• Version control config, such as git. You should make a habit of using some type
of version control for all your projects, no matter the size.

• Any other project files you might add in the future.

By the end, your project layout will look like this:

/home/user/Projects/flask-tutorial
flaskr/

22 Chapter 1. User’s Guide

https://git-scm.com/

Flask Documentation, Release 0.13.dev

__init__.py
db.py
schema.sql
auth.py
blog.py
templates/

base.html
auth/

login.html
register.html

blog/
create.html
index.html
update.html

static/
style.css

tests/
conftest.py
data.sql
test_factory.py
test_db.py
test_auth.py
test_blog.py

venv/
setup.py
MANIFEST.in

If you’re using version control, the following files that are generated while running
your project should be ignored. There may be other files based on the editor you use.
In general, ignore files that you didn’t write. For example, with git:

1.5. Tutorial 23

Flask Documentation, Release 0.13.dev

Listing 1.2: .gitignore

venv/

*.pyc
__pycache__/

instance/

.pytest_cache/

.coverage
htmlcov/

dist/
build/
*.egg-info/

Continue to Application Setup.

1.5.2 Application Setup

A Flask application is an instance of the Flask class. Everything about the application,
such as configuration and URLs, will be registered with this class.

The most straightforward way to create a Flask application is to create a global Flask
instance directly at the top of your code, like how the “Hello, World!” example did on
the previous page. While this is simple and useful in some cases, it can cause some
tricky issues as the project grows.

Instead of creating a Flask instance globally, you will create it inside a function. This
function is known as the application factory. Any configuration, registration, and other
setup the application needs will happen inside the function, then the application will
be returned.

The Application Factory

It’s time to start coding! Create the flaskr directory and add the __init__.py file.
The __init__.py serves double duty: it will contain the application factory, and it tells
Python that the flaskr directory should be treated as a package.

mkdir flaskr

Listing 1.3: flaskr/__init__.py

import os

from flask import Flask

24 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

def create_app(test_config=None):
create and configure the app
app = Flask(__name__, instance_relative_config=True)
app.config.from_mapping(

SECRET_KEY='dev',
DATABASE=os.path.join(app.instance_path, 'flaskr.sqlite'),

)

if test_config is None:
load the instance config, if it exists, when not testing
app.config.from_pyfile('config.py', silent=True)

else:
load the test config if passed in
app.config.from_mapping(test_config)

ensure the instance folder exists
try:

os.makedirs(app.instance_path)
except OSError:

pass

a simple page that says hello
@app.route('/hello')
def hello():

return 'Hello, World!'

return app

create_app is the application factory function. You’ll add to it later in the tutorial, but
it already does a lot.

1. app = Flask(__name__, instance_relative_config=True) creates the Flask in-
stance.

• __name__ is the name of the current Python module. The app needs to know
where it’s located to set up some paths, and __name__ is a convenient way
to tell it that.

• instance_relative_config=True tells the app that configuration files are
relative to the instance folder. The instance folder is located outside the
flaskr package and can hold local data that shouldn’t be committed to ver-
sion control, such as configuration secrets and the database file.

2. app.config.from_mapping() sets some default configuration that the app will
use:

• SECRET_KEY is used by Flask and extensions to keep data safe. It’s set to
'dev' to provide a convenient value during development, but it should be
overridden with a random value when deploying.

• DATABASE is the path where the SQLite database file will be saved. It’s under
app.instance_path, which is the path that Flask has chosen for the instance

1.5. Tutorial 25

Flask Documentation, Release 0.13.dev

folder. You’ll learn more about the database in the next section.

3. app.config.from_pyfile() overrides the default configuration with values
taken from the config.py file in the instance folder if it exists. For example,
when deploying, this can be used to set a real SECRET_KEY.

• test_config can also be passed to the factory, and will be used instead of
the instance configuration. This is so the tests you’ll write later in the tuto-
rial can be configured independently of any development values you have
configured.

4. os.makedirs() ensures that app.instance_path exists. Flask doesn’t create the
instance folder automatically, but it needs to be created because your project will
create the SQLite database file there.

5. @app.route() creates a simple route so you can see the application working be-
fore getting into the rest of the tutorial. It creates a connection between the URL
/hello and a function that returns a response, the string 'Hello, World!' in this
case.

Run The Application

Now you can run your application using the flask command. From the terminal, tell
Flask where to find your application, then run it in development mode.

Development mode shows an interactive debugger whenever a page raises an excep-
tion, and restarts the server whenever you make changes to the code. You can leave it
running and just reload the browser page as you follow the tutorial.

For Linux and Mac:

export FLASK_APP=flaskr
export FLASK_ENV=development
flask run

For Windows cmd, use set instead of export:

set FLASK_APP=flaskr
set FLASK_ENV=development
flask run

For Windows PowerShell, use $env: instead of export:

$env:FLASK_APP = "flaskr"
$env:FLASK_ENV = "development"
flask run

You’ll see output similar to this:

* Serving Flask app "flaskr"
* Environment: development
* Debug mode: on

26 Chapter 1. User’s Guide

https://docs.python.org/3/library/os.html#os.makedirs

Flask Documentation, Release 0.13.dev

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!
* Debugger PIN: 855-212-761

Visit http://127.0.0.1:5000/hello in a browser and you should see the “Hello, World!”
message. Congratulations, you’re now running your Flask web application!

Continue to Define and Access the Database.

1.5.3 Define and Access the Database

The application will use a SQLite database to store users and posts. Python comes
with built-in support for SQLite in the sqlite3 module.

SQLite is convenient because it doesn’t require setting up a separate database server
and is built-in to Python. However, if concurrent requests try to write to the database
at the same time, they will slow down as each write happens sequentially. Small appli-
cations won’t notice this. Once you become big, you may want to switch to a different
database.

The tutorial doesn’t go into detail about SQL. If you are not familiar with it, the SQLite
docs describe the language.

Connect to the Database

The first thing to do when working with a SQLite database (and most other Python
database libraries) is to create a connection to it. Any queries and operations are per-
formed using the connection, which is closed after the work is finished.

In web applications this connection is typically tied to the request. It is created at some
point when handling a request, and closed before the response is sent.

Listing 1.4: flaskr/db.py

import sqlite3

import click
from flask import current_app, g
from flask.cli import with_appcontext

def get_db():
if 'db' not in g:

g.db = sqlite3.connect(
current_app.config['DATABASE'],
detect_types=sqlite3.PARSE_DECLTYPES

)
g.db.row_factory = sqlite3.Row

1.5. Tutorial 27

http://127.0.0.1:5000/hello
https://sqlite.org/about.html
https://docs.python.org/3/library/sqlite3.html#module-sqlite3
https://sqlite.org/lang.html

Flask Documentation, Release 0.13.dev

return g.db

def close_db(e=None):
db = g.pop('db', None)

if db is not None:
db.close()

g is a special object that is unique for each request. It is used to store data that might
be accessed by multiple functions during the request. The connection is stored and
reused instead of creating a new connection if get_db is called a second time in the
same request.

current_app is another special object that points to the Flask application handling the
request. Since you used an application factory, there is no application object when
writing the rest of your code. get_db will be called when the application has been
created and is handling a request, so current_app can be used.

sqlite3.connect() establishes a connection to the file pointed at by the DATABASE con-
figuration key. This file doesn’t have to exist yet, and won’t until you initialize the
database later.

sqlite3.Row tells the connection to return rows that behave like dicts. This allows
accessing the columns by name.

close_db checks if a connection was created by checking if g.db was set. If the connec-
tion exists, it is closed. Further down you will tell your application about the close_db
function in the application factory so that it is called after each request.

Create the Tables

In SQLite, data is stored in tables and columns. These need to be created before you can
store and retrieve data. Flaskr will store users in the user table, and posts in the post
table. Create a file with the SQL commands needed to create empty tables:

Listing 1.5: flaskr/schema.sql

DROP TABLE IF EXISTS user;
DROP TABLE IF EXISTS post;

CREATE TABLE user (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE NOT NULL,
password TEXT NOT NULL

);

CREATE TABLE post (
id INTEGER PRIMARY KEY AUTOINCREMENT,
author_id INTEGER NOT NULL,

28 Chapter 1. User’s Guide

https://docs.python.org/3/library/sqlite3.html#sqlite3.connect
https://docs.python.org/3/library/sqlite3.html#sqlite3.Row

Flask Documentation, Release 0.13.dev

created TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
title TEXT NOT NULL,
body TEXT NOT NULL,
FOREIGN KEY (author_id) REFERENCES user (id)

);

Add the Python functions that will run these SQL commands to the db.py file:

Listing 1.6: flaskr/db.py

def init_db():
db = get_db()

with current_app.open_resource('schema.sql') as f:
db.executescript(f.read().decode('utf8'))

@click.command('init-db')
@with_appcontext
def init_db_command():

"""Clear the existing data and create new tables."""
init_db()
click.echo('Initialized the database.')

open_resource() opens a file relative to the flaskr package, which is useful since you
won’t necessarily know where that location is when deploying the application later.
get_db returns a database connection, which is used to execute the commands read
from the file.

click.command() defines a command line command called init-db that calls the
init_db function and shows a success message to the user. You can read Command
Line Interface to learn more about writing commands.

Register with the Application

The close_db and init_db_command functions need to be registered with the applica-
tion instance, otherwise they won’t be used by the application. However, since you’re
using a factory function, that instance isn’t available when writing the functions. In-
stead, write a function that takes an application and does the registration.

1.5. Tutorial 29

http://click.pocoo.org/api/#click.command

Flask Documentation, Release 0.13.dev

Listing 1.7: flaskr/db.py

def init_app(app):
app.teardown_appcontext(close_db)
app.cli.add_command(init_db_command)

app.teardown_appcontext() tells Flask to call that function when cleaning up after
returning the response.

app.cli.add_command() adds a new command that can be called with the flask com-
mand.

Import and call this function from the factory. Place the new code at the end of the
factory function before returning the app.

Listing 1.8: flaskr/__init__.py

def create_app():
app = ...
existing code omitted

from . import db
db.init_app(app)

return app

Initialize the Database File

Now that init-db has been registered with the app, it can be called using the flask
command, similar to the run command from the previous page.

Note: If you’re still running the server from the previous page, you can either stop the
server, or run this command in a new terminal. If you use a new terminal, remember
to change to your project directory and activate the env as described in Activate the
environment. You’ll also need to set FLASK_APP and FLASK_ENV as shown on the previous
page.

Run the init-db command:

flask init-db
Initialized the database.

There will now be a flaskr.sqlite file in the instance folder in your project.

Continue to Blueprints and Views.

30 Chapter 1. User’s Guide

http://click.pocoo.org/api/#click.Group.add_command

Flask Documentation, Release 0.13.dev

1.5.4 Blueprints and Views

A view function is the code you write to respond to requests to your application. Flask
uses patterns to match the incoming request URL to the view that should handle it.
The view returns data that Flask turns into an outgoing response. Flask can also go
the other direction and generate a URL to a view based on its name and arguments.

Create a Blueprint

A Blueprint is a way to organize a group of related views and other code. Rather than
registering views and other code directly with an application, they are registered with
a blueprint. Then the blueprint is registered with the application when it is available
in the factory function.

Flaskr will have two blueprints, one for authentication functions and one for the blog
posts functions. The code for each blueprint will go in a separate module. Since the
blog needs to know about authentication, you’ll write the authentication one first.

Listing 1.9: flaskr/auth.py

import functools

from flask import (
Blueprint, flash, g, redirect, render_template, request, session, url_for

)
from werkzeug.security import check_password_hash, generate_password_hash

from flaskr.db import get_db

bp = Blueprint('auth', __name__, url_prefix='/auth')

This creates a Blueprint named 'auth'. Like the application object, the blueprint
needs to know where it’s defined, so __name__ is passed as the second argument. The
url_prefix will be prepended to all the URLs associated with the blueprint.

Import and register the blueprint from the factory using app.register_blueprint().
Place the new code at the end of the factory function before returning the app.

Listing 1.10: flaskr/__init__.py

def create_app():
app = ...
existing code omitted

from . import auth
app.register_blueprint(auth.bp)

return app

The authentication blueprint will have views to register new users and to log in and
log out.

1.5. Tutorial 31

Flask Documentation, Release 0.13.dev

The First View: Register

When the user visits the /auth/register URL, the register view will return HTML
with a form for them to fill out. When they submit the form, it will validate their input
and either show the form again with an error message or create the new user and go
to the login page.

For now you will just write the view code. On the next page, you’ll write templates to
generate the HTML form.

Listing 1.11: flaskr/auth.py

@bp.route('/register', methods=('GET', 'POST'))
def register():

if request.method == 'POST':
username = request.form['username']
password = request.form['password']
db = get_db()
error = None

if not username:
error = 'Username is required.'

elif not password:
error = 'Password is required.'

elif db.execute(
'SELECT id FROM user WHERE username = ?', (username,)

).fetchone() is not None:
error = 'User {} is already registered.'.format(username)

if error is None:
db.execute(

'INSERT INTO user (username, password) VALUES (?, ?)',
(username, generate_password_hash(password))

)
db.commit()
return redirect(url_for('auth.login'))

flash(error)

return render_template('auth/register.html')

Here’s what the register view function is doing:

1. @bp.route associates the URL /register with the register view function. When
Flask receives a request to /auth/register, it will call the register view and use
the return value as the response.

2. If the user submitted the form, request.method will be 'POST'. In this case, start
validating the input.

3. request.form is a special type of dict mapping submitted form keys and values.
The user will input their username and password.

32 Chapter 1. User’s Guide

https://developer.mozilla.org/docs/Web/HTML
https://docs.python.org/3/library/stdtypes.html#dict

Flask Documentation, Release 0.13.dev

4. Validate that username and password are not empty.

5. Validate that username is not already registered by querying the database and
checking if a result is returned. db.execute takes a SQL query with ? placehold-
ers for any user input, and a tuple of values to replace the placeholders with. The
database library will take care of escaping the values so you are not vulnerable
to a SQL injection attack.

fetchone() returns one row from the query. If the query returned no results, it
returns None. Later, fetchall() is used, which returns a list of all results.

6. If validation succeeds, insert the new user data into the database. For se-
curity, passwords should never be stored in the database directly. Instead,
generate_password_hash() is used to securely hash the password, and that hash
is stored. Since this query modifies data, db.commit() needs to be called after-
wards to save the changes.

7. After storing the user, they are redirected to the login page. url_for() generates
the URL for the login view based on its name. This is preferable to writing the
URL directly as it allows you to change the URL later without changing all code
that links to it. redirect() generates a redirect response to the generated URL.

8. If validation fails, the error is shown to the user. flash() stores messages that
can be retrieved when rendering the template.

9. When the user initially navigates to auth/register, or there was an vali-
dation error, an HTML page with the registration form should be shown.
render_template() will render a template containing the HTML, which you’ll
write in the next step of the tutorial.

Login

This view follows the same pattern as the register view above.

Listing 1.12: flaskr/auth.py

@bp.route('/login', methods=('GET', 'POST'))
def login():

if request.method == 'POST':
username = request.form['username']
password = request.form['password']
db = get_db()
error = None
user = db.execute(

'SELECT * FROM user WHERE username = ?', (username,)
).fetchone()

if user is None:
error = 'Incorrect username.'

elif not check_password_hash(user['password'], password):
error = 'Incorrect password.'

1.5. Tutorial 33

https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection.execute
https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor.fetchone
https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor.fetchall
http://werkzeug.pocoo.org/docs/utils/#werkzeug.security.generate_password_hash
https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection.commit

Flask Documentation, Release 0.13.dev

if error is None:
session.clear()
session['user_id'] = user['id']
return redirect(url_for('index'))

flash(error)

return render_template('auth/login.html')

There are a few differences from the register view:

1. The user is queried first and stored in a variable for later use.

2. check_password_hash() hashes the submitted password in the same way as the
stored hash and securely compares them. If they match, the password is valid.

3. session is a dict that stores data across requests. When validation succeeds, the
user’s id is stored in a new session. The data is stored in a cookie that is sent to
the browser, and the browser then sends it back with subsequent requests. Flask
securely signs the data so that it can’t be tampered with.

Now that the user’s id is stored in the session, it will be available on subsequent
requests. At the beginning of each request, if a user is logged in their information
should be loaded and made available to other views.

Listing 1.13: flaskr/auth.py

@bp.before_app_request
def load_logged_in_user():

user_id = session.get('user_id')

if user_id is None:
g.user = None

else:
g.user = get_db().execute(

'SELECT * FROM user WHERE id = ?', (user_id,)
).fetchone()

bp.before_app_request() registers a function that runs before the view function, no
matter what URL is requested. load_logged_in_user checks if a user id is stored in the
session and gets that user’s data from the database, storing it on g.user, which lasts
for the length of the request. If there is no user id, or if the id doesn’t exist, g.user will
be None.

Logout

To log out, you need to remove the user id from the session. Then
load_logged_in_user won’t load a user on subsequent requests.

34 Chapter 1. User’s Guide

http://werkzeug.pocoo.org/docs/utils/#werkzeug.security.check_password_hash
https://docs.python.org/3/library/stdtypes.html#dict

Flask Documentation, Release 0.13.dev

Listing 1.14: flaskr/auth.py

@bp.route('/logout')
def logout():

session.clear()
return redirect(url_for('index'))

Require Authentication in Other Views

Creating, editing, and deleting blog posts will require a user to be logged in. A decora-
tor can be used to check this for each view it’s applied to.

Listing 1.15: flaskr/auth.py

def login_required(view):
@functools.wraps(view)
def wrapped_view(**kwargs):

if g.user is None:
return redirect(url_for('auth.login'))

return view(**kwargs)

return wrapped_view

This decorator returns a new view function that wraps the original view it’s applied to.
The new function checks if a user is loaded and redirects to the login page otherwise.
If a user is loaded the original view is called and continues normally. You’ll use this
decorator when writing the blog views.

Endpoints and URLs

The url_for() function generates the URL to a view based on a name and arguments.
The name associated with a view is also called the endpoint, and by default it’s the
same as the name of the view function.

For example, the hello() view that was added to the app factory earlier in the tu-
torial has the name 'hello' and can be linked to with url_for('hello'). If it took
an argument, which you’ll see later, it would be linked to using url_for('hello',
who='World').

When using a blueprint, the name of the blueprint is prepended to the name of the
function, so the endpoint for the login function you wrote above is 'auth.login' be-
cause you added it to the 'auth' blueprint.

Continue to Templates.

1.5. Tutorial 35

Flask Documentation, Release 0.13.dev

1.5.5 Templates

You’ve written the authentication views for your application, but if you’re running the
server and try to go to any of the URLs, you’ll see a TemplateNotFound error. That’s be-
cause the views are calling render_template(), but you haven’t written the templates
yet. The template files will be stored in the templates directory inside the flaskr
package.

Templates are files that contain static data as well as placeholders for dynamic data.
A template is rendered with specific data to produce a final document. Flask uses the
Jinja template library to render templates.

In your application, you will use templates to render HTML which will display in the
user’s browser. In Flask, Jinja is configured to autoescape any data that is rendered in
HTML templates. This means that it’s safe to render user input; any characters they’ve
entered that could mess with the HTML, such as < and > will be escaped with safe values
that look the same in the browser but don’t cause unwanted effects.

Jinja looks and behaves mostly like Python. Special delimiters are used to distinguish
Jinja syntax from the static data in the template. Anything between {{ and }} is an
expression that will be output to the final document. {% and %} denotes a control flow
statement like if and for. Unlike Python, blocks are denoted by start and end tags
rather than indentation since static text within a block could change indentation.

The Base Layout

Each page in the application will have the same basic layout around a different body.
Instead of writing the entire HTML structure in each template, each template will
extend a base template and override specific sections.

Listing 1.16: flaskr/templates/base.html

<!doctype html>
<title>{% block title %}{% endblock %} - Flaskr</title>
<link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">
<nav>
<h1>Flaskr</h1>

{% if g.user %}
{{ g.user['username'] }}
Log Out

{% else %}
Register
Log In

{% endif %}

</nav>
<section class="content">

<header>
{% block header %}{% endblock %}

36 Chapter 1. User’s Guide

http://jinja.pocoo.org/docs/templates/
https://developer.mozilla.org/docs/Web/HTML

Flask Documentation, Release 0.13.dev

</header>
{% for message in get_flashed_messages() %}
<div class="flash">{{ message }}</div>

{% endfor %}
{% block content %}{% endblock %}

</section>

g is automatically available in templates. Based on if g.user is set (from
load_logged_in_user), either the username and a log out link are displayed, other-
wise links to register and log in are displayed. url_for() is also automatically avail-
able, and is used to generate URLs to views instead of writing them out manually.

After the page title, and before the content, the template loops over each message
returned by get_flashed_messages(). You used flash() in the views to show error
messages, and this is the code that will display them.

There are three blocks defined here that will be overridden in the other templates:

1. {% block title %} will change the title displayed in the browser’s tab and
window title.

2. {% block header %} is similar to title but will change the title displayed on the
page.

3. {% block content %} is where the content of each page goes, such as the login
form or a blog post.

The base template is directly in the templates directory. To keep the others organized,
the templates for a blueprint will be placed in a directory with the same name as the
blueprint.

Register

Listing 1.17: flaskr/templates/auth/register.html

{% extends 'base.html' %}

{% block header %}
<h1>{% block title %}Register{% endblock %}</h1>

{% endblock %}

{% block content %}
<form method="post">

<label for="username">Username</label>
<input name="username" id="username" required>
<label for="password">Password</label>
<input type="password" name="password" id="password" required>
<input type="submit" value="Register">

</form>
{% endblock %}

1.5. Tutorial 37

Flask Documentation, Release 0.13.dev

{% extends 'base.html' %} tells Jinja that this template should replace the blocks
from the base template. All the rendered content must appear inside {% block %} tags
that override blocks from the base template.

A useful pattern used here is to place {% block title %} inside {% block header %}.
This will set the title block and then output the value of it into the header block, so
that both the window and page share the same title without writing it twice.

The input tags are using the required attribute here. This tells the browser not to
submit the form until those fields are filled in. If the user is using an older browser
that doesn’t support that attribute, or if they are using something besides a browser to
make requests, you still want to validate the data in the Flask view. It’s important to
always fully validate the data on the server, even if the client does some validation as
well.

Log In

This is identical to the register template except for the title and submit button.

Listing 1.18: flaskr/templates/auth/login.html

{% extends 'base.html' %}

{% block header %}
<h1>{% block title %}Log In{% endblock %}</h1>

{% endblock %}

{% block content %}
<form method="post">

<label for="username">Username</label>
<input name="username" id="username" required>
<label for="password">Password</label>
<input type="password" name="password" id="password" required>
<input type="submit" value="Log In">

</form>
{% endblock %}

Register A User

Now that the authentication templates are written, you can register a user. Make sure
the server is still running (flask run if it’s not), then go to http://127.0.0.1:5000/auth/
register.

Try clicking the “Register” button without filling out the form and see that the browser
shows an error message. Try removing the required attributes from the register.html
template and click “Register” again. Instead of the browser showing an error, the page
will reload and the error from flash() in the view will be shown.

Fill out a username and password and you’ll be redirected to the login page. Try
entering an incorrect username, or the correct username and incorrect password. If

38 Chapter 1. User’s Guide

http://127.0.0.1:5000/auth/register
http://127.0.0.1:5000/auth/register

Flask Documentation, Release 0.13.dev

you log in you’ll get an error because there’s no index view to redirect to yet.

Continue to Static Files.

1.5.6 Static Files

The authentication views and templates work, but they look very plain right now.
Some CSS can be added to add style to the HTML layout you constructed. The style
won’t change, so it’s a static file rather than a template.

Flask automatically adds a static view that takes a path relative to the flaskr/static
directory and serves it. The base.html template already has a link to the style.css
file:

{{ url_for('static', filename='style.css') }}

Besides CSS, other types of static files might be files with JavaScript functions, or a
logo image. They are all placed under the flaskr/static directory and referenced
with url_for('static', filename='...').

This tutorial isn’t focused on how to write CSS, so you can just copy the following into
the flaskr/static/style.css file:

Listing 1.19: flaskr/static/style.css

html { font-family: sans-serif; background: #eee; padding: 1rem; }
body { max-width: 960px; margin: 0 auto; background: white; }
h1 { font-family: serif; color: #377ba8; margin: 1rem 0; }
a { color: #377ba8; }
hr { border: none; border-top: 1px solid lightgray; }
nav { background: lightgray; display: flex; align-items: center; padding: 0 0.
↪→5rem; }
nav h1 { flex: auto; margin: 0; }
nav h1 a { text-decoration: none; padding: 0.25rem 0.5rem; }
nav ul { display: flex; list-style: none; margin: 0; padding: 0; }
nav ul li a, nav ul li span, header .action { display: block; padding: 0.5rem; }
.content { padding: 0 1rem 1rem; }
.content > header { border-bottom: 1px solid lightgray; display: flex; align-
↪→items: flex-end; }
.content > header h1 { flex: auto; margin: 1rem 0 0.25rem 0; }
.flash { margin: 1em 0; padding: 1em; background: #cae6f6; border: 1px solid
↪→#377ba8; }
.post > header { display: flex; align-items: flex-end; font-size: 0.85em; }
.post > header > div:first-of-type { flex: auto; }
.post > header h1 { font-size: 1.5em; margin-bottom: 0; }
.post .about { color: slategray; font-style: italic; }
.post .body { white-space: pre-line; }
.content:last-child { margin-bottom: 0; }
.content form { margin: 1em 0; display: flex; flex-direction: column; }
.content label { font-weight: bold; margin-bottom: 0.5em; }
.content input, .content textarea { margin-bottom: 1em; }

1.5. Tutorial 39

https://developer.mozilla.org/docs/Web/CSS

Flask Documentation, Release 0.13.dev

.content textarea { min-height: 12em; resize: vertical; }
input.danger { color: #cc2f2e; }
input[type=submit] { align-self: start; min-width: 10em; }

You can find a less compact version of style.css in the example code.

Go to http://127.0.0.1/auth/login and the page should look like the screenshot below.

You can read more about CSS from Mozilla’s documentation. If you change a static file,
refresh the browser page. If the change doesn’t show up, try clearing your browser’s
cache.

Continue to Blog Blueprint.

1.5.7 Blog Blueprint

You’ll use the same techniques you learned about when writing the authentication
blueprint to write the blog blueprint. The blog should list all posts, allow logged in
users to create posts, and allow the author of a post to edit or delete it.

As you implement each view, keep the development server running. As you save your
changes, try going to the URL in your browser and testing them out.

40 Chapter 1. User’s Guide

https://github.com/pallets/flask/tree/master/examples/tutorial/flaskr/static/style.css
http://127.0.0.1/auth/login
https://developer.mozilla.org/docs/Web/CSS

Flask Documentation, Release 0.13.dev

The Blueprint

Define the blueprint and register it in the application factory.

Listing 1.20: flaskr/blog.py

from flask import (
Blueprint, flash, g, redirect, render_template, request, url_for

)
from werkzeug.exceptions import abort

from flaskr.auth import login_required
from flaskr.db import get_db

bp = Blueprint('blog', __name__)

Import and register the blueprint from the factory using app.register_blueprint().
Place the new code at the end of the factory function before returning the app.

Listing 1.21: flaskr/__init__.py

def create_app():
app = ...
existing code omitted

from . import blog
app.register_blueprint(blog.bp)
app.add_url_rule('/', endpoint='index')

return app

Unlike the auth blueprint, the blog blueprint does not have a url_prefix. So the index
view will be at /, the create view at /create, and so on. The blog is the main feature
of Flaskr, so it makes sense that the blog index will be the main index.

However, the endpoint for the index view defined below will be blog.index. Some
of the authentication views referred to a plain index endpoint. app.add_url_rule()
associates the endpoint name 'index' with the / url so that url_for('index') or
url_for('blog.index') will both work, generating the same / URL either way.

In another application you might give the blog blueprint a url_prefix and define a
separate index view in the application factory, similar to the hello view. Then the
index and blog.index endpoints and URLs would be different.

Index

The index will show all of the posts, most recent first. A JOIN is used so that the author
information from the user table is available in the result.

1.5. Tutorial 41

Flask Documentation, Release 0.13.dev

Listing 1.22: flaskr/blog.py

@bp.route('/')
def index():

db = get_db()
posts = db.execute(

'SELECT p.id, title, body, created, author_id, username'
' FROM post p JOIN user u ON p.author_id = u.id'
' ORDER BY created DESC'

).fetchall()
return render_template('blog/index.html', posts=posts)

Listing 1.23: flaskr/templates/blog/index.html

{% extends 'base.html' %}

{% block header %}
<h1>{% block title %}Posts{% endblock %}</h1>
{% if g.user %}
New

{% endif %}
{% endblock %}

{% block content %}
{% for post in posts %}

<article class="post">
<header>
<div>

<h1>{{ post['title'] }}</h1>
<div class="about">by {{ post['username'] }} on {{ post['created'].

↪→strftime('%Y-%m-%d') }}</div>
</div>
{% if g.user['id'] == post['author_id'] %}

↪→Edit

{% endif %}
</header>
<p class="body">{{ post['body'] }}</p>

</article>
{% if not loop.last %}
<hr>

{% endif %}
{% endfor %}

{% endblock %}

When a user is logged in, the header block adds a link to the create view. When the
user is the author of a post, they’ll see an “Edit” link to the update view for that post.
loop.last is a special variable available inside Jinja for loops. It’s used to display a
line after each post except the last one, to visually separate them.

42 Chapter 1. User’s Guide

http://jinja.pocoo.org/docs/templates/#for

Flask Documentation, Release 0.13.dev

Create

The create view works the same as the auth register view. Either the form is dis-
played, or the posted data is validated and the post is added to the database or an
error is shown.

The login_required decorator you wrote earlier is used on the blog views. A user
must be logged in to visit these views, otherwise they will be redirected to the login
page.

Listing 1.24: flaskr/blog.py

@bp.route('/create', methods=('GET', 'POST'))
@login_required
def create():

if request.method == 'POST':
title = request.form['title']
body = request.form['body']
error = None

if not title:
error = 'Title is required.'

if error is not None:
flash(error)

else:
db = get_db()
db.execute(

'INSERT INTO post (title, body, author_id)'
' VALUES (?, ?, ?)',
(title, body, g.user['id'])

)
db.commit()
return redirect(url_for('blog.index'))

return render_template('blog/create.html')

Listing 1.25: flaskr/templates/blog/create.html

{% extends 'base.html' %}

{% block header %}
<h1>{% block title %}New Post{% endblock %}</h1>

{% endblock %}

{% block content %}
<form method="post">

<label for="title">Title</label>
<input name="title" id="title" value="{{ request.form['title'] }}" required>
<label for="body">Body</label>
<textarea name="body" id="body">{{ request.form['body'] }}</textarea>

1.5. Tutorial 43

Flask Documentation, Release 0.13.dev

<input type="submit" value="Save">
</form>

{% endblock %}

Update

Both the update and delete views will need to fetch a post by id and check if the
author matches the logged in user. To avoid duplicating code, you can write a function
to get the post and call it from each view.

Listing 1.26: flaskr/blog.py

def get_post(id, check_author=True):
post = get_db().execute(

'SELECT p.id, title, body, created, author_id, username'
' FROM post p JOIN user u ON p.author_id = u.id'
' WHERE p.id = ?',
(id,)

).fetchone()

if post is None:
abort(404, "Post id {0} doesn't exist.".format(id))

if check_author and post['author_id'] != g.user['id']:
abort(403)

return post

abort() will raise a special exception that returns an HTTP status code. It takes an
optional message to show with the error, otherwise a default message is used. 404
means “Not Found”, and 403 means “Forbidden”. (401 means “Unauthorized”, but
you redirect to the login page instead of returning that status.)

The check_author argument is defined so that the function can be used to get a post
without checking the author. This would be useful if you wrote a view to show an in-
dividual post on a page, where the user doesn’t matter because they’re not modifying
the post.

Listing 1.27: flaskr/blog.py

@bp.route('/<int:id>/update', methods=('GET', 'POST'))
@login_required
def update(id):

post = get_post(id)

if request.method == 'POST':
title = request.form['title']
body = request.form['body']
error = None

44 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

if not title:
error = 'Title is required.'

if error is not None:
flash(error)

else:
db = get_db()
db.execute(

'UPDATE post SET title = ?, body = ?'
' WHERE id = ?',
(title, body, id)

)
db.commit()
return redirect(url_for('blog.index'))

return render_template('blog/update.html', post=post)

Unlike the views you’ve written so far, the update function takes an argument, id.
That corresponds to the <int:id> in the route. A real URL will look like /1/update.
Flask will capture the 1, ensure it’s an int, and pass it as the id argument. If you don’t
specify int: and instead do <id>, it will be a string. To generate a URL to the update
page, url_for() needs to be passed the id so it knows what to fill in: url_for('blog.
update', id=post['id']). This is also in the index.html file above.

The create and update views look very similar. The main difference is that the update
view uses a post object and an UPDATE query instead of an INSERT. With some clever
refactoring, you could use one view and template for both actions, but for the tutorial
it’s clearer to keep them separate.

Listing 1.28: flaskr/templates/blog/update.html

{% extends 'base.html' %}

{% block header %}
<h1>{% block title %}Edit "{{ post['title'] }}"{% endblock %}</h1>

{% endblock %}

{% block content %}
<form method="post">

<label for="title">Title</label>
<input name="title" id="title"

value="{{ request.form['title'] or post['title'] }}" required>
<label for="body">Body</label>
<textarea name="body" id="body">{{ request.form['body'] or post['body'] }}</

↪→textarea>
<input type="submit" value="Save">

</form>
<hr>
<form action="{{ url_for('blog.delete', id=post['id']) }}" method="post">

<input class="danger" type="submit" value="Delete" onclick="return confirm(
↪→'Are you sure?');">

1.5. Tutorial 45

https://docs.python.org/3/library/functions.html#int

Flask Documentation, Release 0.13.dev

</form>
{% endblock %}

This template has two forms. The first posts the edited data to the current page (/
<id>/update). The other form contains only a button and specifies an action attribute
that posts to the delete view instead. The button uses some JavaScript to show a con-
firmation dialog before submitting.

The pattern {{ request.form['title'] or post['title'] }} is used to choose what
data appears in the form. When the form hasn’t been submitted, the original post
data appears, but if invalid form data was posted you want to display that so the user
can fix the error, so request.form is used instead. request is another variable that’s
automatically available in templates.

Delete

The delete view doesn’t have its own template, the delete button is part of update.html
and posts to the /<id>/delete URL. Since there is no template, it will only handle the
POST method then redirect to the index view.

Listing 1.29: flaskr/blog.py

@bp.route('/<int:id>/delete', methods=('POST',))
@login_required
def delete(id):

get_post(id)
db = get_db()
db.execute('DELETE FROM post WHERE id = ?', (id,))
db.commit()
return redirect(url_for('blog.index'))

Congratulations, you’ve now finished writing your application! Take some time to try
out everything in the browser. However, there’s still more to do before the project is
complete.

Continue to Make the Project Installable.

1.5.8 Make the Project Installable

Making your project installable means that you can build a distribution file and install
that in another environment, just like you installed Flask in your project’s environ-
ment. This makes deploying your project the same as installing any other library, so
you’re using all the standard Python tools to manage everything.

Installing also comes with other benefits that might not be obvious from the tutorial
or as a new Python user, including:

• Currently, Python and Flask understand how to use the flaskr package only
because you’re running from your project’s directory. Installing means you can

46 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

import it no matter where you run from.

• You can manage your project’s dependencies just like other packages do, so pip
install yourproject.whl installs them.

• Test tools can isolate your test environment from your development environ-
ment.

Note: This is being introduced late in the tutorial, but in your future projects you
should always start with this.

Describe the Project

The setup.py file describes your project and the files that belong to it.

Listing 1.30: setup.py

from setuptools import find_packages, setup

setup(
name='flaskr',
version='1.0.0',
packages=find_packages(),
include_package_data=True,
zip_safe=False,
install_requires=[

'flask',
],

)

packages tells Python what package directories (and the Python files they contain)
to include. find_packages() finds these directories automatically so you don’t have
to type them out. To include other files, such as the static and templates directories,
include_package_data is set. Python needs another file named MANIFEST.in to tell
what this other data is.

Listing 1.31: MANIFEST.in

include flaskr/schema.sql
graft flaskr/static
graft flaskr/templates
global-exclude *.pyc

This tells Python to copy everything in the static and templates directories, and the
schema.sql file, but to exclude all bytecode files.

See the official packaging guide for another explanation of the files and options used.

1.5. Tutorial 47

https://packaging.python.org/tutorials/distributing-packages/

Flask Documentation, Release 0.13.dev

Install the Project

Use pip to install your project in the virtual environment.

pip install -e .

This tells pip to find setup.py in the current directory and install it in editable or de-
velopment mode. Editable mode means that as you make changes to your local code,
you’ll only need to re-install if you change the metadata about the project, such as its
dependencies.

You can observe that the project is now installed with pip list.

pip list

Package Version Location
-------------- --------- ----------------------------------
click 6.7
Flask 1.0
flaskr 1.0.0 /home/user/Projects/flask-tutorial
itsdangerous 0.24
Jinja2 2.10
MarkupSafe 1.0
pip 9.0.3
setuptools 39.0.1
Werkzeug 0.14.1
wheel 0.30.0

Nothing changes from how you’ve been running your project so far. FLASK_APP is still
set to flaskr and flask run still runs the application.

Continue to Test Coverage.

1.5.9 Test Coverage

Writing unit tests for your application lets you check that the code you wrote works the
way you expect. Flask provides a test client that simulates requests to the application
and returns the response data.

You should test as much of your code as possible. Code in functions only runs when
the function is called, and code in branches, such as if blocks, only runs when the
condition is met. You want to make sure that each function is tested with data that
covers each branch.

The closer you get to 100% coverage, the more comfortable you can be that making a
change won’t unexpectedly change other behavior. However, 100% coverage doesn’t
guarantee that your application doesn’t have bugs. In particular, it doesn’t test how
the user interacts with the application in the browser. Despite this, test coverage is an
important tool to use during development.

48 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

Note: This is being introduced late in the tutorial, but in your future projects you
should test as you develop.

You’ll use pytest and coverage to test and measure your code. Install them both:

pip install pytest coverage

Setup and Fixtures

The test code is located in the tests directory. This directory is next to the flaskr pack-
age, not inside it. The tests/conftest.py file contains setup functions called fixtures
that each test will use. Tests are in Python modules that start with test_, and each test
function in those modules also starts with test_.

Each test will create a new temporary database file and populate some data that will
be used in the tests. Write a SQL file to insert that data.

Listing 1.32: tests/data.sql

INSERT INTO user (username, password)
VALUES

('test', 'pbkdf2:sha256:50000$TCI4GzcX
↪→$0de171a4f4dac32e3364c7ddc7c14f3e2fa61f2d17574483f7ffbb431b4acb2f'),
('other', 'pbkdf2:sha256:50000$kJPKsz6N

↪→$d2d4784f1b030a9761f5ccaeeaca413f27f2ecb76d6168407af962ddce849f79');

INSERT INTO post (title, body, author_id, created)
VALUES

('test title', 'test' || x'0a' || 'body', 1, '2018-01-01 00:00:00');

The app fixture will call the factory and pass test_config to configure the application
and database for testing instead of using your local development configuration.

Listing 1.33: tests/conftest.py

import os
import tempfile

import pytest
from flaskr import create_app
from flaskr.db import get_db, init_db

with open(os.path.join(os.path.dirname(__file__), 'data.sql'), 'rb') as f:
_data_sql = f.read().decode('utf8')

@pytest.fixture
def app():

db_fd, db_path = tempfile.mkstemp()

1.5. Tutorial 49

https://pytest.readthedocs.io/
https://coverage.readthedocs.io/

Flask Documentation, Release 0.13.dev

app = create_app({
'TESTING': True,
'DATABASE': db_path,

})

with app.app_context():
init_db()
get_db().executescript(_data_sql)

yield app

os.close(db_fd)
os.unlink(db_path)

@pytest.fixture
def client(app):

return app.test_client()

@pytest.fixture
def runner(app):

return app.test_cli_runner()

tempfile.mkstemp() creates and opens a temporary file, returning the file object and
the path to it. The DATABASE path is overridden so it points to this temporary path
instead of the instance folder. After setting the path, the database tables are created
and the test data is inserted. After the test is over, the temporary file is closed and
removed.

TESTING tells Flask that the app is in test mode. Flask changes some internal behavior
so it’s easier to test, and other extensions can also use the flag to make testing them
easier.

The client fixture calls app.test_client() with the application object created by the
app fixture. Tests will use the client to make requests to the application without run-
ning the server.

The runner fixture is similar to client. app.test_cli_runner() creates a runner that
can call the Click commands registered with the application.

Pytest uses fixtures by matching their function names with the names of arguments
in the test functions. For example, the test_hello function you’ll write next takes a
client argument. Pytest matches that with the client fixture function, calls it, and
passes the returned value to the test function.

50 Chapter 1. User’s Guide

https://docs.python.org/3/library/tempfile.html#tempfile.mkstemp

Flask Documentation, Release 0.13.dev

Factory

There’s not much to test about the factory itself. Most of the code will be executed for
each test already, so if something fails the other tests will notice.

The only behavior that can change is passing test config. If config is not passed, there
should be some default configuration, otherwise the configuration should be overrid-
den.

Listing 1.34: tests/test_factory.py

from flaskr import create_app

def test_config():
assert not create_app().testing
assert create_app({'TESTING': True}).testing

def test_hello(client):
response = client.get('/hello')
assert response.data == b'Hello, World!'

You added the hello route as an example when writing the factory at the beginning
of the tutorial. It returns “Hello, World!”, so the test checks that the response data
matches.

Database

Within an application context, get_db should return the same connection each time it’s
called. After the context, the connection should be closed.

Listing 1.35: tests/test_db.py

import sqlite3

import pytest
from flaskr.db import get_db

def test_get_close_db(app):
with app.app_context():

db = get_db()
assert db is get_db()

with pytest.raises(sqlite3.ProgrammingError) as e:
db.execute('SELECT 1')

assert 'closed' in str(e)

The init-db command should call the init_db function and output a message.

1.5. Tutorial 51

Flask Documentation, Release 0.13.dev

Listing 1.36: tests/test_db.py

def test_init_db_command(runner, monkeypatch):
class Recorder(object):

called = False

def fake_init_db():
Recorder.called = True

monkeypatch.setattr('flaskr.db.init_db', fake_init_db)
result = runner.invoke(args=['init-db'])
assert 'Initialized' in result.output
assert Recorder.called

This test uses Pytest’s monkeypatch fixture to replace the init_db function with one
that records that it’s been called. The runner fixture you wrote above is used to call the
init-db command by name.

Authentication

For most of the views, a user needs to be logged in. The easiest way to do this in tests
is to make a POST request to the login view with the client. Rather than writing that
out every time, you can write a class with methods to do that, and use a fixture to pass
it the client for each test.

Listing 1.37: tests/conftest.py

class AuthActions(object):
def __init__(self, client):

self._client = client

def login(self, username='test', password='test'):
return self._client.post(

'/auth/login',
data={'username': username, 'password': password}

)

def logout(self):
return self._client.get('/auth/logout')

@pytest.fixture
def auth(client):

return AuthActions(client)

With the auth fixture, you can call auth.login() in a test to log in as the test user,
which was inserted as part of the test data in the app fixture.

The register view should render successfully on GET. On POST with valid form data, it
should redirect to the login URL and the user’s data should be in the database. Invalid

52 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

data should display error messages.

Listing 1.38: tests/test_auth.py

import pytest
from flask import g, session
from flaskr.db import get_db

def test_register(client, app):
assert client.get('/auth/register').status_code == 200
response = client.post(

'/auth/register', data={'username': 'a', 'password': 'a'}
)
assert 'http://localhost/auth/login' == response.headers['Location']

with app.app_context():
assert get_db().execute(

"select * from user where username = 'a'",
).fetchone() is not None

@pytest.mark.parametrize(('username', 'password', 'message'), (
('', '', b'Username is required.'),
('a', '', b'Password is required.'),
('test', 'test', b'already registered'),

))
def test_register_validate_input(client, username, password, message):

response = client.post(
'/auth/register',
data={'username': username, 'password': password}

)
assert message in response.data

client.get() makes a GET request and returns the Response object returned by Flask.
Similarly, client.post() makes a POST request, converting the data dict into form data.

To test that the page renders successfully, a simple request is made and checked for a
200 OK status_code. If rendering failed, Flask would return a 500 Internal Server
Error code.

headers will have a Location header with the login URL when the register view redi-
rects to the login view.

data contains the body of the response as bytes. If you expect a certain value to render
on the page, check that it’s in data. Bytes must be compared to bytes. If you want to
compare Unicode text, use get_data(as_text=True) instead.

pytest.mark.parametrize tells Pytest to run the same test function with different ar-
guments. You use it here to test different invalid input and error messages without
writing the same code three times.

The tests for the login view are very similar to those for register. Rather than testing

1.5. Tutorial 53

http://werkzeug.pocoo.org/docs/test/#werkzeug.test.Client.get
http://werkzeug.pocoo.org/docs/test/#werkzeug.test.Client.post
http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.BaseResponse.get_data

Flask Documentation, Release 0.13.dev

the data in the database, session should have user_id set after logging in.

Listing 1.39: tests/test_auth.py

def test_login(client, auth):
assert client.get('/auth/login').status_code == 200
response = auth.login()
assert response.headers['Location'] == 'http://localhost/'

with client:
client.get('/')
assert session['user_id'] == 1
assert g.user['username'] == 'test'

@pytest.mark.parametrize(('username', 'password', 'message'), (
('a', 'test', b'Incorrect username.'),
('test', 'a', b'Incorrect password.'),

))
def test_login_validate_input(auth, username, password, message):

response = auth.login(username, password)
assert message in response.data

Using client in a with block allows accessing context variables such as session after
the response is returned. Normally, accessing session outside of a request would raise
an error.

Testing logout is the opposite of login. session should not contain user_id after log-
ging out.

Listing 1.40: tests/test_auth.py

def test_logout(client, auth):
auth.login()

with client:
auth.logout()
assert 'user_id' not in session

Blog

All the blog views use the auth fixture you wrote earlier. Call auth.login() and sub-
sequent requests from the client will be logged in as the test user.

The index view should display information about the post that was added with the
test data. When logged in as the author, there should be a link to edit the post.

You can also test some more authentication behavior while testing the index view.
When not logged in, each page shows links to log in or register. When logged in,
there’s a link to log out.

54 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

Listing 1.41: tests/test_blog.py

import pytest
from flaskr.db import get_db

def test_index(client, auth):
response = client.get('/')
assert b"Log In" in response.data
assert b"Register" in response.data

auth.login()
response = client.get('/')
assert b'Log Out' in response.data
assert b'test title' in response.data
assert b'by test on 2018-01-01' in response.data
assert b'test\nbody' in response.data
assert b'href="/1/update"' in response.data

A user must be logged in to access the create, update, and delete views. The logged
in user must be the author of the post to access update and delete, otherwise a 403
Forbidden status is returned. If a post with the given id doesn’t exist, update and
delete should return 404 Not Found.

Listing 1.42: tests/test_blog.py

@pytest.mark.parametrize('path', (
'/create',
'/1/update',
'/1/delete',

))
def test_login_required(client, path):

response = client.post(path)
assert response.headers['Location'] == 'http://localhost/auth/login'

def test_author_required(app, client, auth):
change the post author to another user
with app.app_context():

db = get_db()
db.execute('UPDATE post SET author_id = 2 WHERE id = 1')
db.commit()

auth.login()
current user can't modify other user's post
assert client.post('/1/update').status_code == 403
assert client.post('/1/delete').status_code == 403
current user doesn't see edit link
assert b'href="/1/update"' not in client.get('/').data

1.5. Tutorial 55

Flask Documentation, Release 0.13.dev

@pytest.mark.parametrize('path', (
'/2/update',
'/2/delete',

))
def test_exists_required(client, auth, path):

auth.login()
assert client.post(path).status_code == 404

The create and update views should render and return a 200 OK status for a GET re-
quest. When valid data is sent in a POST request, create should insert the new post
data into the database, and update should modify the existing data. Both pages should
show an error message on invalid data.

Listing 1.43: tests/test_blog.py

def test_create(client, auth, app):
auth.login()
assert client.get('/create').status_code == 200
client.post('/create', data={'title': 'created', 'body': ''})

with app.app_context():
db = get_db()
count = db.execute('SELECT COUNT(id) FROM post').fetchone()[0]
assert count == 2

def test_update(client, auth, app):
auth.login()
assert client.get('/1/update').status_code == 200
client.post('/1/update', data={'title': 'updated', 'body': ''})

with app.app_context():
db = get_db()
post = db.execute('SELECT * FROM post WHERE id = 1').fetchone()
assert post['title'] == 'updated'

@pytest.mark.parametrize('path', (
'/create',
'/1/update',

))
def test_create_update_validate(client, auth, path):

auth.login()
response = client.post(path, data={'title': '', 'body': ''})
assert b'Title is required.' in response.data

The delete view should redirect to the index URL and the post should no longer exist
in the database.

56 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

Listing 1.44: tests/test_blog.py

def test_delete(client, auth, app):
auth.login()
response = client.post('/1/delete')
assert response.headers['Location'] == 'http://localhost/'

with app.app_context():
db = get_db()
post = db.execute('SELECT * FROM post WHERE id = 1').fetchone()
assert post is None

Running the Tests

Some extra configuration, which is not required but makes running tests with coverage
less verbose, can be added to the project’s setup.cfg file.

Listing 1.45: setup.cfg

[tool:pytest]
testpaths = tests

[coverage:run]
branch = True
source =

flaskr

To run the tests, use the pytest command. It will find and run all the test functions
you’ve written.

pytest

========================= test session starts ==========================
platform linux -- Python 3.6.4, pytest-3.5.0, py-1.5.3, pluggy-0.6.0
rootdir: /home/user/Projects/flask-tutorial, inifile: setup.cfg
collected 23 items

tests/test_auth.py [34%]
tests/test_blog.py [86%]
tests/test_db.py .. [95%]
tests/test_factory.py .. [100%]

====================== 24 passed in 0.64 seconds =======================

If any tests fail, pytest will show the error that was raised. You can run pytest -v to
get a list of each test function rather than dots.

To measure the code coverage of your tests, use the coverage command to run pytest
instead of running it directly.

1.5. Tutorial 57

Flask Documentation, Release 0.13.dev

coverage run -m pytest

You can either view a simple coverage report in the terminal:

coverage report

Name Stmts Miss Branch BrPart Cover
--
flaskr/__init__.py 21 0 2 0 100%
flaskr/auth.py 54 0 22 0 100%
flaskr/blog.py 54 0 16 0 100%
flaskr/db.py 24 0 4 0 100%
--
TOTAL 153 0 44 0 100%

An HTML report allows you to see which lines were covered in each file:

coverage html

This generates files in the htmlcov directory. Open htmlcov/index.html in your
browser to see the report.

Continue to Deploy to Production.

1.5.10 Deploy to Production

This part of the tutorial assumes you have a server that you want to deploy your
application to. It gives an overview of how to create the distribution file and install it,
but won’t go into specifics about what server or software to use. You can set up a new
environment on your development computer to try out the instructions below, but
probably shouldn’t use it for hosting a real public application. See Deployment Options
for a list of many different ways to host your application.

Build and Install

When you want to deploy your application elsewhere, you build a distribution file.
The current standard for Python distribution is the wheel format, with the .whl exten-
sion. Make sure the wheel library is installed first:

pip install wheel

Running setup.py with Python gives you a command line tool to issue build-related
commands. The bdist_wheel command will build a wheel distribution file.

python setup.py bdist_wheel

You can find the file in dist/flaskr-1.0.0-py3-none-any.whl. The file name is the
name of the project, the version, and some tags about the file can install.

58 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

Copy this file to another machine, set up a new virtualenv, then install the file with pip.

pip install flaskr-1.0.0-py3-none-any.whl

Pip will install your project along with its dependencies.

Since this is a different machine, you need to run init-db again to create the database
in the instance folder.

export FLASK_APP=flaskr
flask init-db

When Flask detects that it’s installed (not in editable mode), it uses a different directory
for the instance folder. You can find it at venv/var/flaskr-instance instead.

Configure the Secret Key

In the beginning of the tutorial that you gave a default value for SECRET_KEY. This
should be changed to some random bytes in production. Otherwise, attackers could
use the public 'dev' key to modify the session cookie, or anything else that uses the
secret key.

You can use the following command to output a random secret key:

python -c 'import os; print(os.urandom(16))'

b'_5#y2L"F4Q8z\n\xec]/'

Create the config.py file in the instance folder, which the factory will read from if it
exists. Copy the generated value into it.

Listing 1.46: venv/var/flaskr-instance/config.py

SECRET_KEY = b'_5#y2L"F4Q8z\n\xec]/'

You can also set any other necessary configuration here, although SECRET_KEY is the
only one needed for Flaskr.

Run with a Production Server

When running publicly rather than in development, you should not use the built-in
development server (flask run). The development server is provided by Werkzeug
for convenience, but is not designed to be particularly efficient, stable, or secure.

Instead, use a production WSGI server. For example, to use Waitress, first install it in
the virtual environment:

pip install waitress

1.5. Tutorial 59

https://docs.pylonsproject.org/projects/waitress/

Flask Documentation, Release 0.13.dev

You need to tell Waitress about your application, but it doesn’t use FLASK_APP like
flask run does. You need to tell it to import and call the application factory to get an
application object.

waitress-serve --call 'flaskr:create_app'

Serving on http://0.0.0.0:8080

See Deployment Options for a list of many different ways to host your application. Wait-
ress is just an example, chosen for the tutorial because it supports both Windows and
Linux. There are many more WSGI servers and deployment options that you may
choose for your project.

Continue to Keep Developing!.

1.5.11 Keep Developing!

You’ve learned about quite a few Flask and Python concepts throughout the tutorial.
Go back and review the tutorial and compare your code with the steps you took to get
there. Compare your project to the example project, which might look a bit different
due to the step-by-step nature of the tutorial.

There’s a lot more to Flask than what you’ve seen so far. Even so, you’re now
equipped to start developing your own web applications. Check out the Quickstart
for an overview of what Flask can do, then dive into the docs to keep learning. Flask
uses Jinja, Click, Werkzeug, and ItsDangerous behind the scenes, and they all have
their own documentation too. You’ll also be interested in Extensions which make tasks
like working with the database or validating form data easier and more powerful.

If you want to keep developing your Flaskr project, here are some ideas for what to
try next:

• A detail view to show a single post. Click a post’s title to go to its page.

• Like / unlike a post.

• Comments.

• Tags. Clicking a tag shows all the posts with that tag.

• A search box that filters the index page by name.

• Paged display. Only show 5 posts per page.

• Upload an image to go along with a post.

• Format posts using Markdown.

• An RSS feed of new posts.

Have fun and make awesome applications!

This tutorial will walk you through creating a basic blog application called Flaskr.
Users will be able to register, log in, create posts, and edit or delete their own posts.
You will be able to package and install the application on other computers.

60 Chapter 1. User’s Guide

https://github.com/pallets/flask/tree/master/examples/tutorial
https://palletsprojects.com/p/jinja/
https://palletsprojects.com/p/click/
https://palletsprojects.com/p/werkzeug/
https://palletsprojects.com/p/itsdangerous/

Flask Documentation, Release 0.13.dev

It’s assumed that you’re already familiar with Python. The official tutorial in the
Python docs is a great way to learn or review first.

While it’s designed to give a good starting point, the tutorial doesn’t cover all of Flask’s
features. Check out the Quickstart for an overview of what Flask can do, then dive into
the docs to find out more. The tutorial only uses what’s provided by Flask and Python.
In another project, you might decide to use Extensions or other libraries to make some
tasks simpler.

1.5. Tutorial 61

https://docs.python.org/3/tutorial/

Flask Documentation, Release 0.13.dev

Flask is flexible. It doesn’t require you to use any particular project or code layout.
However, when first starting, it’s helpful to use a more structured approach. This
means that the tutorial will require a bit of boilerplate up front, but it’s done to avoid
many common pitfalls that new developers encounter, and it creates a project that’s
easy to expand on. Once you become more comfortable with Flask, you can step out
of this structure and take full advantage of Flask’s flexibility.

62 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

The tutorial project is available as an example in the Flask repository, if you want to
compare your project with the final product as you follow the tutorial.

Continue to Project Layout.

1.6 Templates

Flask leverages Jinja2 as template engine. You are obviously free to use a different tem-
plate engine, but you still have to install Jinja2 to run Flask itself. This requirement is
necessary to enable rich extensions. An extension can depend on Jinja2 being present.

1.6. Templates 63

https://github.com/pallets/flask/tree/master/examples/tutorial

Flask Documentation, Release 0.13.dev

This section only gives a very quick introduction into how Jinja2 is integrated into
Flask. If you want information on the template engine’s syntax itself, head over to the
official Jinja2 Template Documentation for more information.

1.6.1 Jinja Setup

Unless customized, Jinja2 is configured by Flask as follows:

• autoescaping is enabled for all templates ending in .html, .htm, .xml as well as
.xhtml when using render_template().

• autoescaping is enabled for all strings when using render_template_string().

• a template has the ability to opt in/out autoescaping with the {% autoescape %}
tag.

• Flask inserts a couple of global functions and helpers into the Jinja2 context, ad-
ditionally to the values that are present by default.

1.6.2 Standard Context

The following global variables are available within Jinja2 templates by default:

config
The current configuration object (flask.config)

New in version 0.6.

Changed in version 0.10: This is now always available, even in imported tem-
plates.

request
The current request object (flask.request). This variable is unavailable if the
template was rendered without an active request context.

session
The current session object (flask.session). This variable is unavailable if the
template was rendered without an active request context.

g
The request-bound object for global variables (flask.g). This variable is unavail-
able if the template was rendered without an active request context.

url_for()
The flask.url_for() function.

get_flashed_messages()
The flask.get_flashed_messages() function.

The Jinja Context Behavior

64 Chapter 1. User’s Guide

http://jinja.pocoo.org/docs/templates

Flask Documentation, Release 0.13.dev

These variables are added to the context of variables, they are not global variables.
The difference is that by default these will not show up in the context of imported
templates. This is partially caused by performance considerations, partially to keep
things explicit.

What does this mean for you? If you have a macro you want to import, that needs to
access the request object you have two possibilities:

1. you explicitly pass the request to the macro as parameter, or the attribute of the
request object you are interested in.

2. you import the macro “with context”.

Importing with context looks like this:

{% from '_helpers.html' import my_macro with context %}

1.6.3 Standard Filters

These filters are available in Jinja2 additionally to the filters provided by Jinja2 itself:

tojson()
This function converts the given object into JSON representation. This is for
example very helpful if you try to generate JavaScript on the fly.

Note that inside script tags no escaping must take place, so make sure to disable
escaping with |safe before Flask 0.10 if you intend to use it inside script tags:

<script type=text/javascript>
doSomethingWith({{ user.username|tojson|safe }});

</script>

1.6.4 Controlling Autoescaping

Autoescaping is the concept of automatically escaping special characters for you. Spe-
cial characters in the sense of HTML (or XML, and thus XHTML) are &, >, <, " as well
as '. Because these characters carry specific meanings in documents on their own you
have to replace them by so called “entities” if you want to use them for text. Not doing
so would not only cause user frustration by the inability to use these characters in text,
but can also lead to security problems. (see Cross-Site Scripting (XSS))

Sometimes however you will need to disable autoescaping in templates. This can be
the case if you want to explicitly inject HTML into pages, for example if they come
from a system that generates secure HTML like a markdown to HTML converter.

There are three ways to accomplish that:

• In the Python code, wrap the HTML string in a Markup object before passing it to
the template. This is in general the recommended way.

1.6. Templates 65

Flask Documentation, Release 0.13.dev

• Inside the template, use the |safe filter to explicitly mark a string as safe HTML
({{ myvariable|safe }})

• Temporarily disable the autoescape system altogether.

To disable the autoescape system in templates, you can use the {% autoescape %}
block:

{% autoescape false %}
<p>autoescaping is disabled here
<p>{{ will_not_be_escaped }}

{% endautoescape %}

Whenever you do this, please be very cautious about the variables you are using in
this block.

1.6.5 Registering Filters

If you want to register your own filters in Jinja2 you have two ways to do that.
You can either put them by hand into the jinja_env of the application or use the
template_filter() decorator.

The two following examples work the same and both reverse an object:

@app.template_filter('reverse')
def reverse_filter(s):

return s[::-1]

def reverse_filter(s):
return s[::-1]

app.jinja_env.filters['reverse'] = reverse_filter

In case of the decorator the argument is optional if you want to use the function name
as name of the filter. Once registered, you can use the filter in your templates in the
same way as Jinja2’s builtin filters, for example if you have a Python list in context
called mylist:

{% for x in mylist | reverse %}
{% endfor %}

1.6.6 Context Processors

To inject new variables automatically into the context of a template, context processors
exist in Flask. Context processors run before the template is rendered and have the
ability to inject new values into the template context. A context processor is a function
that returns a dictionary. The keys and values of this dictionary are then merged with
the template context, for all templates in the app:

66 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

@app.context_processor
def inject_user():

return dict(user=g.user)

The context processor above makes a variable called user available in the template
with the value of g.user. This example is not very interesting because g is available in
templates anyways, but it gives an idea how this works.

Variables are not limited to values; a context processor can also make functions avail-
able to templates (since Python allows passing around functions):

@app.context_processor
def utility_processor():

def format_price(amount, currency=u'€'):
return u'{0:.2f}{1}'.format(amount, currency)

return dict(format_price=format_price)

The context processor above makes the format_price function available to all templates:

{{ format_price(0.33) }}

You could also build format_price as a template filter (see Registering Filters), but this
demonstrates how to pass functions in a context processor.

