
Paganini
Release 1.1.1

Dec 05, 2019





Contents:

1 Installation 3
1.1 Installation from sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Tutorial 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Target expectation tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Paganini’s API 9
3.1 Module contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Citing Paganini 13

5 References 15

6 About 17
6.1 Maciej Bendkowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Sergey Dovgal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Indices and tables 19

Python Module Index 21

Index 23

i



ii



Paganini, Release 1.1.1

Paganini is a lightweight python library for tuning multiparametric combinatorial specifications.

Given a combinatorial specification, expressed using a domain-specific language closely resembling Flajolet
and Sedgewick’s symbolic method, Paganini gives its users some additional control over the distribution of
structures constructed using the designed samplers.

Contents: 1



Paganini, Release 1.1.1

2 Contents:



CHAPTER 1

Installation

Paganini is available as a Python package for both Python2 and Python3.

Warning: We strongly recommend using Python3, and we do not guarantee the required decimal
precision for Python2. Moreover, the support for Python2 drops in 2020, and as a consequence, some of
the packages that we use are not anymore maintained, and the usage is at your own risk. In particular,
two of our tests fail on Python2 for the reasons of numerical precision.

Note: We assume that the user is familiar with Python and its package manager pip. If you are new to
Python, please visit the official installation webpage https://www.python.org/downloads/. For new versions
of Python, pip is already pre-installed. If you don’t have it, check https://pip.pypa.io/en/stable/installing/

The latest release of Paganini can be installed using pip:

>>> pip install paganini

Tip: If you want to update to the recent version of paganini, use

pip3 install –upgrade paganini

You may also want to upgrade pip so that the installation works properly

pip3 install –upgrade pip

1.1 Installation from sources

In order to install from sources, you need git, or you can download and install the code manually from github.

3

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/


Paganini, Release 1.1.1

git clone git://github.com/maciej-bendkowski/paganini.git
cd paganini
python3 setup.py install

1.2 Testing

In order to verify that paganini works, run the following in the command line

python3 -m paganini.tests

You can get more examles in the tests folder

>>> import paganini
>>> help(paganini.tests)

4 Chapter 1. Installation



CHAPTER 2

Tutorial

Tip: Interactive environments like jupyter notebook are extremely helpful in code testing and experi-
menting. Check them out!

Note: Throughout the tutorial, it is assumed that at the beginning of the session, all the contents of the
package Paganini have been imported:

>>> from paganini import *

Alternatively, in order to avoid polluting the global namespace, a synonym import can be used. In this case,
all the functions should be referenced as sub-items of this namespace

>>> import paganini as pg
>>> spec = pg.Specification()

2.1 Introduction

Consider the following example. Suppose that we are interested in designing an sampler for plane trees of
unbounded degree (i.e. with an arbitrary number of children), specified as

T = Z SEQ(T)

where SEQ(T) stands for a (possibly empty) sequence of trees and Z marks the size of a node. In Paganini,
we write the following snippet defining the same combinatorial class:

>>> spec = Specification()
>>> z, T = Variable(), Variable()
>>> spec.add(T, z * Seq(T))

5

https://jupyter.org


Paganini, Release 1.1.1

Now, if we we want to construct a corresponding sampler, say analytic (or Boltzmann) sampler, we have to
find a specific value of Z and use it to compute branching probabilities governing the random choices of our
sampler (essentially the number of children for each of the constructed nodes). What value of Z should be
choose if we are interested in large, uniform, and unbounded in size trees? With Paganini, this task amounts
to invoking

>>> spec.run_singular_tuner(z)

… and that’s it! Paganini determines the corresponding value of z for us. Once tuned, variables are decorated
with appropriate numerical values:

>>> z.value
0.25
>>> T.value
0.5

Paganini allows its users to focus on the design of specifications, taking care of the rest.

2.2 Target expectation tuning

With the help of Paganini, users can demand the computation of tuning variables with specific, finite target
expectations. Suppose that we are interested in designing an analytic sampler for Motzkin trees (i.e. plane
unary-binary trees) however we would also like to demand that the outcome trees consists of around 1000
nodes, among which around 200 are unary. To achieve this goal, we construct the following specification:

>>> from paganini import *
>>> spec = Specification()
>>> z, u, M = Variable(1000), Variable(200), Variable()
>>> spec.add(M, z + u * z * M + z * M ** 2)
>>> spec.run_tuner(M)

Here z and u are two marking variables standing for the tree size and the number of unary nodes, respectively.
Once we run the tuner, all three variables are decorated with respective numerical values, which the user can
then use to compute respective branching probabilities. A sampler designed with such values is guaranteed
to output Motzkin trees for which the expected size and mean number of unary nodes obey the design
specification.

