

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pail 0.3.dev0 documentation

pail – Python Adaptive Images Library

pail is a WSGI [http://wsgi.readthedocs.io/en/latest/] middleware providing Adaptive Images [http://adaptive-images.com]. Delivering
small images to small devices.

[image: build-status] [https://travis-ci.org/ulif/pail]

It detects your visitor’s screen size and automatically creates, and
delivers device appropriate re-scaled versions of your web page’s
embeded HTML images. No (major) mark-up changes needed. It is intended
for use with Responsive Designs [http://www.abookapart.com/products/responsive-web-design] and to be combined with Fluid
Image [http://unstoppablerobotninja.com/entry/fluid-images/] techniques.

This package is based on the ideas of Matt Wilcox and (more loosely)
on his PHP script [http://github.com/mattwilcox/Adaptive-Images] for the same purpose. Matt is in no way to blame for
any shortcomings of this Python port.

pail provides special support for use with Paste [http://pythonpaste.org/].

Please note, that this package is still in a very early state and
changes, also to the API, are likely to happen in near future.

Comments and patches are welcome. Please send these to uli at gnufix
dot de.

Installation

The package can be installed by:

$ pip install pail

Afterwards you should be able to use pail in any WSGI [http://wsgi.readthedocs.io/en/latest/]
environment. See the documentation [http://pail.readthedocs.io] for details.

Links

	Full documentation [http://pail.readthedocs.io] (including deployment examples)

	Fork me on GitHub [http://github.com/ulif/pail]

Documentation (detailed)

	How it works

	Deployment – How to Use pail
	With Paste

	Developers’ Instructions
	Testing

	Test-Coverage

	Spinx-Docs

	Running the WSGI Middleware Locally

	API
	WSGI Components

	Helper Functions

Credits

Adapting Images base idea: Matt Wilcox

Created by Uli Fouquet

Indices and tables

	Index

	Module Index

	Search Page

License

Copyright 2013 Uli Fouquet

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this program. If not, see
<http://www.gnu.org/licenses/>.

Changes

0.3.dev0 (unreleased)

	Drop support for Python 3.2.

	Officially support Python 3.4.

	Support retina displays.

0.2 (2013-05-17)

	Add very plain mobile detection. Now, if no device width is given
(via cookie) detected mobile devices get images with the smallest
predefined resolution while non-mobile devices get the images with
the largest predefined resolution.

	Removed zc.buildout stuff (we do not need it).

0.1 (2013-05-07)

	First implementation based on Matt Wilcox’ PHP script.

 Copyright 2013, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pail 0.3.dev0 documentation

How it works

pail does a number of things depending on the scenario, the
component has to handle but here’s a basic overview of what happens
when you load a page with pail enabled on the server:

	The HTML starts to load in the browser and a snippet of JS in the
<head> writes a cookie, storing the visitor’s screen size in
pixels.

	The browser then encounters an tag and sends a request to
the server for that image. It also sends the cookie, because that’s
how browsers work.

	The web server sends the incoming request to the local WSGI app with
pail acting as a filter somewhere in the pipeline of WSGI apps.

	pail feeds any wrapped WSGI [http://wsgi.readthedocs.org/en/latest/] application (the real content
provider) and receives some HTTP response from that application
which also includes the image requested by the visitor.

	pail looks for a cookie and finds, that the user has a maximum
screen size of 480px.

	It compares the cookie value with all resolutions that were
configured, and decides which matches best. In this case, an image
maxing out at 480px wide.

	It checks the image width. If that’s smaller than the user’s screen
width it sends the image unchanged.

	If it is larger, pail creates a down-scaled copy and sends it to
the user.

pail also does a few other things when needs arise, for example:

	Detects Retina displays. You can choose to serve high DPI images to
those displays if you want, by using an alternate line of
JavaScript.

	It handles cases where there isn’t a cookie set; mobile devices will
be supplied the smallest image, and desktop devices will get the
largest.

There are also some things, pail does not support currently (and
which the original PHP script does):

	There is no caching yet.

	Cache headers are not set correctly yet.

