

Welcome to pake’s documentation!

pake is a make-like python build utility where tasks, dependencies and build commands
can be expressed entirely in python, similar to ruby rake.

pake supports automatic file/directory change detection when dealing with
task inputs and outputs, and also parallel builds.

pake requires python3.5+

Installing

Note: pake is Alpha and likely to change some.

To install the latest release use:

sudo pip3 install python-pake --upgrade

If you want to install the development branch you can use:

sudo pip3 install git+git://github.com/Teriks/pake@develop

Module Doc

	pake package
	Module Contents

	Submodules
	Module: pake.graph

	Module: pake.process

	Module: pake.util

	Module: pake.conf

	Module: pake.returncodes

Guides / Help

	Running Pake
	Manually specifying pakefile(s)

	Executing in another directory

	Running multiple tasks

	Specifying define values

	Reading defines from STDIN

	Environmental variables

	Command line options

	Return codes

	Writing Basic Tasks

	Input/Output Name Generators & Globbing
	Multiple input generators at once

	Change Detection Against Directories

	Exiting Pakefiles Gracefully
	Calls To exit() inside tasks

	Stack traces from exit/terminate in tasks

	Adding Tasks Programmatically

	Exceptions Inside Tasks
	pake.TaskSubprocessException

	pake.SubpakeException

	Concurrency Inside Tasks
	Output synchronization with ctx.print & ctx.io.write

	Output synchronization with ctx.call & ctx.subpake

	Sub task exceptions

	Manipulating Files / Dirs With pake.FileHelper
	File / Folder creation methods

	Copy / Move methods

	Removal / Clean related methods

	Running Commands / Sub Processes
	TaskContext.call

	TaskContext.check_output

	TaskContext.check_call

	pake.process module methods

	Running Sub Pakefiles

Module Index

	Module Index

pake package

Module Contents

	
pake.EXPORTS

	

A dictionary object containing all current exports by name,
you are free to modify this dictionary directly.

See: pake.export(), pake.subpake() and pake.TaskContext.subpake().

Be careful and make sure it remains a dictionary object.

Export values must be able to repr() into parsable python literals.

	
pake.init(args=None, **kwargs)

	Read command line arguments relevant to initialization, and return a pake.Pake object.

This function will print information to pake.conf.stderr and call exit(pake.returncodes.BAD_ARGUMENTS)
immediately if arguments parsed from the command line or passed to the args parameter do not pass validation.

	Parameters

	
	args – Optional command line arguments as an iterable, if not provided they will be parsed from the command line.
This parameter is passed through pake.util.handle_shell_args(), so you may pass an arguments
iterable containing nested non-string iterables, as well as plain values like Python integers if
your specifying the –jobs argument for example.

	**kwargs – See below

	Keyword Arguments

	
	stdout –
Sets the value of pake.Pake.stdout

	show_task_headers (bool) –
Sets the value of pake.Pake.show_task_headers

	sync_output (bool) –
Sets the value of pake.Pake.sync_output, overriding the –sync-output option and
the PAKE_SYNC_OUTPUT environmental variable. The default behavior of pake is to synchronize task output when
tasks are running in parallel, unless it is overridden from the environment, command line, or here (in order of
increasing override priority). Setting this value to None is the same as leaving it unspecified,
no override will take place, and the default value of True, the environment, or the –sync-output specified
value will be used in that order.

	Raises

	SystemExit if bad command line arguments are parsed, or the args parameter contains bad arguments.

	Returns

	pake.Pake

	
pake.de_init(clear_conf=True, clear_exports=True, clear_env=True)

	Return the pake module to a pre-initialized state.

Used primarily for unit tests.

Defines read from STDIN via the –stdin-defines option
are cached in memory after being read and not affected by
this function, secondary calls to pake.init() will
cause them to be read back from cache.

	Parameters

	
	clear_conf – If True, call pake.conf.reset().

	clear_exports – If True, call clear on pake.EXPORTS.

	clear_env – If True, clear any environmental variables pake.init has set.

	
pake.is_init()

	Check if pake.init() has been called.

	Returns

	True if pake.init() has been called.

	
pake.run(pake_obj, tasks=None, jobs=None, call_exit=True)

	Run pake (the program) given a pake.Pake instance and default tasks.

This function should be used to invoke pake at the end of your pakefile.

This function will call exit(return_code) upon handling any exceptions from pake.Pake.run()
or pake.Pake.dry_run() if call_exit=True, and will print information to
pake.Pake.stderr if necessary.

This function will not call exit if pake executes successfully with a return code of zero.

This function will return pake’s exit code when call_exit=False.

For all return codes see: pake.returncodes.

This function will never return pake.returncodes.BAD_ARGUMENTS,
because pake.init() will have already called exit.

	Raises

	pake.PakeUninitializedException if pake.init has not been called.

	Raises

	ValueError if the jobs parameter is used, and is set less than 1.

	Parameters

	
	pake_obj (pake.Pake) – A pake.Pake instance, created by pake.init().

	tasks – A list of, or a single default task to run if no tasks are specified on the command line.
Tasks specified on the command line completely override this argument.

	jobs – Call with an arbitrary number of max jobs, overriding the command line value of –jobs.
The default value of this parameter is None, which means the command line value or default of 1 is not overridden.

	call_exit – Whether or not exit(return_code) should be called by this function on error.
This defaults to True and when set to False the return code is instead
returned to the caller.

	Returns

	A return code from pake.returncodes.

	
pake.terminate(pake_obj, return_code=0)

	Preform a graceful exit from a pakefile, printing the leaving directory or exit subpake message if
needed, then exiting with a given return code. The default return code is pake.returncodes.SUCCESS.

This should be used as opposed to a raw exit call to ensure the output of pake remains consistent.

Use Case:

import os
import pake
from pake import returncodes

pk = pake.init()

Say you need to wimp out of a build for some reason
But not inside of a task. pake.terminate will make sure the
'leaving directory/exiting subpake' message is printed
if it needs to be.

if os.name == 'nt':
 pk.print('You really thought you could '
 'build my software on windows? nope!')

 pake.terminate(pk, returncodes.ERROR)

 # or

 # pk.terminate(returncodes.ERROR)

Define some tasks...

@pk.task
def build(ctx):
 # You can use pake.terminate() inside of a task as well as exit()
 # pake.terminate() may offer more functionality than a raw exit()
 # in the future, however exit() will always work as well.

 something_bad_happened = True

 if something_bad_happened:
 pake.terminate(pk, returncodes.ERROR)

 # Or:

 # pk.terminate(returncodes.ERROR)

pake.run(pk, tasks=build)

pake.Pake.terminate() is a shortcut method which passes the pake_obj instance to this function for you.

	Parameters

	
	pake_obj (pake.Pake) – A pake.Pake instance, created by pake.init().

	return_code – Return code to exit the pakefile with, see pake.returncodes for standard return codes.
The default return code for this function is pake.returncodes.SUCCESS.
pake.returncodes.ERROR is intended to be used with terminate to indicate a
generic error, but other return codes may be used.

	Raises

	pake.PakeUninitializedException if pake.init has not been called.

	
pake.get_subpake_depth()

	Get the depth of execution, which increases for nested calls to pake.subpake()

The depth of execution starts at 0.

	Raises

	pake.PakeUninitializedException if pake.init has not been called.

	Returns

	The current depth of execution (an integer >= 0)

	
pake.get_max_jobs()

	Get the max number of jobs passed from the –jobs command line argument.

The minimum number of jobs allowed is 1.

Be aware, the value this function returns will not be affected by the optional
jobs argument of pake.run() and pake.Pake.run(). It is purely
for retrieving the value passed on the command line.

If you have overridden the command line or default job count using the jobs argument
of the methods mentioned above, you can use the pake.Pake.max_jobs property on the
pake.Pake instance returned by pake.init() to get the correct value inside
of a task while pake is running.

	Raises

	pake.PakeUninitializedException if pake.init has not been called.

	Returns

	The max number of jobs from the –jobs command line argument. (an integer >= 1)

	
pake.get_init_file()

	Gets the full path to the file pake.init() was called in.

	Raises

	pake.PakeUninitializedException if pake.init has not been called.

	Returns

	Full path to pakes entrypoint file, or None

	
pake.get_init_dir()

	Gets the full path to the directory pake started running in.

If pake preformed any directory changes, this returns the working path before that happened.

	Raises

	pake.PakeUninitializedException if pake.init has not been called.

	Returns

	Full path to init dir, or None

	
pake.export(name, value)

	Exports a define that can be retrieved in subpake scripts via pake.Pake.get_define().

This function can redefine the value of an existing export as well.

The pake.EXPORTS dictionary can also be manipulated directly.

Export values must be able to repr() into parsable python literals.

	Parameters

	
	name – The name of the define.

	value – The value of the define.

	
pake.subpake(*args, stdout=None, silent=False, ignore_errors=False, call_exit=True, readline=True, collect_output=False, collect_output_lock=None)

	Execute a pakefile.py script, changing directories if necessary.

This function should not be used inside tasks, use: pake.TaskContext.subpake() instead.
A pake.TaskContext() instance is passed into the single parameter of each task, usually named ctx.

pake.subpake() allows similar syntax to pake.TaskContext.call() for its *args parameter.

Subpake scripts do not inherit the –jobs argument from the parent script, if you want
to run them with multithreading enabled you need to pass your own –jobs argument manually.

Example:

These are all equivalent

pake.subpake('dir/pakefile.py', 'task_a', '-C', 'some_dir')

pake.subpake(['dir/pakefile.py', 'task_a', '-C', 'some_dir'])

note the nested iterable containing string arguments

pake.subpake(['dir/pakefile.py', 'task_a', ['-C', 'some_dir']])

pake.subpake('dir/pakefile.py task_a -C some_dir')

	Parameters

	
	args – The script, and additional arguments to pass to the script.
You may pass the command words as a single iterable, a string, or as
variadic arguments.

	stdout – The file output to write all of the pakefile’s output to. (defaults to pake.conf.stdout)
The pakefile’s stderr will be redirected to its stdout, so the passed file object will
receive all output from the pakefile including error messages.

	silent – Whether or not to silence all output from the subpake script.

	ignore_errors – If this is True, this function will never call exit or throw
pake.SubpakeException if the executed pakefile returns with a
non-zero exit code. It will instead return the exit code from the
subprocess to the caller.

	call_exit – Whether or not to print to pake.conf.stderr and immediately
call exit if the pakefile script encounters an error. The value
of this parameter will be disregarded when ignore_errors=True.

	readline – Whether or not to use readline for reading process output when ignore_errors
and silent are False, this is necessary for live output in that case. When live
output to a terminal is not required, such as when writing to a file on disk, setting
this parameter to False results in more efficient writes. This parameter defaults to True

	collect_output – Whether or not to collect all subpake output to a temporary file
and then write it incrementally to the stdout parameter when
the process finishes. This can help prevent crashes when dealing with lots of output.
When you pass True to this parameter, the readline parameter is ignored.
See: Output synchronization with ctx.call & ctx.subpake

	collect_output_lock – If you provide a lockable object such as threading.Lock or
threading.RLock, The subpake function will try to acquire the lock before
incrementally writing to the stdout parameter when collect_output=True.
The lock you pass is only required to implement a context manager and be usable
in a with statement, no methods are called on the lock. pake.TaskContext.subpake()
will pass pake.TaskContext.io_lock for you if collect_output=True.

	Raises

	ValueError if no command + optional command arguments are provided.

	Raises

	FileNotFoundError if the first argument (the pakefile) is not found.

	Raises

	pake.SubpakeException if the called pakefile script encounters an error
and the following is true: exit_on_error=False and ignore_errors=False.

	
class pake.Pake(stdout=None, sync_output=True, show_task_headers=True)

	Bases: object

Pake’s main instance, which should not be initialized directly.

Use: pake.init() to create a pake.Pake object
and initialize the pake module.

	
stdout

	The file object that task output gets written to, as well as ‘changing directory/entering & leaving subpake’ messages.
If you set this, make sure that you set it to an actual file object that implements fileno(). io.StringIO
and pseudo file objects with no fileno() will not work with all of pake’s subprocess spawning functions.

This attribute can be modified directly.

	
sync_output

	Whether or not the pake instance should queue task output and write it in
a synchronized fashion when running with more than one job. This defaults
to True unless the environmental variable PAKE_SYNC_OUTPUT is set to 0,
or the command line option –output-sync False is specified.

If this is disabled (Set to False), task output may become interleaved
and scrambled when running pake with more than one job. Pake will run
somewhat faster however.

This attribute can be modified directly.

	
show_task_headers

	Whether or not pake should print Executing Task: headers for tasks that are
about to execute, the default value is True. If you set this to False task
headers will be disabled for all tasks except ones that explicitly specify show_header=True.
See the show_header parameter of pake.Pake.task() and pake.Pake.add_task(),
which allows you to disable or force enable the task header for a specific task.

This attribute can be modified directly.

	
add_task(name, func, dependencies=None, inputs=None, outputs=None, show_header=None)

	Method for programmatically registering pake tasks.

This method expects for the most part the same argument types as the pake.Pake.task() decorator.

Example:

 # A contrived example using a callable class

 class FileToucher:
 """Task Documentation Here"""

 def __init__(self, tag):
 self._tag = tag

 def __call__(self, ctx):
 ctx.print('Toucher {}'.format(self._tag))

 fp = pake.FileHelper(ctx)

 for i in ctx.outputs:
 fp.touch(i)

task_instance_a = FileToucher('A')
task_instance_b = FileToucher('B')

pk.add_task('task_a', task_instance_a, outputs=['file_1', 'file_2'])

pk.add_task('task_b', task_instance_b, dependencies=task_instance_a, outputs='file_3')

Note: you can refer to dependencies by name (by string) as well as reference.

Equivalent calls:

pk.add_task('task_b', task_instance_b, dependencies='task_a', outputs='file_3')
pk.add_task('task_b', task_instance_b, dependencies=['task_a'], outputs='file_3')
pk.add_task('task_b', task_instance_b, dependencies=[task_instance_a], outputs='file_3')

Example using a function

def my_task_func_c(ctx):
 ctx.print('my_task_func_c')

pk.add_task('task_c', my_task_func_c, dependencies='task_b')

pake.run(pk, tasks=my_task_func_c)

Or equivalently:

pake.run(pk, tasks='task_c')

	Parameters

	
	name – The name of the task

	func – The task function (or callable class)

	dependencies – List of task dependencies or single task, by name or by reference

	inputs – List of input files/directories, or a single input (accepts input file generators like pake.glob())

	outputs – List of output files/directories, or a single output (accepts output file generators like pake.pattern())

	show_header – Whether or not to print an Executing Task: header when the task begins executing.
This defaults to None, which means the header is printed unless pake.Pake.show_task_header is set to False.
If you specify True and pake.Pake.show_task_header is set to False, it will force the task header to print
anyway. By explicitly specifying True you override pake.Pake.show_task_header.

	Returns

	The pake.TaskContext for the new task.

	
dry_run(tasks)

	Dry run over task, print a ‘visited’ message for each visited task.

When using change detection, only out of date tasks will be visited.

	Raises

	ValueError If tasks is None or an empty list.

	Raises

	pake.MissingOutputsException if a task defines input files/directories without specifying any output files/directories.

	Raises

	pake.InputNotFoundException if a task defines input files/directories but one of them was not found on disk.

	Raises

	pake.UndefinedTaskException if one of the default tasks given in the tasks parameter is unregistered.

	Parameters

	tasks – Single task, or Iterable of task functions to run (by ref or name).

	
get_define(name, default=None)

	Get a defined value.

This is used to get defines off the command line, as well as retrieve
values exported from top level pake scripts.

If the define is not found, then None is returned by default.

The indexer operator can also be used on the pake instance to fetch defines, IE:

import pake

pk = pake.init()

value = pk['YOURDEFINE']

Which also produces None if the define does not exist.

See: Specifying define values for documentation covering how
to specify defines on the command line, as well as what types
of values you can use for your defines.

	Parameters

	
	name – Name of the define

	default – The default value to return if the define does not exist

	Returns

	The defines value as a python literal corresponding to the defines type.

	
get_task_context(task)

	Get the pake.TaskContext object for a specific task.

	Raises

	ValueError if the task parameter is not a string or a callable function/object.