2.3 Examples

Paganini is under constant development, supporting a growing class of so-called admissible constructors.
Below you can find a handful of examples supported by Paganini. For more specifications, please visit our
tests folder.

Polya trees
The specification is T = Z * MSET(T).

>>> spec = Specification()
>>> z, T = Variable(), Variable()
>>> spec.add(T, z * MSet(T))
>>> spec.run_singular_tuner(z)
>>> z.value

(continues on next page)

6 Chapter 2. Tutorial



Paganini, Release 1.1.1

(continued from previous page)

0.338322112871298
>>> T.value
1.0

Bounded (unlabelled) cyclic compositions
A non-recursive specification C = CYC_{= 12}(Z * SEQ(Z)) with mean size around 20.

>>> spec = Specification()
>>> z, C = Variable(20), Variable()
>>> spec.add(C, UCyc(z * Seq(z), eq(12)))
>>> spec.run_tuner(z)
>>> z.value
0.405765659263783

Cayley trees with finite expected size.
The specification is T = Z * SET(T).

>>> spec = Specification()
>>> z, T = Variable(1024), Variable()
>>> spec.add(T, z * Set(K))
>>> spec.run_tuner(T)
>>> z.value
0.367879265638609

2.3. Examples 7



Paganini, Release 1.1.1

8 Chapter 2. Tutorial



CHAPTER 3

Paganini’s API

3.1 Module contents

3.1.1 Paganini

Paganini is a lightweight python library for tuning of multiparametric combinatorial systems.

All the necessary documentation can be found on-line on https://paganini.readthedocs.io/

Use

>>> help(paganini.tutorial)

to see some examples of code usage.

class paganini.expressions.Expr(coeff=1, variables={})
Bases: object

Algebraic expressions (multivariate monomials) in form of cxk1
1 xk2

2 · · ·xkm
m .

static cast(other)
Casts its input to an expression.

is_constant
True iff the expression represents a constant.

related(other)
Checks if the two expressions are related, i.e. have the same exponents and perpahs a different
coefficient.

class paganini.expressions.VariableType
Bases: enum.Enum

An enumeration.

PLAIN = 1

TYPE = 2

9

https://paganini.readthedocs.io/


Paganini, Release 1.1.1

class paganini.expressions.Variable(tuning_param=None)
Bases: paganini.expressions.Expr

Symbolic variables.

is_type_variable
True iff the variable represents a type variable. In other words, if it admits a defining equation.

set_expectation(tuning_param)

class paganini.expressions.Polynomial(expressions)
Bases: object

Polynomials of multivariate algebraic expressions.

static cast(other)
Casts its input to a polynomial.

is_one()
Checks if the polynomial represents a constant one.

static simplify(polynomial)
Simplifies the given polynomial.

specification(no_variables)
Composes a sparse matrix specification of the polynomial. Requires as input a number dictat-
ing the number of columns of the constructed matrix (usually the number of variables in the
corresponding optimisation problem).

Its output is a tuple consisting of:

(1) a sparse matrix representing the polynomial,

(2) a vector of logarithms of monomial coefficients,

(3) a (collective) constant term representing constant monomials.

The matrix represents expoenents of respective variables.

static sum(series)
Evaluates the sum of the given series.

class paganini.specification.Seq(expression, constraint=None)
Bases: paganini.expressions.Variable

Sequence variables.

register(spec)
Unfolds the Seq definition and registers it in the given system.

class paganini.specification.UCyc(expression, constraint=None)
Bases: paganini.expressions.Variable

Unlabelled Cyc variables.

register(spec)
Unfolds the UCyc definition and registers it in the given system.

class paganini.specification.MSet(expression, constraint=None)
Bases: paganini.expressions.Variable

MSet variables.

register(spec)
Unfolds the MSet definition and registers it in the given system.

10 Chapter 3. Paganini’s API



Paganini, Release 1.1.1

class paganini.specification.Set(expression, constraint=None)
Bases: paganini.expressions.Variable

Labelled Set variables.

register(spec)
Unfolds the Set definition and registers it in the given system.

class paganini.specification.Cyc(expression, constraint=None)
Bases: paganini.expressions.Variable

Labelled Cyc variables.

register(spec)
Unfolds the Cyc definition and registers it in the given system.

class paganini.specification.Operator
Bases: enum.Enum

Enumeration of supported constraint signs.

