

Paganini’s documentation

Paganini is a lightweight python library for tuning multiparametric
combinatorial specifications.

Given a combinatorial specification, expressed using a domain-specific language
closely resembling Flajolet and Sedgewick’s symbolic method, Paganini gives
its users some additional control over the distribution of structures
constructed using the designed samplers.

Contents:

	Installation
	Installation from sources

	Testing

	Tutorial
	Introduction

	Target expectation tuning

	Examples

	Paganini’s API
	Module contents

	Citing Paganini

	References

	About
	Maciej Bendkowski

	Sergey Dovgal

Indices and tables

	Index

	Module Index

	Search Page

Installation

Paganini is available as a Python package for both Python2 and Python3.

Warning

We strongly recommend using Python3, and
we do not guarantee the required decimal precision for Python2.
Moreover, the support for Python2 drops in 2020, and as a consequence, some
of the packages that we use are not anymore maintained, and the usage is
at your own risk.
In particular, two of our tests fail on Python2 for the reasons of numerical
precision.

Note

We assume that the user is familiar with Python and its package manager
pip. If you are new to Python, please visit the official installation
webpage https://www.python.org/downloads/. For new versions of Python,
pip is already pre-installed. If you don’t have it, check
https://pip.pypa.io/en/stable/installing/

The latest release of Paganini can be installed using pip:

>>> pip install paganini

Tip

If you want to update to the recent version of paganini, use

pip3 install –upgrade paganini

You may also want to upgrade pip so that the installation works properly

pip3 install –upgrade pip

Installation from sources

In order to install from sources, you need git, or you can download and
install the code manually from github.

git clone git://github.com/maciej-bendkowski/paganini.git
cd paganini
python3 setup.py install

Testing

In order to verify that paganini works, run the following in the command line

python3 -m paganini.tests

You can get more examles in the tests folder

>>> import paganini
>>> help(paganini.tests)

Tutorial

Tip

Interactive environments like jupyter notebook are extremely helpful in
code testing and experimenting. Check them out! [https://jupyter.org]

Note

Throughout the tutorial, it is assumed that at the beginning of the session,
all the contents of the package Paganini have been imported:

>>> from paganini import *

Alternatively, in order to avoid polluting the global namespace, a
synonym import can be used. In this case, all the functions should be
referenced as sub-items of this namespace

>>> import paganini as pg
>>> spec = pg.Specification()

Introduction

Consider the following example. Suppose that we are interested in designing an
sampler for plane trees of unbounded degree (i.e. with an arbitrary number of
children), specified as

T = Z SEQ(T)

where SEQ(T) stands for a (possibly empty) sequence of trees and Z marks
the size of a node. In Paganini, we write the following snippet defining the
same combinatorial class:

>>> spec = Specification()
>>> z, T = Variable(), Variable()
>>> spec.add(T, z * Seq(T))

Now, if we we want to construct a corresponding sampler, say analytic (or
Boltzmann) sampler, we have to find a specific value of Z and use it to
compute branching probabilities governing the random choices of our sampler
(essentially the number of children for each of the constructed nodes). What
value of Z should be choose if we are interested in large, uniform, and
unbounded in size trees? With Paganini, this task amounts to invoking

>>> spec.run_singular_tuner(z)

… and that’s it! Paganini determines the corresponding value of z for us.
Once tuned, variables are decorated with appropriate numerical values:

>>> z.value
0.25
>>> T.value
0.5

Paganini allows its users to focus on the design of specifications, taking care
of the rest.

Target expectation tuning

With the help of Paganini, users can demand the computation of tuning variables
with specific, finite target expectations. Suppose that we are interested in
designing an analytic sampler for Motzkin trees (i.e. plane unary-binary trees)
however we would also like to demand that the outcome trees consists of around
1000 nodes, among which around 200 are unary. To achieve this goal, we
construct the following specification:

>>> from paganini import *
>>> spec = Specification()
>>> z, u, M = Variable(1000), Variable(200), Variable()
>>> spec.add(M, z + u * z * M + z * M ** 2)
>>> spec.run_tuner(M)

Here z and u are two marking variables standing for the tree size and
the number of unary nodes, respectively. Once we run the tuner, all three
variables are decorated with respective numerical values, which the user can
then use to compute respective branching probabilities. A sampler designed with
such values is guaranteed to output Motzkin trees for which the expected size
and mean number of unary nodes obey the design specification.