1.7 Testing Flask Applications

Something that is untested is broken.

The origin of this quote is unknown and while it is not entirely correct, it is also not
far from the truth. Untested applications make it hard to improve existing code and
developers of untested applications tend to become pretty paranoid. If an application
has automated tests, you can safely make changes and instantly know if anything
breaks.

Flask provides a way to test your application by exposing the Werkzeug test Client
and handling the context locals for you. You can then use that with your favourite
testing solution.

In this documentation we will use the pytest package as the base framework for our
tests. You can install it with pip, like so:

pip install pytest

1.7.1 The Application

First, we need an application to test; we will use the application from the Tutorial. If
you don’t have that application yet, get the source code from the examples.

1.7. Testing Flask Applications 67

http://werkzeug.pocoo.org/docs/test/#werkzeug.test.Client
https://pytest.org
https://github.com/pallets/flask/tree/master/examples/tutorial

Flask Documentation, Release 0.13.dev

1.7.2 The Testing Skeleton

We begin by adding a tests directory under the application root. Then create a Python
file to store our tests (test_flaskr.py). When we format the filename like test_*.py,
it will be auto-discoverable by pytest.

Next, we create a pytest fixture called client() that configures the application for
testing and initializes a new database.:

import os
import tempfile

import pytest

from flaskr import flaskr

@pytest.fixture
def client():

db_fd, flaskr.app.config['DATABASE'] = tempfile.mkstemp()
flaskr.app.config['TESTING'] = True
client = flaskr.app.test_client()

with flaskr.app.app_context():
flaskr.init_db()

yield client

os.close(db_fd)
os.unlink(flaskr.app.config['DATABASE'])

This client fixture will be called by each individual test. It gives us a simple interface
to the application, where we can trigger test requests to the application. The client will
also keep track of cookies for us.

During setup, the TESTING config flag is activated. What this does is disable error catch-
ing during request handling, so that you get better error reports when performing test
requests against the application.

Because SQLite3 is filesystem-based, we can easily use the tempfile module to create
a temporary database and initialize it. The mkstemp() function does two things for
us: it returns a low-level file handle and a random file name, the latter we use as
database name. We just have to keep the db_fd around so that we can use the os.
close() function to close the file.

To delete the database after the test, the fixture closes the file and removes it from the
filesystem.

If we now run the test suite, we should see the following output:

$ pytest

68 Chapter 1. User’s Guide

https://docs.pytest.org/en/latest/fixture.html
https://docs.python.org/3/library/tempfile.html#module-tempfile
https://docs.python.org/3/library/tempfile.html#tempfile.mkstemp
https://docs.python.org/3/library/os.html#os.close
https://docs.python.org/3/library/os.html#os.close

Flask Documentation, Release 0.13.dev

================ test session starts ================
rootdir: ./flask/examples/flaskr, inifile: setup.cfg
collected 0 items

=========== no tests ran in 0.07 seconds ============

Even though it did not run any actual tests, we already know that our flaskr applica-
tion is syntactically valid, otherwise the import would have died with an exception.

1.7.3 The First Test

Now it’s time to start testing the functionality of the application. Let’s check that the
application shows “No entries here so far” if we access the root of the application (/).
To do this, we add a new test function to test_flaskr.py, like this:

def test_empty_db(client):
"""Start with a blank database."""

rv = client.get('/')
assert b'No entries here so far' in rv.data

Notice that our test functions begin with the word test; this allows pytest to automati-
cally identify the function as a test to run.

By using client.get we can send an HTTP GET request to the application with the
given path. The return value will be a response_class object. We can now use the
data attribute to inspect the return value (as string) from the application. In this case,
we ensure that 'No entries here so far' is part of the output.

Run it again and you should see one passing test:

$ pytest -v

================ test session starts ================
rootdir: ./flask/examples/flaskr, inifile: setup.cfg
collected 1 items

tests/test_flaskr.py::test_empty_db PASSED

============= 1 passed in 0.10 seconds ==============

1.7.4 Logging In and Out

The majority of the functionality of our application is only available for the adminis-
trative user, so we need a way to log our test client in and out of the application. To do
this, we fire some requests to the login and logout pages with the required form data
(username and password). And because the login and logout pages redirect, we tell
the client to follow_redirects.

1.7. Testing Flask Applications 69

https://pytest.org
http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.BaseResponse.data

Flask Documentation, Release 0.13.dev

Add the following two functions to your test_flaskr.py file:

def login(client, username, password):
return client.post('/login', data=dict(

username=username,
password=password

), follow_redirects=True)

def logout(client):
return client.get('/logout', follow_redirects=True)

Now we can easily test that logging in and out works and that it fails with invalid
credentials. Add this new test function:

def test_login_logout(client):
"""Make sure login and logout works."""

rv = login(client, flaskr.app.config['USERNAME'], flaskr.app.config['PASSWORD
↪→'])

assert b'You were logged in' in rv.data

rv = logout(client)
assert b'You were logged out' in rv.data

rv = login(client, flaskr.app.config['USERNAME'] + 'x', flaskr.app.config[
↪→'PASSWORD'])

assert b'Invalid username' in rv.data

rv = login(client, flaskr.app.config['USERNAME'], flaskr.app.config['PASSWORD
↪→'] + 'x')

assert b'Invalid password' in rv.data

1.7.5 Test Adding Messages

We should also test that adding messages works. Add a new test function like this:

def test_messages(client):
"""Test that messages work."""

login(client, flaskr.app.config['USERNAME'], flaskr.app.config['PASSWORD'])
rv = client.post('/add', data=dict(

title='<Hello>',
text='HTML allowed here'

), follow_redirects=True)
assert b'No entries here so far' not in rv.data
assert b'<Hello>' in rv.data
assert b'HTML allowed here' in rv.data

70 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

Here we check that HTML is allowed in the text but not in the title, which is the in-
tended behavior.

Running that should now give us three passing tests:

$ pytest -v

================ test session starts ================
rootdir: ./flask/examples/flaskr, inifile: setup.cfg
collected 3 items

tests/test_flaskr.py::test_empty_db PASSED
tests/test_flaskr.py::test_login_logout PASSED
tests/test_flaskr.py::test_messages PASSED

============= 3 passed in 0.23 seconds ==============

1.7.6 Other Testing Tricks

Besides using the test client as shown above, there is also the test_request_context()
method that can be used in combination with the with statement to activate a request
context temporarily. With this you can access the request, g and session objects like
in view functions. Here is a full example that demonstrates this approach:

import flask

app = flask.Flask(__name__)

with app.test_request_context('/?name=Peter'):
assert flask.request.path == '/'
assert flask.request.args['name'] == 'Peter'

All the other objects that are context bound can be used in the same way.

If you want to test your application with different configurations and there does not
seem to be a good way to do that, consider switching to application factories (see
Application Factories).

Note however that if you are using a test request context, the before_request()
and after_request() functions are not called automatically. However
teardown_request() functions are indeed executed when the test request con-
text leaves the with block. If you do want the before_request() functions to be called
as well, you need to call preprocess_request() yourself:

app = flask.Flask(__name__)

with app.test_request_context('/?name=Peter'):
app.preprocess_request()
...

1.7. Testing Flask Applications 71

Flask Documentation, Release 0.13.dev

This can be necessary to open database connections or something similar depending
on how your application was designed.

If you want to call the after_request() functions you need to call into
process_response() which however requires that you pass it a response object:

app = flask.Flask(__name__)

with app.test_request_context('/?name=Peter'):
resp = Response('...')
resp = app.process_response(resp)
...

This in general is less useful because at that point you can directly start using the test
client.

1.7.7 Faking Resources and Context

New in version 0.10.

A very common pattern is to store user authorization information and database con-
nections on the application context or the flask.g object. The general pattern for this is
to put the object on there on first usage and then to remove it on a teardown. Imagine
for instance this code to get the current user:

def get_user():
user = getattr(g, 'user', None)
if user is None:

user = fetch_current_user_from_database()
g.user = user

return user

For a test it would be nice to override this user from the outside without hav-
ing to change some code. This can be accomplished with hooking the flask.
appcontext_pushed signal:

from contextlib import contextmanager
from flask import appcontext_pushed, g

@contextmanager
def user_set(app, user):

def handler(sender, **kwargs):
g.user = user

with appcontext_pushed.connected_to(handler, app):
yield

And then to use it:

from flask import json, jsonify

72 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

@app.route('/users/me')
def users_me():

return jsonify(username=g.user.username)

with user_set(app, my_user):
with app.test_client() as c:

resp = c.get('/users/me')
data = json.loads(resp.data)
self.assert_equal(data['username'], my_user.username)

1.7.8 Keeping the Context Around

New in version 0.4.

Sometimes it is helpful to trigger a regular request but still keep the context around
for a little longer so that additional introspection can happen. With Flask 0.4 this is
possible by using the test_client() with a with block:

app = flask.Flask(__name__)

with app.test_client() as c:
rv = c.get('/?tequila=42')
assert request.args['tequila'] == '42'

If you were to use just the test_client() without the with block, the assert would
fail with an error because request is no longer available (because you are trying to use
it outside of the actual request).

1.7.9 Accessing and Modifying Sessions

New in version 0.8.

Sometimes it can be very helpful to access or modify the sessions from the test client.
Generally there are two ways for this. If you just want to ensure that a session has
certain keys set to certain values you can just keep the context around and access
flask.session:

with app.test_client() as c:
rv = c.get('/')
assert flask.session['foo'] == 42

This however does not make it possible to also modify the session or to access the ses-
sion before a request was fired. Starting with Flask 0.8 we provide a so called “session
transaction” which simulates the appropriate calls to open a session in the context of
the test client and to modify it. At the end of the transaction the session is stored. This
works independently of the session backend used:

1.7. Testing Flask Applications 73

Flask Documentation, Release 0.13.dev

with app.test_client() as c:
with c.session_transaction() as sess:

sess['a_key'] = 'a value'

once this is reached the session was stored

Note that in this case you have to use the sess object instead of the flask.session
proxy. The object however itself will provide the same interface.

1.7.10 Testing JSON APIs

New in version 1.0.

Flask has great support for JSON, and is a popular choice for building JSON APIs.
Making requests with JSON data and examining JSON data in responses is very con-
venient:

from flask import request, jsonify

@app.route('/api/auth')
def auth():

json_data = request.get_json()
email = json_data['email']
password = json_data['password']
return jsonify(token=generate_token(email, password))

with app.test_client() as c:
rv = c.post('/api/auth', json={

'username': 'flask', 'password': 'secret'
})
json_data = rv.get_json()
assert verify_token(email, json_data['token'])

Passing the json argument in the test client methods sets the request data to the JSON-
serialized object and sets the content type to application/json. You can get the JSON
data from the request or response with get_json.

1.7.11 Testing CLI Commands

Click comes with utilities for testing your CLI commands. A CliRunner runs com-
mands in isolation and captures the output in a Result object.

Flask provides test_cli_runner() to create a FlaskCliRunner that passes the Flask
app to the CLI automatically. Use its invoke() method to call commands in the same
way they would be called from the command line.

import click

74 Chapter 1. User’s Guide

http://click.pocoo.org/testing
http://click.pocoo.org/api/#click.testing.CliRunner
http://click.pocoo.org/api/#click.testing.Result

Flask Documentation, Release 0.13.dev

@app.cli.command('hello')
@click.option('--name', default='World')
def hello_command(name)

click.echo(f'Hello, {name}!')

def test_hello():
runner = app.test_cli_runner()

invoke the command directly
result = runner.invoke(hello_command, ['--name', 'Flask'])
assert 'Hello, Flask' in result.output

or by name
result = runner.invoke(args=['hello'])
assert 'World' in result.output

In the example above, invoking the command by name is useful because it verifies that
the command was correctly registered with the app.

If you want to test how your command parses parameters, without running the com-
mand, use its make_context() method. This is useful for testing complex validation
rules and custom types.

def upper(ctx, param, value):
if value is not None:

return value.upper()

@app.cli.command('hello')
@click.option('--name', default='World', callback=upper)
def hello_command(name)

click.echo(f'Hello, {name}!')

def test_hello_params():
context = hello_command.make_context('hello', ['--name', 'flask'])
assert context.params['name'] == 'FLASK'

1.8 Application Errors

New in version 0.3.

Applications fail, servers fail. Sooner or later you will see an exception in production.
Even if your code is 100% correct, you will still see exceptions from time to time. Why?
Because everything else involved will fail. Here are some situations where perfectly
fine code can lead to server errors:

• the client terminated the request early and the application was still reading from
the incoming data

• the database server was overloaded and could not handle the query

1.8. Application Errors 75

http://click.pocoo.org/api/#click.BaseCommand.make_context

Flask Documentation, Release 0.13.dev

• a filesystem is full

• a harddrive crashed

• a backend server overloaded

• a programming error in a library you are using

• network connection of the server to another system failed

And that’s just a small sample of issues you could be facing. So how do we deal with
that sort of problem? By default if your application runs in production mode, Flask
will display a very simple page for you and log the exception to the logger.

But there is more you can do, and we will cover some better setups to deal with errors.

1.8.1 Error Logging Tools

Sending error mails, even if just for critical ones, can become overwhelming if enough
users are hitting the error and log files are typically never looked at. This is why
we recommend using Sentry for dealing with application errors. It’s available as an
Open Source project on GitHub and is also available as a hosted version which you
can try for free. Sentry aggregates duplicate errors, captures the full stack trace and
local variables for debugging, and sends you mails based on new errors or frequency
thresholds.

To use Sentry you need to install the raven client with extra flask dependencies:

$ pip install raven[flask]

And then add this to your Flask app:

from raven.contrib.flask import Sentry
sentry = Sentry(app, dsn='YOUR_DSN_HERE')

Or if you are using factories you can also init it later:

from raven.contrib.flask import Sentry
sentry = Sentry(dsn='YOUR_DSN_HERE')

def create_app():
app = Flask(__name__)
sentry.init_app(app)
...
return app

The YOUR_DSN_HERE value needs to be replaced with the DSN value you get from
your Sentry installation.

Afterwards failures are automatically reported to Sentry and from there you can re-
ceive error notifications.

76 Chapter 1. User’s Guide

https://www.getsentry.com/
https://github.com/getsentry/sentry
https://getsentry.com/signup/

Flask Documentation, Release 0.13.dev

1.8.2 Error handlers

You might want to show custom error pages to the user when an error occurs. This
can be done by registering error handlers.

An error handler is a normal view function that return a response, but instead of being
registered for a route, it is registered for an exception or HTTP status code that would
is raised while trying to handle a request.

Registering

Register handlers by decorating a function with errorhandler(). Or use
register_error_handler() to register the function later. Remember to set the error
code when returning the response.

@app.errorhandler(werkzeug.exceptions.BadRequest)
def handle_bad_request(e):

return 'bad request!', 400

or, without the decorator
app.register_error_handler(400, handle_bad_request)

werkzeug.exceptions.HTTPException subclasses like BadRequest and their HTTP
codes are interchangeable when registering handlers. (BadRequest.code == 400)

Non-standard HTTP codes cannot be registered by code because they are not known
by Werkzeug. Instead, define a subclass of HTTPException with the appropriate code
and register and raise that exception class.

class InsufficientStorage(werkzeug.exceptions.HTTPException):
code = 507
description = 'Not enough storage space.'

app.register_error_handler(InsuffcientStorage, handle_507)

raise InsufficientStorage()

Handlers can be registered for any exception class, not just HTTPException subclasses
or HTTP status codes. Handlers can be registered for a specific class, or for all sub-
classes of a parent class.

Handling

When an exception is caught by Flask while handling a request, it is first looked up by
code. If no handler is registered for the code, it is looked up by its class hierarchy; the
most specific handler is chosen. If no handler is registered, HTTPException subclasses
show a generic message about their code, while other exceptions are converted to a
generic 500 Internal Server Error.

1.8. Application Errors 77

http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.HTTPException
http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.BadRequest
http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.HTTPException
http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.HTTPException
http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.HTTPException

Flask Documentation, Release 0.13.dev

For example, if an instance of ConnectionRefusedError is raised, and a handler
is registered for ConnectionError and ConnectionRefusedError, the more specific
ConnectionRefusedError handler is called with the exception instance to generate the
response.

Handlers registered on the blueprint take precedence over those registered globally on
the application, assuming a blueprint is handling the request that raises the exception.
However, the blueprint cannot handle 404 routing errors because the 404 occurs at the
routing level before the blueprint can be determined.

Changed in version 0.11: Handlers are prioritized by specificity of the exception
classes they are registered for instead of the order they are registered in.

1.8.3 Logging

See Logging for information on how to log exceptions, such as by emailing them to
admins.

1.9 Debugging Application Errors

For production applications, configure your application with logging and notifications
as described in Application Errors. This section provides pointers when debugging
deployment configuration and digging deeper with a full-featured Python debugger.

1.9.1 When in Doubt, Run Manually

Having problems getting your application configured for production? If you have
shell access to your host, verify that you can run your application manually from the
shell in the deployment environment. Be sure to run under the same user account
as the configured deployment to troubleshoot permission issues. You can use Flask’s
builtin development server with debug=True on your production host, which is helpful
in catching configuration issues, but be sure to do this temporarily in a controlled
environment. Do not run in production with debug=True.

1.9.2 Working with Debuggers

To dig deeper, possibly to trace code execution, Flask provides a debugger out of the
box (see Debug Mode). If you would like to use another Python debugger, note that
debuggers interfere with each other. You have to set some options in order to use your
favorite debugger:

• debug - whether to enable debug mode and catch exceptions

• use_debugger - whether to use the internal Flask debugger

• use_reloader - whether to reload and fork the process on exception

78 Chapter 1. User’s Guide

https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError
https://docs.python.org/3/library/exceptions.html#ConnectionError
https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError
https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError

Flask Documentation, Release 0.13.dev

debug must be True (i.e., exceptions must be caught) in order for the other two options
to have any value.

If you’re using Aptana/Eclipse for debugging you’ll need to set both use_debugger
and use_reloader to False.

A possible useful pattern for configuration is to set the following in your config.yaml
(change the block as appropriate for your application, of course):

FLASK:
DEBUG: True
DEBUG_WITH_APTANA: True

Then in your application’s entry-point (main.py), you could have something like:

if __name__ == "__main__":
To allow aptana to receive errors, set use_debugger=False
app = create_app(config="config.yaml")

if app.debug: use_debugger = True
try:

Disable Flask's debugger if external debugger is requested
use_debugger = not(app.config.get('DEBUG_WITH_APTANA'))

except:
pass

app.run(use_debugger=use_debugger, debug=app.debug,
use_reloader=use_debugger, host='0.0.0.0')

1.10 Logging

Flask uses standard Python logging. All Flask-related messages are logged under the
'flask' logger namespace. Flask.logger returns the logger named 'flask.app', and
can be used to log messages for your application.

@app.route('/login', methods=['POST'])
def login():

user = get_user(request.form['username'])

if user.check_password(request.form['password']):
login_user(user)
app.logger.info('%s logged in successfully', user.username)
return redirect(url_for('index'))

else:
app.logger.info('%s failed to log in', user.username)
abort(401)

1.10. Logging 79

https://docs.python.org/3/library/logging.html#module-logging

Flask Documentation, Release 0.13.dev

1.10.1 Basic Configuration

When you want to configure logging for your project, you should do it as soon as
possible when the program starts. If app.logger is accessed before logging is config-
ured, it will add a default handler. If possible, configure logging before creating the
application object.

This example uses dictConfig() to create a logging configuration similar to Flask’s
default, except for all logs:

from logging.config import dictConfig

dictConfig({
'version': 1,
'formatters': {'default': {

'format': '[%(asctime)s] %(levelname)s in %(module)s: %(message)s',
}},
'handlers': {'wsgi': {

'class': 'logging.StreamHandler',
'stream': 'ext://flask.logging.wsgi_errors_stream',
'formatter': 'default'

}},
'root': {

'level': 'INFO',
'handlers': ['wsgi']

}
})

app = Flask(__name__)

Default Configuration

If you do not configure logging yourself, Flask will add a StreamHandler to app.logger
automatically. During requests, it will write to the stream specified by the WSGI server
in environ['wsgi.errors'] (which is usually sys.stderr). Outside a request, it will
log to sys.stderr.

Removing the Default Handler

If you configured logging after accessing app.logger, and need to remove the default
handler, you can import and remove it:

from flask.logging import default_handler

app.logger.removeHandler(default_handler)

80 Chapter 1. User’s Guide

https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig
https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/sys.html#sys.stderr

Flask Documentation, Release 0.13.dev

1.10.2 Email Errors to Admins

When running the application on a remote server for production, you probably won’t
be looking at the log messages very often. The WSGI server will probably send log
messages to a file, and you’ll only check that file if a user tells you something went
wrong.

To be proactive about discovering and fixing bugs, you can configure a logging.
handlers.SMTPHandler to send an email when errors and higher are logged.

import logging
from logging.handlers import SMTPHandler

mail_handler = SMTPHandler(
mailhost='127.0.0.1',
fromaddr='server-error@example.com',
toaddrs=['admin@example.com'],
subject='Application Error'

)
mail_handler.setLevel(logging.ERROR)
mail_handler.setFormatter(logging.Formatter(

'[%(asctime)s] %(levelname)s in %(module)s: %(message)s'
))

if not app.debug:
app.logger.addHandler(mail_handler)

This requires that you have an SMTP server set up on the same server. See the Python
docs for more information about configuring the handler.

1.10.3 Injecting Request Information

Seeing more information about the request, such as the IP address, may help debug-
ging some errors. You can subclass logging.Formatter to inject your own fields that
can be used in messages. You can change the formatter for Flask’s default handler, the
mail handler defined above, or any other handler.

from flask import request
from flask.logging import default_handler

class RequestFormatter(logging.Formatter):
def format(self, record):

record.url = request.url
record.remote_addr = request.remote_addr
return super().format(record)

formatter = RequestFormatter(
'[%(asctime)s] %(remote_addr)s requested %(url)s\n'
'%(levelname)s in %(module)s: %(message)s'

)

1.10. Logging 81

https://docs.python.org/3/library/logging.handlers.html#logging.handlers.SMTPHandler
https://docs.python.org/3/library/logging.handlers.html#logging.handlers.SMTPHandler
https://docs.python.org/3/library/logging.html#logging.Formatter

Flask Documentation, Release 0.13.dev

default_handler.setFormatter(formatter)
mail_handler.setFormatter(formatter)

1.10.4 Other Libraries

Other libraries may use logging extensively, and you want to see relevant messages
from those logs too. The simplest way to do this is to add handlers to the root logger
instead of only the app logger.

from flask.logging import default_handler

root = logging.getLogger()
root.addHandler(default_handler)
root.addHandler(mail_handler)

Depending on your project, it may be more useful to configure each logger you care
about separately, instead of configuring only the root logger.

for logger in (
app.logger,
logging.getLogger('sqlalchemy'),
logging.getLogger('other_package'),

):
logger.addHandler(default_handler)
logger.addHandler(mail_handler)

Werkzeug

Werkzeug logs basic request/response information to the 'werkzeug' logger. If the
root logger has no handlers configured, Werkzeug adds a StreamHandler to its logger.

Flask Extensions

Depending on the situation, an extension may choose to log to app.logger or its own
named logger. Consult each extension’s documentation for details.

1.11 Configuration Handling

Applications need some kind of configuration. There are different settings you might
want to change depending on the application environment like toggling the debug
mode, setting the secret key, and other such environment-specific things.

The way Flask is designed usually requires the configuration to be available when the
application starts up. You can hardcode the configuration in the code, which for many
small applications is not actually that bad, but there are better ways.

82 Chapter 1. User’s Guide

https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler

Flask Documentation, Release 0.13.dev

Independent of how you load your config, there is a config object available which
holds the loaded configuration values: The config attribute of the Flask object. This
is the place where Flask itself puts certain configuration values and also where exten-
sions can put their configuration values. But this is also where you can have your own
configuration.

1.11.1 Configuration Basics

The config is actually a subclass of a dictionary and can be modified just like any
dictionary:

app = Flask(__name__)
app.config['TESTING'] = True

Certain configuration values are also forwarded to the Flask object so you can read
and write them from there:

app.testing = True

To update multiple keys at once you can use the dict.update() method:

app.config.update(
TESTING=True,
SECRET_KEY=b'_5#y2L"F4Q8z\n\xec]/'

)

1.11.2 Environment and Debug Features

The ENV and DEBUG config values are special because they may behave inconsistently
if changed after the app has begun setting up. In order to set the environment and
debug mode reliably, Flask uses environment variables.

The environment is used to indicate to Flask, extensions, and other programs, like Sen-
try, what context Flask is running in. It is controlled with the FLASK_ENV environment
variable and defaults to production.

Setting FLASK_ENV to development will enable debug mode. flask run will use the
interactive debugger and reloader by default in debug mode. To control this separately
from the environment, use the FLASK_DEBUG flag.

Changed in version 1.0: Added FLASK_ENV to control the environment separately from
debug mode. The development environment enables debug mode.

To switch Flask to the development environment and enable debug mode, set
FLASK_ENV:

$ export FLASK_ENV=development
$ flask run

1.11. Configuration Handling 83

https://docs.python.org/3/library/stdtypes.html#dict.update

Flask Documentation, Release 0.13.dev

(On Windows, use set instead of export.)

Using the environment variables as described above is recommended. While it is pos-
sible to set ENV and DEBUG in your config or code, this is strongly discouraged. They
can’t be read early by the flask command, and some systems or extensions may have
already configured themselves based on a previous value.

1.11.3 Builtin Configuration Values

The following configuration values are used internally by Flask:

ENV
What environment the app is running in. Flask and extensions may enable be-
haviors based on the environment, such as enabling debug mode. The env at-
tribute maps to this config key. This is set by the FLASK_ENV environment variable
and may not behave as expected if set in code.

Do not enable development when deploying in production.

Default: 'production'

New in version 1.0.

DEBUG
Whether debug mode is enabled. When using flask run to start the develop-
ment server, an interactive debugger will be shown for unhandled exceptions,
and the server will be reloaded when code changes. The debug attribute maps to
this config key. This is enabled when ENV is 'development' and is overridden by
the FLASK_DEBUG environment variable. It may not behave as expected if set in
code.

Do not enable debug mode when deploying in production.

Default: True if ENV is 'production', or False otherwise.

TESTING
Enable testing mode. Exceptions are propagated rather than handled by the the
app’s error handlers. Extensions may also change their behavior to facilitate
easier testing. You should enable this in your own tests.

Default: False

PROPAGATE_EXCEPTIONS
Exceptions are re-raised rather than being handled by the app’s error handlers.
If not set, this is implicitly true if TESTING or DEBUG is enabled.

Default: None

PRESERVE_CONTEXT_ON_EXCEPTION
Don’t pop the request context when an exception occurs. If not set, this is true if
DEBUG is true. This allows debuggers to introspect the request data on errors, and
should normally not need to be set directly.

Default: None

84 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

TRAP_HTTP_EXCEPTIONS
If there is no handler for an HTTPException-type exception, re-raise it to be han-
dled by the interactive debugger instead of returning it as a simple error re-
sponse.

Default: False

TRAP_BAD_REQUEST_ERRORS
Trying to access a key that doesn’t exist from request dicts like args and form
will return a 400 Bad Request error page. Enable this to treat the error as an
unhandled exception instead so that you get the interactive debugger. This is a
more specific version of TRAP_HTTP_EXCEPTIONS. If unset, it is enabled in debug
mode.

Default: None

SECRET_KEY
A secret key that will be used for securely signing the session cookie and can be
used for any other security related needs by extensions or your application. It
should be a long random string of bytes, although unicode is accepted too. For
example, copy the output of this to your config:

python -c 'import os; print(os.urandom(16))'
b'_5#y2L"F4Q8z\n\xec]/'

Do not reveal the secret key when posting questions or committing code.

Default: None

SESSION_COOKIE_NAME
The name of the session cookie. Can be changed in case you already have a
cookie with the same name.

Default: 'session'

SESSION_COOKIE_DOMAIN
The domain match rule that the session cookie will be valid for. If not set, the
cookie will be valid for all subdomains of SERVER_NAME. If False, the cookie’s
domain will not be set.

Default: None

SESSION_COOKIE_PATH
The path that the session cookie will be valid for. If not set, the cookie will be
valid underneath APPLICATION_ROOT or / if that is not set.

Default: None

SESSION_COOKIE_HTTPONLY
Browsers will not allow JavaScript access to cookies marked as “HTTP only” for
security.

Default: True

1.11. Configuration Handling 85

Flask Documentation, Release 0.13.dev

SESSION_COOKIE_SECURE
Browsers will only send cookies with requests over HTTPS if the cookie is
marked “secure”. The application must be served over HTTPS for this to make
sense.

Default: False

SESSION_COOKIE_SAMESITE
Restrict how cookies are sent with requests from external sites. Can be set to
'Lax' (recommended) or 'Strict'. See Set-Cookie options.

Default: None

New in version 1.0.

PERMANENT_SESSION_LIFETIME
If session.permanent is true, the cookie’s expiration will be set this number of
seconds in the future. Can either be a datetime.timedelta or an int.

Flask’s default cookie implementation validates that the cryptographic signature
is not older than this value.

Default: timedelta(days=31) (2678400 seconds)

SESSION_REFRESH_EACH_REQUEST
Control whether the cookie is sent with every response when session.permanent
is true. Sending the cookie every time (the default) can more reliably keep the
session from expiring, but uses more bandwidth. Non-permanent sessions are
not affected.

Default: True

USE_X_SENDFILE
When serving files, set the X-Sendfile header instead of serving the data with
Flask. Some web servers, such as Apache, recognize this and serve the data more
efficiently. This only makes sense when using such a server.

Default: False

SEND_FILE_MAX_AGE_DEFAULT
When serving files, set the cache control max age to this number of seconds. Can
either be a datetime.timedelta or an int. Override this value on a per-file basis
using get_send_file_max_age() on the application or blueprint.

Default: timedelta(hours=12) (43200 seconds)

SERVER_NAME
Inform the application what host and port it is bound to. Required for subdo-
main route matching support.

If set, will be used for the session cookie domain if SESSION_COOKIE_DOMAIN is not
set. Modern web browsers will not allow setting cookies for domains without a
dot. To use a domain locally, add any names that should route to the app to your
hosts file.

86 Chapter 1. User’s Guide

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

Flask Documentation, Release 0.13.dev

127.0.0.1 localhost.dev

If set, url_for can generate external URLs with only an application context in-
stead of a request context.

Default: None

APPLICATION_ROOT
Inform the application what path it is mounted under by the application / web
server.

Will be used for the session cookie path if SESSION_COOKIE_PATH is not set.

Default: '/'

PREFERRED_URL_SCHEME
Use this scheme for generating external URLs when not in a request context.

Default: 'http'

MAX_CONTENT_LENGTH
Don’t read more than this many bytes from the incoming request data. If not
set and the request does not specify a CONTENT_LENGTH, no data will be read for
security.

Default: None

JSON_AS_ASCII
Serialize objects to ASCII-encoded JSON. If this is disabled, the JSON will be
returned as a Unicode string, or encoded as UTF-8 by jsonify. This has security
implications when rendering the JSON in to JavaScript in templates, and should
typically remain enabled.

Default: True

JSON_SORT_KEYS
Sort the keys of JSON objects alphabetically. This is useful for caching because it
ensures the data is serialized the same way no matter what Python’s hash seed
is. While not recommended, you can disable this for a possible performance
improvement at the cost of caching.

Default: True

JSONIFY_PRETTYPRINT_REGULAR
jsonify responses will be output with newlines, spaces, and indentation for eas-
ier reading by humans. Always enabled in debug mode.

Default: False

JSONIFY_MIMETYPE
The mimetype of jsonify responses.

Default: 'application/json'

1.11. Configuration Handling 87

Flask Documentation, Release 0.13.dev

TEMPLATES_AUTO_RELOAD
Reload templates when they are changed. If not set, it will be enabled in debug
mode.

Default: None

EXPLAIN_TEMPLATE_LOADING
Log debugging information tracing how a template file was loaded. This can be
useful to figure out why a template was not loaded or the wrong file appears to
be loaded.

Default: False

MAX_COOKIE_SIZE
Warn if cookie headers are larger than this many bytes. Defaults to 4093. Larger
cookies may be silently ignored by browsers. Set to 0 to disable the warning.

New in version 0.4: LOGGER_NAME

New in version 0.5: SERVER_NAME

New in version 0.6: MAX_CONTENT_LENGTH

New in version 0.7: PROPAGATE_EXCEPTIONS, PRESERVE_CONTEXT_ON_EXCEPTION

New in version 0.8: TRAP_BAD_REQUEST_ERRORS, TRAP_HTTP_EXCEPTIONS,
APPLICATION_ROOT, SESSION_COOKIE_DOMAIN, SESSION_COOKIE_PATH,
SESSION_COOKIE_HTTPONLY, SESSION_COOKIE_SECURE

New in version 0.9: PREFERRED_URL_SCHEME

New in version 0.10: JSON_AS_ASCII, JSON_SORT_KEYS, JSONIFY_PRETTYPRINT_REGULAR

New in version 0.11: SESSION_REFRESH_EACH_REQUEST, TEMPLATES_AUTO_RELOAD,
LOGGER_HANDLER_POLICY, EXPLAIN_TEMPLATE_LOADING

Changed in version 1.0: LOGGER_NAME and LOGGER_HANDLER_POLICY were removed. See
Logging for information about configuration.

Added ENV to reflect the FLASK_ENV environment variable.

Added SESSION_COOKIE_SAMESITE to control the session cookie’s SameSite option.

Added MAX_COOKIE_SIZE to control a warning from Werkzeug.

1.11.4 Configuring from Files

Configuration becomes more useful if you can store it in a separate file, ideally located
outside the actual application package. This makes packaging and distributing your
application possible via various package handling tools (Deploying with Setuptools) and
finally modifying the configuration file afterwards.

So a common pattern is this:

88 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

app = Flask(__name__)
app.config.from_object('yourapplication.default_settings')
app.config.from_envvar('YOURAPPLICATION_SETTINGS')

This first loads the configuration from the yourapplication.default_settings module and
then overrides the values with the contents of the file the YOURAPPLICATION_SETTINGS
environment variable points to. This environment variable can be set on Linux or OS
X with the export command in the shell before starting the server:

$ export YOURAPPLICATION_SETTINGS=/path/to/settings.cfg
$ python run-app.py
* Running on http://127.0.0.1:5000/
* Restarting with reloader...

On Windows systems use the set builtin instead:

>set YOURAPPLICATION_SETTINGS=\path\to\settings.cfg

The configuration files themselves are actual Python files. Only values in uppercase
are actually stored in the config object later on. So make sure to use uppercase letters
for your config keys.

Here is an example of a configuration file:

Example configuration
DEBUG = False
SECRET_KEY = b'_5#y2L"F4Q8z\n\xec]/'

Make sure to load the configuration very early on, so that extensions have the ability
to access the configuration when starting up. There are other methods on the config
object as well to load from individual files. For a complete reference, read the Config
object’s documentation.

1.11.5 Configuring from Environment Variables

In addition to pointing to configuration files using environment variables, you may
find it useful (or necessary) to control your configuration values directly from the en-
vironment.

Environment variables can be set on Linux or OS X with the export command in the
shell before starting the server:

$ export SECRET_KEY='5f352379324c22463451387a0aec5d2f'
$ export DEBUG=False
$ python run-app.py
* Running on http://127.0.0.1:5000/
* Restarting with reloader...

On Windows systems use the set builtin instead:

1.11. Configuration Handling 89

Flask Documentation, Release 0.13.dev

>set SECRET_KEY='5f352379324c22463451387a0aec5d2f'
>set DEBUG=False

While this approach is straightforward to use, it is important to remember that en-
vironment variables are strings – they are not automatically deserialized into Python
types.

Here is an example of a configuration file that uses environment variables:

Example configuration
import os

ENVIRONMENT_DEBUG = os.environ.get("DEBUG", default=False)
if ENVIRONMENT_DEBUG.lower() in ("f", "false"):

ENVIRONMENT_DEBUG = False

DEBUG = ENVIRONMENT_DEBUG
SECRET_KEY = os.environ.get("SECRET_KEY", default=None)
if not SECRET_KEY:

raise ValueError("No secret key set for Flask application")

Notice that any value besides an empty string will be interpreted as a boolean True
value in Python, which requires care if an environment explicitly sets values intended
to be False.

Make sure to load the configuration very early on, so that extensions have the ability
to access the configuration when starting up. There are other methods on the config
object as well to load from individual files. For a complete reference, read the Config
class documentation.

1.11.6 Configuration Best Practices

The downside with the approach mentioned earlier is that it makes testing a little
harder. There is no single 100% solution for this problem in general, but there are a
couple of things you can keep in mind to improve that experience:

1. Create your application in a function and register blueprints on it. That way
you can create multiple instances of your application with different configura-
tions attached which makes unittesting a lot easier. You can use this to pass in
configuration as needed.

2. Do not write code that needs the configuration at import time. If you limit your-
self to request-only accesses to the configuration you can reconfigure the object
later on as needed.

1.11.7 Development / Production

Most applications need more than one configuration. There should be at least separate
configurations for the production server and the one used during development. The

90 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

easiest way to handle this is to use a default configuration that is always loaded and
part of the version control, and a separate configuration that overrides the values as
necessary as mentioned in the example above:

app = Flask(__name__)
app.config.from_object('yourapplication.default_settings')
app.config.from_envvar('YOURAPPLICATION_SETTINGS')

Then you just have to add a separate config.py file and export
YOURAPPLICATION_SETTINGS=/path/to/config.py and you are done. However
there are alternative ways as well. For example you could use imports or subclassing.

What is very popular in the Django world is to make the import explicit in the config
file by adding from yourapplication.default_settings import * to the top of the file
and then overriding the changes by hand. You could also inspect an environment vari-
able like YOURAPPLICATION_MODE and set that to production, development etc and import
different hardcoded files based on that.

An interesting pattern is also to use classes and inheritance for configuration:

class Config(object):
DEBUG = False
TESTING = False
DATABASE_URI = 'sqlite:///:memory:'

class ProductionConfig(Config):
DATABASE_URI = 'mysql://user@localhost/foo'

class DevelopmentConfig(Config):
DEBUG = True

class TestingConfig(Config):
TESTING = True

To enable such a config you just have to call into from_object():

app.config.from_object('configmodule.ProductionConfig')

There are many different ways and it’s up to you how you want to manage your con-
figuration files. However here a list of good recommendations:

• Keep a default configuration in version control. Either populate the config with
this default configuration or import it in your own configuration files before
overriding values.

• Use an environment variable to switch between the configurations. This can be
done from outside the Python interpreter and makes development and deploy-
ment much easier because you can quickly and easily switch between different
configs without having to touch the code at all. If you are working often on dif-
ferent projects you can even create your own script for sourcing that activates a
virtualenv and exports the development configuration for you.

1.11. Configuration Handling 91

Flask Documentation, Release 0.13.dev

• Use a tool like fabric in production to push code and configurations separately
to the production server(s). For some details about how to do that, head over to
the Deploying with Fabric pattern.

1.11.8 Instance Folders

New in version 0.8.

Flask 0.8 introduces instance folders. Flask for a long time made it possible to refer to
paths relative to the application’s folder directly (via Flask.root_path). This was also
how many developers loaded configurations stored next to the application. Unfortu-
nately however this only works well if applications are not packages in which case the
root path refers to the contents of the package.

With Flask 0.8 a new attribute was introduced: Flask.instance_path. It refers to a
new concept called the “instance folder”. The instance folder is designed to not be
under version control and be deployment specific. It’s the perfect place to drop things
that either change at runtime or configuration files.

You can either explicitly provide the path of the instance folder when creating the
Flask application or you can let Flask autodetect the instance folder. For explicit con-
figuration use the instance_path parameter:

app = Flask(__name__, instance_path='/path/to/instance/folder')

Please keep in mind that this path must be absolute when provided.

If the instance_path parameter is not provided the following default locations are used:

• Uninstalled module:

/myapp.py
/instance

• Uninstalled package:

/myapp
/__init__.py

/instance

• Installed module or package:

$PREFIX/lib/python2.X/site-packages/myapp
$PREFIX/var/myapp-instance

$PREFIX is the prefix of your Python installation. This can be /usr or the path to
your virtualenv. You can print the value of sys.prefix to see what the prefix is
set to.

Since the config object provided loading of configuration files from relative filenames
we made it possible to change the loading via filenames to be relative to the instance
path if wanted. The behavior of relative paths in config files can be flipped between

92 Chapter 1. User’s Guide

http://www.fabfile.org/

Flask Documentation, Release 0.13.dev

“relative to the application root” (the default) to “relative to instance folder” via the
instance_relative_config switch to the application constructor:

app = Flask(__name__, instance_relative_config=True)

Here is a full example of how to configure Flask to preload the config from a module
and then override the config from a file in the config folder if it exists:

app = Flask(__name__, instance_relative_config=True)
app.config.from_object('yourapplication.default_settings')
app.config.from_pyfile('application.cfg', silent=True)

The path to the instance folder can be found via the Flask.instance_path. Flask
also provides a shortcut to open a file from the instance folder with Flask.
open_instance_resource().

Example usage for both:

filename = os.path.join(app.instance_path, 'application.cfg')
with open(filename) as f:

config = f.read()

or via open_instance_resource:
with app.open_instance_resource('application.cfg') as f:

config = f.read()

1.12 Signals

New in version 0.6.

Starting with Flask 0.6, there is integrated support for signalling in Flask. This support
is provided by the excellent blinker library and will gracefully fall back if it is not
available.

What are signals? Signals help you decouple applications by sending notifications
when actions occur elsewhere in the core framework or another Flask extensions. In
short, signals allow certain senders to notify subscribers that something happened.

Flask comes with a couple of signals and other extensions might provide more. Also
keep in mind that signals are intended to notify subscribers and should not encourage
subscribers to modify data. You will notice that there are signals that appear to do
the same thing like some of the builtin decorators do (eg: request_started is very
similar to before_request()). However, there are differences in how they work. The
core before_request() handler, for example, is executed in a specific order and is able
to abort the request early by returning a response. In contrast all signal handlers are
executed in undefined order and do not modify any data.

The big advantage of signals over handlers is that you can safely subscribe to them
for just a split second. These temporary subscriptions are helpful for unit testing for

1.12. Signals 93

https://pypi.python.org/pypi/blinker

Flask Documentation, Release 0.13.dev

example. Say you want to know what templates were rendered as part of a request:
signals allow you to do exactly that.

1.12.1 Subscribing to Signals

To subscribe to a signal, you can use the connect() method of a signal. The first ar-
gument is the function that should be called when the signal is emitted, the optional
second argument specifies a sender. To unsubscribe from a signal, you can use the
disconnect() method.

For all core Flask signals, the sender is the application that issued the signal. When
you subscribe to a signal, be sure to also provide a sender unless you really want to
listen for signals from all applications. This is especially true if you are developing an
extension.

For example, here is a helper context manager that can be used in a unit test to deter-
mine which templates were rendered and what variables were passed to the template:

from flask import template_rendered
from contextlib import contextmanager

@contextmanager
def captured_templates(app):

recorded = []
def record(sender, template, context, **extra):

recorded.append((template, context))
template_rendered.connect(record, app)
try:

yield recorded
finally:

template_rendered.disconnect(record, app)

This can now easily be paired with a test client:

with captured_templates(app) as templates:
rv = app.test_client().get('/')
assert rv.status_code == 200
assert len(templates) == 1
template, context = templates[0]
assert template.name == 'index.html'
assert len(context['items']) == 10

Make sure to subscribe with an extra **extra argument so that your calls don’t fail if
Flask introduces new arguments to the signals.

All the template rendering in the code issued by the application app in the body of
the with block will now be recorded in the templates variable. Whenever a template is
rendered, the template object as well as context are appended to it.

Additionally there is a convenient helper method (connected_to()) that allows you
to temporarily subscribe a function to a signal with a context manager on its own.

94 Chapter 1. User’s Guide

https://pythonhosted.org/blinker/index.html#blinker.base.Signal.connect
https://pythonhosted.org/blinker/index.html#blinker.base.Signal.disconnect
https://pythonhosted.org/blinker/index.html#blinker.base.Signal.connected_to

Flask Documentation, Release 0.13.dev

Because the return value of the context manager cannot be specified that way, you
have to pass the list in as an argument:

from flask import template_rendered

def captured_templates(app, recorded, **extra):
def record(sender, template, context):

recorded.append((template, context))
return template_rendered.connected_to(record, app)

The example above would then look like this:

templates = []
with captured_templates(app, templates, **extra):

...
template, context = templates[0]

Blinker API Changes

The connected_to() method arrived in Blinker with version 1.1.

1.12.2 Creating Signals

If you want to use signals in your own application, you can use the blinker library
directly. The most common use case are named signals in a custom Namespace.. This is
what is recommended most of the time:

from blinker import Namespace
my_signals = Namespace()

Now you can create new signals like this:

model_saved = my_signals.signal('model-saved')

The name for the signal here makes it unique and also simplifies debugging. You can
access the name of the signal with the name attribute.

For Extension Developers

If you are writing a Flask extension and you want to gracefully degrade for missing
blinker installations, you can do so by using the flask.signals.Namespace class.

1.12.3 Sending Signals

If you want to emit a signal, you can do so by calling the send() method. It accepts a
sender as first argument and optionally some keyword arguments that are forwarded

1.12. Signals 95

https://pythonhosted.org/blinker/index.html#blinker.base.Signal.connected_to
https://pythonhosted.org/blinker/index.html#blinker.base.Namespace
https://pythonhosted.org/blinker/index.html#blinker.base.NamedSignal.name
https://pythonhosted.org/blinker/index.html#blinker.base.Signal.send

Flask Documentation, Release 0.13.dev

to the signal subscribers:

class Model(object):
...

def save(self):
model_saved.send(self)

Try to always pick a good sender. If you have a class that is emitting a signal, pass
self as sender. If you are emitting a signal from a random function, you can pass
current_app._get_current_object() as sender.

Passing Proxies as Senders

Never pass current_app as sender to a signal. Use current_app.
_get_current_object() instead. The reason for this is that current_app is a
proxy and not the real application object.

1.12.4 Signals and Flask’s Request Context

Signals fully support The Request Context when receiving signals. Context-local vari-
ables are consistently available between request_started and request_finished, so
you can rely on flask.g and others as needed. Note the limitations described in Send-
ing Signals and the request_tearing_down signal.

1.12.5 Decorator Based Signal Subscriptions

With Blinker 1.1 you can also easily subscribe to signals by using the new
connect_via() decorator:

from flask import template_rendered

@template_rendered.connect_via(app)
def when_template_rendered(sender, template, context, **extra):

print 'Template %s is rendered with %s' % (template.name, context)

1.12.6 Core Signals

Take a look at Signals for a list of all builtin signals.

1.13 Pluggable Views

New in version 0.7.

96 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

Flask 0.7 introduces pluggable views inspired by the generic views from Django which
are based on classes instead of functions. The main intention is that you can replace
parts of the implementations and this way have customizable pluggable views.

1.13.1 Basic Principle

Consider you have a function that loads a list of objects from the database and renders
into a template:

@app.route('/users/')
def show_users(page):

users = User.query.all()
return render_template('users.html', users=users)

This is simple and flexible, but if you want to provide this view in a generic fashion
that can be adapted to other models and templates as well you might want more flex-
ibility. This is where pluggable class-based views come into place. As the first step to
convert this into a class based view you would do this:

from flask.views import View

class ShowUsers(View):

def dispatch_request(self):
users = User.query.all()
return render_template('users.html', objects=users)

app.add_url_rule('/users/', view_func=ShowUsers.as_view('show_users'))

As you can see what you have to do is to create a subclass of flask.views.View and im-
plement dispatch_request(). Then we have to convert that class into an actual view
function by using the as_view() class method. The string you pass to that function is
the name of the endpoint that view will then have. But this by itself is not helpful, so
let’s refactor the code a bit:

from flask.views import View

class ListView(View):

def get_template_name(self):
raise NotImplementedError()

def render_template(self, context):
return render_template(self.get_template_name(), **context)

def dispatch_request(self):
context = {'objects': self.get_objects()}
return self.render_template(context)

1.13. Pluggable Views 97

Flask Documentation, Release 0.13.dev

class UserView(ListView):

def get_template_name(self):
return 'users.html'

def get_objects(self):
return User.query.all()

This of course is not that helpful for such a small example, but it’s good enough to
explain the basic principle. When you have a class-based view the question comes up
what self points to. The way this works is that whenever the request is dispatched a
new instance of the class is created and the dispatch_request() method is called with
the parameters from the URL rule. The class itself is instantiated with the parameters
passed to the as_view() function. For instance you can write a class like this:

class RenderTemplateView(View):
def __init__(self, template_name):

self.template_name = template_name
def dispatch_request(self):

return render_template(self.template_name)

And then you can register it like this:

app.add_url_rule('/about', view_func=RenderTemplateView.as_view(
'about_page', template_name='about.html'))

1.13.2 Method Hints

Pluggable views are attached to the application like a regular function by either using
route() or better add_url_rule(). That however also means that you would have to
provide the names of the HTTP methods the view supports when you attach this. In
order to move that information to the class you can provide a methods attribute that
has this information:

class MyView(View):
methods = ['GET', 'POST']

def dispatch_request(self):
if request.method == 'POST':

...
...

app.add_url_rule('/myview', view_func=MyView.as_view('myview'))

98 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

1.13.3 Method Based Dispatching

For RESTful APIs it’s especially helpful to execute a different function for each HTTP
method. With the flask.views.MethodView you can easily do that. Each HTTP method
maps to a function with the same name (just in lowercase):

from flask.views import MethodView

class UserAPI(MethodView):

def get(self):
users = User.query.all()
...

def post(self):
user = User.from_form_data(request.form)
...

app.add_url_rule('/users/', view_func=UserAPI.as_view('users'))

That way you also don’t have to provide the methods attribute. It’s automatically set
based on the methods defined in the class.

1.13.4 Decorating Views

Since the view class itself is not the view function that is added to the routing system
it does not make much sense to decorate the class itself. Instead you either have to
decorate the return value of as_view() by hand:

def user_required(f):
"""Checks whether user is logged in or raises error 401."""
def decorator(*args, **kwargs):

if not g.user:
abort(401)

return f(*args, **kwargs)
return decorator

view = user_required(UserAPI.as_view('users'))
app.add_url_rule('/users/', view_func=view)

Starting with Flask 0.8 there is also an alternative way where you can specify a list of
decorators to apply in the class declaration:

class UserAPI(MethodView):
decorators = [user_required]

Due to the implicit self from the caller’s perspective you cannot use regular view dec-
orators on the individual methods of the view however, keep this in mind.

1.13. Pluggable Views 99

Flask Documentation, Release 0.13.dev

1.13.5 Method Views for APIs

Web APIs are often working very closely with HTTP verbs so it makes a lot of sense
to implement such an API based on the MethodView. That said, you will notice that the
API will require different URL rules that go to the same method view most of the time.
For instance consider that you are exposing a user object on the web:

URL Method Description
/users/ GET Gives a list of all users
/users/ POST Creates a new user
/users/<id> GET Shows a single user
/users/<id> PUT Updates a single user
/users/<id> DELETE Deletes a single user

So how would you go about doing that with the MethodView? The trick is to take
advantage of the fact that you can provide multiple rules to the same view.

Let’s assume for the moment the view would look like this:

class UserAPI(MethodView):

def get(self, user_id):
if user_id is None:

return a list of users
pass

else:
expose a single user
pass

def post(self):
create a new user
pass

def delete(self, user_id):
delete a single user
pass

def put(self, user_id):
update a single user
pass

So how do we hook this up with the routing system? By adding two rules and explic-
itly mentioning the methods for each:

user_view = UserAPI.as_view('user_api')
app.add_url_rule('/users/', defaults={'user_id': None},

view_func=user_view, methods=['GET',])
app.add_url_rule('/users/', view_func=user_view, methods=['POST',])
app.add_url_rule('/users/<int:user_id>', view_func=user_view,

methods=['GET', 'PUT', 'DELETE'])

100 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

If you have a lot of APIs that look similar you can refactor that registration code:

def register_api(view, endpoint, url, pk='id', pk_type='int'):
view_func = view.as_view(endpoint)
app.add_url_rule(url, defaults={pk: None},

view_func=view_func, methods=['GET',])
app.add_url_rule(url, view_func=view_func, methods=['POST',])
app.add_url_rule('%s<%s:%s>' % (url, pk_type, pk), view_func=view_func,

methods=['GET', 'PUT', 'DELETE'])

register_api(UserAPI, 'user_api', '/users/', pk='user_id')

1.14 The Application Context

The application context keeps track of the application-level data during a request, CLI
command, or other activity. Rather than passing the application around to each func-
tion, the current_app and g proxies are accessed instead.

This is similar to the The Request Context, which keeps track of request-level data dur-
ing a request. A corresponding application context is pushed when a request context
is pushed.

1.14.1 Purpose of the Context

The Flask application object has attributes, such as config, that are useful to access
within views and CLI commands. However, importing the app instance within the
modules in your project is prone to circular import issues. When using the app fac-
tory pattern or writing reusable blueprints or extensions there won’t be an app instance
to import at all.

Flask solves this issue with the application context. Rather than referring to an app
directly, you use the the current_app proxy, which points to the application handling
the current activity.

Flask automatically pushes an application context when handling a request. View func-
tions, error handlers, and other functions that run during a request will have access to
current_app.

Flask will also automatically push an app context when running CLI commands reg-
istered with Flask.cli using @app.cli.command().

1.14.2 Lifetime of the Context

The application context is created and destroyed as necessary. When a Flask applica-
tion begins handling a request, it pushes an application context and a request context.
When the request ends it pops the request context then the application context. Typi-
cally, an application context will have the same lifetime as a request.

1.14. The Application Context 101

Flask Documentation, Release 0.13.dev

See The Request Context for more information about how the contexts work and the full
lifecycle of a request.

1.14.3 Manually Push a Context

If you try to access current_app, or anything that uses it, outside an application con-
text, you’ll get this error message:

RuntimeError: Working outside of application context.

This typically means that you attempted to use functionality that
needed to interface with the current application object in some way.
To solve this, set up an application context with app.app_context().

If you see that error while configuring your application, such as when initializing an
extension, you can push a context manually since you have direct access to the app.
Use app_context() in a with block, and everything that runs in the block will have
access to current_app.

def create_app():
app = Flask(__name__)

with app.app_context():
init_db()

return app

If you see that error somewhere else in your code not related to configuring the appli-
cation, it most likely indicates that you should move that code into a view function or
CLI command.

1.14.4 Storing Data

The application context is a good place to store common data during a request or CLI
command. Flask provides the g object for this purpose. It is a simple namespace
object that has the same lifetime as an application context.

Note: The g name stands for “global”, but that is referring to the data being global
within a context. The data on g is lost after the context ends, and it is not an appropriate
place to store data between requests. Use the session or a database to store data across
requests.

A common use for g is to manage resources during a request.

1. get_X() creates resource X if it does not exist, caching it as g.X.

2. teardown_X() closes or otherwise deallocates the resource if it exists. It is regis-
tered as a teardown_appcontext() handler.

102 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

For example, you can manage a database connection using this pattern:

from flask import g

def get_db():
if 'db' not in g:

g.db = connect_to_database()

return g.db

@app.teardown_appcontext
def teardown_db():

db = g.pop('db', None)

if db is not None:
db.close()

During a request, every call to get_db() will return the same connection, and it will be
closed automatically at the end of the request.

You can use LocalProxy to make a new context local from get_db():

from werkzeug.local import LocalProxy
db = LocalProxy(get_db)

Accessing db will call get_db internally, in the same way that current_app works.

If you’re writing an extension, g should be reserved for user code. You may store
internal data on the context itself, but be sure to use a sufficiently unique name. The
current context is accessed with _app_ctx_stack.top. For more information see Flask
Extension Development.

1.14.5 Events and Signals

The application will call functions registered with teardown_appcontext() when the
application context is popped.

If signals_available is true, the following signals are sent: appcontext_pushed,
appcontext_tearing_down, and appcontext_popped.

1.15 The Request Context

The request context keeps track of the request-level data during a request. Rather than
passing the request object to each function that runs during a request, the request and
session proxies are accessed instead.

1.15. The Request Context 103

http://werkzeug.pocoo.org/docs/local/#werkzeug.local.LocalProxy

Flask Documentation, Release 0.13.dev

This is similar to the The Application Context, which keeps track of the application-level
data independent of a request. A corresponding application context is pushed when a
request context is pushed.

1.15.1 Purpose of the Context

When the Flask application handles a request, it creates a Request object based on the
environment it received from the WSGI server. Because a worker (thread, process, or
coroutine depending on the server) handles only one request at a time, the request
data can be considered global to that worker during that request. Flask uses the term
context local for this.

Flask automatically pushes a request context when handling a request. View functions,
error handlers, and other functions that run during a request will have access to the
request proxy, which points to the request object for the current request.

1.15.2 Lifetime of the Context

When a Flask application begins handling a request, it pushes a request context, which
also pushes an The Application Context. When the request ends it pops the request
context then the application context.

The context is unique to each thread (or other worker type). request cannot be passed
to another thread, the other thread will have a different context stack and will not
know about the request the parent thread was pointing to.

Context locals are implemented in Werkzeug. See Context Locals for more information
on how this works internally.

1.15.3 Manually Push a Context

If you try to access request, or anything that uses it, outside a request context, you’ll
get this error message:

RuntimeError: Working outside of request context.

This typically means that you attempted to use functionality that
needed an active HTTP request. Consult the documentation on testing
for information about how to avoid this problem.

This should typically only happen when testing code that expects an active request.
One option is to use the test client to simulate a full request. Or you can use
test_request_context() in a with block, and everything that runs in the block will
have access to request, populated with your test data.

def generate_report(year):
format = request.args.get('format')
...

104 Chapter 1. User’s Guide

http://werkzeug.pocoo.org/docs/local/

Flask Documentation, Release 0.13.dev

with app.test_request_context(
'/make_report/2017', data={'format': 'short'}):

generate_report()

If you see that error somewhere else in your code not related to testing, it most likely
indicates that you should move that code into a view function.

For information on how to use the request context from the interactive Python shell,
see Working with the Shell.

1.15.4 How the Context Works

The Flask.wsgi_app() method is called to handle each request. It manages the con-
texts during the request. Internally, the request and application contexts work as
stacks, _request_ctx_stack and _app_ctx_stack. When contexts are pushed onto the
stack, the proxies that depend on them are available and point at information from the
top context on the stack.

When the request starts, a RequestContext is created and pushed, which creates and
pushes an AppContext first if a context for that application is not already the top con-
text. While these contexts are pushed, the current_app, g, request, and session prox-
ies are available to the original thread handling the request.

Because the contexts are stacks, other contexts may be pushed to change the proxies
during a request. While this is not a common pattern, it can be used in advanced appli-
cations to, for example, do internal redirects or chain different applications together.

After the request is dispatched and a response is generated and sent, the request con-
text is popped, which then pops the application context. Immediately before they are
popped, the teardown_request() and teardown_appcontext() functions are are exe-
cuted. These execute even if an unhandled exception occurred during dispatch.

1.15.5 Callbacks and Errors

Flask dispatches a request in multiple stages which can affect the request, response,
and how errors are handled. The contexts are active during all of these stages.

A Blueprint can add handlers for these events that are specific to the blueprint. The
handlers for a blueprint will run if the blueprint owns the route that matches the re-
quest.

1. Before each request, before_request() functions are called. If one of these func-
tions return a value, the other functions are skipped. The return value is treated
as the response and the view function is not called.

2. If the before_request() functions did not return a response, the view function
for the matched route is called and returns a response.

1.15. The Request Context 105

Flask Documentation, Release 0.13.dev

3. The return value of the view is converted into an actual response object and
passed to the after_request() functions. Each function returns a modified or
new response object.

4. After the response is returned, the contexts are popped, which calls the
teardown_request() and teardown_appcontext() functions. These functions are
called even if an unhandled exception was raised at any point above.

If an exception is raised before the teardown functions, Flask tries to match it with an
errorhandler() function to handle the exception and return a response. If no error
handler is found, or the handler itself raises an exception, Flask returns a generic 500
Internal Server Error response. The teardown functions are still called, and are
passed the exception object.

If debug mode is enabled, unhandled exceptions are not converted to a 500 response
and instead are propagated to the WSGI server. This allows the development server
to present the interactive debugger with the traceback.

Teardown Callbacks

The teardown callbacks are independent of the request dispatch, and are instead called
by the contexts when they are popped. The functions are called even if there is an
unhandled exception during dispatch, and for manually pushed contexts. This means
there is no guarantee that any other parts of the request dispatch have run first. Be
sure to write these functions in a way that does not depend on other callbacks and
will not fail.

During testing, it can be useful to defer popping the contexts after the request ends, so
that their data can be accessed in the test function. Using the test_client() as a with
block to preserve the contexts until the with block exits.

from flask import Flask, request

app = Flask(__name__)

@app.route('/')
def hello():

print('during view')
return 'Hello, World!'

@app.teardown_request
def show_teardown(exception):

print('after with block')

with app.test_request_context():
print('during with block')

teardown functions are called after the context with block exits

with app.test_client():
client.get('/')

106 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

the contexts are not popped even though the request ended
print(request.path)

the contexts are popped and teardown functions are called after
the client with block exists

Signals

If signals_available is true, the following signals are sent:

1. request_started is sent before the before_request() functions are called.