EQ = 2

GEQ = 3

LEQ = 1

UNBOUNDED = 4

class paganini.specification.Constraint(operator, value)
Bases: object

Supported constraints for classes such as SEQ.

static normalise(constraint=None)

class paganini.specification.Type
Bases: enum.Enum

Enumeration of supported system types.

ALGEBRAIC = 1

RATIONAL = 2

class paganini.specification.Params(sys_type)
Bases: object

CVXPY solver parameters initalised with some defaults.

class paganini.specification.Specification(series_truncate=20)
Bases: object

Symbolic system specifications.

add(var, expression)
Includes the given definition in the specification.

check_type()
Checks if the system is algebraic or rational. Note: the current method is heuristic.

discharged_variables
Number of variables discharged in the system.

3.1. Module contents 11



Paganini, Release 1.1.1

run_singular_tuner(z, params=None)
Given a (size) variable and a set of tuning parameters, composes an optimisation problem corre-
sponding to an approximate sampler meant for structures of the given type. Variables are tuned
so to achieve (in expectation) the marked variable frequencies.

Consider the following example:

>>> sp = Specification()
>>> z, u, M = Variable(), Variable(0.4), Variable()
>>> sp.add(M, z + u * z * M + z * M **2)
>>>
>>> params = Params(Type.ALGEBRAIC)
>>> sp.run_singular_tuner(z, params)

Here, the variable u is marked with a frequency 0.4. The type M represents the type of Motzkin
trees, i.e. unary-binary plane trees. Variable z marks their size, whereas u marks the occurrences
of unary nodes. The tuning goal is to obtain specific values of z, u, and M, such that the induced
branching probabilities lead to a sampler which generates, in expectation, Motzkin trees of infinite
(i.e. unbounded) size and around 40% of unary nodes.

Respective variables (including type variables) are decorated with a proper ‘value’. The method
returns the CVXPY solution (i.e. the optimal value for the problem, or a string indicating why
the problem could not be solved).

run_tuner(t, params=None)
Given the type variable and a set of tuning parameters, composes a (tuning) optimisation problem
corresponding to an approximate sampler meant for structures of the given type. Variables are
tuned so to achieve (in expectation) the marked variable values.

Consider the following example:

>>> sp = Specification()
>>> z, u, M = Variable(1000), Variable(200), Variable()
>>> sp.add(M, z + u * z * M + z * M **2)
>>> params = Params(Type.ALGEBRAIC)
>>> sp.run_tuner(M, params)

Here, the variables z and u are marked with absolute values 1000 and 200, respectively. The input
type represents the type of Motzkin trees, i.e. plane unary-binary trees. Variable z marks their
size, whereas u marks the occurrences of unary nodes. The tuning goal is to obtain specific values
of z, u, and M, such that the induced branching probabilities lead to a sampler which generates
Motzkin trees of size 1000 with around 200 unary nodes (both in expectation).

Respective variables (including type variables) are decorated with a proper ‘value’. The method
returns the CVXPY solution (i.e. the optimal value for the problem, or a string indicating why
the problem could not be solved).

paganini.specification.leq(n)
Creates a less or equal constraint for the given input.

paganini.specification.geq(n)
Creates a greater or equal constraint for the given input.

paganini.specification.eq(n)
Creates an equal constraint for the given input.

12 Chapter 3. Paganini’s API



CHAPTER 4

Citing Paganini

If you use Paganini or its components for published work, we encourage you to cite the accompanying paper:

Maciej Bendkowski, Olivier Bodini, Sergey Dovgal Polynomial tuning of multiparametric combinatorial
samplers

You can import the following BibTeX citation:

@inproceedings{paganini,
title = {Polynomial tuning of multiparametric combinatorial samplers},
author = {Bendkowski, Maciej and Bodini, Olivier and Dovgal, Sergey},
booktitle = {2018 Proceedings of the Fifteenth Workshop on Analytic Algorithmics␣

↪→and Combinatorics (ANALCO)},
pages = {92--106},
year = {2018},
organization = {SIAM}

}

13

https://epubs.siam.org/doi/10.1137/1.9781611975062.9
https://epubs.siam.org/doi/10.1137/1.9781611975062.9


Paganini, Release 1.1.1

14 Chapter 4. Citing Paganini



CHAPTER 5

References

Paganini relies on published work of numerous excellent authors. Below, you can find a short (and definitely
inexhaustive) list of papers on the subject:

• P. Flajolet, R. Sedgewick: Analytic Combinatorics

• P. Duchon, P. Flajolet, G. Louchard. G. Schaeffer: Boltzmann Samplers for the random generation of
combinatorial structures

• C. Pivoteau, B. Salvy, M. Soria: Algorithms for Combinatorial Systems: Well-Founded Systems and
Newton Iterations

• O.Bodini, J. Lumbroso, N. Rolin: Analytic samplers and the combinatorial rejection method

• S. Diamond and S. Boyd: CVXPY: A Python-Embedded Modeling Language for Convex Optimization

If you are interested in the practical design of analytic samplers, we encourage you to check out the related
Boltzmann Brain software.