	Raises

	pake.UndefinedTaskException if the task in not registered.

	Parameters

	task – Task function or function name as a string

	Returns

	pake.TaskContext

	
get_task_name(task)

	Returns the name of a task by the task function or callable reference used to define it.

The name of the task may be different than the name of the task function/callable when
pake.Pake.add_task() is used to register the task.

If a string is passed it is returned unmodified as long as the task exists, otherwise
a pake.UndefinedTaskException is raised.

Example:

@pk.task
def my_task(ctx):
 pass

def different_name(ctx):
 pass

pk.add_task("my_task2", different_name)

pk.get_task_name(my_task) # -> "my_task"

pk.get_task_name(different_name) # -> "my_task2"

	Parameters

	task – Task name string, or registered task callable.

	Raises

	ValueError if the task parameter is not a string or a callable function/object.

	Raises

	pake.UndefinedTaskException if the task function/callable is not registered to the pake context.

	Returns

	Task name string.

	
has_define(name)

	Test if a define with a given name was provided to pake.

This is useful if None might be a valid value for your define,
and you just want to know if it was actually specified on the command
line or with –stdin-defines.

	Parameters

	name – The name of the define.

	Returns

	True if a define with the given name exists.

	
is_running

	Check if pake is currently running tasks.

This can be used to determine if code is executing inside of a task.

Example:

import pake

pk = pake.init()

pk.print(pk.is_running) # -> False

@pk.task
def my_task(ctx):
 ctx.print(pk.is_running) # -> True

pake.run(pk, tasks=my_task, call_exit=False)

pk.print(pk.is_running) # -> False

	Returns

	True if pake is currently running tasks, False otherwise.

	
max_jobs

	Returns the value of the jobs parameter used in the last invocation of pake.Pake.run().

This can be used inside of a task to determine if pake is running in multithreaded mode, and the
maximum amount of threads it has been allowed to use for the current invocation.

A max_jobs value of 1 indicates that pake is running all tasks in the current thread,
anything greater than 1 means pake is sending tasks to a threadpool.

See Also: pake.Pake.threadpool

	
merge_defines_dict(dictionary)

	Merge the current defines with another dictionary, overwriting anything
that is already defined with the value from the new dictionary.

	Parameters

	dictionary – The dictionary to merge into the current defines.

	
print(*args, **kwargs)

	Print to the file object assigned to pake.Pake.stdout

Shorthand for: print(..., file=pk.stdout)

	
run(tasks, jobs=1)

	Run all given tasks, with an optional level of concurrency.

	Raises

	ValueError if jobs is less than 1,
or if tasks is None or an empty list.

	Raises

	pake.TaskException if an exception occurred while running a task.

	Raises

	pake.TaskExitException if SystemExit or an exception derived from it
such as pake.TerminateException is raised inside of a task.

	Raises

	pake.MissingOutputsException if a task defines input files/directories without specifying any output files/directories.

	Raises

	pake.InputNotFoundException if a task defines input files/directories but one of them was not found on disk.

	Raises

	pake.UndefinedTaskException if one of the default tasks given in the tasks parameter is unregistered.

	Parameters

	
	tasks – Single task, or Iterable of task functions to run (by ref or name).

	jobs – Maximum number of threads, defaults to 1. (must be >= 1)

	
run_count

	Contains the number of tasks ran/visited by the last invocation of pake.Pake.run() or pake.Pake.dry_run()

If a task did not run because change detection decided it did not need to, then it does not count towards this total.
This also applies when doing a dry run with pake.Pake.dry_run()

	Returns

	Number of tasks last run.

	
set_define(name, value)

	Set a defined value.

	Parameters

	
	name – The name of the define.

	value – The value of the define.

	
set_defines_dict(dictionary)

	Set and overwrite all defines with a dictionary object.

	Parameters

	dictionary – The dictionary object

	
task(*args, i=None, o=None, show_header=None)

	Decorator for registering pake tasks.

Any input files specified must be accompanied by at least one output file.

A callable object, or list of callable objects may be passed to i or o in addition to
a raw file/directory name or names. This is how pake.glob and pake.pattern work.

Input/Output Generation Example:

def gen_inputs(pattern):
 def input_generator():
 return glob.glob(pattern)
 return input_generator

def gen_output(pattern):
 def output_generator(inputs):
 # inputs is always a flat list, and a copy
 # inputs is safe to mutate if you want

 for inp in inputs:
 dir = os.path.dirname(inp)
 name, ext = os.path.splitext(os.path.basename(inp))
 yield pattern.replace('{dir}', dir).replace('%', name).replace('{ext}', ext)

 return output_generator

@pk.task(i=gen_inputs('*.c'), o=gen_outputs('%.o'))
def my_task(ctx):
 # Do your build task here
 pass

@pk.task(i=[gen_inputs('src_a/*.c'), gen_inputs('src_b/*.c')], o=gen_outputs('{dir}/%.o'))
def my_task(ctx):
 # Do your build task here
 pass

Dependencies Only Example:

@pk.task(dependency_task_a, dependency_task_b)
def my_task(ctx):
 # Do your build task here
 pass

Change Detection Examples:

Dependencies come before input and output files.

@pk.task(dependency_task_a, dependency_task_b, i='main.c', o='main')
def my_task(ctx):
 # Do your build task here
 pass

Tasks without input or output files will always run when specified.

@pk.task
def my_task(ctx):
 # I will always run when specified!
 pass

Tasks with dependencies but no input or output files will also
always run when specified.

@pk.task(dependency_task_a, dependency_task_b)
def my_task(ctx):
 # I will always run when specified!
 pass

Having an output with no input is allowed, this task
will always run. The opposite (having an input file with no output file)
will cause an error. ctx.outdated_outputs is populated with 'main' in this case.

@pk.task(o='main')
def my_task(ctx):
 # Do your build task here
 pass

Single input and single output, 'main.c' has its creation time checked
against 'main'

@pk.task(i='main.c', o='main')
def my_task(ctx):
 # Do your build task here
 pass

When multiple input files exist and there is only one output file, each input file
has its creation time checked against the output files creation time.

@pk.task(i=['otherstuff.c', 'main.c'], o='main')
def my_task(ctx):
 # Do your build task here
 pass

all files in 'src/*.c' have their creation date checked against 'main'

@pk.task(i=pake.glob('src/*.c'), o='main')
def my_task(ctx):
 # Do your build task here
 pass

each input file has its creation date checked against its corresponding
output file in this case. Out of date file names can be found in
ctx.outdated_inputs and ctx.outdated_outputs. ctx.outdated_pairs is a
convenience property which returns: zip(ctx.outdated_inputs, ctx.outdated_outputs)

@pk.task(i=['file_b.c', 'file_b.c'], o=['file_b.o', 'file_b.o'])
def my_task(ctx):
 # Do your build task here
 pass

Similar to the above, inputs and outputs end up being of the same
length when using pake.glob with pake.pattern

@pk.task(i=pake.glob('src/*.c'), o=pake.pattern('obj/%.o'))
def my_task(ctx):
 # Do your build task here
 pass

All input files have their creation date checked against all output files
if there are more inputs than outputs, in general.

@pk.task(i=['a.c', 'b.c', 'c.c'], o=['main', 'what_are_you_planning'])
def my_task(ctx):
 # Do your build task here
 pass

Leaving the inputs and outputs as empty list will cause the task
to never run.

@pk.task(i=[], o=[])
def my_task(ctx):
 # I will never run!
 pass

If an input generator produces no results
(IE, something like pake.glob returns no files) and the tasks
outputs also end up being empty such as in this case,
then the task will never run.

@pk.task(i=pake.glob('*.some_extension_that_no_file_has'), o=pake.pattern('%.o'))
def my_task(ctx):
 # I will never run!
 pass

	Raises

	pake.UndefinedTaskException if a given dependency is not a registered task function.

	Parameters

	
	args – Tasks which this task depends on, this may be passed as variadic arguments or a single iterable object.

	i – Optional input files/directories for change detection.

	o – Optional output files/directories for change detection.

	show_header – Whether or not to print an Executing Task: header when the task begins executing.
This defaults to None, which means the header is printed unless pake.Pake.show_task_header
is set to False. If you specify True and pake.Pake.show_task_header is set to
False, it will force the task header to print anyway. By explicitly specifying True you
override the pake.Pake.show_task_header setting.

	
task_contexts

	Retrieve the task context objects for all registered tasks.

	Returns

	List of pake.TaskContext.

	
task_count

	Returns the number of registered tasks.

	Returns

	Number of tasks registered to the pake.Pake instance.

	
terminate(return_code=0)

	Shorthand for pake.terminate(this, return_code=return_code).

See for more details: pake.terminate()

	Parameters

	return_code – Return code to exit the pakefile with.
The default return code is pake.returncodes.SUCCESS.

	
threadpool

	Current execution thread pool.

This will never be anything other than None unless pake is running, and its max job count is greater than 1.

Pake is considered to be running when pake.Pake.is_running equals True.

If pake is running with a job count of 1, no threadpool is used so this property will be None.

	
class pake.TaskContext(pake_obj, node)

	Bases: object

Contextual object passed to each task.

	
inputs

	
All file inputs, or an empty list.

Note:

Not available outside of a task, may only be used while a task is executing.

	
outputs

	
All file outputs, or an empty list.

Note:

Not available outside of a task, may only be used while a task is executing.

	
outdated_inputs

	
All changed file inputs (or inputs who’s corresponding output is missing), or an empty list.

Note:

Not available outside of a task, may only be used while a task is executing.

	
oudated_outputs

	
All out of date file outputs, or an empty list

Note:

Not available outside of a task, may only be used while a task is executing.

	
call(*args, stdin=None, shell=False, ignore_errors=False, silent=False, print_cmd=True, collect_output=False)

	Calls a sub process and returns its return code.

all stdout/stderr is written to the task IO file stream. The full command line
which was used to start the process is printed to the task IO queue before the
output of the command, unless print_cmd=False.

You can prevent the process from sending its stdout/stderr to the task IO queue
by specifying silent=True

If a process returns a non-zero return code, this method will raise
pake.TaskSubprocessException by default.

If you want the value of non-zero return codes to be returned then you must
pass ignore_errors=True to prevent pake.TaskSubprocessException from
being thrown, or instead catch the exception and get the return code from it.

Note:

pake.TaskSubprocessException.output_stream will be available for retrieving
the output of the process (stdout and stderr combined) if you handle the exception,
the file stream will be a text mode file object at seek(0).

Example:

strings are parsed using shlex.parse

ctx.call('gcc -c test.c -o test.o')

ctx.call('gcc -c {} -o {}'.format('test.c', 'test.o'))

pass the same command as a list

ctx.call(['gcc', '-c', 'test.c', '-o', 'test.o'])

pass the same command using the variadic argument *args

ctx.call('gcc', '-c', 'test.c', '-o', 'test.o')

non string iterables in command lists will be flattened,
allowing for this syntax to work. ctx.inputs and ctx.outputs
are both list objects, but anything that is iterable will work

ctx.call(['gcc', '-c', ctx.inputs, '-o', ctx.outputs])

Fetch a non-zero return code without a
pake.TaskSubprocessException. ctx.check_call
is better used for this task.

code = ctx.call('which', 'am_i_here',
 ignore_errors=True, # Ignore errors (non-zero return codes)
 print_cmd=False, # Don't print the command line executed
 silent=True) # Don't print stdout/stderr to task IO

	Parameters

	
	args – The process command/executable, and additional arguments to pass
to the process. You may pass the command words as a single iterable,
a string, or as variadic arguments.

	stdin – Optional file object to pipe into the called process’s stdin.

	shell – Whether or not to use the system shell for execution of the command.

	ignore_errors – Whether or not to raise a pake.TaskSubprocessException on non-zero exit codes.

	silent – Whether or not to silence stdout/stderr from the command. This does keep pake
from printing what command line was run, see the print_cmd argument for that.

	print_cmd – Whether or not to print the executed command line to the tasks output.
The silent argument will not keep pake from printing the executed command,
only this argument can do that.

	collect_output – Whether or not to collect all process output to a temporary file
and then incrementally write it back to pake.TaskContext.io
in a synchronized fashion, so that all command output is guaranteed to
come in order and not become interleaved with the output of other tasks
when using pake.TaskContext.multitask().
See: Output synchronization with ctx.call & ctx.subpake

	Returns

	The process return code.

	Raises

	pake.TaskSubprocessException if ignore_errors is False and the process exits with a non-zero exit code.

	Raises

	OSError (commonly) if a the executed command or file does not exist.
This exception will still be raised even if ignore_errors is True.

	Raises

	ValueError if no command + optional arguments are provided.

	
static check_call(*args, stdin=None, shell=False, ignore_errors=False)

	Get the return code of an executed system command, without printing
any output to the tasks IO queue by default.

None of the process’s stdout/stderr will go to the task IO queue,
and the command that was run will not be printed either.

This function raises pake.TaskSubprocessException on non-zero
return codes by default.

You should pass pass ignore_errors=True if you want this method to return
the non-zero value, or instead catch the exception and get the return code from it.

Note:

pake.TaskSubprocessException.output and pake.TaskSubprocessException.output_stream
will not be available in the exception if you handle it.

	Raises

	pake.TaskSubprocessException if ignore_errors is False
and the process exits with a non-zero return code.

	Raises

	OSError (commonly) if a the executed command or file does not exist.
This exception will still be raised even if ignore_errors is True.

	Raises

	ValueError if no command + optional arguments are provided.

	Parameters

	
	args – Command arguments, same syntax as pake.TaskContext.call()

	stdin – Optional file object to pipe into the called process’s stdin.

	shell – Whether or not to use the system shell for execution of the command.

	ignore_errors – Whether to ignore non-zero return codes and return the code anyway.

	Returns

	Integer return code.

	
static check_output(*args, stdin=None, shell=False, ignore_errors=False)

	Return the output of a system command as a bytes object, without printing
its stdout/stderr to the task IO queue. The process command line that
was run will not be printed either.

The returned bytes output will include stdout and stderr combined, and
it can be decoded into a string by using the decode() method on pythons built
in bytes object.

This function raises pake.TaskSubprocessException on non-zero
return codes by default.

If you want to return possible error output from the called process’s stderr
you should pass ignore_errors=True, or instead catch the exception and get the
process output from it.

Note:

pake.TaskSubprocessException.output will be available for retrieving
the output of the process if you handle the exception, the value will be
all of stdout/stderr as a bytes object that must be decoded into a string.

	Raises

	pake.TaskSubprocessException if ignore_errors is False
and the process exits with a non-zero return code.

	Raises

	OSError (commonly) if a the executed command or file does not exist.
This exception will still be raised even if ignore_errors is True.

	Raises

	ValueError if no command + optional arguments are provided.

	Parameters

	
	args – Command arguments, same syntax as pake.TaskContext.call()

	stdin – Optional file object to pipe into the called process’s stdin.

	shell – Whether or not to use the system shell for execution of the command.

	ignore_errors – Whether to ignore non-zero return codes and return the output anyway.

	Returns

	Bytes object (program output data)

	
dependencies

	Immediate dependencies of this task.

returns a list of pake.TaskContext representing each
immediate dependency of this task.

Note:

This property will return a meaningful value outside of a task.

	
dependency_outputs

	Returns a list of output files/directories which represent the outputs of
the tasks immediate dependencies.

Note:

Not available outside of a task, may only be used while a task is executing.

	
func

	Task function reference.

This function will be an internal wrapper around
the one you specified and you should not call it.

There is not currently a way to get a reference
to your actual unwrapped task function from the
pake.Pake object or elsewhere.

However since the functools.wraps() decorator is used
when wrapping your task function, metadata such as func.__doc__
will be maintained on this function reference.

	
io

	The task IO file stream, a file like object that is only open for writing during a tasks execution.

Any output to be displayed for the task should be written to this file object.

This file object is a text mode stream, it can be used with the built in print function
and other methods that can write text data to a file like object.

When you run pake with more than one job, this will be a reference to a temporary file unless
pake.Pake.sync_output is False (It is False when –no-sync-output is used on the command line).

The temporary file queues up task output when in use, and the task context acquires a lock
and writes it incrementally to pake.Pake.stdout when the task finishes. This is
done to avoid having concurrent task’s writing interleaved output to pake.Pake.stdout.