2. request_finished is sent after the after_request() functions are called.

3. got_request_exception is sent when an exception begins to be handled, but be-
fore an errorhandler() is looked up or called.

4. request_tearing_down is sent after the teardown_request() functions are called.

1.15.6 Context Preservation on Error

At the end of a request, the request context is popped and all data associated with it is
destroyed. If an error occurs during development, it is useful to delay destroying the
data for debugging purposes.

When the development server is running in development mode (the FLASK_ENV envi-
ronment variable is set to 'development'), the error and data will be preserved and
shown in the interactive debugger.

This behavior can be controlled with the PRESERVE_CONTEXT_ON_EXCEPTION config. As
described above, it defaults to True in the development environment.

Do not enable PRESERVE_CONTEXT_ON_EXCEPTION in production, as it will cause your
application to leak memory on exceptions.

1.15.7 Notes On Proxies

Some of the objects provided by Flask are proxies to other objects. The proxies are
accessed in the same way for each worker thread, but point to the unique object bound
to each worker behind the scenes as described on this page.

Most of the time you don’t have to care about that, but there are some exceptions
where it is good to know that this object is an actual proxy:

• The proxy objects cannot fake their type as the actual object types. If you want
to perform instance checks, you have to do that on the object being proxied.

• If the specific object reference is important, for example for sending Signals or
passing data to a background thread.

1.15. The Request Context 107

Flask Documentation, Release 0.13.dev

If you need to access the underlying object that is proxied, use the
_get_current_object() method:

app = current_app._get_current_object()
my_signal.send(app)

1.16 Modular Applications with Blueprints

New in version 0.7.

Flask uses a concept of blueprints for making application components and supporting
common patterns within an application or across applications. Blueprints can greatly
simplify how large applications work and provide a central means for Flask extensions
to register operations on applications. A Blueprint object works similarly to a Flask
application object, but it is not actually an application. Rather it is a blueprint of how
to construct or extend an application.

1.16.1 Why Blueprints?

Blueprints in Flask are intended for these cases:

• Factor an application into a set of blueprints. This is ideal for larger applications;
a project could instantiate an application object, initialize several extensions, and
register a collection of blueprints.

• Register a blueprint on an application at a URL prefix and/or subdomain. Pa-
rameters in the URL prefix/subdomain become common view arguments (with
defaults) across all view functions in the blueprint.

• Register a blueprint multiple times on an application with different URL rules.

• Provide template filters, static files, templates, and other utilities through
blueprints. A blueprint does not have to implement applications or view func-
tions.

• Register a blueprint on an application for any of these cases when initializing a
Flask extension.

A blueprint in Flask is not a pluggable app because it is not actually an application
– it’s a set of operations which can be registered on an application, even multiple
times. Why not have multiple application objects? You can do that (see Application
Dispatching), but your applications will have separate configs and will be managed at
the WSGI layer.

Blueprints instead provide separation at the Flask level, share application config, and
can change an application object as necessary with being registered. The downside is
that you cannot unregister a blueprint once an application was created without having
to destroy the whole application object.

108 Chapter 1. User’s Guide

http://werkzeug.pocoo.org/docs/local/#werkzeug.local.LocalProxy._get_current_object

Flask Documentation, Release 0.13.dev

1.16.2 The Concept of Blueprints

The basic concept of blueprints is that they record operations to execute when reg-
istered on an application. Flask associates view functions with blueprints when dis-
patching requests and generating URLs from one endpoint to another.

1.16.3 My First Blueprint

This is what a very basic blueprint looks like. In this case we want to implement a
blueprint that does simple rendering of static templates:

from flask import Blueprint, render_template, abort
from jinja2 import TemplateNotFound

simple_page = Blueprint('simple_page', __name__,
template_folder='templates')

@simple_page.route('/', defaults={'page': 'index'})
@simple_page.route('/<page>')
def show(page):

try:
return render_template('pages/%s.html' % page)

except TemplateNotFound:
abort(404)

When you bind a function with the help of the @simple_page.route decorator the
blueprint will record the intention of registering the function show on the application
when it’s later registered. Additionally it will prefix the endpoint of the function with
the name of the blueprint which was given to the Blueprint constructor (in this case
also simple_page).

1.16.4 Registering Blueprints

So how do you register that blueprint? Like this:

from flask import Flask
from yourapplication.simple_page import simple_page

app = Flask(__name__)
app.register_blueprint(simple_page)

If you check the rules registered on the application, you will find these:

[<Rule '/static/<filename>' (HEAD, OPTIONS, GET) -> static>,
<Rule '/<page>' (HEAD, OPTIONS, GET) -> simple_page.show>,
<Rule '/' (HEAD, OPTIONS, GET) -> simple_page.show>]

1.16. Modular Applications with Blueprints 109

Flask Documentation, Release 0.13.dev

The first one is obviously from the application itself for the static files. The other two
are for the show function of the simple_page blueprint. As you can see, they are also
prefixed with the name of the blueprint and separated by a dot (.).

Blueprints however can also be mounted at different locations:

app.register_blueprint(simple_page, url_prefix='/pages')

And sure enough, these are the generated rules:

[<Rule '/static/<filename>' (HEAD, OPTIONS, GET) -> static>,
<Rule '/pages/<page>' (HEAD, OPTIONS, GET) -> simple_page.show>,
<Rule '/pages/' (HEAD, OPTIONS, GET) -> simple_page.show>]

On top of that you can register blueprints multiple times though not every blueprint
might respond properly to that. In fact it depends on how the blueprint is imple-
mented if it can be mounted more than once.

1.16.5 Blueprint Resources

Blueprints can provide resources as well. Sometimes you might want to introduce a
blueprint only for the resources it provides.

Blueprint Resource Folder

Like for regular applications, blueprints are considered to be contained in a folder.
While multiple blueprints can originate from the same folder, it does not have to be
the case and it’s usually not recommended.

The folder is inferred from the second argument to Blueprint which is usually
__name__. This argument specifies what logical Python module or package corre-
sponds to the blueprint. If it points to an actual Python package that package (which is
a folder on the filesystem) is the resource folder. If it’s a module, the package the mod-
ule is contained in will be the resource folder. You can access the Blueprint.root_path
property to see what the resource folder is:

>>> simple_page.root_path
'/Users/username/TestProject/yourapplication'

To quickly open sources from this folder you can use the open_resource() function:

with simple_page.open_resource('static/style.css') as f:
code = f.read()

Static Files

A blueprint can expose a folder with static files by providing the path to the folder
on the filesystem with the static_folder argument. It is either an absolute path or

110 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

relative to the blueprint’s location:

admin = Blueprint('admin', __name__, static_folder='static')

By default the rightmost part of the path is where it is exposed on the web. This can
be changed with the static_url argument. Because the folder is called static here it
will be available at the url_prefix of the blueprint + /static. If the blueprint has the
prefix /admin, the static URL will be /admin/static.

The endpoint is named blueprint_name.static. You can generate URLs to it with
url_for() like you would with the static folder of the application:

url_for('admin.static', filename='style.css')

However, if the blueprint does not have a url_prefix, it is not possible to access the
blueprint’s static folder. This is because the URL would be /static in this case, and
the application’s /static route takes precedence. Unlike template folders, blueprint
static folders are not searched if the file does not exist in the application static folder.

Templates

If you want the blueprint to expose templates you can do that by providing the tem-
plate_folder parameter to the Blueprint constructor:

admin = Blueprint('admin', __name__, template_folder='templates')

For static files, the path can be absolute or relative to the blueprint resource folder.

The template folder is added to the search path of templates but with a lower prior-
ity than the actual application’s template folder. That way you can easily override
templates that a blueprint provides in the actual application. This also means that if
you don’t want a blueprint template to be accidentally overridden, make sure that no
other blueprint or actual application template has the same relative path. When mul-
tiple blueprints provide the same relative template path the first blueprint registered
takes precedence over the others.

So if you have a blueprint in the folder yourapplication/admin and you want to ren-
der the template 'admin/index.html' and you have provided templates as a tem-
plate_folder you will have to create a file like this: yourapplication/admin/templates/
admin/index.html. The reason for the extra admin folder is to avoid getting our tem-
plate overridden by a template named index.html in the actual application template
folder.

To further reiterate this: if you have a blueprint named admin and you want to render
a template called index.html which is specific to this blueprint, the best idea is to lay
out your templates like this:

yourpackage/
blueprints/

admin/
templates/

1.16. Modular Applications with Blueprints 111

Flask Documentation, Release 0.13.dev

admin/
index.html

__init__.py

And then when you want to render the template, use admin/index.html as the name
to look up the template by. If you encounter problems loading the correct templates
enable the EXPLAIN_TEMPLATE_LOADING config variable which will instruct Flask to print
out the steps it goes through to locate templates on every render_template call.

1.16.6 Building URLs

If you want to link from one page to another you can use the url_for() function just
like you normally would do just that you prefix the URL endpoint with the name of
the blueprint and a dot (.):

url_for('admin.index')

Additionally if you are in a view function of a blueprint or a rendered template and
you want to link to another endpoint of the same blueprint, you can use relative redi-
rects by prefixing the endpoint with a dot only:

url_for('.index')

This will link to admin.index for instance in case the current request was dispatched
to any other admin blueprint endpoint.

1.16.7 Error Handlers

Blueprints support the errorhandler decorator just like the Flask application object, so
it is easy to make Blueprint-specific custom error pages.

Here is an example for a “404 Page Not Found” exception:

@simple_page.errorhandler(404)
def page_not_found(e):

return render_template('pages/404.html')

Most errorhandlers will simply work as expected; however, there is a caveat concern-
ing handlers for 404 and 405 exceptions. These errorhandlers are only invoked from
an appropriate raise statement or a call to abort in another of the blueprint’s view
functions; they are not invoked by, e.g., an invalid URL access. This is because the
blueprint does not “own” a certain URL space, so the application instance has no way
of knowing which blueprint errorhandler it should run if given an invalid URL. If
you would like to execute different handling strategies for these errors based on URL
prefixes, they may be defined at the application level using the request proxy object:

112 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

@app.errorhandler(404)
@app.errorhandler(405)
def _handle_api_error(ex):

if request.path.startswith('/api/'):
return jsonify_error(ex)

else:
return ex

More information on error handling see Custom Error Pages.

1.17 Extensions

Extensions are extra packages that add functionality to a Flask application. For exam-
ple, an extension might add support for sending email or connecting to a database.
Some extensions add entire new frameworks to help build certain types of applica-
tions, like a ReST API.

1.17.1 Finding Extensions

Flask extensions are usually named “Flask-Foo” or “Foo-Flask”. Many extensions are
listed in the Extension Registry, which can be updated by extension developers. You
can also search PyPI for packages tagged with Framework :: Flask.

1.17.2 Using Extensions

Consult each extension’s documentation for installation, configuration, and usage in-
structions. Generally, extensions pull their own configuration from app.config and
are passed an application instance during initialization. For example, an extension
caled “Flask-Foo” might be used like this:

from flask_foo import Foo

foo = Foo()

app = Flask(__name__)
app.config.update(

FOO_BAR='baz',
FOO_SPAM='eggs',

)

foo.init_app(app)

1.17. Extensions 113

http://flask.pocoo.org/extensions/
https://pypi.python.org/pypi?:action=browse&c=585

Flask Documentation, Release 0.13.dev

1.17.3 Building Extensions

While the Extension Registry contains many Flask extensions, you may not find an
extension that fits your need. If this is the case, you can create your own. Read Flask
Extension Development to develop your own Flask extension.

1.18 Command Line Interface

Installing Flask installs the flask script, a Click command line interface, in your vir-
tualenv. Executed from the terminal, this script gives access to built-in, extension, and
application-defined commands. The --help option will give more information about
any commands and options.

1.18.1 Application Discovery

The flask command is installed by Flask, not your application; it must be told where
to find your application in order to use it. The FLASK_APP environment variable is used
to specify how to load the application.

Unix Bash (Linux, Mac, etc.):

$ export FLASK_APP=hello
$ flask run

Windows CMD:

> set FLASK_APP=hello
> flask run

Windows PowerShell:

> $env:FLASK_APP = "hello"
> flask run

While FLASK_APP supports a variety of options for specifying your application, most
use cases should be simple. Here are the typical values:

(nothing) The file wsgi.py is imported, automatically detecting an app (app). This
provides an easy way to create an app from a factory with extra arguments.

FLASK_APP=hello The name is imported, automatically detecting an app (app) or fac-
tory (create_app).

FLASK_APP has three parts: an optional path that sets the current working directory,
a Python file or dotted import path, and an optional variable name of the instance
or factory. If the name is a factory, it can optionally be followed by arguments in
parentheses. The following values demonstrate these parts:

114 Chapter 1. User’s Guide

http://flask.pocoo.org/extensions/
http://click.pocoo.org/

Flask Documentation, Release 0.13.dev

FLASK_APP=src/hello Sets the current working directory to src then imports hello.

FLASK_APP=hello.web Imports the path hello.web.

FLASK_APP=hello:app2 Uses the app2 Flask instance in hello.

FLASK_APP="hello:create_app('dev')" The create_app factory in hello is called
with the string 'dev' as the argument.

If FLASK_APP is not set, the command will look for a file called wsgi.py or app.py and
try to detect an application instance or factory.

Within the given import, the command looks for an application instance named app
or application, then any application instance. If no instance is found, the command
looks for a factory function named create_app or make_app that returns an instance.

When calling an application factory, if the factory takes an argument named info, then
the ScriptInfo instance is passed as a keyword argument. If parentheses follow the
factory name, their contents are parsed as Python literals and passes as arguments to
the function. This means that strings must still be in quotes.

1.18.2 Run the Development Server

The run command will start the development server. It replaces the Flask.run()
method in most cases.

$ flask run
* Serving Flask app "hello"
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Warning: Do not use this command to run your application in production. Only
use the development server during development. The development server is pro-
vided for convenience, but is not designed to be particularly secure, stable, or effi-
cient. See Deployment Options for how to run in production.

1.18.3 Open a Shell

To explore the data in your application, you can start an interactive Python shell with
the shell command. An application context will be active, and the app instance will
be imported.

$ flask shell
Python 3.6.2 (default, Jul 20 2017, 03:52:27)
[GCC 7.1.1 20170630] on linux
App: example
Instance: /home/user/Projects/hello/instance
>>>

1.18. Command Line Interface 115

Flask Documentation, Release 0.13.dev

Use shell_context_processor() to add other automatic imports.

1.18.4 Environments

New in version 1.0.

The environment in which the Flask app runs is set by the FLASK_ENV environment
variable. If not set it defaults to production. The other recognized environment is
development. Flask and extensions may choose to enable behaviors based on the envi-
ronment.

If the env is set to development, the flask command will enable debug mode and flask
run will enable the interactive debugger and reloader.

$ FLASK_ENV=development flask run
* Serving Flask app "hello"
* Environment: development
* Debug mode: on
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
* Restarting with inotify reloader
* Debugger is active!
* Debugger PIN: 223-456-919

1.18.5 Debug Mode

Debug mode will be enabled when FLASK_ENV is development, as described above. If
you want to control debug mode separately, use FLASK_DEBUG. The value 1 enables it, 0
disables it.

1.18.6 Environment Variables From dotenv

Rather than setting FLASK_APP each time you open a new terminal, you can use Flask’s
dotenv support to set environment variables automatically.

If python-dotenv is installed, running the flask command will set environment vari-
ables defined in the files .env and .flaskenv. This can be used to avoid having to
set FLASK_APP manually every time you open a new terminal, and to set configuration
using environment variables similar to how some deployment services work.

Variables set on the command line are used over those set in .env, which are used
over those set in .flaskenv. .flaskenv should be used for public variables, such as
FLASK_APP, while .env should not be committed to your repository so that it can set
private variables.

Directories are scanned upwards from the directory you call flask from to locate the
files. The current working directory will be set to the location of the file, with the
assumption that that is the top level project directory.

116 Chapter 1. User’s Guide

https://github.com/theskumar/python-dotenv#readme

Flask Documentation, Release 0.13.dev

The files are only loaded by the flask command or calling run(). If you would like to
load these files when running in production, you should call load_dotenv() manually.

1.18.7 Environment Variables From virtualenv

If you do not want to install dotenv support, you can still set environment variables by
adding them to the end of the virtualenv’s activate script. Activating the virtualenv
will set the variables.

Unix Bash, venv/bin/activate:

export FLASK_APP=hello

Windows CMD, venv\Scripts\activate.bat:

set FLASK_APP=hello

It is preferred to use dotenv support over this, since .flaskenv can be committed to
the repository so that it works automatically wherever the project is checked out.

1.18.8 Custom Commands

The flask command is implemented using Click. See that project’s documentation for
full information about writing commands.

This example adds the command create_user that takes the argument name.

import click
from flask import Flask

app = Flask(__name__)

@app.cli.command()
@click.argument('name')
def create_user(name):

...

flask create_user admin

This example adds the same command, but as user create, a command in a group.
This is useful if you want to organize multiple related commands.

import click
from flask import Flask
from flask.cli import AppGroup

app = Flask(__name__)
user_cli = AppGroup('user')

1.18. Command Line Interface 117

http://click.pocoo.org/

Flask Documentation, Release 0.13.dev

@user_cli.command('create')
@click.argument('name')
def create_user(name):

...

app.cli.add_command(user_cli)

flask user create demo

See Testing CLI Commands for an overview of how to test your custom commands.

Application Context

Commands added using the Flask app’s cli command() decorator will be executed
with an application context pushed, so your command and extensions have access to
the app and its configuration. If you create a command using the Click command()
decorator instead of the Flask decorator, you can use with_appcontext() to get the
same behavior.

import click
from flask.cli import with_appcontext

@click.command
@with_appcontext
def do_work():

...

app.cli.add_command(do_work)

If you’re sure a command doesn’t need the context, you can disable it:

@app.cli.command(with_appcontext=False)
def do_work():

...

1.18.9 Plugins

Flask will automatically load commands specified in the flask.commands entry point.
This is useful for extensions that want to add commands when they are installed.
Entry points are specified in setup.py

from setuptools import setup

setup(
name='flask-my-extension',
...,
entry_points={

118 Chapter 1. User’s Guide

http://click.pocoo.org/api/#click.command
https://packaging.python.org/tutorials/distributing-packages/#entry-points

Flask Documentation, Release 0.13.dev

'flask.commands': [
'my-command=flask_my_extension.commands:cli'

],
},

)

Inside flask_my_extension/commands.py you can then export a Click object:

import click

@click.command()
def cli():

...

Once that package is installed in the same virtualenv as your Flask project, you can
run flask my-command to invoke the command.

1.18.10 Custom Scripts

When you are using the app factory pattern, it may be more convenient to define your
own Click script. Instead of using FLASK_APP and letting Flask load your application,
you can create your own Click object and export it as a console script entry point.

Create an instance of FlaskGroup and pass it the factory:

import click
from flask import Flask
from flask.cli import FlaskGroup

def create_app():
app = Flask('wiki')
other setup
return app

@click.group(cls=FlaskGroup, create_app=create_app)
def cli():

"""Management script for the Wiki application."""

Define the entry point in setup.py:

from setuptools import setup

setup(
name='flask-my-extension',
...,
entry_points={

'console_scripts': [
'wiki=wiki:cli'

],

1.18. Command Line Interface 119

https://packaging.python.org/tutorials/distributing-packages/#console-scripts

Flask Documentation, Release 0.13.dev

},
)

Install the application in the virtualenv in editable mode and the custom script is avail-
able. Note that you don’t need to set FLASK_APP.

$ pip install -e .
$ wiki run

Errors in Custom Scripts

When using a custom script, if you introduce an error in your module-level code, the
reloader will fail because it can no longer load the entry point.

The flask command, being separate from your code, does not have this issue and is
recommended in most cases.

1.18.11 PyCharm Integration

Prior to PyCharm 2018.1, the Flask CLI features weren’t yet fully integrated into Py-
Charm. We have to do a few tweaks to get them working smoothly. These instructions
should be similar for any other IDE you might want to use.

In PyCharm, with your project open, click on Run from the menu bar and go to Edit
Configurations. You’ll be greeted by a screen similar to this:

120 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

There’s quite a few options to change, but once we’ve done it for one command, we
can easily copy the entire configuration and make a single tweak to give us access to
other commands, including any custom ones you may implement yourself.

Click the + (Add New Configuration) button and select Python. Give the configuration
a good descriptive name such as “Run Flask Server”. For the flask run command,
check “Single instance only” since you can’t run the server more than once at the same
time.

Select Module name from the dropdown (A) then input flask.

The Parameters field (B) is set to the CLI command to execute (with any arguments). In
this example we use run, which will run the development server.

You can skip this next step if you’re using Environment Variables From dotenv. We need
to add an environment variable (C) to identify our application. Click on the browse
button and add an entry with FLASK_APP on the left and the Python import or file on
the right (hello for example).

Next we need to set the working directory (D) to be the folder where our application
resides.

If you have installed your project as a package in your virtualenv, you may untick the
PYTHONPATH options (E). This will more accurately match how you deploy the app
later.

Click Apply to save the configuration, or OK to save and close the window. Select the

1.18. Command Line Interface 121

Flask Documentation, Release 0.13.dev

configuration in the main PyCharm window and click the play button next to it to run
the server.

Now that we have a configuration which runs flask run from within PyCharm, we
can copy that configuration and alter the Script argument to run a different CLI com-
mand, e.g. flask shell.

1.19 Development Server

Starting with Flask 0.11 there are multiple built-in ways to run a development server.
The best one is the flask command line utility but you can also continue using the
Flask.run() method.

1.19.1 Command Line

The flask command line script (Command Line Interface) is strongly recommended for
development because it provides a superior reload experience due to how it loads the
application. The basic usage is like this:

$ export FLASK_APP=my_application
$ export FLASK_ENV=development
$ flask run

This enables the development environment, including the interactive debugger and
reloader, and then starts the server on http://localhost:5000/.

The individual features of the server can be controlled by passing more arguments to
the run option. For instance the reloader can be disabled:

$ flask run --no-reload

Note: Prior to Flask 1.0 the FLASK_ENV environment variable was not supported and
you needed to enable debug mode by exporting FLASK_DEBUG=1. This can still be used
to control debug mode, but you should prefer setting the development environment
as shown above.

1.19.2 In Code

The alternative way to start the application is through the Flask.run() method. This
will immediately launch a local server exactly the same way the flask script does.

Example:

if __name__ == '__main__':
app.run()

122 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

This works well for the common case but it does not work well for development which
is why from Flask 0.11 onwards the flask method is recommended. The reason for this
is that due to how the reload mechanism works there are some bizarre side-effects (like
executing certain code twice, sometimes crashing without message or dying when a
syntax or import error happens).

It is however still a perfectly valid method for invoking a non automatic reloading
application.

1.20 Working with the Shell

New in version 0.3.

One of the reasons everybody loves Python is the interactive shell. It basically allows
you to execute Python commands in real time and immediately get results back. Flask
itself does not come with an interactive shell, because it does not require any specific
setup upfront, just import your application and start playing around.

There are however some handy helpers to make playing around in the shell a more
pleasant experience. The main issue with interactive console sessions is that you’re
not triggering a request like a browser does which means that g, request and others
are not available. But the code you want to test might depend on them, so what can
you do?

This is where some helper functions come in handy. Keep in mind however that these
functions are not only there for interactive shell usage, but also for unittesting and
other situations that require a faked request context.

Generally it’s recommended that you read the The Request Context chapter of the doc-
umentation first.

1.20.1 Command Line Interface

Starting with Flask 0.11 the recommended way to work with the shell is the flask
shell command which does a lot of this automatically for you. For instance the shell
is automatically initialized with a loaded application context.

For more information see Command Line Interface.

1.20.2 Creating a Request Context

The easiest way to create a proper request context from the shell is by using the
test_request_context method which creates us a RequestContext:

>>> ctx = app.test_request_context()

Normally you would use the with statement to make this request object active, but in
the shell it’s easier to use the push() and pop() methods by hand:

1.20. Working with the Shell 123

Flask Documentation, Release 0.13.dev

>>> ctx.push()

From that point onwards you can work with the request object until you call pop:

>>> ctx.pop()

1.20.3 Firing Before/After Request

By just creating a request context, you still don’t have run the code that is normally
run before a request. This might result in your database being unavailable if you are
connecting to the database in a before-request callback or the current user not being
stored on the g object etc.

This however can easily be done yourself. Just call preprocess_request():

>>> ctx = app.test_request_context()
>>> ctx.push()
>>> app.preprocess_request()

Keep in mind that the preprocess_request() function might return a response object,
in that case just ignore it.

To shutdown a request, you need to trick a bit before the after request functions (trig-
gered by process_response()) operate on a response object:

>>> app.process_response(app.response_class())
<Response 0 bytes [200 OK]>
>>> ctx.pop()

The functions registered as teardown_request() are automatically called when the
context is popped. So this is the perfect place to automatically tear down resources
that were needed by the request context (such as database connections).

1.20.4 Further Improving the Shell Experience

If you like the idea of experimenting in a shell, create yourself a module with stuff you
want to star import into your interactive session. There you could also define some
more helper methods for common things such as initializing the database, dropping
tables etc.

Just put them into a module (like shelltools) and import from there:

>>> from shelltools import *

124 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

1.21 Patterns for Flask

Certain things are common enough that the chances are high you will find them in
most web applications. For example quite a lot of applications are using relational
databases and user authentication. In that case, chances are they will open a database
connection at the beginning of the request and get the information of the currently
logged in user. At the end of the request, the database connection is closed again.

There are more user contributed snippets and patterns in the Flask Snippet Archives.

1.21.1 Larger Applications

For larger applications it’s a good idea to use a package instead of a module. That is
quite simple. Imagine a small application looks like this:

/yourapplication
yourapplication.py
/static

style.css
/templates

layout.html
index.html
login.html
...

The tutorial is structured this way, see the example code.

Simple Packages

To convert that into a larger one, just create a new folder yourapplication inside
the existing one and move everything below it. Then rename yourapplication.py
to __init__.py. (Make sure to delete all .pyc files first, otherwise things would most
likely break)

You should then end up with something like that:

/yourapplication
/yourapplication

__init__.py
/static

style.css
/templates

layout.html
index.html
login.html
...

1.21. Patterns for Flask 125

http://flask.pocoo.org/snippets/
https://github.com/pallets/flask/tree/master/examples/tutorial

Flask Documentation, Release 0.13.dev

But how do you run your application now? The naive python yourapplication/
__init__.py will not work. Let’s just say that Python does not want modules in pack-
ages to be the startup file. But that is not a big problem, just add a new file called
setup.py next to the inner yourapplication folder with the following contents:

from setuptools import setup

setup(
name='yourapplication',
packages=['yourapplication'],
include_package_data=True,
install_requires=[

'flask',
],

)

In order to run the application you need to export an environment variable that tells
Flask where to find the application instance:

export FLASK_APP=yourapplication

If you are outside of the project directory make sure to provide the exact path to your
application directory. Similarly you can turn on the development features like this:

export FLASK_ENV=development

In order to install and run the application you need to issue the following commands:

pip install -e .
flask run

What did we gain from this? Now we can restructure the application a bit into multiple
modules. The only thing you have to remember is the following quick checklist:

1. the Flask application object creation has to be in the __init__.py file. That way
each module can import it safely and the __name__ variable will resolve to the
correct package.

2. all the view functions (the ones with a route() decorator on top) have to be
imported in the __init__.py file. Not the object itself, but the module it is in.
Import the view module after the application object is created.

Here’s an example __init__.py:

from flask import Flask
app = Flask(__name__)

import yourapplication.views

And this is what views.py would look like:

126 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

from yourapplication import app

@app.route('/')
def index():

return 'Hello World!'

You should then end up with something like that:

/yourapplication
setup.py
/yourapplication

__init__.py
views.py
/static

style.css
/templates

layout.html
index.html
login.html
...

Circular Imports

Every Python programmer hates them, and yet we just added some: circular imports
(That’s when two modules depend on each other. In this case views.py depends on
__init__.py). Be advised that this is a bad idea in general but here it is actually fine.
The reason for this is that we are not actually using the views in __init__.py and just
ensuring the module is imported and we are doing that at the bottom of the file.

There are still some problems with that approach but if you want to use decorators
there is no way around that. Check out the Becoming Big section for some inspiration
how to deal with that.

Working with Blueprints

If you have larger applications it’s recommended to divide them into smaller groups
where each group is implemented with the help of a blueprint. For a gentle intro-
duction into this topic refer to the Modular Applications with Blueprints chapter of the
documentation.

1.21.2 Application Factories

If you are already using packages and blueprints for your application (Modular Appli-
cations with Blueprints) there are a couple of really nice ways to further improve the
experience. A common pattern is creating the application object when the blueprint

1.21. Patterns for Flask 127

Flask Documentation, Release 0.13.dev

is imported. But if you move the creation of this object into a function, you can then
create multiple instances of this app later.

So why would you want to do this?

1. Testing. You can have instances of the application with different settings to test
every case.

2. Multiple instances. Imagine you want to run different versions of the same ap-
plication. Of course you could have multiple instances with different configs set
up in your webserver, but if you use factories, you can have multiple instances
of the same application running in the same application process which can be
handy.

So how would you then actually implement that?

Basic Factories

The idea is to set up the application in a function. Like this:

def create_app(config_filename):
app = Flask(__name__)
app.config.from_pyfile(config_filename)

from yourapplication.model import db
db.init_app(app)

from yourapplication.views.admin import admin
from yourapplication.views.frontend import frontend
app.register_blueprint(admin)
app.register_blueprint(frontend)

return app

The downside is that you cannot use the application object in the blueprints at import
time. You can however use it from within a request. How do you get access to the
application with the config? Use current_app:

from flask import current_app, Blueprint, render_template
admin = Blueprint('admin', __name__, url_prefix='/admin')

@admin.route('/')
def index():

return render_template(current_app.config['INDEX_TEMPLATE'])

Here we look up the name of a template in the config.

Factories & Extensions

It’s preferable to create your extensions and app factories so that the extension object
does not initially get bound to the application.

128 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

Using Flask-SQLAlchemy, as an example, you should not do something along those
lines:

def create_app(config_filename):
app = Flask(__name__)
app.config.from_pyfile(config_filename)

db = SQLAlchemy(app)

But, rather, in model.py (or equivalent):

db = SQLAlchemy()

and in your application.py (or equivalent):

def create_app(config_filename):
app = Flask(__name__)
app.config.from_pyfile(config_filename)

from yourapplication.model import db
db.init_app(app)

Using this design pattern, no application-specific state is stored on the extension ob-
ject, so one extension object can be used for multiple apps. For more information about
the design of extensions refer to Flask Extension Development.

Using Applications

To run such an application, you can use the flask command:

export FLASK_APP=myapp
flask run

Flask will automatically detect the factory (create_app or make_app) in myapp. You can
also pass arguments to the factory like this:

export FLASK_APP="myapp:create_app('dev')"
flask run

Then the create_app factory in myapp is called with the string 'dev' as the argument.
See Command Line Interface for more detail.

Factory Improvements

The factory function above is not very clever, but you can improve it. The following
changes are straightforward to implement:

1. Make it possible to pass in configuration values for unit tests so that you don’t
have to create config files on the filesystem.

1.21. Patterns for Flask 129

http://flask-sqlalchemy.pocoo.org/

Flask Documentation, Release 0.13.dev

2. Call a function from a blueprint when the application is setting up so that you
have a place to modify attributes of the application (like hooking in before/after
request handlers etc.)

3. Add in WSGI middlewares when the application is being created if necessary.

1.21.3 Application Dispatching

Application dispatching is the process of combining multiple Flask applications on the
WSGI level. You can combine not only Flask applications but any WSGI application.
This would allow you to run a Django and a Flask application in the same interpreter
side by side if you want. The usefulness of this depends on how the applications work
internally.

The fundamental difference from the module approach is that in this case you are run-
ning the same or different Flask applications that are entirely isolated from each other.
They run different configurations and are dispatched on the WSGI level.

Working with this Document

Each of the techniques and examples below results in an application object that can be
run with any WSGI server. For production, see Deployment Options. For development,
Werkzeug provides a builtin server for development available at werkzeug.serving.
run_simple():

from werkzeug.serving import run_simple
run_simple('localhost', 5000, application, use_reloader=True)

Note that run_simple is not intended for use in production. Use a full-blown WSGI
server.

In order to use the interactive debugger, debugging must be enabled both on the ap-
plication and the simple server. Here is the “hello world” example with debugging
and run_simple:

from flask import Flask
from werkzeug.serving import run_simple

app = Flask(__name__)
app.debug = True

@app.route('/')
def hello_world():

return 'Hello World!'

if __name__ == '__main__':
run_simple('localhost', 5000, app,

use_reloader=True, use_debugger=True, use_evalex=True)

130 Chapter 1. User’s Guide

http://werkzeug.pocoo.org/docs/serving/#werkzeug.serving.run_simple
http://werkzeug.pocoo.org/docs/serving/#werkzeug.serving.run_simple
http://werkzeug.pocoo.org/docs/serving/#werkzeug.serving.run_simple
http://werkzeug.pocoo.org/docs/serving/#werkzeug.serving.run_simple

Flask Documentation, Release 0.13.dev

Combining Applications

If you have entirely separated applications and you want them to work next to each
other in the same Python interpreter process you can take advantage of the werkzeug.
wsgi.DispatcherMiddleware. The idea here is that each Flask application is a valid
WSGI application and they are combined by the dispatcher middleware into a larger
one that is dispatched based on prefix.

For example you could have your main application run on / and your backend inter-
face on /backend:

from werkzeug.wsgi import DispatcherMiddleware
from frontend_app import application as frontend
from backend_app import application as backend

application = DispatcherMiddleware(frontend, {
'/backend': backend

})

Dispatch by Subdomain

Sometimes you might want to use multiple instances of the same application with
different configurations. Assuming the application is created inside a function and
you can call that function to instantiate it, that is really easy to implement. In order to
develop your application to support creating new instances in functions have a look
at the Application Factories pattern.

A very common example would be creating applications per subdomain. For instance
you configure your webserver to dispatch all requests for all subdomains to your
application and you then use the subdomain information to create user-specific in-
stances. Once you have your server set up to listen on all subdomains you can use a
very simple WSGI application to do the dynamic application creation.

The perfect level for abstraction in that regard is the WSGI layer. You write your own
WSGI application that looks at the request that comes and delegates it to your Flask
application. If that application does not exist yet, it is dynamically created and remem-
bered:

from threading import Lock

class SubdomainDispatcher(object):

def __init__(self, domain, create_app):
self.domain = domain
self.create_app = create_app
self.lock = Lock()
self.instances = {}

def get_application(self, host):
host = host.split(':')[0]

1.21. Patterns for Flask 131

http://werkzeug.pocoo.org/docs/middlewares/#werkzeug.wsgi.DispatcherMiddleware
http://werkzeug.pocoo.org/docs/middlewares/#werkzeug.wsgi.DispatcherMiddleware

Flask Documentation, Release 0.13.dev

assert host.endswith(self.domain), 'Configuration error'
subdomain = host[:-len(self.domain)].rstrip('.')
with self.lock:

app = self.instances.get(subdomain)
if app is None:

app = self.create_app(subdomain)
self.instances[subdomain] = app

return app

def __call__(self, environ, start_response):
app = self.get_application(environ['HTTP_HOST'])
return app(environ, start_response)

This dispatcher can then be used like this:

from myapplication import create_app, get_user_for_subdomain
from werkzeug.exceptions import NotFound

def make_app(subdomain):
user = get_user_for_subdomain(subdomain)
if user is None:

if there is no user for that subdomain we still have
to return a WSGI application that handles that request.
We can then just return the NotFound() exception as
application which will render a default 404 page.
You might also redirect the user to the main page then
return NotFound()

otherwise create the application for the specific user
return create_app(user)

application = SubdomainDispatcher('example.com', make_app)

Dispatch by Path

Dispatching by a path on the URL is very similar. Instead of looking at the Host header
to figure out the subdomain one simply looks at the request path up to the first slash:

from threading import Lock
from werkzeug.wsgi import pop_path_info, peek_path_info

class PathDispatcher(object):

def __init__(self, default_app, create_app):
self.default_app = default_app
self.create_app = create_app
self.lock = Lock()
self.instances = {}

132 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

def get_application(self, prefix):
with self.lock:

app = self.instances.get(prefix)
if app is None:

app = self.create_app(prefix)
if app is not None:

self.instances[prefix] = app
return app

def __call__(self, environ, start_response):
app = self.get_application(peek_path_info(environ))
if app is not None:

pop_path_info(environ)
else:

app = self.default_app
return app(environ, start_response)

The big difference between this and the subdomain one is that this one falls back to
another application if the creator function returns None:

from myapplication import create_app, default_app, get_user_for_prefix

def make_app(prefix):
user = get_user_for_prefix(prefix)
if user is not None:

return create_app(user)

application = PathDispatcher(default_app, make_app)

1.21.4 Implementing API Exceptions

It’s very common to implement RESTful APIs on top of Flask. One of the first things
that developers run into is the realization that the builtin exceptions are not expressive
enough for APIs and that the content type of text/html they are emitting is not very
useful for API consumers.

The better solution than using abort to signal errors for invalid API usage is to im-
plement your own exception type and install an error handler for it that produces the
errors in the format the user is expecting.

Simple Exception Class

The basic idea is to introduce a new exception that can take a proper human readable
message, a status code for the error and some optional payload to give more context
for the error.

This is a simple example:

1.21. Patterns for Flask 133

Flask Documentation, Release 0.13.dev

from flask import jsonify

class InvalidUsage(Exception):
status_code = 400

def __init__(self, message, status_code=None, payload=None):
Exception.__init__(self)
self.message = message
if status_code is not None:

self.status_code = status_code
self.payload = payload

def to_dict(self):
rv = dict(self.payload or ())
rv['message'] = self.message
return rv

A view can now raise that exception with an error message. Additionally some extra
payload can be provided as a dictionary through the payload parameter.

Registering an Error Handler

At that point views can raise that error, but it would immediately result in an internal
server error. The reason for this is that there is no handler registered for this error
class. That however is easy to add:

@app.errorhandler(InvalidUsage)
def handle_invalid_usage(error):

response = jsonify(error.to_dict())
response.status_code = error.status_code
return response

Usage in Views

Here is how a view can use that functionality:

@app.route('/foo')
def get_foo():

raise InvalidUsage('This view is gone', status_code=410)

1.21.5 Using URL Processors

New in version 0.7.

Flask 0.7 introduces the concept of URL processors. The idea is that you might have
a bunch of resources with common parts in the URL that you don’t always explicitly

134 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

want to provide. For instance you might have a bunch of URLs that have the language
code in it but you don’t want to have to handle it in every single function yourself.

URL processors are especially helpful when combined with blueprints. We will handle
both application specific URL processors here as well as blueprint specifics.

Internationalized Application URLs

Consider an application like this:

from flask import Flask, g

app = Flask(__name__)

@app.route('/<lang_code>/')
def index(lang_code):

g.lang_code = lang_code
...

@app.route('/<lang_code>/about')
def about(lang_code):

g.lang_code = lang_code
...

This is an awful lot of repetition as you have to handle the language code setting on the
g object yourself in every single function. Sure, a decorator could be used to simplify
this, but if you want to generate URLs from one function to another you would have
to still provide the language code explicitly which can be annoying.

For the latter, this is where url_defaults() functions come in. They can automatically
inject values into a call for url_for() automatically. The code below checks if the
language code is not yet in the dictionary of URL values and if the endpoint wants a
value named 'lang_code':

@app.url_defaults
def add_language_code(endpoint, values):

if 'lang_code' in values or not g.lang_code:
return

if app.url_map.is_endpoint_expecting(endpoint, 'lang_code'):
values['lang_code'] = g.lang_code

The method is_endpoint_expecting() of the URL map can be used to figure out if it
would make sense to provide a language code for the given endpoint.

The reverse of that function are url_value_preprocessor()s. They are executed right
after the request was matched and can execute code based on the URL values. The
idea is that they pull information out of the values dictionary and put it somewhere
else:

1.21. Patterns for Flask 135

http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Map.is_endpoint_expecting

Flask Documentation, Release 0.13.dev

@app.url_value_preprocessor
def pull_lang_code(endpoint, values):

g.lang_code = values.pop('lang_code', None)

That way you no longer have to do the lang_code assignment to g in every function.
You can further improve that by writing your own decorator that prefixes URLs with
the language code, but the more beautiful solution is using a blueprint. Once the
'lang_code' is popped from the values dictionary and it will no longer be forwarded
to the view function reducing the code to this:

from flask import Flask, g

app = Flask(__name__)

@app.url_defaults
def add_language_code(endpoint, values):

if 'lang_code' in values or not g.lang_code:
return

if app.url_map.is_endpoint_expecting(endpoint, 'lang_code'):
values['lang_code'] = g.lang_code

@app.url_value_preprocessor
def pull_lang_code(endpoint, values):

g.lang_code = values.pop('lang_code', None)

@app.route('/<lang_code>/')
def index():

...

@app.route('/<lang_code>/about')
def about():

...

Internationalized Blueprint URLs

Because blueprints can automatically prefix all URLs with a common string it’s easy
to automatically do that for every function. Furthermore blueprints can have per-
blueprint URL processors which removes a whole lot of logic from the url_defaults()
function because it no longer has to check if the URL is really interested in a
'lang_code' parameter:

from flask import Blueprint, g

bp = Blueprint('frontend', __name__, url_prefix='/<lang_code>')

@bp.url_defaults
def add_language_code(endpoint, values):

values.setdefault('lang_code', g.lang_code)

136 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

@bp.url_value_preprocessor
def pull_lang_code(endpoint, values):

g.lang_code = values.pop('lang_code')

@bp.route('/')
def index():

...

@bp.route('/about')
def about():

...

1.21.6 Deploying with Setuptools

Setuptools, is an extension library that is commonly used to distribute Python libraries
and extensions. It extends distutils, a basic module installation system shipped with
Python to also support various more complex constructs that make larger applications
easier to distribute:

• support for dependencies: a library or application can declare a list of other
libraries it depends on which will be installed automatically for you.

• package registry: setuptools registers your package with your Python installa-
tion. This makes it possible to query information provided by one package from
another package. The best known feature of this system is the entry point sup-
port which allows one package to declare an “entry point” that another package
can hook into to extend the other package.

• installation manager: pip can install other libraries for you.

If you have Python 2 (>=2.7.9) or Python 3 (>=3.4) installed from python.org, you will
already have pip and setuptools on your system. Otherwise, you will need to install
them yourself.

Flask itself, and all the libraries you can find on PyPI are distributed with either setup-
tools or distutils.

In this case we assume your application is called yourapplication.py and you are not
using a module, but a package. If you have not yet converted your application into a
package, head over to the Larger Applications pattern to see how this can be done.

A working deployment with setuptools is the first step into more complex and more
automated deployment scenarios. If you want to fully automate the process, also read
the Deploying with Fabric chapter.

Basic Setup Script

Because you have Flask installed, you have setuptools available on your system. Flask
already depends upon setuptools.

1.21. Patterns for Flask 137

https://pypi.python.org/pypi/setuptools

Flask Documentation, Release 0.13.dev

Standard disclaimer applies: you better use a virtualenv.

Your setup code always goes into a file named setup.py next to your application. The
name of the file is only convention, but because everybody will look for a file with that
name, you better not change it.

A basic setup.py file for a Flask application looks like this:

from setuptools import setup

setup(
name='Your Application',
version='1.0',
long_description=__doc__,
packages=['yourapplication'],
include_package_data=True,
zip_safe=False,
install_requires=['Flask']

)

Please keep in mind that you have to list subpackages explicitly. If you want setuptools
to lookup the packages for you automatically, you can use the find_packages function:

from setuptools import setup, find_packages

setup(
...
packages=find_packages()

)

Most parameters to the setup function should be self explanatory,
include_package_data and zip_safe might not be. include_package_data tells
setuptools to look for a MANIFEST.in file and install all the entries that match as
package data. We will use this to distribute the static files and templates along with
the Python module (see Distributing Resources). The zip_safe flag can be used to force
or prevent zip Archive creation. In general you probably don’t want your packages
to be installed as zip files because some tools do not support them and they make
debugging a lot harder.

Tagging Builds

It is useful to distinguish between release and development builds. Add a setup.cfg
file to configure these options.

[egg_info]
tag_build = .dev
tag_date = 1

[aliases]
release = egg_info -Db ''

138 Chapter 1. User’s Guide

http://werkzeug.pocoo.org/docs/installation/#virtualenv

Flask Documentation, Release 0.13.dev

Running python setup.py sdist will create a development package with “.dev” and
the current date appended: flaskr-1.0.dev20160314.tar.gz. Running python setup.
py release sdist will create a release package with only the version: flaskr-1.0.tar.
gz.

Distributing Resources

If you try to install the package you just created, you will notice that folders like static
or templates are not installed for you. The reason for this is that setuptools does not
know which files to add for you. What you should do, is to create a MANIFEST.in file
next to your setup.py file. This file lists all the files that should be added to your
tarball:

recursive-include yourapplication/templates *
recursive-include yourapplication/static *

Don’t forget that even if you enlist them in your MANIFEST.in file, they won’t be in-
stalled for you unless you set the include_package_data parameter of the setup function
to True!

Declaring Dependencies

Dependencies are declared in the install_requires parameter as a list. Each item in
that list is the name of a package that should be pulled from PyPI on installation. By
default it will always use the most recent version, but you can also provide minimum
and maximum version requirements. Here some examples:

install_requires=[
'Flask>=0.2',
'SQLAlchemy>=0.6',
'BrokenPackage>=0.7,<=1.0'

]

As mentioned earlier, dependencies are pulled from PyPI. What if you want to depend
on a package that cannot be found on PyPI and won’t be because it is an internal
package you don’t want to share with anyone? Just do it as if there was a PyPI entry
and provide a list of alternative locations where setuptools should look for tarballs:

dependency_links=['http://example.com/yourfiles']

Make sure that page has a directory listing and the links on the page are pointing to
the actual tarballs with their correct filenames as this is how setuptools will find the
files. If you have an internal company server that contains the packages, provide the
URL to that server.

1.21. Patterns for Flask 139

Flask Documentation, Release 0.13.dev

Installing / Developing

To install your application (ideally into a virtualenv) just run the setup.py script
with the install parameter. It will install your application into the virtualenv’s site-
packages folder and also download and install all dependencies:

$ python setup.py install

If you are developing on the package and also want the requirements to be installed,
you can use the develop command instead:

$ python setup.py develop

This has the advantage of just installing a link to the site-packages folder instead of
copying the data over. You can then continue to work on the code without having to
run install again after each change.

1.21.7 Deploying with Fabric

Fabric is a tool for Python similar to Makefiles but with the ability to execute com-
mands on a remote server. In combination with a properly set up Python package
(Larger Applications) and a good concept for configurations (Configuration Handling) it
is very easy to deploy Flask applications to external servers.

Before we get started, here a quick checklist of things we have to ensure upfront:

• Fabric 1.0 has to be installed locally. This tutorial assumes the latest version of
Fabric.

• The application already has to be a package and requires a working setup.py file
(Deploying with Setuptools).

• In the following example we are using mod_wsgi for the remote servers. You
can of course use your own favourite server there, but for this example we chose
Apache + mod_wsgi because it’s very easy to setup and has a simple way to reload
applications without root access.

Creating the first Fabfile

A fabfile is what controls what Fabric executes. It is named fabfile.py and executed
by the fab command. All the functions defined in that file will show up as fab subcom-
mands. They are executed on one or more hosts. These hosts can be defined either in
the fabfile or on the command line. In this case we will add them to the fabfile.

This is a basic first example that has the ability to upload the current source code to
the server and install it into a pre-existing virtual environment:

from fabric.api import *

the user to use for the remote commands

140 Chapter 1. User’s Guide

http://www.fabfile.org/

Flask Documentation, Release 0.13.dev

env.user = 'appuser'
the servers where the commands are executed
env.hosts = ['server1.example.com', 'server2.example.com']

def pack():
build the package
local('python setup.py sdist --formats=gztar', capture=False)

def deploy():
figure out the package name and version
dist = local('python setup.py --fullname', capture=True).strip()
filename = '%s.tar.gz' % dist

upload the package to the temporary folder on the server
put('dist/%s' % filename, '/tmp/%s' % filename)

install the package in the application's virtualenv with pip
run('/var/www/yourapplication/env/bin/pip install /tmp/%s' % filename)

remove the uploaded package
run('rm -r /tmp/%s' % filename)

touch the .wsgi file to trigger a reload in mod_wsgi
run('touch /var/www/yourapplication.wsgi')

Running Fabfiles

Now how do you execute that fabfile? You use the fab command. To deploy the current
version of the code on the remote server you would use this command:

$ fab pack deploy

However this requires that our server already has the /var/www/yourapplication
folder created and /var/www/yourapplication/env to be a virtual environment. Fur-
thermore are we not creating the configuration or .wsgi file on the server. So how do
we bootstrap a new server into our infrastructure?

This now depends on the number of servers we want to set up. If we just have one
application server (which the majority of applications will have), creating a command
in the fabfile for this is overkill. But obviously you can do that. In that case you
would probably call it setup or bootstrap and then pass the servername explicitly on the
command line:

$ fab -H newserver.example.com bootstrap

To setup a new server you would roughly do these steps:

1. Create the directory structure in /var/www:

1.21. Patterns for Flask 141

Flask Documentation, Release 0.13.dev

$ mkdir /var/www/yourapplication
$ cd /var/www/yourapplication
$ virtualenv --distribute env

2. Upload a new application.wsgi file to the server and the configuration file for
the application (eg: application.cfg)

3. Create a new Apache config for yourapplication and activate it. Make sure to ac-
tivate watching for changes of the .wsgi file so that we can automatically reload
the application by touching it. (See mod_wsgi (Apache) for more information)

So now the question is, where do the application.wsgi and application.cfg files
come from?

The WSGI File

The WSGI file has to import the application and also to set an environment variable so
that the application knows where to look for the config. This is a short example that
does exactly that:

import os
os.environ['YOURAPPLICATION_CONFIG'] = '/var/www/yourapplication/application.cfg'
from yourapplication import app

The application itself then has to initialize itself like this to look for the config at that
environment variable:

app = Flask(__name__)
app.config.from_object('yourapplication.default_config')
app.config.from_envvar('YOURAPPLICATION_CONFIG')

This approach is explained in detail in the Configuration Handling section of the docu-
mentation.

The Configuration File

Now as mentioned above, the application will find the correct configuration file by
looking up the YOURAPPLICATION_CONFIG environment variable. So we have to put the
configuration in a place where the application will able to find it. Configuration files
have the unfriendly quality of being different on all computers, so you do not version
them usually.

A popular approach is to store configuration files for different servers in a sepa-
rate version control repository and check them out on all servers. Then symlink the
file that is active for the server into the location where it’s expected (eg: /var/www/
yourapplication).

Either way, in our case here we only expect one or two servers and we can upload
them ahead of time by hand.

142 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

First Deployment

Now we can do our first deployment. We have set up the servers so that they have
their virtual environments and activated apache configs. Now we can pack up the
application and deploy it:

$ fab pack deploy

Fabric will now connect to all servers and run the commands as written down in the
fabfile. First it will execute pack so that we have our tarball ready and then it will
execute deploy and upload the source code to all servers and install it there. Thanks
to the setup.py file we will automatically pull in the required libraries into our virtual
environment.

Next Steps

From that point onwards there is so much that can be done to make deployment actu-
ally fun:

• Create a bootstrap command that initializes new servers. It could initialize a new
virtual environment, setup apache appropriately etc.

• Put configuration files into a separate version control repository and symlink the
active configs into place.

• You could also put your application code into a repository and check out the
latest version on the server and then install. That way you can also easily go
back to older versions.

• hook in testing functionality so that you can deploy to an external server and run
the test suite.

Working with Fabric is fun and you will notice that it’s quite magical to type fab
deploy and see your application being deployed automatically to one or more remote
servers.

1.21.8 Using SQLite 3 with Flask

In Flask you can easily implement the opening of database connections on demand
and closing them when the context dies (usually at the end of the request).

Here is a simple example of how you can use SQLite 3 with Flask:

import sqlite3
from flask import g

DATABASE = '/path/to/database.db'

def get_db():
db = getattr(g, '_database', None)

1.21. Patterns for Flask 143

Flask Documentation, Release 0.13.dev

if db is None:
db = g._database = sqlite3.connect(DATABASE)

return db

@app.teardown_appcontext
def close_connection(exception):

db = getattr(g, '_database', None)
if db is not None:

db.close()

Now, to use the database, the application must either have an active application con-
text (which is always true if there is a request in flight) or create an application context
itself. At that point the get_db function can be used to get the current database connec-
tion. Whenever the context is destroyed the database connection will be terminated.

Note: if you use Flask 0.9 or older you need to use flask._app_ctx_stack.top instead
of g as the flask.g object was bound to the request and not application context.

Example:

@app.route('/')
def index():

cur = get_db().cursor()
...

Note: Please keep in mind that the teardown request and appcontext functions are al-
ways executed, even if a before-request handler failed or was never executed. Because
of this we have to make sure here that the database is there before we close it.

Connect on Demand

The upside of this approach (connecting on first use) is that this will only open the
connection if truly necessary. If you want to use this code outside a request context
you can use it in a Python shell by opening the application context by hand:

with app.app_context():
now you can use get_db()

Easy Querying

Now in each request handling function you can access get_db() to get the current open
database connection. To simplify working with SQLite, a row factory function is use-
ful. It is executed for every result returned from the database to convert the result. For
instance, in order to get dictionaries instead of tuples, this could be inserted into the
get_db function we created above:

144 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

def make_dicts(cursor, row):
return dict((cursor.description[idx][0], value)

for idx, value in enumerate(row))

db.row_factory = make_dicts

This will make the sqlite3 module return dicts for this database connection, which are
much nicer to deal with. Even more simply, we could place this in get_db instead:

db.row_factory = sqlite3.Row

This would use Row objects rather than dicts to return the results of queries. These
are namedtuple s, so we can access them either by index or by key. For example, as-
suming we have a sqlite3.Row called r for the rows id, FirstName, LastName, and
MiddleInitial:

>>> # You can get values based on the row's name
>>> r['FirstName']
John
>>> # Or, you can get them based on index
>>> r[1]
John
Row objects are also iterable:
>>> for value in r:
... print(value)
1
John
Doe
M

Additionally, it is a good idea to provide a query function that combines getting the
cursor, executing and fetching the results:

def query_db(query, args=(), one=False):
cur = get_db().execute(query, args)
rv = cur.fetchall()
cur.close()
return (rv[0] if rv else None) if one else rv

This handy little function, in combination with a row factory, makes working with the
database much more pleasant than it is by just using the raw cursor and connection
objects.

Here is how you can use it:

for user in query_db('select * from users'):
print user['username'], 'has the id', user['user_id']

Or if you just want a single result:

1.21. Patterns for Flask 145

Flask Documentation, Release 0.13.dev

user = query_db('select * from users where username = ?',
[the_username], one=True)

if user is None:
print 'No such user'

else:
print the_username, 'has the id', user['user_id']

To pass variable parts to the SQL statement, use a question mark in the statement and
pass in the arguments as a list. Never directly add them to the SQL statement with
string formatting because this makes it possible to attack the application using SQL
Injections.

Initial Schemas

Relational databases need schemas, so applications often ship a schema.sql file that
creates the database. It’s a good idea to provide a function that creates the database
based on that schema. This function can do that for you:

def init_db():
with app.app_context():

db = get_db()
with app.open_resource('schema.sql', mode='r') as f:

db.cursor().executescript(f.read())
db.commit()

You can then create such a database from the Python shell:

>>> from yourapplication import init_db
>>> init_db()

1.21.9 SQLAlchemy in Flask

Many people prefer SQLAlchemy for database access. In this case it’s encouraged to
use a package instead of a module for your flask application and drop the models into
a separate module (Larger Applications). While that is not necessary, it makes a lot of
sense.

There are four very common ways to use SQLAlchemy. I will outline each of them
here:

Flask-SQLAlchemy Extension

Because SQLAlchemy is a common database abstraction layer and object relational
mapper that requires a little bit of configuration effort, there is a Flask extension that
handles that for you. This is recommended if you want to get started quickly.

You can download Flask-SQLAlchemy from PyPI.

146 Chapter 1. User’s Guide

https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/SQL_injection
https://www.sqlalchemy.org/
http://flask-sqlalchemy.pocoo.org/
https://pypi.python.org/pypi/Flask-SQLAlchemy

Flask Documentation, Release 0.13.dev

Declarative

The declarative extension in SQLAlchemy is the most recent method of using
SQLAlchemy. It allows you to define tables and models in one go, similar to how
Django works. In addition to the following text I recommend the official documenta-
tion on the declarative extension.

Here’s the example database.py module for your application:

from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session, sessionmaker
from sqlalchemy.ext.declarative import declarative_base

engine = create_engine('sqlite:////tmp/test.db', convert_unicode=True)
db_session = scoped_session(sessionmaker(autocommit=False,

autoflush=False,
bind=engine))

Base = declarative_base()
Base.query = db_session.query_property()

def init_db():
import all modules here that might define models so that
they will be registered properly on the metadata. Otherwise
you will have to import them first before calling init_db()
import yourapplication.models
Base.metadata.create_all(bind=engine)

To define your models, just subclass the Base class that was created by the code above.
If you are wondering why we don’t have to care about threads here (like we did in the
SQLite3 example above with the g object): that’s because SQLAlchemy does that for
us already with the scoped_session.

To use SQLAlchemy in a declarative way with your application, you just have to put
the following code into your application module. Flask will automatically remove
database sessions at the end of the request or when the application shuts down:

from yourapplication.database import db_session

@app.teardown_appcontext
def shutdown_session(exception=None):

db_session.remove()

Here is an example model (put this into models.py, e.g.):

from sqlalchemy import Column, Integer, String
from yourapplication.database import Base

class User(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(50), unique=True)

1.21. Patterns for Flask 147

https://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/

Flask Documentation, Release 0.13.dev

email = Column(String(120), unique=True)

def __init__(self, name=None, email=None):
self.name = name
self.email = email

def __repr__(self):
return '<User %r>' % (self.name)

To create the database you can use the init_db function:

>>> from yourapplication.database import init_db
>>> init_db()

You can insert entries into the database like this:

>>> from yourapplication.database import db_session
>>> from yourapplication.models import User
>>> u = User('admin', 'admin@localhost')
>>> db_session.add(u)
>>> db_session.commit()

Querying is simple as well:

>>> User.query.all()
[<User u'admin'>]
>>> User.query.filter(User.name == 'admin').first()
<User u'admin'>

Manual Object Relational Mapping

Manual object relational mapping has a few upsides and a few downsides versus the
declarative approach from above. The main difference is that you define tables and
classes separately and map them together. It’s more flexible but a little more to type.
In general it works like the declarative approach, so make sure to also split up your
application into multiple modules in a package.

Here is an example database.py module for your application:

from sqlalchemy import create_engine, MetaData
from sqlalchemy.orm import scoped_session, sessionmaker

engine = create_engine('sqlite:////tmp/test.db', convert_unicode=True)
metadata = MetaData()
db_session = scoped_session(sessionmaker(autocommit=False,

autoflush=False,
bind=engine))

def init_db():
metadata.create_all(bind=engine)

148 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

As in the declarative approach, you need to close the session after each request or
application context shutdown. Put this into your application module:

from yourapplication.database import db_session

@app.teardown_appcontext
def shutdown_session(exception=None):

db_session.remove()

Here is an example table and model (put this into models.py):

from sqlalchemy import Table, Column, Integer, String
from sqlalchemy.orm import mapper
from yourapplication.database import metadata, db_session

class User(object):
query = db_session.query_property()

def __init__(self, name=None, email=None):
self.name = name
self.email = email

def __repr__(self):
return '<User %r>' % (self.name)

users = Table('users', metadata,
Column('id', Integer, primary_key=True),
Column('name', String(50), unique=True),
Column('email', String(120), unique=True)

)
mapper(User, users)

Querying and inserting works exactly the same as in the example above.

SQL Abstraction Layer

If you just want to use the database system (and SQL) abstraction layer you basically
only need the engine:

from sqlalchemy import create_engine, MetaData, Table

engine = create_engine('sqlite:////tmp/test.db', convert_unicode=True)
metadata = MetaData(bind=engine)

Then you can either declare the tables in your code like in the examples above, or
automatically load them:

from sqlalchemy import Table

users = Table('users', metadata, autoload=True)

1.21. Patterns for Flask 149

Flask Documentation, Release 0.13.dev

To insert data you can use the insert method. We have to get a connection first so that
we can use a transaction:

>>> con = engine.connect()
>>> con.execute(users.insert(), name='admin', email='admin@localhost')

SQLAlchemy will automatically commit for us.

To query your database, you use the engine directly or use a connection:

>>> users.select(users.c.id == 1).execute().first()
(1, u'admin', u'admin@localhost')

These results are also dict-like tuples:

>>> r = users.select(users.c.id == 1).execute().first()
>>> r['name']
u'admin'

You can also pass strings of SQL statements to the execute() method:

>>> engine.execute('select * from users where id = :1', [1]).first()
(1, u'admin', u'admin@localhost')

For more information about SQLAlchemy, head over to the website.

1.21.10 Uploading Files

Ah yes, the good old problem of file uploads. The basic idea of file uploads is actually
quite simple. It basically works like this:

1. A <form> tag is marked with enctype=multipart/form-data and an <input
type=file> is placed in that form.

2. The application accesses the file from the files dictionary on the request object.

3. use the save() method of the file to save the file permanently somewhere on the
filesystem.