15

http://algo.inria.fr/flajolet/Publications/book.pdf
http://algo.inria.fr/flajolet/Publications/DuFlLoSc04.pdf
http://algo.inria.fr/flajolet/Publications/DuFlLoSc04.pdf
https://www.sciencedirect.com/science/article/pii/S0097316512000908
https://www.sciencedirect.com/science/article/pii/S0097316512000908
https://dl.acm.org/citation.cfm?id=2790220&dl=ACM&coll=DL
https://web.stanford.edu/~boyd/papers/pdf/cvxpy_paper.pdf
https://github.com/maciej-bendkowski/boltzmann-brain


Paganini, Release 1.1.1

16 Chapter 5. References



CHAPTER 6

About

6.1 Maciej Bendkowski

Theoretical Computer Science Department,

Jagiellonian University in Kraków, Poland.

6.2 Sergey Dovgal

Université Paris 13,

Laboratoire d’Informatique de Paris Nord.

17



Paganini, Release 1.1.1

18 Chapter 6. About



CHAPTER 7

Indices and tables

• genindex

• modindex

• search

19



Paganini, Release 1.1.1

20 Chapter 7. Indices and tables



Python Module Index

p
paganini, 9
paganini.expressions, 9
paganini.specification, 10

21



Paganini, Release 1.1.1

22 Python Module Index



Index

A
add() (paganini.specification.Specification method),

11
ALGEBRAIC (paganini.specification.Type attribute), 11

C
cast() (paganini.expressions.Expr static method), 9
cast() (paganini.expressions.Polynomial static

method), 10
check_type() (paganini.specification.Specification

method), 11
Constraint (class in paganini.specification), 11
Cyc (class in paganini.specification), 11

D
discharged_variables (pa-

ganini.specification.Specification attribute),
11

E
EQ (paganini.specification.Operator attribute), 11
eq() (in module paganini.specification), 12
Expr (class in paganini.expressions), 9

G
GEQ (paganini.specification.Operator attribute), 11
geq() (in module paganini.specification), 12

I
is_constant (paganini.expressions.Expr attribute), 9
is_one() (paganini.expressions.Polynomial method),

10
is_type_variable (paganini.expressions.Variable

attribute), 10

L
LEQ (paganini.specification.Operator attribute), 11
leq() (in module paganini.specification), 12

M
MSet (class in paganini.specification), 10

N
normalise() (paganini.specification.Constraint

static method), 11

O
Operator (class in paganini.specification), 11

P
paganini (module), 9
paganini.expressions (module), 9
paganini.specification (module), 10
Params (class in paganini.specification), 11
PLAIN (paganini.expressions.VariableType attribute),

9
Polynomial (class in paganini.expressions), 10

R
RATIONAL (paganini.specification.Type attribute), 11
register() (paganini.specification.Cyc method), 11
register() (paganini.specification.MSet method), 10
register() (paganini.specification.Seq method), 10
register() (paganini.specification.Set method), 11
register() (paganini.specification.UCyc method),

10
related() (paganini.expressions.Expr method), 9
run_singular_tuner() (pa-

ganini.specification.Specification method),
11

run_tuner() (paganini.specification.Specification
method), 12

S
Seq (class in paganini.specification), 10
Set (class in paganini.specification), 10
set_expectation() (paganini.expressions.Variable

method), 10

23



Paganini, Release 1.1.1

simplify() (paganini.expressions.Polynomial static
method), 10

Specification (class in paganini.specification), 11
specification() (paganini.expressions.Polynomial

method), 10
sum() (paganini.expressions.Polynomial static

method), 10

T
Type (class in paganini.specification), 11
TYPE (paganini.expressions.VariableType attribute), 9

U
UCyc (class in paganini.specification), 10
UNBOUNDED (paganini.specification.Operator at-

tribute), 11

V
Variable (class in paganini.expressions), 9
VariableType (class in paganini.expressions), 9

24 Index


	Installation
	Installation from sources
	Testing

	Tutorial
	Introduction
	Target expectation tuning
	Examples

	Paganini’s API
	Module contents

	Citing Paganini
	References
	About
	Maciej Bendkowski
	Sergey Dovgal

	Indices and tables
	Python Module Index
	Index