If you run pake with only 1 job or pake.Pake.sync_output is False, this
property will return a direct reference to pake.Pake.stdout.

	
io_lock

	A contextual lock for acquiring exclusive access to pake.TaskContext.io.

This context manager acquires an internal lock for pake.Pake.stdout
that exists on the pake.Pake object when pake.Pake.max_jobs is 1.

Otherwise, it will acquire a lock for pake.TaskContext.io that
exists inside of the task context, since the task will be buffering output
to an individual temporary file when pake.Pake.max_jobs is greater
than 1.

If pake.Pake.sync_output is False, the context manager
returned by this property will not attempt to acquire any lock.

	Returns

	A context manager object that can be used in a with statement.

	
multitask(aggregate_exceptions=False)

	Returns a contextual object for submitting work to pake’s current thread pool.

@pk.task(i=pake.glob('src/*.c'), o=pake.pattern('obj/%.o'))
 def build_c(ctx):
 with ctx.multitask() as mt:
 for i, o in ctx.outdated_pairs:
 mt.submit(ctx.call, ['gcc', '-c', i, '-o', o])

At the end of the with statement, all submitted tasks are simultaneously waited on.

The tasks will be checked in order of submission for exceptions, if an exception is
found then the default behavior is to re-raise it on the foreground thread.

You can specify aggregate_exceptions=True if you want all of the exceptions
to be collected into a pake.AggregateException, which will then be raised
when pake.MultitaskContext.shutdown() is called with wait=True.

shutdown is called at the end of your with statement with the wait
parameter set to True.

	Parameters

	aggregate_exceptions – Whether or not the returned executor should collect
exceptions from all tasks that ended due to an exception,
and then raise a pake.AggregateException containing
them upon shutdown.

	Returns

	pake.MultitaskContext

	
name

	The task name.

	Returns

	The task name, as a string.

	
node

	The pake.TaskGraph node for the task.

	
outdated_pairs

	Short hand for: zip(ctx.outdated_inputs, ctx.outdated_outputs)

Returns a generator object over outdated (input, output) pairs.

This is only useful when the task has the same number of inputs as it does outputs.

Example:

@pk.task(i=pake.glob('src/*.c'), o=pake.pattern('obj/%.o'))
def build_c(ctx):
 for i, o in ctx.outdated_pairs:
 ctx.call(['gcc', '-c', i, '-o', o])

Note:

Not available outside of a task, may only be used while a task is executing.

	
pake

	The pake.Pake instance the task is registered to.

	
print(*args, **kwargs)

	Prints to the task IO file stream using the builtin print function.

Shorthand for: print(..., file=ctx.io)

	
subpake(*args, silent=False, ignore_errors=False, collect_output=False)

	Run pake.subpake() and direct all output to the task IO file stream.

	Parameters

	
	args – The script, and additional arguments to pass to the script.
You may pass a list, or use variadic arguments.

	silent – If True, avoid printing output from the sub-pakefile to the tasks IO queue.

	ignore_errors – If this is True, this function will not throw pake.SubpakeException if
the executed pakefile returns with a non-zero exit code. It will instead return the
exit code from the subprocess to the caller.

	collect_output – Whether or not to collect all subpake output to a temporary file
and then incrementally write it back to pake.TaskContext.io
in a synchronized fashion, so that all command output is guaranteed to
come in order and not become interleaved with the output of other tasks
when using pake.TaskContext.multitask().
See: Output synchronization with ctx.call & ctx.subpake

	Raises

	ValueError if no command + optional command arguments are provided.

	Raises

	FileNotFoundError if the first argument (the pakefile) is not found.

	Raises

	pake.SubpakeException if the called pakefile script encounters an
error and ignore_errors=False .

	
class pake.MultitaskContext(ctx, aggregate_exceptions=False)

	Bases: concurrent.futures._base.Executor

Returned by pake.TaskContext.multitask() (see for more details).

This object has (for the most part) has the exact same behavior and interface as
concurrent.futures.ThreadPoolExecutor from the built in Python module
concurrent.futures.

If you need further reference on how its member functions behave, you can also consult
the official Python doc for that class.

This object is meant to be used in a with statement. At the end of the with
statement all of your submitted work will be waited on, so you do not have to do it
manually with pake.MultitaskContext.shutdown().

Using a with statement is also exception safe.

	
aggregate_exceptions

	Whether or not the multitasking context should collect all exceptions
that occurred inside of submitted tasks upon shutdown, and then raise
a pake.AggregateException containing them.

This is False by default, the normal behaviour is to search
the tasks in the order of submission for exceptions upon shutdown, and
then re-raise the first exception that was encountered on the foreground thread.

	
map(fn, *iterables, timeout=None, chunksize=1)

	Returns an iterator equivalent to map(fn, iter).

	Parameters

	
	fn – A callable that will take as many arguments as there are passed iterables.

	timeout – The maximum number of seconds to wait. If None, then there is no limit on the wait time.

	chunksize – The size of the chunks the iterable will be broken into.

	Returns

	An iterator equivalent to: map(func, *iterables) but the calls may be evaluated out-of-order.

	Raises

	TimeoutError If the entire result iterator could not be generated before the given timeout.

	Raises

	Exception If fn(*args) raises for any values.

	
shutdown(wait=True)

	Shutdown multitasking and free resources, optionally wait on all submitted tasks.

It is not necessary to call this function if you are using the context in a with statement.

If you specify wait=False, this method will not propagate any exceptions out of your submitted tasks.

	Parameters

	wait – Whether or not to wait on all submitted tasks, default is true.

	
submit(fn, *args, **kwargs)

	Submit a task to pakes current threadpool.

If no thread pool exists, such as in the case of –jobs 1, then the submitted
function is immediately executed in the current thread.

This function has an identical call syntax to concurrent.futures.Executor.submit.

Example:

mt.submit(work_function, arg1, arg2, keyword_arg='arg')

	Returns

	concurrent.futures.Future

	
class pake.TaskGraph(name, func)

	Bases: pake.graph.Graph

Task graph node.

	
func

	Task function reference.

This function will be an internal wrapper around
the one you specified and you should not call it.

There is not currently a way to get a reference
to your actual unwrapped task function from the
pake.Pake object or elsewhere.

However since the functools.wraps() decorator is used
when wrapping your task function, metadata such as func.__doc__
will be maintained on this function reference.

	
add_edge(edge)

	Add an edge to the graph.

	Parameters

	edge – The edge to add (another pake.graph.Graph object)

	
edges

	Retrieve a set of edges from this graph node.

	Returns

	A set() of adjacent nodes.

	
name

	The task name.

	Returns

	The task name, as a string.

	
remove_edge(edge)

	Remove an edge from the graph by reference.

	Parameters

	edge – Reference to a pake.graph.Graph object.

	
topological_sort()

	Return a generator object that runs topological sort as it is iterated over.

Nodes that have been visited will not be revisited, making infinite recursion impossible.

	Returns

	A generator that produces pake.graph.Graph nodes.

	
pake.pattern(file_pattern)

	Produce a substitution pattern that can be used in place of an output file.

The % character represents the file name, while {dir} and {ext} represent the directory of
the input file, and the input file extension.

Example:

@pk.task(i=pake.glob('src/*.c'), o=pake.pattern('obj/%.o'))
def build_c(ctx):
 for i, o in ctx.outdated_pairs:
 ctx.call('gcc', '-c', i, '-o', o)

@pk.task(i=[pake.glob('src_a/*.c'), pake.glob('src_b/*.c')], o=pake.pattern('{dir}/%.o'))
def build_c(ctx):
 for i, o in ctx.outdated_pairs:
 ctx.call('gcc', '-c', i, '-o', o)

pake.pattern() returns function similar to this:

def output_generator(inputs):
 # inputs is always a flat list, and a copy
 # inputs is safe to mutate

 for inp in inputs:
 dir = os.path.dirname(inp)
 name, ext = os.path.splitext(os.path.basename(inp))
 yield file_pattern.replace('{dir}', dir).replace('%', name).replace('{ext}', ext)

	
pake.glob(expression)

	Deferred file input glob, the glob is not executed until the task executes.

This input generator handles recursive directory globs by default, denoted by a double asterisk.

It will return directory names as well if your glob expression matches them.

The syntax used is the same as the built in glob.glob() from pythons glob module.

Example:

@pk.task(build_c, i=pake.glob('obj/*.o'), o='main')
def build_exe(ctx):
 ctx.call('gcc', ctx.inputs, '-o', ctx.outputs)

@pk.task(build_c, i=[pake.glob('obj_a/*.o'), pake.glob('obj_b/*.o')], o='main')
def build_exe(ctx):
 ctx.call('gcc', ctx.inputs, '-o', ctx.outputs)

Recursive Directory Search Example:

Find everything under 'src' that is a .c file, including
in sub directories of 'src' and all the way to the bottom of
the directory tree.

pake.pattern is used to put the object file for each .c file
next to it in the same directory.

@pk.task(i=pake.glob('src/**/*.c'), o=pake.pattern('{dir}/%.o'))
def build_c(ctx):
 for i, o in ctx.outdated_pairs:
 ctx.call('gcc', '-c', i, '-o', o)

pake.glob() returns a function similar to this:

def input_generator():
 return glob.iglob(expression, recursive=True)

	Returns

	A callable function object, which returns a
generator over the file glob results as strings.

	
class pake.FileHelper(printer=None)

	Bases: object

A helper class for dealing with common file operations inside and outside of pake tasks. Instantiating this class
with the printer parameter set to a pake.TaskContext instance will cause it to print information about
file system operations it performs to the tasks output queue. Each function can be silenced by setting the silent
parameter of the function to True.

	
copy(src, dest, copy_metadata=False, follow_symlinks=True, silent=False)

	Copy a file to a destination.

See shutil.copy() and shutil.copy2() (when copy_metadata is True)

	Parameters

	
	src – The file.

	dest – The destination path.

	copy_metadata – If True, file metadata like creation time will be copied to the new file.

	follow_symlinks – Whether or not to follow symlinks while copying.

	silent – If True, Don’t print information to the tasks output.

	
copytree(self, src, dst, symlinks=False, ignore=None, copy_function=shutil.copy2, ignore_dangling_symlinks=False, silent=False)

	Recursively copy a directory tree, See shutil.copytree().

The destination directory must not already exist.
If exception(s) occur, an Error is raised with a list of reasons.

If the optional symlinks flag is true, symbolic links in the
source tree result in symbolic links in the destination tree; if
it is false, the contents of the files pointed to by symbolic
links are copied. If the file pointed by the symlink doesn’t
exist, an exception will be added in the list of errors raised in
an Error exception at the end of the copy process.

You can set the optional ignore_dangling_symlinks flag to true if you
want to silence this exception. Notice that this has no effect on
platforms that don’t support os.symlink().

The optional ignore argument is a callable. If given, it
is called with the src parameter, which is the directory
being visited by shutil.copytree(), and names which is the list of
src contents, as returned by os.listdir():

callable(src, names) -> ignored_names

Since shutil.copytree() is called recursively, the callable will be
called once for each directory that is copied. It returns a
list of names relative to the src directory that should
not be copied.

The optional copy_function argument is a callable that will be used
to copy each file. It will be called with the source path and the
destination path as arguments. By default, shutil.copy2() is used, but any
function that supports the same signature (like shutil.copy()) can be used.

	Raises

	shutil.Error – If exception(s) occur, an Error is raised with a list of reasons.

	Parameters

	
	src – The source directory tree.

	dst – The destination path.

	symlinks – If True, try to copy symlinks.

	ignore – Callable, used specifying files to ignore in a specific directory as copytree
walks the source directory tree. callable(src, names) -> ignored_names

	copy_function – The copy function, if not specified shutil.copy2() is used.

	ignore_dangling_symlinks – If True, don’t throw an exception when the file pointed to
by a symlink does not exist.

	silent – If True, Don’t print info the the tasks output.

	
glob_remove(glob_pattern, silent=False)

	Remove files using a glob pattern, this makes use of pythons built in glob module.

This function handles recursive directory globing patterns by default.

Files are removed using os.remove().

	Parameters

	
	glob_pattern – The glob pattern to use to search for files to remove.

	silent – If True, don’t print information to the tasks output.

	Raises

	OSError – Raised if a file is in use (On Windows), or if there is another problem deleting one of the files.

	
glob_remove_dirs(glob_pattern, silent=False)

	Remove directories using a glob pattern, this makes use of pythons built in glob module.

This function handles recursive directory globing patterns by default.

This uses shutil.rmtree() to remove directories.

This function will remove non empty directories.

	Parameters

	
	glob_pattern – The glob pattern to use to search for directories to remove.

	silent – If True, don’t print information to the tasks output.

	
makedirs(path, mode=511, silent=False, exist_ok=True)

	Create a directory tree if it does not exist, if the directory tree exists already this function does nothing.

This uses os.makedirs().

	Parameters

	
	path – The directory path/tree.

	mode – The permissions umask to use for the directories.

	silent – If True, don’t print information to the tasks output.

	exist_ok – If False, an OSError will be thrown if any directory
in the given path already exists.

	Raises

	OSError – Raised for all directory creation errors (aside from errno.EEXIST if exist_ok is True)

	
move(self, src, dest, copy_function=shutil.copy2, silent=False)

	Recursively move a file or directory to another location. (See shutil.move)
This is similar to the Unix “mv” command. Return the file or directory’s
destination.

If the destination is a directory or a symlink to a directory, the source
is moved inside the directory. The destination path must not already
exist.

If the destination already exists but is not a directory, it may be
overwritten depending on os.rename() semantics.

If the destination is on our current filesystem, then os.rename() is used.
Otherwise, src is copied to the destination and then removed. Symlinks are
recreated under the new name if os.rename() fails because of cross
filesystem renames.

The optional copy_function argument is a callable that will be used
to copy the source or it will be delegated to shutil.copytree().
By default, shutil.copy2() is used, but any function that supports the same
signature (like shutil.copy()) can be used.

	Raises

	shutil.Error – If the destination already exists, or if src is moved into itself.

	Parameters

	
	src – The file.

	dest – The destination to move the file to.

	copy_function – The copy function to use for copying individual files.

	silent – If True, don’t print information to the tasks output.

	
printer

	Return the printer object associated with this pake.FileHelper.

If one does not exist, return None.

	
remove(path, silent=False, must_exist=False)

	Remove a file from disk if it exists, otherwise do nothing, uses os.remove().

	Raises

	
	FileNotFoundError – If must_exist is True, and the file does not exist.

	OSError – If the path is a directory.

	Parameters

	
	path – The path of the file to remove.

	silent – If True, don’t print information to the tasks output.

	must_exist – If set to True, a FileNotFoundError will be raised if the file does not exist.

	
rmtree(path, silent=False, must_exist=False)

	Remove a directory tree if it exist, if the directory tree does not exists this function does nothing.

This uses shutil.rmtree().

This function will remove non empty directories.

	Raises

	FileNotFoundError – Raised if must_exist is True and the given path does not exist.

	Parameters

	
	path – The directory path/tree.

	silent – If True, don’t print information to the tasks output.

	must_exist – If True, a FileNotFoundError will be raised if the directory
does not exist

	
touch(file_name, mode=438, exist_ok=True, silent=False)

	Create a file at this given path. If mode is given, it is combined with the process’ umask value to determine
the file mode and access flags. If the file already exists, the function succeeds if exist_ok is true
(and its modification time is updated to the current time), otherwise FileExistsError is raised.

This uses pathlib.Path.touch().

	Raises

	FileExistsError – Raised if exist_ok is False and the file already exists.

	Parameters

	
	file_name – The file name.

	mode – The permissions umask.

	exist_ok – whether or not it is okay for the file to exist already.

	silent – If True, don’t print information to the tasks output.

	
exception pake.TaskException(task_name, exception)

	Bases: Exception

Raised by pake.Pake.run() if an exception is encountered running/visiting a task.

	
exception

	The exception raised.

	
task_name

	The name of the task which the exception was raised in.

	
exception_name

	The fully qualified name of the exception object.

	
print_traceback(file=None)

	Print the traceback of the exception that was raised inside the task to a file object.

	Parameters

	file – The file object to print to. Default value is pake.conf.stderr if None is specified.

	
exception pake.TaskExitException(task_name, exception)

	Bases: Exception

Raised when SystemExit or an exception derived from it is thrown inside a task.