A Gentle Introduction

Let’s start with a very basic application that uploads a file to a specific upload folder
and displays a file to the user. Let’s look at the bootstrapping code for our application:

import os
from flask import Flask, flash, request, redirect, url_for
from werkzeug.utils import secure_filename

UPLOAD_FOLDER = '/path/to/the/uploads'
ALLOWED_EXTENSIONS = set(['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif'])

150 Chapter 1. User’s Guide

https://www.sqlalchemy.org/
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.FileStorage.save

Flask Documentation, Release 0.13.dev

app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

So first we need a couple of imports. Most should be straightforward, the werkzeug.
secure_filename() is explained a little bit later. The UPLOAD_FOLDER is where we will
store the uploaded files and the ALLOWED_EXTENSIONS is the set of allowed file exten-
sions.

Why do we limit the extensions that are allowed? You probably don’t want your users
to be able to upload everything there if the server is directly sending out the data to the
client. That way you can make sure that users are not able to upload HTML files that
would cause XSS problems (see Cross-Site Scripting (XSS)). Also make sure to disallow
.php files if the server executes them, but who has PHP installed on their server, right?
:)

Next the functions that check if an extension is valid and that uploads the file and
redirects the user to the URL for the uploaded file:

def allowed_file(filename):
return '.' in filename and \

filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

@app.route('/', methods=['GET', 'POST'])
def upload_file():

if request.method == 'POST':
check if the post request has the file part
if 'file' not in request.files:

flash('No file part')
return redirect(request.url)

file = request.files['file']
if user does not select file, browser also
submit an empty part without filename
if file.filename == '':

flash('No selected file')
return redirect(request.url)

if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
return redirect(url_for('upload_file',

filename=filename))
return '''
<!doctype html>
<title>Upload new File</title>
<h1>Upload new File</h1>
<form method=post enctype=multipart/form-data>

<input type=file name=file>
<input type=submit value=Upload>

</form>
'''

1.21. Patterns for Flask 151

Flask Documentation, Release 0.13.dev

So what does that secure_filename() function actually do? Now the problem is that
there is that principle called “never trust user input”. This is also true for the filename
of an uploaded file. All submitted form data can be forged, and filenames can be dan-
gerous. For the moment just remember: always use that function to secure a filename
before storing it directly on the filesystem.

Information for the Pros

So you’re interested in what that secure_filename() function does and what the prob-
lem is if you’re not using it? So just imagine someone would send the following infor-
mation as filename to your application:

filename = "../../../../home/username/.bashrc"

Assuming the number of ../ is correct and you would join this with the UPLOAD_FOLDER
the user might have the ability to modify a file on the server’s filesystem he or she
should not modify. This does require some knowledge about how the application
looks like, but trust me, hackers are patient :)

Now let’s look how that function works:

>>> secure_filename('../../../../home/username/.bashrc')
'home_username_.bashrc'

Now one last thing is missing: the serving of the uploaded files. In the upload_file()
we redirect the user to url_for('uploaded_file', filename=filename), that is, /
uploads/filename. So we write the uploaded_file() function to return the file of that
name. As of Flask 0.5 we can use a function that does that for us:

from flask import send_from_directory

@app.route('/uploads/<filename>')
def uploaded_file(filename):

return send_from_directory(app.config['UPLOAD_FOLDER'],
filename)

Alternatively you can register uploaded_file as build_only rule and use the
SharedDataMiddleware. This also works with older versions of Flask:

from werkzeug import SharedDataMiddleware
app.add_url_rule('/uploads/<filename>', 'uploaded_file',

build_only=True)
app.wsgi_app = SharedDataMiddleware(app.wsgi_app, {

'/uploads': app.config['UPLOAD_FOLDER']
})

If you now run the application everything should work as expected.

152 Chapter 1. User’s Guide

http://werkzeug.pocoo.org/docs/utils/#werkzeug.utils.secure_filename
http://werkzeug.pocoo.org/docs/utils/#werkzeug.utils.secure_filename
http://werkzeug.pocoo.org/docs/middlewares/#werkzeug.wsgi.SharedDataMiddleware

Flask Documentation, Release 0.13.dev

Improving Uploads

New in version 0.6.

So how exactly does Flask handle uploads? Well it will store them in the webserver’s
memory if the files are reasonable small otherwise in a temporary location (as returned
by tempfile.gettempdir()). But how do you specify the maximum file size after
which an upload is aborted? By default Flask will happily accept file uploads to an un-
limited amount of memory, but you can limit that by setting the MAX_CONTENT_LENGTH
config key:

from flask import Flask, Request

app = Flask(__name__)
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024

The code above will limit the maximum allowed payload to 16 megabytes. If a larger
file is transmitted, Flask will raise a RequestEntityTooLarge exception.

Connection Reset Issue

When using the local development server, you may get a connection reset error instead
of a 413 response. You will get the correct status response when running the app with
a production WSGI server.

This feature was added in Flask 0.6 but can be achieved in older versions as well by
subclassing the request object. For more information on that consult the Werkzeug
documentation on file handling.

Upload Progress Bars

A while ago many developers had the idea to read the incoming file in small chunks
and store the upload progress in the database to be able to poll the progress with
JavaScript from the client. Long story short: the client asks the server every 5 seconds
how much it has transmitted already. Do you realize the irony? The client is asking
for something it should already know.

An Easier Solution

Now there are better solutions that work faster and are more reliable. There are
JavaScript libraries like jQuery that have form plugins to ease the construction of
progress bar.

Because the common pattern for file uploads exists almost unchanged in all applica-
tions dealing with uploads, there is also a Flask extension called Flask-Uploads that
implements a full fledged upload mechanism with white and blacklisting of exten-
sions and more.

1.21. Patterns for Flask 153

https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir
http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.RequestEntityTooLarge
https://jquery.com/
https://pythonhosted.org/Flask-Uploads/

Flask Documentation, Release 0.13.dev

1.21.11 Caching

When your application runs slow, throw some caches in. Well, at least it’s the easiest
way to speed up things. What does a cache do? Say you have a function that takes
some time to complete but the results would still be good enough if they were 5 min-
utes old. So then the idea is that you actually put the result of that calculation into a
cache for some time.

Flask itself does not provide caching for you, but Werkzeug, one of the libraries it is
based on, has some very basic cache support. It supports multiple cache backends,
normally you want to use a memcached server.

Setting up a Cache

You create a cache object once and keep it around, similar to how Flask objects are
created. If you are using the development server you can create a SimpleCache object,
that one is a simple cache that keeps the item stored in the memory of the Python
interpreter:

from werkzeug.contrib.cache import SimpleCache
cache = SimpleCache()

If you want to use memcached, make sure to have one of the memcache modules
supported (you get them from PyPI) and a memcached server running somewhere.
This is how you connect to such an memcached server then:

from werkzeug.contrib.cache import MemcachedCache
cache = MemcachedCache(['127.0.0.1:11211'])

If you are using App Engine, you can connect to the App Engine memcache server
easily:

from werkzeug.contrib.cache import GAEMemcachedCache
cache = GAEMemcachedCache()

Using a Cache

Now how can one use such a cache? There are two very important operations: get()
and set(). This is how to use them:

To get an item from the cache call get() with a string as key name. If something is in
the cache, it is returned. Otherwise that function will return None:

rv = cache.get('my-item')

To add items to the cache, use the set() method instead. The first argument is the
key and the second the value that should be set. Also a timeout can be provided after
which the cache will automatically remove item.

154 Chapter 1. User’s Guide

http://werkzeug.pocoo.org/docs/contrib/cache/#werkzeug.contrib.cache.SimpleCache
https://pypi.python.org/pypi
http://werkzeug.pocoo.org/docs/contrib/cache/#werkzeug.contrib.cache.BaseCache.get
http://werkzeug.pocoo.org/docs/contrib/cache/#werkzeug.contrib.cache.BaseCache.set
http://werkzeug.pocoo.org/docs/contrib/cache/#werkzeug.contrib.cache.BaseCache.get
http://werkzeug.pocoo.org/docs/contrib/cache/#werkzeug.contrib.cache.BaseCache.set

Flask Documentation, Release 0.13.dev

Here a full example how this looks like normally:

def get_my_item():
rv = cache.get('my-item')
if rv is None:

rv = calculate_value()
cache.set('my-item', rv, timeout=5 * 60)

return rv

1.21.12 View Decorators

Python has a really interesting feature called function decorators. This allows some
really neat things for web applications. Because each view in Flask is a function, dec-
orators can be used to inject additional functionality to one or more functions. The
route() decorator is the one you probably used already. But there are use cases for
implementing your own decorator. For instance, imagine you have a view that should
only be used by people that are logged in. If a user goes to the site and is not logged
in, they should be redirected to the login page. This is a good example of a use case
where a decorator is an excellent solution.

Login Required Decorator

So let’s implement such a decorator. A decorator is a function that wraps and replaces
another function. Since the original function is replaced, you need to remember to
copy the original function’s information to the new function. Use functools.wraps()
to handle this for you.

This example assumes that the login page is called 'login' and that the current user
is stored in g.user and is None if there is no-one logged in.

from functools import wraps
from flask import g, request, redirect, url_for

def login_required(f):
@wraps(f)
def decorated_function(*args, **kwargs):

if g.user is None:
return redirect(url_for('login', next=request.url))

return f(*args, **kwargs)
return decorated_function

To use the decorator, apply it as innermost decorator to a view function. When apply-
ing further decorators, always remember that the route() decorator is the outermost.

@app.route('/secret_page')
@login_required
def secret_page():

pass

1.21. Patterns for Flask 155

https://docs.python.org/3/library/functools.html#functools.wraps

Flask Documentation, Release 0.13.dev

Note: The next value will exist in request.args after a GET request for the login page.
You’ll have to pass it along when sending the POST request from the login form. You
can do this with a hidden input tag, then retrieve it from request.form when logging
the user in.

<input type="hidden" value="{{ request.args.get('next', '') }}"/>

Caching Decorator

Imagine you have a view function that does an expensive calculation and because
of that you would like to cache the generated results for a certain amount of time.
A decorator would be nice for that. We’re assuming you have set up a cache like
mentioned in Caching.

Here is an example cache function. It generates the cache key from a specific prefix
(actually a format string) and the current path of the request. Notice that we are using
a function that first creates the decorator that then decorates the function. Sounds aw-
ful? Unfortunately it is a little bit more complex, but the code should still be straight-
forward to read.

The decorated function will then work as follows

1. get the unique cache key for the current request base on the current path.

2. get the value for that key from the cache. If the cache returned something we
will return that value.

3. otherwise the original function is called and the return value is stored in the
cache for the timeout provided (by default 5 minutes).

Here the code:

from functools import wraps
from flask import request

def cached(timeout=5 * 60, key='view/%s'):
def decorator(f):

@wraps(f)
def decorated_function(*args, **kwargs):

cache_key = key % request.path
rv = cache.get(cache_key)
if rv is not None:

return rv
rv = f(*args, **kwargs)
cache.set(cache_key, rv, timeout=timeout)
return rv

return decorated_function
return decorator

156 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

Notice that this assumes an instantiated cache object is available, see Caching for more
information.

Templating Decorator

A common pattern invented by the TurboGears guys a while back is a templating
decorator. The idea of that decorator is that you return a dictionary with the values
passed to the template from the view function and the template is automatically ren-
dered. With that, the following three examples do exactly the same:

@app.route('/')
def index():

return render_template('index.html', value=42)

@app.route('/')
@templated('index.html')
def index():

return dict(value=42)

@app.route('/')
@templated()
def index():

return dict(value=42)

As you can see, if no template name is provided it will use the endpoint of the URL
map with dots converted to slashes + '.html'. Otherwise the provided template name
is used. When the decorated function returns, the dictionary returned is passed to the
template rendering function. If None is returned, an empty dictionary is assumed, if
something else than a dictionary is returned we return it from the function unchanged.
That way you can still use the redirect function or return simple strings.

Here is the code for that decorator:

from functools import wraps
from flask import request, render_template

def templated(template=None):
def decorator(f):

@wraps(f)
def decorated_function(*args, **kwargs):

template_name = template
if template_name is None:

template_name = request.endpoint \
.replace('.', '/') + '.html'

ctx = f(*args, **kwargs)
if ctx is None:

ctx = {}
elif not isinstance(ctx, dict):

return ctx
return render_template(template_name, **ctx)

1.21. Patterns for Flask 157

Flask Documentation, Release 0.13.dev

return decorated_function
return decorator

Endpoint Decorator

When you want to use the werkzeug routing system for more flexibility you need to
map the endpoint as defined in the Rule to a view function. This is possible with this
decorator. For example:

from flask import Flask
from werkzeug.routing import Rule

app = Flask(__name__)
app.url_map.add(Rule('/', endpoint='index'))

@app.endpoint('index')
def my_index():

return "Hello world"

1.21.13 Form Validation with WTForms

When you have to work with form data submitted by a browser view, code quickly
becomes very hard to read. There are libraries out there designed to make this process
easier to manage. One of them is WTForms which we will handle here. If you find
yourself in the situation of having many forms, you might want to give it a try.

When you are working with WTForms you have to define your forms as classes first.
I recommend breaking up the application into multiple modules (Larger Applications)
for that and adding a separate module for the forms.

Getting the most out of WTForms with an Extension

The Flask-WTF extension expands on this pattern and adds a few little helpers that
make working with forms and Flask more fun. You can get it from PyPI.

The Forms

This is an example form for a typical registration page:

from wtforms import Form, BooleanField, StringField, PasswordField, validators

class RegistrationForm(Form):
username = StringField('Username', [validators.Length(min=4, max=25)])
email = StringField('Email Address', [validators.Length(min=6, max=35)])
password = PasswordField('New Password', [

158 Chapter 1. User’s Guide

http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Rule
https://wtforms.readthedocs.io/
https://flask-wtf.readthedocs.io/en/stable/
https://pypi.python.org/pypi/Flask-WTF

Flask Documentation, Release 0.13.dev

validators.DataRequired(),
validators.EqualTo('confirm', message='Passwords must match')

])
confirm = PasswordField('Repeat Password')
accept_tos = BooleanField('I accept the TOS', [validators.DataRequired()])

In the View

In the view function, the usage of this form looks like this:

@app.route('/register', methods=['GET', 'POST'])
def register():

form = RegistrationForm(request.form)
if request.method == 'POST' and form.validate():

user = User(form.username.data, form.email.data,
form.password.data)

db_session.add(user)
flash('Thanks for registering')
return redirect(url_for('login'))

return render_template('register.html', form=form)

Notice we’re implying that the view is using SQLAlchemy here (SQLAlchemy in Flask),
but that’s not a requirement, of course. Adapt the code as necessary.

Things to remember:

1. create the form from the request form value if the data is submitted via the HTTP
POST method and args if the data is submitted as GET.

2. to validate the data, call the validate() method, which will return True if the
data validates, False otherwise.

3. to access individual values from the form, access form.<NAME>.data.

Forms in Templates

Now to the template side. When you pass the form to the templates, you can easily
render them there. Look at the following example template to see how easy this is.
WTForms does half the form generation for us already. To make it even nicer, we can
write a macro that renders a field with label and a list of errors if there are any.

Here’s an example _formhelpers.html template with such a macro:

{% macro render_field(field) %}
<dt>{{ field.label }}
<dd>{{ field(**kwargs)|safe }}
{% if field.errors %}
<ul class=errors>
{% for error in field.errors %}
{{ error }}

1.21. Patterns for Flask 159

Flask Documentation, Release 0.13.dev

{% endfor %}

{% endif %}
</dd>

{% endmacro %}

This macro accepts a couple of keyword arguments that are forwarded to WTForm’s
field function, which renders the field for us. The keyword arguments will be inserted
as HTML attributes. So, for example, you can call render_field(form.username,
class='username') to add a class to the input element. Note that WTForms returns
standard Python unicode strings, so we have to tell Jinja2 that this data is already
HTML-escaped with the |safe filter.

Here is the register.html template for the function we used above, which takes ad-
vantage of the _formhelpers.html template:

{% from "_formhelpers.html" import render_field %}
<form method=post>

<dl>
{{ render_field(form.username) }}
{{ render_field(form.email) }}
{{ render_field(form.password) }}
{{ render_field(form.confirm) }}
{{ render_field(form.accept_tos) }}

</dl>
<p><input type=submit value=Register>

</form>

For more information about WTForms, head over to the WTForms website.

1.21.14 Template Inheritance

The most powerful part of Jinja is template inheritance. Template inheritance allows
you to build a base “skeleton” template that contains all the common elements of your
site and defines blocks that child templates can override.

Sounds complicated but is very basic. It’s easiest to understand it by starting with an
example.

Base Template

This template, which we’ll call layout.html, defines a simple HTML skeleton docu-
ment that you might use for a simple two-column page. It’s the job of “child” tem-
plates to fill the empty blocks with content:

<!doctype html>
<html>

<head>

160 Chapter 1. User’s Guide

https://wtforms.readthedocs.io/

Flask Documentation, Release 0.13.dev

{% block head %}
<link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">
<title>{% block title %}{% endblock %} - My Webpage</title>
{% endblock %}

</head>
<body>

<div id="content">{% block content %}{% endblock %}</div>
<div id="footer">

{% block footer %}
© Copyright 2010 by you.
{% endblock %}

</div>
</body>

</html>

In this example, the {% block %} tags define four blocks that child templates can fill
in. All the block tag does is tell the template engine that a child template may override
those portions of the template.

Child Template

A child template might look like this:

{% extends "layout.html" %}
{% block title %}Index{% endblock %}
{% block head %}
{{ super() }}
<style type="text/css">

.important { color: #336699; }
</style>

{% endblock %}
{% block content %}
<h1>Index</h1>
<p class="important">
Welcome on my awesome homepage.

{% endblock %}

The {% extends %} tag is the key here. It tells the template engine that this template
“extends” another template. When the template system evaluates this template, first
it locates the parent. The extends tag must be the first tag in the template. To render
the contents of a block defined in the parent template, use {{ super() }}.

1.21.15 Message Flashing

Good applications and user interfaces are all about feedback. If the user does not get
enough feedback they will probably end up hating the application. Flask provides a
really simple way to give feedback to a user with the flashing system. The flashing
system basically makes it possible to record a message at the end of a request and

1.21. Patterns for Flask 161

Flask Documentation, Release 0.13.dev

access it next request and only next request. This is usually combined with a layout
template that does this. Note that browsers and sometimes web servers enforce a
limit on cookie sizes. This means that flashing messages that are too large for session
cookies causes message flashing to fail silently.

Simple Flashing

So here is a full example:

from flask import Flask, flash, redirect, render_template, \
request, url_for

app = Flask(__name__)
app.secret_key = b'_5#y2L"F4Q8z\n\xec]/'

@app.route('/')
def index():

return render_template('index.html')

@app.route('/login', methods=['GET', 'POST'])
def login():

error = None
if request.method == 'POST':

if request.form['username'] != 'admin' or \
request.form['password'] != 'secret':

error = 'Invalid credentials'
else:

flash('You were successfully logged in')
return redirect(url_for('index'))

return render_template('login.html', error=error)

And here is the layout.html template which does the magic:

<!doctype html>
<title>My Application</title>
{% with messages = get_flashed_messages() %}
{% if messages %}
<ul class=flashes>
{% for message in messages %}

{{ message }}
{% endfor %}

{% endif %}
{% endwith %}
{% block body %}{% endblock %}

Here is the index.html template which inherits from layout.html:

{% extends "layout.html" %}
{% block body %}

162 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

<h1>Overview</h1>
<p>Do you want to log in?

{% endblock %}

And here is the login.html template which also inherits from layout.html:

{% extends "layout.html" %}
{% block body %}
<h1>Login</h1>
{% if error %}
<p class=error>Error: {{ error }}

{% endif %}
<form method=post>

<dl>
<dt>Username:
<dd><input type=text name=username value="{{

request.form.username }}">
<dt>Password:
<dd><input type=password name=password>

</dl>
<p><input type=submit value=Login>

</form>
{% endblock %}

Flashing With Categories

New in version 0.3.

It is also possible to provide categories when flashing a message. The default cate-
gory if nothing is provided is 'message'. Alternative categories can be used to give
the user better feedback. For example error messages could be displayed with a red
background.

To flash a message with a different category, just use the second argument to the
flash() function:

flash(u'Invalid password provided', 'error')

Inside the template you then have to tell the get_flashed_messages() function to also
return the categories. The loop looks slightly different in that situation then:

{% with messages = get_flashed_messages(with_categories=true) %}
{% if messages %}
<ul class=flashes>
{% for category, message in messages %}

<li class="{{ category }}">{{ message }}
{% endfor %}

{% endif %}
{% endwith %}

1.21. Patterns for Flask 163

Flask Documentation, Release 0.13.dev

This is just one example of how to render these flashed messages. One might also use
the category to add a prefix such as Error: to the message.

Filtering Flash Messages

New in version 0.9.

Optionally you can pass a list of categories which filters the results of
get_flashed_messages(). This is useful if you wish to render each category in a sepa-
rate block.

{% with errors = get_flashed_messages(category_filter=["error"]) %}
{% if errors %}
<div class="alert-message block-message error">

×

{%- for msg in errors %}
{{ msg }}
{% endfor -%}

</div>
{% endif %}
{% endwith %}

1.21.16 AJAX with jQuery

jQuery is a small JavaScript library commonly used to simplify working with the DOM
and JavaScript in general. It is the perfect tool to make web applications more dynamic
by exchanging JSON between server and client.

JSON itself is a very lightweight transport format, very similar to how Python primi-
tives (numbers, strings, dicts and lists) look like which is widely supported and very
easy to parse. It became popular a few years ago and quickly replaced XML as trans-
port format in web applications.

Loading jQuery

In order to use jQuery, you have to download it first and place it in the static folder of
your application and then ensure it’s loaded. Ideally you have a layout template that
is used for all pages where you just have to add a script statement to the bottom of
your <body> to load jQuery:

<script type=text/javascript src="{{
url_for('static', filename='jquery.js') }}"></script>

Another method is using Google’s AJAX Libraries API to load jQuery:

164 Chapter 1. User’s Guide

http://jquery.com/
https://developers.google.com/speed/libraries/devguide

Flask Documentation, Release 0.13.dev

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
<script>window.jQuery || document.write('<script src="{{
url_for('static', filename='jquery.js') }}">\x3C/script>')</script>

In this case you have to put jQuery into your static folder as a fallback, but it will
first try to load it directly from Google. This has the advantage that your website will
probably load faster for users if they went to at least one other website before using
the same jQuery version from Google because it will already be in the browser cache.

Where is My Site?

Do you know where your application is? If you are developing the answer is quite
simple: it’s on localhost port something and directly on the root of that server. But
what if you later decide to move your application to a different location? For example
to http://example.com/myapp? On the server side this never was a problem because
we were using the handy url_for() function that could answer that question for us,
but if we are using jQuery we should not hardcode the path to the application but
make that dynamic, so how can we do that?

A simple method would be to add a script tag to our page that sets a global variable
to the prefix to the root of the application. Something like this:

<script type=text/javascript>
$SCRIPT_ROOT = {{ request.script_root|tojson|safe }};

</script>

The |safe is necessary in Flask before 0.10 so that Jinja does not escape the JSON
encoded string with HTML rules. Usually this would be necessary, but we are inside
a script block here where different rules apply.

Information for Pros

In HTML the script tag is declared CDATA which means that entities will not be parsed.
Everything until </script> is handled as script. This also means that there must
never be any </ between the script tags. |tojson is kind enough to do the right thing
here and escape slashes for you ({{ "</script>"|tojson|safe }} is rendered as "<\/
script>").

In Flask 0.10 it goes a step further and escapes all HTML tags with unicode escapes.
This makes it possible for Flask to automatically mark the result as HTML safe.

JSON View Functions

Now let’s create a server side function that accepts two URL arguments of numbers
which should be added together and then sent back to the application in a JSON object.
This is a really ridiculous example and is something you usually would do on the

1.21. Patterns for Flask 165

Flask Documentation, Release 0.13.dev

client side alone, but a simple example that shows how you would use jQuery and
Flask nonetheless:

from flask import Flask, jsonify, render_template, request
app = Flask(__name__)

@app.route('/_add_numbers')
def add_numbers():

a = request.args.get('a', 0, type=int)
b = request.args.get('b', 0, type=int)
return jsonify(result=a + b)

@app.route('/')
def index():

return render_template('index.html')

As you can see I also added an index method here that renders a template. This tem-
plate will load jQuery as above and have a little form we can add two numbers and a
link to trigger the function on the server side.

Note that we are using the get() method here which will never fail. If the key is
missing a default value (here 0) is returned. Furthermore it can convert values to a
specific type (like in our case int). This is especially handy for code that is triggered by
a script (APIs, JavaScript etc.) because you don’t need special error reporting in that
case.

The HTML

Your index.html template either has to extend a layout.html template with jQuery
loaded and the $SCRIPT_ROOT variable set, or do that on the top. Here’s the HTML
code needed for our little application (index.html). Notice that we also drop the script
directly into the HTML here. It is usually a better idea to have that in a separate script
file:

<script type=text/javascript>
$(function() {
$('a#calculate').bind('click', function() {
$.getJSON($SCRIPT_ROOT + '/_add_numbers', {
a: $('input[name="a"]').val(),
b: $('input[name="b"]').val()

}, function(data) {
$("#result").text(data.result);

});
return false;

});
});

</script>
<h1>jQuery Example</h1>
<p><input type=text size=5 name=a> +

<input type=text size=5 name=b> =

166 Chapter 1. User’s Guide

http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.MultiDict.get

Flask Documentation, Release 0.13.dev

?
<p>calculate server side

I won’t go into detail here about how jQuery works, just a very quick explanation of
the little bit of code above:

1. $(function() { ... }) specifies code that should run once the browser is done
loading the basic parts of the page.

2. $('selector') selects an element and lets you operate on it.

3. element.bind('event', func) specifies a function that should run when the user
clicked on the element. If that function returns false, the default behavior will not
kick in (in this case, navigate to the # URL).

4. $.getJSON(url, data, func) sends a GET request to url and will send the con-
tents of the data object as query parameters. Once the data arrived, it will call
the given function with the return value as argument. Note that we can use the
$SCRIPT_ROOT variable here that we set earlier.

Check out the example source for a full application demonstrating the code on this
page, as well as the same thing using XMLHttpRequest and fetch.

1.21.17 Custom Error Pages

Flask comes with a handy abort() function that aborts a request with an HTTP error
code early. It will also provide a plain black and white error page for you with a basic
description, but nothing fancy.

Depending on the error code it is less or more likely for the user to actually see such
an error.

Common Error Codes

The following error codes are some that are often displayed to the user, even if the
application behaves correctly:

404 Not Found The good old “chap, you made a mistake typing that URL” message.
So common that even novices to the internet know that 404 means: damn, the
thing I was looking for is not there. It’s a very good idea to make sure there is
actually something useful on a 404 page, at least a link back to the index.

403 Forbidden If you have some kind of access control on your website, you will have
to send a 403 code for disallowed resources. So make sure the user is not lost
when they try to access a forbidden resource.

410 Gone Did you know that there the “404 Not Found” has a brother named “410
Gone”? Few people actually implement that, but the idea is that resources that
previously existed and got deleted answer with 410 instead of 404. If you are
not deleting documents permanently from the database but just mark them as

1.21. Patterns for Flask 167

https://github.com/pallets/flask/tree/master/examples/javascript

Flask Documentation, Release 0.13.dev

deleted, do the user a favour and use the 410 code instead and display a message
that what they were looking for was deleted for all eternity.

500 Internal Server Error Usually happens on programming errors or if the server is
overloaded. A terribly good idea is to have a nice page there, because your
application will fail sooner or later (see also: Application Errors).

Error Handlers

An error handler is a function that returns a response when a type of error is raised,
similar to how a view is a function that returns a response when a request URL is
matched. It is passed the instance of the error being handled, which is most likely a
HTTPException. An error handler for “500 Internal Server Error” will be passed un-
caught exceptions in addition to explicit 500 errors.

An error handler is registered with the errorhandler() decorator or the
register_error_handler() method. A handler can be registered for a status code,
like 404, or for an exception class.

The status code of the response will not be set to the handler’s code. Make sure to
provide the appropriate HTTP status code when returning a response from a handler.

A handler for “500 Internal Server Error” will not be used when running in debug
mode. Instead, the interactive debugger will be shown.

Here is an example implementation for a “404 Page Not Found” exception:

from flask import render_template

@app.errorhandler(404)
def page_not_found(e):

note that we set the 404 status explicitly
return render_template('404.html'), 404

When using the application factory pattern:

from flask import Flask, render_template

def page_not_found(e):
return render_template('404.html'), 404

def create_app(config_filename):
app = Flask(__name__)
app.register_error_handler(404, page_not_found)
return app

An example template might be this:

{% extends "layout.html" %}
{% block title %}Page Not Found{% endblock %}
{% block body %}
<h1>Page Not Found</h1>

168 Chapter 1. User’s Guide

http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.HTTPException

Flask Documentation, Release 0.13.dev

<p>What you were looking for is just not there.
<p>go somewhere nice

{% endblock %}

1.21.18 Lazily Loading Views

Flask is usually used with the decorators. Decorators are simple and you have the
URL right next to the function that is called for that specific URL. However there is
a downside to this approach: it means all your code that uses decorators has to be
imported upfront or Flask will never actually find your function.

This can be a problem if your application has to import quick. It might have to do
that on systems like Google’s App Engine or other systems. So if you suddenly notice
that your application outgrows this approach you can fall back to a centralized URL
mapping.

The system that enables having a central URL map is the add_url_rule() function.
Instead of using decorators, you have a file that sets up the application with all URLs.

Converting to Centralized URL Map

Imagine the current application looks somewhat like this:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def index():

pass

@app.route('/user/<username>')
def user(username):

pass

Then, with the centralized approach you would have one file with the views (views.
py) but without any decorator:

def index():
pass

def user(username):
pass

And then a file that sets up an application which maps the functions to URLs:

from flask import Flask
from yourapplication import views
app = Flask(__name__)

1.21. Patterns for Flask 169

Flask Documentation, Release 0.13.dev

app.add_url_rule('/', view_func=views.index)
app.add_url_rule('/user/<username>', view_func=views.user)

Loading Late

So far we only split up the views and the routing, but the module is still loaded up-
front. The trick is to actually load the view function as needed. This can be accom-
plished with a helper class that behaves just like a function but internally imports the
real function on first use:

from werkzeug import import_string, cached_property

class LazyView(object):

def __init__(self, import_name):
self.__module__, self.__name__ = import_name.rsplit('.', 1)
self.import_name = import_name

@cached_property
def view(self):

return import_string(self.import_name)

def __call__(self, *args, **kwargs):
return self.view(*args, **kwargs)

What’s important here is is that __module__ and __name__ are properly set. This is
used by Flask internally to figure out how to name the URL rules in case you don’t
provide a name for the rule yourself.

Then you can define your central place to combine the views like this:

from flask import Flask
from yourapplication.helpers import LazyView
app = Flask(__name__)
app.add_url_rule('/',

view_func=LazyView('yourapplication.views.index'))
app.add_url_rule('/user/<username>',

view_func=LazyView('yourapplication.views.user'))

You can further optimize this in terms of amount of keystrokes needed to write this by
having a function that calls into add_url_rule() by prefixing a string with the project
name and a dot, and by wrapping view_func in a LazyView as needed.

def url(import_name, url_rules=[], **options):
view = LazyView('yourapplication.' + import_name)
for url_rule in url_rules:

app.add_url_rule(url_rule, view_func=view, **options)

add a single route to the index view

170 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

url('views.index', ['/'])

add two routes to a single function endpoint
url_rules = ['/user/','/user/<username>']
url('views.user', url_rules)

One thing to keep in mind is that before and after request handlers have to be in a file
that is imported upfront to work properly on the first request. The same goes for any
kind of remaining decorator.

1.21.19 MongoKit in Flask

Using a document database rather than a full DBMS gets more common these days.
This pattern shows how to use MongoKit, a document mapper library, to integrate
with MongoDB.

This pattern requires a running MongoDB server and the MongoKit library installed.

There are two very common ways to use MongoKit. I will outline each of them here:

Declarative

The default behavior of MongoKit is the declarative one that is based on common
ideas from Django or the SQLAlchemy declarative extension.

Here an example app.py module for your application:

from flask import Flask
from mongokit import Connection, Document

configuration
MONGODB_HOST = 'localhost'
MONGODB_PORT = 27017

create the little application object
app = Flask(__name__)
app.config.from_object(__name__)

connect to the database
connection = Connection(app.config['MONGODB_HOST'],

app.config['MONGODB_PORT'])

To define your models, just subclass the Document class that is imported from Mon-
goKit. If you’ve seen the SQLAlchemy pattern you may wonder why we do not have
a session and even do not define a init_db function here. On the one hand, MongoKit
does not have something like a session. This sometimes makes it more to type but
also makes it blazingly fast. On the other hand, MongoDB is schemaless. This means

1.21. Patterns for Flask 171

Flask Documentation, Release 0.13.dev

you can modify the data structure from one insert query to the next without any prob-
lem. MongoKit is just schemaless too, but implements some validation to ensure data
integrity.

Here is an example document (put this also into app.py, e.g.):

from mongokit import ValidationError

def max_length(length):
def validate(value):

if len(value) <= length:
return True

must have %s in error format string to have mongokit place key in there
raise ValidationError('%s must be at most {} characters long'.

↪→format(length))
return validate

class User(Document):
structure = {

'name': unicode,
'email': unicode,

}
validators = {

'name': max_length(50),
'email': max_length(120)

}
use_dot_notation = True
def __repr__(self):

return '<User %r>' % (self.name)

register the User document with our current connection
connection.register([User])

This example shows you how to define your schema (named structure), a valida-
tor for the maximum character length and uses a special MongoKit feature called
use_dot_notation. Per default MongoKit behaves like a python dictionary but with
use_dot_notation set to True you can use your documents like you use models in nearly
any other ORM by using dots to separate between attributes.

You can insert entries into the database like this:

>>> from yourapplication.database import connection
>>> from yourapplication.models import User
>>> collection = connection['test'].users
>>> user = collection.User()
>>> user['name'] = u'admin'
>>> user['email'] = u'admin@localhost'
>>> user.save()

Note that MongoKit is kinda strict with used column types, you must not use a com-
mon str type for either name or email but unicode.

172 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

Querying is simple as well:

>>> list(collection.User.find())
[<User u'admin'>]
>>> collection.User.find_one({'name': u'admin'})
<User u'admin'>

PyMongo Compatibility Layer

If you just want to use PyMongo, you can do that with MongoKit as well. You may
use this process if you need the best performance to get. Note that this example does
not show how to couple it with Flask, see the above MongoKit code for examples:

from MongoKit import Connection

connection = Connection()

To insert data you can use the insert method. We have to get a collection first, this is
somewhat the same as a table in the SQL world.

>>> collection = connection['test'].users
>>> user = {'name': u'admin', 'email': u'admin@localhost'}
>>> collection.insert(user)

MongoKit will automatically commit for us.

To query your database, you use the collection directly:

>>> list(collection.find())
[{u'_id': ObjectId('4c271729e13823182f000000'), u'name': u'admin', u'email': u
↪→'admin@localhost'}]
>>> collection.find_one({'name': u'admin'})
{u'_id': ObjectId('4c271729e13823182f000000'), u'name': u'admin', u'email': u
↪→'admin@localhost'}

These results are also dict-like objects:

>>> r = collection.find_one({'name': u'admin'})
>>> r['email']
u'admin@localhost'

For more information about MongoKit, head over to the website.

1.21.20 Adding a favicon

A “favicon” is an icon used by browsers for tabs and bookmarks. This helps to distin-
guish your website and to give it a unique brand.

A common question is how to add a favicon to a Flask application. First, of course,
you need an icon. It should be 16 × 16 pixels and in the ICO file format. This is not a

1.21. Patterns for Flask 173

https://github.com/namlook/mongokit

Flask Documentation, Release 0.13.dev

requirement but a de-facto standard supported by all relevant browsers. Put the icon
in your static directory as favicon.ico.

Now, to get browsers to find your icon, the correct way is to add a link tag in your
HTML. So, for example:

<link rel="shortcut icon" href="{{ url_for('static', filename='favicon.ico') }}">

That’s all you need for most browsers, however some really old ones do not support
this standard. The old de-facto standard is to serve this file, with this name, at the
website root. If your application is not mounted at the root path of the domain you
either need to configure the web server to serve the icon at the root or if you can’t do
that you’re out of luck. If however your application is the root you can simply route a
redirect:

app.add_url_rule('/favicon.ico',
redirect_to=url_for('static', filename='favicon.ico'))

If you want to save the extra redirect request you can also write a view using
send_from_directory():

import os
from flask import send_from_directory

@app.route('/favicon.ico')
def favicon():

return send_from_directory(os.path.join(app.root_path, 'static'),
'favicon.ico', mimetype='image/vnd.microsoft.icon')

We can leave out the explicit mimetype and it will be guessed, but we may as well
specify it to avoid the extra guessing, as it will always be the same.

The above will serve the icon via your application and if possible it’s better to config-
ure your dedicated web server to serve it; refer to the web server’s documentation.

See also

• The Favicon article on Wikipedia

1.21.21 Streaming Contents

Sometimes you want to send an enormous amount of data to the client, much more
than you want to keep in memory. When you are generating the data on the fly though,
how do you send that back to the client without the roundtrip to the filesystem?

The answer is by using generators and direct responses.

174 Chapter 1. User’s Guide

https://en.wikipedia.org/wiki/Favicon

Flask Documentation, Release 0.13.dev

Basic Usage

This is a basic view function that generates a lot of CSV data on the fly. The trick is to
have an inner function that uses a generator to generate data and to then invoke that
function and pass it to a response object:

from flask import Response

@app.route('/large.csv')
def generate_large_csv():

def generate():
for row in iter_all_rows():

yield ','.join(row) + '\n'
return Response(generate(), mimetype='text/csv')

Each yield expression is directly sent to the browser. Note though that some WSGI
middlewares might break streaming, so be careful there in debug environments with
profilers and other things you might have enabled.

Streaming from Templates

The Jinja2 template engine also supports rendering templates piece by piece. This
functionality is not directly exposed by Flask because it is quite uncommon, but you
can easily do it yourself:

from flask import Response

def stream_template(template_name, **context):
app.update_template_context(context)
t = app.jinja_env.get_template(template_name)
rv = t.stream(context)
rv.enable_buffering(5)
return rv

@app.route('/my-large-page.html')
def render_large_template():

rows = iter_all_rows()
return Response(stream_template('the_template.html', rows=rows))

The trick here is to get the template object from the Jinja2 environment on the appli-
cation and to call stream() instead of render() which returns a stream object instead
of a string. Since we’re bypassing the Flask template render functions and using the
template object itself we have to make sure to update the render context ourselves by
calling update_template_context(). The template is then evaluated as the stream is
iterated over. Since each time you do a yield the server will flush the content to the
client you might want to buffer up a few items in the template which you can do with
rv.enable_buffering(size). 5 is a sane default.

1.21. Patterns for Flask 175

http://jinja.pocoo.org/docs/api/#jinja2.Template.stream
http://jinja.pocoo.org/docs/api/#jinja2.Template.render

Flask Documentation, Release 0.13.dev

Streaming with Context

New in version 0.9.

Note that when you stream data, the request context is already gone the moment the
function executes. Flask 0.9 provides you with a helper that can keep the request
context around during the execution of the generator:

from flask import stream_with_context, request, Response

@app.route('/stream')
def streamed_response():

def generate():
yield 'Hello '
yield request.args['name']
yield '!'

return Response(stream_with_context(generate()))

Without the stream_with_context() function you would get a RuntimeError at that
point.

1.21.22 Deferred Request Callbacks

One of the design principles of Flask is that response objects are created and passed
down a chain of potential callbacks that can modify them or replace them. When the
request handling starts, there is no response object yet. It is created as necessary either
by a view function or by some other component in the system.

What happens if you want to modify the response at a point where the response does
not exist yet? A common example for that would be a before_request() callback that
wants to set a cookie on the response object.

One way is to avoid the situation. Very often that is possible. For instance you can
try to move that logic into a after_request() callback instead. However, sometimes
moving code there makes it more more complicated or awkward to reason about.

As an alternative, you can use after_this_request() to register callbacks that will
execute after only the current request. This way you can defer code execution from
anywhere in the application, based on the current request.

At any time during a request, we can register a function to be called at the end of the
request. For example you can remember the current language of the user in a cookie
in a before_request() callback:

from flask import request, after_this_request

@app.before_request
def detect_user_language():

language = request.cookies.get('user_lang')

if language is None:

176 Chapter 1. User’s Guide

https://docs.python.org/3/library/exceptions.html#RuntimeError

Flask Documentation, Release 0.13.dev

language = guess_language_from_request()

when the response exists, set a cookie with the language
@after_this_request
def remember_language(response):

response.set_cookie('user_lang', language)

g.language = language

1.21.23 Adding HTTP Method Overrides

Some HTTP proxies do not support arbitrary HTTP methods or newer HTTP methods
(such as PATCH). In that case it’s possible to “proxy” HTTP methods through another
HTTP method in total violation of the protocol.

The way this works is by letting the client do an HTTP POST request and set the
X-HTTP-Method-Override header and set the value to the intended HTTP method (such
as PATCH).

This can easily be accomplished with an HTTP middleware:

class HTTPMethodOverrideMiddleware(object):
allowed_methods = frozenset([

'GET',
'HEAD',
'POST',
'DELETE',
'PUT',
'PATCH',
'OPTIONS'

])
bodyless_methods = frozenset(['GET', 'HEAD', 'OPTIONS', 'DELETE'])

def __init__(self, app):
self.app = app

def __call__(self, environ, start_response):
method = environ.get('HTTP_X_HTTP_METHOD_OVERRIDE', '').upper()
if method in self.allowed_methods:

method = method.encode('ascii', 'replace')
environ['REQUEST_METHOD'] = method

if method in self.bodyless_methods:
environ['CONTENT_LENGTH'] = '0'

return self.app(environ, start_response)

To use this with Flask this is all that is necessary:

from flask import Flask

1.21. Patterns for Flask 177

Flask Documentation, Release 0.13.dev

app = Flask(__name__)
app.wsgi_app = HTTPMethodOverrideMiddleware(app.wsgi_app)

1.21.24 Request Content Checksums

Various pieces of code can consume the request data and preprocess it. For instance
JSON data ends up on the request object already read and processed, form data ends
up there as well but goes through a different code path. This seems inconvenient when
you want to calculate the checksum of the incoming request data. This is necessary
sometimes for some APIs.

Fortunately this is however very simple to change by wrapping the input stream.

The following example calculates the SHA1 checksum of the incoming data as it gets
read and stores it in the WSGI environment:

import hashlib

class ChecksumCalcStream(object):

def __init__(self, stream):
self._stream = stream
self._hash = hashlib.sha1()

def read(self, bytes):
rv = self._stream.read(bytes)
self._hash.update(rv)
return rv

def readline(self, size_hint):
rv = self._stream.readline(size_hint)
self._hash.update(rv)
return rv

def generate_checksum(request):
env = request.environ
stream = ChecksumCalcStream(env['wsgi.input'])
env['wsgi.input'] = stream
return stream._hash

To use this, all you need to do is to hook the calculating stream in before the request
starts consuming data. (Eg: be careful accessing request.form or anything of that
nature. before_request_handlers for instance should be careful not to access it).

Example usage:

@app.route('/special-api', methods=['POST'])
def special_api():

hash = generate_checksum(request)
Accessing this parses the input stream

178 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

files = request.files
At this point the hash is fully constructed.
checksum = hash.hexdigest()
return 'Hash was: %s' % checksum

1.21.25 Celery Background Tasks

If your application has a long running task, such as processing some uploaded data or
sending email, you don’t want to wait for it to finish during a request. Instead, use a
task queue to send the necessary data to another process that will run the task in the
background while the request returns immediately.

Celery is a powerful task queue that can be used for simple background tasks as well
as complex multi-stage programs and schedules. This guide will show you how to
configure Celery using Flask, but assumes you’ve already read the First Steps with
Celery guide in the Celery documentation.

Install

Celery is a separate Python package. Install it from PyPI using pip:

$ pip install celery

Configure

The first thing you need is a Celery instance, this is called the celery application. It
serves the same purpose as the Flask object in Flask, just for Celery. Since this instance
is used as the entry-point for everything you want to do in Celery, like creating tasks
and managing workers, it must be possible for other modules to import it.

For instance you can place this in a tasks module. While you can use Celery without
any reconfiguration with Flask, it becomes a bit nicer by subclassing tasks and adding
support for Flask’s application contexts and hooking it up with the Flask configura-
tion.

This is all that is necessary to properly integrate Celery with Flask:

from celery import Celery

def make_celery(app):
celery = Celery(

app.import_name,
backend=app.config['CELERY_RESULT_BACKEND'],
broker=app.config['CELERY_BROKER_URL']

)
celery.conf.update(app.config)

1.21. Patterns for Flask 179

http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html
http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html

Flask Documentation, Release 0.13.dev

class ContextTask(celery.Task):
def __call__(self, *args, **kwargs):

with app.app_context():
return self.run(*args, **kwargs)

celery.Task = ContextTask
return celery

The function creates a new Celery object, configures it with the broker from the ap-
plication config, updates the rest of the Celery config from the Flask config and then
creates a subclass of the task that wraps the task execution in an application context.

An example task

Let’s write a task that adds two numbers together and returns the result. We configure
Celery’s broker and backend to use Redis, create a celery application using the factor
from above, and then use it to define the task.

from flask import Flask

flask_app = Flask(__name__)
flask_app.config.update(

CELERY_BROKER_URL='redis://localhost:6379',
CELERY_RESULT_BACKEND='redis://localhost:6379'

)
celery = make_celery(flask_app)

@celery.task()
def add_together(a, b):

return a + b

This task can now be called in the background:

result = add_together.delay(23, 42)
result.wait() # 65

Run a worker

If you jumped in and already executed the above code you will be disappointed to
learn that .wait() will never actually return. That’s because you also need to run a
Celery worker to receive and execute the task.

$ celery -A your_application.celery worker

The your_application string has to point to your application’s package or module that
creates the celery object.

Now that the worker is running, wait will return the result once the task is finished.

180 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

1.21.26 Subclassing Flask

The Flask class is designed for subclassing.

For example, you may want to override how request parameters are handled to pre-
serve their order:

from flask import Flask, Request
from werkzeug.datastructures import ImmutableOrderedMultiDict
class MyRequest(Request):

"""Request subclass to override request parameter storage"""
parameter_storage_class = ImmutableOrderedMultiDict

class MyFlask(Flask):
"""Flask subclass using the custom request class"""
request_class = MyRequest

This is the recommended approach for overriding or augmenting Flask’s internal func-
tionality.

1.22 Deployment Options

While lightweight and easy to use, Flask’s built-in server is not suitable for produc-
tion as it doesn’t scale well. Some of the options available for properly running Flask
in production are documented here.

If you want to deploy your Flask application to a WSGI server not listed here, look up
the server documentation about how to use a WSGI app with it. Just remember that
your Flask application object is the actual WSGI application.

1.22.1 Hosted options

• Deploying Flask on Heroku

• Deploying Flask on OpenShift

• Deploying Flask on Webfaction

• Deploying Flask on Google App Engine

• Deploying Flask on AWS Elastic Beanstalk

• Sharing your Localhost Server with Localtunnel

• Deploying on Azure (IIS)

• Deploying on PythonAnywhere

1.22. Deployment Options 181

https://devcenter.heroku.com/articles/getting-started-with-python
https://developers.openshift.com/en/python-flask.html
http://flask.pocoo.org/snippets/65/
https://cloud.google.com/appengine/docs/standard/python/getting-started/python-standard-env
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html
http://flask.pocoo.org/snippets/89/
https://azure.microsoft.com/documentation/articles/web-sites-python-configure/
https://help.pythonanywhere.com/pages/Flask/

Flask Documentation, Release 0.13.dev

1.22.2 Self-hosted options

Standalone WSGI Containers

There are popular servers written in Python that contain WSGI applications and serve
HTTP. These servers stand alone when they run; you can proxy to them from your
web server. Note the section on Proxy Setups if you run into issues.

Gunicorn

Gunicorn ‘Green Unicorn’ is a WSGI HTTP Server for UNIX. It’s a pre-fork worker
model ported from Ruby’s Unicorn project. It supports both eventlet and greenlet.
Running a Flask application on this server is quite simple:

gunicorn myproject:app

Gunicorn provides many command-line options – see gunicorn -h. For example, to
run a Flask application with 4 worker processes (-w 4) binding to localhost port 4000
(-b 127.0.0.1:4000):

gunicorn -w 4 -b 127.0.0.1:4000 myproject:app

uWSGI

uWSGI is a fast application server written in C. It is very configurable which makes it
more complicated to setup than gunicorn.

Running uWSGI HTTP Router:

uwsgi --http 127.0.0.1:5000 --module myproject:app

For a more optimized setup, see configuring uWSGI and NGINX.

Gevent

Gevent is a coroutine-based Python networking library that uses greenlet to provide a
high-level synchronous API on top of libev event loop:

from gevent.wsgi import WSGIServer
from yourapplication import app

http_server = WSGIServer(('', 5000), app)
http_server.serve_forever()

182 Chapter 1. User’s Guide

http://gunicorn.org/
http://eventlet.net/
https://greenlet.readthedocs.io/en/latest/
http://gunicorn.org/
http://uwsgi-docs.readthedocs.io/en/latest/
http://uwsgi-docs.readthedocs.io/en/latest/HTTP.html#the-uwsgi-http-https-router
uwsgi.html#starting-your-app-with-uwsgi
http://www.gevent.org/
https://greenlet.readthedocs.io/en/latest/
http://software.schmorp.de/pkg/libev.html

Flask Documentation, Release 0.13.dev

Twisted Web

Twisted Web is the web server shipped with Twisted, a mature, non-blocking event-
driven networking library. Twisted Web comes with a standard WSGI container which
can be controlled from the command line using the twistd utility:

twistd web --wsgi myproject.app

This example will run a Flask application called app from a module named myproject.

Twisted Web supports many flags and options, and the twistd utility does as well; see
twistd -h and twistd web -h for more information. For example, to run a Twisted
Web server in the foreground, on port 8080, with an application from myproject:

twistd -n web --port tcp:8080 --wsgi myproject.app

Proxy Setups

If you deploy your application using one of these servers behind an HTTP proxy you
will need to rewrite a few headers in order for the application to work. The two prob-
lematic values in the WSGI environment usually are REMOTE_ADDR and HTTP_HOST. You
can configure your httpd to pass these headers, or you can fix them in middleware.
Werkzeug ships a fixer that will solve some common setups, but you might want to
write your own WSGI middleware for specific setups.

Here’s a simple nginx configuration which proxies to an application served on local-
host at port 8000, setting appropriate headers:

server {
listen 80;

server_name _;

access_log /var/log/nginx/access.log;
error_log /var/log/nginx/error.log;

location / {
proxy_pass http://127.0.0.1:8000/;
proxy_redirect off;

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

}
}

If your httpd is not providing these headers, the most common setup invokes the host
being set from X-Forwarded-Host and the remote address from X-Forwarded-For:

1.22. Deployment Options 183

https://twistedmatrix.com/trac/wiki/TwistedWeb
https://twistedmatrix.com/

Flask Documentation, Release 0.13.dev

from werkzeug.contrib.fixers import ProxyFix
app.wsgi_app = ProxyFix(app.wsgi_app)

Trusting Headers

Please keep in mind that it is a security issue to use such a middleware in a non-proxy
setup because it will blindly trust the incoming headers which might be forged by
malicious clients.

If you want to rewrite the headers from another header, you might want to use a fixer
like this:

class CustomProxyFix(object):

def __init__(self, app):
self.app = app

def __call__(self, environ, start_response):
host = environ.get('HTTP_X_FHOST', '')
if host:

environ['HTTP_HOST'] = host
return self.app(environ, start_response)

app.wsgi_app = CustomProxyFix(app.wsgi_app)

uWSGI

uWSGI is a deployment option on servers like nginx, lighttpd, and cherokee; see
FastCGI and Standalone WSGI Containers for other options. To use your WSGI appli-
cation with uWSGI protocol you will need a uWSGI server first. uWSGI is both a
protocol and an application server; the application server can serve uWSGI, FastCGI,
and HTTP protocols.

The most popular uWSGI server is uwsgi, which we will use for this guide. Make sure
to have it installed to follow along.

Watch Out

Please make sure in advance that any app.run() calls you might have in your applica-
tion file are inside an if __name__ == '__main__': block or moved to a separate file.
Just make sure it’s not called because this will always start a local WSGI server which
we do not want if we deploy that application to uWSGI.

184 Chapter 1. User’s Guide

https://nginx.org/
https://www.lighttpd.net/
http://cherokee-project.com/
http://projects.unbit.it/uwsgi/

Flask Documentation, Release 0.13.dev

Starting your app with uwsgi

uwsgi is designed to operate on WSGI callables found in python modules.

Given a flask application in myapp.py, use the following command:

$ uwsgi -s /tmp/yourapplication.sock --manage-script-name --mount /
↪→yourapplication=myapp:app

The --manage-script-name will move the handling of SCRIPT_NAME to uwsgi, since its
smarter about that. It is used together with the --mount directive which will make
requests to /yourapplication be directed to myapp:app. If your application is accessi-
ble at root level, you can use a single / instead of /yourapplication. myapp refers to
the name of the file of your flask application (without extension) or the module which
provides app. app is the callable inside of your application (usually the line reads app
= Flask(__name__).

If you want to deploy your flask application inside of a virtual environment, you need
to also add --virtualenv /path/to/virtual/environment. You might also need to
add --plugin python or --plugin python3 depending on which python version you
use for your project.

Configuring nginx

A basic flask nginx configuration looks like this:

location = /yourapplication { rewrite ^ /yourapplication/; }
location /yourapplication { try_files $uri @yourapplication; }
location @yourapplication {
include uwsgi_params;
uwsgi_pass unix:/tmp/yourapplication.sock;

}

This configuration binds the application to /yourapplication. If you want to have it
in the URL root its a bit simpler:

location / { try_files $uri @yourapplication; }
location @yourapplication {

include uwsgi_params;
uwsgi_pass unix:/tmp/yourapplication.sock;

}

mod_wsgi (Apache)

If you are using the Apache webserver, consider using mod_wsgi.

Watch Out

1.22. Deployment Options 185

https://httpd.apache.org/
https://github.com/GrahamDumpleton/mod_wsgi

Flask Documentation, Release 0.13.dev

Please make sure in advance that any app.run() calls you might have in your applica-
tion file are inside an if __name__ == '__main__': block or moved to a separate file.
Just make sure it’s not called because this will always start a local WSGI server which
we do not want if we deploy that application to mod_wsgi.

Installing mod_wsgi

If you don’t have mod_wsgi installed yet you have to either install it using a package
manager or compile it yourself. The mod_wsgi installation instructions cover source
installations on UNIX systems.

If you are using Ubuntu/Debian you can apt-get it and activate it as follows:

apt-get install libapache2-mod-wsgi

If you are using a yum based distribution (Fedora, OpenSUSE, etc..) you can install it
as follows:

yum install mod_wsgi

On FreeBSD install mod_wsgi by compiling the www/mod_wsgi port or by using
pkg_add:

pkg install ap22-mod_wsgi2

If you are using pkgsrc you can install mod_wsgi by compiling the www/ap2-wsgi pack-
age.

If you encounter segfaulting child processes after the first apache reload you can safely
ignore them. Just restart the server.

Creating a .wsgi file

To run your application you need a yourapplication.wsgi file. This file contains the
code mod_wsgi is executing on startup to get the application object. The object called
application in that file is then used as application.

For most applications the following file should be sufficient:

from yourapplication import app as application

If you don’t have a factory function for application creation but a singleton instance
you can directly import that one as application.

Store that file somewhere that you will find it again (e.g.: /var/www/yourapplication)
and make sure that yourapplication and all the libraries that are in use are on the python
load path. If you don’t want to install it system wide consider using a virtual python
instance. Keep in mind that you will have to actually install your application into the

186 Chapter 1. User’s Guide

https://modwsgi.readthedocs.io/en/develop/installation.html
https://pypi.python.org/pypi/virtualenv

Flask Documentation, Release 0.13.dev

virtualenv as well. Alternatively there is the option to just patch the path in the .wsgi
file before the import:

import sys
sys.path.insert(0, '/path/to/the/application')

Configuring Apache

The last thing you have to do is to create an Apache configuration file for your ap-
plication. In this example we are telling mod_wsgi to execute the application under a
different user for security reasons:

<VirtualHost *>
ServerName example.com

WSGIDaemonProcess yourapplication user=user1 group=group1 threads=5
WSGIScriptAlias / /var/www/yourapplication/yourapplication.wsgi

<Directory /var/www/yourapplication>
WSGIProcessGroup yourapplication
WSGIApplicationGroup %{GLOBAL}
Order deny,allow
Allow from all

</Directory>
</VirtualHost>

Note: WSGIDaemonProcess isn’t implemented in Windows and Apache will refuse to
run with the above configuration. On a Windows system, eliminate those lines:

<VirtualHost *>
ServerName example.com
WSGIScriptAlias / C:\yourdir\yourapp.wsgi
<Directory C:\yourdir>

Order deny,allow
Allow from all

</Directory>
</VirtualHost>

Note: There have been some changes in access control configuration for Apache 2.4.

Most notably, the syntax for directory permissions has changed from httpd 2.2

Order allow,deny
Allow from all

to httpd 2.4 syntax

Require all granted

For more information consult the mod_wsgi documentation.

1.22. Deployment Options 187

https://httpd.apache.org/docs/trunk/upgrading.html
https://modwsgi.readthedocs.io/en/develop/index.html

Flask Documentation, Release 0.13.dev

Troubleshooting

If your application does not run, follow this guide to troubleshoot:

Problem: application does not run, errorlog shows SystemExit ignored You have
an app.run() call in your application file that is not guarded by an if __name__
== '__main__': condition. Either remove that run() call from the file and move
it into a separate run.py file or put it into such an if block.

Problem: application gives permission errors Probably caused by your application
running as the wrong user. Make sure the folders the application needs access to
have the proper privileges set and the application runs as the correct user (user
and group parameter to the WSGIDaemonProcess directive)

Problem: application dies with an error on print Keep in mind that mod_wsgi dis-
allows doing anything with sys.stdout and sys.stderr. You can disable this
protection from the config by setting the WSGIRestrictStdout to off:

WSGIRestrictStdout Off

Alternatively you can also replace the standard out in the .wsgi file with a differ-
ent stream:

import sys
sys.stdout = sys.stderr

Problem: accessing resources gives IO errors Your application probably is a single
.py file you symlinked into the site-packages folder. Please be aware that this
does not work, instead you either have to put the folder into the pythonpath the
file is stored in, or convert your application into a package.

The reason for this is that for non-installed packages, the module filename is
used to locate the resources and for symlinks the wrong filename is picked up.

Support for Automatic Reloading

To help deployment tools you can activate support for automatic reloading. Whenever
something changes the .wsgi file, mod_wsgi will reload all the daemon processes for
us.

For that, just add the following directive to your Directory section:

WSGIScriptReloading On

Working with Virtual Environments

Virtual environments have the advantage that they never install the required depen-
dencies system wide so you have a better control over what is used where. If you

188 Chapter 1. User’s Guide

https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stderr

Flask Documentation, Release 0.13.dev

want to use a virtual environment with mod_wsgi you have to modify your .wsgi file
slightly.

Add the following lines to the top of your .wsgi file:

activate_this = '/path/to/env/bin/activate_this.py'
execfile(activate_this, dict(__file__=activate_this))

For Python 3 add the following lines to the top of your .wsgi file:

activate_this = '/path/to/env/bin/activate_this.py'
with open(activate_this) as file_:

exec(file_.read(), dict(__file__=activate_this))

This sets up the load paths according to the settings of the virtual environment. Keep
in mind that the path has to be absolute.

FastCGI

FastCGI is a deployment option on servers like nginx, lighttpd, and cherokee; see
uWSGI and Standalone WSGI Containers for other options. To use your WSGI applica-
tion with any of them you will need a FastCGI server first. The most popular one is
flup which we will use for this guide. Make sure to have it installed to follow along.

Watch Out

Please make sure in advance that any app.run() calls you might have in your applica-
tion file are inside an if __name__ == '__main__': block or moved to a separate file.
Just make sure it’s not called because this will always start a local WSGI server which
we do not want if we deploy that application to FastCGI.

Creating a .fcgi file

First you need to create the FastCGI server file. Let’s call it yourapplication.fcgi:

#!/usr/bin/python
from flup.server.fcgi import WSGIServer
from yourapplication import app

if __name__ == '__main__':
WSGIServer(app).run()

This is enough for Apache to work, however nginx and older versions of lighttpd need
a socket to be explicitly passed to communicate with the FastCGI server. For that to
work you need to pass the path to the socket to the WSGIServer:

1.22. Deployment Options 189

https://nginx.org/
https://www.lighttpd.net/
http://cherokee-project.com/
https://pypi.python.org/pypi/flup

Flask Documentation, Release 0.13.dev

WSGIServer(application, bindAddress='/path/to/fcgi.sock').run()

The path has to be the exact same path you define in the server config.

Save the yourapplication.fcgi file somewhere you will find it again. It makes sense
to have that in /var/www/yourapplication or something similar.

