

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	OpenComparison documentation

Welcome to OpenComparison’s documentation!

OpenComparison solves the problem in the programming community of being able to easily identify good apps, frameworks, and packages. Ever want to know which is the most popular or well supported Python httplib replacement, web framework, or api tool? OpenComparison solves that problem for you!

It does this by storing information on packages fetched from public APIs provided by PyPI, Github, BitBucket, Launchpad, and SourceForge, and then provides extremely useful comparison tools for them.

Contributing to OpenComparison

	Follow the installation instructions!

	Follow the contributing instructions!

Contents:

	Introduction

	License

	Installation

	Deployments

	Troubleshooting

	FAQ

	Settings

	Testing Instructions

	Management Commands

	PyPI Issues

	Team

	Contributing

	Repo Handler API

	Webservice API

	Lessons Learned

	Development reference documentation

In development

	caching

	Package Extenders

	PostgreSQL setup instructions for new contributors

Credits

For Django Dash 2010, @pydanny and @audreyr were scared of rabbits.

Since then the project has had many contributors.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

Introduction

Ever want to know which is the most popular or well supported Python httplib replacement, web framework, or api tool? OpenComparison solves that problem for you! OpenComparison allows you to easily identify good apps, frameworks, and packages.

OpenComparison stores information on fetched packages and provides easy comparison tools for them. Public APIs include PyPI, Github, BitBucket, Launchpad, and perhaps soon SourceForge and Google Project Hosting.

The Site

A current example is live: http://www.djangopackages.com

Grids!

Grids let you compare packages. A grid comes with default comparison items and you can add features to get a more specific. We think comparison grids are an improvement over traditional tagging system because specificity helps make informed decisions.

Categories of Packages

The fixtures provide four categories: apps, frameworks, projects, and utilities.

What repo sites are supported?

	Github

	Bitbucket

	Launchpad.

Google Project Hosting and Sourceforge are not fully supported!

Not yet!

The progenitor of OpenComparison, Django Packages was cooked up during Django Dash 2010. We wanted to keep the scope of our work reasonable. We’ll try to include more sites in the future. Here are some details:

	Sourceforge needs needs to repair their API and then we can play.

	Google’s lack of a formal API leaves us the option of screen-scraping their content. We’re not excited about introducing that sort of brittle activity into OpenComparison.

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

License

Copyright (c) 2010-2012 Audrey Roy, Daniel Greenfeld, and contributors.

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

Installation

Do everything listed in this section to get your site up and running locally. If you run into problems, see the Troubleshooting section.

Pre-requisites

Mac OS X 10.6

Download and install setuptools from http://pypi.python.org/pypi/setuptools. Setuptools gives you easy_install. Then run the following commands:

easy_install pip
pip install virtualenv

Ubuntu (10+ / Lucid or Higher)

Install the following:

sudo apt-get install python-setuptools python-dev libpq-dev
sudo easy_install pip
sudo pip install virtualenv

Windows 7

Download and install Python 2.6 or 2.7 using the Windows 32-bit installer from http://www.python.org/download/. Even if you’re on a 64-bit system, 32-bit is recommended (Michael Foord told me this).

Download and install setuptools from http://pypi.python.org/pypi/setuptools. Setuptools gives you easy_install.

Install MinGW from http://www.mingw.org/. Add the bin/ directory of your MinGW installation to your PATH environment variable (under Control Panel > System > Advanced system settings > Environment variables).

Create or open C:\Python26\Lib\distutils\distutils.cfg (Note: this may be inside the Python27 directory if you’re using Python 2.7). Add the following lines to the bottom of the file:

[build]
compiler=mingw32

Open up a command prompt. Install pip and virtualenv:

easy_install pip
pip install virtualenv

Other operating systems (including various Linux flavors)

No. See the faq [http://opencomparison.readthedocs.org/en/latest/faq.html].

Main instructions

These instructions install OpenComparison on your computer, using PostgreSQL and sample data.