This is raised from pake.Pake.run() when exit(), pake.terminate(),
or pake.Pake.terminate() is called inside of a task.

	
task_name

	The name of the task in which exit was called.

	
exception

	Reference to the SystemExit exception which caused this exception to be raised.

	
print_traceback(file=None)

	Print the traceback of the SystemExit exception that was raised inside the task to a file object.

	Parameters

	file – The file object to print to. Default value is pake.conf.stderr if None is specified.

	
return_code

	The return code passed to exit() inside the task.

	
exception pake.TaskSubprocessException(cmd, returncode, output=None, output_stream=None, message=None)

	Bases: pake.process.StreamingSubprocessException

Raised by default upon encountering a non-zero return code from a subprocess spawned
by the pake.TaskContext object.

This exception can be raised from pake.TaskContext.call(),
pake.TaskContext.check_call(), and pake.TaskContext.check_output().

	
cmd

	Executed command in list form.

	
returncode

	Process returncode.

	
message

	Optional message from the raising function, may be None

	
filename

	Filename describing the file from which the process call was initiated. (might be None)

	
function_name

	Function name describing the function which initiated the process call. (might be None)

	
line_number

	Line Number describing the line where the process call was initiated. (might be None)

	
output

	All output of the process (including stderr) as a bytes object
if it is available, otherwise this property is None.

	
output_stream

	All output of the process (including stderr) as a file
object at seek(0) if it is available, otherwise this property is None.

If this property is not None and you call pake.TaskSubprocessException.write_info(),
this property will become None because that method reads the stream and disposes of it.

The stream will be a text mode stream.

	
write_info(file)

	Writes information about the subprocess exception to a file like object.

This is necessary over implementing in __str__, because the process output might be
drawn from another file to prevent issues with huge amounts of process output.

Calling this method will cause pake.TaskSubprocessException.output_stream to
become None if it already isn’t.

	Parameters

	file – The text mode file object to write the information to.

	
exception pake.InputNotFoundException(task_name, output_name)

	Bases: Exception

Raised by pake.Pake.run() and pake.Pake.dry_run() if a task with inputs
declared cannot find an input file/directory on disk.

	
exception pake.MissingOutputsException(task_name)

	Bases: Exception

Raised by pake.Pake.run() and pake.Pake.dry_run() if a task declares input files without
specifying any output files/directories.

	
exception pake.UndefinedTaskException(task_name)

	Bases: Exception

Raised on attempted lookup/usage of an unregistered task function or task name.

	
task_name

	The name of the referenced task.

	
exception pake.RedefinedTaskException(task_name)

	Bases: Exception

Raised on registering a duplicate task.

	
task_name

	The name of the redefined task.

	
exception pake.PakeUninitializedException

	Bases: Exception

Thrown if a function is called which depends on pake.init() being called first.

	
exception pake.SubpakeException(cmd, returncode, output=None, output_stream=None, message=None)

	Bases: pake.process.StreamingSubprocessException

Raised upon encountering a non-zero return code from a subpake invocation.

This exception is raised from both pake.subpake() and pake.TaskContext.subpake().

	
cmd

	Executed subpake command in list form.

	
returncode

	Process returncode.

	
message

	Optional message from the raising function, may be None

	
filename

	Filename describing the file from which the process call was initiated. (might be None)

	
function_name

	Function name describing the function which initiated the process call. (might be None)

	
line_number

	Line Number describing the line where the process call was initiated. (might be None)

	
output

	All output of the process (including stderr) as a bytes object
if it is available, otherwise this property is None.

	
output_stream

	All output of the process (including stderr) as a file
object at seek(0) if it is available, otherwise this property is None.

If this property is not None and you call pake.TaskSubprocessException.write_info(),
this property will become None because that method reads the stream and disposes of it.

The stream will be a text mode stream.

	
write_info(file)

	Writes information about the subprocess exception to a file like object.

This is necessary over implementing in __str__, because the process output might be
drawn from another file to prevent issues with huge amounts of process output.

Calling this method will cause pake.TaskSubprocessException.output_stream to
become None if it already isn’t.

	Parameters

	file – The text mode file object to write the information to.

	
exception pake.TerminateException(*args)

	Bases: SystemExit

This exception is raised by pake.terminate() and pake.Pake.terminate(),
it derives SystemExit and if it is not caught pake will exit gracefully with
the return code provided to the exception.

If this exception is raised inside of a task, pake.Pake.run() with raise a
pake.TaskExitException in response.

	
code

	exception code

	
exception pake.AggregateException(exceptions)

	Bases: Exception

Thrown upon pake.MultitaskContext.shutdown() if the context had
its pake.MultitaskContext.aggregate_exceptions setting set to True
and one or more submitted tasks encountered an exception.

See the aggregate_exceptions parameter of pake.TaskContext.multitask().

	
write_info(file=None)

	Write information about all the encountered exceptions to a file like object.
If you specify the file as None, the default is pake.conf.stderr

The information written is not guaranteed to be available for writing more than once.

Exceptions derived from pake.process.StreamingSubprocessException
have special handling in this function, as they can incrementally stream
information from a temp file and then dispose of it. They must have write_info
called on them as well.

	Parameters

	file – A text mode file like object to write information to.

Submodules

Module: pake.graph

	
class pake.graph.Graph

	Bases: object

Represents a node in a directed graph.

	
add_edge(edge)

	Add an edge to the graph.

	Parameters

	edge – The edge to add (another pake.graph.Graph object)

	
edges

	Retrieve a set of edges from this graph node.

	Returns

	A set() of adjacent nodes.

	
remove_edge(edge)

	Remove an edge from the graph by reference.

	Parameters

	edge – Reference to a pake.graph.Graph object.

	
topological_sort()

	Return a generator object that runs topological sort as it is iterated over.

Nodes that have been visited will not be revisited, making infinite recursion impossible.

	Returns

	A generator that produces pake.graph.Graph nodes.

Module: pake.process

Methods for spawning processes.

	
pake.process.DEVNULL

	Analog for subprocess.DEVNULL

	
pake.process.STDOUT

	Analog for subprocess.STDOUT

	
pake.process.PIPE

	Analog for subprocess.PIPE

	
exception pake.process.ProcessException(message)

	Bases: Exception

Base class for process exceptions.

	
exception pake.process.StreamingSubprocessException(cmd, returncode, output=None, output_stream=None, message=None)

	Bases: pake.process.ProcessException

A base class for sub-process exceptions which need to be able to handle reporting huge
amounts of process output when a process fails.

This exception is used as a base class for process exceptions thrown from pake.subpake(), and the
process spawning methods in the pake.TaskContext object.

	
cmd

	Executed command in list form.

	
returncode

	Process returncode.

	
message

	Optional message from the raising function, may be None

	
filename

	Filename describing the file from which the process call was initiated. (might be None)

	
function_name

	Function name describing the function which initiated the process call. (might be None)

	
line_number

	Line Number describing the line where the process call was initiated. (might be None)

	
output

	All output of the process (including stderr) as a bytes object
if it is available, otherwise this property is None.

	
output_stream

	All output of the process (including stderr) as a file
object at seek(0) if it is available, otherwise this property is None.

If this property is not None and you call pake.TaskSubprocessException.write_info(),
this property will become None because that method reads the stream and disposes of it.

The stream will be a text mode stream.

	
write_info(file)

	Writes information about the subprocess exception to a file like object.

This is necessary over implementing in __str__, because the process output might be
drawn from another file to prevent issues with huge amounts of process output.

Calling this method will cause pake.TaskSubprocessException.output_stream to
become None if it already isn’t.

	Parameters

	file – The text mode file object to write the information to.

	
exception pake.process.CalledProcessException(cmd, returncode, output=None, stderr=None)

	Bases: pake.process.ProcessException

Raised when pake.process.check_call() or pake.process.check_output() and the process returns a non-zero exit status.

This exception is only raised by process spawning methods in the pake.process module.

	
cmd

	Executed command

	
timeout

	Timeout in seconds.

	
output

	Output of the child process if it was captured by pake.process.check_output(). Otherwise, None.

	
stdout

	Alias for output, for symmetry with stderr.

	
stderr

	Stderr output of the child process if it was captured by pake.process.check_output(). Otherwise, None.

	
filename

	Filename describing the file from which the process call was initiated. (might be None)

	
function_name

	Function name describing the function which initiated the process call. (might be None)

	
line_number

	Line Number describing the line where the process call was initiated. (might be None)

	
stdout

	Alias for output

	
exception pake.process.TimeoutExpired(cmd, timeout, output=None, stderr=None)

	Bases: pake.process.ProcessException

This exception is raised when the timeout expires while waiting for a child process.

This exception is only raised by process spawning methods in the pake.process module.

	
cmd

	Executed command

	
timeout

	Timeout in seconds.

	
output

	Output of the child process if it was captured by pake.process.check_output(). Otherwise, None.

	
stdout

	Alias for output, for symmetry with stderr.

	
stderr

	Stderr output of the child process if it was captured by pake.process.check_output(). Otherwise, None.

	
filename

	Filename describing the file from which the process call was initiated. (might be None)

	
function_name

	Function name describing the function which initiated the process call. (might be None)

	
line_number

	Line Number describing the line where the process call was initiated. (might be None)

	
pake.process.call(*args, stdin=None, stdout=None, stderr=None, shell=False, timeout=None, **kwargs)

	Wrapper around subprocess.call() which allows the same *args call syntax as pake.TaskContext.call() and friends.

	Parameters

	
	args – Executable and arguments.

	stdin – Stdin to feed to the process.

	stdout – File to write stdout to.

	stderr – File to write stderr to.

	shell – Execute in shell mode.

	timeout – Program execution timeout value in seconds.

	Raises

	pake.process.TimeoutExpired If the process does not exit before timeout is up.

	
pake.process.check_call(*args, stdin=None, stdout=None, stderr=None, shell=False, timeout=None, **kwargs)

	Wrapper around subprocess.check_call() which allows the same *args call syntax as pake.TaskContext.call() and friends.

	Parameters

	
	args – Executable and arguments.

	stdin – Stdin to feed to the process.

	stdout – File to write stdout to.

	stderr – File to write stderr to.

	shell – Execute in shell mode.

	timeout – Program execution timeout value in seconds.

	Raises

	pake.process.CalledProcessException If the process exits with a non-zero return code.

	Raises

	pake.process.TimeoutExpired If the process does not exit before timeout is up.

	
pake.process.check_output(*args, stdin=None, stderr=None, shell=False, timeout=None, **kwargs)

	Wrapper around subprocess.check_output() which allows the same *args call syntax as pake.TaskContext.call() and friends.

	Parameters

	
	args – Executable and arguments.

	stdin – Stdin to feed to the process.

	stderr – File to write stderr to.

	shell – Execute in shell mode.

	timeout – Program execution timeout value in seconds.

	Raises

	pake.process.CalledProcessException If the process exits with a non-zero return code.

	Raises

	pake.process.TimeoutExpired If the process does not exit before timeout is up.

Module: pake.util

	
pake.util.touch(file_name, mode=438, exist_ok=True)

	Create a file at this given path.
If mode is given, it is combined with the process’ umask value to determine the file mode and access flags.
If the file already exists, the function succeeds if exist_ok is true (and its modification time is updated to the current time),
otherwise FileExistsError is raised.

	Parameters

	
	file_name – The file name.

	mode – The mode (octal perms mask) defaults to 0o666.

	exist_ok – Whether or not it is okay for the file to exist when touched, if not a FileExistsError is thrown.

	
pake.util.is_iterable(obj)

	Test if an object is iterable.

	Parameters

	obj – The object to test.

	Returns

	True if the object is iterable, False otherwise.

	
pake.util.is_iterable_not_str(obj)

	Test if an object is iterable, and not a string.

	Parameters

	obj – The object to test.

	Returns

	True if the object is an iterable non string, False otherwise.

	
pake.util.str_is_float(value)

	Test if a string can be parsed into a float.

	Returns

	True or False

	
pake.util.str_is_int(value)

	Test if a string can be parsed into an integer.

	Returns

	True or False

	
pake.util.flatten_non_str(iterable)

	Flatten a nested iterable without affecting strings.

Example:

val = list(flatten_non_str(['this', ['is', ['an'], 'example']]))

val == ['this', 'is', 'an', 'example']

	Returns

	A generator that iterates over the flattened iterable.

	
pake.util.handle_shell_args(args)

	Handles parsing the *args parameter of pake.TaskContext.call() and pake.subpake().

It allows shell arguments to be passed as a list object, variadic parameters, or a single string.

Any non-string object you pass that is not an iterable will be stringified.

	Returns

	A list of shell argument strings.

	
class pake.util.CallerDetail

	
	
filename

	Source file name.

	
function_name

	Function call name.

	
line_number

	Line number of function call.

	
pake.util.get_pakefile_caller_detail()

	Get the full pakefile path, called function name, and line number of the first
function call in the current call tree which exists inside of a pakefile.

This function traverses up the stack frame looking for the first occurrence of
a source file with the same path that pake.get_init_file() returns.

If pake.init() has not been called, this function returns None.

	Returns

	A named tuple: pake.util.CallerDetail or None.

	
pake.util.parse_define_value(value)

	Used to interpret the value of a define declared on the command line with the -D/–define option.

-D excepts all forms of python literal as define values.

This function can parse strings, integers, floats, lists, tuples, dictionaries and sets.

‘True’, ‘False’ and ‘None’ values are case insensitive.

Anything that does not start with a python literal quoting character (such as { and [) and
is not a True or False value, Integer, or Float, is considered to be a raw string.

	Raises

	ValueError if the value parameter is None, or
if an attempt to parse a complex literal (quoted string, list, set, tuple, or dictionary) fails.

	Parameters

	value – String representing the defines value.

	Returns

	Python literal representing the defines values.

	
pake.util.copyfileobj_tee(fsrc, destinations, length=16384, readline=False)

	copy data from file-like object fsrc to multiple file like objects.

	Parameters

	
	fsrc – Source file object.

	destinations – List of destination file objects.

	length – Read chunk size, default is 16384 bytes.

	readline – If True readline will be used to read from fsrc, the length
parameter will be ignored.

	
pake.util.qualified_name(object_instance)

	Return the fully qualified type name of an object.

	Parameters

	object_instance – Object instance.

	Returns

	Fully qualified name string.

Module: pake.conf

Global configuration module.

	
pake.conf.stdout

	(set-able) Default file object used by pake library calls to print informational output, defaults to sys.stdout

This can be set in order to change the default informational output location for the whole library.

	
pake.conf.stderr

	(set-able) Default file object used by pake library calls to print error output, defaults to sys.stderr.

This can be set in order to change the default error output location for the whole library.

	
pake.conf.reset()

	Reset all configuration to its default state.

Module: pake.returncodes

Pake return codes.

	
pake.returncodes.SUCCESS

	
	Pake ran/exited successfully.

	
pake.returncodes.ERROR

	
	Generic error, good for use with pake.terminate() (or exit() inside tasks)

	
pake.returncodes.PAKEFILE_NOT_FOUND

	
	Pakefile not found in directory, or specified pakefile does not exist.

	
pake.returncodes.BAD_ARGUMENTS

	
	Bad combination of command line arguments, or bad arguments in general.

	
pake.returncodes.BAD_DEFINE_VALUE

	
	Syntax error while parsing a define value from the -D/–define option.

	
pake.returncodes.NO_TASKS_DEFINED

	
	No tasks defined in pakefile.

	
pake.returncodes.NO_TASKS_SPECIFIED

	
	No tasks specified to run, no default tasks exist.

	
pake.returncodes.TASK_INPUT_NOT_FOUND

	
	One of task’s input files/directories is missing.

	
pake.returncodes.TASK_OUTPUT_MISSING

	
	A task declares input files/directories but no output files/directories.

	
pake.returncodes.UNDEFINED_TASK

	
	An undefined task was referenced.

	
pake.returncodes.TASK_SUBPROCESS_EXCEPTION

	
	An unhandled pake.TaskSubprocessException was raised inside a task.

	
pake.returncodes.SUBPAKE_EXCEPTION

	
	An exceptional condition occurred running a subpake script.