Make sure to set the executable bit on that file so that the servers can execute it:

chmod +x /var/www/yourapplication/yourapplication.fcgi

Configuring Apache

The example above is good enough for a basic Apache deployment but your .fcgi file
will appear in your application URL e.g. example.com/yourapplication.fcgi/news/.
There are few ways to configure your application so that yourapplication.fcgi does not
appear in the URL. A preferable way is to use the ScriptAlias and SetHandler config-
uration directives to route requests to the FastCGI server. The following example uses
FastCgiServer to start 5 instances of the application which will handle all incoming
requests:

LoadModule fastcgi_module /usr/lib64/httpd/modules/mod_fastcgi.so

FastCgiServer /var/www/html/yourapplication/app.fcgi -idle-timeout 300 -processes␣
↪→5

<VirtualHost *>
ServerName webapp1.mydomain.com
DocumentRoot /var/www/html/yourapplication

AddHandler fastcgi-script fcgi
ScriptAlias / /var/www/html/yourapplication/app.fcgi/

<Location />
SetHandler fastcgi-script

</Location>
</VirtualHost>

These processes will be managed by Apache. If you’re using a standalone FastCGI
server, you can use the FastCgiExternalServer directive instead. Note that in the fol-
lowing the path is not real, it’s simply used as an identifier to other directives such as
AliasMatch:

FastCgiServer /var/www/html/yourapplication -host 127.0.0.1:3000

If you cannot set ScriptAlias, for example on a shared web host, you can use WSGI
middleware to remove yourapplication.fcgi from the URLs. Set .htaccess:

190 Chapter 1. User’s Guide

Flask Documentation, Release 0.13.dev

<IfModule mod_fcgid.c>
AddHandler fcgid-script .fcgi
<Files ~ (\.fcgi)>

SetHandler fcgid-script
Options +FollowSymLinks +ExecCGI

</Files>
</IfModule>

<IfModule mod_rewrite.c>
Options +FollowSymlinks
RewriteEngine On
RewriteBase /
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ yourapplication.fcgi/$1 [QSA,L]

</IfModule>

Set yourapplication.fcgi:

#!/usr/bin/python
#: optional path to your local python site-packages folder
import sys
sys.path.insert(0, '<your_local_path>/lib/python<your_python_version>/site-
↪→packages')

from flup.server.fcgi import WSGIServer
from yourapplication import app

class ScriptNameStripper(object):
def __init__(self, app):

self.app = app

def __call__(self, environ, start_response):
environ['SCRIPT_NAME'] = ''
return self.app(environ, start_response)

app = ScriptNameStripper(app)

if __name__ == '__main__':
WSGIServer(app).run()

Configuring lighttpd

A basic FastCGI configuration for lighttpd looks like that:

fastcgi.server = ("/yourapplication.fcgi" =>
((

"socket" => "/tmp/yourapplication-fcgi.sock",
"bin-path" => "/var/www/yourapplication/yourapplication.fcgi",
"check-local" => "disable",

1.22. Deployment Options 191

Flask Documentation, Release 0.13.dev

"max-procs" => 1
))

)

alias.url = (
"/static/" => "/path/to/your/static/"

)

url.rewrite-once = (
"^(/static($|/.*))$" => "$1",
"^(/.*)$" => "/yourapplication.fcgi$1"

)

Remember to enable the FastCGI, alias and rewrite modules. This configuration binds
the application to /yourapplication. If you want the application to work in the URL
root you have to work around a lighttpd bug with the LighttpdCGIRootFix middle-
ware.

Make sure to apply it only if you are mounting the application the URL root. Also,
see the Lighty docs for more information on FastCGI and Python (note that explicitly
passing a socket to run() is no longer necessary).

Configuring nginx

Installing FastCGI applications on nginx is a bit different because by default no
FastCGI parameters are forwarded.

A basic Flask FastCGI configuration for nginx looks like this:

location = /yourapplication { rewrite ^ /yourapplication/ last; }
location /yourapplication { try_files $uri @yourapplication; }
location @yourapplication {

include fastcgi_params;
fastcgi_split_path_info ^(/yourapplication)(.*)$;
fastcgi_param PATH_INFO $fastcgi_path_info;
fastcgi_param SCRIPT_NAME $fastcgi_script_name;
fastcgi_pass unix:/tmp/yourapplication-fcgi.sock;

}

This configuration binds the application to /yourapplication. If you want to have it
in the URL root it’s a bit simpler because you don’t have to figure out how to calculate
PATH_INFO and SCRIPT_NAME:

location / { try_files $uri @yourapplication; }
location @yourapplication {

include fastcgi_params;
fastcgi_param PATH_INFO $fastcgi_script_name;
fastcgi_param SCRIPT_NAME "";
fastcgi_pass unix:/tmp/yourapplication-fcgi.sock;

192 Chapter 1. User’s Guide

https://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_ModFastCGI

Flask Documentation, Release 0.13.dev

}

Running FastCGI Processes

Since nginx and others do not load FastCGI apps, you have to do it by yourself. Super-
visor can manage FastCGI processes. You can look around for other FastCGI process
managers or write a script to run your .fcgi file at boot, e.g. using a SysV init.d script.
For a temporary solution, you can always run the .fcgi script inside GNU screen. See
man screen for details, and note that this is a manual solution which does not persist
across system restart:

$ screen
$ /var/www/yourapplication/yourapplication.fcgi

Debugging

FastCGI deployments tend to be hard to debug on most web servers. Very often the
only thing the server log tells you is something along the lines of “premature end of
headers”. In order to debug the application the only thing that can really give you
ideas why it breaks is switching to the correct user and executing the application by
hand.

This example assumes your application is called application.fcgi and that your web
server user is www-data:

$ su www-data
$ cd /var/www/yourapplication
$ python application.fcgi
Traceback (most recent call last):
File "yourapplication.fcgi", line 4, in <module>

ImportError: No module named yourapplication

In this case the error seems to be “yourapplication” not being on the python path.
Common problems are:

• Relative paths being used. Don’t rely on the current working directory.

• The code depending on environment variables that are not set by the web server.

• Different python interpreters being used.

CGI

If all other deployment methods do not work, CGI will work for sure. CGI is sup-
ported by all major servers but usually has a sub-optimal performance.

1.22. Deployment Options 193

http://supervisord.org/configuration.html#fcgi-program-x-section-settings
http://supervisord.org/configuration.html#fcgi-program-x-section-settings

Flask Documentation, Release 0.13.dev

This is also the way you can use a Flask application on Google’s App Engine, where
execution happens in a CGI-like environment.

Watch Out

Please make sure in advance that any app.run() calls you might have in your applica-
tion file are inside an if __name__ == '__main__': block or moved to a separate file.
Just make sure it’s not called because this will always start a local WSGI server which
we do not want if we deploy that application to CGI / app engine.

With CGI, you will also have to make sure that your code does not contain any print
statements, or that sys.stdout is overridden by something that doesn’t write into the
HTTP response.

Creating a .cgi file

First you need to create the CGI application file. Let’s call it yourapplication.cgi:

#!/usr/bin/python
from wsgiref.handlers import CGIHandler
from yourapplication import app

CGIHandler().run(app)

Server Setup

Usually there are two ways to configure the server. Either just copy the .cgi into
a cgi-bin (and use mod_rewrite or something similar to rewrite the URL) or let the
server point to the file directly.

In Apache for example you can put something like this into the config:

ScriptAlias /app /path/to/the/application.cgi

On shared webhosting, though, you might not have access to your Apache config. In
this case, a file called .htaccess, sitting in the public directory you want your app to
be available, works too but the ScriptAlias directive won’t work in that case:

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f # Don't interfere with static files
RewriteRule ^(.*)$ /path/to/the/application.cgi/$1 [L]

For more information consult the documentation of your webserver.

194 Chapter 1. User’s Guide

https://developers.google.com/appengine/

Flask Documentation, Release 0.13.dev

1.23 Becoming Big

Here are your options when growing your codebase or scaling your application.

1.23.1 Read the Source.

Flask started in part to demonstrate how to build your own framework on top of
existing well-used tools Werkzeug (WSGI) and Jinja (templating), and as it developed,
it became useful to a wide audience. As you grow your codebase, don’t just use Flask
– understand it. Read the source. Flask’s code is written to be read; its documentation
is published so you can use its internal APIs. Flask sticks to documented APIs in
upstream libraries, and documents its internal utilities so that you can find the hook
points needed for your project.

1.23.2 Hook. Extend.

The API docs are full of available overrides, hook points, and Signals. You can provide
custom classes for things like the request and response objects. Dig deeper on the
APIs you use, and look for the customizations which are available out of the box in a
Flask release. Look for ways in which your project can be refactored into a collection
of utilities and Flask extensions. Explore the many extensions in the community, and
look for patterns to build your own extensions if you do not find the tools you need.

1.23.3 Subclass.

The Flask class has many methods designed for subclassing. You can quickly add or
customize behavior by subclassing Flask (see the linked method docs) and using that
subclass wherever you instantiate an application class. This works well with Applica-
tion Factories. See Subclassing Flask for an example.

1.23.4 Wrap with middleware.

The Application Dispatching chapter shows in detail how to apply middleware. You
can introduce WSGI middleware to wrap your Flask instances and introduce fixes and
changes at the layer between your Flask application and your HTTP server. Werkzeug
includes several middlewares.

1.23.5 Fork.

If none of the above options work, fork Flask. The majority of code of Flask is within
Werkzeug and Jinja2. These libraries do the majority of the work. Flask is just the paste
that glues those together. For every project there is the point where the underlying
framework gets in the way (due to assumptions the original developers had). This is

1.23. Becoming Big 195

http://flask.pocoo.org/extensions/
http://werkzeug.pocoo.org/docs/middlewares/

Flask Documentation, Release 0.13.dev

natural because if this would not be the case, the framework would be a very complex
system to begin with which causes a steep learning curve and a lot of user frustration.

This is not unique to Flask. Many people use patched and modified versions of their
framework to counter shortcomings. This idea is also reflected in the license of Flask.
You don’t have to contribute any changes back if you decide to modify the framework.

The downside of forking is of course that Flask extensions will most likely break be-
cause the new framework has a different import name. Furthermore integrating up-
stream changes can be a complex process, depending on the number of changes. Be-
cause of that, forking should be the very last resort.

1.23.6 Scale like a pro.

For many web applications the complexity of the code is less an issue than the scaling
for the number of users or data entries expected. Flask by itself is only limited in terms
of scaling by your application code, the data store you want to use and the Python
implementation and webserver you are running on.

Scaling well means for example that if you double the amount of servers you get about
twice the performance. Scaling bad means that if you add a new server the application
won’t perform any better or would not even support a second server.

There is only one limiting factor regarding scaling in Flask which are the context local
proxies. They depend on context which in Flask is defined as being either a thread,
process or greenlet. If your server uses some kind of concurrency that is not based
on threads or greenlets, Flask will no longer be able to support these global proxies.
However the majority of servers are using either threads, greenlets or separate pro-
cesses to achieve concurrency which are all methods well supported by the underlying
Werkzeug library.

1.23.7 Discuss with the community.

The Flask developers keep the framework accessible to users with codebases big and
small. If you find an obstacle in your way, caused by Flask, don’t hesitate to contact
the developers on the mailinglist or IRC channel. The best way for the Flask and Flask
extension developers to improve the tools for larger applications is getting feedback
from users.

196 Chapter 1. User’s Guide

CHAPTER 2

API Reference

If you are looking for information on a specific function, class or method, this part of
the documentation is for you.

2.1 API

This part of the documentation covers all the interfaces of Flask. For parts where Flask
depends on external libraries, we document the most important right here and provide
links to the canonical documentation.

2.1.1 Application Object

class flask.Flask(import_name, static_url_path=None, static_folder=’static’,
static_host=None, host_matching=False, subdo-
main_matching=False, template_folder=’templates’, in-
stance_path=None, instance_relative_config=False,
root_path=None)

The flask object implements a WSGI application and acts as the central object.
It is passed the name of the module or package of the application. Once it is
created it will act as a central registry for the view functions, the URL rules,
template configuration and much more.

The name of the package is used to resolve resources from inside the package
or the folder the module is contained in depending on if the package parameter
resolves to an actual python package (a folder with an __init__.py file inside)
or a standard module (just a .py file).

197

Flask Documentation, Release 0.13.dev

For more information about resource loading, see open_resource().

Usually you create a Flask instance in your main module or in the __init__.py
file of your package like this:

from flask import Flask
app = Flask(__name__)

About the First Parameter

The idea of the first parameter is to give Flask an idea of what belongs to your
application. This name is used to find resources on the filesystem, can be used
by extensions to improve debugging information and a lot more.

So it’s important what you provide there. If you are using a single module,
__name__ is always the correct value. If you however are using a package, it’s
usually recommended to hardcode the name of your package there.

For example if your application is defined in yourapplication/app.py you
should create it with one of the two versions below:

app = Flask('yourapplication')
app = Flask(__name__.split('.')[0])

Why is that? The application will work even with __name__, thanks to how re-
sources are looked up. However it will make debugging more painful. Certain
extensions can make assumptions based on the import name of your application.
For example the Flask-SQLAlchemy extension will look for the code in your ap-
plication that triggered an SQL query in debug mode. If the import name is not
properly set up, that debugging information is lost. (For example it would only
pick up SQL queries in yourapplication.app and not yourapplication.views.frontend)

New in version 0.7: The static_url_path, static_folder, and template_folder parame-
ters were added.

New in version 0.8: The instance_path and instance_relative_config parameters
were added.

New in version 0.11: The root_path parameter was added.

New in version 1.0: The host_matching and static_host parameters were
added.

New in version 1.0: The subdomain_matching parameter was added. Subdomain
matching needs to be enabled manually now. Setting SERVER_NAME does not im-
plicitly enable it.

Parameters

• import_name – the name of the application package

• static_url_path – can be used to specify a different path
for the static files on the web. Defaults to the name of the

198 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

static_folder folder.

• static_folder – the folder with static files that should be
served at static_url_path. Defaults to the 'static' folder in the
root path of the application.

• static_host – the host to use when adding the static route.
Defaults to None. Required when using host_matching=True
with a static_folder configured.

• host_matching – set url_map.host_matching attribute. De-
faults to False.

• subdomain_matching – consider the subdomain relative to
SERVER_NAME when matching routes. Defaults to False.

• template_folder – the folder that contains the templates that
should be used by the application. Defaults to 'templates'
folder in the root path of the application.

• instance_path – An alternative instance path for the applica-
tion. By default the folder 'instance' next to the package or
module is assumed to be the instance path.

• instance_relative_config – if set to True relative filenames
for loading the config are assumed to be relative to the instance
path instead of the application root.

• root_path – Flask by default will automatically calculate the
path to the root of the application. In certain situations this
cannot be achieved (for instance if the package is a Python 3
namespace package) and needs to be manually defined.

add_template_filter(f, name=None)
Register a custom template filter. Works exactly like the template_filter()
decorator.

Parameters name – the optional name of the filter, otherwise the
function name will be used.

add_template_global(f, name=None)
Register a custom template global function. Works exactly like the
template_global() decorator.

New in version 0.10.

Parameters name – the optional name of the global function, other-
wise the function name will be used.

add_template_test(f, name=None)
Register a custom template test. Works exactly like the template_test()
decorator.

New in version 0.10.

2.1. API 199

Flask Documentation, Release 0.13.dev

Parameters name – the optional name of the test, otherwise the
function name will be used.

add_url_rule(rule, endpoint=None, view_func=None, pro-
vide_automatic_options=None, **options)

Connects a URL rule. Works exactly like the route() decorator. If a
view_func is provided it will be registered with the endpoint.

Basically this example:

@app.route('/')
def index():

pass

Is equivalent to the following:

def index():
pass

app.add_url_rule('/', 'index', index)

If the view_func is not provided you will need to connect the endpoint to a
view function like so:

app.view_functions['index'] = index

Internally route() invokes add_url_rule() so if you want to customize the
behavior via subclassing you only need to change this method.

For more information refer to URL Route Registrations.

Changed in version 0.2: view_func parameter added.

Changed in version 0.6: OPTIONS is added automatically as method.

Parameters

• rule – the URL rule as string

• endpoint – the endpoint for the registered URL rule. Flask
itself assumes the name of the view function as endpoint

• view_func – the function to call when serving a request to the
provided endpoint

• provide_automatic_options – controls whether the OPTIONS
method should be added automatically. This can also be con-
trolled by setting the view_func.provide_automatic_options
= False before adding the rule.

• options – the options to be forwarded to the underlying Rule
object. A change to Werkzeug is handling of method options.
methods is a list of methods this rule should be limited to
(GET, POST etc.). By default a rule just listens for GET (and
implicitly HEAD). Starting with Flask 0.6, OPTIONS is implicitly
added and handled by the standard request handling.

200 Chapter 2. API Reference

http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Rule

Flask Documentation, Release 0.13.dev

after_request(f)
Register a function to be run after each request.

Your function must take one parameter, an instance of response_class and
return a new response object or the same (see process_response()).

As of Flask 0.7 this function might not be executed at the end of the request
in case an unhandled exception occurred.

after_request_funcs = None
A dictionary with lists of functions that should be called after each request.
The key of the dictionary is the name of the blueprint this function is active
for, None for all requests. This can for example be used to close database
connections. To register a function here, use the after_request() decorator.

app_context()
Create an AppContext. Use as a with block to push the context, which will
make current_app point at this application.

An application context is automatically pushed by RequestContext.push()
when handling a request, and when running a CLI command. Use this to
manually create a context outside of these situations.

with app.app_context():
init_db()

See The Application Context.

New in version 0.9.

app_ctx_globals_class
The class that is used for the g instance.

Example use cases for a custom class:

1. Store arbitrary attributes on flask.g.

2. Add a property for lazy per-request database connectors.

3. Return None instead of AttributeError on unexpected attributes.

4. Raise exception if an unexpected attr is set, a “controlled” flask.g.

In Flask 0.9 this property was called request_globals_class but it was changed
in 0.10 to app_ctx_globals_class because the flask.g object is now applica-
tion context scoped.

New in version 0.10.

alias of _AppCtxGlobals

auto_find_instance_path()
Tries to locate the instance path if it was not provided to the constructor of
the application class. It will basically calculate the path to a folder named
instance next to your main file or the package.

New in version 0.8.

2.1. API 201

Flask Documentation, Release 0.13.dev

before_first_request(f)
Registers a function to be run before the first request to this instance of the
application.

The function will be called without any arguments and its return value is
ignored.

New in version 0.8.

before_first_request_funcs = None
A list of functions that will be called at the beginning of the first request to
this instance. To register a function, use the before_first_request() deco-
rator.

New in version 0.8.

before_request(f)
Registers a function to run before each request.

For example, this can be used to open a database connection, or to load the
logged in user from the session.

The function will be called without any arguments. If it returns a non-None
value, the value is handled as if it was the return value from the view, and
further request handling is stopped.

before_request_funcs = None
A dictionary with lists of functions that will be called at the beginning of
each request. The key of the dictionary is the name of the blueprint this
function is active for, or None for all requests. To register a function, use the
before_request() decorator.

blueprints = None
all the attached blueprints in a dictionary by name. Blueprints can be at-
tached multiple times so this dictionary does not tell you how often they
got attached.

New in version 0.7.

cli = None
The click command line context for this application. Commands registered
here show up in the flask command once the application has been dis-
covered. The default commands are provided by Flask itself and can be
overridden.

This is an instance of a click.Group object.

config = None
The configuration dictionary as Config. This behaves exactly like a regular
dictionary but supports additional methods to load a config from files.

config_class
The class that is used for the config attribute of this app. Defaults to Config.

Example use cases for a custom class:

202 Chapter 2. API Reference

http://click.pocoo.org/api/#click.Group

Flask Documentation, Release 0.13.dev

1. Default values for certain config options.

2. Access to config values through attributes in addition to keys.

New in version 0.11.

alias of Config

context_processor(f)
Registers a template context processor function.

create_global_jinja_loader()
Creates the loader for the Jinja2 environment. Can be used to override just
the loader and keeping the rest unchanged. It’s discouraged to override this
function. Instead one should override the jinja_loader() function instead.

The global loader dispatches between the loaders of the application and the
individual blueprints.

New in version 0.7.

create_jinja_environment()
Creates the Jinja2 environment based on jinja_options and
select_jinja_autoescape(). Since 0.7 this also adds the Jinja2 globals
and filters after initialization. Override this function to customize the
behavior.

New in version 0.5.

Changed in version 0.11: Environment.auto_reload set in accordance with
TEMPLATES_AUTO_RELOAD configuration option.

create_url_adapter(request)
Creates a URL adapter for the given request. The URL adapter is created at
a point where the request context is not yet set up so the request is passed
explicitly.

New in version 0.6.

Changed in version 0.9: This can now also be called without a request object
when the URL adapter is created for the application context.

Changed in version 1.0: SERVER_NAME no longer implicitly enables subdo-
main matching. Use subdomain_matching instead.

debug
Whether debug mode is enabled. When using flask run to start the de-
velopment server, an interactive debugger will be shown for unhandled ex-
ceptions, and the server will be reloaded when code changes. This maps
to the DEBUG config key. This is enabled when env is 'development' and is
overridden by the FLASK_DEBUG environment variable. It may not behave as
expected if set in code.

Do not enable debug mode when deploying in production.

Default: True if env is 'development', or False otherwise.

2.1. API 203

Flask Documentation, Release 0.13.dev

default_config = ImmutableDict({'JSON_AS_ASCII': True, 'USE_X_SENDFILE': False, 'SESSION_COOKIE_PATH': None, 'SESSION_COOKIE_DOMAIN': None, 'SESSION_COOKIE_NAME': 'session', 'DEBUG': None, 'MAX_COOKIE_SIZE': 4093, 'SESSION_COOKIE_SAMESITE': None, 'PROPAGATE_EXCEPTIONS': None, 'ENV': None, 'SESSION_COOKIE_SECURE': False, 'SECRET_KEY': None, 'EXPLAIN_TEMPLATE_LOADING': False, 'MAX_CONTENT_LENGTH': None, 'APPLICATION_ROOT': '/', 'SERVER_NAME': None, 'PREFERRED_URL_SCHEME': 'http', 'JSONIFY_PRETTYPRINT_REGULAR': False, 'TESTING': False, 'PERMANENT_SESSION_LIFETIME': datetime.timedelta(31), 'TEMPLATES_AUTO_RELOAD': None, 'TRAP_BAD_REQUEST_ERRORS': None, 'JSON_SORT_KEYS': True, 'JSONIFY_MIMETYPE': 'application/json', 'SESSION_COOKIE_HTTPONLY': True, 'SEND_FILE_MAX_AGE_DEFAULT': datetime.timedelta(0, 43200), 'PRESERVE_CONTEXT_ON_EXCEPTION': None, 'SESSION_REFRESH_EACH_REQUEST': True, 'TRAP_HTTP_EXCEPTIONS': False})
Default configuration parameters.

dispatch_request()
Does the request dispatching. Matches the URL and returns the return
value of the view or error handler. This does not have to be a response
object. In order to convert the return value to a proper response object, call
make_response().

Changed in version 0.7: This no longer does the exception handling, this
code was moved to the new full_dispatch_request().

do_teardown_appcontext(exc=<object object>)
Called right before the application context is popped.

When handling a request, the application context is popped after the request
context. See do_teardown_request().

This calls all functions decorated with teardown_appcontext(). Then the
appcontext_tearing_down signal is sent.

This is called by AppContext.pop().

New in version 0.9.

do_teardown_request(exc=<object object>)
Called after the request is dispatched and the response is returned, right
before the request context is popped.

This calls all functions decorated with teardown_request(), and Blueprint.
teardown_request() if a blueprint handled the request. Finally, the
request_tearing_down signal is sent.

This is called by RequestContext.pop(), which may be delayed during test-
ing to maintain access to resources.

Parameters exc – An unhandled exception raised while dispatch-
ing the request. Detected from the current exception informa-
tion if not passed. Passed to each teardown function.

Changed in version 0.9: Added the exc argument.

endpoint(endpoint)
A decorator to register a function as an endpoint. Example:

@app.endpoint('example.endpoint')
def example():

return "example"

Parameters endpoint – the name of the endpoint

env
What environment the app is running in. Flask and extensions may enable
behaviors based on the environment, such as enabling debug mode. This

204 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

maps to the ENV config key. This is set by the FLASK_ENV environment vari-
able and may not behave as expected if set in code.

Do not enable development when deploying in production.

Default: 'production'

error_handler_spec = None
A dictionary of all registered error handlers. The key is None for error
handlers active on the application, otherwise the key is the name of the
blueprint. Each key points to another dictionary where the key is the status
code of the http exception. The special key None points to a list of tuples
where the first item is the class for the instance check and the second the
error handler function.

To register an error handler, use the errorhandler() decorator.

errorhandler(code_or_exception)
Register a function to handle errors by code or exception class.

A decorator that is used to register a function given an error code. Example:

@app.errorhandler(404)
def page_not_found(error):

return 'This page does not exist', 404

You can also register handlers for arbitrary exceptions:

@app.errorhandler(DatabaseError)
def special_exception_handler(error):

return 'Database connection failed', 500

New in version 0.7: Use register_error_handler() instead of modifying
error_handler_spec directly, for application wide error handlers.

New in version 0.7: One can now additionally also register custom excep-
tion types that do not necessarily have to be a subclass of the HTTPException
class.

Parameters code_or_exception – the code as integer for the han-
dler, or an arbitrary exception

extensions = None
a place where extensions can store application specific state. For exam-
ple this is where an extension could store database engines and similar
things. For backwards compatibility extensions should register themselves
like this:

if not hasattr(app, 'extensions'):
app.extensions = {}

app.extensions['extensionname'] = SomeObject()

The key must match the name of the extension module. For example in case
of a “Flask-Foo” extension in flask_foo, the key would be 'foo'.

2.1. API 205

http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.HTTPException

Flask Documentation, Release 0.13.dev

New in version 0.7.

full_dispatch_request()
Dispatches the request and on top of that performs request pre and post-
processing as well as HTTP exception catching and error handling.

New in version 0.7.

get_send_file_max_age(filename)
Provides default cache_timeout for the send_file() functions.

By default, this function returns SEND_FILE_MAX_AGE_DEFAULT from the con-
figuration of current_app.

Static file functions such as send_from_directory() use this function,
and send_file() calls this function on current_app when the given
cache_timeout is None. If a cache_timeout is given in send_file(), that time-
out is used; otherwise, this method is called.

This allows subclasses to change the behavior when sending files based on
the filename. For example, to set the cache timeout for .js files to 60 seconds:

class MyFlask(flask.Flask):
def get_send_file_max_age(self, name):

if name.lower().endswith('.js'):
return 60

return flask.Flask.get_send_file_max_age(self, name)

New in version 0.9.

got_first_request
This attribute is set to True if the application started handling the first re-
quest.

New in version 0.8.

handle_exception(e)
Default exception handling that kicks in when an exception occurs that is
not caught. In debug mode the exception will be re-raised immediately, oth-
erwise it is logged and the handler for a 500 internal server error is used. If
no such handler exists, a default 500 internal server error message is dis-
played.

New in version 0.3.

handle_http_exception(e)
Handles an HTTP exception. By default this will invoke the registered error
handlers and fall back to returning the exception as response.

New in version 0.3.

handle_url_build_error(error, endpoint, values)
Handle BuildError on url_for().

handle_user_exception(e)
This method is called whenever an exception occurs that should be handled.

206 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

A special case are HTTPExceptions which are forwarded by this function to
the handle_http_exception() method. This function will either return a
response value or reraise the exception with the same traceback.

Changed in version 1.0: Key errors raised from request data like form show
the the bad key in debug mode rather than a generic bad request message.

New in version 0.7.

has_static_folder
This is True if the package bound object’s container has a folder for static
files.

New in version 0.5.

import_name = None
The name of the package or module that this app belongs to. Do not change
this once it is set by the constructor.

inject_url_defaults(endpoint, values)
Injects the URL defaults for the given endpoint directly into the values dic-
tionary passed. This is used internally and automatically called on URL
building.

New in version 0.7.

instance_path = None
Holds the path to the instance folder.

New in version 0.8.

iter_blueprints()
Iterates over all blueprints by the order they were registered.

New in version 0.11.

jinja_env
The Jinja2 environment used to load templates.

jinja_environment
The class that is used for the Jinja environment.

New in version 0.11.

alias of Environment

jinja_loader
The Jinja loader for this package bound object.

New in version 0.5.

jinja_options = ImmutableDict({'extensions': ['jinja2.ext.autoescape', 'jinja2.ext.with_']})
Options that are passed directly to the Jinja2 environment.

json_decoder
The JSON decoder class to use. Defaults to JSONDecoder.

New in version 0.10.

2.1. API 207

Flask Documentation, Release 0.13.dev

alias of JSONDecoder

json_encoder
The JSON encoder class to use. Defaults to JSONEncoder.

New in version 0.10.

alias of JSONEncoder

log_exception(exc_info)
Logs an exception. This is called by handle_exception() if debugging is
disabled and right before the handler is called. The default implementation
logs the exception as error on the logger.

New in version 0.8.

logger
The 'flask.app' logger, a standard Python Logger.

In debug mode, the logger’s level will be set to DEBUG.

If there are no handlers configured, a default handler will be added. See
Logging for more information.

Changed in version 1.0: Behavior was simplified. The logger is always
named flask.app. The level is only set during configuration, it doesn’t
check app.debug each time. Only one format is used, not different ones
depending on app.debug. No handlers are removed, and a handler is only
added if no handlers are already configured.

New in version 0.3.

make_config(instance_relative=False)
Used to create the config attribute by the Flask constructor. The in-
stance_relative parameter is passed in from the constructor of Flask (there
named instance_relative_config) and indicates if the config should be relative
to the instance path or the root path of the application.

New in version 0.8.

make_default_options_response()
This method is called to create the default OPTIONS response. This can be
changed through subclassing to change the default behavior of OPTIONS re-
sponses.

New in version 0.7.

make_null_session()
Creates a new instance of a missing session. Instead of overriding this
method we recommend replacing the session_interface.

New in version 0.7.

make_response(rv)
Convert the return value from a view function to an instance of
response_class.

208 Chapter 2. API Reference

https://docs.python.org/3/library/logging.html#logging.Logger

Flask Documentation, Release 0.13.dev

Parameters rv – the return value from the view function. The view
function must return a response. Returning None, or the view
ending without returning, is not allowed. The following types
are allowed for view_rv:

str (unicode in Python 2) A response object is created with the
string encoded to UTF-8 as the body.

bytes (str in Python 2) A response object is created with the
bytes as the body.

tuple Either (body, status, headers), (body, status), or
(body, headers), where body is any of the other types al-
lowed here, status is a string or an integer, and headers is
a dictionary or a list of (key, value) tuples. If body is a
response_class instance, status overwrites the exiting value
and headers are extended.

response_class The object is returned unchanged.

other Response class The object is coerced to response_class.

callable() The function is called as a WSGI application. The
result is used to create a response object.

Changed in version 0.9: Previously a tuple was interpreted as the arguments
for the response object.

make_shell_context()
Returns the shell context for an interactive shell for this application. This
runs all the registered shell context processors.

New in version 0.11.

name
The name of the application. This is usually the import name with the dif-
ference that it’s guessed from the run file if the import name is main. This
name is used as a display name when Flask needs the name of the applica-
tion. It can be set and overridden to change the value.

New in version 0.8.

open_instance_resource(resource, mode=’rb’)
Opens a resource from the application’s instance folder (instance_path).
Otherwise works like open_resource(). Instance resources can also be
opened for writing.

Parameters

• resource – the name of the resource. To access resources
within subfolders use forward slashes as separator.

• mode – resource file opening mode, default is ‘rb’.

open_resource(resource, mode=’rb’)
Opens a resource from the application’s resource folder. To see how this

2.1. API 209

http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.Response
https://docs.python.org/3/library/functions.html#callable

Flask Documentation, Release 0.13.dev

works, consider the following folder structure:

/myapplication.py
/schema.sql
/static

/style.css
/templates

/layout.html
/index.html

If you want to open the schema.sql file you would do the following:

with app.open_resource('schema.sql') as f:
contents = f.read()
do_something_with(contents)

Parameters

• resource – the name of the resource. To access resources
within subfolders use forward slashes as separator.

• mode – resource file opening mode, default is ‘rb’.

open_session(request)
Creates or opens a new session. Default implementation stores all session
data in a signed cookie. This requires that the secret_key is set. Instead of
overriding this method we recommend replacing the session_interface.

Parameters request – an instance of request_class.

permanent_session_lifetime
A timedelta which is used to set the expiration date of a permanent session.
The default is 31 days which makes a permanent session survive for roughly
one month.

This attribute can also be configured from the config with the
PERMANENT_SESSION_LIFETIME configuration key. Defaults to
timedelta(days=31)

preprocess_request()
Called before the request is dispatched. Calls url_value_preprocessors
registered with the app and the current blueprint (if any). Then calls
before_request_funcs registered with the app and the blueprint.

If any before_request() handler returns a non-None value, the value is
handled as if it was the return value from the view, and further request
handling is stopped.

preserve_context_on_exception
Returns the value of the PRESERVE_CONTEXT_ON_EXCEPTION configuration
value in case it’s set, otherwise a sensible default is returned.

New in version 0.7.

210 Chapter 2. API Reference

https://docs.python.org/3/library/datetime.html#datetime.timedelta

Flask Documentation, Release 0.13.dev

process_response(response)
Can be overridden in order to modify the response object before it’s sent to
the WSGI server. By default this will call all the after_request() decorated
functions.

Changed in version 0.5: As of Flask 0.5 the functions registered for after
request execution are called in reverse order of registration.

Parameters response – a response_class object.

Returns a new response object or the same, has to be an instance
of response_class.

propagate_exceptions
Returns the value of the PROPAGATE_EXCEPTIONS configuration value in case
it’s set, otherwise a sensible default is returned.

New in version 0.7.

register_blueprint(blueprint, **options)
Register a Blueprint on the application. Keyword arguments passed to this
method will override the defaults set on the blueprint.

Calls the blueprint’s register() method after recording the blueprint in the
application’s blueprints.

Parameters

• blueprint – The blueprint to register.

• url_prefix – Blueprint routes will be prefixed with this.

• subdomain – Blueprint routes will match on this subdomain.

• url_defaults – Blueprint routes will use these default values
for view arguments.

• options – Additional keyword arguments are passed to
BlueprintSetupState. They can be accessed in record() call-
backs.

New in version 0.7.

register_error_handler(code_or_exception, f)
Alternative error attach function to the errorhandler() decorator that is
more straightforward to use for non decorator usage.

New in version 0.7.

request_class
The class that is used for request objects. See Request for more information.

alias of Request

request_context(environ)
Create a RequestContext representing a WSGI environment. Use a with
block to push the context, which will make request point at this request.

2.1. API 211

Flask Documentation, Release 0.13.dev

See The Request Context.

Typically you should not call this from your own code. A request context
is automatically pushed by the wsgi_app() when handling a request. Use
test_request_context() to create an environment and context instead of
this method.

Parameters environ – a WSGI environment

response_class
The class that is used for response objects. See Response for more informa-
tion.

alias of Response

root_path = None
Absolute path to the package on the filesystem. Used to look up resources
contained in the package.

route(rule, **options)
A decorator that is used to register a view function for a given URL rule.
This does the same thing as add_url_rule() but is intended for decorator
usage:

@app.route('/')
def index():

return 'Hello World'

For more information refer to URL Route Registrations.

Parameters

• rule – the URL rule as string

• endpoint – the endpoint for the registered URL rule. Flask
itself assumes the name of the view function as endpoint

• options – the options to be forwarded to the underlying Rule
object. A change to Werkzeug is handling of method options.
methods is a list of methods this rule should be limited to
(GET, POST etc.). By default a rule just listens for GET (and
implicitly HEAD). Starting with Flask 0.6, OPTIONS is implicitly
added and handled by the standard request handling.

run(host=None, port=None, debug=None, load_dotenv=True, **options)
Runs the application on a local development server.

Do not use run() in a production setting. It is not intended to meet security
and performance requirements for a production server. Instead, see Deploy-
ment Options for WSGI server recommendations.

If the debug flag is set the server will automatically reload for code changes
and show a debugger in case an exception happened.

212 Chapter 2. API Reference

http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Rule

Flask Documentation, Release 0.13.dev

If you want to run the application in debug mode, but disable the code ex-
ecution on the interactive debugger, you can pass use_evalex=False as pa-
rameter. This will keep the debugger’s traceback screen active, but disable
code execution.

It is not recommended to use this function for development with automatic
reloading as this is badly supported. Instead you should be using the flask
command line script’s run support.

Keep in Mind

Flask will suppress any server error with a generic error page unless it
is in debug mode. As such to enable just the interactive debugger with-
out the code reloading, you have to invoke run() with debug=True and
use_reloader=False. Setting use_debugger to True without being in debug
mode won’t catch any exceptions because there won’t be any to catch.

Parameters

• host – the hostname to listen on. Set this to '0.0.0.0' to have
the server available externally as well. Defaults to '127.0.0.
1' or the host in the SERVER_NAME config variable if present.

• port – the port of the webserver. Defaults to 5000 or the port
defined in the SERVER_NAME config variable if present.

• debug – if given, enable or disable debug mode. See debug.

• load_dotenv – Load the nearest .env and .flaskenv files to
set environment variables. Will also change the working di-
rectory to the directory containing the first file found.

• options – the options to be forwarded to the underlying
Werkzeug server. See werkzeug.serving.run_simple() for
more information.

Changed in version 1.0: If installed, python-dotenv will be used to load
environment variables from .env and .flaskenv files.

If set, the FLASK_ENV and FLASK_DEBUG environment variables will override
env and debug.

Threaded mode is enabled by default.

Changed in version 0.10: The default port is now picked from the
SERVER_NAME variable.

save_session(session, response)
Saves the session if it needs updates. For the default implementation, check
open_session(). Instead of overriding this method we recommend replac-
ing the session_interface.

2.1. API 213

http://werkzeug.pocoo.org/docs/serving/#werkzeug.serving.run_simple

Flask Documentation, Release 0.13.dev

Parameters

• session – the session to be saved (a SecureCookie object)

• response – an instance of response_class

secret_key
If a secret key is set, cryptographic components can use this to sign cookies
and other things. Set this to a complex random value when you want to use
the secure cookie for instance.

This attribute can also be configured from the config with the SECRET_KEY
configuration key. Defaults to None.

select_jinja_autoescape(filename)
Returns True if autoescaping should be active for the given template name.
If no template name is given, returns True.

New in version 0.5.

send_file_max_age_default
A timedelta which is used as default cache_timeout for the send_file()
functions. The default is 12 hours.

This attribute can also be configured from the config with the
SEND_FILE_MAX_AGE_DEFAULT configuration key. This configuration vari-
able can also be set with an integer value used as seconds. Defaults to
timedelta(hours=12)

send_static_file(filename)
Function used internally to send static files from the static folder to the
browser.

New in version 0.5.

session_cookie_name
The secure cookie uses this for the name of the session cookie.

This attribute can also be configured from the config with the
SESSION_COOKIE_NAME configuration key. Defaults to 'session'

session_interface = <flask.sessions.SecureCookieSessionInterface object>
the session interface to use. By default an instance of
SecureCookieSessionInterface is used here.

New in version 0.8.

shell_context_processor(f)
Registers a shell context processor function.

New in version 0.11.

shell_context_processors = None
A list of shell context processor functions that should be run when a shell
context is created.

New in version 0.11.

214 Chapter 2. API Reference

http://werkzeug.pocoo.org/docs/contrib/securecookie/#werkzeug.contrib.securecookie.SecureCookie
https://docs.python.org/3/library/datetime.html#datetime.timedelta

Flask Documentation, Release 0.13.dev

should_ignore_error(error)
This is called to figure out if an error should be ignored or not as far as
the teardown system is concerned. If this function returns True then the
teardown handlers will not be passed the error.

New in version 0.10.

static_folder
The absolute path to the configured static folder.

static_url_path
The URL prefix that the static route will be registered for.

teardown_appcontext(f)
Registers a function to be called when the application context ends. These
functions are typically also called when the request context is popped.

Example:

ctx = app.app_context()
ctx.push()
...
ctx.pop()

When ctx.pop() is executed in the above example, the teardown functions
are called just before the app context moves from the stack of active con-
texts. This becomes relevant if you are using such constructs in tests.

Since a request context typically also manages an application context it
would also be called when you pop a request context.

When a teardown function was called because of an unhandled exception
it will be passed an error object. If an errorhandler() is registered, it will
handle the exception and the teardown will not receive it.

The return values of teardown functions are ignored.

New in version 0.9.

teardown_appcontext_funcs = None
A list of functions that are called when the application context is destroyed.
Since the application context is also torn down if the request ends this is the
place to store code that disconnects from databases.

New in version 0.9.

teardown_request(f)
Register a function to be run at the end of each request, regardless of
whether there was an exception or not. These functions are executed when
the request context is popped, even if not an actual request was performed.

Example:

ctx = app.test_request_context()
ctx.push()

2.1. API 215

Flask Documentation, Release 0.13.dev

...
ctx.pop()

When ctx.pop() is executed in the above example, the teardown functions
are called just before the request context moves from the stack of active con-
texts. This becomes relevant if you are using such constructs in tests.

Generally teardown functions must take every necessary step to avoid that
they will fail. If they do execute code that might fail they will have to sur-
round the execution of these code by try/except statements and log occur-
ring errors.

When a teardown function was called because of an exception it will be
passed an error object.

The return values of teardown functions are ignored.

Debug Note

In debug mode Flask will not tear down a request on an exception
immediately. Instead it will keep it alive so that the interactive de-
bugger can still access it. This behavior can be controlled by the
PRESERVE_CONTEXT_ON_EXCEPTION configuration variable.

teardown_request_funcs = None
A dictionary with lists of functions that are called after each request, even
if an exception has occurred. The key of the dictionary is the name of
the blueprint this function is active for, None for all requests. These func-
tions are not allowed to modify the request, and their return values are ig-
nored. If an exception occurred while processing the request, it gets passed
to each teardown_request function. To register a function here, use the
teardown_request() decorator.

New in version 0.7.

template_context_processors = None
A dictionary with list of functions that are called without argument to pop-
ulate the template context. The key of the dictionary is the name of the
blueprint this function is active for, None for all requests. Each returns a
dictionary that the template context is updated with. To register a function
here, use the context_processor() decorator.

template_filter(name=None)
A decorator that is used to register custom template filter. You can specify a
name for the filter, otherwise the function name will be used. Example:

@app.template_filter()
def reverse(s):

return s[::-1]

216 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

Parameters name – the optional name of the filter, otherwise the
function name will be used.

template_folder = None
Location of the template files to be added to the template lookup. None if
templates should not be added.

template_global(name=None)
A decorator that is used to register a custom template global function. You
can specify a name for the global function, otherwise the function name will
be used. Example:

@app.template_global()
def double(n):

return 2 * n

New in version 0.10.

Parameters name – the optional name of the global function, other-
wise the function name will be used.

template_test(name=None)
A decorator that is used to register custom template test. You can specify a
name for the test, otherwise the function name will be used. Example:

@app.template_test()
def is_prime(n):

if n == 2:
return True

for i in range(2, int(math.ceil(math.sqrt(n))) + 1):
if n % i == 0:

return False
return True

New in version 0.10.

Parameters name – the optional name of the test, otherwise the
function name will be used.

templates_auto_reload
Reload templates when they are changed. Used by
create_jinja_environment().

This attribute can be configured with TEMPLATES_AUTO_RELOAD. If not set, it
will be enabled in debug mode.

New in version 1.0: This property was added but the underlying config and
behavior already existed.

test_cli_runner(**kwargs)
Create a CLI runner for testing CLI commands. See Testing CLI Commands.

Returns an instance of test_cli_runner_class, by default FlaskCliRunner.
The Flask app object is passed as the first argument.

2.1. API 217

Flask Documentation, Release 0.13.dev

New in version 1.0.

test_cli_runner_class = None
The CliRunner subclass, by default FlaskCliRunner that is used by
test_cli_runner(). Its __init__ method should take a Flask app object
as the first argument.

New in version 1.0.

test_client(use_cookies=True, **kwargs)
Creates a test client for this application. For information about unit testing
head over to Testing Flask Applications.

Note that if you are testing for assertions or exceptions in your application
code, you must set app.testing = True in order for the exceptions to prop-
agate to the test client. Otherwise, the exception will be handled by the
application (not visible to the test client) and the only indication of an As-
sertionError or other exception will be a 500 status code response to the test
client. See the testing attribute. For example:

app.testing = True
client = app.test_client()

The test client can be used in a with block to defer the closing down of the
context until the end of the with block. This is useful if you want to access
the context locals for testing:

with app.test_client() as c:
rv = c.get('/?vodka=42')
assert request.args['vodka'] == '42'

Additionally, you may pass optional keyword arguments that will then be
passed to the application’s test_client_class constructor. For example:

from flask.testing import FlaskClient

class CustomClient(FlaskClient):
def __init__(self, *args, **kwargs):

self._authentication = kwargs.pop("authentication")
super(CustomClient,self).__init__(*args, **kwargs)

app.test_client_class = CustomClient
client = app.test_client(authentication='Basic')

See FlaskClient for more information.

Changed in version 0.4: added support for with block usage for the client.

New in version 0.7: The use_cookies parameter was added as well as the
ability to override the client to be used by setting the test_client_class
attribute.

218 Chapter 2. API Reference

http://click.pocoo.org/api/#click.testing.CliRunner

Flask Documentation, Release 0.13.dev

Changed in version 0.11: Added **kwargs to support passing additional key-
word arguments to the constructor of test_client_class.

test_client_class = None
the test client that is used with when test_client is used.

New in version 0.7.

test_request_context(*args, **kwargs)
Create a RequestContext for a WSGI environment created from the given
values. This is mostly useful during testing, where you may want to run a
function that uses request data without dispatching a full request.

See The Request Context.

Use a with block to push the context, which will make request point at the
request for the created environment.

with test_request_context(...):
generate_report()

When using the shell, it may be easier to push and pop the context manually
to avoid indentation.

ctx = app.test_request_context(...)
ctx.push()
...
ctx.pop()

Takes the same arguments as Werkzeug’s EnvironBuilder, with some de-
faults from the application. See the linked Werkzeug docs for most of the
available arguments. Flask-specific behavior is listed here.

Parameters

• path – URL path being requested.

• base_url – Base URL where the app is being served,
which path is relative to. If not given, built from
PREFERRED_URL_SCHEME, subdomain, SERVER_NAME, and
APPLICATION_ROOT.

• subdomain – Subdomain name to append to SERVER_NAME.

• url_scheme – Scheme to use instead of
PREFERRED_URL_SCHEME.

• data – The request body, either as a string or a dict of form
keys and values.

• json – If given, this is serialized as JSON and passed as data.
Also defaults content_type to application/json.

• args – other positional arguments passed to EnvironBuilder.

2.1. API 219

http://werkzeug.pocoo.org/docs/test/#werkzeug.test.EnvironBuilder
http://werkzeug.pocoo.org/docs/test/#werkzeug.test.EnvironBuilder

Flask Documentation, Release 0.13.dev

• kwargs – other keyword arguments passed to
EnvironBuilder.

testing
The testing flag. Set this to True to enable the test mode of Flask extensions
(and in the future probably also Flask itself). For example this might acti-
vate test helpers that have an additional runtime cost which should not be
enabled by default.

If this is enabled and PROPAGATE_EXCEPTIONS is not changed from the
default it’s implicitly enabled.

This attribute can also be configured from the config with the TESTING con-
figuration key. Defaults to False.

trap_http_exception(e)
Checks if an HTTP exception should be trapped or not. By default
this will return False for all exceptions except for a bad request key er-
ror if TRAP_BAD_REQUEST_ERRORS is set to True. It also returns True if
TRAP_HTTP_EXCEPTIONS is set to True.

This is called for all HTTP exceptions raised by a view function. If it returns
True for any exception the error handler for this exception is not called and
it shows up as regular exception in the traceback. This is helpful for debug-
ging implicitly raised HTTP exceptions.

Changed in version 1.0: Bad request errors are not trapped by default in
debug mode.

New in version 0.8.

update_template_context(context)
Update the template context with some commonly used variables. This in-
jects request, session, config and g into the template context as well as every-
thing template context processors want to inject. Note that the as of Flask
0.6, the original values in the context will not be overridden if a context
processor decides to return a value with the same key.

Parameters context – the context as a dictionary that is updated in
place to add extra variables.

url_build_error_handlers = None
A list of functions that are called when url_for() raises a BuildError. Each
function registered here is called with error, endpoint and values. If a function
returns None or raises a BuildError the next function is tried.

New in version 0.9.

url_default_functions = None
A dictionary with lists of functions that can be used as URL value prepro-
cessors. The key None here is used for application wide callbacks, otherwise
the key is the name of the blueprint. Each of these functions has the chance
to modify the dictionary of URL values before they are used as the key-
word arguments of the view function. For each function registered this one

220 Chapter 2. API Reference

http://werkzeug.pocoo.org/docs/test/#werkzeug.test.EnvironBuilder

Flask Documentation, Release 0.13.dev

should also provide a url_defaults() function that adds the parameters
automatically again that were removed that way.

New in version 0.7.

url_defaults(f)
Callback function for URL defaults for all view functions of the applica-
tion. It’s called with the endpoint and values and should update the values
passed in place.

url_map = None
The Map for this instance. You can use this to change the routing converters
after the class was created but before any routes are connected. Example:

from werkzeug.routing import BaseConverter

class ListConverter(BaseConverter):
def to_python(self, value):

return value.split(',')
def to_url(self, values):

return ','.join(super(ListConverter, self).to_url(value)
for value in values)

app = Flask(__name__)
app.url_map.converters['list'] = ListConverter

url_rule_class
The rule object to use for URL rules created. This is used by add_url_rule().
Defaults to werkzeug.routing.Rule.

New in version 0.7.

alias of Rule

url_value_preprocessor(f)
Register a URL value preprocessor function for all view functions in the ap-
plication. These functions will be called before the before_request() func-
tions.

The function can modify the values captured from the matched url before
they are passed to the view. For example, this can be used to pop a common
language code value and place it in g rather than pass it to every view.

The function is passed the endpoint name and values dict. The return value
is ignored.

url_value_preprocessors = None
A dictionary with lists of functions that are called before the
before_request_funcs functions. The key of the dictionary is the name of
the blueprint this function is active for, or None for all requests. To register a
function, use url_value_preprocessor().

New in version 0.7.

2.1. API 221

http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Map
http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Rule

Flask Documentation, Release 0.13.dev

use_x_sendfile
Enable this if you want to use the X-Sendfile feature. Keep in mind that the
server has to support this. This only affects files sent with the send_file()
method.

New in version 0.2.

This attribute can also be configured from the config with the
USE_X_SENDFILE configuration key. Defaults to False.

view_functions = None
A dictionary of all view functions registered. The keys will be function
names which are also used to generate URLs and the values are the function
objects themselves. To register a view function, use the route() decorator.

wsgi_app(environ, start_response)
The actual WSGI application. This is not implemented in __call__() so that
middlewares can be applied without losing a reference to the app object.
Instead of doing this:

app = MyMiddleware(app)

It’s a better idea to do this instead:

app.wsgi_app = MyMiddleware(app.wsgi_app)

Then you still have the original application object around and can continue
to call methods on it.

Changed in version 0.7: Teardown events for the request and app contexts
are called even if an unhandled error occurs. Other events may not be called
depending on when an error occurs during dispatch. See Callbacks and Er-
rors.

Parameters

• environ – A WSGI environment.

• start_response – A callable accepting a status code, a list
of headers, and an optional exception context to start the re-
sponse.

2.1.2 Blueprint Objects

class flask.Blueprint(name, import_name, static_folder=None,
static_url_path=None, template_folder=None,
url_prefix=None, subdomain=None, url_defaults=None,
root_path=None)

Represents a blueprint. A blueprint is an object that records functions that will
be called with the BlueprintSetupState later to register functions or other things
on the main application. See Modular Applications with Blueprints for more infor-
mation.

222 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

New in version 0.7.

add_app_template_filter(f, name=None)
Register a custom template filter, available application wide. Like Flask.
add_template_filter() but for a blueprint. Works exactly like the
app_template_filter() decorator.

Parameters name – the optional name of the filter, otherwise the
function name will be used.

add_app_template_global(f, name=None)
Register a custom template global, available application wide. Like
Flask.add_template_global() but for a blueprint. Works exactly like the
app_template_global() decorator.

New in version 0.10.

Parameters name – the optional name of the global, otherwise the
function name will be used.

add_app_template_test(f, name=None)
Register a custom template test, available application wide. Like
Flask.add_template_test() but for a blueprint. Works exactly like the
app_template_test() decorator.

New in version 0.10.

Parameters name – the optional name of the test, otherwise the
function name will be used.

add_url_rule(rule, endpoint=None, view_func=None, **options)
Like Flask.add_url_rule() but for a blueprint. The endpoint for the
url_for() function is prefixed with the name of the blueprint.

after_app_request(f)
Like Flask.after_request() but for a blueprint. Such a function is executed
after each request, even if outside of the blueprint.

after_request(f)
Like Flask.after_request() but for a blueprint. This function is only exe-
cuted after each request that is handled by a function of that blueprint.

app_context_processor(f)
Like Flask.context_processor() but for a blueprint. Such a function is ex-
ecuted each request, even if outside of the blueprint.

app_errorhandler(code)
Like Flask.errorhandler() but for a blueprint. This handler is used for all
requests, even if outside of the blueprint.

app_template_filter(name=None)
Register a custom template filter, available application wide. Like Flask.
template_filter() but for a blueprint.

2.1. API 223

Flask Documentation, Release 0.13.dev

Parameters name – the optional name of the filter, otherwise the
function name will be used.

app_template_global(name=None)
Register a custom template global, available application wide. Like Flask.
template_global() but for a blueprint.

New in version 0.10.

Parameters name – the optional name of the global, otherwise the
function name will be used.

app_template_test(name=None)
Register a custom template test, available application wide. Like Flask.
template_test() but for a blueprint.

New in version 0.10.

Parameters name – the optional name of the test, otherwise the
function name will be used.

app_url_defaults(f)
Same as url_defaults() but application wide.

app_url_value_preprocessor(f)
Same as url_value_preprocessor() but application wide.

before_app_first_request(f)
Like Flask.before_first_request(). Such a function is executed before the
first request to the application.

before_app_request(f)
Like Flask.before_request(). Such a function is executed before each re-
quest, even if outside of a blueprint.

before_request(f)
Like Flask.before_request() but for a blueprint. This function is only exe-
cuted before each request that is handled by a function of that blueprint.

context_processor(f)
Like Flask.context_processor() but for a blueprint. This function is only
executed for requests handled by a blueprint.

endpoint(endpoint)
Like Flask.endpoint() but for a blueprint. This does not prefix the end-
point with the blueprint name, this has to be done explicitly by the user of
this method. If the endpoint is prefixed with a . it will be registered to the
current blueprint, otherwise it’s an application independent endpoint.

errorhandler(code_or_exception)
Registers an error handler that becomes active for this blueprint only. Please
be aware that routing does not happen local to a blueprint so an error han-
dler for 404 usually is not handled by a blueprint unless it is caused inside
a view function. Another special case is the 500 internal server error which
is always looked up from the application.

224 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

Otherwise works as the errorhandler() decorator of the Flask object.

get_send_file_max_age(filename)
Provides default cache_timeout for the send_file() functions.

By default, this function returns SEND_FILE_MAX_AGE_DEFAULT from the con-
figuration of current_app.

Static file functions such as send_from_directory() use this function,
and send_file() calls this function on current_app when the given
cache_timeout is None. If a cache_timeout is given in send_file(), that time-
out is used; otherwise, this method is called.

This allows subclasses to change the behavior when sending files based on
the filename. For example, to set the cache timeout for .js files to 60 seconds:

class MyFlask(flask.Flask):
def get_send_file_max_age(self, name):

if name.lower().endswith('.js'):
return 60

return flask.Flask.get_send_file_max_age(self, name)

New in version 0.9.

has_static_folder
This is True if the package bound object’s container has a folder for static
files.

New in version 0.5.

import_name = None
The name of the package or module that this app belongs to. Do not change
this once it is set by the constructor.

jinja_loader
The Jinja loader for this package bound object.

New in version 0.5.

json_decoder = None
Blueprint local JSON decoder class to use. Set to None to use the app’s
json_decoder.

json_encoder = None
Blueprint local JSON decoder class to use. Set to None to use the app’s
json_encoder.

make_setup_state(app, options, first_registration=False)
Creates an instance of BlueprintSetupState() object that is later passed to
the register callback functions. Subclasses can override this to return a sub-
class of the setup state.

open_resource(resource, mode=’rb’)
Opens a resource from the application’s resource folder. To see how this
works, consider the following folder structure:

2.1. API 225

Flask Documentation, Release 0.13.dev

/myapplication.py
/schema.sql
/static

/style.css
/templates

/layout.html
/index.html

If you want to open the schema.sql file you would do the following:

with app.open_resource('schema.sql') as f:
contents = f.read()
do_something_with(contents)

Parameters

• resource – the name of the resource. To access resources
within subfolders use forward slashes as separator.

• mode – resource file opening mode, default is ‘rb’.

record(func)
Registers a function that is called when the blueprint is registered on the
application. This function is called with the state as argument as returned
by the make_setup_state() method.

record_once(func)
Works like record() but wraps the function in another function that will
ensure the function is only called once. If the blueprint is registered a second
time on the application, the function passed is not called.

register(app, options, first_registration=False)
Called by Flask.register_blueprint() to register all views and call-
backs registered on the blueprint with the application. Creates a
BlueprintSetupState and calls each record() callback with it.

Parameters

• app – The application this blueprint is being registered with.

• options – Keyword arguments forwarded from
register_blueprint().

• first_registration – Whether this is the first time this
blueprint has been registered on the application.

register_error_handler(code_or_exception, f)
Non-decorator version of the errorhandler() error attach function, akin to
the register_error_handler() application-wide function of the Flask ob-
ject but for error handlers limited to this blueprint.

New in version 0.11.

226 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

root_path = None
Absolute path to the package on the filesystem. Used to look up resources
contained in the package.

route(rule, **options)
Like Flask.route() but for a blueprint. The endpoint for the url_for()
function is prefixed with the name of the blueprint.

send_static_file(filename)
Function used internally to send static files from the static folder to the
browser.

New in version 0.5.

static_folder
The absolute path to the configured static folder.

static_url_path
The URL prefix that the static route will be registered for.

teardown_app_request(f)
Like Flask.teardown_request() but for a blueprint. Such a function is exe-
cuted when tearing down each request, even if outside of the blueprint.

teardown_request(f)
Like Flask.teardown_request() but for a blueprint. This function is
only executed when tearing down requests handled by a function of that
blueprint. Teardown request functions are executed when the request con-
text is popped, even when no actual request was performed.

template_folder = None
Location of the template files to be added to the template lookup. None if
templates should not be added.

url_defaults(f)
Callback function for URL defaults for this blueprint. It’s called with the
endpoint and values and should update the values passed in place.

url_value_preprocessor(f)
Registers a function as URL value preprocessor for this blueprint. It’s called
before the view functions are called and can modify the url values provided.

2.1.3 Incoming Request Data

class flask.Request(environ, populate_request=True, shallow=False)
The request object used by default in Flask. Remembers the matched endpoint
and view arguments.

It is what ends up as request. If you want to replace the request object used you
can subclass this and set request_class to your subclass.

The request object is a Request subclass and provides all of the attributes
Werkzeug defines plus a few Flask specific ones.

2.1. API 227

http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.Request

Flask Documentation, Release 0.13.dev

environ
The underlying WSGI environment.

path

full_path

script_root

url

base_url

url_root
Provides different ways to look at the current IRI. Imagine your application
is listening on the following application root:

http://www.example.com/myapplication

And a user requests the following URI:

http://www.example.com/myapplication/%CF%80/page.html?x=y

In this case the values of the above mentioned attributes would be the fol-
lowing:

path u'/π/page.html'
full_path u'/π/page.html?x=y'
script_root u'/myapplication'
base_url u'http://www.example.com/myapplication/π/page.html'
url u'http://www.example.com/myapplication/π/page.html?

x=y'
url_root u'http://www.example.com/myapplication/'

accept_charsets
List of charsets this client supports as CharsetAccept object.

accept_encodings
List of encodings this client accepts. Encodings in a HTTP term are compres-
sion encodings such as gzip. For charsets have a look at accept_charset.

accept_languages
List of languages this client accepts as LanguageAccept object.

accept_mimetypes
List of mimetypes this client supports as MIMEAccept object.

access_route
If a forwarded header exists this is a list of all ip addresses from the client
ip to the last proxy server.

application(f)
Decorate a function as responder that accepts the request as first argument.
This works like the responder() decorator but the function is passed the

228 Chapter 2. API Reference

http://tools.ietf.org/html/rfc3987
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.CharsetAccept
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.LanguageAccept
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.MIMEAccept

Flask Documentation, Release 0.13.dev

request object as first argument and the request object will be closed auto-
matically:

@Request.application
def my_wsgi_app(request):

return Response('Hello World!')

As of Werkzeug 0.14 HTTP exceptions are automatically caught and con-
verted to responses instead of failing.

Parameters f – the WSGI callable to decorate

Returns a new WSGI callable

args
The parsed URL parameters (the part in the URL after the question mark).

By default an ImmutableMultiDict is returned from this function. This can
be changed by setting parameter_storage_class to a different type. This
might be necessary if the order of the form data is important.

authorization
The Authorization object in parsed form.

base_url
Like url but without the querystring See also: trusted_hosts.

blueprint
The name of the current blueprint

cache_control
A RequestCacheControl object for the incoming cache control headers.

close()
Closes associated resources of this request object. This closes all file handles
explicitly. You can also use the request object in a with statement which will
automatically close it.