Git clone the project and install requirements

Create a virtualenv, activate it, git clone the OpenComparison project, and install its requirements:

cd <installation-directory>
virtualenv env-oc
source env-oc/bin/activate
git clone git@github.com:opencomparison/opencomparison.git opencomparison
cd opencomparison
pip install -r requirements.txt

Set up server specific settings

Don’t change settings/base.py. Instead extend it as you see in settings/heroku.py. In the new file make the following specifications:

OPTIONAL! You can enable launchpad support in the local settings file. Launchpad’s dependencies can be a little fussy, so this will probably require some additional tweaking on your part:

LAUNCHPAD_ACTIVE = False

Add a Google Analytics code if you have one:

URCHIN_ID = "UA-YOURID123-1"

Setup your email settings:

DEFAULT_FROM_EMAIL = 'Your Name <me@mydomain.com>'
EMAIL_SUBJECT_PREFIX = '[Your Site Name] '

Change the SECRET_KEY setting in `local_settings.py` to your own secret key:

SECRET_KEY = "CHANGE-THIS-KEY-TO-SOMETHING-ELSE"

Set up your PostgreSQL database

Set up PostgreSQL and create a database as per the postgresql contributor instructions.

Make your database:

$ python manage.py syncdb --settings=settings.<my-custom>
$ python manage.py migrate --settings=settings.<my-custom>

OPTIONAL! Load some base data for development usage. This should not be loaded on the production site:

$ python manage.py loaddata --settings=settings.<my-custom>

Load the site in your browser

Run the development server:

python manage.py runserver --settings=settings.<my-custom>

Then point your browser to http://127.0.0.1:8000

Give yourself an admin account on the site

Create a Django superuser for yourself, replacing joe with your username/email:

python manage.py createsuperuser --username=joe --email=joe@example.com

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

Deployments

For various providers and methods including Heroku, DotCloud, et al.

Contents:

	Heroku

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

 	Deployments

Heroku

Quick and Easy Heroku Deployment

This is meant for setting up test and QA servers, not full deployments.

If you have Heroku Toolbelt installed and are on Mac OS X or Linux, you can run the following from your repo:

make createsite

Real Heroku Deployment

Deploying to heroku:

heroku create --stack cedar
git push heroku master
heroku addons:add heroku-shared-postgresql
heroku addons:add memcache
heroku addons:add sendgrid:starter
heroku addons:add scheduler:standard
heroku pg:promote HEROKU_SHARED_POSTGRESQL_GOLD
heroku pg:psql HEROKU_SHARED_POSTGRESQL_GOLD
\i django_oc.sql

Chron Jobs that need to be set up

Sample:

python manage.py package_updater --settings=settings.heroku
python manage.py searchv2_build --settings=settings.heroku

TODO: Email admins with the log

Custom settings that need to be added

Do the following:

heroku config:add SECRET_KEY=<random-key>
heroku config:add GITHUB_API_SECRET=CUSTOM
heroku config:add GITHUB_APP_ID=CUSTOM
heroku config:add SITE_TITLE=Django Packages
heroku config:add FRAMEWORK_TITLE=Django
heroku config:add AWS_ACCESS_KEY_ID=CUSTOM
heroku config:add AWS_SECRET_ACCESS_KEY=CUSTOM
heroku config:add AWS_STORAGE_BUCKET_NAME=CUSTOM

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

Troubleshooting

How come no module named abc?

If you’re getting something like “ImportError: No module named abc”, you probably don’t have all the required packages installed. Try:

pip install -r requirements/project.txt

No module named psycopg2

If you’re getting something like “ImproperlyConfigured: Error loading psycopg2 module: No module named psycopg2” while accessing the website, you need to install the psycopg2 module. It has recently been added to requirements/project.txt (the line that says “psycopg2==2.4”). Try:

pip install -r requirements/project.txt

If you’re getting an error like “Error: pg_config executable not found.” while installing the module, you need the PostgreSQL development package. On Ubuntu, do:

sudo apt-get install libpq-dev

ImportError related to launchpad.py

Sometimes this shows up as “Caught ImportError while rendering: cannot import name ScalarValue”.