Or if a pakefile invoked with pake.subpake() returns non-zero and the subpake parameter exit_on_error is set to True.

	
pake.returncodes.TASK_EXCEPTION

	
	An unhandled exception occurred inside a task.

	
pake.returncodes.AGGREGATE_EXCEPTION

	
	An aggregate exception was raised from a usage of pake.TaskContext.multitask()
where the aggregate_exceptions parameter of pake.TaskContext.multitask()
was set to True.

	
pake.returncodes.STDIN_DEFINES_SYNTAX_ERROR

	
	A syntax error was encountered parsing the defines dictionary passed into
stdin while using the –stdin-defines option.

Running Pake

cd your_pakefile_directory

Run pake with up to 10 tasks running in parallel

pake -j 10

pake will look for “pakefile.py” or “pakefile” in the current directory and run it if it exists.

Manually specifying pakefile(s)

You can specify one or more files to run with -f/–file.
The switch does not have multiple arguments, but it can be used
more than once to specify multiple files.

If you specify more than one pakefile with a –jobs parameter greater than 1,
the specified pakefiles will still be run synchronously (one after another). The tasks
inside each pakefile will be ran in parallel however.

For example:

pake -f pakefile.py foo

pake -f your_pakefile_1.py -f your_pakefile_2.py foo

Executing in another directory

The -C or –directory option can be used to execute pake in an arbitrary directory.

If you do not specify a file with -f or –file, then a pakefile must exist in the given directory:

Example:

Pake will find the 'pakefile.py' in 'build_directory'
then change directories into it and start running

pake -C build_directory my_task

You can also tell pake to run a pakefile (or multiple pakefiles) in a different working directory.

Example:

Pake will run 'my_pakefile.py' with a working directory of 'build_directory'

pake -f my_pakefile.py -C build_directory my_task

Pake will run all the given pakefiles with a working directory of 'build_directory'

pake -f pakefile1.py -f pakefile2.py -f pakefile3.py -C build_directory my_task

Running multiple tasks

You can specify multiple tasks, but do not rely on unrelated tasks being executed in any
specific order because they won’t be. If there is a specific order you need your tasks to
execute in, the one that comes first should be declared a dependency of the one that comes
second, then the second task should be specified to run.

When running parallel builds, leaf dependencies will start executing pretty much
simultaneously, and non related tasks that have a dependency chain may execute
in parallel.

In general, direct dependencies of a task have no defined order of execution when
there is more than one of them.

pake task unrelated_task order_independent_task

Specifying define values

The -D/–define option is used to specify defines on the command line that can be retrieved
with the pake.Pake.get_define() method, or __getitem__ indexer on the pake.Pake
object (which is returned by pake.init()).

Define values are parsed partially with the built in ast module, the only caveat is that the
values True, False and None are case insensitive.

Defines which are specified without a value, default to the value of True.

Basic Example:

pake -D IM_TRUE=True \
 -D IM_TRUE_TOO=true \
 -D IM_NONE=none \
 -D NO_VALUE \
 -D IM_STRING="Hello" \
 -D IM_INT=1 \
 -D IM_FLOAT=0.5

Retrieval:

import pake

pk = pake.init()

im_true = pk.get_define('IM_TRUE')

im_true_too = pk.get_define('IM_TRUE_TOO')

im_none = pk.get_define('IM_NONE')

no_value = pk.get_define('NO_VALUE')

im_string = pk.get_define('IM_STRING')

im_int = pk.get_define('IM_INT')

im_float = pk.get_define('IM_FLOAT')

print(type(im_true)) # -> <class 'bool'>
print(im_true) # -> True

print(type(im_true_too)) # -> <class 'bool'>
print(im_true_too) # -> True

print(type(im_none)) # -> <class 'NoneType'>
print(im_none) # -> None

print(type(no_value)) # -> <class 'bool'>
print(no_value) # -> True

print(type(im_string)) # -> <class 'str'>
print(im_string) # -> Hello

print(type(im_int)) # -> <class 'int'>
print(im_int) # -> 1

print(type(im_float)) # -> <class 'float'>
print(im_float) # -> 0.5

pk.terminate(0)

You can pass complex python literals such as lists, sets, tuples, dictionaries, etc.. as a define value.
pake will recognize and fully deserialize them into the correct type.

Complex Types Example:

pake -D IM_A_DICT="{'im': 'dict'}" \
 -D IM_A_SET="{'im', 'set'}" \
 -D IM_A_LIST="['im', 'list']" \
 -D IM_A_TUPLE="('im', 'tuple')"

Retrieval:

import pake

pk = pake.init()

im_a_dict = pk.get_define('IM_A_DICT')

im_a_set = pk.get_define('IM_A_SET')

im_a_list = pk.get_define('IM_A_LIST')

im_a_tuple = pk.get_define('IM_A_TUPLE')

print(type(im_a_dict)) # -> <class 'dict'>
print(im_a_dict) # -> {'im': 'dict'}

print(type(im_a_set)) # -> <class 'set'>
print(im_a_set) # -> {'im', 'set'}

print(type(im_a_list)) # -> <class 'list'>
print(im_a_list) # -> ['im': 'list']

print(type(im_a_tuple)) # -> <class 'tuple'>
print(im_a_tuple) # -> ('im': 'tuple')

pk.terminate(0)

Reading defines from STDIN

The –stdin-defines option allows you to pipe defines into pake in the form of a python dictionary.

Any defines that are set this way can be overwritten by defines set on the command line using -D/–define

The dictionary that you pipe in is parsed into a python literal using the built in ast module,
so you can use complex types such as lists, sets, tuples, dictionaries ect.. as the value for your defines.

Pake reads the defines from stdin on the first call to pake.init() and caches them in memory.
Later calls to init will read the specified defines back from cache and apply them to a newly created
pake.Pake instance.

Calls to pake.de_init() will not clear cached defines read from stdin.

Example Pakefile:

import pake

pk = pake.init()

a = pk['MY_DEFINE']
b = pk['MY_DEFINE_2']

print(a)
print(b)

pk.terminate(0)

Example Commands:

Pipe in two defines, MY_DEFINE=True and MY_DEFINE_2=42

echo "{'MY_DEFINE': True, 'MY_DEFINE_2': 42}" | pake --stdin-defines

Prints:

True
42

Overwrite the value of MY_DEFINE_2 that was piped in, using the -D/--define option
it will have a value of False instead of 42

echo "{'MY_DEFINE': True, 'MY_DEFINE_2': 42}" | pake --stdin-defines -D MY_DEFINE_2=False

Prints:

True
False

Environmental variables

Pake currently recognizes only one environmental variable named PAKE_SYNC_OUTPUT.

This variable corresponds to the command line option –sync-output.
Using the –sync-output option will override the environmental variable however.
Pake will use the value from the command line option instead of the value in the environment.

When this environmental variable and –sync-output are not defined/specified,
the default value pake uses is –sync-output True.

pake.init() has an argument named sync_output that can also be used to
permanently override both the –sync-output switch and the PAKE_SYNC_OUTPUT
environmental variable from inside of a pakefile.

The –sync-output option controls whether pake tries to synchronize task output
by queueing it when running with more than one job.

–sync-output False causes pake.TaskContext.io_lock to yield a lock
object which actually does nothing when it is acquired, and it also forces pake
to write all run output to pake.Pake.stdout instead of task output
queues, even when running tasks concurrently.

The output synchronization setting is inherited by all pake.subpake()
and pake.Pake.subpake() invocations.

You can stop this inheritance by manually passing a different value for –sync-output
as a shell argument when using one of the subpake functions. The new value will
be inherited by the pakefile you invoked with subpake and all of its children.

Command line options

usage: pake [-h] [-v] [-D DEFINE] [--stdin-defines] [-j JOBS] [-n]
 [-C DIRECTORY] [-t] [-ti] [--sync-output {True, False, 1, 0}]
 [-f FILE]
 [tasks [tasks ...]]

 positional arguments:
 tasks Build tasks.

 optional arguments:
 -h, --help show this help message and exit
 -v, --version show program's version number and exit
 -D DEFINE, --define DEFINE
 Add defined value.
 --stdin-defines Read defines from a Python Dictionary piped into
 stdin. Defines read with this option can be
 overwritten by defines specified on the command line
 with -D/--define.
 -j JOBS, --jobs JOBS Max number of parallel jobs. Using this option enables
 unrelated tasks to run in parallel with a max of N
 tasks running at a time.
 -n, --dry-run Use to preform a dry run, lists all tasks that will be
 executed in the next actual invocation.
 -C DIRECTORY, --directory DIRECTORY
 Change directory before executing.
 -t, --show-tasks List all task names.
 -ti, --show-task-info
 List all tasks along side their doc string. Only tasks
 with doc strings present will be shown.
 --sync-output {True, False, 1, 0}
 Tell pake whether it should synchronize task output
 when running with multiple jobs. Console output can
 get scrambled under the right circumstances with this
 turned off, but pake will run slightly faster. This
 option will override any value in the PAKE_SYNC_OUTPUT
 environmental variable, and is inherited by subpake
 invocations unless the argument is re-passed with a
 different value or overridden in pake.init.
 -f FILE, --file FILE Pakefile path(s). This switch can be used more than
 once, all specified pakefiles will be executed in
 order with the current directory as the working
 directory (unless -C is specified).

Return codes

See the pake.returncodes module, pake’s return codes are defined
as constants and each is described in detail in the module documentation.

Writing Basic Tasks

Additional information about change detection is available in the form of examples in
the documentation for the pake.Pake.task() function decorator.

Pake is capable of handling change detection against both files and directories, and the two can be used
as inputs or outputs interchangeably and in combination.

Note:

Each registered task receives a pake.TaskContext instance as a single argument when run.
In this example the argument is named ctx, but it can be named however you like.
It is not an error to leave this argument undefined, but you will most likely be using it.

Example:

import pake

Tasks are registered the the pake.Pake object
returned by pake's initialization call, using the task decorator.

pk = pake.init()

Try to grab a command line define.
In particular the value of -D CC=..
CC will default to 'gcc' in this case if
it was not specified.

CC = pk.get_define('CC', 'gcc')

you can also use the syntax: pk["CC"] to
attempt to get the defines value, if it is not
defined then it will return None.

===

If you just have a single input/output, there is no
need to pass a list to the tasks inputs/outputs

@pk.task(i='foo/foo.c', o='foo/foo.o')
def foo(ctx):
 # Execute a program (gcc) and print its stdout/stderr to the tasks output.

 # ctx.call can be passed a command line as variadic arguments, an iterable, or
 # as a string. It will automatically flatten out non string iterables in your variadic
 # arguments or iterable object, so you can pass an iterable such as ctx.inputs
 # as part of your full command line invocation instead of trying to create the command
 # line by concatenating lists or using the indexer on ctx.inputs/ctx.outputs

 ctx.call(CC, '-c', ctx.inputs, '-o', ctx.outputs)

Pake can handle file change detection with multiple inputs
and outputs. If the amount of inputs is different from
the amount of outputs, the task is considered to be out
of date if any input file is newer than any output file.

When the amount of inputs is equal to the amount of outputs,
pake will compare each input to its corresponding output
and collect out of date input/outputs into ctx.outdated_inputs
and ctx.outdated_outputs respectively. ctx.outdated_pairs
can be used to get a generator over (input, output) pairs,
it is shorthand for zip(ctx.outdated_inputs, ctx.outdated_outputs)

@pk.task(i=pake.glob('bar/*.c'), o=pake.pattern('bar/%.o'))
def bar(ctx):

 # zip together the outdated inputs and outputs, since they
 # correspond to each other, this iterates of a sequence of python
 # tuple objects in the form (input, output)

 for i, o in ctx.outdated_pairs:
 ctx.call(CC, '-c', i, '-o', o)

This task depends on the 'foo' and 'bar' tasks, as
specified with the decorators leading parameters.
It outputs 'bin/baz' by taking the input 'main.c'
and linking it to the object files produced in the other tasks.

@pk.task(foo, bar, o='bin/baz', i='main.c')
def baz(ctx):
 """Use this to build baz"""

 # Documentation strings can be viewed by running 'pake -ti' in
 # the directory the pakefile exists in, it will list all documented
 # tasks with their python doc strings.

 # The pake.FileHelper class can be used to preform basic file
 # system operations while printing information about the operations
 # it has completed to the tasks output.

 file_helper = pake.FileHelper(ctx)

 # Create a bin directory, this won't complain if it exists already
 file_helper.makedirs('bin')

 # ctx.dependency_outputs contains a list of all outputs that this
 # tasks immediate dependencies produce

 ctx.call(CC, '-o', ctx.outputs, ctx.inputs, ctx.dependency_outputs)

@pk.task
def clean(ctx):
 """Clean binaries"""

 file_helper = pake.FileHelper(ctx)

 # Clean up using the FileHelper object.
 # Remove the bin directory, this wont complain if 'bin'
 # does not exist.

 file_helper.rmtree('bin')

 # Glob remove object files from the foo and bar directories

 file_helper.glob_remove('foo/*.o')
 file_helper.glob_remove('bar/*.o')

Run pake; The default task that will be executed when
none are specified on the command line will be 'baz' in
this case.

The tasks parameter is optional, but if it is not specified
here, you will be required to specify a task or tasks on the
command line.

pake.run(pk, tasks=baz)

Output from command pake:

===== Executing task: "bar"
gcc -c bar/bar.c -o bar/bar.o
===== Executing task: "foo"
gcc -c foo/foo.c -o foo/foo.o
===== Executing task: "baz"
Created Directory(s): "bin"
gcc -o bin/baz main.c foo/foo.o bar/bar.o

Output from command pake clean:

===== Executing task: "clean"
Removed Directory(s): "bin"
Glob Removed Files: "foo/*.o"
Glob Removed Files: "bar/*.o"

Input/Output Name Generators & Globbing

Pake can accept callables as task inputs, this is how pake.glob() and pake.pattern() are
implemented under the hood. They both take the pattern you give them and return a new function, which
generates an iterable of input/output file names.

Input and output generators will work with both the pake.Pake.task() function
decorator, as well as the pake.Pake.add_task() method.

The evaluation of input/output generators is deferred until the task runs.

The reasoning behind this is that input generators like pake.glob() can have access
to artifacts created by a tasks dependencies when evaluation happens just before the task runs.
Because all the dependencies of the task will have been built by that point.

The outputs of input/output generators are passed through pake’s change detection algorithm
once the values have been retrieved from them, to determine if the task should run or not.

pake.glob() and pake.pattern() are implemented like this:

def glob(pattern):

 def input_generator():

 # Input generators can return generators or lists.
 # As long as whatever the input generator returns
 # is an iterable object that produces file/directory
 # names as strings, it will work.

 # You can also use 'yield' syntax in your input
 # generator function, since the result is an iterable

 return glob.iglob(expression, recursive=True)

 return input_generator

pake.pattern generates a callable that you can
pass as a pake output, into the "i" parameter
of the task decorator, or even to the "inputs"
parameter of pk.add_task

def pattern(file_pattern):

 def output_generator(inputs):

 # output generators receive the inputs
 # provided to the task, even ones that
 # were generated by an input generator

 # inputs is always a flat list, and a copy

 # inputs is safe to mutate if you want

 # As with input generators, you can return
 # any type of iterable that produces file/directory
 # names as strings and it will work.

 for inp in inputs:
 dir = os.path.dirname(inp)
 name, ext = os.path.splitext(os.path.basename(inp))
 yield file_pattern.replace('{dir}', dir).replace('%', name).replace('{ext}', ext)

 return output_generator

pake.glob() and pake.pattern() are used like this:

import pake

pk = pake.init()

@pk.task(i=pake.glob('src/*.c'), o=pake.pattern('bin/%.o'))
def build_c(ctx):

 # Your going to have an equal number of
 # inputs and outputs in this task, because
 # the output names are being generated from
 # the input names.

 for i, o in ctx.outdated_pairs:
 ctx.call('gcc', '-c', i, '-o', o)

pake.run(pk, tasks=build_c)

Multiple input generators at once

You can place input generators into a list or any other iterable such as a tuple,
pake will combine the values that they generate into one flat list. You can also
use input generator callables along side plain old file or directory references.

Multiple output generators are not allowed however, you may only ever use
one output generator callable at a time, and you cannot use output generators
along side regular file/directory names.

Output generators process all of the tasks input file/directory names, and
are expected to return all of the tasks outputs.

Multiple Input Generator Example:

import pake

pk = pake.init()

This task collects .c files from two directories
('src_one' and 'src_two'), and compiles them all
together with 'main.c' (which exists in the current directory).