New in version 0.9.

content_encoding
The Content-Encoding entity-header field is used as a modifier to the
media-type. When present, its value indicates what additional content cod-
ings have been applied to the entity-body, and thus what decoding mecha-
nisms must be applied in order to obtain the media-type referenced by the
Content-Type header field.

New in version 0.9.

content_length
The Content-Length entity-header field indicates the size of the entity-body
in bytes or, in the case of the HEAD method, the size of the entity-body that
would have been sent had the request been a GET.

content_md5

2.1. API 229

http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.ImmutableMultiDict
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.RequestCacheControl

Flask Documentation, Release 0.13.dev

The Content-MD5 entity-header field, as defined in RFC 1864, is an
MD5 digest of the entity-body for the purpose of providing an end-
to-end message integrity check (MIC) of the entity-body. (Note:
a MIC is good for detecting accidental modification of the entity-
body in transit, but is not proof against malicious attacks.)

New in version 0.9.

content_type
The Content-Type entity-header field indicates the media type of the entity-
body sent to the recipient or, in the case of the HEAD method, the media
type that would have been sent had the request been a GET.

cookies
A dict with the contents of all cookies transmitted with the request.

data
Contains the incoming request data as string in case it came with a mime-
type Werkzeug does not handle.

date
The Date general-header field represents the date and time at which the
message was originated, having the same semantics as orig-date in RFC
822.

dict_storage_class
alias of ImmutableTypeConversionDict

endpoint
The endpoint that matched the request. This in combination with view_args
can be used to reconstruct the same or a modified URL. If an exception
happened when matching, this will be None.

files
MultiDict object containing all uploaded files. Each key in files is the
name from the <input type="file" name="">. Each value in files is a
Werkzeug FileStorage object.

It basically behaves like a standard file object you know from Python, with
the difference that it also has a save() function that can store the file on the
filesystem.

Note that files will only contain data if the request method was
POST, PUT or PATCH and the <form> that posted to the request had
enctype="multipart/form-data". It will be empty otherwise.

See the MultiDict / FileStorage documentation for more details about the
used data structure.

form
The form parameters. By default an ImmutableMultiDict is returned from
this function. This can be changed by setting parameter_storage_class to
a different type. This might be necessary if the order of the form data is
important.

230 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.MultiDict
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.FileStorage
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.FileStorage.save
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.MultiDict
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.FileStorage
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.ImmutableMultiDict

Flask Documentation, Release 0.13.dev

Please keep in mind that file uploads will not end up here, but instead in
the files attribute.

Changed in version 0.9: Previous to Werkzeug 0.9 this would only contain
form data for POST and PUT requests.

form_data_parser_class
alias of FormDataParser

from_values(*args, **kwargs)
Create a new request object based on the values provided. If environ is
given missing values are filled from there. This method is useful for small
scripts when you need to simulate a request from an URL. Do not use this
method for unittesting, there is a full featured client object (Client) that
allows to create multipart requests, support for cookies etc.

This accepts the same options as the EnvironBuilder.

Changed in version 0.5: This method now accepts the same arguments as
EnvironBuilder. Because of this the environ parameter is now called envi-
ron_overrides.

Returns request object

full_path
Requested path as unicode, including the query string.

get_data(cache=True, as_text=False, parse_form_data=False)
This reads the buffered incoming data from the client into one bytestring.
By default this is cached but that behavior can be changed by setting cache
to False.

Usually it’s a bad idea to call this method without checking the content
length first as a client could send dozens of megabytes or more to cause
memory problems on the server.

Note that if the form data was already parsed this method will not return
anything as form data parsing does not cache the data like this method does.
To implicitly invoke form data parsing function set parse_form_data to True.
When this is done the return value of this method will be an empty string
if the form parser handles the data. This generally is not necessary as if
the whole data is cached (which is the default) the form parser will used
the cached data to parse the form data. Please be generally aware of check-
ing the content length first in any case before calling this method to avoid
exhausting server memory.

If as_text is set to True the return value will be a decoded unicode string.

New in version 0.9.

get_json(force=False, silent=False, cache=True)
Parse and return the data as JSON. If the mimetype does not indicate JSON
(application/json, see is_json()), this returns None unless force is true.

2.1. API 231

http://werkzeug.pocoo.org/docs/test/#werkzeug.test.EnvironBuilder
http://werkzeug.pocoo.org/docs/test/#werkzeug.test.EnvironBuilder

Flask Documentation, Release 0.13.dev

If parsing fails, on_json_loading_failed() is called and its return value is
used as the return value.

Parameters

• force – Ignore the mimetype and always try to parse JSON.

• silent – Silence parsing errors and return None instead.

• cache – Store the parsed JSON to return for subsequent calls.

headers
The headers from the WSGI environ as immutable EnvironHeaders.

host
Just the host including the port if available. See also: trusted_hosts.

host_url
Just the host with scheme as IRI. See also: trusted_hosts.

if_match
An object containing all the etags in the If-Match header.

Return type ETags

if_modified_since
The parsed If-Modified-Since header as datetime object.

if_none_match
An object containing all the etags in the If-None-Match header.

Return type ETags

if_range
The parsed If-Range header.

New in version 0.7.

Return type IfRange

if_unmodified_since
The parsed If-Unmodified-Since header as datetime object.

is_json
Check if the mimetype indicates JSON data, either application/json or
application/*+json.

New in version 0.11.

is_multiprocess
boolean that is True if the application is served by a WSGI server that
spawns multiple processes.

is_multithread
boolean that is True if the application is served by a multithreaded WSGI
server.

232 Chapter 2. API Reference

http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.EnvironHeaders
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.ETags
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.ETags
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.IfRange

Flask Documentation, Release 0.13.dev

is_run_once
boolean that is True if the application will be executed only once in a process
lifetime. This is the case for CGI for example, but it’s not guaranteed that
the execution only happens one time.

is_secure
True if the request is secure.

is_xhr
True if the request was triggered via a JavaScript XMLHttpRequest. This
only works with libraries that support the X-Requested-With header and
set it to “XMLHttpRequest”. Libraries that do that are prototype, jQuery
and Mochikit and probably some more.

Deprecated since version 0.13: X-Requested-With is not standard and is un-
reliable.

json
This will contain the parsed JSON data if the mimetype indicates JSON
(application/json, see is_json()), otherwise it will be None.

list_storage_class
alias of ImmutableList

make_form_data_parser()
Creates the form data parser. Instantiates the form_data_parser_class with
some parameters.

New in version 0.8.

max_content_length
Read-only view of the MAX_CONTENT_LENGTH config key.

max_forwards
The Max-Forwards request-header field provides a mechanism with the
TRACE and OPTIONS methods to limit the number of proxies or gateways
that can forward the request to the next inbound server.

method
The request method. (For example 'GET' or 'POST').

mimetype
Like content_type, but without parameters (eg, without charset, type etc.)
and always lowercase. For example if the content type is text/HTML;
charset=utf-8 the mimetype would be 'text/html'.

mimetype_params
The mimetype parameters as dict. For example if the content type is text/
html; charset=utf-8 the params would be {'charset': 'utf-8'}.

on_json_loading_failed(e)
Called if get_json() parsing fails and isn’t silenced. If this method returns
a value, it is used as the return value for get_json(). The default imple-
mentation raises a BadRequest exception.

2.1. API 233

Flask Documentation, Release 0.13.dev

Changed in version 0.10: Raise a BadRequest error instead of returning an
error message as JSON. If you want that behavior you can add it by sub-
classing.

New in version 0.8.

parameter_storage_class
alias of ImmutableMultiDict

path
Requested path as unicode. This works a bit like the regular path info in the
WSGI environment but will always include a leading slash, even if the URL
root is accessed.

pragma
The Pragma general-header field is used to include implementation-specific
directives that might apply to any recipient along the request/response
chain. All pragma directives specify optional behavior from the viewpoint
of the protocol; however, some systems MAY require that behavior be con-
sistent with the directives.

query_string
The URL parameters as raw bytestring.

range
The parsed Range header.

New in version 0.7.

Return type Range

referrer
The Referer[sic] request-header field allows the client to specify, for the
server’s benefit, the address (URI) of the resource from which the Request-
URI was obtained (the “referrer”, although the header field is misspelled).

remote_addr
The remote address of the client.

remote_user
If the server supports user authentication, and the script is protected, this
attribute contains the username the user has authenticated as.

routing_exception = None
If matching the URL failed, this is the exception that will be raised / was
raised as part of the request handling. This is usually a NotFound exception
or something similar.

scheme
URL scheme (http or https).

New in version 0.7.

script_root
The root path of the script without the trailing slash.

234 Chapter 2. API Reference

http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.Range
http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.NotFound

Flask Documentation, Release 0.13.dev

stream
If the incoming form data was not encoded with a known mimetype the
data is stored unmodified in this stream for consumption. Most of the time
it is a better idea to use data which will give you that data as a string. The
stream only returns the data once.

Unlike input_stream this stream is properly guarded that you can’t acci-
dentally read past the length of the input. Werkzeug will internally always
refer to this stream to read data which makes it possible to wrap this object
with a stream that does filtering.

Changed in version 0.9: This stream is now always available but might be
consumed by the form parser later on. Previously the stream was only set
if no parsing happened.

url
The reconstructed current URL as IRI. See also: trusted_hosts.

url_charset
The charset that is assumed for URLs. Defaults to the value of charset.

New in version 0.6.

url_root
The full URL root (with hostname), this is the application root as IRI. See
also: trusted_hosts.

url_rule = None
The internal URL rule that matched the request. This can be use-
ful to inspect which methods are allowed for the URL from a be-
fore/after handler (request.url_rule.methods) etc. Though if the re-
quest’s method was invalid for the URL rule, the valid list is available in
routing_exception.valid_methods instead (an attribute of the Werkzeug
exception MethodNotAllowed) because the request was never internally
bound.

New in version 0.6.

user_agent
The current user agent.

values
A werkzeug.datastructures.CombinedMultiDict that combines args and
form.

view_args = None
A dict of view arguments that matched the request. If an exception hap-
pened when matching, this will be None.

want_form_data_parsed
Returns True if the request method carries content. As of Werkzeug 0.9 this
will be the case if a content type is transmitted.

New in version 0.8.

2.1. API 235

http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.MethodNotAllowed
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.CombinedMultiDict

Flask Documentation, Release 0.13.dev

flask.request
To access incoming request data, you can use the global request object. Flask
parses incoming request data for you and gives you access to it through that
global object. Internally Flask makes sure that you always get the correct data
for the active thread if you are in a multithreaded environment.

This is a proxy. See Notes On Proxies for more information.

The request object is an instance of a Request subclass and provides all of the
attributes Werkzeug defines. This just shows a quick overview of the most im-
portant ones.

2.1.4 Response Objects

class flask.Response(response=None, status=None, headers=None, mime-
type=None, content_type=None, direct_passthrough=False)

The response object that is used by default in Flask. Works like the response
object from Werkzeug but is set to have an HTML mimetype by default. Quite
often you don’t have to create this object yourself because make_response() will
take care of that for you.

If you want to replace the response object used you can subclass this and set
response_class to your subclass.

Changed in version 1.0: JSON support is added to the response, like the request.
This is useful when testing to get the test client response data as JSON.

Changed in version 1.0: Added max_cookie_size.

headers
A Headers object representing the response headers.

status
A string with a response status.

status_code
The response status as integer.

data
A descriptor that calls get_data() and set_data(). This should not be used
and will eventually get deprecated.

get_json(force=False, silent=False, cache=True)
Parse and return the data as JSON. If the mimetype does not indicate JSON
(application/json, see is_json()), this returns None unless force is true.
If parsing fails, on_json_loading_failed() is called and its return value is
used as the return value.

Parameters

• force – Ignore the mimetype and always try to parse JSON.

• silent – Silence parsing errors and return None instead.

236 Chapter 2. API Reference

http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.Request
http://werkzeug.pocoo.org/docs/datastructures/#werkzeug.datastructures.Headers

Flask Documentation, Release 0.13.dev

• cache – Store the parsed JSON to return for subsequent calls.

is_json
Check if the mimetype indicates JSON data, either application/json or
application/*+json.

New in version 0.11.

max_cookie_size
Read-only view of the MAX_COOKIE_SIZE config key.

See max_cookie_size in Werkzeug’s docs.

mimetype
The mimetype (content type without charset etc.)

set_cookie(key, value=”, max_age=None, expires=None, path=’/’, do-
main=None, secure=False, httponly=False, samesite=None)

Sets a cookie. The parameters are the same as in the cookie Morsel object in
the Python standard library but it accepts unicode data, too.

A warning is raised if the size of the cookie header exceeds
max_cookie_size, but the header will still be set.

Parameters

• key – the key (name) of the cookie to be set.

• value – the value of the cookie.

• max_age – should be a number of seconds, or None (default)
if the cookie should last only as long as the client’s browser
session.

• expires – should be a datetime object or UNIX timestamp.

• path – limits the cookie to a given path, per default it will
span the whole domain.

• domain – if you want to set a cross-domain cookie. For exam-
ple, domain=".example.com" will set a cookie that is readable
by the domain www.example.com, foo.example.com etc. Oth-
erwise, a cookie will only be readable by the domain that set
it.

• secure – If True, the cookie will only be available via HTTPS

• httponly – disallow JavaScript to access the cookie. This is an
extension to the cookie standard and probably not supported
by all browsers.

• samesite – Limits the scope of the cookie such that it will only
be attached to requests if those requests are “same-site”.

2.1. API 237

http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.BaseResponse.max_cookie_size

Flask Documentation, Release 0.13.dev

2.1.5 Sessions

If you have set Flask.secret_key (or configured it from SECRET_KEY) you can use ses-
sions in Flask applications. A session makes it possible to remember information from
one request to another. The way Flask does this is by using a signed cookie. The user
can look at the session contents, but can’t modify it unless they know the secret key,
so make sure to set that to something complex and unguessable.

To access the current session you can use the session object:

class flask.session
The session object works pretty much like an ordinary dict, with the difference
that it keeps track on modifications.

This is a proxy. See Notes On Proxies for more information.

The following attributes are interesting:

new
True if the session is new, False otherwise.

modified
True if the session object detected a modification. Be advised that modifica-
tions on mutable structures are not picked up automatically, in that situation
you have to explicitly set the attribute to True yourself. Here an example:

this change is not picked up because a mutable object (here
a list) is changed.
session['objects'].append(42)
so mark it as modified yourself
session.modified = True

permanent
If set to True the session lives for permanent_session_lifetime seconds. The
default is 31 days. If set to False (which is the default) the session will be
deleted when the user closes the browser.

2.1.6 Session Interface

New in version 0.8.

The session interface provides a simple way to replace the session implementation that
Flask is using.

class flask.sessions.SessionInterface
The basic interface you have to implement in order to replace the default session
interface which uses werkzeug’s securecookie implementation. The only meth-
ods you have to implement are open_session() and save_session(), the others
have useful defaults which you don’t need to change.

The session object returned by the open_session() method has to provide a dic-
tionary like interface plus the properties and methods from the SessionMixin.

238 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

We recommend just subclassing a dict and adding that mixin:

class Session(dict, SessionMixin):
pass

If open_session() returns None Flask will call into make_null_session() to create
a session that acts as replacement if the session support cannot work because
some requirement is not fulfilled. The default NullSession class that is created
will complain that the secret key was not set.

To replace the session interface on an application all you have to do is to assign
flask.Flask.session_interface:

app = Flask(__name__)
app.session_interface = MySessionInterface()

New in version 0.8.

get_cookie_domain(app)
Returns the domain that should be set for the session cookie.

Uses SESSION_COOKIE_DOMAIN if it is configured, otherwise falls back to de-
tecting the domain based on SERVER_NAME.

Once detected (or if not set at all), SESSION_COOKIE_DOMAIN is updated to
avoid re-running the logic.

get_cookie_httponly(app)
Returns True if the session cookie should be httponly. This currently just
returns the value of the SESSION_COOKIE_HTTPONLY config var.

get_cookie_path(app)
Returns the path for which the cookie should be valid. The default imple-
mentation uses the value from the SESSION_COOKIE_PATH config var if it’s set,
and falls back to APPLICATION_ROOT or uses / if it’s None.

get_cookie_samesite(app)
Return 'Strict' or 'Lax' if the cookie should use the SameSite attribute.
This currently just returns the value of the SESSION_COOKIE_SAMESITE set-
ting.

get_cookie_secure(app)
Returns True if the cookie should be secure. This currently just returns the
value of the SESSION_COOKIE_SECURE setting.

get_expiration_time(app, session)
A helper method that returns an expiration date for the session or None if the
session is linked to the browser session. The default implementation returns
now + the permanent session lifetime configured on the application.

is_null_session(obj)
Checks if a given object is a null session. Null sessions are not asked to be
saved.

2.1. API 239

Flask Documentation, Release 0.13.dev

This checks if the object is an instance of null_session_class by default.

make_null_session(app)
Creates a null session which acts as a replacement object if the real session
support could not be loaded due to a configuration error. This mainly aids
the user experience because the job of the null session is to still support
lookup without complaining but modifications are answered with a helpful
error message of what failed.

This creates an instance of null_session_class by default.

null_session_class
make_null_session() will look here for the class that should be created
when a null session is requested. Likewise the is_null_session() method
will perform a typecheck against this type.

alias of NullSession

open_session(app, request)
This method has to be implemented and must either return None in case
the loading failed because of a configuration error or an instance of a ses-
sion object which implements a dictionary like interface + the methods and
attributes on SessionMixin.

pickle_based = False
A flag that indicates if the session interface is pickle based. This can be used
by Flask extensions to make a decision in regards to how to deal with the
session object.

New in version 0.10.

save_session(app, session, response)
This is called for actual sessions returned by open_session() at the end of
the request. This is still called during a request context so if you absolutely
need access to the request you can do that.

should_set_cookie(app, session)
Used by session backends to determine if a Set-Cookie header should
be set for this session cookie for this response. If the session has
been modified, the cookie is set. If the session is permanent and the
SESSION_REFRESH_EACH_REQUEST config is true, the cookie is always set.

This check is usually skipped if the session was deleted.

New in version 0.11.

class flask.sessions.SecureCookieSessionInterface
The default session interface that stores sessions in signed cookies through the
itsdangerous module.

static digest_method()
the hash function to use for the signature. The default is sha1

key_derivation = 'hmac'
the name of the itsdangerous supported key derivation. The default is

240 Chapter 2. API Reference

https://pythonhosted.org/itsdangerous/index.html#module-itsdangerous

Flask Documentation, Release 0.13.dev

hmac.

salt = 'cookie-session'
the salt that should be applied on top of the secret key for the signing of
cookie based sessions.

serializer = <flask.json.tag.TaggedJSONSerializer object>
A python serializer for the payload. The default is a compact JSON derived
serializer with support for some extra Python types such as datetime objects
or tuples.

session_class
alias of SecureCookieSession

class flask.sessions.SecureCookieSession(initial=None)
Base class for sessions based on signed cookies.

This session backend will set the modified and accessed attributes. It cannot
reliably track whether a session is new (vs. empty), so new remains hard coded
to False.

accessed = False
When data is read or written, this is set to True. Used by header, which
allows caching proxies to cache different pages for different users.

modified = False
When data is changed, this is set to True. Only the session dictionary itself is
tracked; if the session contains mutable data (for example a nested dict) then
this must be set to True manually when modifying that data. The session
cookie will only be written to the response if this is True.

class flask.sessions.NullSession(initial=None)
Class used to generate nicer error messages if sessions are not available. Will still
allow read-only access to the empty session but fail on setting.

class flask.sessions.SessionMixin
Expands a basic dictionary with session attributes.

accessed = True
Some implementations can detect when session data is read or written and
set this when that happens. The mixin default is hard coded to True.

modified = True
Some implementations can detect changes to the session and set this when
that happens. The mixin default is hard coded to True.

new = False
Some implementations can detect whether a session is newly created, but
that is not guaranteed. Use with caution. The mixin

permanent
This reflects the '_permanent' key in the dict.

Notice

2.1. API 241

Flask Documentation, Release 0.13.dev

The PERMANENT_SESSION_LIFETIME config key can also be an integer starting with Flask
0.8. Either catch this down yourself or use the permanent_session_lifetime attribute
on the app which converts the result to an integer automatically.

2.1.7 Test Client

class flask.testing.FlaskClient(*args, **kwargs)
Works like a regular Werkzeug test client but has some knowledge about how
Flask works to defer the cleanup of the request context stack to the end of a with
body when used in a with statement. For general information about how to use
this class refer to werkzeug.test.Client.

Changed in version 0.12: app.test_client() includes preset default environ-
ment, which can be set after instantiation of the app.test_client() object in
client.environ_base.

Basic usage is outlined in the Testing Flask Applications chapter.

session_transaction(*args, **kwargs)
When used in combination with a with statement this opens a session trans-
action. This can be used to modify the session that the test client uses. Once
the with block is left the session is stored back.

with client.session_transaction() as session:
session['value'] = 42

Internally this is implemented by going through a temporary test request
context and since session handling could depend on request variables this
function accepts the same arguments as test_request_context() which are
directly passed through.

2.1.8 Test CLI Runner

class flask.testing.FlaskCliRunner(app, **kwargs)
A CliRunner for testing a Flask app’s CLI commands. Typically created using
test_cli_runner(). See Testing CLI Commands.

invoke(cli=None, args=None, **kwargs)
Invokes a CLI command in an isolated environment. See CliRunner.invoke
for full method documentation. See Testing CLI Commands for examples.

If the obj argument is not given, passes an instance of ScriptInfo that
knows how to load the Flask app being tested.

Parameters

• cli – Command object to invoke. Default is the app’s cli
group.

• args – List of strings to invoke the command with.

242 Chapter 2. API Reference

http://werkzeug.pocoo.org/docs/test/#werkzeug.test.Client
http://click.pocoo.org/api/#click.testing.CliRunner
http://click.pocoo.org/api/#click.testing.CliRunner.invoke

Flask Documentation, Release 0.13.dev

Returns a Result object.

2.1.9 Application Globals

To share data that is valid for one request only from one function to another, a global
variable is not good enough because it would break in threaded environments. Flask
provides you with a special object that ensures it is only valid for the active request
and that will return different values for each request. In a nutshell: it does the right
thing, like it does for request and session.

flask.g
A namespace object that can store data during an application context. This is an in-
stance of Flask.app_ctx_globals_class, which defaults to ctx._AppCtxGlobals.

This is a good place to store resources during a request. During testing, you can
use the Faking Resources and Context pattern to pre-configure such resources.

This is a proxy. See Notes On Proxies for more information.

Changed in version 0.10: Bound to the application context instead of the request
context.

class flask.ctx._AppCtxGlobals
A plain object. Used as a namespace for storing data during an application con-
text.

Creating an app context automatically creates this object, which is made avail-
able as the g proxy.

'key' in g
Check whether an attribute is present.

New in version 0.10.

iter(g)
Return an iterator over the attribute names.

New in version 0.10.

get(name, default=None)
Get an attribute by name, or a default value. Like dict.get().

Parameters

• name – Name of attribute to get.

• default – Value to return if the attribute is not present.

New in version 0.10.

pop(name, default=<object object>)
Get and remove an attribute by name. Like dict.pop().

Parameters

• name – Name of attribute to pop.

2.1. API 243

http://click.pocoo.org/api/#click.testing.Result
https://docs.python.org/3/library/stdtypes.html#dict.get
https://docs.python.org/3/library/stdtypes.html#dict.pop

Flask Documentation, Release 0.13.dev

• default – Value to return if the attribute is not present, in-
stead of raise a KeyError.

New in version 0.11.

setdefault(name, default=None)
Get the value of an attribute if it is present, otherwise set and return a de-
fault value. Like dict.setdefault().

Parameters name – Name of attribute to get.

Param default: Value to set and return if the attribute is not
present.

New in version 0.11.

2.1.10 Useful Functions and Classes

flask.current_app
A proxy to the application handling the current request. This is useful to access
the application without needing to import it, or if it can’t be imported, such as
when using the application factory pattern or in blueprints and extensions.

This is only available when an application context is pushed. This happens au-
tomatically during requests and CLI commands. It can be controlled manually
with app_context().

This is a proxy. See Notes On Proxies for more information.

flask.has_request_context()
If you have code that wants to test if a request context is there or not this function
can be used. For instance, you may want to take advantage of request informa-
tion if the request object is available, but fail silently if it is unavailable.

class User(db.Model):

def __init__(self, username, remote_addr=None):
self.username = username
if remote_addr is None and has_request_context():

remote_addr = request.remote_addr
self.remote_addr = remote_addr

Alternatively you can also just test any of the context bound objects (such as
request or g for truthness):

class User(db.Model):

def __init__(self, username, remote_addr=None):
self.username = username
if remote_addr is None and request:

remote_addr = request.remote_addr
self.remote_addr = remote_addr

244 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#dict.setdefault

Flask Documentation, Release 0.13.dev

New in version 0.7.

flask.copy_current_request_context(f)
A helper function that decorates a function to retain the current request context.
This is useful when working with greenlets. The moment the function is deco-
rated a copy of the request context is created and then pushed when the function
is called.

Example:

import gevent
from flask import copy_current_request_context

@app.route('/')
def index():

@copy_current_request_context
def do_some_work():

do some work here, it can access flask.request like you
would otherwise in the view function.
...

gevent.spawn(do_some_work)
return 'Regular response'

New in version 0.10.

flask.has_app_context()
Works like has_request_context() but for the application context. You can also
just do a boolean check on the current_app object instead.

New in version 0.9.

flask.url_for(endpoint, **values)
Generates a URL to the given endpoint with the method provided.

Variable arguments that are unknown to the target endpoint are appended to the
generated URL as query arguments. If the value of a query argument is None, the
whole pair is skipped. In case blueprints are active you can shortcut references
to the same blueprint by prefixing the local endpoint with a dot (.).

This will reference the index function local to the current blueprint:

url_for('.index')

For more information, head over to the Quickstart.

To integrate applications, Flask has a hook to intercept URL build errors through
Flask.url_build_error_handlers. The url_for function results in a BuildError
when the current app does not have a URL for the given endpoint and values.
When it does, the current_app calls its url_build_error_handlers if it is not
None, which can return a string to use as the result of url_for (instead of url_for’s
default to raise the BuildError exception) or re-raise the exception. An example:

2.1. API 245

Flask Documentation, Release 0.13.dev

def external_url_handler(error, endpoint, values):
"Looks up an external URL when `url_for` cannot build a URL."
This is an example of hooking the build_error_handler.
Here, lookup_url is some utility function you've built
which looks up the endpoint in some external URL registry.
url = lookup_url(endpoint, **values)
if url is None:

External lookup did not have a URL.
Re-raise the BuildError, in context of original traceback.
exc_type, exc_value, tb = sys.exc_info()
if exc_value is error:

raise exc_type, exc_value, tb
else:

raise error
url_for will use this result, instead of raising BuildError.
return url

app.url_build_error_handlers.append(external_url_handler)

Here, error is the instance of BuildError, and endpoint and values are the argu-
ments passed into url_for. Note that this is for building URLs outside the current
application, and not for handling 404 NotFound errors.

New in version 0.10: The _scheme parameter was added.

New in version 0.9: The _anchor and _method parameters were added.

New in version 0.9: Calls Flask.handle_build_error() on BuildError.

Parameters

• endpoint – the endpoint of the URL (name of the function)

• values – the variable arguments of the URL rule

• _external – if set to True, an absolute URL is generated. Server
address can be changed via SERVER_NAME configuration variable
which defaults to localhost.

• _scheme – a string specifying the desired URL scheme. The _ex-
ternal parameter must be set to True or a ValueError is raised.
The default behavior uses the same scheme as the current re-
quest, or PREFERRED_URL_SCHEME from the app configuration if no
request context is available. As of Werkzeug 0.10, this also can
be set to an empty string to build protocol-relative URLs.

• _anchor – if provided this is added as anchor to the URL.

• _method – if provided this explicitly specifies an HTTP method.

flask.abort(status, *args, **kwargs)
Raises an HTTPException for the given status code or WSGI application:

246 Chapter 2. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError

Flask Documentation, Release 0.13.dev

abort(404) # 404 Not Found
abort(Response('Hello World'))

Can be passed a WSGI application or a status code. If a status code is given it’s
looked up in the list of exceptions and will raise that exception, if passed a WSGI
application it will wrap it in a proxy WSGI exception and raise that:

abort(404)
abort(Response('Hello World'))

flask.redirect(location, code=302, Response=None)
Returns a response object (a WSGI application) that, if called, redirects the client
to the target location. Supported codes are 301, 302, 303, 305, and 307. 300 is not
supported because it’s not a real redirect and 304 because it’s the answer for a
request with a request with defined If-Modified-Since headers.

New in version 0.6: The location can now be a unicode string that is encoded
using the iri_to_uri() function.

New in version 0.10: The class used for the Response object can now be passed
in.

Parameters

• location – the location the response should redirect to.

• code – the redirect status code. defaults to 302.

• Response (class) – a Response class to use when instantiating
a response. The default is werkzeug.wrappers.Response if un-
specified.

flask.make_response(*args)
Sometimes it is necessary to set additional headers in a view. Because views
do not have to return response objects but can return a value that is converted
into a response object by Flask itself, it becomes tricky to add headers to it. This
function can be called instead of using a return and you will get a response object
which you can use to attach headers.

If view looked like this and you want to add a new header:

def index():
return render_template('index.html', foo=42)

You can now do something like this:

def index():
response = make_response(render_template('index.html', foo=42))
response.headers['X-Parachutes'] = 'parachutes are cool'
return response

This function accepts the very same arguments you can return from a view func-
tion. This for example creates a response with a 404 error code:

2.1. API 247

http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.Response

Flask Documentation, Release 0.13.dev

response = make_response(render_template('not_found.html'), 404)

The other use case of this function is to force the return value of a view function
into a response which is helpful with view decorators:

response = make_response(view_function())
response.headers['X-Parachutes'] = 'parachutes are cool'

Internally this function does the following things:

• if no arguments are passed, it creates a new response argument

• if one argument is passed, flask.Flask.make_response() is invoked with
it.

• if more than one argument is passed, the arguments are passed to the flask.
Flask.make_response() function as tuple.

New in version 0.6.

flask.after_this_request(f)
Executes a function after this request. This is useful to modify response objects.
The function is passed the response object and has to return the same or a new
one.

Example:

@app.route('/')
def index():

@after_this_request
def add_header(response):

response.headers['X-Foo'] = 'Parachute'
return response

return 'Hello World!'

This is more useful if a function other than the view function wants to modify
a response. For instance think of a decorator that wants to add some headers
without converting the return value into a response object.

New in version 0.9.

flask.send_file(filename_or_fp, mimetype=None, as_attachment=False, attach-
ment_filename=None, add_etags=True, cache_timeout=None, con-
ditional=False, last_modified=None)

Sends the contents of a file to the client. This will use the most efficient
method available and configured. By default it will try to use the WSGI
server’s file_wrapper support. Alternatively you can set the application’s
use_x_sendfile attribute to True to directly emit an X-Sendfile header. This
however requires support of the underlying webserver for X-Sendfile.

By default it will try to guess the mimetype for you, but you can also explicitly
provide one. For extra security you probably want to send certain files as at-
tachment (HTML for instance). The mimetype guessing requires a filename or an

248 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

attachment_filename to be provided.

ETags will also be attached automatically if a filename is provided. You can turn
this off by setting add_etags=False.

If conditional=True and filename is provided, this method will try to upgrade the
response stream to support range requests. This will allow the request to be
answered with partial content response.

Please never pass filenames to this function from user sources; you should use
send_from_directory() instead.

New in version 0.2.

New in version 0.5: The add_etags, cache_timeout and conditional parameters were
added. The default behavior is now to attach etags.

Changed in version 0.7: mimetype guessing and etag support for file objects was
deprecated because it was unreliable. Pass a filename if you are able to, otherwise
attach an etag yourself. This functionality will be removed in Flask 1.0

Changed in version 0.9: cache_timeout pulls its default from application config,
when None.

Changed in version 0.12: The filename is no longer automatically inferred from
file objects. If you want to use automatic mimetype and etag support, pass a
filepath via filename_or_fp or attachment_filename.

Changed in version 0.12: The attachment_filename is preferred over filename for
MIME-type detection.

Changed in version 0.13: UTF-8 filenames, as specified in RFC 2231, are sup-
ported.

Parameters

• filename_or_fp – the filename of the file to send. This is rel-
ative to the root_path if a relative path is specified. Alterna-
tively a file object might be provided in which case X-Sendfile
might not work and fall back to the traditional method. Make
sure that the file pointer is positioned at the start of data to
send before calling send_file().

• mimetype – the mimetype of the file if provided. If a file path is
given, auto detection happens as fallback, otherwise an error
will be raised.

• as_attachment – set to True if you want to send this file with a
Content-Disposition: attachment header.

• attachment_filename – the filename for the attachment if it dif-
fers from the file’s filename.

• add_etags – set to False to disable attaching of etags.

• conditional – set to True to enable conditional responses.

2.1. API 249

https://tools.ietf.org/html/rfc2231#section-4

Flask Documentation, Release 0.13.dev

• cache_timeout – the timeout in seconds for the headers. When
None (default), this value is set by get_send_file_max_age() of
current_app.

• last_modified – set the Last-Modified header to this value, a
datetime or timestamp. If a file was passed, this overrides its
mtime.

flask.send_from_directory(directory, filename, **options)
Send a file from a given directory with send_file(). This is a secure way to
quickly expose static files from an upload folder or something similar.

Example usage:

@app.route('/uploads/<path:filename>')
def download_file(filename):

return send_from_directory(app.config['UPLOAD_FOLDER'],
filename, as_attachment=True)

Sending files and Performance

It is strongly recommended to activate either X-Sendfile support in your web-
server or (if no authentication happens) to tell the webserver to serve files for
the given path on its own without calling into the web application for improved
performance.

New in version 0.5.

Parameters

• directory – the directory where all the files are stored.

• filename – the filename relative to that directory to download.

• options – optional keyword arguments that are directly for-
warded to send_file().

flask.safe_join(directory, *pathnames)
Safely join directory and zero or more untrusted pathnames components.

Example usage:

@app.route('/wiki/<path:filename>')
def wiki_page(filename):

filename = safe_join(app.config['WIKI_FOLDER'], filename)
with open(filename, 'rb') as fd:

content = fd.read() # Read and process the file content...

Parameters

• directory – the trusted base directory.

• pathnames – the untrusted pathnames relative to that directory.

250 Chapter 2. API Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime

Flask Documentation, Release 0.13.dev

Raises NotFound if one or more passed paths fall out of its boundaries.

flask.escape(s) → markup
Convert the characters &, <, >, ‘, and ” in string s to HTML-safe sequences. Use
this if you need to display text that might contain such characters in HTML.
Marks return value as markup string.

class flask.Markup
Marks a string as being safe for inclusion in HTML/XML output without need-
ing to be escaped. This implements the __html__ interface a couple of frame-
works and web applications use. Markup is a direct subclass of unicode and pro-
vides all the methods of unicode just that it escapes arguments passed and always
returns Markup.

The escape function returns markup objects so that double escaping can’t happen.

The constructor of the Markup class can be used for three different things: When
passed an unicode object it’s assumed to be safe, when passed an object with
an HTML representation (has an __html__ method) that representation is used,
otherwise the object passed is converted into a unicode string and then assumed
to be safe:

>>> Markup("Hello World!")
Markup(u'Hello World!')
>>> class Foo(object):
... def __html__(self):
... return 'foo'
...
>>> Markup(Foo())
Markup(u'foo')

If you want object passed being always treated as unsafe you can use the
escape() classmethod to create a Markup object:

>>> Markup.escape("Hello World!")
Markup(u'Hello World!')

Operations on a markup string are markup aware which means that all argu-
ments are passed through the escape() function:

>>> em = Markup("%s")
>>> em % "foo & bar"
Markup(u'foo & bar')
>>> strong = Markup("%(text)s")
>>> strong % {'text': '<blink>hacker here</blink>'}
Markup(u'<blink>hacker here</blink>')
>>> Markup("Hello ") + "<foo>"
Markup(u'Hello <foo>')

classmethod escape(s)
Escape the string. Works like escape() with the difference that for sub-
classes of Markup this function would return the correct subclass.

2.1. API 251

http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.NotFound

Flask Documentation, Release 0.13.dev

striptags()
Unescape markup into an text_type string and strip all tags. This also re-
solves known HTML4 and XHTML entities. Whitespace is normalized to
one:

>>> Markup("Main » About").striptags()
u'Main \xbb About'

unescape()
Unescape markup again into an text_type string. This also resolves known
HTML4 and XHTML entities:

>>> Markup("Main » About").unescape()
u'Main \xbb About'

2.1.11 Message Flashing

flask.flash(message, category=’message’)
Flashes a message to the next request. In order to remove the flashed mes-
sage from the session and to display it to the user, the template has to call
get_flashed_messages().

Changed in version 0.3: category parameter added.

Parameters

• message – the message to be flashed.

• category – the category for the message. The following values
are recommended: 'message' for any kind of message, 'error'
for errors, 'info' for information messages and 'warning' for
warnings. However any kind of string can be used as category.

flask.get_flashed_messages(with_categories=False, category_filter=[])
Pulls all flashed messages from the session and returns them. Further calls in the
same request to the function will return the same messages. By default just the
messages are returned, but when with_categories is set to True, the return value
will be a list of tuples in the form (category, message) instead.

Filter the flashed messages to one or more categories by providing those cate-
gories in category_filter. This allows rendering categories in separate html blocks.
The with_categories and category_filter arguments are distinct:

• with_categories controls whether categories are returned with message text
(True gives a tuple, where False gives just the message text).

• category_filter filters the messages down to only those matching the pro-
vided categories.

See Message Flashing for examples.

Changed in version 0.3: with_categories parameter added.

252 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

Changed in version 0.9: category_filter parameter added.

Parameters

• with_categories – set to True to also receive categories.

• category_filter – whitelist of categories to limit return values

2.1.12 JSON Support

Flask uses simplejson for the JSON implementation. Since simplejson is provided by
both the standard library as well as extension, Flask will try simplejson first and then
fall back to the stdlib json module. On top of that it will delegate access to the current
application’s JSON encoders and decoders for easier customization.

So for starters instead of doing:

try:
import simplejson as json

except ImportError:
import json

You can instead just do this:

from flask import json

For usage examples, read the json documentation in the standard library. The follow-
ing extensions are by default applied to the stdlib’s JSON module:

1. datetime objects are serialized as RFC 822 strings.

2. Any object with an __html__ method (like Markup) will have that method called
and then the return value is serialized as string.

The htmlsafe_dumps() function of this json module is also available as filter called
|tojson in Jinja2. Note that inside script tags no escaping must take place, so make
sure to disable escaping with |safe if you intend to use it inside script tags unless
you are using Flask 0.10 which implies that:

<script type=text/javascript>
doSomethingWith({{ user.username|tojson|safe }});

</script>

Auto-Sort JSON Keys

The configuration variable JSON_SORT_KEYS (Configuration Handling) can be set to false
to stop Flask from auto-sorting keys. By default sorting is enabled and outside of the
app context sorting is turned on.

Notice that disabling key sorting can cause issues when using content based HTTP
caches and Python’s hash randomization feature.

2.1. API 253

https://docs.python.org/3/library/json.html#module-json
https://tools.ietf.org/html/rfc822.html

Flask Documentation, Release 0.13.dev

flask.json.jsonify(*args, **kwargs)
This function wraps dumps() to add a few enhancements that make life easier. It
turns the JSON output into a Response object with the application/json mime-
type. For convenience, it also converts multiple arguments into an array or mul-
tiple keyword arguments into a dict. This means that both jsonify(1,2,3) and
jsonify([1,2,3]) serialize to [1,2,3].

For clarity, the JSON serialization behavior has the following differences from
dumps():

1. Single argument: Passed straight through to dumps().

2. Multiple arguments: Converted to an array before being passed to dumps().

3. Multiple keyword arguments: Converted to a dict before being passed to
dumps().

4. Both args and kwargs: Behavior undefined and will throw an exception.

Example usage:

from flask import jsonify

@app.route('/_get_current_user')
def get_current_user():

return jsonify(username=g.user.username,
email=g.user.email,
id=g.user.id)

This will send a JSON response like this to the browser:

{
"username": "admin",
"email": "admin@localhost",
"id": 42

}

Changed in version 0.11: Added support for serializing top-level arrays. This
introduces a security risk in ancient browsers. See JSON Security for details.

This function’s response will be pretty printed if the
JSONIFY_PRETTYPRINT_REGULAR config parameter is set to True or the Flask
app is running in debug mode. Compressed (not pretty) formatting currently
means no indents and no spaces after separators.

New in version 0.2.

flask.json.dumps(obj, **kwargs)
Serialize obj to a JSON formatted str by using the application’s configured en-
coder (json_encoder) if there is an application on the stack.

This function can return unicode strings or ascii-only bytestrings by default
which coerce into unicode strings automatically. That behavior by default is

254 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

controlled by the JSON_AS_ASCII configuration variable and can be overridden
by the simplejson ensure_ascii parameter.

flask.json.dump(obj, fp, **kwargs)
Like dumps() but writes into a file object.

flask.json.loads(s, **kwargs)
Unserialize a JSON object from a string s by using the application’s configured
decoder (json_decoder) if there is an application on the stack.

flask.json.load(fp, **kwargs)
Like loads() but reads from a file object.

class flask.json.JSONEncoder(skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None,
encoding=’utf-8’, default=None)

The default Flask JSON encoder. This one extends the default simplejson encoder
by also supporting datetime objects, UUID as well as Markup objects which are
serialized as RFC 822 datetime strings (same as the HTTP date format). In order
to support more data types override the default() method.

default(o)
Implement this method in a subclass such that it returns a serializable object
for o, or calls the base implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default
like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
return JSONEncoder.default(self, o)

class flask.json.JSONDecoder(encoding=None, object_hook=None,
parse_float=None, parse_int=None,
parse_constant=None, strict=True, ob-
ject_pairs_hook=None)

The default JSON decoder. This one does not change the behavior from the de-
fault simplejson decoder. Consult the json documentation for more informa-
tion. This decoder is not only used for the load functions of this module but also
Request.

Tagged JSON

A compact representation for lossless serialization of non-standard JSON types.
SecureCookieSessionInterface uses this to serialize the session data, but it may be

2.1. API 255

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/json.html#module-json

Flask Documentation, Release 0.13.dev

useful in other places. It can be extended to support other types.

class flask.json.tag.TaggedJSONSerializer
Serializer that uses a tag system to compactly represent objects that are not JSON
types. Passed as the intermediate serializer to itsdangerous.Serializer.

The following extra types are supported:

• dict

• tuple

• bytes

• Markup

• UUID

• datetime

default_tags = [<class 'flask.json.tag.TagDict'>, <class 'flask.json.tag.PassDict'>, <class 'flask.json.tag.TagTuple'>, <class 'flask.json.tag.PassList'>, <class 'flask.json.tag.TagBytes'>, <class 'flask.json.tag.TagMarkup'>, <class 'flask.json.tag.TagUUID'>, <class 'flask.json.tag.TagDateTime'>]
Tag classes to bind when creating the serializer. Other tags can be added
later using register().

dumps(value)
Tag the value and dump it to a compact JSON string.

loads(value)
Load data from a JSON string and deserialized any tagged objects.

register(tag_class, force=False, index=-1)
Register a new tag with this serializer.

Parameters

• tag_class – tag class to register. Will be instantiated with this
serializer instance.

• force – overwrite an existing tag. If false (default), a KeyError
is raised.

• index – index to insert the new tag in the tag order. Useful
when the new tag is a special case of an existing tag. If -1
(default), the tag is appended to the end of the order.

Raises KeyError – if the tag key is already registered and force is
not true.

tag(value)
Convert a value to a tagged representation if necessary.

untag(value)
Convert a tagged representation back to the original type.

class flask.json.tag.JSONTag(serializer)
Base class for defining type tags for TaggedJSONSerializer.

256 Chapter 2. API Reference

https://pythonhosted.org/itsdangerous/index.html#itsdangerous.Serializer
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError

Flask Documentation, Release 0.13.dev

check(value)
Check if the given value should be tagged by this tag.

key = None
The tag to mark the serialized object with. If None, this tag is only used as
an intermediate step during tagging.

tag(value)
Convert the value to a valid JSON type and add the tag structure around it.

to_json(value)
Convert the Python object to an object that is a valid JSON type. The tag
will be added later.

to_python(value)
Convert the JSON representation back to the correct type. The tag will al-
ready be removed.

Let’s seen an example that adds support for OrderedDict. Dicts don’t have an order
in Python or JSON, so to handle this we will dump the items as a list of [key, value]
pairs. Subclass JSONTag and give it the new key ' od' to identify the type. The session
serializer processes dicts first, so insert the new tag at the front of the order since
OrderedDict must be processed before dict.

from flask.json.tag import JSONTag

class TagOrderedDict(JSONTag):
__slots__ = ('serializer',)
key = ' od'

def check(self, value):
return isinstance(value, OrderedDict)

def to_json(self, value):
return [[k, self.serializer.tag(v)] for k, v in iteritems(value)]

def to_python(self, value):
return OrderedDict(value)

app.session_interface.serializer.register(TagOrderedDict, 0)

2.1.13 Template Rendering

flask.render_template(template_name_or_list, **context)
Renders a template from the template folder with the given context.

Parameters

• template_name_or_list – the name of the template to be ren-
dered, or an iterable with template names the first one existing
will be rendered

2.1. API 257

https://docs.python.org/3/library/collections.html#collections.OrderedDict

Flask Documentation, Release 0.13.dev

• context – the variables that should be available in the context
of the template.

flask.render_template_string(source, **context)
Renders a template from the given template source string with the given context.
Template variables will be autoescaped.

Parameters

• source – the source code of the template to be rendered

• context – the variables that should be available in the context
of the template.

flask.get_template_attribute(template_name, attribute)
Loads a macro (or variable) a template exports. This can be used to invoke a
macro from within Python code. If you for example have a template named
_cider.html with the following contents:

{% macro hello(name) %}Hello {{ name }}!{% endmacro %}

You can access this from Python code like this:

hello = get_template_attribute('_cider.html', 'hello')
return hello('World')

New in version 0.2.

Parameters

• template_name – the name of the template

• attribute – the name of the variable of macro to access

2.1.14 Configuration

class flask.Config(root_path, defaults=None)
Works exactly like a dict but provides ways to fill it from files or special dictio-
naries. There are two common patterns to populate the config.

Either you can fill the config from a config file:

app.config.from_pyfile('yourconfig.cfg')

Or alternatively you can define the configuration options in the module that calls
from_object() or provide an import path to a module that should be loaded.
It is also possible to tell it to use the same module and with that provide the
configuration values just before the call:

DEBUG = True
SECRET_KEY = 'development key'
app.config.from_object(__name__)

258 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

In both cases (loading from any Python file or loading from modules), only up-
percase keys are added to the config. This makes it possible to use lowercase
values in the config file for temporary values that are not added to the config or
to define the config keys in the same file that implements the application.

Probably the most interesting way to load configurations is from an environment
variable pointing to a file:

app.config.from_envvar('YOURAPPLICATION_SETTINGS')

In this case before launching the application you have to set this environment
variable to the file you want to use. On Linux and OS X use the export statement:

export YOURAPPLICATION_SETTINGS='/path/to/config/file'

On windows use set instead.

Parameters

• root_path – path to which files are read relative from. When
the config object is created by the application, this is the appli-
cation’s root_path.

• defaults – an optional dictionary of default values

from_envvar(variable_name, silent=False)
Loads a configuration from an environment variable pointing to a configu-
ration file. This is basically just a shortcut with nicer error messages for this
line of code:

app.config.from_pyfile(os.environ['YOURAPPLICATION_SETTINGS'])

Parameters

• variable_name – name of the environment variable

• silent – set to True if you want silent failure for missing files.

Returns bool. True if able to load config, False otherwise.

from_json(filename, silent=False)
Updates the values in the config from a JSON file. This function behaves
as if the JSON object was a dictionary and passed to the from_mapping()
function.

Parameters

• filename – the filename of the JSON file. This can either be
an absolute filename or a filename relative to the root path.

• silent – set to True if you want silent failure for missing files.

New in version 0.11.

2.1. API 259

Flask Documentation, Release 0.13.dev

from_mapping(*mapping, **kwargs)
Updates the config like update() ignoring items with non-upper keys.

New in version 0.11.

from_object(obj)
Updates the values from the given object. An object can be of one of the
following two types:

• a string: in this case the object with that name will be imported

• an actual object reference: that object is used directly

Objects are usually either modules or classes. from_object() loads only the
uppercase attributes of the module/class. A dict object will not work with
from_object() because the keys of a dict are not attributes of the dict class.

Example of module-based configuration:

app.config.from_object('yourapplication.default_config')
from yourapplication import default_config
app.config.from_object(default_config)

You should not use this function to load the actual configuration but
rather configuration defaults. The actual config should be loaded with
from_pyfile() and ideally from a location not within the package because
the package might be installed system wide.

See Development / Production for an example of class-based configuration
using from_object().

Parameters obj – an import name or object

from_pyfile(filename, silent=False)
Updates the values in the config from a Python file. This function behaves
as if the file was imported as module with the from_object() function.

Parameters

• filename – the filename of the config. This can either be an
absolute filename or a filename relative to the root path.

• silent – set to True if you want silent failure for missing files.

New in version 0.7: silent parameter.

get_namespace(namespace, lowercase=True, trim_namespace=True)
Returns a dictionary containing a subset of configuration options that match
the specified namespace/prefix. Example usage:

app.config['IMAGE_STORE_TYPE'] = 'fs'
app.config['IMAGE_STORE_PATH'] = '/var/app/images'
app.config['IMAGE_STORE_BASE_URL'] = 'http://img.website.com'
image_store_config = app.config.get_namespace('IMAGE_STORE_')

The resulting dictionary image_store_config would look like:

260 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

{
'type': 'fs',
'path': '/var/app/images',
'base_url': 'http://img.website.com'

}

This is often useful when configuration options map directly to keyword
arguments in functions or class constructors.

Parameters

• namespace – a configuration namespace

• lowercase – a flag indicating if the keys of the resulting dic-
tionary should be lowercase

• trim_namespace – a flag indicating if the keys of the resulting
dictionary should not include the namespace

New in version 0.11.

2.1.15 Stream Helpers

flask.stream_with_context(generator_or_function)
Request contexts disappear when the response is started on the server. This is
done for efficiency reasons and to make it less likely to encounter memory leaks
with badly written WSGI middlewares. The downside is that if you are using
streamed responses, the generator cannot access request bound information any
more.

This function however can help you keep the context around for longer:

from flask import stream_with_context, request, Response

@app.route('/stream')
def streamed_response():

@stream_with_context
def generate():

yield 'Hello '
yield request.args['name']
yield '!'

return Response(generate())

Alternatively it can also be used around a specific generator:

from flask import stream_with_context, request, Response

@app.route('/stream')
def streamed_response():

def generate():
yield 'Hello '

2.1. API 261

Flask Documentation, Release 0.13.dev

yield request.args['name']
yield '!'

return Response(stream_with_context(generate()))

New in version 0.9.

2.1.16 Useful Internals

class flask.ctx.RequestContext(app, environ, request=None)
The request context contains all request relevant information. It is created at the
beginning of the request and pushed to the _request_ctx_stack and removed at
the end of it. It will create the URL adapter and request object for the WSGI
environment provided.

Do not attempt to use this class directly, instead use test_request_context()
and request_context() to create this object.

When the request context is popped, it will evaluate all the functions registered
on the application for teardown execution (teardown_request()).

The request context is automatically popped at the end of the request for you.
In debug mode the request context is kept around if exceptions happen so that
interactive debuggers have a chance to introspect the data. With 0.4 this can also
be forced for requests that did not fail and outside of DEBUG mode. By setting
'flask._preserve_context' to True on the WSGI environment the context will
not pop itself at the end of the request. This is used by the test_client() for
example to implement the deferred cleanup functionality.

You might find this helpful for unittests where you need the information from
the context local around for a little longer. Make sure to properly pop() the stack
yourself in that situation, otherwise your unittests will leak memory.

copy()
Creates a copy of this request context with the same request object. This can
be used to move a request context to a different greenlet. Because the actual
request object is the same this cannot be used to move a request context to
a different thread unless access to the request object is locked.

New in version 0.10.

match_request()
Can be overridden by a subclass to hook into the matching of the request.

pop(exc=<object object>)
Pops the request context and unbinds it by doing that. This will also trigger
the execution of functions registered by the teardown_request() decorator.

Changed in version 0.9: Added the exc argument.

push()
Binds the request context to the current context.

262 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

flask._request_ctx_stack
The internal LocalStack that holds RequestContext instances. Typically, the
request and session proxies should be accessed instead of the stack. It may
be useful to access the stack in extension code.

The following attributes are always present on each layer of the stack:

app the active Flask application.

url_adapter the URL adapter that was used to match the request.

request the current request object.

session the active session object.

g an object with all the attributes of the flask.g object.

flashes an internal cache for the flashed messages.

Example usage:

from flask import _request_ctx_stack

def get_session():
ctx = _request_ctx_stack.top
if ctx is not None:

return ctx.session

class flask.ctx.AppContext(app)
The application context binds an application object implicitly to the current
thread or greenlet, similar to how the RequestContext binds request informa-
tion. The application context is also implicitly created if a request context is
created but the application is not on top of the individual application context.

pop(exc=<object object>)
Pops the app context.

push()
Binds the app context to the current context.

flask._app_ctx_stack
The internal LocalStack that holds AppContext instances. Typically, the
current_app and g proxies should be accessed instead of the stack. Extensions
can access the contexts on the stack as a namespace to store data.

New in version 0.9.

class flask.blueprints.BlueprintSetupState(blueprint, app, options,
first_registration)

Temporary holder object for registering a blueprint with the application. An in-
stance of this class is created by the make_setup_state() method and later passed
to all register callback functions.

add_url_rule(rule, endpoint=None, view_func=None, **options)
A helper method to register a rule (and optionally a view function) to the

2.1. API 263

http://werkzeug.pocoo.org/docs/local/#werkzeug.local.LocalStack
http://werkzeug.pocoo.org/docs/local/#werkzeug.local.LocalStack

Flask Documentation, Release 0.13.dev

application. The endpoint is automatically prefixed with the blueprint’s
name.

app = None
a reference to the current application

blueprint = None
a reference to the blueprint that created this setup state.

first_registration = None
as blueprints can be registered multiple times with the application and not
everything wants to be registered multiple times on it, this attribute can be
used to figure out if the blueprint was registered in the past already.

options = None
a dictionary with all options that were passed to the register_blueprint()
method.

subdomain = None
The subdomain that the blueprint should be active for, None otherwise.

url_defaults = None
A dictionary with URL defaults that is added to each and every URL that
was defined with the blueprint.

2.1.17 Signals

New in version 0.6.

signals.signals_available
True if the signaling system is available. This is the case when blinker is installed.

The following signals exist in Flask:

flask.template_rendered
This signal is sent when a template was successfully rendered. The signal is in-
voked with the instance of the template as template and the context as dictionary
(named context).

Example subscriber:

def log_template_renders(sender, template, context, **extra):
sender.logger.debug('Rendering template "%s" with context %s',

template.name or 'string template',
context)

from flask import template_rendered
template_rendered.connect(log_template_renders, app)

flask.before_render_template
This signal is sent before template rendering process. The signal is invoked with
the instance of the template as template and the context as dictionary (named
context).

264 Chapter 2. API Reference

https://pypi.python.org/pypi/blinker

Flask Documentation, Release 0.13.dev

Example subscriber:

def log_template_renders(sender, template, context, **extra):
sender.logger.debug('Rendering template "%s" with context %s',

template.name or 'string template',
context)

from flask import before_render_template
before_render_template.connect(log_template_renders, app)

flask.request_started
This signal is sent when the request context is set up, before any request process-
ing happens. Because the request context is already bound, the subscriber can
access the request with the standard global proxies such as request.

Example subscriber:

def log_request(sender, **extra):
sender.logger.debug('Request context is set up')

from flask import request_started
request_started.connect(log_request, app)

flask.request_finished
This signal is sent right before the response is sent to the client. It is passed the
response to be sent named response.

Example subscriber:

def log_response(sender, response, **extra):
sender.logger.debug('Request context is about to close down. '

'Response: %s', response)

from flask import request_finished
request_finished.connect(log_response, app)

flask.got_request_exception
This signal is sent when an exception happens during request processing. It is
sent before the standard exception handling kicks in and even in debug mode,
where no exception handling happens. The exception itself is passed to the sub-
scriber as exception.

Example subscriber:

def log_exception(sender, exception, **extra):
sender.logger.debug('Got exception during processing: %s', exception)

from flask import got_request_exception
got_request_exception.connect(log_exception, app)

flask.request_tearing_down
This signal is sent when the request is tearing down. This is always called, even

2.1. API 265

Flask Documentation, Release 0.13.dev

if an exception is caused. Currently functions listening to this signal are called
after the regular teardown handlers, but this is not something you can rely on.

Example subscriber:

def close_db_connection(sender, **extra):
session.close()

from flask import request_tearing_down
request_tearing_down.connect(close_db_connection, app)

As of Flask 0.9, this will also be passed an exc keyword argument that has a
reference to the exception that caused the teardown if there was one.

flask.appcontext_tearing_down
This signal is sent when the app context is tearing down. This is always called,
even if an exception is caused. Currently functions listening to this signal are
called after the regular teardown handlers, but this is not something you can
rely on.

Example subscriber:

def close_db_connection(sender, **extra):
session.close()

from flask import appcontext_tearing_down
appcontext_tearing_down.connect(close_db_connection, app)

This will also be passed an exc keyword argument that has a reference to the
exception that caused the teardown if there was one.

flask.appcontext_pushed
This signal is sent when an application context is pushed. The sender is the
application. This is usually useful for unittests in order to temporarily hook in
information. For instance it can be used to set a resource early onto the g object.

Example usage:

from contextlib import contextmanager
from flask import appcontext_pushed

@contextmanager
def user_set(app, user):

def handler(sender, **kwargs):
g.user = user

with appcontext_pushed.connected_to(handler, app):
yield

And in the testcode:

def test_user_me(self):
with user_set(app, 'john'):

c = app.test_client()

266 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

resp = c.get('/users/me')
assert resp.data == 'username=john'

New in version 0.10.

flask.appcontext_popped
This signal is sent when an application context is popped. The sender is the
application. This usually falls in line with the appcontext_tearing_down signal.

New in version 0.10.

flask.message_flashed
This signal is sent when the application is flashing a message. The messages is
sent as message keyword argument and the category as category.

Example subscriber:

recorded = []
def record(sender, message, category, **extra):

recorded.append((message, category))

from flask import message_flashed
message_flashed.connect(record, app)

New in version 0.10.

class signals.Namespace
An alias for blinker.base.Namespace if blinker is available, otherwise a dummy
class that creates fake signals. This class is available for Flask extensions that
want to provide the same fallback system as Flask itself.

signal(name, doc=None)
Creates a new signal for this namespace if blinker is available, otherwise
returns a fake signal that has a send method that will do nothing but will
fail with a RuntimeError for all other operations, including connecting.

2.1.18 Class-Based Views

New in version 0.7.

class flask.views.View
Alternative way to use view functions. A subclass has to implement
dispatch_request() which is called with the view arguments from the URL rout-
ing system. If methods is provided the methods do not have to be passed to the
add_url_rule() method explicitly:

class MyView(View):
methods = ['GET']

def dispatch_request(self, name):
return 'Hello %s!' % name

2.1. API 267

https://pythonhosted.org/blinker/index.html#blinker.base.Namespace
https://docs.python.org/3/library/exceptions.html#RuntimeError

Flask Documentation, Release 0.13.dev

app.add_url_rule('/hello/<name>', view_func=MyView.as_view('myview'))

When you want to decorate a pluggable view you will have to either do that
when the view function is created (by wrapping the return value of as_view())
or you can use the decorators attribute:

class SecretView(View):
methods = ['GET']
decorators = [superuser_required]

def dispatch_request(self):
...

The decorators stored in the decorators list are applied one after another when
the view function is created. Note that you can not use the class based decorators
since those would decorate the view class and not the generated view function!

classmethod as_view(name, *class_args, **class_kwargs)
Converts the class into an actual view function that can be used with the
routing system. Internally this generates a function on the fly which will in-
stantiate the View on each request and call the dispatch_request() method
on it.

The arguments passed to as_view() are forwarded to the constructor of the
class.

decorators = ()
The canonical way to decorate class-based views is to decorate the return
value of as_view(). However since this moves parts of the logic from the
class declaration to the place where it’s hooked into the routing system.

You can place one or more decorators in this list and whenever the view
function is created the result is automatically decorated.

New in version 0.8.

dispatch_request()
Subclasses have to override this method to implement the actual view func-
tion code. This method is called with all the arguments from the URL rule.

methods = None
A list of methods this view can handle.

provide_automatic_options = None
Setting this disables or force-enables the automatic options handling.

class flask.views.MethodView
A class-based view that dispatches request methods to the corresponding class
methods. For example, if you implement a get method, it will be used to handle
GET requests.