Examples

Paganini is under constant development, supporting a growing class of so-called
admissible constructors. Below you can find a handful of examples supported by
Paganini. For more specifications, please visit our tests folder.

	
Polya trees

	The specification is T = Z * MSET(T).

>>> spec = Specification()
>>> z, T = Variable(), Variable()
>>> spec.add(T, z * MSet(T))
>>> spec.run_singular_tuner(z)
>>> z.value
0.338322112871298
>>> T.value
1.0

	
Bounded (unlabelled) cyclic compositions

	A non-recursive specification C = CYC_{= 12}(Z * SEQ(Z))
with mean size around 20.

>>> spec = Specification()
>>> z, C = Variable(20), Variable()
>>> spec.add(C, UCyc(z * Seq(z), eq(12)))
>>> spec.run_tuner(z)
>>> z.value
0.405765659263783

	
Cayley trees with finite expected size.

	The specification is T = Z * SET(T).

>>> spec = Specification()
>>> z, T = Variable(1024), Variable()
>>> spec.add(T, z * Set(K))
>>> spec.run_tuner(T)
>>> z.value
0.367879265638609

Paganini’s API

Module contents

Paganini

Paganini is a lightweight python library for tuning of
multiparametric combinatorial systems.

All the necessary documentation can be found on-line on
https://paganini.readthedocs.io/

	Use

	>>> help(paganini.tutorial)

to see some examples of code usage.

	
class paganini.expressions.Expr(coeff=1, variables={})

	Bases: object

Algebraic expressions (multivariate monomials) in form of
\(c x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m}.\)

	
static cast(other)

	Casts its input to an expression.

	
is_constant

	True iff the expression represents a constant.

	
related(other)

	Checks if the two expressions are related, i.e. have
the same exponents and perpahs a different coefficient.

	
class paganini.expressions.VariableType

	Bases: enum.Enum

An enumeration.

	
PLAIN = 1

	

	
TYPE = 2

	

	
class paganini.expressions.Variable(tuning_param=None)

	Bases: paganini.expressions.Expr

Symbolic variables.

	
is_type_variable

	True iff the variable represents a type variable.
In other words, if it admits a defining equation.

	
set_expectation(tuning_param)

	

	
class paganini.expressions.Polynomial(expressions)

	Bases: object

Polynomials of multivariate algebraic expressions.

	
static cast(other)

	Casts its input to a polynomial.

	
is_one()

	Checks if the polynomial represents a constant one.

	
static simplify(polynomial)

	Simplifies the given polynomial.

	
specification(no_variables)

	Composes a sparse matrix specification of the polynomial. Requires
as input a number dictating the number of columns of the constructed
matrix (usually the number of variables in the corresponding
optimisation problem).

Its output is a tuple consisting of:

	a sparse matrix representing the polynomial,

	a vector of logarithms of monomial coefficients,

	a (collective) constant term representing constant monomials.

The matrix represents expoenents of respective variables.

	
static sum(series)

	Evaluates the sum of the given series.

	
class paganini.specification.Seq(expression, constraint=None)

	Bases: paganini.expressions.Variable

Sequence variables.

	
register(spec)

	Unfolds the Seq definition and registers it in the given system.

	
class paganini.specification.UCyc(expression, constraint=None)

	Bases: paganini.expressions.Variable

Unlabelled Cyc variables.

	
register(spec)

	Unfolds the UCyc definition and registers it in the given system.

	
class paganini.specification.MSet(expression, constraint=None)

	Bases: paganini.expressions.Variable

MSet variables.

	
register(spec)

	Unfolds the MSet definition and registers it in the given system.

	
class paganini.specification.Set(expression, constraint=None)

	Bases: paganini.expressions.Variable

Labelled Set variables.

	
register(spec)

	Unfolds the Set definition and registers it in the given system.

	
class paganini.specification.Cyc(expression, constraint=None)

	Bases: paganini.expressions.Variable

Labelled Cyc variables.

	
register(spec)

	Unfolds the Cyc definition and registers it in the given system.

	
class paganini.specification.Operator

	Bases: enum.Enum

Enumeration of supported constraint signs.