This task produces an executable file called 'main'

@pk.task(i=[pake.glob('src_one/*.c'), pake.glob('src_two/*.c'), 'main.c'], o='main')
def build_c(ctx):
 ctx.call('gcc', ctx.inputs, '-o', ctx.outputs)

pake.run(pk, tasks=build_c)

Example with an output generator:

import pake

pk = pake.init()

This task collects .c files from two directories
('src_one' and 'src_two'), and compiles object files
that are created in each source directory along side
the source file.

@pk.task(i=[pake.glob('src_one/*.c'), pake.glob('src_two/*.c')], o=pake.pattern('{dir}/%.o'))
def build_c(ctx):

 # Your going to have an equal number of
 # inputs and outputs in this task, because
 # the output names are being generated from
 # the input names.

 for i, o in ctx.outdated_pairs:
 ctx.call('gcc', '-c', i, '-o', o)

pake.run(pk, tasks=build_c)

Change Detection Against Directories

Change detection in pake works against directories in the same way it works against files.

Files can be compared against directories (and vice versa) when providing inputs and
outputs to a task, directories can also be compared against each other if needed.

Basically, a directory name can be used in place of a file name anywhere in
a tasks input(s) and output(s) parameters.

Example:

import pake
import glob
import pathlib

pk = pake.init()

Whenever the modification time of 'my_directory' or
'my_directory_2' is more recent than the file 'my_big.png',
this task will run.

@pk.task(i=['my_directory', 'my_directory_2'], o='my_big.png')
def concatenate_pngs(ctx):
 png_files = []

 for d in ctx.inputs:
 # Need to collect the files in the directories yourself
 png_files += pathlib.Path(d).glob('*.png')

 # Concatenate with ImageMagick's convert command
 ctx.call('convert', png_files, '-append', ctx.outputs)

pake.run(pk, tasks=concatenate_pngs)

Exiting Pakefiles Gracefully

pake.terminate() can be used to gracefully exit a pakefile from anywhere.

You can also use pake.Pake.terminate() on the pake context returned by pake.init().

pake.Pake.terminate() is just a shortcut for calling pake.terminate() with the first argument filled out.

These methods are for exiting pake with a given return code after it is initialized, they ensure
the proper ‘leaving directory / exit subpake` messages are sent to pake’s output if needed upon exit, and
help keep logged output consistent.

You should use these functions instead of exit when handling error conditions
that occur outside of pake tasks before pake.run() is called.

It is optional to use pake.terminate() inside tasks, exit will always
work inside tasks but pake.terminate() may provide additional functionality
in the future.

Example Use Case:

import os
import pake
from pake import returncodes

pk = pake.init()

Say you need to wimp out of a build for some reason
But not inside of a task. pake.terminate will make sure the
'leaving directory/exiting subpake' message is printed
if it needs to be.

if os.name == 'nt':
 pk.print('You really thought you could '
 'build my software on windows? nope!')

 pake.terminate(pk, returncodes.ERROR)

 # or

 # pk.terminate(returncodes.ERROR)

Define some tasks...

@pk.task
def build(ctx):
 # You can use pake.terminate() inside of a task as well as exit()
 # pake.terminate() may offer more functionality than a raw exit()
 # in the future, however exit() will always work too.

 something_bad_happened = True

 if something_bad_happened:
 pake.terminate(pk, returncodes.ERROR)

 # Or:

 # pk.terminate(returncodes.ERROR)

pake.run(pk, tasks=build)

If you were to use pk.run, a TaskExitException would be thrown
the inner exception (err.exception) would be set to
pake.TerminateException

try:
pk.run(tasks=test)
except pake.TaskExitException as err:
print('\n' + str(err) + '\n')
#
print to pake.conf.stderr by default
file parameter can be used to change that
err.print_traceback()

Calls To exit() inside tasks

You can also exit pake with a specific return code when inside a task by simply calling exit.

exit inside of a task is considered a global exit, even when a task is on another thread due to
pake’s –jobs parameter being greater than 1. The return code passed to exit inside the task
will become the return code for command line call to pake.

exit will always work inside of a task and cause a graceful exit, however pake.terminate()
may offer more functionality than exit sometime in the future.

If you exit with pake.returncodes.SUCCESS, no stack trace for the exit call will be printed.

Pake handles calls to exit in the same manner as it handles exceptions, although this condition is
instead signified by a pake.TaskExitException from pake.Pake.run() and the message
sent to pake’s output is slightly different.

The behavior when running parallel pake is the same as when a normal exception is thrown.

Example:

import pake
from pake import returncodes

pk = pake.init()

@pk.task
def test(ctx):
 ctx.print('hello world')

 # We could also use anything other than 0 to signify an error.
 # returncodes.SUCCESS and returncodes.ERROR will always be 0 and 1.
 exit(returncodes.ERROR)

pake.run(pk, tasks=test)

If you were to use pk.run, a TaskExitException would be thrown

try:
pk.run(tasks=test)
except pake.TaskExitException as err:
print('\n' + str(err) + '\n')
#
print to pake.conf.stderr by default
file parameter can be used to change that
err.print_traceback()

Yields Output:

===== Executing Task: "test"
hello world

Exit exception "SystemExit" with return-code(1) was raised in task "test".

Traceback (most recent call last):
 File "{PAKE_INSTALL_PATH}/pake/pake.py", line 1316, in func_wrapper
 return func(*args, **kwargs)
 File "{FULL_PAKEFILE_DIR_PATH}/pakefile.py", line 12, in test
 exit(returncodes.ERROR)
 File "{PYTHON_INSTALL_PATH}/lib/_sitebuiltins.py", line 26, in __call__
 raise SystemExit(code)
SystemExit: 1

Stack traces from exit/terminate in tasks

Calls to exit(), pake.terminate(), or pake.Pake.terminate() with non-zero return codes
will result in a stack trace being printed with information about the location of the exit or terminate call.

This is not the case if you call exit() or pake’s terminate functions with a return code of zero,
there will be no stack trace or any information printed if the return code indicates success.

Example exit(1) stack trace:

import pake
from pake import returncodes

pk = pake.init()

@pk.task
def build(ctx):
 exit(returncodes.ERROR)

pake.run(pk, tasks=build)

Yields Output:

===== Executing Task: "build"

Exit exception "SystemExit" with return-code(1) was raised in task "build".

Traceback (most recent call last):
 File "{PAKE_INSTALL_PATH}/pake/pake.py", line 1504, in func_wrapper
 return func(*args, **kwargs)
 File "{FULL_PAKEFILE_DIR_PATH}/pakefile.py", line 9, in build
 exit(returncodes.ERROR)
 File "{PYTHON_INSTALL_PATH}/lib/_sitebuiltins.py", line 26, in __call__
 raise SystemExit(code)
SystemExit: 1

Example terminate(1) stack trace:

import pake
from pake import returncodes

pk = pake.init()

@pk.task
def build(ctx):
 pk.terminate(returncodes.ERROR)

pake.run(pk, tasks=build)

Yields Output:

===== Executing Task: "build"

Exit exception "pake.program.TerminateException" with return-code(1) was raised in task "build".

Traceback (most recent call last):
 File "{PAKE_INSTALL_PATH}/pake/pake.py", line 1504, in func_wrapper
 return func(*args, **kwargs)
 File "{FULL_PAKEFILE_DIR_PATH}/pakefile.py", line 9, in build
 pk.terminate(returncodes.ERROR)
 File "{PAKE_INSTALL_PATH}/pake/pake.py", line 1027, in terminate
 pake.terminate(self, return_code=return_code)
 File "{PAKE_INSTALL_PATH}/pake/program.py", line 614, in terminate
 m_exit(return_code)
 File "{PAKE_INSTALL_PATH}/pake/program.py", line 605, in m_exit
 raise TerminateException(code)
pake.program.TerminateException: 1

Adding Tasks Programmatically

Pake tasks may be programmatically added using the pake.Pake.add_task() method of the pake instance.

When adding tasks programmatically, you may specify a callable class instance or a function as your task entry point.

Basic C to Object Compilation Task Example:

import pake

pk = pake.init()

def compile_c(ctx):
 for i, o in ctx.outdated_pairs:
 ctx.call(['gcc', '-c', i, '-o', o])

The task name may differ from the function name.

pk.add_task('compile_c_to_objects', compile_c,
 inputs=pake.glob('src/*.c'),
 outputs=pake.pattern('obj/%.o'))

pake.run(pk, tasks='compile_c_to_objects')

Or:

pake.run(pk, tasks=compile_c)

Multiple Dependencies:

import pake

pk = pake.init()

@pk.task
def task_a():
 pass

@pk.task
def task_b():
 pass

def do_both():
 pass

The dependencies parameter will accept a single task reference
as well as a list of task references

pk.add_task('do_both', do_both, dependencies=[task_a, 'task_b'])

pake.run(pk, tasks=do_both)

Callable Class Example:

import pake

pk = pake.init()

class MessagePrinter:
 """Task documentation goes here."""

 def __init__(self, message):
 self._message = message

 def __call__(self, ctx):
 ctx.print(self._message)

pk.add_task('task_a', MessagePrinter('Hello World!'))

instance_a = MessagePrinter('hello world again')

Can refer to the dependency by name, since we did not save a reference.

pk.add_task('task_b', instance_a, dependencies='task_a')

instance_b = MessagePrinter('Goodbye!')

Can also refer to the dependency by instance.

pk.add_task('task_c', instance_b, dependencies=instance_a)

pake.run(pk, tasks='task_c')

Or:

pake.run(pk, tasks=instance_b)

Exceptions Inside Tasks

Pake handles most exceptions occuring inside a task by wrapping them in a pake.TaskException
and throwing them from pake.Pake.run().

pake.run() handles all of the exceptions from pake.Pake.run() and prints the exception
information to pake.conf.stderr in a way that is useful to the user/developer.

Example:

import pake

pk = pake.init()

@pk.task
def test(ctx):
 ctx.print('hello world')
 raise Exception('Some Exception')

pake.run(pk, tasks=test)

If you were to use pk.run, a TaskException would be thrown

try:
pk.run(tasks=test)
except pake.TaskException as err:
print('\n'+str(err)+'\n')
#
print to pake.conf.stderr by default
file parameter can be used to change that
err.print_traceback()

Yields Output:

===== Executing Task: "test"
hello world

Exception "Exception" was raised within task "test".

Traceback (most recent call last):
 File "{PAKE_INSTALL_PATH}/pake/pake.py", line 1316, in func_wrapper
 return func(*args, **kwargs)
 File "{FULL_PAKEFILE_DIR_PATH}/pakefile.py", line 8, in test
 raise Exception('Some Exception')
Exception: Some Exception

When an exception is thrown inside a task, the fully qualified exception name and the task it
occurred in will be mentioned at the very end of pake’s output. That information is followed
by a stack trace for the raised exception.

When running with multiple jobs, pake will stop as soon as possible. Independent tasks that were
running in the background when the exception occurred will finish, and then the information for the
encountered exception will be printed at the very end of pake’s output.

pake.TaskSubprocessException

Special error reporting is implemented for pake.TaskSubprocessException, which is
raised from pake.TaskContext.call, pake.TaskContext.check_call, and
pake.TaskContext.check_output.

When a process called through one of these process spawning methods returns with a non-zero return code,
a pake.TaskSubprocessException is raised by default. That will always be true unless you have
supplied ignore_errors=True as an argument to these functions.

This exception derives from pake.process.StreamingSubprocessException, an exception
base class which incrementally reads process output that has been buffered to disk when reporting
error information. Buffering the output to disk and reading it back incrementally helps keep huge
amounts of process output from crashing pake.

The reported exception information will contain the full path to your pakefile, the name of the process
spawning function, and the line number where it was called. All of this will be at the very top of the
error message.

All output from the failed command will be mentioned at the bottom in a block surrounded by brackets,
which is labeled with “Command Output: “

Example:

import pake

pk = pake.init()

@pk.task
def test(ctx):
 # pake.TaskSubprocessException is raised because
 # which cannot find the given command and returns non-zero

 # silent is specified, which means the process will not
 # send any output to the task IO queue, but the command
 # will still be printed
 ctx.call('which', "i-dont-exist", silent=True)

pake.run(pk, tasks=test)

Yields Output:

===== Executing Task: "test"
which i-dont-exist

pake.pake.TaskSubprocessException(
 filename="{FULL_PAKEFILE_DIR_PATH}/pakefile.py",
 function_name="call",
 line_number=9
)

Message: A subprocess spawned by a task exited with a non-zero return code.

The following command exited with return code: 1

which i-dont-exist

Command Output: {

which: no i-dont-exist in ({EVERY_DIRECTORY_IN_YOUR_ENV_PATH_VAR})

}

pake.SubpakeException

pake.SubpakeException is derived from pake.process.StreamingSubprocessException
just like pake.TaskSubprocessException, and produces similar error information when raised
inside a task.

Example: subfolder/pakefile.py

import pake

pk = pake.init()

@pk.task
def sub_test(ctx):
 raise Exception('Test Exception')

pake.run(pk, tasks=sub_test)

Example: pakefile.py

import pake

pk = pake.init()

@pk.task
def test(ctx):
 # pake.SubpakeException is raised because
 # 'subfolder/pakefile.py' raises an exception inside a task
 # and returns with a non-zero exit code.

 # Silent prevents the pakefiles output from being printed
 # to the task IO queue, keeping the output short for this example

 ctx.subpake('subfolder/pakefile.py', silent=True)

pake.run(pk, tasks=test)

Yields Output:

===== Executing Task: "test"

pake.subpake.SubpakeException(
 filename="{REST_OF_FULL_PATH}/pakefile.py",
 function_name="subpake",
 line_number=13
)

Message: A pakefile invoked by pake.subpake exited with a non-zero return code.

The following command exited with return code: 13

{PYTHON_INSTALL_DIR}/python3 subfolder/pakefile.py --_subpake_depth 1 --stdin-defines --directory {REST_OF_FULL_PATH}/subfolder

Command Output: {

*** enter subpake[1]:
pake[1]: Entering Directory "{REST_OF_FULL_PATH}/subfolder"
===== Executing Task: "sub_test"

Exception "Exception" was called within task "sub_test".

Traceback (most recent call last):
 File "{PAKE_INSTALL_DIRECTORY}/pake/pake.py", line 1323, in func_wrapper
 return func(*args, **kwargs)
 File "subfolder/pakefile.py", line 7, in sub_test
Exception: Test Exception

pake[1]: Exiting Directory "{REST_OF_FULL_PATH}/subfolder"
*** exit subpake[1]:

}

Concurrency Inside Tasks

Work can be submitted to the threadpool pake is running its tasks on to achieve a
predictable level of concurrency for sub tasks that is limited by the –jobs command line argument,
or the jobs parameter of pake.run() and pake.Pake.run().

This is done using the pake.MultitaskContext returned by pake.TaskContext.multitask().

pake.MultitaskContext implements an Executor with an identical interface to
concurrent.futures.ThreadPoolExecutor from the built-in python module concurrent.futures.

Submitting work to a pake.MultitaskContext causes your work to be added to the
threadpool that pake is running on when the –jobs parameter is greater than 1.

When the –jobs parameter is 1 (the default value), pake.MultitaskContext
degrades to synchronous behavior.

Example:

import pake

functools.partial is used for binding argument values to functions

from functools import partial

pk = pake.init()

@pk.task(i=pake.glob('src/*.c'), o=pake.pattern('obj/%.o'))
def build_c(ctx)

 file_helper = pake.FileHelper(ctx)

 # Make 'obj' directory if it does not exist.
 # This does not complain if it is already there.

 file_helper.makedirs('obj')

 # Start multitasking

 with ctx.multitask() as mt:
 for i, o in ctx.outdated_pairs:

 # Read the section 'Output synchronization with ctx.call & ctx.subpake'
 # near the bottom of this page for an explanation of 'sync_call'
 # below, and how output synchronization is achieved for
 # ctx.call and ctx.subpake

 sync_call = partial(ctx.call,
 collect_output=pk.max_jobs > 1)

 # Submit a work function with arguments to the threadpool
 mt.submit(sync_call, ['gcc', '-c', i, '-o', o])

@pk.task(build_c, i=pake.glob('obj/*.o'), o='main')
def build(ctx):

 # Utilizing the automatic non string iterable
 # flattening here to pass ctx.inputs and ctx.outputs

 ctx.call('gcc', ctx.inputs, '-o', ctx.outputs)

pake.run(pk, tasks=build)

Output synchronization with ctx.print & ctx.io.write

If you are using pake.TaskContext.multitask() to add concurrency to
the inside of a task, you are in charge of synchronizing output to the
task IO queue.