268 Chapter 2. API Reference

Flask Documentation, Release 0.13.dev

class CounterAPI(MethodView):
def get(self):

return session.get('counter', 0)

def post(self):
session['counter'] = session.get('counter', 0) + 1
return 'OK'

app.add_url_rule('/counter', view_func=CounterAPI.as_view('counter'))

2.1.19 URL Route Registrations

Generally there are three ways to define rules for the routing system:

1. You can use the flask.Flask.route() decorator.

2. You can use the flask.Flask.add_url_rule() function.

3. You can directly access the underlying Werkzeug routing system which is ex-
posed as flask.Flask.url_map.

Variable parts in the route can be specified with angular brackets (/user/<username>).
By default a variable part in the URL accepts any string without a slash however a
different converter can be specified as well by using <converter:name>.

Variable parts are passed to the view function as keyword arguments.

The following converters are available:

string accepts any text without a slash (the default)
int accepts integers
float like int but for floating point values
path like the default but also accepts slashes
any matches one of the items provided
uuid accepts UUID strings

Custom converters can be defined using flask.Flask.url_map.

Here are some examples:

@app.route('/')
def index():

pass

@app.route('/<username>')
def show_user(username):

pass

@app.route('/post/<int:post_id>')

2.1. API 269

Flask Documentation, Release 0.13.dev

def show_post(post_id):
pass

An important detail to keep in mind is how Flask deals with trailing slashes. The idea
is to keep each URL unique so the following rules apply:

1. If a rule ends with a slash and is requested without a slash by the user, the user
is automatically redirected to the same page with a trailing slash attached.

2. If a rule does not end with a trailing slash and the user requests the page with a
trailing slash, a 404 not found is raised.

This is consistent with how web servers deal with static files. This also makes it possi-
ble to use relative link targets safely.

You can also define multiple rules for the same function. They have to be unique
however. Defaults can also be specified. Here for example is a definition for a URL
that accepts an optional page:

@app.route('/users/', defaults={'page': 1})
@app.route('/users/page/<int:page>')
def show_users(page):

pass

This specifies that /users/ will be the URL for page one and /users/page/N will be the
URL for page N.

Here are the parameters that route() and add_url_rule() accept. The only difference
is that with the route parameter the view function is defined with the decorator instead
of the view_func parameter.

rule the URL rule as string
end-
point

the endpoint for the registered URL rule. Flask itself assumes that the name
of the view function is the name of the endpoint if not explicitly stated.

view_functhe function to call when serving a request to the provided endpoint. If
this is not provided one can specify the function later by storing it in the
view_functions dictionary with the endpoint as key.

de-
faults

A dictionary with defaults for this rule. See the example above for how de-
faults work.

sub-
do-
main

specifies the rule for the subdomain in case subdomain matching is in use. If
not specified the default subdomain is assumed.

**op-
tions

the options to be forwarded to the underlying Rule object. A change to
Werkzeug is handling of method options. methods is a list of methods this
rule should be limited to (GET, POST etc.). By default a rule just listens for GET
(and implicitly HEAD). Starting with Flask 0.6, OPTIONS is implicitly added and
handled by the standard request handling. They have to be specified as key-
word arguments.

270 Chapter 2. API Reference

http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Rule

Flask Documentation, Release 0.13.dev

2.1.20 View Function Options

For internal usage the view functions can have some attributes attached to customize
behavior the view function would normally not have control over. The following at-
tributes can be provided optionally to either override some defaults to add_url_rule()
or general behavior:

• __name__: The name of a function is by default used as endpoint. If endpoint is
provided explicitly this value is used. Additionally this will be prefixed with the
name of the blueprint by default which cannot be customized from the function
itself.

• methods: If methods are not provided when the URL rule is added, Flask will
look on the view function object itself if a methods attribute exists. If it does, it
will pull the information for the methods from there.

• provide_automatic_options: if this attribute is set Flask will either force enable or
disable the automatic implementation of the HTTP OPTIONS response. This can
be useful when working with decorators that want to customize the OPTIONS
response on a per-view basis.

• required_methods: if this attribute is set, Flask will always add these methods
when registering a URL rule even if the methods were explicitly overridden in
the route() call.

Full example:

def index():
if request.method == 'OPTIONS':

custom options handling here
...

return 'Hello World!'
index.provide_automatic_options = False
index.methods = ['GET', 'OPTIONS']

app.add_url_rule('/', index)

New in version 0.8: The provide_automatic_options functionality was added.

2.1.21 Command Line Interface

class flask.cli.FlaskGroup(add_default_commands=True, create_app=None,
add_version_option=True, load_dotenv=True, **ex-
tra)

Special subclass of the AppGroup group that supports loading more commands
from the configured Flask app. Normally a developer does not have to interface
with this class but there are some very advanced use cases for which it makes
sense to create an instance of this.

For information as of why this is useful see Custom Scripts.

Parameters

2.1. API 271

Flask Documentation, Release 0.13.dev

• add_default_commands – if this is True then the default run and
shell commands wil be added.

• add_version_option – adds the --version option.

• create_app – an optional callback that is passed the script info
and returns the loaded app.

• load_dotenv – Load the nearest .env and .flaskenv files to set
environment variables. Will also change the working directory
to the directory containing the first file found.

Changed in version 1.0: If installed, python-dotenv will be used to load environ-
ment variables from .env and .flaskenv files.

class flask.cli.AppGroup(name=None, commands=None, **attrs)
This works similar to a regular click Group but it changes the behavior
of the command() decorator so that it automatically wraps the functions in
with_appcontext().

Not to be confused with FlaskGroup.

command(*args, **kwargs)
This works exactly like the method of the same name on a regular click.
Group but it wraps callbacks in with_appcontext() unless it’s disabled by
passing with_appcontext=False.

group(*args, **kwargs)
This works exactly like the method of the same name on a regular click.
Group but it defaults the group class to AppGroup.

class flask.cli.ScriptInfo(app_import_path=None, create_app=None)
Help object to deal with Flask applications. This is usually not necessary to in-
terface with as it’s used internally in the dispatching to click. In future versions
of Flask this object will most likely play a bigger role. Typically it’s created au-
tomatically by the FlaskGroup but you can also manually create it and pass it
onwards as click object.

app_import_path = None
Optionally the import path for the Flask application.

create_app = None
Optionally a function that is passed the script info to create the instance of
the application.

data = None
A dictionary with arbitrary data that can be associated with this script info.

load_app()
Loads the Flask app (if not yet loaded) and returns it. Calling this multiple
times will just result in the already loaded app to be returned.

flask.cli.load_dotenv(path=None)
Load “dotenv” files in order of precedence to set environment variables.

272 Chapter 2. API Reference

http://click.pocoo.org/api/#click.Group
http://click.pocoo.org/api/#click.Group
http://click.pocoo.org/api/#click.Group
http://click.pocoo.org/api/#click.Group
http://click.pocoo.org/api/#click.Group

Flask Documentation, Release 0.13.dev

If an env var is already set it is not overwritten, so earlier files in the list are
preferred over later files.

Changes the current working directory to the location of the first file found, with
the assumption that it is in the top level project directory and will be where the
Python path should import local packages from.

This is a no-op if python-dotenv is not installed.

Parameters path – Load the file at this location instead of searching.

Returns True if a file was loaded.

New in version 1.0.

flask.cli.with_appcontext(f)
Wraps a callback so that it’s guaranteed to be executed with the script’s applica-
tion context. If callbacks are registered directly to the app.cli object then they
are wrapped with this function by default unless it’s disabled.

flask.cli.pass_script_info(f)
Marks a function so that an instance of ScriptInfo is passed as first argument to
the click callback.

flask.cli.run_command = <click.core.Command object>
Run a local development server.

This server is for development purposes only. It does not provide the stability,
security, or performance of production WSGI servers.

The reloader and debugger are enabled by default if FLASK_ENV=development
or FLASK_DEBUG=1.

flask.cli.shell_command = <click.core.Command object>
Runs an interactive Python shell in the context of a given Flask application. The
application will populate the default namespace of this shell according to it’s
configuration.

This is useful for executing small snippets of management code without having
to manually configure the application.

2.1. API 273

https://github.com/theskumar/python-dotenv#readme

Flask Documentation, Release 0.13.dev

274 Chapter 2. API Reference

CHAPTER 3

Additional Notes

Design notes, legal information and changelog are here for the interested.

3.1 Design Decisions in Flask

If you are curious why Flask does certain things the way it does and not differently,
this section is for you. This should give you an idea about some of the design decisions
that may appear arbitrary and surprising at first, especially in direct comparison with
other frameworks.

3.1.1 The Explicit Application Object

A Python web application based on WSGI has to have one central callable object that
implements the actual application. In Flask this is an instance of the Flask class. Each
Flask application has to create an instance of this class itself and pass it the name of
the module, but why can’t Flask do that itself?

Without such an explicit application object the following code:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def index():

return 'Hello World!'

Would look like this instead:

275

Flask Documentation, Release 0.13.dev

from hypothetical_flask import route

@route('/')
def index():

return 'Hello World!'

There are three major reasons for this. The most important one is that implicit appli-
cation objects require that there may only be one instance at the time. There are ways
to fake multiple applications with a single application object, like maintaining a stack
of applications, but this causes some problems I won’t outline here in detail. Now
the question is: when does a microframework need more than one application at the
same time? A good example for this is unittesting. When you want to test something
it can be very helpful to create a minimal application to test specific behavior. When
the application object is deleted everything it allocated will be freed again.

Another thing that becomes possible when you have an explicit object lying around in
your code is that you can subclass the base class (Flask) to alter specific behavior. This
would not be possible without hacks if the object were created ahead of time for you
based on a class that is not exposed to you.

But there is another very important reason why Flask depends on an explicit instantia-
tion of that class: the package name. Whenever you create a Flask instance you usually
pass it __name__ as package name. Flask depends on that information to properly load
resources relative to your module. With Python’s outstanding support for reflection it
can then access the package to figure out where the templates and static files are stored
(see open_resource()). Now obviously there are frameworks around that do not need
any configuration and will still be able to load templates relative to your application
module. But they have to use the current working directory for that, which is a very
unreliable way to determine where the application is. The current working directory is
process-wide and if you are running multiple applications in one process (which could
happen in a webserver without you knowing) the paths will be off. Worse: many web-
servers do not set the working directory to the directory of your application but to the
document root which does not have to be the same folder.

The third reason is “explicit is better than implicit”. That object is your WSGI ap-
plication, you don’t have to remember anything else. If you want to apply a WSGI
middleware, just wrap it and you’re done (though there are better ways to do that so
that you do not lose the reference to the application object wsgi_app()).

Furthermore this design makes it possible to use a factory function to create the appli-
cation which is very helpful for unittesting and similar things (Application Factories).

3.1.2 The Routing System

Flask uses the Werkzeug routing system which was designed to automatically order
routes by complexity. This means that you can declare routes in arbitrary order and
they will still work as expected. This is a requirement if you want to properly imple-
ment decorator based routing since decorators could be fired in undefined order when
the application is split into multiple modules.

276 Chapter 3. Additional Notes

Flask Documentation, Release 0.13.dev

Another design decision with the Werkzeug routing system is that routes in Werkzeug
try to ensure that URLs are unique. Werkzeug will go quite far with that in that it will
automatically redirect to a canonical URL if a route is ambiguous.

3.1.3 One Template Engine

Flask decides on one template engine: Jinja2. Why doesn’t Flask have a pluggable tem-
plate engine interface? You can obviously use a different template engine, but Flask
will still configure Jinja2 for you. While that limitation that Jinja2 is always configured
will probably go away, the decision to bundle one template engine and use that will
not.

Template engines are like programming languages and each of those engines has a
certain understanding about how things work. On the surface they all work the same:
you tell the engine to evaluate a template with a set of variables and take the return
value as string.

But that’s about where similarities end. Jinja2 for example has an extensive filter sys-
tem, a certain way to do template inheritance, support for reusable blocks (macros)
that can be used from inside templates and also from Python code, uses Unicode for
all operations, supports iterative template rendering, configurable syntax and more.
On the other hand an engine like Genshi is based on XML stream evaluation, template
inheritance by taking the availability of XPath into account and more. Mako on the
other hand treats templates similar to Python modules.

When it comes to connecting a template engine with an application or framework
there is more than just rendering templates. For instance, Flask uses Jinja2’s extensive
autoescaping support. Also it provides ways to access macros from Jinja2 templates.

A template abstraction layer that would not take the unique features of the template
engines away is a science on its own and a too large undertaking for a microframework
like Flask.

Furthermore extensions can then easily depend on one template language being
present. You can easily use your own templating language, but an extension could
still depend on Jinja itself.

3.1.4 Micro with Dependencies

Why does Flask call itself a microframework and yet it depends on two libraries
(namely Werkzeug and Jinja2). Why shouldn’t it? If we look over to the Ruby side of
web development there we have a protocol very similar to WSGI. Just that it’s called
Rack there, but besides that it looks very much like a WSGI rendition for Ruby. But
nearly all applications in Ruby land do not work with Rack directly, but on top of a
library with the same name. This Rack library has two equivalents in Python: WebOb
(formerly Paste) and Werkzeug. Paste is still around but from my understanding it’s
sort of deprecated in favour of WebOb. The development of WebOb and Werkzeug
started side by side with similar ideas in mind: be a good implementation of WSGI for
other applications to take advantage.

3.1. Design Decisions in Flask 277

Flask Documentation, Release 0.13.dev

Flask is a framework that takes advantage of the work already done by Werkzeug to
properly interface WSGI (which can be a complex task at times). Thanks to recent
developments in the Python package infrastructure, packages with dependencies are
no longer an issue and there are very few reasons against having libraries that depend
on others.

3.1.5 Thread Locals

Flask uses thread local objects (context local objects in fact, they support greenlet con-
texts as well) for request, session and an extra object you can put your own things on
(g). Why is that and isn’t that a bad idea?

Yes it is usually not such a bright idea to use thread locals. They cause troubles for
servers that are not based on the concept of threads and make large applications harder
to maintain. However Flask is just not designed for large applications or asynchronous
servers. Flask wants to make it quick and easy to write a traditional web application.

Also see the Becoming Big section of the documentation for some inspiration for larger
applications based on Flask.

3.1.6 What Flask is, What Flask is Not

Flask will never have a database layer. It will not have a form library or anything else
in that direction. Flask itself just bridges to Werkzeug to implement a proper WSGI
application and to Jinja2 to handle templating. It also binds to a few common standard
library packages such as logging. Everything else is up for extensions.

Why is this the case? Because people have different preferences and requirements and
Flask could not meet those if it would force any of this into the core. The majority
of web applications will need a template engine in some sort. However not every
application needs a SQL database.

The idea of Flask is to build a good foundation for all applications. Everything else is
up to you or extensions.

3.2 HTML/XHTML FAQ

The Flask documentation and example applications are using HTML5. You may no-
tice that in many situations, when end tags are optional they are not used, so that
the HTML is cleaner and faster to load. Because there is much confusion about HTML
and XHTML among developers, this document tries to answer some of the major ques-
tions.

278 Chapter 3. Additional Notes

Flask Documentation, Release 0.13.dev

3.2.1 History of XHTML

For a while, it appeared that HTML was about to be replaced by XHTML. However,
barely any websites on the Internet are actual XHTML (which is HTML processed us-
ing XML rules). There are a couple of major reasons why this is the case. One of them
is Internet Explorer’s lack of proper XHTML support. The XHTML spec states that
XHTML must be served with the MIME type application/xhtml+xml, but Internet Ex-
plorer refuses to read files with that MIME type. While it is relatively easy to configure
Web servers to serve XHTML properly, few people do. This is likely because properly
using XHTML can be quite painful.

One of the most important causes of pain is XML’s draconian (strict and ruthless) er-
ror handling. When an XML parsing error is encountered, the browser is supposed to
show the user an ugly error message, instead of attempting to recover from the error
and display what it can. Most of the (X)HTML generation on the web is based on
non-XML template engines (such as Jinja, the one used in Flask) which do not protect
you from accidentally creating invalid XHTML. There are XML based template en-
gines, such as Kid and the popular Genshi, but they often come with a larger runtime
overhead and are not as straightforward to use because they have to obey XML rules.

The majority of users, however, assumed they were properly using XHTML. They
wrote an XHTML doctype at the top of the document and self-closed all the necessary
tags (
 becomes
 or
</br> in XHTML). However, even if the document
properly validates as XHTML, what really determines XHTML/HTML processing in
browsers is the MIME type, which as said before is often not set properly. So the valid
XHTML was being treated as invalid HTML.

XHTML also changed the way JavaScript is used. To properly work with XHTML, pro-
grammers have to use the namespaced DOM interface with the XHTML namespace
to query for HTML elements.

3.2.2 History of HTML5

Development of the HTML5 specification was started in 2004 under the name “Web
Applications 1.0” by the Web Hypertext Application Technology Working Group, or
WHATWG (which was formed by the major browser vendors Apple, Mozilla, and
Opera) with the goal of writing a new and improved HTML specification, based on
existing browser behavior instead of unrealistic and backwards-incompatible specifi-
cations.

For example, in HTML4 <title/Hello/ theoretically parses exactly the same as
<title>Hello</title>. However, since people were using XHTML-like tags along the
lines of <link />, browser vendors implemented the XHTML syntax over the syntax
defined by the specification.

In 2007, the specification was adopted as the basis of a new HTML specification under
the umbrella of the W3C, known as HTML5. Currently, it appears that XHTML is
losing traction, as the XHTML 2 working group has been disbanded and HTML5 is
being implemented by all major browser vendors.

3.2. HTML/XHTML FAQ 279

Flask Documentation, Release 0.13.dev

3.2.3 HTML versus XHTML

The following table gives you a quick overview of features available in HTML 4.01,
XHTML 1.1 and HTML5. (XHTML 1.0 is not included, as it was superseded by
XHTML 1.1 and the barely-used XHTML5.)

HTML4.01 XHTML1.1 HTML5

<tag/value/ == <tag>value</tag> 1

 supported 2

<script/> supported

should be served as text/html 3

should be served as application/xhtml+xml

strict error handling

inline SVG

inline MathML

<video> tag

<audio> tag

New semantic tags like <article>

3.2.4 What does “strict” mean?

HTML5 has strictly defined parsing rules, but it also specifies exactly how a browser
should react to parsing errors - unlike XHTML, which simply states parsing should
abort. Some people are confused by apparently invalid syntax that still generates the
expected results (for example, missing end tags or unquoted attribute values).

Some of these work because of the lenient error handling most browsers use when
they encounter a markup error, others are actually specified. The following constructs
are optional in HTML5 by standard, but have to be supported by browsers:

• Wrapping the document in an <html> tag

• Wrapping header elements in <head> or the body elements in <body>

• Closing the <p>, , <dt>, <dd>, <tr>, <td>, <th>, <tbody>, <thead>, or <tfoot>
tags.

1 This is an obscure feature inherited from SGML. It is usually not supported by browsers, for reasons
detailed above.

2 This is for compatibility with server code that generates XHTML for tags such as
. It should
not be used in new code.

3 XHTML 1.0 is the last XHTML standard that allows to be served as text/html for backwards com-
patibility reasons.

280 Chapter 3. Additional Notes

Flask Documentation, Release 0.13.dev

• Quoting attributes, so long as they contain no whitespace or special characters
(like <, >, ', or ").

• Requiring boolean attributes to have a value.

This means the following page in HTML5 is perfectly valid:

<!doctype html>
<title>Hello HTML5</title>
<div class=header>

<h1>Hello HTML5</h1>
<p class=tagline>HTML5 is awesome

</div>
<ul class=nav>

Index
Downloads
About

<div class=body>

<h2>HTML5 is probably the future</h2>
<p>

There might be some other things around but in terms of
browser vendor support, HTML5 is hard to beat.

<dl>
<dt>Key 1
<dd>Value 1
<dt>Key 2
<dd>Value 2

</dl>
</div>

3.2.5 New technologies in HTML5

HTML5 adds many new features that make Web applications easier to write and to
use.

• The <audio> and <video> tags provide a way to embed audio and video without
complicated add-ons like QuickTime or Flash.

• Semantic elements like <article>, <header>, <nav>, and <time> that make con-
tent easier to understand.

• The <canvas> tag, which supports a powerful drawing API, reducing the need
for server-generated images to present data graphically.

• New form control types like <input type="date"> that allow user agents to make
entering and validating values easier.

• Advanced JavaScript APIs like Web Storage, Web Workers, Web Sockets, geolo-
cation, and offline applications.

3.2. HTML/XHTML FAQ 281

Flask Documentation, Release 0.13.dev

Many other features have been added, as well. A good guide to new features in
HTML5 is Mark Pilgrim’s soon-to-be-published book, Dive Into HTML5. Not all of
them are supported in browsers yet, however, so use caution.

3.2.6 What should be used?

Currently, the answer is HTML5. There are very few reasons to use XHTML consider-
ing the latest developments in Web browsers. To summarize the reasons given above:

• Internet Explorer (which, sadly, currently leads in market share) has poor sup-
port for XHTML.

• Many JavaScript libraries also do not support XHTML, due to the more compli-
cated namespacing API it requires.

• HTML5 adds several new features, including semantic tags and the long-awaited
<audio> and <video> tags.

• It has the support of most browser vendors behind it.

• It is much easier to write, and more compact.

For most applications, it is undoubtedly better to use HTML5 than XHTML.

3.3 Security Considerations

Web applications usually face all kinds of security problems and it’s very hard to get
everything right. Flask tries to solve a few of these things for you, but there are a
couple more you have to take care of yourself.

3.3.1 Cross-Site Scripting (XSS)

Cross site scripting is the concept of injecting arbitrary HTML (and with it JavaScript)
into the context of a website. To remedy this, developers have to properly escape text
so that it cannot include arbitrary HTML tags. For more information on that have a
look at the Wikipedia article on Cross-Site Scripting.

Flask configures Jinja2 to automatically escape all values unless explicitly told other-
wise. This should rule out all XSS problems caused in templates, but there are still
other places where you have to be careful:

• generating HTML without the help of Jinja2

• calling Markup on data submitted by users

• sending out HTML from uploaded files, never do that, use the
Content-Disposition: attachment header to prevent that problem.

282 Chapter 3. Additional Notes

http://diveintohtml5.info/
https://en.wikipedia.org/wiki/Cross-site_scripting

Flask Documentation, Release 0.13.dev

• sending out textfiles from uploaded files. Some browsers are using content-type
guessing based on the first few bytes so users could trick a browser to execute
HTML.

Another thing that is very important are unquoted attributes. While Jinja2 can protect
you from XSS issues by escaping HTML, there is one thing it cannot protect you from:
XSS by attribute injection. To counter this possible attack vector, be sure to always
quote your attributes with either double or single quotes when using Jinja expressions
in them:

<input value="{{ value }}">

Why is this necessary? Because if you would not be doing that, an attacker could easily
inject custom JavaScript handlers. For example an attacker could inject this piece of
HTML+JavaScript:

onmouseover=alert(document.cookie)

When the user would then move with the mouse over the input, the cookie would be
presented to the user in an alert window. But instead of showing the cookie to the
user, a good attacker might also execute any other JavaScript code. In combination
with CSS injections the attacker might even make the element fill out the entire page
so that the user would just have to have the mouse anywhere on the page to trigger
the attack.

There is one class of XSS issues that Jinja’s escaping does not protect against. The a
tag’s href attribute can contain a javascript: URI, which the browser will execute when
clicked if not secured properly.

click here
click here

To prevent this, you’ll need to set the Content Security Policy (CSP) response header.

3.3.2 Cross-Site Request Forgery (CSRF)

Another big problem is CSRF. This is a very complex topic and I won’t outline it here
in detail just mention what it is and how to theoretically prevent it.

If your authentication information is stored in cookies, you have implicit state man-
agement. The state of “being logged in” is controlled by a cookie, and that cookie is
sent with each request to a page. Unfortunately that includes requests triggered by
3rd party sites. If you don’t keep that in mind, some people might be able to trick your
application’s users with social engineering to do stupid things without them knowing.

Say you have a specific URL that, when you sent POST requests to will delete a user’s
profile (say http://example.com/user/delete). If an attacker now creates a page that
sends a post request to that page with some JavaScript they just have to trick some
users to load that page and their profiles will end up being deleted.

3.3. Security Considerations 283

Flask Documentation, Release 0.13.dev

Imagine you were to run Facebook with millions of concurrent users and someone
would send out links to images of little kittens. When users would go to that page,
their profiles would get deleted while they are looking at images of fluffy cats.

How can you prevent that? Basically for each request that modifies content on the
server you would have to either use a one-time token and store that in the cookie and
also transmit it with the form data. After receiving the data on the server again, you
would then have to compare the two tokens and ensure they are equal.

Why does Flask not do that for you? The ideal place for this to happen is the form
validation framework, which does not exist in Flask.

3.3.3 JSON Security

In Flask 0.10 and lower, jsonify() did not serialize top-level arrays to JSON. This was
because of a security vulnerability in ECMAScript 4.

ECMAScript 5 closed this vulnerability, so only extremely old browsers are still vul-
nerable. All of these browsers have other more serious vulnerabilities, so this behavior
was changed and jsonify() now supports serializing arrays.

3.3.4 Security Headers

Browsers recognize various response headers in order to control security. We recom-
mend reviewing each of the headers below for use in your application. The Flask-
Talisman extension can be used to manage HTTPS and the security headers for you.

HTTP Strict Transport Security (HSTS)

Tells the browser to convert all HTTP requests to HTTPS, preventing man-in-the-
middle (MITM) attacks.

response.headers['Strict-Transport-Security'] = 'max-age=31536000;␣
↪→includeSubDomains'

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
Strict-Transport-Security

Content Security Policy (CSP)

Tell the browser where it can load various types of resource from. This header should
be used whenever possible, but requires some work to define the correct policy for
your site. A very strict policy would be:

response.headers['Content-Security-Policy'] = "default-src 'self'"

• https://csp.withgoogle.com/docs/index.html

284 Chapter 3. Additional Notes

https://github.com/pallets/flask/issues/248#issuecomment-59934857
https://github.com/GoogleCloudPlatform/flask-talisman
https://github.com/GoogleCloudPlatform/flask-talisman
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://csp.withgoogle.com/docs/index.html

Flask Documentation, Release 0.13.dev

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
Content-Security-Policy

X-Content-Type-Options

Forces the browser to honor the response content type instead of trying to detect it,
which can be abused to generate a cross-site scripting (XSS) attack.

response.headers['X-Content-Type-Options'] = 'nosniff'

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
X-Content-Type-Options

X-Frame-Options

Prevents external sites from embedding your site in an iframe. This prevents a class
of attacks where clicks in the outer frame can be translated invisibly to clicks on your
page’s elements. This is also known as “clickjacking”.

response.headers['X-Frame-Options'] = 'SAMEORIGIN'

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
X-Frame-Options

X-XSS-Protection

The browser will try to prevent reflected XSS attacks by not loading the page if the
request contains something that looks like JavaScript and the response contains the
same data.

response.headers['X-XSS-Protection'] = '1; mode=block'

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
X-XSS-Protection

Set-Cookie options

These options can be added to a Set-Cookie header to improve their security. Flask
has configuration options to set these on the session cookie. They can be set on other
cookies too.

• Secure limits cookies to HTTPS traffic only.

• HttpOnly protects the contents of cookies from being read with JavaScript.

• SameSite restricts how cookies are sent with requests from external sites. Can be
set to 'Lax' (recommended) or 'Strict'. Lax prevents sending cookies with
CSRF-prone requests from external sites, such as submitting a form. Strict

3.3. Security Considerations 285

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

Flask Documentation, Release 0.13.dev

prevents sending cookies with all external requests, including following regu-
lar links.

app.config.update(
SESSION_COOKIE_SECURE=True,
SESSION_COOKIE_HTTPONLY=True,
SESSION_COOKIE_SAMESITE='Lax',

)

response.set_cookie('username', 'flask', secure=True, httponly=True, samesite='Lax
↪→')

Specifying Expires or Max-Age options, will remove the cookie after the given time, or
the current time plus the age, respectively. If neither option is set, the cookie will be
removed when the browser is closed.

cookie expires after 10 minutes
response.set_cookie('snakes', '3', max_age=600)

For the session cookie, if session.permanent is set, then PERMANENT_SESSION_LIFETIME
is used to set the expiration. Flask’s default cookie implementation validates that the
cryptographic signature is not older than this value. Lowering this value may help
mitigate replay attacks, where intercepted cookies can be sent at a later time.

app.config.update(
PERMANENT_SESSION_LIFETIME=600

)

@app.route('/login', methods=['POST'])
def login():

...
session.clear()
session['user_id'] = user.id
session.permanent = True
...

Use itsdangerous.TimedSerializer to sign and validate other cookie values (or any
values that need secure signatures).

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

HTTP Public Key Pinning (HPKP)

This tells the browser to authenticate with the server using only the specific certificate
key to prevent MITM attacks.

286 Chapter 3. Additional Notes

https://pythonhosted.org/itsdangerous/index.html#itsdangerous.TimedSerializer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

Flask Documentation, Release 0.13.dev

Warning: Be careful when enabling this, as it is very difficult to undo if you set up
or upgrade your key incorrectly.

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Public_Key_Pinning

3.4 Unicode in Flask

Flask, like Jinja2 and Werkzeug, is totally Unicode based when it comes to text. Not
only these libraries, also the majority of web related Python libraries that deal with
text. If you don’t know Unicode so far, you should probably read The Absolute Min-
imum Every Software Developer Absolutely, Positively Must Know About Unicode
and Character Sets. This part of the documentation just tries to cover the very basics
so that you have a pleasant experience with Unicode related things.

3.4.1 Automatic Conversion

Flask has a few assumptions about your application (which you can change of course)
that give you basic and painless Unicode support:

• the encoding for text on your website is UTF-8

• internally you will always use Unicode exclusively for text except for literal
strings with only ASCII character points.

• encoding and decoding happens whenever you are talking over a protocol that
requires bytes to be transmitted.

So what does this mean to you?

HTTP is based on bytes. Not only the protocol, also the system used to address doc-
uments on servers (so called URIs or URLs). However HTML which is usually trans-
mitted on top of HTTP supports a large variety of character sets and which ones are
used, are transmitted in an HTTP header. To not make this too complex Flask just
assumes that if you are sending Unicode out you want it to be UTF-8 encoded. Flask
will do the encoding and setting of the appropriate headers for you.

The same is true if you are talking to databases with the help of SQLAlchemy or a
similar ORM system. Some databases have a protocol that already transmits Unicode
and if they do not, SQLAlchemy or your other ORM should take care of that.

3.4.2 The Golden Rule

So the rule of thumb: if you are not dealing with binary data, work with Unicode.
What does working with Unicode in Python 2.x mean?

3.4. Unicode in Flask 287

https://developer.mozilla.org/en-US/docs/Web/HTTP/Public_Key_Pinning
http://www.joelonsoftware.com/articles/Unicode.html
http://www.joelonsoftware.com/articles/Unicode.html
http://www.joelonsoftware.com/articles/Unicode.html

Flask Documentation, Release 0.13.dev

• as long as you are using ASCII charpoints only (basically numbers, some special
characters of latin letters without umlauts or anything fancy) you can use regular
string literals ('Hello World').

• if you need anything else than ASCII in a string you have to mark this string as
Unicode string by prefixing it with a lowercase u. (like u'Hänsel und Gretel')

• if you are using non-Unicode characters in your Python files you have to tell
Python which encoding your file uses. Again, I recommend UTF-8 for this pur-
pose. To tell the interpreter your encoding you can put the # -*- coding: utf-8
-*- into the first or second line of your Python source file.

• Jinja is configured to decode the template files from UTF-8. So make sure to tell
your editor to save the file as UTF-8 there as well.

3.4.3 Encoding and Decoding Yourself

If you are talking with a filesystem or something that is not really based on Unicode
you will have to ensure that you decode properly when working with Unicode inter-
face. So for example if you want to load a file on the filesystem and embed it into a
Jinja2 template you will have to decode it from the encoding of that file. Here the old
problem that text files do not specify their encoding comes into play. So do yourself a
favour and limit yourself to UTF-8 for text files as well.

Anyways. To load such a file with Unicode you can use the built-in str.decode()
method:

def read_file(filename, charset='utf-8'):
with open(filename, 'r') as f:

return f.read().decode(charset)

To go from Unicode into a specific charset such as UTF-8 you can use the unicode.
encode() method:

def write_file(filename, contents, charset='utf-8'):
with open(filename, 'w') as f:

f.write(contents.encode(charset))

3.4.4 Configuring Editors

Most editors save as UTF-8 by default nowadays but in case your editor is not config-
ured to do this you have to change it. Here some common ways to set your editor to
store as UTF-8:

• Vim: put set enc=utf-8 to your .vimrc file.

• Emacs: either use an encoding cookie or put this into your .emacs file:

(prefer-coding-system 'utf-8)
(setq default-buffer-file-coding-system 'utf-8)

288 Chapter 3. Additional Notes

Flask Documentation, Release 0.13.dev

• Notepad++:

1. Go to Settings -> Preferences . . .

2. Select the “New Document/Default Directory” tab

3. Select “UTF-8 without BOM” as encoding

It is also recommended to use the Unix newline format, you can select it in the
same panel but this is not a requirement.

3.5 Flask Extension Development

Flask, being a microframework, often requires some repetitive steps to get a third party
library working. Because very often these steps could be abstracted to support multi-
ple projects the Flask Extension Registry was created.

If you want to create your own Flask extension for something that does not exist yet,
this guide to extension development will help you get your extension running in no
time and to feel like users would expect your extension to behave.

3.5.1 Anatomy of an Extension

Extensions are all located in a package called flask_something where “something” is
the name of the library you want to bridge. So for example if you plan to add support
for a library named simplexml to Flask, you would name your extension’s package
flask_simplexml.

The name of the actual extension (the human readable name) however would be some-
thing like “Flask-SimpleXML”. Make sure to include the name “Flask” somewhere in
that name and that you check the capitalization. This is how users can then register
dependencies to your extension in their setup.py files.

But what do extensions look like themselves? An extension has to ensure that it works
with multiple Flask application instances at once. This is a requirement because many
people will use patterns like the Application Factories pattern to create their application
as needed to aid unittests and to support multiple configurations. Because of that it is
crucial that your application supports that kind of behavior.

Most importantly the extension must be shipped with a setup.py file and registered
on PyPI. Also the development checkout link should work so that people can easily
install the development version into their virtualenv without having to download the
library by hand.

Flask extensions must be licensed under a BSD, MIT or more liberal license in order
to be listed in the Flask Extension Registry. Keep in mind that the Flask Extension
Registry is a moderated place and libraries will be reviewed upfront if they behave as
required.

3.5. Flask Extension Development 289

http://flask.pocoo.org/extensions/

Flask Documentation, Release 0.13.dev

3.5.2 “Hello Flaskext!”

So let’s get started with creating such a Flask extension. The extension we want to
create here will provide very basic support for SQLite3.

First we create the following folder structure:

flask-sqlite3/
flask_sqlite3.py
LICENSE
README

Here’s the contents of the most important files:

setup.py

The next file that is absolutely required is the setup.py file which is used to install
your Flask extension. The following contents are something you can work with:

"""
Flask-SQLite3

This is the description for that library
"""
from setuptools import setup

setup(
name='Flask-SQLite3',
version='1.0',
url='http://example.com/flask-sqlite3/',
license='BSD',
author='Your Name',
author_email='your-email@example.com',
description='Very short description',
long_description=__doc__,
py_modules=['flask_sqlite3'],
if you would be using a package instead use packages instead
of py_modules:
packages=['flask_sqlite3'],
zip_safe=False,
include_package_data=True,
platforms='any',
install_requires=[

'Flask'
],
classifiers=[

'Environment :: Web Environment',
'Intended Audience :: Developers',

290 Chapter 3. Additional Notes

Flask Documentation, Release 0.13.dev

'License :: OSI Approved :: BSD License',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Topic :: Internet :: WWW/HTTP :: Dynamic Content',
'Topic :: Software Development :: Libraries :: Python Modules'

]
)

That’s a lot of code but you can really just copy/paste that from existing extensions
and adapt.

flask_sqlite3.py

Now this is where your extension code goes. But how exactly should such an exten-
sion look like? What are the best practices? Continue reading for some insight.

3.5.3 Initializing Extensions

Many extensions will need some kind of initialization step. For example, consider an
application that’s currently connecting to SQLite like the documentation suggests (Us-
ing SQLite 3 with Flask). So how does the extension know the name of the application
object?

Quite simple: you pass it to it.

There are two recommended ways for an extension to initialize:

initialization functions:

If your extension is called helloworld you might have a function called
init_helloworld(app[, extra_args]) that initializes the extension for that
application. It could attach before / after handlers etc.

classes:

Classes work mostly like initialization functions but can later be used to
further change the behavior. For an example look at how the OAuth exten-
sion works: there is an OAuth object that provides some helper functions
like OAuth.remote_app to create a reference to a remote application that uses
OAuth.

What to use depends on what you have in mind. For the SQLite 3 extension we will
use the class-based approach because it will provide users with an object that handles
opening and closing database connections.

When designing your classes, it’s important to make them easily reusable at the mod-
ule level. This means the object itself must not under any circumstances store any
application specific state and must be shareable between different applications.

3.5. Flask Extension Development 291

https://pythonhosted.org/Flask-OAuth/
https://pythonhosted.org/Flask-OAuth/

Flask Documentation, Release 0.13.dev

3.5.4 The Extension Code

Here’s the contents of the flask_sqlite3.py for copy/paste:

import sqlite3
from flask import current_app, _app_ctx_stack

class SQLite3(object):
def __init__(self, app=None):

self.app = app
if app is not None:

self.init_app(app)

def init_app(self, app):
app.config.setdefault('SQLITE3_DATABASE', ':memory:')
app.teardown_appcontext(self.teardown)

def connect(self):
return sqlite3.connect(current_app.config['SQLITE3_DATABASE'])

def teardown(self, exception):
ctx = _app_ctx_stack.top
if hasattr(ctx, 'sqlite3_db'):

ctx.sqlite3_db.close()

@property
def connection(self):

ctx = _app_ctx_stack.top
if ctx is not None:

if not hasattr(ctx, 'sqlite3_db'):
ctx.sqlite3_db = self.connect()

return ctx.sqlite3_db

So here’s what these lines of code do:

1. The __init__ method takes an optional app object and, if supplied, will call
init_app.

2. The init_app method exists so that the SQLite3 object can be instantiated with-
out requiring an app object. This method supports the factory pattern for cre-
ating applications. The init_app will set the configuration for the database, de-
faulting to an in memory database if no configuration is supplied. In addition,
the init_app method attaches the teardown handler.

3. Next, we define a connect method that opens a database connection.

4. Finally, we add a connection property that on first access opens the database
connection and stores it on the context. This is also the recommended way to
handling resources: fetch resources lazily the first time they are used.

Note here that we’re attaching our database connection to the top application

292 Chapter 3. Additional Notes

Flask Documentation, Release 0.13.dev

context via _app_ctx_stack.top. Extensions should use the top context for stor-
ing their own information with a sufficiently complex name.

So why did we decide on a class-based approach here? Because using our extension
looks something like this:

from flask import Flask
from flask_sqlite3 import SQLite3

app = Flask(__name__)
app.config.from_pyfile('the-config.cfg')
db = SQLite3(app)

You can then use the database from views like this:

@app.route('/')
def show_all():

cur = db.connection.cursor()
cur.execute(...)

Likewise if you are outside of a request you can use the database by pushing an app
context:

with app.app_context():
cur = db.connection.cursor()
cur.execute(...)

At the end of the with block the teardown handles will be executed automatically.

Additionally, the init_app method is used to support the factory pattern for creating
apps:

db = Sqlite3()
Then later on.
app = create_app('the-config.cfg')
db.init_app(app)

Keep in mind that supporting this factory pattern for creating apps is required for
approved flask extensions (described below).

Note on init_app

As you noticed, init_app does not assign app to self. This is intentional! Class based
Flask extensions must only store the application on the object when the application
was passed to the constructor. This tells the extension: I am not interested in using
multiple applications.

When the extension needs to find the current application and it does not have a refer-
ence to it, it must either use the current_app context local or change the API in a way
that you can pass the application explicitly.

3.5. Flask Extension Development 293

Flask Documentation, Release 0.13.dev

3.5.5 Using _app_ctx_stack

In the example above, before every request, a sqlite3_db variable is assigned
to _app_ctx_stack.top. In a view function, this variable is accessible using the
connection property of SQLite3. During the teardown of a request, the sqlite3_db
connection is closed. By using this pattern, the same connection to the sqlite3 database
is accessible to anything that needs it for the duration of the request.

3.5.6 Learn from Others

This documentation only touches the bare minimum for extension development. If
you want to learn more, it’s a very good idea to check out existing extensions on the
Flask Extension Registry. If you feel lost there is still the mailinglist and the IRC chan-
nel to get some ideas for nice looking APIs. Especially if you do something nobody
before you did, it might be a very good idea to get some more input. This not only gen-
erates useful feedback on what people might want from an extension, but also avoids
having multiple developers working in isolation on pretty much the same problem.

Remember: good API design is hard, so introduce your project on the mailinglist, and
let other developers give you a helping hand with designing the API.

The best Flask extensions are extensions that share common idioms for the API. And
this can only work if collaboration happens early.

3.5.7 Approved Extensions

Flask also has the concept of approved extensions. Approved extensions are tested as
part of Flask itself to ensure extensions do not break on new releases. These approved
extensions are listed on the Flask Extension Registry and marked appropriately. If you
want your own extension to be approved you have to follow these guidelines:

0. An approved Flask extension requires a maintainer. In the event an extension
author would like to move beyond the project, the project should find a new
maintainer including full source hosting transition and PyPI access. If no main-
tainer is available, give access to the Flask core team.

1. An approved Flask extension must provide exactly one package or module
named flask_extensionname.

2. It must ship a testing suite that can either be invoked with make test or python
setup.py test. For test suites invoked with make test the extension has to
ensure that all dependencies for the test are installed automatically. If tests are
invoked with python setup.py test, test dependencies can be specified in the
setup.py file. The test suite also has to be part of the distribution.

3. APIs of approved extensions will be checked for the following characteristics:

• an approved extension has to support multiple applications running in the same
Python process.

294 Chapter 3. Additional Notes

http://flask.pocoo.org/extensions/
http://flask.pocoo.org/mailinglist/
http://flask.pocoo.org/community/irc/
http://flask.pocoo.org/community/irc/
http://flask.pocoo.org/extensions/

Flask Documentation, Release 0.13.dev

• it must be possible to use the factory pattern for creating applications.

4. The license must be BSD/MIT/WTFPL licensed.

5. The naming scheme for official extensions is Flask-ExtensionName or
ExtensionName-Flask.

6. Approved extensions must define all their dependencies in the setup.py file un-
less a dependency cannot be met because it is not available on PyPI.

7. The extension must have documentation that uses one of the two Flask themes
for Sphinx documentation.

8. The setup.py description (and thus the PyPI description) has to link to the doc-
umentation, website (if there is one) and there must be a link to automatically
install the development version (PackageName==dev).

9. The zip_safe flag in the setup script must be set to False, even if the extension
would be safe for zipping.

10. An extension currently has to support Python 3.4 and newer and 2.7.

3.6 Pocoo Styleguide

The Pocoo styleguide is the styleguide for all Pocoo Projects, including Flask. This
styleguide is a requirement for Patches to Flask and a recommendation for Flask ex-
tensions.

In general the Pocoo Styleguide closely follows PEP 8 with some small differences and
extensions.

3.6.1 General Layout

Indentation: 4 real spaces. No tabs, no exceptions.

Maximum line length: 79 characters with a soft limit for 84 if absolutely necessary.
Try to avoid too nested code by cleverly placing break, continue and return state-
ments.

Continuing long statements: To continue a statement you can use backslashes in
which case you should align the next line with the last dot or equal sign, or
indent four spaces:

this_is_a_very_long(function_call, 'with many parameters') \
.that_returns_an_object_with_an_attribute

MyModel.query.filter(MyModel.scalar > 120) \
.order_by(MyModel.name.desc()) \
.limit(10)

If you break in a statement with parentheses or braces, align to the braces:

3.6. Pocoo Styleguide 295

https://www.python.org/dev/peps/pep-0008

Flask Documentation, Release 0.13.dev

this_is_a_very_long(function_call, 'with many parameters',
23, 42, 'and even more')

For lists or tuples with many items, break immediately after the opening brace:

items = [
'this is the first', 'set of items', 'with more items',
'to come in this line', 'like this'

]

Blank lines: Top level functions and classes are separated by two lines, everything
else by one. Do not use too many blank lines to separate logical segments in
code. Example:

def hello(name):
print 'Hello %s!' % name

def goodbye(name):
print 'See you %s.' % name

class MyClass(object):
"""This is a simple docstring"""

def __init__(self, name):
self.name = name

def get_annoying_name(self):
return self.name.upper() + '!!!!111'

3.6.2 Expressions and Statements

General whitespace rules:

• No whitespace for unary operators that are not words (e.g.: -, ~ etc.) as well
on the inner side of parentheses.

• Whitespace is placed between binary operators.

Good:

exp = -1.05
value = (item_value / item_count) * offset / exp
value = my_list[index]
value = my_dict['key']

Bad:

296 Chapter 3. Additional Notes

Flask Documentation, Release 0.13.dev

exp = - 1.05
value = (item_value / item_count) * offset / exp
value = (item_value/item_count)*offset/exp
value=(item_value/item_count) * offset/exp
value = my_list[index]
value = my_dict ['key']

Yoda statements are a no-go: Never compare constant with variable, always variable
with constant:

Good:

if method == 'md5':
pass

Bad:

if 'md5' == method:
pass

Comparisons:

• against arbitrary types: == and !=

• against singletons with is and is not (eg: foo is not None)

• never compare something with True or False (for example never do foo ==
False, do not foo instead)

Negated containment checks: use foo not in bar instead of not foo in bar

Instance checks: isinstance(a, C) instead of type(A) is C, but try to avoid instance
checks in general. Check for features.

3.6.3 Naming Conventions

• Class names: CamelCase, with acronyms kept uppercase (HTTPWriter and not
HttpWriter)

• Variable names: lowercase_with_underscores

• Method and function names: lowercase_with_underscores

• Constants: UPPERCASE_WITH_UNDERSCORES

• precompiled regular expressions: name_re

Protected members are prefixed with a single underscore. Double underscores are
reserved for mixin classes.

On classes with keywords, trailing underscores are appended. Clashes with builtins
are allowed and must not be resolved by appending an underline to the variable name.
If the function needs to access a shadowed builtin, rebind the builtin to a different
name instead.

3.6. Pocoo Styleguide 297

Flask Documentation, Release 0.13.dev

Function and method arguments:

• class methods: cls as first parameter

• instance methods: self as first parameter

• lambdas for properties might have the first parameter replaced with x like
in display_name = property(lambda x: x.real_name or x.username)

3.6.4 Docstrings

Docstring conventions: All docstrings are formatted with reStructuredText as under-
stood by Sphinx. Depending on the number of lines in the docstring, they are
laid out differently. If it’s just one line, the closing triple quote is on the same line
as the opening, otherwise the text is on the same line as the opening quote and
the triple quote that closes the string on its own line:

def foo():
"""This is a simple docstring"""

def bar():
"""This is a longer docstring with so much information in there
that it spans three lines. In this case the closing triple quote
is on its own line.
"""

Module header: The module header consists of a utf-8 encoding declaration (if non
ASCII letters are used, but it is recommended all the time) and a standard doc-
string:

-*- coding: utf-8 -*-
"""