	
EQ = 2

	

	
GEQ = 3

	

	
LEQ = 1

	

	
UNBOUNDED = 4

	

	
class paganini.specification.Constraint(operator, value)

	Bases: object

Supported constraints for classes such as SEQ.

	
static normalise(constraint=None)

	

	
class paganini.specification.Type

	Bases: enum.Enum

Enumeration of supported system types.

	
ALGEBRAIC = 1

	

	
RATIONAL = 2

	

	
class paganini.specification.Params(sys_type)

	Bases: object

CVXPY solver parameters initalised with some defaults.

	
class paganini.specification.Specification(series_truncate=20)

	Bases: object

Symbolic system specifications.

	
add(var, expression)

	Includes the given definition in the specification.

	
check_type()

	Checks if the system is algebraic or rational.
Note: the current method is heuristic.

	
discharged_variables

	Number of variables discharged in the system.

	
run_singular_tuner(z, params=None)

	Given a (size) variable and a set of tuning parameters, composes an
optimisation problem corresponding to an approximate sampler meant for
structures of the given type. Variables are tuned so to achieve (in
expectation) the marked variable frequencies.

Consider the following example:

>>> sp = Specification()
>>> z, u, M = Variable(), Variable(0.4), Variable()
>>> sp.add(M, z + u * z * M + z * M **2)
>>>
>>> params = Params(Type.ALGEBRAIC)
>>> sp.run_singular_tuner(z, params)

Here, the variable u is marked with a frequency 0.4. The type M
represents the type of Motzkin trees, i.e. unary-binary plane trees.
Variable z marks their size, whereas u marks the occurrences of unary
nodes. The tuning goal is to obtain specific values of z, u, and M, such
that the induced branching probabilities lead to a sampler which
generates, in expectation, Motzkin trees of infinite (i.e. unbounded)
size and around 40% of unary nodes.

Respective variables (including type variables) are decorated with a
proper ‘value’. The method returns the CVXPY solution (i.e. the optimal
value for the problem, or a string indicating why the problem could not
be solved).

	
run_tuner(t, params=None)

	Given the type variable and a set of tuning parameters, composes a
(tuning) optimisation problem corresponding to an approximate sampler
meant for structures of the given type. Variables are tuned so to
achieve (in expectation) the marked variable values.

Consider the following example:

>>> sp = Specification()
>>> z, u, M = Variable(1000), Variable(200), Variable()
>>> sp.add(M, z + u * z * M + z * M **2)
>>> params = Params(Type.ALGEBRAIC)
>>> sp.run_tuner(M, params)

Here, the variables z and u are marked with absolute values 1000 and
200, respectively. The input type represents the type of Motzkin trees,
i.e. plane unary-binary trees. Variable z marks their size, whereas
u marks the occurrences of unary nodes. The tuning goal is to obtain
specific values of z, u, and M, such that the induced branching
probabilities lead to a sampler which generates Motzkin trees of size
1000 with around 200 unary nodes (both in expectation).

Respective variables (including type variables) are decorated with a
proper ‘value’. The method returns the CVXPY solution (i.e. the optimal
value for the problem, or a string indicating why the problem could not
be solved).

	
paganini.specification.leq(n)

	Creates a less or equal constraint for the given input.

	
paganini.specification.geq(n)

	Creates a greater or equal constraint for the given input.

	
paganini.specification.eq(n)

	Creates an equal constraint for the given input.

Citing Paganini

If you use Paganini or its components for published work, we encourage you to
cite the accompanying paper:

Maciej Bendkowski, Olivier Bodini, Sergey Dovgal
Polynomial tuning of multiparametric combinatorial samplers [https://epubs.siam.org/doi/10.1137/1.9781611975062.9]

You can import the following BibTeX citation:

@inproceedings{paganini,
 title = {Polynomial tuning of multiparametric combinatorial samplers},
 author = {Bendkowski, Maciej and Bodini, Olivier and Dovgal, Sergey},
 booktitle = {2018 Proceedings of the Fifteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO)},
 pages = {92--106},
 year = {2018},
 organization = {SIAM}
}

References

Paganini relies on published work of numerous excellent authors. Below, you can
find a short (and definitely inexhaustive) list of papers on the subject:

	P. Flajolet, R. Sedgewick: Analytic Combinatorics [http://algo.inria.fr/flajolet/Publications/book.pdf]

	P. Duchon, P. Flajolet, G. Louchard. G. Schaeffer: Boltzmann Samplers for the random generation of combinatorial structures [http://algo.inria.fr/flajolet/Publications/DuFlLoSc04.pdf]