Pake will synchronize writing the whole task IO queue when the task finishes
if –sync-output False is not specified on the command line, but it will not
be able to synchronize the output from sub tasks you submit to its threadpool by
yourself without help.

When performing multiple writes to pake.TaskContext.io() from inside of a task
submitted to pake.MultitaskContext(), you need to acquire a lock on
pake.TaskContext.io_lock if you want to sure all your writes show
up in the order you made them.

If –sync-output False is specified on the command line or pake.Pake.sync_output
is set to False manually in the pakefile, then using pake.TaskContext.io_lock
in a with statement does not actually acquire any lock.

If you know that the function or subprocess you are calling is only ever going to write
once to the task IO queue (such as the functions in pake.FileHelper),
then there is no need to synchronize the output. The single write may come out
of order with respect to other sub tasks, but the message as a whole will be
intact/in-order.

Example:

import pake
import random
import time

pk = pake.init()

def my_sub_task(ctx):

 data = [
 'Hello ',
 'World, ',
 'I ',
 'Come ',
 'On ',
 'One ',
 'Line\n']

 # ctx.io.write and ctx.print
 # need to be guarded for guaranteed
 # write order, or they might get
 # scrambled in with other IO pake is doing

 with ctx.io_lock:
 # Lock, so all these writes come in
 # a defined order when jobs > 1

 for i in data:
 # Add a random short delay in seconds
 # to make things interesting

 time.sleep(random.uniform(0, 0.3))
 ctx.io.write(i)

 # This could get scrambled in the output for
 # the task, because your other sub tasks might
 # be interjecting and printing/writing stuff in
 # between these calls to ctx.print when jobs > 1

 data = ['These', 'Are', 'Somewhere', 'Very', 'Weird']

 for i in data:
 # Add a random short delay in seconds
 # to make things interesting

 time.sleep(random.uniform(0, 0.3))

 ctx.print(i)

@pk.task
def my_task(ctx):
 # Run the sub task 3 times in parallel,
 # passing it the task context

 with ctx.multitask() as mt:
 for i in range(0, 3):
 mt.submit(my_sub_task, ctx)

pake.run(pk, tasks=my_task)

Example Output (Will vary of course):

pake -j 10

===== Executing Task: "my_task"
Hello World, I Come On One Line
Hello World, I Come On One Line
Hello World, I Come On One Line
These
These
Are
Are
These
Somewhere
Very
Are
Somewhere
Somewhere
Weird
Very
Very
Weird
Weird

Output synchronization with ctx.call & ctx.subpake

pake.TaskContext.subpake(), and pake.call() both have an argument
named collect_output which will do all the work required to synchronize output
from sub-pakefiles/processes in a memory efficient manner.

Note:

pake.subpake() also has this argument, but you need to pass a lockable context manager object to
collect_output_lock in order to properly synchronize its output to the stdout parameter.
pake.TaskContext.subpake() does all of this for you and a few extra things to make sure
everything works right, so use it for multitasking inside tasks instead. It passes in the
pake.TaskContext.io_lock object as a lock, just FYI.

When the collect_output is True and the silent parameter of these functions is False,
they will buffer all process output to a temporary file while the process is doing work.

When the process finishes, theses functions will acquire a lock on pake.TaskContext.io_lock
and write all their output to the task’s IO queue incrementally. This way the sub-pakefile/process output
will not get scrambled in with output from other sub tasks that are running concurrently.

Reading process output incrementally from a temporary file after a process
completes will occur much faster than it takes for the actual process to finish.

This means that other processes which may have output can do work and write concurrently,
and pake only needs to lock the task IO queue when it has to relay the output from a
completed process (which is faster than locking while the process is writing).

When pake relays sub-pakefile/process output and collect_output is True,
the output will be read/written in chunks to prevent possible memory issues with
processes that produce a lot of output.

The collect_output parameter can be bound to a certain value with functools.partial(),
which works well with pake.MultitaskContext.map() and the other methods of the
multitasking context.

Example:

import pake

functools.partial is used for binding argument values to functions

from functools import partial

pk = pake.init()

@pk.task(i=pake.glob('src/*.c'), o=pake.pattern('obj/%.o'))
def compile_c(ctx):

 file_helper = pake.FileHelper(ctx)

 # Make 'obj' directory if it does not exist.
 # This does not complain if it is already there.

 file_helper.makedirs('obj')

 # Generate a command for every invocation of GCC that is needed

 compiler_commands = (['gcc', '-c', i, '-o', o] for i, o in ctx.outdated_pairs)

 # ----

 # Only use collect_output when the number of jobs is greater than 1.

 # Task context functions with collect_output parameters such as
 # ctx.call and ctx.subpake will not degrade back to non-locking
 # behavior on their own when the job count is only 1 and collect_output=True.
 # This is so you can use this feature with a thread or a threadpool you have
 # created yourself if you want to, without pake messing it up automagically.

 # You should turn collect_output off when not running pake in parallel,
 # or when you are not using ctx.call or ctx.subpake from another thread
 # that you have manually created. It will still work if you don't, but it
 # will lock IO and pause the main thread until all process output is collected,
 # even when it does not need be doing that.

 sync_call = partial(ctx.call,
 collect_output=pk.max_jobs > 1)

 # ^^^ You can bind any other arguments to ctx.call you might need this way too.

 with ctx.multitask() as mt:

 # Apply sync_call to every command
 # in the compiler_commands list with map,
 # and force execution of the returned generator
 # by passing it to a list constructor

 # This will execute GCC in parallel on the main task
 # threadpool if pake's --jobs argument is > 1

 # sync_call will keep GCC's output from becoming
 # scrambled in with other stuff if it happens to
 # print warning information or something

 list(mt.map(sync_call, compiler_args))

pake.run(pk, tasks=compile_c)

Sub task exceptions

If an exception occurs inside one of the sub tasks submitted to pake.MultitaskContext.submit()
or pake.MultitaskContext.map(), it will be re-raised in the foreground thread of your pake task
at the end of your with statement.

The pake task (your registered task) will then take over handling of the exception if you do not catch it.
It will be wrapped in a pake.TaskException which is raised from pake.Pake.run() and
handled by pake.run().

By default, if more than one task completes with an exception, the one that was submitted first
will be the one to have its exception re-raised.

You can set the aggregate_exceptions parameter of pake.TaskContext.multitask()
to True, and it will return an executor context that will collect any raised exceptions
and add them all to a pake.AggregateException. The aggregate exception will then
be raised at the end of your with statement.

Example:

import pake

pk = pake.init()

class MyException(Exception):
 pass

def my_sub_task():
 raise MyException('Hello World!')

@pk.task
def my_task(ctx):
 with ctx.multitask(aggregate_exceptions=True) as mt:

 # You can also do this, instead of using the parameter
 mt.aggregate_exceptions = True

 for i in range(0, 3):
 mt.submit(my_sub_task)

Force this example to run with 10 jobs
regardless of what the command line says

pake.run(pk, tasks=my_task, jobs=10)

Output:

===== Executing Task: "my_task"

Exception "pake.pake.AggregateException" was raised within task "my_task".

Traceback (most recent call last):
 File "{PAKE_INSTALL_DIR}/pake/pake.py", line 1937, in func_wrapper
 return func(*args, **kwargs)
 File "{PAKEFILE_DIR}/pakefile.py", line 19, in my_task
 mt.submit(my_sub_task)
 File "{PAKE_INSTALL_DIR}/pake/pake.py", line 1228, in __exit__
 self.shutdown()
 File "{PAKE_INSTALL_DIR}/pake/pake.py", line 1225, in shutdown
 raise AggregateException(exceptions)
pake.pake.AggregateException: [MyException('Hello World!',), MyException('Hello World!',), MyException('Hello World!',)]

All Aggregated Exceptions:

Exception Number 1:
===================

Traceback (most recent call last):
 File "{PYTHON_INSTALL_DIR}/lib/concurrent/futures/thread.py", line 55, in run
 result = self.fn(*self.args, **self.kwargs)
 File "{PAKEFILE_DIR}/pakefile.py", line 9, in my_sub_task
 raise MyException('Hello World!')
MyException: Hello World!

Exception Number 2:
===================

Traceback (most recent call last):
 File "{PYTHON_INSTALL_DIR}/lib/concurrent/futures/thread.py", line 55, in run
 result = self.fn(*self.args, **self.kwargs)
 File "{PAKEFILE_DIR}/pakefile.py", line 9, in my_sub_task
 raise MyException('Hello World!')
MyException: Hello World!

Exception Number 3:
===================

Traceback (most recent call last):
 File "{PYTHON_INSTALL_DIR}/lib/concurrent/futures/thread.py", line 55, in run
 result = self.fn(*self.args, **self.kwargs)
 File "{PAKEFILE_DIR}/pakefile.py", line 9, in my_sub_task
 raise MyException('Hello World!')
MyException: Hello World!

Aggregate exceptions will be wrapped in a pake.TaskException and thrown from
pake.Pake.run() just like any other exception. pake.run() intercepts
the task exception and makes sure it gets printed in a way that is readable if it contains
an instance of pake.AggregateException.

If you are not using a with statement, the exception will propagate out of
pake.MultitaskContext.shutdown() when you call it manually, unless you
pass wait=False, in which case no exceptions will be re-raised.

Manipulating Files / Dirs With pake.FileHelper

pake.FileHelper contains several useful filesystem manipulation
methods that are common in software builds. Operations include creating full
directory trees, glob removal of files and directories, file touch etc..

The pake.FileHelper class takes a single optional argument named printer.

The passed object should implement a print(*args) function.

If you pass it a pake.TaskContext instance from your tasks single argument, it will
print information about file system operations to the tasks IO queue as they are being performed.

Each method can turn off this printing by using a silent option argument that is common
to all class methods.

If you construct pake.FileHelper without an argument, all operations will occur
silently.

File / Folder creation methods

@pk.task
def my_build(ctx):

 fh = pake.FileHelper(ctx)

 # Create a directory or an entire directory tree

 fh.makedirs('dist/bin')

 # Touch a file

 fh.touch('somefile.txt')

Output:

===== Executing Task: "my_build"
Created Directory(s): "dist/bin"
Touched File: "somefile.txt"

Copy / Move methods

@pk.task
def my_build(ctx):

fh = pake.FileHelper(ctx)

Recursively copy and entire directory tree.
In this case, 'bin' will be copied into 'dist'
as a subfolder.

fh.copytree('bin', 'dist/bin')

Recursively move an entire directory tree
and its contents. In this case, 'lib' will
be moved into 'dist' as a subfolder.

fh.move('lib', 'dist/lib')

Copy a file to a directory without
renaming it.

fh.copy('LICENCE.txt', 'dist')

Copy with rename

fh.copy('LICENCE.txt', 'dist/licence.txt')

Move a file to a directory without
renaming it.

fh.move('README.txt', 'dist')

Move with rename

fh.move('README.rtf', 'dist/readme.rtf')

Output:

===== Executing Task: "my_build"
Copied Tree: "bin" -> "dist/bin"
Moved Tree: "lib" -> "dist/lib"
Copied File: "LICENCE.txt" -> "dist"
Copied File: "LICENCE.txt" -> "dist/licence.txt"
Moved File: "README.txt" -> "dist"
Moved File: "README.rtf" -> "dist/readme.rtf"

Removal / Clean related methods

@pk.task
def my_clean(ctx):

 fh = pake.FileHelper(ctx)

 # Glob delete all files under the 'obj' directory

 fh.glob_remove('obj/*.o')

 # Delete all sub directories of 'stuff'

 fh.glob_remove_dirs('stuff/*')

 # Remove a directory tree, does nothing if 'build_dir'
 # does not exist. Unless the must_exist argument is
 # set to True.

 fh.rmtree('build_dir')

 # Remove a file, does nothing if 'main.exe' does not
 # exist. Unless the must_exist argument is set to True

 fh.remove('main.exe')

Output:

===== Executing Task: "my_clean"
Glob Removed Files: "obj/*.o"
Glob Removed Directories: "stuff/*"
Removed Directory(s): "build_dir"
Removed File: "main.exe"

Running Commands / Sub Processes

TaskContext.call

The pake.TaskContext object passed into each task contains
methods for calling sub-processes in a way that produces user friendly
error messages and halts the execution of pake if an error is reported
by the given process.

pake.TaskContext.call() can be used to run a program and direct
all of its output (stdout and stderr) to the tasks IO queue.

It will raise a pake.TaskSubprocessException on non-zero return
codes by default unless you specify ignore_errors=True.

If you specify for call to ignore errors, it will always return the
process’s return code regardless of whether it was non-zero or not.

It can be used to test return codes like pake.TaskContext.check_call(),
but it is preferable to use the later method for that purpose since pake.TaskContext.call()
prints to the task IO queue by default. (unless you specify silent=True and print_cmd=False).

pake.TaskContext.call() is designed primarily for handling
large amounts of process output and reporting it back when an error occurs
without crashing pake, which is accomplished by duplicating the process output
to a temporary file on disk and later reading it back incrementally when needed.

Examples:

'call' can have its arguments passed in several different ways

@pk.task(o='somefile.txt')
def my_task(ctx):

 # Command line passed as a list..
 ctx.call(['echo', 'Hello!'])

 # Iterables such as the outputs property of the context
 # will be flattened. String objects are not considered
 # for flattening which allows this sort of syntax

 ctx.call(['touch', ctx.outputs]) # We know there is only one output

 # The above will also work when using varargs

 ctx.call('touch', ctx.outputs)

 # Command line passed as a string

 ctx.call('echo "goodbye!"')

 # Try some command and ignore any errors (non-zero return codes)
 # Otherwise, 'call' raises a 'pake.TaskSubprocessException' on non-zero
 # return codes.

 ctx.call(['do_something_bad'], ignore_errors=True)

A realistic example for compiling objects from C

@pk.task(i=pake.glob('src/*.c'), o=pake.pattern('obj/%.o'))
def compile_c(ctx):
 for i, o in ctx.outdated_pairs:
 ctx.call('gcc', '-c', i, '-o', o)

And with multitasking, the simple way

@pk.task(i=pake.glob('src/*.c'), o=pake.pattern('obj/%.o'))
def compile_c(ctx):
 with ctx.multitask() as mt:
 for i, o in ctx.outdated_pairs:
 mt.submit(ctx.call, ['gcc', '-c', i, '-o', o])

With multitasking, the fancy way

@pk.task(i=pake.glob('src/*.c'), o=pake.pattern('obj/%.o'))
def compile_c(ctx):
 with ctx.multitask() as mt:

 # Force enumeration over the returned generator by constructing a temporary list..
 # the 'ctx.map' function yields 'Future' instances

 list(ctx.map(ctx.call, (['gcc', '-c', i, '-o', o] for i, o in ctx.outdated_pairs)))

TaskContext.check_output

pake.TaskContext.check_output() can be used to read all the output
from a command into a bytes object. The args parameter of check_output
and in general all functions dealing with calling system commands allow for
identical syntax, including nested lists and such.

The reasoning or using this over the built in subprocess.check_output()
is that if an error occurs in the subprocess, pake will be able to print more comprehensible
error information to the task output.

pake.TaskContext.check_output() differs from subprocess.check_output()
in that you cannot specify an stderr parameter, and an ignore_errors
option is added which can prevent the method from raising an exception on non
zero return codes from the process. All of the process’s stderr is directed
to its stdout.

ignore_errors allows you to directly return the output of a command even if it errors
without having to handle an exception to get the output.

pake.TaskContext.check_output() returns a bytes object, which means you need
to call decode on it if you want the output as a string.

Examples:

'which' is a unix command that returns the full path of a command's binary.
The exit code is non-zero if the command given does not exist. So
it will be easy enough to use for this example.