package.module
~~~~~~~~~~~~~~

A brief description goes here.

:copyright: (c) YEAR by AUTHOR.
:license: LICENSE_NAME, see LICENSE_FILE for more details.

"""

Please keep in mind that proper copyrights and license files are a requirement
for approved Flask extensions.

3.6.5 Comments

Rules for comments are similar to docstrings. Both are formatted with reStructured-
Text. If a comment is used to document an attribute, put a colon after the opening
pound sign (#):

298 Chapter 3. Additional Notes



Flask Documentation, Release 0.13.dev

class User(object):
#: the name of the user as unicode string
name = Column(String)
#: the sha1 hash of the password + inline salt
pw_hash = Column(String)

3.7 Upgrading to Newer Releases

Flask itself is changing like any software is changing over time. Most of the changes
are the nice kind, the kind where you don’t have to change anything in your code to
profit from a new release.

However every once in a while there are changes that do require some changes in
your code or there are changes that make it possible for you to improve your own
code quality by taking advantage of new features in Flask.

This section of the documentation enumerates all the changes in Flask from release to
release and how you can change your code to have a painless updating experience.

Use the pip command to upgrade your existing Flask installation by providing the
--upgrade parameter:

$ pip install --upgrade Flask

3.7.1 Version 0.12

Changes to send_file

The filename is no longer automatically inferred from file-like objects. This means
that the following code will no longer automatically have X-Sendfile support, etag
generation or MIME-type guessing:

response = send_file(open('/path/to/file.txt'))

Any of the following is functionally equivalent:

fname = '/path/to/file.txt'

# Just pass the filepath directly
response = send_file(fname)

# Set the MIME-type and ETag explicitly
response = send_file(open(fname), mimetype='text/plain')
response.set_etag(...)

# Set `attachment_filename` for MIME-type guessing
# ETag still needs to be manually set

3.7. Upgrading to Newer Releases 299



Flask Documentation, Release 0.13.dev

response = send_file(open(fname), attachment_filename=fname)
response.set_etag(...)

The reason for this is that some file-like objects have an invalid or even misleading
name attribute. Silently swallowing errors in such cases was not a satisfying solution.

Additionally the default of falling back to application/octet-stream has been re-
stricted. If Flask can’t guess one or the user didn’t provide one, the function fails if
no filename information was provided.

3.7.2 Version 0.11

0.11 is an odd release in the Flask release cycle because it was supposed to be the 1.0
release. However because there was such a long lead time up to the release we decided
to push out a 0.11 release first with some changes removed to make the transition
easier. If you have been tracking the master branch which was 1.0 you might see some
unexpected changes.

In case you did track the master branch you will notice that flask --app is removed
now. You need to use the environment variable to specify an application.

Debugging

Flask 0.11 removed the debug_log_format attribute from Flask applications. Instead
the new LOGGER_HANDLER_POLICY configuration can be used to disable the default log
handlers and custom log handlers can be set up.

Error handling

The behavior of error handlers was changed. The precedence of handlers used to be
based on the decoration/call order of errorhandler() and register_error_handler(),
respectively. Now the inheritance hierarchy takes precedence and handlers for more
specific exception classes are executed instead of more general ones. See Error handlers
for specifics.

Trying to register a handler on an instance now raises ValueError.

Note: There used to be a logic error allowing you to register handlers only for excep-
tion instances. This was unintended and plain wrong, and therefore was replaced with
the intended behavior of registering handlers only using exception classes and HTTP
error codes.

300 Chapter 3. Additional Notes

https://docs.python.org/3/library/exceptions.html#ValueError


Flask Documentation, Release 0.13.dev

Templating

The render_template_string() function has changed to autoescape template vari-
ables by default. This better matches the behavior of render_template().

Extension imports

Extension imports of the form flask.ext.foo are deprecated, you should use
flask_foo.

The old form still works, but Flask will issue a flask.exthook.ExtDeprecationWarning
for each extension you import the old way. We also provide a migration utility called
flask-ext-migrate that is supposed to automatically rewrite your imports for this.

3.7.3 Version 0.10

The biggest change going from 0.9 to 0.10 is that the cookie serialization format
changed from pickle to a specialized JSON format. This change has been done in order
to avoid the damage an attacker can do if the secret key is leaked. When you upgrade
you will notice two major changes: all sessions that were issued before the upgrade
are invalidated and you can only store a limited amount of types in the session. The
new sessions are by design much more restricted to only allow JSON with a few small
extensions for tuples and strings with HTML markup.

In order to not break people’s sessions it is possible to continue using the old session
system by using the Flask-OldSessions extension.

Flask also started storing the flask.g object on the application context instead of the
request context. This change should be transparent for you but it means that you now
can store things on the g object when there is no request context yet but an applica-
tion context. The old flask.Flask.request_globals_class attribute was renamed to
flask.Flask.app_ctx_globals_class.

3.7.4 Version 0.9

The behavior of returning tuples from a function was simplified. If you return a tuple
it no longer defines the arguments for the response object you’re creating, it’s now
always a tuple in the form (response, status, headers) where at least one item has
to be provided. If you depend on the old behavior, you can add it easily by subclassing
Flask:

class TraditionalFlask(Flask):
def make_response(self, rv):

if isinstance(rv, tuple):
return self.response_class(*rv)

return Flask.make_response(self, rv)

3.7. Upgrading to Newer Releases 301

https://github.com/pallets/flask-ext-migrate
https://pythonhosted.org/Flask-OldSessions/


Flask Documentation, Release 0.13.dev

If you maintain an extension that was using _request_ctx_stack before, please con-
sider changing to _app_ctx_stack if it makes sense for your extension. For instance,
the app context stack makes sense for extensions which connect to databases. Using
the app context stack instead of the request context stack will make extensions more
readily handle use cases outside of requests.

3.7.5 Version 0.8

Flask introduced a new session interface system. We also noticed that there was a
naming collision between flask.session the module that implements sessions and
flask.session which is the global session object. With that introduction we moved
the implementation details for the session system into a new module called flask.
sessions. If you used the previously undocumented session support we urge you to
upgrade.

If invalid JSON data was submitted Flask will now raise a BadRequest exception in-
stead of letting the default ValueError bubble up. This has the advantage that you no
longer have to handle that error to avoid an internal server error showing up for the
user. If you were catching this down explicitly in the past as ValueError you will need
to change this.

Due to a bug in the test client Flask 0.7 did not trigger teardown handlers when the
test client was used in a with statement. This was since fixed but might require some
changes in your test suites if you relied on this behavior.

3.7.6 Version 0.7

In Flask 0.7 we cleaned up the code base internally a lot and did some backwards in-
compatible changes that make it easier to implement larger applications with Flask.
Because we want to make upgrading as easy as possible we tried to counter the prob-
lems arising from these changes by providing a script that can ease the transition.

The script scans your whole application and generates a unified diff with changes it
assumes are safe to apply. However as this is an automated tool it won’t be able to
find all use cases and it might miss some. We internally spread a lot of deprecation
warnings all over the place to make it easy to find pieces of code that it was unable to
upgrade.

We strongly recommend that you hand review the generated patchfile and only apply
the chunks that look good.

If you are using git as version control system for your project we recommend applying
the patch with path -p1 < patchfile.diff and then using the interactive commit
feature to only apply the chunks that look good.

To apply the upgrade script do the following:

1. Download the script: flask-07-upgrade.py

2. Run it in the directory of your application:

302 Chapter 3. Additional Notes

http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.BadRequest
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://raw.githubusercontent.com/pallets/flask/master/scripts/flask-07-upgrade.py


Flask Documentation, Release 0.13.dev

python flask-07-upgrade.py > patchfile.diff

3. Review the generated patchfile.

4. Apply the patch:

patch -p1 < patchfile.diff

5. If you were using per-module template folders you need to move some templates
around. Previously if you had a folder named templates next to a blueprint
named admin the implicit template path automatically was admin/index.html for
a template file called templates/index.html. This no longer is the case. Now you
need to name the template templates/admin/index.html. The tool will not detect
this so you will have to do that on your own.

Please note that deprecation warnings are disabled by default starting with Python 2.7.
In order to see the deprecation warnings that might be emitted you have to enabled
them with the warnings module.

If you are working with windows and you lack the patch command line utility you can
get it as part of various Unix runtime environments for windows including cygwin,
msysgit or ming32. Also source control systems like svn, hg or git have builtin support
for applying unified diffs as generated by the tool. Check the manual of your version
control system for more information.

Bug in Request Locals

Due to a bug in earlier implementations the request local proxies now raise a
RuntimeError instead of an AttributeError when they are unbound. If you
caught these exceptions with AttributeError before, you should catch them with
RuntimeError now.

Additionally the send_file() function is now issuing deprecation warnings if you
depend on functionality that will be removed in Flask 0.11. Previously it was possible
to use etags and mimetypes when file objects were passed. This was unreliable and
caused issues for a few setups. If you get a deprecation warning, make sure to update
your application to work with either filenames there or disable etag attaching and
attach them yourself.

Old code:

return send_file(my_file_object)
return send_file(my_file_object)

New code:

return send_file(my_file_object, add_etags=False)

3.7. Upgrading to Newer Releases 303

https://docs.python.org/3/library/warnings.html#module-warnings
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#RuntimeError


Flask Documentation, Release 0.13.dev

Upgrading to new Teardown Handling

We streamlined the behavior of the callbacks for request handling. For things that
modify the response the after_request() decorators continue to work as expected,
but for things that absolutely must happen at the end of request we introduced the new
teardown_request() decorator. Unfortunately that change also made after-request
work differently under error conditions. It’s not consistently skipped if exceptions
happen whereas previously it might have been called twice to ensure it is executed at
the end of the request.

If you have database connection code that looks like this:

@app.after_request
def after_request(response):

g.db.close()
return response

You are now encouraged to use this instead:

@app.teardown_request
def after_request(exception):

if hasattr(g, 'db'):
g.db.close()

On the upside this change greatly improves the internal code flow and makes it easier
to customize the dispatching and error handling. This makes it now a lot easier to
write unit tests as you can prevent closing down of database connections for a while.
You can take advantage of the fact that the teardown callbacks are called when the re-
sponse context is removed from the stack so a test can query the database after request
handling:

with app.test_client() as client:
resp = client.get('/')
# g.db is still bound if there is such a thing

# and here it's gone

Manual Error Handler Attaching

While it is still possible to attach error handlers to Flask.error_handlers it’s discour-
aged to do so and in fact deprecated. In general we no longer recommend custom
error handler attaching via assignments to the underlying dictionary due to the more
complex internal handling to support arbitrary exception classes and blueprints. See
Flask.errorhandler() for more information.

The proper upgrade is to change this:

app.error_handlers[403] = handle_error

Into this:

304 Chapter 3. Additional Notes



Flask Documentation, Release 0.13.dev

app.register_error_handler(403, handle_error)

Alternatively you should just attach the function with a decorator:

@app.errorhandler(403)
def handle_error(e):

...

(Note that register_error_handler() is new in Flask 0.7)

Blueprint Support

Blueprints replace the previous concept of “Modules” in Flask. They provide better
semantics for various features and work better with large applications. The update
script provided should be able to upgrade your applications automatically, but there
might be some cases where it fails to upgrade. What changed?

• Blueprints need explicit names. Modules had an automatic name guessing
scheme where the shortname for the module was taken from the last part of
the import module. The upgrade script tries to guess that name but it might fail
as this information could change at runtime.

• Blueprints have an inverse behavior for url_for(). Previously .foo told
url_for() that it should look for the endpoint foo on the application. Now it
means “relative to current module”. The script will inverse all calls to url_for()
automatically for you. It will do this in a very eager way so you might end up
with some unnecessary leading dots in your code if you’re not using modules.

• Blueprints do not automatically provide static folders. They will also no longer
automatically export templates from a folder called templates next to their loca-
tion however but it can be enabled from the constructor. Same with static files: if
you want to continue serving static files you need to tell the constructor explic-
itly the path to the static folder (which can be relative to the blueprint’s module
path).

• Rendering templates was simplified. Now the blueprints can provide template
folders which are added to a general template searchpath. This means that you
need to add another subfolder with the blueprint’s name into that folder if you
want blueprintname/template.html as the template name.

If you continue to use the Module object which is deprecated, Flask will restore the
previous behavior as good as possible. However we strongly recommend upgrading
to the new blueprints as they provide a lot of useful improvement such as the ability
to attach a blueprint multiple times, blueprint specific error handlers and a lot more.

3.7.7 Version 0.6

Flask 0.6 comes with a backwards incompatible change which affects the order of after-
request handlers. Previously they were called in the order of the registration, now

3.7. Upgrading to Newer Releases 305



Flask Documentation, Release 0.13.dev

they are called in reverse order. This change was made so that Flask behaves more
like people expected it to work and how other systems handle request pre- and post-
processing. If you depend on the order of execution of post-request functions, be sure
to change the order.

Another change that breaks backwards compatibility is that context processors will
no longer override values passed directly to the template rendering function. If for
example request is as variable passed directly to the template, the default context
processor will not override it with the current request object. This makes it easier to
extend context processors later to inject additional variables without breaking existing
template not expecting them.

3.7.8 Version 0.5

Flask 0.5 is the first release that comes as a Python package instead of a single mod-
ule. There were a couple of internal refactoring so if you depend on undocumented
internal details you probably have to adapt the imports.

The following changes may be relevant to your application:

• autoescaping no longer happens for all templates. Instead it is configured to only
happen on files ending with .html, .htm, .xml and .xhtml. If you have templates
with different extensions you should override the select_jinja_autoescape()
method.

• Flask no longer supports zipped applications in this release. This functionality
might come back in future releases if there is demand for this feature. Removing
support for this makes the Flask internal code easier to understand and fixes a
couple of small issues that make debugging harder than necessary.

• The create_jinja_loader function is gone. If you want to customize the Jinja
loader now, use the create_jinja_environment() method instead.

3.7.9 Version 0.4

For application developers there are no changes that require changes in your code.
In case you are developing on a Flask extension however, and that extension has a
unittest-mode you might want to link the activation of that mode to the new TESTING
flag.

3.7.10 Version 0.3

Flask 0.3 introduces configuration support and logging as well as categories for flash-
ing messages. All these are features that are 100% backwards compatible but you
might want to take advantage of them.

306 Chapter 3. Additional Notes



Flask Documentation, Release 0.13.dev

Configuration Support

The configuration support makes it easier to write any kind of application that requires
some sort of configuration. (Which most likely is the case for any application out
there).

If you previously had code like this:

app.debug = DEBUG
app.secret_key = SECRET_KEY

You no longer have to do that, instead you can just load a configuration into the config
object. How this works is outlined in Configuration Handling.

Logging Integration

Flask now configures a logger for you with some basic and useful defaults. If you
run your application in production and want to profit from automatic error logging,
you might be interested in attaching a proper log handler. Also you can start logging
warnings and errors into the logger when appropriately. For more information on
that, read Application Errors.

Categories for Flash Messages

Flash messages can now have categories attached. This makes it possible to render
errors, warnings or regular messages differently for example. This is an opt-in feature
because it requires some rethinking in the code.

Read all about that in the Message Flashing pattern.

3.8 Flask Changelog

3.8.1 Version 1.0

unreleased

• Python 2.6 and 3.3 are no longer supported. (pallets/meta#24)

• Bump minimum dependency versions to the latest stable versions: Werkzeug >=
0.14, Jinja >= 2.10, itsdangerous >= 0.24, Click >= 5.1. (#2586)

• Skip app.run when a Flask application is run from the command line. This
avoids some behavior that was confusing to debug.

• Change the default for JSONIFY_PRETTYPRINT_REGULAR to False. jsonify() re-
turns a compact format by default, and an indented format in debug mode.
(#2193)

3.8. Flask Changelog 307

https://github.com/pallets/meta/issues/24
https://github.com/pallets/flask/issues/2586
https://github.com/pallets/flask/pull/2193


Flask Documentation, Release 0.13.dev

• Flask.__init__ accepts the host_matching argument and sets it on url_map.
(#1559)

• Flask.__init__ accepts the static_host argument and passes it as the host ar-
gument when defining the static route. (#1559)

• send_file() supports Unicode in attachment_filename. (#2223)

• Pass _scheme argument from url_for() to handle_url_build_error(). (#2017)

• add_url_rule() accepts the provide_automatic_options argument to disable
adding the OPTIONS method. (#1489)

• MethodView subclasses inherit method handlers from base classes. (#1936)

• Errors caused while opening the session at the beginning of the request are han-
dled by the app’s error handlers. (#2254)

• Blueprints gained json_encoder and json_decoder attributes to override the
app’s encoder and decoder. (#1898)

• Flask.make_response() raises TypeError instead of ValueError for bad response
types. The error messages have been improved to describe why the type is in-
valid. (#2256)

• Add routes CLI command to output routes registered on the application. (#2259)

• Show warning when session cookie domain is a bare hostname or an IP address,
as these may not behave properly in some browsers, such as Chrome. (#2282)

• Allow IP address as exact session cookie domain. (#2282)

• SESSION_COOKIE_DOMAIN is set if it is detected through SERVER_NAME. (#2282)

• Auto-detect zero-argument app factory called create_app or make_app from
FLASK_APP. (#2297)

• Factory functions are not required to take a script_info parameter to work with
the flask command. If they take a single parameter or a parameter named
script_info, the ScriptInfo object will be passed. (#2319)

• FLASK_APP can be set to an app factory, with arguments if needed, for example
FLASK_APP=myproject.app:create_app('dev'). (#2326)

• FLASK_APP can point to local packages that are not installed in editable mode,
although pip install -e is still preferred. (#2414)

• The View class attribute provide_automatic_options is set in as_view(), to be
detected by add_url_rule(). (#2316)

• Error handling will try handlers registered for blueprint, code, app, code,
blueprint, exception, app, exception. (#2314)

• Cookie is added to the response’s Vary header if the session is accessed at all
during the request (and not deleted). (#2288)

• test_request_context() accepts subdomain and url_scheme arguments for use
when building the base URL. (#1621)

308 Chapter 3. Additional Notes

https://github.com/pallets/flask/issues/1559
https://github.com/pallets/flask/issues/1559
https://github.com/pallets/flask/pull/2223
https://github.com/pallets/flask/pull/2017
https://github.com/pallets/flask/pull/1489
https://github.com/pallets/flask/pull/1936
https://github.com/pallets/flask/pull/2254
https://github.com/pallets/flask/pull/1898
https://github.com/pallets/flask/pull/2256
https://github.com/pallets/flask/pull/2259
https://github.com/pallets/flask/pull/2282
https://github.com/pallets/flask/pull/2282
https://github.com/pallets/flask/pull/2282
https://github.com/pallets/flask/pull/2297
https://github.com/pallets/flask/pull/2319
https://github.com/pallets/flask/pull/2326
https://github.com/pallets/flask/pull/2414
https://github.com/pallets/flask/pull/2316
https://github.com/pallets/flask/pull/2314
https://github.com/pallets/flask/pull/2288
https://github.com/pallets/flask/pull/1621


Flask Documentation, Release 0.13.dev

• Set APPLICATION_ROOT to '/' by default. This was already the implicit default
when it was set to None.

• TRAP_BAD_REQUEST_ERRORS is enabled by default in debug mode.
BadRequestKeyError has a message with the bad key in debug mode instead of
the generic bad request message. (#2348)

• Allow registering new tags with TaggedJSONSerializer to support storing other
types in the session cookie. (#2352)

• Only open the session if the request has not been pushed onto the context stack
yet. This allows stream_with_context() generators to access the same session
that the containing view uses. (#2354)

• Add json keyword argument for the test client request methods. This will dump
the given object as JSON and set the appropriate content type. (#2358)

• Extract JSON handling to a mixin applied to both the Request and Response
classes. This adds the is_json() and get_json() methods to the response to
make testing JSON response much easier. (#2358)

• Removed error handler caching because it caused unexpected results for some
exception inheritance hierarchies. Register handlers explicitly for each exception
if you want to avoid traversing the MRO. (#2362)

• Fix incorrect JSON encoding of aware, non-UTC datetimes. (#2374)

• Template auto reloading will honor debug mode even even if jinja_env was
already accessed. (#2373)

• The following old deprecated code was removed. (#2385)

– flask.ext - import extensions directly by their name instead of through
the flask.ext namespace. For example, import flask.ext.sqlalchemy be-
comes import flask_sqlalchemy.

– Flask.init_jinja_globals - extend Flask.create_jinja_environment()
instead.

– Flask.error_handlers - tracked by Flask.error_handler_spec, use Flask.
errorhandler() to register handlers.

– Flask.request_globals_class - use Flask.app_ctx_globals_class instead.

– Flask.static_path - use Flask.static_url_path instead.

– Request.module - use Request.blueprint instead.

• The Request.json property is no longer deprecated. (#1421)

• Support passing a EnvironBuilder or dict to test_client.open. (#2412)

• The flask command and Flask.run() will load environment variables from .env
and .flaskenv files if python-dotenv is installed. (#2416)

• When passing a full URL to the test client, the scheme in the URL is used instead
of PREFERRED_URL_SCHEME. (#2430)

3.8. Flask Changelog 309

https://github.com/pallets/flask/pull/2348
https://github.com/pallets/flask/pull/2352
https://github.com/pallets/flask/pull/2354
https://github.com/pallets/flask/pull/2358
https://github.com/pallets/flask/pull/2358
https://github.com/pallets/flask/pull/2362
https://github.com/pallets/flask/pull/2374
https://github.com/pallets/flask/pull/2373
https://github.com/pallets/flask/issues/2385
https://github.com/pallets/flask/issues/1421
http://werkzeug.pocoo.org/docs/test/#werkzeug.test.EnvironBuilder
http://werkzeug.pocoo.org/docs/test/#werkzeug.test.Client.open
https://github.com/pallets/flask/pull/2412
https://github.com/pallets/flask/pull/2416
https://github.com/pallets/flask/pull/2430


Flask Documentation, Release 0.13.dev

• Flask.logger has been simplified. LOGGER_NAME and LOGGER_HANDLER_POLICY
config was removed. The logger is always named flask.app. The level is only
set on first access, it doesn’t check Flask.debug each time. Only one format is
used, not different ones depending on Flask.debug. No handlers are removed,
and a handler is only added if no handlers are already configured. (#2436)

• Blueprint view function names may not contain dots. (#2450)

• Fix a ValueError caused by invalid Range requests in some cases. (#2526)

• The development server uses threads by default. (#2529)

• Loading config files with silent=True will ignore ENOTDIR errors. (#2581)

• Pass --cert and --key options to flask run to run the development server over
HTTPS. (#2606)

• Added SESSION_COOKIE_SAMESITE to control the SameSite attribute on the session
cookie. (#2607)

• Added test_cli_runner() to create a Click runner that can invoke Flask CLI
commands for testing. (#2636)

• Subdomain matching is disabled by default and setting SERVER_NAME does not
implicily enable it. It can be enabled by passing subdomain_matching=True to the
Flask constructor. (#2635)

• A single trailing slash is stripped from the blueprint url_prefix when it is regis-
tered with the app. (#2629)

• Request.get_json() doesn’t cache the result if parsing fails when silent is true.
(#2651)

• Request.get_json() no longer accepts arbitrary encodings. Incoming JSON
should be encoded using UTF-8 per RFC 8259, but Flask will autodetect UTF-
8, -16, or -32. (#2691)

• Added MAX_COOKIE_SIZE and Response.max_cookie_size to control when
Werkzeug warns about large cookies that browsers may ignore. (#2693)

3.8.2 Version 0.12.2

Released on May 16 2017

• Fix a bug in safe_join on Windows.

3.8.3 Version 0.12.1

Bugfix release, released on March 31st 2017

• Prevent flask run from showing a NoAppException when an ImportError occurs
within the imported application module.

• Fix encoding behavior of app.config.from_pyfile for Python 3. Fix #2118.

310 Chapter 3. Additional Notes

https://github.com/pallets/flask/pull/2436
https://github.com/pallets/flask/pull/2450
https://github.com/pallets/flask/issues/2526
https://github.com/pallets/flask/pull/2529
https://docs.python.org/3/library/errno.html#errno.ENOTDIR
https://github.com/pallets/flask/pull/2581
https://github.com/pallets/flask/pull/2606
https://github.com/pallets/flask/pull/2607
https://github.com/pallets/flask/pull/2636
https://github.com/pallets/flask/pull/2635
https://github.com/pallets/flask/pull/2629
https://github.com/pallets/flask/issues/2651
https://tools.ietf.org/html/rfc8259.html
https://github.com/pallets/flask/pull/2691
https://github.com/pallets/flask/pull/2693


Flask Documentation, Release 0.13.dev

• Use the SERVER_NAME config if it is present as default values for app.run. #2109,
#2152

• Call ctx.auto_pop with the exception object instead of None, in the event that a
BaseException such as KeyboardInterrupt is raised in a request handler.

3.8.4 Version 0.12

Released on December 21st 2016, codename Punsch.

• the cli command now responds to –version.

• Mimetype guessing and ETag generation for file-like objects in send_file has
been removed, as per issue #104. See pull request #1849.

• Mimetype guessing in send_file now fails loudly and doesn’t fall back to
application/octet-stream. See pull request #1988.

• Make flask.safe_join able to join multiple paths like os.path.join (pull re-
quest #1730).

• Revert a behavior change that made the dev server crash instead of returning a
Internal Server Error (pull request #2006).

• Correctly invoke response handlers for both regular request dispatching as well
as error handlers.

• Disable logger propagation by default for the app logger.

• Add support for range requests in send_file.

• app.test_client includes preset default environment, which can now be di-
rectly set, instead of per client.get.

3.8.5 Version 0.11.2

Bugfix release, unreleased

• Fix crash when running under PyPy3, see pull request #1814.

3.8.6 Version 0.11.1

Bugfix release, released on June 7th 2016.

• Fixed a bug that prevented FLASK_APP=foobar/__init__.py from working. See
pull request #1872.

3.8.7 Version 0.11

Released on May 29th 2016, codename Absinthe.

3.8. Flask Changelog 311



Flask Documentation, Release 0.13.dev

• Added support to serializing top-level arrays to flask.jsonify(). This intro-
duces a security risk in ancient browsers. See JSON Security for details.

• Added before_render_template signal.

• Added **kwargs to flask.Test.test_client() to support passing additional
keyword arguments to the constructor of flask.Flask.test_client_class.

• Added SESSION_REFRESH_EACH_REQUEST config key that controls the set-cookie
behavior. If set to True a permanent session will be refreshed each request and
get their lifetime extended, if set to False it will only be modified if the session
actually modifies. Non permanent sessions are not affected by this and will al-
ways expire if the browser window closes.

• Made Flask support custom JSON mimetypes for incoming data.

• Added support for returning tuples in the form (response, headers) from a
view function.

• Added flask.Config.from_json().

• Added flask.Flask.config_class.

• Added flask.Config.get_namespace().

• Templates are no longer automatically reloaded outside of debug mode. This
can be configured with the new TEMPLATES_AUTO_RELOAD config key.

• Added a workaround for a limitation in Python 3.3’s namespace loader.

• Added support for explicit root paths when using Python 3.3’s namespace pack-
ages.

• Added flask and the flask.cli module to start the local debug server through
the click CLI system. This is recommended over the old flask.run() method
as it works faster and more reliable due to a different design and also replaces
Flask-Script.

• Error handlers that match specific classes are now checked first, thereby allow-
ing catching exceptions that are subclasses of HTTP exceptions (in werkzeug.
exceptions). This makes it possible for an extension author to create exceptions
that will by default result in the HTTP error of their choosing, but may be caught
with a custom error handler if desired.

• Added flask.Config.from_mapping().

• Flask will now log by default even if debug is disabled. The log format
is now hardcoded but the default log handling can be disabled through the
LOGGER_HANDLER_POLICY configuration key.

• Removed deprecated module functionality.

• Added the EXPLAIN_TEMPLATE_LOADING config flag which when enabled will in-
struct Flask to explain how it locates templates. This should help users debug
when the wrong templates are loaded.

312 Chapter 3. Additional Notes



Flask Documentation, Release 0.13.dev

• Enforce blueprint handling in the order they were registered for template load-
ing.

• Ported test suite to py.test.

• Deprecated request.json in favour of request.get_json().

• Add “pretty” and “compressed” separators definitions in jsonify() method. Re-
duces JSON response size when JSONIFY_PRETTYPRINT_REGULAR=False by
removing unnecessary white space included by default after separators.

• JSON responses are now terminated with a newline character, because it is a
convention that UNIX text files end with a newline and some clients don’t deal
well when this newline is missing. See https://github.com/pallets/flask/pull/
1262 – this came up originally as a part of https://github.com/kennethreitz/
httpbin/issues/168

• The automatically provided OPTIONS method is now correctly disabled if the user
registered an overriding rule with the lowercase-version options (issue #1288).

• flask.json.jsonify now supports the datetime.date type (pull request #1326).

• Don’t leak exception info of already catched exceptions to context teardown han-
dlers (pull request #1393).

• Allow custom Jinja environment subclasses (pull request #1422).

• Updated extension dev guidelines.

• flask.g now has pop() and setdefault methods.

• Turn on autoescape for flask.templating.render_template_string by default
(pull request #1515).

• flask.ext is now deprecated (pull request #1484).

• send_from_directory now raises BadRequest if the filename is invalid on the
server OS (pull request #1763).

• Added the JSONIFY_MIMETYPE configuration variable (pull request #1728).

• Exceptions during teardown handling will no longer leave bad application con-
texts lingering around.

3.8.8 Version 0.10.2

(bugfix release, release date to be announced)

• Fixed broken test_appcontext_signals() test case.

• Raise an AttributeError in flask.helpers.find_package() with a useful mes-
sage explaining why it is raised when a PEP 302 import hook is used without an
is_package() method.

• Fixed an issue causing exceptions raised before entering a request or app context
to be passed to teardown handlers.

3.8. Flask Changelog 313

https://github.com/pallets/flask/pull/1262
https://github.com/pallets/flask/pull/1262
https://github.com/kennethreitz/httpbin/issues/168
https://github.com/kennethreitz/httpbin/issues/168
https://docs.python.org/3/library/exceptions.html#AttributeError


Flask Documentation, Release 0.13.dev

• Fixed an issue with query parameters getting removed from requests in the test
client when absolute URLs were requested.

• Made @before_first_request into a decorator as intended.

• Fixed an etags bug when sending a file streams with a name.

• Fixed send_from_directory not expanding to the application root path correctly.

• Changed logic of before first request handlers to flip the flag after invoking. This
will allow some uses that are potentially dangerous but should probably be per-
mitted.

• Fixed Python 3 bug when a handler from app.url_build_error_handlers reraises the
BuildError.

3.8.9 Version 0.10.1

(bugfix release, released on June 14th 2013)

• Fixed an issue where |tojson was not quoting single quotes which made the
filter not work properly in HTML attributes. Now it’s possible to use that filter
in single quoted attributes. This should make using that filter with angular.js
easier.

• Added support for byte strings back to the session system. This broke compati-
bility with the common case of people putting binary data for token verification
into the session.

• Fixed an issue where registering the same method twice for the same endpoint
would trigger an exception incorrectly.

3.8.10 Version 0.10

Released on June 13th 2013, codename Limoncello.

• Changed default cookie serialization format from pickle to JSON to limit the
impact an attacker can do if the secret key leaks. See Version 0.10 for more infor-
mation.

• Added template_test methods in addition to the already existing
template_filter method family.

• Added template_global methods in addition to the already existing
template_filter method family.

• Set the content-length header for x-sendfile.

• tojson filter now does not escape script blocks in HTML5 parsers.

• tojson used in templates is now safe by default due. This was allowed due to
the different escaping behavior.

314 Chapter 3. Additional Notes



Flask Documentation, Release 0.13.dev

• Flask will now raise an error if you attempt to register a new function on an
already used endpoint.

• Added wrapper module around simplejson and added default serialization of
datetime objects. This allows much easier customization of how JSON is handled
by Flask or any Flask extension.

• Removed deprecated internal flask.session module alias. Use flask.sessions
instead to get the session module. This is not to be confused with flask.session
the session proxy.

• Templates can now be rendered without request context. The behavior is
slightly different as the request, session and g objects will not be available and
blueprint’s context processors are not called.

• The config object is now available to the template as a real global and not through
a context processor which makes it available even in imported templates by de-
fault.

• Added an option to generate non-ascii encoded JSON which should result in less
bytes being transmitted over the network. It’s disabled by default to not cause
confusion with existing libraries that might expect flask.json.dumps to return
bytestrings by default.

• flask.g is now stored on the app context instead of the request context.

• flask.g now gained a get() method for not erroring out on non existing items.

• flask.g now can be used with the in operator to see what’s defined and it now
is iterable and will yield all attributes stored.

• flask.Flask.request_globals_class got renamed to flask.Flask.
app_ctx_globals_class which is a better name to what it does since 0.10.

• request, session and g are now also added as proxies to the template context which
makes them available in imported templates. One has to be very careful with
those though because usage outside of macros might cause caching.

• Flask will no longer invoke the wrong error handlers if a proxy exception is
passed through.

• Added a workaround for chrome’s cookies in localhost not working as intended
with domain names.

• Changed logic for picking defaults for cookie values from sessions to work better
with Google Chrome.

• Added message_flashed signal that simplifies flashing testing.

• Added support for copying of request contexts for better working with greenlets.

• Removed custom JSON HTTP exception subclasses. If you were relying on
them you can reintroduce them again yourself trivially. Using them however
is strongly discouraged as the interface was flawed.

3.8. Flask Changelog 315



Flask Documentation, Release 0.13.dev

• Python requirements changed: requiring Python 2.6 or 2.7 now to prepare for
Python 3.3 port.

• Changed how the teardown system is informed about exceptions. This is now
more reliable in case something handles an exception halfway through the error
handling process.

• Request context preservation in debug mode now keeps the exception informa-
tion around which means that teardown handlers are able to distinguish error
from success cases.

• Added the JSONIFY_PRETTYPRINT_REGULAR configuration variable.

• Flask now orders JSON keys by default to not trash HTTP caches due to different
hash seeds between different workers.

• Added appcontext_pushed and appcontext_popped signals.

• The builtin run method now takes the SERVER_NAME into account when picking
the default port to run on.

• Added flask.request.get_json() as a replacement for the old flask.request.json prop-
erty.

3.8.11 Version 0.9

Released on July 1st 2012, codename Campari.

• The flask.Request.on_json_loading_failed() now returns a JSON formatted
response by default.

• The flask.url_for() function now can generate anchors to the generated links.

• The flask.url_for() function now can also explicitly generate URL rules spe-
cific to a given HTTP method.

• Logger now only returns the debug log setting if it was not set explicitly.

• Unregister a circular dependency between the WSGI environment and the re-
quest object when shutting down the request. This means that environ werkzeug.
request will be None after the response was returned to the WSGI server but has
the advantage that the garbage collector is not needed on CPython to tear down
the request unless the user created circular dependencies themselves.

• Session is now stored after callbacks so that if the session payload is stored in the
session you can still modify it in an after request callback.

• The flask.Flask class will avoid importing the provided import name if it can
(the required first parameter), to benefit tools which build Flask instances pro-
grammatically. The Flask class will fall back to using import on systems with
custom module hooks, e.g. Google App Engine, or when the import name is
inside a zip archive (usually a .egg) prior to Python 2.7.

• Blueprints now have a decorator to add custom template filters application wide,
flask.Blueprint.app_template_filter().

316 Chapter 3. Additional Notes



Flask Documentation, Release 0.13.dev

• The Flask and Blueprint classes now have a non-decorator method for adding
custom template filters application wide, flask.Flask.add_template_filter()
and flask.Blueprint.add_app_template_filter().

• The flask.get_flashed_messages() function now allows rendering flashed mes-
sage categories in separate blocks, through a category_filter argument.

• The flask.Flask.run() method now accepts None for host and port arguments,
using default values when None. This allows for calling run using configuration
values, e.g. app.run(app.config.get('MYHOST'), app.config.get('MYPORT')),
with proper behavior whether or not a config file is provided.

• The flask.render_template() method now accepts a either an iterable of tem-
plate names or a single template name. Previously, it only accepted a single
template name. On an iterable, the first template found is rendered.

• Added flask.Flask.app_context() which works very similar to the request con-
text but only provides access to the current application. This also adds support
for URL generation without an active request context.

• View functions can now return a tuple with the first instance being an instance
of flask.Response. This allows for returning jsonify(error="error msg"), 400
from a view function.

• Flask and Blueprint now provide a get_send_file_max_age() hook for sub-
classes to override behavior of serving static files from Flask when using
flask.Flask.send_static_file() (used for the default static file handler) and
send_file(). This hook is provided a filename, which for example allows chang-
ing cache controls by file extension. The default max-age for send_file and static
files can be configured through a new SEND_FILE_MAX_AGE_DEFAULT configuration
variable, which is used in the default get_send_file_max_age implementation.

• Fixed an assumption in sessions implementation which could break message
flashing on sessions implementations which use external storage.

• Changed the behavior of tuple return values from functions. They are no longer
arguments to the response object, they now have a defined meaning.

• Added flask.Flask.request_globals_class to allow a specific class to be used
on creation of the g instance of each request.

• Added required_methods attribute to view functions to force-add methods on reg-
istration.

• Added flask.after_this_request().

• Added flask.stream_with_context() and the ability to push contexts multiple
times without producing unexpected behavior.

3.8.12 Version 0.8.1

Bugfix release, released on July 1st 2012

3.8. Flask Changelog 317



Flask Documentation, Release 0.13.dev

• Fixed an issue with the undocumented flask.session module to not work properly
on Python 2.5. It should not be used but did cause some problems for package
managers.

3.8.13 Version 0.8

Released on September 29th 2011, codename Rakija

• Refactored session support into a session interface so that the implementation of
the sessions can be changed without having to override the Flask class.

• Empty session cookies are now deleted properly automatically.

• View functions can now opt out of getting the automatic OPTIONS implementa-
tion.

• HTTP exceptions and Bad Request errors can now be trapped so that they show
up normally in the traceback.

• Flask in debug mode is now detecting some common problems and tries to warn
you about them.

• Flask in debug mode will now complain with an assertion error if a view was
attached after the first request was handled. This gives earlier feedback when
users forget to import view code ahead of time.

• Added the ability to register callbacks that are only triggered once at the begin-
ning of the first request. (Flask.before_first_request())

• Malformed JSON data will now trigger a bad request HTTP exception instead
of a value error which usually would result in a 500 internal server error if not
handled. This is a backwards incompatible change.

• Applications now not only have a root path where the resources and modules are
located but also an instance path which is the designated place to drop files that
are modified at runtime (uploads etc.). Also this is conceptually only instance de-
pending and outside version control so it’s the perfect place to put configuration
files etc. For more information see Instance Folders.

• Added the APPLICATION_ROOT configuration variable.

• Implemented session_transaction() to easily modify sessions from the test en-
vironment.

• Refactored test client internally. The APPLICATION_ROOT configuration variable as
well as SERVER_NAME are now properly used by the test client as defaults.

• Added flask.views.View.decorators to support simpler decorating of plug-
gable (class-based) views.

• Fixed an issue where the test client if used with the “with” statement did not
trigger the execution of the teardown handlers.

• Added finer control over the session cookie parameters.

318 Chapter 3. Additional Notes



Flask Documentation, Release 0.13.dev

• HEAD requests to a method view now automatically dispatch to the get method
if no handler was implemented.

• Implemented the virtual flask.ext package to import extensions from.

• The context preservation on exceptions is now an integral component of Flask
itself and no longer of the test client. This cleaned up some internal logic and
lowers the odds of runaway request contexts in unittests.

3.8.14 Version 0.7.3

Bugfix release, release date to be decided

• Fixed the Jinja2 environment’s list_templates method not returning the correct
names when blueprints or modules were involved.

3.8.15 Version 0.7.2

Bugfix release, released on July 6th 2011

• Fixed an issue with URL processors not properly working on blueprints.

3.8.16 Version 0.7.1

Bugfix release, released on June 29th 2011

• Added missing future import that broke 2.5 compatibility.

• Fixed an infinite redirect issue with blueprints.

3.8.17 Version 0.7

Released on June 28th 2011, codename Grappa

• Added make_default_options_response() which can be used by subclasses to
alter the default behavior for OPTIONS responses.

• Unbound locals now raise a proper RuntimeError instead of an AttributeError.

• Mimetype guessing and etag support based on file objects is now deprecated for
flask.send_file() because it was unreliable. Pass filenames instead or attach
your own etags and provide a proper mimetype by hand.

• Static file handling for modules now requires the name of the static folder to
be supplied explicitly. The previous autodetection was not reliable and caused
issues on Google’s App Engine. Until 1.0 the old behavior will continue to work
but issue dependency warnings.

• fixed a problem for Flask to run on jython.

3.8. Flask Changelog 319

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#AttributeError


Flask Documentation, Release 0.13.dev

• added a PROPAGATE_EXCEPTIONS configuration variable that can be used to flip
the setting of exception propagation which previously was linked to DEBUG alone
and is now linked to either DEBUG or TESTING.

• Flask no longer internally depends on rules being added through the add_url_rule
function and can now also accept regular werkzeug rules added to the url map.

• Added an endpoint method to the flask application object which allows one to
register a callback to an arbitrary endpoint with a decorator.

• Use Last-Modified for static file sending instead of Date which was incorrectly
introduced in 0.6.

• Added create_jinja_loader to override the loader creation process.

• Implemented a silent flag for config.from_pyfile.

• Added teardown_request decorator, for functions that should run at the end of
a request regardless of whether an exception occurred. Also the behavior for
after_request was changed. It’s now no longer executed when an exception is
raised. See Upgrading to new Teardown Handling

• Implemented flask.has_request_context()

• Deprecated init_jinja_globals. Override the create_jinja_environment() method
instead to achieve the same functionality.

• Added flask.safe_join()

• The automatic JSON request data unpacking now looks at the charset mimetype
parameter.

• Don’t modify the session on flask.get_flashed_messages() if there are no mes-
sages in the session.

• before_request handlers are now able to abort requests with errors.

• it is not possible to define user exception handlers. That way you can provide
custom error messages from a central hub for certain errors that might occur dur-
ing request processing (for instance database connection errors, timeouts from
remote resources etc.).

• Blueprints can provide blueprint specific error handlers.

• Implemented generic Pluggable Views (class-based views).

3.8.18 Version 0.6.1

Bugfix release, released on December 31st 2010

• Fixed an issue where the default OPTIONS response was not exposing all valid
methods in the Allow header.

• Jinja2 template loading syntax now allows “./” in front of a template load path.
Previously this caused issues with module setups.

320 Chapter 3. Additional Notes



Flask Documentation, Release 0.13.dev

• Fixed an issue where the subdomain setting for modules was ignored for the
static folder.

• Fixed a security problem that allowed clients to download arbitrary files if the
host server was a windows based operating system and the client uses back-
slashes to escape the directory the files where exposed from.

3.8.19 Version 0.6

Released on July 27th 2010, codename Whisky

• after request functions are now called in reverse order of registration.

• OPTIONS is now automatically implemented by Flask unless the application
explicitly adds ‘OPTIONS’ as method to the URL rule. In this case no automatic
OPTIONS handling kicks in.

• static rules are now even in place if there is no static folder for the module. This
was implemented to aid GAE which will remove the static folder if it’s part of a
mapping in the .yml file.

• the config is now available in the templates as config.

• context processors will no longer override values passed directly to the render
function.

• added the ability to limit the incoming request data with the new
MAX_CONTENT_LENGTH configuration value.

• the endpoint for the flask.Module.add_url_rule() method is now optional to
be consistent with the function of the same name on the application object.

• added a flask.make_response() function that simplifies creating response object
instances in views.

• added signalling support based on blinker. This feature is currently optional and
supposed to be used by extensions and applications. If you want to use it, make
sure to have blinker installed.

• refactored the way URL adapters are created. This process is now fully customiz-
able with the create_url_adapter() method.

• modules can now register for a subdomain instead of just an URL prefix. This
makes it possible to bind a whole module to a configurable subdomain.

3.8.20 Version 0.5.2

Bugfix Release, released on July 15th 2010

• fixed another issue with loading templates from directories when modules were
used.

3.8. Flask Changelog 321

https://pypi.python.org/pypi/blinker


Flask Documentation, Release 0.13.dev

3.8.21 Version 0.5.1

Bugfix Release, released on July 6th 2010

• fixes an issue with template loading from directories when modules where used.

3.8.22 Version 0.5

Released on July 6th 2010, codename Calvados

• fixed a bug with subdomains that was caused by the inability to specify the
server name. The server name can now be set with the SERVER_NAME config key.
This key is now also used to set the session cookie cross-subdomain wide.

• autoescaping is no longer active for all templates. Instead it is only active for .
html, .htm, .xml and .xhtml. Inside templates this behavior can be changed with
the autoescape tag.

• refactored Flask internally. It now consists of more than a single file.

• flask.send_file() now emits etags and has the ability to do conditional re-
sponses builtin.

• (temporarily) dropped support for zipped applications. This was a rarely used
feature and led to some confusing behavior.

• added support for per-package template and static-file directories.

• removed support for create_jinja_loader which is no longer used in 0.5 due to the
improved module support.

• added a helper function to expose files from any directory.

3.8.23 Version 0.4

Released on June 18th 2010, codename Rakia

• added the ability to register application wide error handlers from modules.

• after_request() handlers are now also invoked if the request dies with an ex-
ception and an error handling page kicks in.

• test client has not the ability to preserve the request context for a little longer.
This can also be used to trigger custom requests that do not pop the request
stack for testing.

• because the Python standard library caches loggers, the name of the logger is
configurable now to better support unittests.

• added TESTING switch that can activate unittesting helpers.

• the logger switches to DEBUG mode now if debug is enabled.

322 Chapter 3. Additional Notes



Flask Documentation, Release 0.13.dev

3.8.24 Version 0.3.1

Bugfix release, released on May 28th 2010

• fixed a error reporting bug with flask.Config.from_envvar()

• removed some unused code from flask

• release does no longer include development leftover files (.git folder for themes,
built documentation in zip and pdf file and some .pyc files)

3.8.25 Version 0.3

Released on May 28th 2010, codename Schnaps

• added support for categories for flashed messages.

• the application now configures a logging.Handler and will log request handling
exceptions to that logger when not in debug mode. This makes it possible to
receive mails on server errors for example.

• added support for context binding that does not require the use of the with state-
ment for playing in the console.

• the request context is now available within the with statement making it possible
to further push the request context or pop it.

• added support for configurations.

3.8.26 Version 0.2

Released on May 12th 2010, codename Jägermeister

• various bugfixes

• integrated JSON support

• added get_template_attribute() helper function.

• add_url_rule() can now also register a view function.

• refactored internal request dispatching.

• server listens on 127.0.0.1 by default now to fix issues with chrome.

• added external URL support.

• added support for send_file()

• module support and internal request handling refactoring to better support
pluggable applications.

• sessions can be set to be permanent now on a per-session basis.

• better error reporting on missing secret keys.

3.8. Flask Changelog 323

https://docs.python.org/3/library/logging.html#logging.Handler


Flask Documentation, Release 0.13.dev

• added support for Google Appengine.

3.8.27 Version 0.1

First public preview release.

3.9 License

Flask is licensed under a three clause BSD License. It basically means: do whatever
you want with it as long as the copyright in Flask sticks around, the conditions are not
modified and the disclaimer is present. Furthermore you must not use the names of
the authors to promote derivatives of the software without written consent.

The full license text can be found below (Flask License). For the documentation and
artwork different licenses apply.

3.9.1 Authors

Flask is developed and maintained by the Pallets team and community contributors.
It was created by Armin Ronacher. The core maintainers are:

• David Lord (davidism)

• Adrian Mönnich (ThiefMaster)

• Armin Ronacher (mitsuhiko)

• Marcus Unterwaditzer (untitaker)

A full list of contributors is available from git with:

git shortlog -sne

3.9.2 General License Definitions

The following section contains the full license texts for Flask and the documentation.

• “AUTHORS” hereby refers to all the authors listed in the Authors section.

• The “Flask License” applies to all the source code shipped as part of Flask (Flask
itself as well as the examples and the unittests) as well as documentation.

• The “Flask Artwork License” applies to the project’s Horn-Logo.

324 Chapter 3. Additional Notes



Flask Documentation, Release 0.13.dev

3.9.3 Flask License

Copyright © 2010 by the Pallets team.

Some rights reserved.

Redistribution and use in source and binary forms of the software as well as docu-
mentation, with or without modification, are permitted provided that the following
conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may
be used to endorse or promote products derived from this software without spe-
cific prior written permission.

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED BY THE COPYRIGHT
HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE AND DOCUMENTATION, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

3.9.4 Flask Artwork License

Copyright (c) 2010 by Armin Ronacher.

Some rights reserved.

This logo or a modified version may be used by anyone to refer to the Flask project,
but does not indicate endorsement by the project.

Redistribution and use in source (the SVG file) and binary forms (rendered PNG files
etc.) of the image, with or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above copyright notice and this
list of conditions.

3.9. License 325



Flask Documentation, Release 0.13.dev

• The names of the contributors to the Flask software (see AUTHORS) may not be
used to endorse or promote products derived from this software without specific
prior written permission.

Note: we would appreciate that you make the image a link to http://flask.pocoo.org/
if you use it on a web page.

3.10 How to contribute to Flask

Thank you for considering contributing to Flask!

3.10.1 Support questions

Please, don’t use the issue tracker for this. Use one of the following resources for
questions about your own code:

• The IRC channel #pocoo on FreeNode.

• The IRC channel #python on FreeNode for more general questions.

• The mailing list flask@python.org for long term discussion or larger issues.

• Ask on Stack Overflow. Search with Google first using: site:stackoverflow.com
flask {search term, exception message, etc.}

3.10.2 Reporting issues

• Describe what you expected to happen.

• If possible, include a minimal, complete, and verifiable example to help us iden-
tify the issue. This also helps check that the issue is not with your own code.

• Describe what actually happened. Include the full traceback if there was an ex-
ception.

• List your Python, Flask, and Werkzeug versions. If possible, check if this issue is
already fixed in the repository.

3.10.3 Submitting patches

• Include tests if your patch is supposed to solve a bug, and explain clearly under
which circumstances the bug happens. Make sure the test fails without your
patch.

• Try to follow PEP8, but you may ignore the line length limit if following it would
make the code uglier.

326 Chapter 3. Additional Notes

http://flask.pocoo.org/
mailto:flask@python.org
https://stackoverflow.com/questions/tagged/flask?sort=linked
https://stackoverflow.com/help/mcve
https://pep8.org/


Flask Documentation, Release 0.13.dev

First time setup

• Download and install the latest version of git.

• Configure git with your username and email:

git config --global user.name 'your name'
git config --global user.email 'your email'

• Make sure you have a GitHub account.

• Fork Flask to your GitHub account by clicking the Fork button.

• Clone your GitHub fork locally:

git clone https://github.com/{username}/flask
cd flask

• Add the main repository as a remote to update later:

git remote add pallets https://github.com/pallets/flask
git fetch pallets

• Create a virtualenv:

python3 -m venv env
. env/bin/activate
# or "env\Scripts\activate" on Windows

• Install Flask in editable mode with development dependencies:

pip install -e ".[dev]"

Start coding

• Create a branch to identify the issue you would like to work on (e.g.
2287-dry-test-suite)

• Using your favorite editor, make your changes, committing as you go.

• Try to follow PEP8, but you may ignore the line length limit if following it would
make the code uglier.

• Include tests that cover any code changes you make. Make sure the test fails
without your patch. Run the tests..

• Push your commits to GitHub and create a pull request.

• Celebrate

3.10. How to contribute to Flask 327

https://git-scm.com/downloads
https://help.github.com/articles/setting-your-username-in-git/
https://help.github.com/articles/setting-your-email-in-git/
https://github.com/join
https://github.com/pallets/flask/fork
https://help.github.com/articles/fork-a-repo/#step-2-create-a-local-clone-of-your-fork
http://dont-be-afraid-to-commit.readthedocs.io/en/latest/git/commandlinegit.html#commit-your-changes
https://pep8.org/
https://help.github.com/articles/creating-a-pull-request/


Flask Documentation, Release 0.13.dev

Running the tests

Run the basic test suite with:

pytest

This only runs the tests for the current environment. Whether this is relevant depends
on which part of Flask you’re working on. Travis-CI will run the full suite when you
submit your pull request.

The full test suite takes a long time to run because it tests multiple combinations of
Python and dependencies. You need to have Python 2.7, 3.4, 3.5 3.6, and PyPy 2.7
installed to run all of the environments. Then run:

tox

Running test coverage

Generating a report of lines that do not have test coverage can indicate where to start
contributing. Run pytest using coverage and generate a report on the terminal and as
an interactive HTML document:

coverage run -m pytest
coverage report
coverage html
# then open htmlcov/index.html

Read more about coverage.

Running the full test suite with tox will combine the coverage reports from all runs.

Building the docs

Build the docs in the docs directory using Sphinx:

cd docs
make html

Open _build/html/index.html in your browser to view the docs.

Read more about Sphinx.

make targets

Flask provides a Makefile with various shortcuts. They will ensure that all dependen-
cies are installed.

• make test runs the basic test suite with pytest

• make cov runs the basic test suite with coverage

328 Chapter 3. Additional Notes

https://coverage.readthedocs.io
http://www.sphinx-doc.org


Flask Documentation, Release 0.13.dev

• make test-all runs the full test suite with tox

• make docs builds the HTML documentation

3.10.4 Caution: zero-padded file modes

This repository contains several zero-padded file modes that may cause issues when
pushing this repository to git hosts other than GitHub. Fixing this is destructive to the
commit history, so we suggest ignoring these warnings. If it fails to push and you’re
using a self-hosted git service like GitLab, you can turn off repository checks in the
admin panel.

These files can also cause issues while cloning. If you have

[fetch]
fsckobjects = true

or

[receive]
fsckObjects = true

set in your git configuration file, cloning this repository will fail. The only solution is
to set both of the above settings to false while cloning, and then setting them back to
true after the cloning is finished.

3.10. How to contribute to Flask 329



Flask Documentation, Release 0.13.dev

330 Chapter 3. Additional Notes



Python Module Index

f
flask, 197
flask.json, 253
flask.json.tag, 255

331



Flask Documentation, Release 0.13.dev

332 Python Module Index



Index

Symbols
_AppCtxGlobals (class in flask.ctx), 243
_app_ctx_stack (in module flask), 263
_request_ctx_stack (in module flask), 262

A
abort() (in module flask), 246
accept_charsets (flask.Request attribute),

228
accept_encodings (flask.Request at-

tribute), 228
accept_languages (flask.Request at-

tribute), 228
accept_mimetypes (flask.Request at-

tribute), 228
access_route (flask.Request attribute), 228
accessed (flask.sessions.SecureCookieSession

attribute), 241
accessed (flask.sessions.SessionMixin at-

tribute), 241
add_app_template_filter()

(flask.Blueprint method), 223
add_app_template_global()

(flask.Blueprint method), 223
add_app_template_test() (flask.Blueprint

method), 223
add_template_filter() (flask.Flask

method), 199
add_template_global() (flask.Flask

method), 199
add_template_test() (flask.Flask method),

199
add_url_rule() (flask.Blueprint method),

223

add_url_rule()
(flask.blueprints.BlueprintSetupState
method), 263

add_url_rule() (flask.Flask method), 200
after_app_request() (flask.Blueprint

method), 223
after_request() (flask.Blueprint method),

223
after_request() (flask.Flask method), 200
after_request_funcs (flask.Flask attribute),

201
after_this_request() (in module flask), 248
app (flask.blueprints.BlueprintSetupState

attribute), 264
app_context() (flask.Flask method), 201
app_context_processor() (flask.Blueprint

method), 223
app_ctx_globals_class (flask.Flask at-

tribute), 201
app_errorhandler() (flask.Blueprint

method), 223
app_import_path (flask.cli.ScriptInfo at-

tribute), 272
app_template_filter() (flask.Blueprint

method), 223
app_template_global() (flask.Blueprint

method), 224
app_template_test() (flask.Blueprint

method), 224
app_url_defaults() (flask.Blueprint

method), 224
app_url_value_preprocessor()

(flask.Blueprint method), 224
AppContext (class in flask.ctx), 263
appcontext_popped (in module flask), 267

333



Flask Documentation, Release 0.13.dev

appcontext_pushed (in module flask), 266
appcontext_tearing_down (in module

flask), 266
AppGroup (class in flask.cli), 272
application() (flask.Request method), 228
APPLICATION_ROOT (built-in variable),

87
args (flask.Request attribute), 229
as_view() (flask.views.View class

method), 268
authorization (flask.Request attribute),

229
auto_find_instance_path() (flask.Flask

method), 201

B
base_url (flask.Request attribute), 228, 229
before_app_first_request()

(flask.Blueprint method), 224
before_app_request() (flask.Blueprint

method), 224
before_first_request() (flask.Flask

method), 201
before_first_request_funcs (flask.Flask at-

tribute), 202
before_request() (flask.Blueprint method),

224
before_request() (flask.Flask method), 202
before_request_funcs (flask.Flask at-

tribute), 202
Blueprint (class in flask), 222
blueprint (flask.blueprints.BlueprintSetupState

attribute), 264
blueprint (flask.Request attribute), 229
blueprints (flask.Flask attribute), 202
BlueprintSetupState (class in

flask.blueprints), 263

C
cache_control (flask.Request attribute),

229
check() (flask.json.tag.JSONTag method),

256
cli (flask.Flask attribute), 202
close() (flask.Request method), 229
command() (flask.cli.AppGroup method),

272
Config (class in flask), 258

config (flask.Flask attribute), 202
config_class (flask.Flask attribute), 202
content_encoding (flask.Request at-

tribute), 229
content_length (flask.Request attribute),

229
content_md5 (flask.Request attribute), 229
content_type (flask.Request attribute), 230
context_processor() (flask.Blueprint

method), 224
context_processor() (flask.Flask method),

203
cookies (flask.Request attribute), 230
copy() (flask.ctx.RequestContext method),

262
copy_current_request_context() (in mod-

ule flask), 245
create_app (flask.cli.ScriptInfo attribute),

272
create_global_jinja_loader() (flask.Flask

method), 203
create_jinja_environment() (flask.Flask

method), 203
create_url_adapter() (flask.Flask method),

203
current_app (in module flask), 244

D
data (flask.cli.ScriptInfo attribute), 272
data (flask.Request attribute), 230
data (flask.Response attribute), 236
date (flask.Request attribute), 230
DEBUG (built-in variable), 84
debug (flask.Flask attribute), 203
decorators (flask.views.View attribute),

268
default() (flask.json.JSONEncoder

method), 255
default_config (flask.Flask attribute), 203
default_tags (flask.json.tag.TaggedJSONSerializer

attribute), 256
dict_storage_class (flask.Request at-

tribute), 230
digest_method()

(flask.sessions.SecureCookieSessionInterface
static method), 240

dispatch_request() (flask.Flask method),
204

334 Index



Flask Documentation, Release 0.13.dev

dispatch_request() (flask.views.View
method), 268

do_teardown_appcontext() (flask.Flask
method), 204

do_teardown_request() (flask.Flask
method), 204

dump() (in module flask.json), 255
dumps() (flask.json.tag.TaggedJSONSerializer

method), 256
dumps() (in module flask.json), 254

E
endpoint (flask.Request attribute), 230
endpoint() (flask.Blueprint method), 224
endpoint() (flask.Flask method), 204
ENV (built-in variable), 84
env (flask.Flask attribute), 204
environ (flask.Request attribute), 227
environment variable

FLASK_DEBUG, 83, 116, 213
FLASK_ENV, 83, 84, 88, 116, 122, 205,

213
YOURAPPLICATION_SETTINGS, 89

error_handler_spec (flask.Flask attribute),
205

errorhandler() (flask.Blueprint method),
224

errorhandler() (flask.Flask method), 205
escape() (flask.Markup class method), 251
escape() (in module flask), 251
EXPLAIN_TEMPLATE_LOADING

(built-in variable), 88
extensions (flask.Flask attribute), 205

F
files (flask.Request attribute), 230
first_registration

(flask.blueprints.BlueprintSetupState
attribute), 264

flash() (in module flask), 252
Flask (class in flask), 197
flask (module), 197
flask.json (module), 253
flask.json.tag (module), 255
FLASK_DEBUG, 83, 116, 213
FLASK_ENV, 83, 84, 88, 116, 122, 205, 213
FlaskClient (class in flask.testing), 242
FlaskCliRunner (class in flask.testing), 242

FlaskGroup (class in flask.cli), 271
form (flask.Request attribute), 230
form_data_parser_class (flask.Request at-

tribute), 231
from_envvar() (flask.Config method), 259
from_json() (flask.Config method), 259
from_mapping() (flask.Config method),

259
from_object() (flask.Config method), 260
from_pyfile() (flask.Config method), 260
from_values() (flask.Request method),

231
full_dispatch_request() (flask.Flask

method), 206
full_path (flask.Request attribute), 228,

231

G
g (in module flask), 243
get() (flask.ctx._AppCtxGlobals method),

243
get_cookie_domain()

(flask.sessions.SessionInterface
method), 239

get_cookie_httponly()
(flask.sessions.SessionInterface
method), 239

get_cookie_path()
(flask.sessions.SessionInterface
method), 239

get_cookie_samesite()
(flask.sessions.SessionInterface
method), 239

get_cookie_secure()
(flask.sessions.SessionInterface
method), 239

get_data() (flask.Request method), 231
get_expiration_time()

(flask.sessions.SessionInterface
method), 239

get_flashed_messages() (in module flask),
252

get_json() (flask.Request method), 231
get_json() (flask.Response method), 236
get_namespace() (flask.Config method),

260
get_send_file_max_age() (flask.Blueprint

method), 225

Index 335



Flask Documentation, Release 0.13.dev

get_send_file_max_age() (flask.Flask
method), 206

get_template_attribute() (in module
flask), 258

got_first_request (flask.Flask attribute),
206

got_request_exception (in module flask),
265

group() (flask.cli.AppGroup method), 272

H
handle_exception() (flask.Flask method),

206
handle_http_exception() (flask.Flask

method), 206
handle_url_build_error() (flask.Flask

method), 206
handle_user_exception() (flask.Flask

method), 206
has_app_context() (in module flask), 245
has_request_context() (in module flask),

244
has_static_folder (flask.Blueprint at-

tribute), 225
has_static_folder (flask.Flask attribute),

207
headers (flask.Request attribute), 232
headers (flask.Response attribute), 236
host (flask.Request attribute), 232
host_url (flask.Request attribute), 232

I
if_match (flask.Request attribute), 232
if_modified_since (flask.Request at-

tribute), 232
if_none_match (flask.Request attribute),

232
if_range (flask.Request attribute), 232
if_unmodified_since (flask.Request at-

tribute), 232
import_name (flask.Blueprint attribute),

225
import_name (flask.Flask attribute), 207
inject_url_defaults() (flask.Flask method),

207
instance_path (flask.Flask attribute), 207
invoke() (flask.testing.FlaskCliRunner

method), 242

is_json (flask.Request attribute), 232
is_json (flask.Response attribute), 237
is_multiprocess (flask.Request attribute),

232
is_multithread (flask.Request attribute),

232
is_null_session()

(flask.sessions.SessionInterface
method), 239

is_run_once (flask.Request attribute), 232
is_secure (flask.Request attribute), 233
is_xhr (flask.Request attribute), 233
iter_blueprints() (flask.Flask method), 207

J
jinja_env (flask.Flask attribute), 207
jinja_environment (flask.Flask attribute),

207
jinja_loader (flask.Blueprint attribute),

225
jinja_loader (flask.Flask attribute), 207
jinja_options (flask.Flask attribute), 207
json (flask.Request attribute), 233
JSON_AS_ASCII (built-in variable), 87
json_decoder (flask.Blueprint attribute),

225
json_decoder (flask.Flask attribute), 207
json_encoder (flask.Blueprint attribute),

225
json_encoder (flask.Flask attribute), 208
JSON_SORT_KEYS (built-in variable), 87
JSONDecoder (class in flask.json), 255
JSONEncoder (class in flask.json), 255
jsonify() (in module flask.json), 253
JSONIFY_MIMETYPE (built-in variable),

87
JSONIFY_PRETTYPRINT_REGULAR

(built-in variable), 87
JSONTag (class in flask.json.tag), 256

K
key (flask.json.tag.JSONTag attribute), 257
key_derivation

(flask.sessions.SecureCookieSessionInterface
attribute), 240

L
list_storage_class (flask.Request at-

tribute), 233

336 Index



Flask Documentation, Release 0.13.dev

load() (in module flask.json), 255
load_app() (flask.cli.ScriptInfo method),

272
load_dotenv() (in module flask.cli), 272
loads() (flask.json.tag.TaggedJSONSerializer

method), 256
loads() (in module flask.json), 255
log_exception() (flask.Flask method), 208
logger (flask.Flask attribute), 208

M
make_config() (flask.Flask method), 208
make_default_options_response()

(flask.Flask method), 208
make_form_data_parser() (flask.Request

method), 233
make_null_session() (flask.Flask method),

208
make_null_session()

(flask.sessions.SessionInterface
method), 240

make_response() (flask.Flask method),
208

make_response() (in module flask), 247
make_setup_state() (flask.Blueprint

method), 225
make_shell_context() (flask.Flask

method), 209
Markup (class in flask), 251
match_request()

(flask.ctx.RequestContext
method), 262

MAX_CONTENT_LENGTH (built-in
variable), 87

max_content_length (flask.Request at-
tribute), 233

MAX_COOKIE_SIZE (built-in variable),
88

max_cookie_size (flask.Response at-
tribute), 237

max_forwards (flask.Request attribute),
233

message_flashed (in module flask), 267
method (flask.Request attribute), 233
methods (flask.views.View attribute), 268
MethodView (class in flask.views), 268
mimetype (flask.Request attribute), 233
mimetype (flask.Response attribute), 237

mimetype_params (flask.Request at-
tribute), 233

modified (flask.session attribute), 238
modified (flask.sessions.SecureCookieSession

attribute), 241
modified (flask.sessions.SessionMixin at-

tribute), 241

N
name (flask.Flask attribute), 209
new (flask.session attribute), 238
new (flask.sessions.SessionMixin at-

tribute), 241
null_session_class

(flask.sessions.SessionInterface
attribute), 240

NullSession (class in flask.sessions), 241

O
on_json_loading_failed() (flask.Request

method), 233
open_instance_resource() (flask.Flask

method), 209
open_resource() (flask.Blueprint method),

225
open_resource() (flask.Flask method), 209
open_session() (flask.Flask method), 210
open_session()

(flask.sessions.SessionInterface
method), 240

options (flask.blueprints.BlueprintSetupState
attribute), 264

P
parameter_storage_class (flask.Request

attribute), 234
pass_script_info() (in module flask.cli),

273
path (flask.Request attribute), 228, 234
permanent (flask.session attribute), 238
permanent (flask.sessions.SessionMixin

attribute), 241
PERMANENT_SESSION_LIFETIME

(built-in variable), 86
permanent_session_lifetime (flask.Flask

attribute), 210
pickle_based

(flask.sessions.SessionInterface
attribute), 240

Index 337



Flask Documentation, Release 0.13.dev

pop() (flask.ctx._AppCtxGlobals method),
243

pop() (flask.ctx.AppContext method), 263
pop() (flask.ctx.RequestContext method),

262
pragma (flask.Request attribute), 234
PREFERRED_URL_SCHEME (built-in

variable), 87
preprocess_request() (flask.Flask

method), 210
PRESERVE_CONTEXT_ON_EXCEPTION

(built-in variable), 84
preserve_context_on_exception

(flask.Flask attribute), 210
process_response() (flask.Flask method),

210
PROPAGATE_EXCEPTIONS (built-in

variable), 84
propagate_exceptions (flask.Flask at-

tribute), 211
provide_automatic_options

(flask.views.View attribute),
268

push() (flask.ctx.AppContext method),
263

push() (flask.ctx.RequestContext
method), 262

Python Enhancement Proposals
PEP 8, 295

Q
query_string (flask.Request attribute), 234

R
range (flask.Request attribute), 234
record() (flask.Blueprint method), 226
record_once() (flask.Blueprint method),

226
redirect() (in module flask), 247
referrer (flask.Request attribute), 234
register() (flask.Blueprint method), 226
register() (flask.json.tag.TaggedJSONSerializer

method), 256
register_blueprint() (flask.Flask method),

211
register_error_handler() (flask.Blueprint

method), 226
register_error_handler() (flask.Flask

method), 211

remote_addr (flask.Request attribute), 234
remote_user (flask.Request attribute), 234
render_template() (in module flask), 257
render_template_string() (in module

flask), 258
Request (class in flask), 227
request (in module flask), 235
request_class (flask.Flask attribute), 211
request_context() (flask.Flask method),

211
request_finished (in module flask), 265
request_started (in module flask), 265
request_tearing_down (in module flask),

265
RequestContext (class in flask.ctx), 262
Response (class in flask), 236
response_class (flask.Flask attribute), 212
RFC

RFC 822, 253
RFC 8259, 310

root_path (flask.Blueprint attribute), 226
root_path (flask.Flask attribute), 212
route() (flask.Blueprint method), 227
route() (flask.Flask method), 212
routing_exception (flask.Request at-

tribute), 234
run() (flask.Flask method), 212
run_command (in module flask.cli), 273

S
safe_join() (in module flask), 250
salt (flask.sessions.SecureCookieSessionInterface

attribute), 241
save_session() (flask.Flask method), 213
save_session()

(flask.sessions.SessionInterface
method), 240

scheme (flask.Request attribute), 234
script_root (flask.Request attribute), 228,

234
ScriptInfo (class in flask.cli), 272
SECRET_KEY (built-in variable), 85
secret_key (flask.Flask attribute), 214
SecureCookieSession (class in

flask.sessions), 241
SecureCookieSessionInterface (class in

flask.sessions), 240
select_jinja_autoescape() (flask.Flask

338 Index



Flask Documentation, Release 0.13.dev

method), 214
send_file() (in module flask), 248
SEND_FILE_MAX_AGE_DEFAULT

(built-in variable), 86
send_file_max_age_default (flask.Flask

attribute), 214
send_from_directory() (in module flask),

250
send_static_file() (flask.Blueprint

method), 227
send_static_file() (flask.Flask method),

214
serializer (flask.sessions.SecureCookieSessionInterface

attribute), 241
SERVER_NAME (built-in variable), 86
session (class in flask), 238
session_class

(flask.sessions.SecureCookieSessionInterface
attribute), 241

SESSION_COOKIE_DOMAIN (built-in
variable), 85

SESSION_COOKIE_HTTPONLY (built-in
variable), 85

SESSION_COOKIE_NAME (built-in vari-
able), 85

session_cookie_name (flask.Flask at-
tribute), 214

SESSION_COOKIE_PATH (built-in vari-
able), 85

SESSION_COOKIE_SAMESITE (built-in
variable), 86

SESSION_COOKIE_SECURE (built-in
variable), 85

session_interface (flask.Flask attribute),
214

SESSION_REFRESH_EACH_REQUEST
(built-in variable), 86

session_transaction()
(flask.testing.FlaskClient method),
242

SessionInterface (class in flask.sessions),
238

SessionMixin (class in flask.sessions), 241
set_cookie() (flask.Response method), 237
setdefault() (flask.ctx._AppCtxGlobals

method), 244
shell_command (in module flask.cli), 273
shell_context_processor() (flask.Flask

method), 214
shell_context_processors (flask.Flask at-

tribute), 214
should_ignore_error() (flask.Flask

method), 214
should_set_cookie()

(flask.sessions.SessionInterface
method), 240

signal() (flask.signals.Namespace
method), 267

signals.Namespace (class in flask), 267
signals.signals_available (in module

flask), 264
static_folder (flask.Blueprint attribute),

227
static_folder (flask.Flask attribute), 215
static_url_path (flask.Blueprint attribute),

227
static_url_path (flask.Flask attribute), 215
status (flask.Response attribute), 236
status_code (flask.Response attribute),

236
stream (flask.Request attribute), 234
stream_with_context() (in module flask),

261
striptags() (flask.Markup method), 252
subdomain (flask.blueprints.BlueprintSetupState

attribute), 264

T
tag() (flask.json.tag.JSONTag method),

257
tag() (flask.json.tag.TaggedJSONSerializer

method), 256
TaggedJSONSerializer (class in

flask.json.tag), 256
teardown_app_request() (flask.Blueprint

method), 227
teardown_appcontext() (flask.Flask

method), 215
teardown_appcontext_funcs (flask.Flask

attribute), 215
teardown_request() (flask.Blueprint

method), 227
teardown_request() (flask.Flask method),

215
teardown_request_funcs (flask.Flask at-

tribute), 216

Index 339



Flask Documentation, Release 0.13.dev

template_context_processors (flask.Flask
attribute), 216

template_filter() (flask.Flask method), 216
template_folder (flask.Blueprint at-

tribute), 227
template_folder (flask.Flask attribute),

217
template_global() (flask.Flask method),

217
template_rendered (in module flask), 264
template_test() (flask.Flask method), 217
TEMPLATES_AUTO_RELOAD (built-in

variable), 87
templates_auto_reload (flask.Flask at-

tribute), 217
test_cli_runner() (flask.Flask method), 217
test_cli_runner_class (flask.Flask at-

tribute), 218
test_client() (flask.Flask method), 218
test_client_class (flask.Flask attribute),

219
test_request_context() (flask.Flask

method), 219
TESTING (built-in variable), 84
testing (flask.Flask attribute), 220
to_json() (flask.json.tag.JSONTag

method), 257
to_python() (flask.json.tag.JSONTag

method), 257
TRAP_BAD_REQUEST_ERRORS (built-

in variable), 85
trap_http_exception() (flask.Flask

method), 220
TRAP_HTTP_EXCEPTIONS (built-in

variable), 84

U
unescape() (flask.Markup method), 252
untag() (flask.json.tag.TaggedJSONSerializer

method), 256
update_template_context() (flask.Flask

method), 220
url (flask.Request attribute), 228, 235
url_build_error_handlers (flask.Flask at-

tribute), 220
url_charset (flask.Request attribute), 235
url_default_functions (flask.Flask at-

tribute), 220

url_defaults (flask.blueprints.BlueprintSetupState
attribute), 264

url_defaults() (flask.Blueprint method),
227

url_defaults() (flask.Flask method), 221
url_for() (in module flask), 245
url_map (flask.Flask attribute), 221
url_root (flask.Request attribute), 228, 235
url_rule (flask.Request attribute), 235
url_rule_class (flask.Flask attribute), 221
url_value_preprocessor() (flask.Blueprint

method), 227
url_value_preprocessor() (flask.Flask

method), 221
url_value_preprocessors (flask.Flask at-

tribute), 221
USE_X_SENDFILE (built-in variable), 86
use_x_sendfile (flask.Flask attribute), 221
user_agent (flask.Request attribute), 235

V
values (flask.Request attribute), 235
View (class in flask.views), 267
view_args (flask.Request attribute), 235
view_functions (flask.Flask attribute), 222

W
want_form_data_parsed (flask.Request

attribute), 235
with_appcontext() (in module flask.cli),

273
wsgi_app() (flask.Flask method), 222

Y
YOURAPPLICATION_SETTINGS, 89

340 Index


	User’s Guide
	Foreword
	Foreword for Experienced Programmers
	Installation
	Quickstart
	Tutorial
	Templates
	Testing Flask Applications
	Application Errors
	Debugging Application Errors
	Logging
	Configuration Handling
	Signals
	Pluggable Views
	The Application Context
	The Request Context
	Modular Applications with Blueprints
	Extensions
	Command Line Interface
	Development Server
	Working with the Shell
	Patterns for Flask
	Deployment Options
	Becoming Big

	API Reference
	API

	Additional Notes
	Design Decisions in Flask
	HTML/XHTML FAQ
	Security Considerations
	Unicode in Flask
	Flask Extension Development
	Pocoo Styleguide
	Upgrading to Newer Releases
	Flask Changelog
	License
	How to contribute to Flask

	Python Module Index