	C. Pivoteau, B. Salvy, M. Soria: Algorithms for Combinatorial Systems: Well-Founded Systems and Newton Iterations [https://www.sciencedirect.com/science/article/pii/S0097316512000908]

	O.Bodini, J. Lumbroso, N. Rolin: Analytic samplers and the combinatorial rejection method [https://dl.acm.org/citation.cfm?id=2790220&dl=ACM&coll=DL]

	S. Diamond and S. Boyd: CVXPY: A Python-Embedded Modeling Language for Convex Optimization [https://web.stanford.edu/~boyd/papers/pdf/cvxpy_paper.pdf]

If you are interested in the practical design of analytic samplers, we encourage
you to check out the related Boltzmann Brain [https://github.com/maciej-bendkowski/boltzmann-brain] software.

About

Maciej Bendkowski

Theoretical Computer Science Department,

Jagiellonian University in Kraków, Poland.

Sergey Dovgal

Université Paris 13,

Laboratoire d’Informatique de Paris Nord.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 paganini	

 	
 	
 paganini.expressions	

 	
 	
 paganini.specification	

Index

 A
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	add() (paganini.specification.Specification method)

 	
 	ALGEBRAIC (paganini.specification.Type attribute)

C

 	
 	cast() (paganini.expressions.Expr static method)

 	(paganini.expressions.Polynomial static method)

 	
 	check_type() (paganini.specification.Specification method)

 	Constraint (class in paganini.specification)

 	Cyc (class in paganini.specification)

D

 	
 	discharged_variables (paganini.specification.Specification attribute)

E

 	
 	EQ (paganini.specification.Operator attribute)

 	
 	eq() (in module paganini.specification)

 	Expr (class in paganini.expressions)

G

 	
 	GEQ (paganini.specification.Operator attribute)

 	
 	geq() (in module paganini.specification)

I

 	
 	is_constant (paganini.expressions.Expr attribute)

 	
 	is_one() (paganini.expressions.Polynomial method)

 	is_type_variable (paganini.expressions.Variable attribute)

L

 	
 	LEQ (paganini.specification.Operator attribute)

 	
 	leq() (in module paganini.specification)

M

 	
 	MSet (class in paganini.specification)

N

 	
 	normalise() (paganini.specification.Constraint static method)

O

 	
 	Operator (class in paganini.specification)

P

 	
 	paganini (module)

 	paganini.expressions (module)

 	paganini.specification (module)

 	
 	Params (class in paganini.specification)

 	PLAIN (paganini.expressions.VariableType attribute)

 	Polynomial (class in paganini.expressions)

R

 	
 	RATIONAL (paganini.specification.Type attribute)

 	register() (paganini.specification.Cyc method)

 	(paganini.specification.MSet method)

 	(paganini.specification.Seq method)

 	(paganini.specification.Set method)

 	(paganini.specification.UCyc method)

 	
 	related() (paganini.expressions.Expr method)

 	run_singular_tuner() (paganini.specification.Specification method)

 	run_tuner() (paganini.specification.Specification method)

S

 	
 	Seq (class in paganini.specification)

 	Set (class in paganini.specification)

 	set_expectation() (paganini.expressions.Variable method)

 	
 	simplify() (paganini.expressions.Polynomial static method)

 	Specification (class in paganini.specification)

 	specification() (paganini.expressions.Polynomial method)

 	sum() (paganini.expressions.Polynomial static method)

T

 	
 	Type (class in paganini.specification)

 	
 	TYPE (paganini.expressions.VariableType attribute)

U

 	
 	UCyc (class in paganini.specification)

 	
 	UNBOUNDED (paganini.specification.Operator attribute)

V

 	
 	Variable (class in paganini.expressions)

 	
 	VariableType (class in paganini.expressions)

paganini

	Paganini’s API
	Module contents
	Paganini

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Paganini’s documentation

 		
 Installation

 		
 Installation from sources

 		
 Testing

 		
 Tutorial

 		
 Introduction

 		
 Target expectation tuning

 		
 Examples

 		
 Paganini’s API

 		
 Module contents

 		
 Paganini

 		
 Citing Paganini

 		
 References

 		
 About

 		
 Maciej Bendkowski

 		
 Sergey Dovgal

_static/up.png

_static/up-pressed.png