@pk.task
def my_task(ctx):
 # Print the full path of the default C compiler on linux

 ctx.print(ctx.check_output('which', 'cc').decode())

 # Check if some command exists

 if ctx.check_output(['which', 'some_command'],
 ignore_errors=True).decode().strip() != '':

 ctx.print('some_command exists')

 # Using an exception handler

 try:
 path = ctx.check_output('which', 'gcc').decode()
 ctx.print('gcc exists!, path:', path)
 except pake.TaskSubprocessException:
 pass

TaskContext.check_call

pake.TaskContext.check_call() has an identical signature to pake.TaskContext.check_output(),
except it returns the return code of the called process.

The ignore_errors argument allows you to return the value of non-zero return codes without
having to handle an exception such as with subprocess.check_call() from pythons built
in subprocess module.

In addition, if an exception is thrown, pake will be able to print comprehensible error info
about the location of the exception to the task IO queue while avoiding a huge stack trace.
The same is true for the other functions dealing with processes in the task context.

Examples:

using the 'which' command here again for this example...

@pk.task
def my_task(ctx):

 # Check if some command exists, a better way on linux at least

 if ctx.check_call(['which', 'some_command'],
 ignore_errors=True) == 0:

 ctx.print('some_command exists')

 # Using an exception handler

 try:
 ctx.check_call('which', 'gcc')
 ctx.print('gcc exists!')
 except pake.TaskSubprocessException:
 pass

pake.process module methods

The pake.process module provides thin wrappers around the built in python subprocess module methods.

Primarily: subprocess.call(), subprocess.check_call() and subprocess.check_output().

The corresponding wrappers are: pake.process.call(), pake.process.check_call() and pake.process.check_output().

The wrappers exist mostly to allow calling sub-processes with a similar syntax to pake.Pake.call() and friends.

IE. They can be called with variadic arguments, and will also flatten any non string iterables passed to the *args parameter.

Example:

import sys
from pake import process

def run_python_silent(*args):
 # sys.executable and *args go into the variadic argument, the
 # *args iterable is flattened out for you

 # Returns the return code
 return process.call(sys.executable, args,
 stdout=process.DEVNULL,
 stderr=process.DEVNULL)

They also raise exceptions similar to those from the subprocess module, however the exceptions
behave nicer if they occur inside of a task.

See: pake.process.TimeoutExpired and pake.process.CalledProcessException.

Which are analogs for subprocess.TimeoutExpired and subprocess.CalledProcessException.

Running Sub Pakefiles

Pake is able to run itself through the use of pake.TaskContext.subpake()
and pake.subpake().

pake.subpake() is meant to be used outside of tasks, and can even be
called before pake is initialized.

pake.TaskContext.subpake() is preferred for use inside of tasks because
it handles writing to the task’s output queue for you, without having to specify
extra parameters to pake.subpake() to get it working correctly.

A pake.TaskContext instance is passed into the single argument of each task function,
which you can in turn call subpake from.

Defines can be exported to pakefiles ran with the subpake functions using pake.export().

pake.subpake() and pake.TaskContext.subpake() use the –stdin-defines option of
pake to pass exported define values into the new process instance, which means you can overwrite your
exported define values with -D/–define in the subpake command arguments if you need to.

Export / Subpake Example:

import pake

pk = pake.init()

Try to get the CC define from the command line,
default to 'gcc'.

CC = pk.get_define('CC', 'gcc')

Export the CC variable's value to all invocations
of pake.subpake or ctx.subpake as a define that can be
retrieved with pk.get_define()

pake.export('CC', CC)

You can also export lists, dictionaries sets and tuples,
as long as they only contain literal values.
Literal values being: strings, integers, floats; and
other lists, dicts, sets and tuples. Collections must only
contain literals, or objects that repr() into a parsable literal.

pake.export('CC_FLAGS', ['-Wextra', '-Wall'])

Nesting works with composite literals,
as long as everything is a pure literal or something
that str()'s into a literal.

pake.export('STUFF',
 ['you',
 ['might',
 ('be',
 ['a',
 {'bad' :
 ['person', ['if', {'you', 'do'}, ('this',)]]
 }])]])

This export will be overrode in the next call
pake.export('OVERRIDE_ME', False)

Execute outside of a task, by default the stdout/stderr
of the subscript goes to this scripts stdout. The file
object to which stdout gets written to can be specified
with pake.subpake(..., stdout=(file))

This command also demonstrates that you can override
your exports using the -D/--define option

pake.subpake('sometasks/pakefile.py', 'dotasks', '-D', 'OVERRIDE_ME=True')

This task does not depend on anything or have any inputs/outputs
it will basically only run if you explicitly specify it as a default
task in pake.run, or specify it on the command line

@pk.task
def my_phony_task(ctx):
 # Arguments are passed in a variadic parameter...

 # Specify that the "foo" task is to be ran.
 # The scripts output is written to this tasks output queue

 ctx.subpake('library/pakefile.py', 'foo')

Run this pake script, with a default task of 'my_phony_task'

pake.run(pk, tasks=my_phony_task)

Output from the example above:

*** enter subpake[1]:
pake[1]: Entering Directory "(REST OF PATH...)/paketest/sometasks"
===== Executing Task: "dotasks"
Do Tasks
pake[1]: Exiting Directory "(REST OF PATH...)/paketest/sometasks"
*** exit subpake[1]:
===== Executing Task: "my_phony_task"
*** enter subpake[1]:
pake[1]: Entering Directory "(REST OF PATH...)/paketest/library"
===== Executing Task: "foo"
Foo!
pake[1]: Exiting Directory "(REST OF PATH...)/paketest/library"
*** exit subpake[1]:

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pake	

 	
 	
 pake.conf	

 	
 	
 pake.graph	

 	
 	
 pake.process	

 	
 	
 pake.returncodes	

 	
 	
 pake.util	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_edge() (pake.graph.Graph method)

 	(pake.TaskGraph method)

 	add_task() (pake.Pake method)

 	
 	AGGREGATE_EXCEPTION (in module pake.returncodes)

 	aggregate_exceptions (pake.MultitaskContext attribute)

 	AggregateException

B

 	
 	BAD_ARGUMENTS (in module pake.returncodes)

 	
 	BAD_DEFINE_VALUE (in module pake.returncodes)

C

 	
 	call() (in module pake.process)

 	(pake.TaskContext method)

 	CalledProcessException

 	CallerDetail (class in pake.util)

 	check_call() (in module pake.process)

 	(pake.TaskContext static method)

 	check_output() (in module pake.process)

 	(pake.TaskContext static method)

 	
 	cmd (pake.process.CalledProcessException attribute)

 	(pake.SubpakeException attribute)

 	(pake.TaskSubprocessException attribute)

 	(pake.process.StreamingSubprocessException attribute)

 	(pake.process.TimeoutExpired attribute)

 	code (pake.TerminateException attribute)

 	copy() (pake.FileHelper method)

 	copyfileobj_tee() (in module pake.util)

 	copytree() (pake.FileHelper method)

D

 	
 	de_init() (in module pake)

 	dependencies (pake.TaskContext attribute)

 	
 	dependency_outputs (pake.TaskContext attribute)

 	DEVNULL (in module pake.process)

 	dry_run() (pake.Pake method)

E

 	
 	edges (pake.graph.Graph attribute)

 	(pake.TaskGraph attribute)

 	ERROR (in module pake.returncodes)

 	exception (pake.TaskException attribute)

 	(pake.TaskExitException attribute)

 	
 	exception_name (pake.TaskException attribute)

 	export() (in module pake)

 	EXPORTS (in module pake)

F

 	
 	FileHelper (class in pake)

 	filename (pake.process.CalledProcessException attribute)

 	(pake.SubpakeException attribute)

 	(pake.TaskSubprocessException attribute)

 	(pake.process.StreamingSubprocessException attribute)

 	(pake.process.TimeoutExpired attribute)

 	(pake.util.CallerDetail attribute)

 	flatten_non_str() (in module pake.util)

 	
 	func (pake.TaskContext attribute)

 	(pake.TaskGraph attribute)

 	function_name (pake.process.CalledProcessException attribute)

 	(pake.SubpakeException attribute)

 	(pake.TaskSubprocessException attribute)

 	(pake.process.StreamingSubprocessException attribute)

 	(pake.process.TimeoutExpired attribute)

 	(pake.util.CallerDetail attribute)

G

 	
 	get_define() (pake.Pake method)

 	get_init_dir() (in module pake)

 	get_init_file() (in module pake)

 	get_max_jobs() (in module pake)

 	get_pakefile_caller_detail() (in module pake.util)

 	get_subpake_depth() (in module pake)

 	
 	get_task_context() (pake.Pake method)

 	get_task_name() (pake.Pake method)

 	glob() (in module pake)

 	glob_remove() (pake.FileHelper method)

 	glob_remove_dirs() (pake.FileHelper method)

 	Graph (class in pake.graph)

H

 	
 	handle_shell_args() (in module pake.util)

 	
 	has_define() (pake.Pake method)

I

 	
 	init() (in module pake)

 	InputNotFoundException

 	inputs (pake.TaskContext attribute)

 	io (pake.TaskContext attribute)

 	
 	io_lock (pake.TaskContext attribute)

 	is_init() (in module pake)

 	is_iterable() (in module pake.util)

 	is_iterable_not_str() (in module pake.util)

 	is_running (pake.Pake attribute)

L

 	
 	line_number (pake.process.CalledProcessException attribute)

 	(pake.SubpakeException attribute)

 	(pake.TaskSubprocessException attribute)

 	(pake.process.StreamingSubprocessException attribute)

 	(pake.process.TimeoutExpired attribute)

 	(pake.util.CallerDetail attribute)

M

 	
 	makedirs() (pake.FileHelper method)

 	map() (pake.MultitaskContext method)

 	max_jobs (pake.Pake attribute)

 	merge_defines_dict() (pake.Pake method)

 	message (pake.process.StreamingSubprocessException attribute)

 	(pake.SubpakeException attribute)

 	(pake.TaskSubprocessException attribute)

 	
 	MissingOutputsException

 	move() (pake.FileHelper method)

 	multitask() (pake.TaskContext method)

 	MultitaskContext (class in pake)

N

 	
 	name (pake.TaskContext attribute)

 	(pake.TaskGraph attribute)

 	
 	NO_TASKS_DEFINED (in module pake.returncodes)

 	NO_TASKS_SPECIFIED (in module pake.returncodes)

 	node (pake.TaskContext attribute)

O

 	
 	oudated_outputs (pake.TaskContext attribute)

 	outdated_inputs (pake.TaskContext attribute)

 	outdated_pairs (pake.TaskContext attribute)

 	output (pake.process.CalledProcessException attribute)

 	(pake.SubpakeException attribute)

 	(pake.TaskSubprocessException attribute)

 	(pake.process.StreamingSubprocessException attribute)

 	(pake.process.TimeoutExpired attribute)

 	
 	output_stream (pake.process.StreamingSubprocessException attribute)

 	(pake.SubpakeException attribute)

 	(pake.TaskSubprocessException attribute)

 	outputs (pake.TaskContext attribute)

P

 	
 	Pake (class in pake)

 	pake (module)

 	(pake.TaskContext attribute)

 	pake.conf (module)

 	pake.graph (module)

 	pake.process (module)

 	pake.returncodes (module)

 	pake.util (module)

 	PAKEFILE_NOT_FOUND (in module pake.returncodes)

 	
 	PakeUninitializedException

 	parse_define_value() (in module pake.util)

 	pattern() (in module pake)

 	PIPE (in module pake.process)

 	print() (pake.Pake method)

 	(pake.TaskContext method)

 	print_traceback() (pake.TaskException method)

 	(pake.TaskExitException method)

 	printer (pake.FileHelper attribute)

 	ProcessException

Q

 	
 	qualified_name() (in module pake.util)

R

 	
 	RedefinedTaskException

 	remove() (pake.FileHelper method)

 	remove_edge() (pake.graph.Graph method)

 	(pake.TaskGraph method)

 	reset() (in module pake.conf)

 	return_code (pake.TaskExitException attribute)

 	
 	returncode (pake.process.StreamingSubprocessException attribute)

 	(pake.SubpakeException attribute)

 	(pake.TaskSubprocessException attribute)

 	rmtree() (pake.FileHelper method)

 	run() (in module pake)

 	(pake.Pake method)

 	run_count (pake.Pake attribute)

S

 	
 	set_define() (pake.Pake method)

 	set_defines_dict() (pake.Pake method)

 	show_task_headers (pake.Pake attribute)

 	shutdown() (pake.MultitaskContext method)

 	stderr (pake.conf.pake.conf attribute)

 	(pake.process.CalledProcessException attribute)

 	(pake.process.TimeoutExpired attribute)

 	STDIN_DEFINES_SYNTAX_ERROR (in module pake.returncodes)

 	STDOUT (in module pake.process)

 	stdout (pake.conf.pake.conf attribute)

 	(pake.Pake attribute)

 	(pake.process.CalledProcessException attribute), [1]

 	(pake.process.TimeoutExpired attribute)

 	
 	str_is_float() (in module pake.util)

 	str_is_int() (in module pake.util)

 	StreamingSubprocessException

 	submit() (pake.MultitaskContext method)

 	subpake() (in module pake)

 	(pake.TaskContext method)

 	SUBPAKE_EXCEPTION (in module pake.returncodes)

 	SubpakeException

 	SUCCESS (in module pake.returncodes)

 	sync_output (pake.Pake attribute)

T

 	
 	task() (pake.Pake method)

 	task_contexts (pake.Pake attribute)

 	task_count (pake.Pake attribute)

 	TASK_EXCEPTION (in module pake.returncodes)

 	TASK_INPUT_NOT_FOUND (in module pake.returncodes)

 	task_name (pake.RedefinedTaskException attribute)

 	(pake.TaskException attribute)

 	(pake.TaskExitException attribute)

 	(pake.UndefinedTaskException attribute)

 	TASK_OUTPUT_MISSING (in module pake.returncodes)

 	TASK_SUBPROCESS_EXCEPTION (in module pake.returncodes)

 	TaskContext (class in pake)

 	TaskException

 	
 	TaskExitException

 	TaskGraph (class in pake)

 	TaskSubprocessException

 	terminate() (in module pake)

 	(pake.Pake method)

 	TerminateException

 	threadpool (pake.Pake attribute)

 	timeout (pake.process.CalledProcessException attribute)

 	(pake.process.TimeoutExpired attribute)

 	TimeoutExpired

 	topological_sort() (pake.graph.Graph method)

 	(pake.TaskGraph method)

 	touch() (in module pake.util)

 	(pake.FileHelper method)

U

 	
 	UNDEFINED_TASK (in module pake.returncodes)

 	
 	UndefinedTaskException

W

 	
 	write_info() (pake.AggregateException method)

 	(pake.SubpakeException method)

 	(pake.TaskSubprocessException method)

 	(pake.process.StreamingSubprocessException method)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to pake’s documentation!

 		
 pake package

 		
 Module Contents

 		
 Submodules

 		
 Module: pake.graph

 		
 Module: pake.process

 		
 Module: pake.util

 		
 Module: pake.conf

 		
 Module: pake.returncodes

 		
 Running Pake

 		
 Manually specifying pakefile(s)

 		
 Executing in another directory

 		
 Running multiple tasks

 		
 Specifying define values

 		
 Reading defines from STDIN

 		
 Environmental variables

 		
 Command line options

 		
 Return codes

 		
 Writing Basic Tasks

 		
 Input/Output Name Generators & Globbing

 		
 Multiple input generators at once

 		
 Change Detection Against Directories

 		
 Exiting Pakefiles Gracefully

 		
 Calls To exit() inside tasks

 		
 Stack traces from exit/terminate in tasks

 		
 Adding Tasks Programmatically

 		
 Exceptions Inside Tasks

 		
 pake.TaskSubprocessException

 		
 pake.SubpakeException

 		
 Concurrency Inside Tasks

 		
 Output synchronization with ctx.print & ctx.io.write

 		
 Output synchronization with ctx.call & ctx.subpake

 		
 Sub task exceptions

 		
 Manipulating Files / Dirs With pake.FileHelper

 		
 File / Folder creation methods

 		
 Copy / Move methods

 		
 Removal / Clean related methods

 		
 Running Commands / Sub Processes

 		
 TaskContext.call

 		
 TaskContext.check_output

 		
 TaskContext.check_call

 		
 pake.process module methods

 		
 Running Sub Pakefiles

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