You’re having Launchpad/bzr installation problems. Most likely cause is your C compiler. On Windows, make sure you have MinGW installed as per the installation instructions. On Linux, make sure you have the python-dev and gcc packages.

I can’t get it to work in buildout!

We don’t support buildout. See the faq.

bz2 not found

Install the appropriate systemwide package. For example, on Ubuntu do:

sudo apt-get install libbz2-dev

If this doesn’t work, please let us know (create an issue at http://github.com/opencomparison/opencomparison/issues)

Other problems

Don’t give up! Submit problems to http://github.com/opencomparison/opencomparison/issues. And don’t forget:

	Be polite! We are all volunteers.

	Spend the time to learn Github markup

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

FAQ

General

How did Open Comparison get started?

	In 2010 We realized there was no effective method for finding apps in the Django community.

	After launch we realized it might be good to use the same software system for other package sets.

Are there any Case Studies?

	http://pycon.blip.tv/file/4878766

	http://www.slideshare.net/pydanny/django-packages-a-case-study

Is there an on-line community?

We’ll be opening an IRC channel shortly.

How can I contribute?

Read the page on contributions.

What browsers does Open Comparison support?

We do formal tests on Chrome, Safari, Firefox, IE8, and IE9.

How hard is it to add support for a new repo?

We’ve done a lot of work to make it as straightforward as possible. At PyCon 2011 we launched our formal Repo Handler API.

Installation

How come you don’t support buildout?

We have a very successful installation story for development and production hosting using virtualenv. While buildout is a wonderful tool we simply don’t want to spend the time supporting two installation methods. Therefore:

	Don’t do it.

	We won’t accept pull requests for it.

Why don’t you have install instructions for BSD? Or Debian? Or Windows XP?

If you are using something else besides Ubuntu, Mac OS X 10.6, or Windows 7, you obviously have mad skills. We have a very successful installation story for development on three very common operating systems and production hosting is assumed to be on Ubuntu. Trying to support more than those operating systems is a HUGE amount of time taken away from making improvements - especially since the core developers insist on testing everything themselves.

What happened to the fixtures?

The effort to support databases besides PostGreSQL was hampered for long time, all caused by a third party package we’re not going to identify that caused grief in the use of fixtures. This was a significant issue in Open Comparison, and used up a lot of development cycles.

So we use a Mock system of creating sample data in our tests and for running a development version of the site. To create some development data, just run:

python manage.py load_dev_data

Google Project Hosting

How come you don’t support Google Project Hosting?

They don’t have an API. We’ve filed ticket #5088 and we hope the nice people there can close it in the near future. Google is part of the open source world and we would love to support projects using their hosting services.

What about the Google Project Hosting Issue API?

Open Comparison doesn’t track a project’s tickets/issues.

What about just screen scraping their site?

Too brittle for our tastes. The Google Project hosting site uses a lot of JavaScript and AJAX to deliver content. Besides, we would like to think our fellow developers at Google will provide us with a really awesome, well-documented, stable API.

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

Settings

How to customize the settings to suit your needs. Do this in local_settings so patches and upstream pulls don’t cause havoc to your installation

ADMIN_URL_BASE (Default: r”^admin/”)

Used to control the URL for the admin in production.

FRAMEWORK_TITLE (Default: “Django”)

Used to create the name of the site.