 Copyright 2013, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pail 0.3.dev0 documentation

Deployment – How to Use pail

pail provides a WSGI [http://wsgi.readthedocs.org/en/latest/] middleware component compliant with
Paste [http://pythonpaste.org/]-based request and response objects.

from pail.wsgi import ImageAdaptingMiddleware

that does all the work. It requires a list of supported resolutions
(string with a comma-separated list of integers like "480, 922,
1322"). Also a factory for this middleware is available:

from pail.wsgi import filter_app

that returns instances of the middleware. See the API for
details.

With Paste [http://pythonpaste.org/]

pail provides a Paste [http://pythonpaste.org/]-compatible WSGI [http://wsgi.readthedocs.org/en/latest/] filter app named
main (this means that Paste [http://pythonpaste.org/], once pail is installed, can find
the middleware as egg:pail automatically). It is meant to be used
as a WSGI [http://wsgi.readthedocs.org/en/latest/] application wrapper (a ‘filter app’ in Paste [http://pythonpaste.org/] terms),
so that incoming requests are parsed, then passed to the wrapped
application and the result is scanned for image data before it is
passed on to the client.

A simple Paste [http://pythonpaste.org/] config that makes use of pail might look like
this:

[server:main]
use = egg:Paste#http
host = 0.0.0.0
port = 8000

[filter-app:main]
use = egg:pail
resolutions = 1024, 480
next = static

[app:static]
use = egg:Paste#static
document_root = %(here)s/static-dir/

Here the first section [server:main] defines a server listening on
port 8000.

The [app:static] section tells where the real content comes from:
it’s simple static content read from local dir static-dir. We use
the Paste [http://pythonpaste.org/] app static for that purpose.

The relevant part, however, is the second section
[filter-app:main], where we tell Paste [http://pythonpaste.org/] to filter the static
content through the pail filter app: use = egg:pail.

Then we tell the pail filter to support the two resolutions of
1024 and 480: resolutions = 1024, 480.

Finally we state to go on with the static app static: next =
static. With Paste [http://pythonpaste.org/] each filter app needs some other app (or filter
app) to filter.

Of course, this is only a very plain sample for a WSGI [http://wsgi.readthedocs.org/en/latest/]/Paste [http://pythonpaste.org/]
setup. You could also create much more complex pipelines with several
other filters and adapting images from Plone, Diazo or other content
providers.

Also the content produced by pail could be mangled by further
filters in a WSGI [http://wsgi.readthedocs.org/en/latest/] pipeline; that’s up to you. See the respective
paste.deploy documentation [http://pythonpaste.org/deploy/] for details about Paste [http://pythonpaste.org/] configuration
files.

Example

Create a virtual environment, activate it, and install pail:

$ virtualenv py27 # also Python 2.6, 3.2, 3.3 should work
$ source py27/bin/activate
(py27)$ pip install pail

Create a Paste [http://pythonpaste.org/] config in pailstatic.ini:

pailstatic.ini
#
[server:main]
run an HTTP server on port 8000
use = egg:Paste#http
host = 0.0.0.0
port = 8000

[filter-app:main]
filter all requests through pail
use = egg:pail
resolutions = 1024, 480
next = static

[app:static]
serve static content...
use = egg:Paste#static
...from this local directory
document_root = %(here)s/static/

Now create the static content:

(py27)$ mkdir static/
(py27)$ cd static/

Create an HTML file named index.html like this:

<html>
 <head>
 <title>My test page</title>
 <script>
 document.cookie='resolution='+Math.max(
 screen.width,screen.height)+'; path=/';
 </script>
 </head>
 <body>
 <div>Some Text</div>

 </bod>
</html>

and copy some image file, preferably a wide one (1024+ pixels width),
into the static/ dir. Rename the image file to myimage.jpg.

Now install the missing paster packages and start the server:

(py27)$ pip install PasteScript
(py27)$ paster serve pailstatic.ini

Now, browsing http://localhost:8000/ you should see the generated page
with the image included. Nothing special. Nothing? If you are using a
desktop and the original image (put into the static dir) was wider
than 1024 pixels, while the desktop has a maximum resolution of
1024px, it should automatically have been downscaled to 1024 px
width. The same page watched from a mobile device with <= 480 px
screen width should automatically get an image with width 480 px.

You can force that switch on a single machine by replacing the
Math.max() expression in the JavaScript part to some fixed value
like 480, 960, or whatever you want.

 Copyright 2013, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pail 0.3.dev0 documentation

Developers’ Instructions

These are instructions for developers that want to develop pail
itself - not for users or webmasters.

Before starting any further work it is highly recommended to create
and activate a virtualenv:

$ virtualenv py27
$ source py27/bin/activate
(py27)$

Here we used a Python 2.7 install but pail is also tested with
Python 2.6, 3.2, and 3.3.

Now get the source via GitHub [http://github.com/ulif/pail]

$ git clone https://github.com/ulif/pail

and change into the created pail/ directory.

The development setup is done with:

(py27)$ python setup.py dev

This step mainly installs the required external packages (mainly
Pillow and WebOb) and needed testing components (py.test and
pytest-cov) locally in your virtualenv.

Testing

pail testing uses py.test. The recommended way to run tests is
therefore:

(py27)$ py.test

py.test should be installed already if you completed the steps
above.

You could also run $ python setup.py tests, but this approach is
less flexible. For instance you currently cannot pass arguments to the
test-runner.

For testing with several Python versions in one row pail also
provides a tox.ini. So, if you have tox [https://pypi.python.org/pypi/tox] installed, you can run
tests for different Python versions like this:

(py27)$ pip install tox # required only once
(py27)$ tox

Modify tox.ini to your needs.

Test-Coverage

A coverage report can also be created with:

(py27)$ py.test --cov=pail --cov-report=html

Results can be found in htmlcov/ afterwards. Before submitting
patches please make sure that test coverage is at 100%.

Spinx-Docs

The pail docs are created using Sphinx [http://sphinx-doc.org/]. The required packages can
be installed locally doing:

(py27)$ python setup.py docs

This will not generate the docs but install the packages needed to
create the docs, most notably Sphinx [http://sphinx-doc.org/].

The actual docs can then be created with:

(py27)$ sphinx-build docs/ docs/_build/html

Sources for the docs can be found (you guessed it) in the docs/
directory.

Running the WSGI Middleware Locally

If you want to see the whole machinery in real action, you need some
local (WSGI) server. Using Paste [http://pythonpaste.org/] this is not difficult to set up.

See Deployment – How to Use pail for details.

 Copyright 2013, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pail 0.3.dev0 documentation

API

WSGI Components

Middleware and other components that can be used with other WSGI
components.

	
pail.wsgi.DEFAULT_RESOLUTIONS = '1382, 992, 768, 480'

	Default Resolution set used, when no other was given in config.

	
class pail.wsgi.ImageAdaptingMiddleware(app, global_conf, resolutions='1382, 992, 768, 480')

	Bases: object [http://docs.python.org/library/functions.html#object]

A WSGI middleware to shrink images on-the-fly.

It works as a filter-wrapper that examines images delivered by
other WSGI components and might reduce the image sizes on-the-fly.

	resolutions

	a string containing a comma separated list of integers. These
number give the supported resolutions. The list does not have
to be sorted.

	
acceptable_types = ['image/jpeg', 'image/png', 'image/gif']

	The content types considered as handable. Only HTTP responses
providing one of these types are handled by the middleware.

	
create_resized_image(response, resolution)

	Create a resized version of current content image.

	
get_client_resolution(request)

	Get the client screen resolution from request.

Returns a tuple (CLIENT_SCREEN_WIDTH, RETINA_VALUE).

Here CLIENT_SCREEN_WITH gives the assumed screen width of the
client device (an integer) or None.

RETINA_VALUE represents the factor of retina displays and
is always an integer. If one CSS pixel stands for three
physical pixels, this value would be 3. If no such value
can be extracted from request, the default value 1 is
returned.

The method expects in request a cookie named resolution
containing either a single integer or a float.

If the value is an integer, we assume a retina value of
1. Otherwise we expect the client screen width before the
dot and the retina factor after the dot.

So a client providing a device width of 640 (CSS) pixels but
with a retina display, that supports 3 physical pixels per CSS
pixel, should pass in a cookie named resolution with value
of 640.3.

	
get_resolution(request)

	Determine a desired resolution from client screen
resolution and available resolutions.

	
is_mobile(request)

	Is the device that sent request a mobile?

	
should_adapt(response)

	Should we adapt the response from the wrapped app?

	
should_ignore(request, resolution)

	Should the given request be ignored?

	
pail.wsgi.filter_app(app, global_conf, **kw)

	A factory that returns ImageAdaptingMiddleware instances.

	
pail.wsgi.reg_b = <_sre.SRE_Pattern object at 0x14e3540>

	Regular expressions from http://detectmobilebrowsers.com/ (public domain)

Helper Functions

Minor helper functions.

	
pail.helpers.get_file_length(fd)

	Get length of file denoted by a file descriptor.

As we cannot get a stat of files of which we only have a file
descriptor (and no path or similar), we have to do some tricks to
get the file-length anyway.

fd should be the descriptor of a file already open for reading.

Returns the length of file as an integer.

	
pail.helpers.get_resolution(client_width, pixel_density, resolution_list, is_mobile=True)

	Get the desired resolution based on the input parameters.

	client_width

	The screen width of some client device.

	pixel_density

	By default 1. The amount of physical pixels representing a single
CSS pixel. Normally 1 but on retina displays it can be more.

	resolution_list

	A list of supported screen widths (integers) from the web
applications side.

	is_mobile

	A boolean. Indicates, whether the client device seems to be a
mobile device. If so and no client_width is given, then the
lowest possible resolution (based on resolution_list) is
returned.

	
pail.helpers.resize(image, resolution=None, client_resolution=None, enlarge=False)

	Resize image to have width resolution.

image can be a path or some open file descriptor.

resolution gives the desired maximum width in pixels.

Returns None or a tuple

(<FORMAT>, <RESULT_FILE_FD>)

with <FORMAT> being an image type as determined by PIL and
<RESULT_FILE_FD> being an opened temporary file.

If the image is already narrower than resolution, None
is returned.

The same applies if the image cannot be read or the resizing
operation fails.

	
pail.helpers.to_int_list(string)

	Try to turn a string into a list of integers.

Turns strings like ‘1, 2, 3’ into regular lists like [1, 2,
3]. The number have to be comma-separated. Also lists with only
one entry are handled correctly.

 Copyright 2013, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pail 0.3.dev0 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pail	

 	
 	
 pail.helpers	

 	
 	
 pail.wsgi	

 Copyright 2013, Uli Fouquet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pail 0.3.dev0 documentation

Index

 A
 | C
 | D
 | F
 | G
 | I
 | P
 | R
 | S
 | T

A

 	

 	acceptable_types (pail.wsgi.ImageAdaptingMiddleware attribute)

C

 	

 	create_resized_image() (pail.wsgi.ImageAdaptingMiddleware method)

D

 	

 	DEFAULT_RESOLUTIONS (in module pail.wsgi)

F

 	

 	filter_app() (in module pail.wsgi)

G

 	

 	get_client_resolution() (pail.wsgi.ImageAdaptingMiddleware method)

 	get_file_length() (in module pail.helpers)

 	

 	get_resolution() (in module pail.helpers)

 	

 	(pail.wsgi.ImageAdaptingMiddleware method)

I

 	

 	ImageAdaptingMiddleware (class in pail.wsgi)

 	

 	is_mobile() (pail.wsgi.ImageAdaptingMiddleware method)

P

 	

 	pail.helpers (module)

 	

 	pail.wsgi (module)

R

 	

 	reg_b (in module pail.wsgi)

 	

 	resize() (in module pail.helpers)

S

 	

 	should_adapt() (pail.wsgi.ImageAdaptingMiddleware method)

 	

 	should_ignore() (pail.wsgi.ImageAdaptingMiddleware method)

T

 	

 	to_int_list() (in module pail.helpers)

 Copyright 2013, Uli Fouquet.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		
 modules |

 		pail 0.3.dev0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Uli Fouquet.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