PACKAGE_EXTENDERS

Used to determine how packages have extended data sets. See package_extenders

PACKAGINATOR_SEARCH_PREFIX (Default: “django”)

In the case of Django Packages, autocomplete searches for something like ‘forms’ was problematic because so many packages start with ‘django’. The same will hold for searches in Python Packages and Pyramid Packages. This prefix is accommodated
in searches to prevent this sort of problem.

example:

PACKAGINATOR_SEARCH_PREFIX = 'pyramid'

PACKAGINATOR_HELP_TEXT (Default: Included in settings.py)

Used in the Package add/edit form in both the admin and the UI, these are assigned to model form help text arguments. Takes a dict of the following items:

Example (also the default):

PACKAGINATOR_HELP_TEXT = {
 "REPO_URL" : "Enter your project repo hosting URL here.
Example: https://bitbucket.org/ubernostrum/django-registration",
 "PYPI_URL" : "Leave this blank if this package does not have a PyPI release.
What PyPI uses to index your package.
Example: django-registration"
}

Launchpad Specific settings

The launchpad Python client tool requires an unbelievable amount of requirements to handle a simple JSON ReST based webservice. These requirements can be tricky to install. Therefore, OpenComparison out of the box does not support Launchpad.

Warning

Launchpad hasn’t been tested or maintained in a while. This probably won’t work at this time.

If you have problems, please refer to troubleshooting.

LAUNCHPAD_ACTIVE (Default: False)

If you want your instance of OpenComparison to support Launchpad, set this setting to true in local_settings.py:

LAUNCHPAD_ACTIVE = True

LAUNCHPAD_CACHE_DIR

Used to point LAUNCHPAD commands against the appropriate cache. Important in real hosting machines.

Example:

LAUNCHPAD_CACHE_DIR = "/tmp/lp-cache"

Permissions Settings

OpenComparison provides several ways to control who can make what changes to
things like packages, features, and grids. By default, a OpenComparison project
is open to contributions from any registered user. If a given project would
like more control over this, there are two settings that can be used.

RESTRICT_PACKAGE_EDITORS
RESTRICT_GRID_EDITORS

If these are not set, the assumption is that you do not want to restrict
editing.

If set to True, a user must have permission to add or edit the given object.
These permissions are set in the Django admin, and can be applied per user, or per group.

Settings that are on by default

By default registered users can do the following:

Packages

	Can add package

	Can change package

Grids

	Can add Package

	Can change Package

	Can add feature

	Can change feature

	Can change element

In the default condition, only super users or those with permission can delete.

Testing permissions in templates

A context processor will add the user profile to every template context, the
profile model also handles checking for permissions:

{% if profile.can_edit_package %}
 <edit package UI here>
{% endif %}

The follow properties can be used in templates:

	can_add_package

	can_edit_package

	can_edit_grid

	can_add_grid

	can_add_grid_feature

	can_edit_grid_feature

	can_delete_grid_feature

	can_add_grid_package

	can_delete_grid_package

	can_edit_grid_element

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

Testing Instructions

Running the test suite

To run all of the OpenComparison tests:

python manage.py test --settings.test

To run tests for a particular OpenComparison app, for example the feeds app:

python manage.py test feeds --settings.test

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

Management Commands

package_updater

You can update all the packages with the following command:

python manage.py package_updater

Warning: This can take a long, long time.

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

PyPI Issues

You may ask why the PyPI code is a bit odd in places. PyPI is an organically grown project and uses its own custom designed framework rather than the dominant frameworks that existed during its inception (these being Pylons, Django, TurboGears, and web.py). Because of this you get things like the API having in its package_releases() method an explicit license field that has been replaced by the less explicit list column in the very generic classifiers field. So we have to parse things like this to get a particular package’s license:

['Development Status :: 5 - Production/Stable', 'Environment :: Web Environment',
'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved
:: BSD License', 'Operating System :: OS Independent', 'Programming Language ::
Python', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP ::
Dynamic Content', 'Topic :: Internet :: WWW/HTTP :: WSGI', 'Topic :: Software
Development :: Libraries :: Application Frameworks', 'Topic :: Software
Development :: Libraries :: Python Modules']

The specification is here and this part of it just makes no sense to me:

http://docs.python.org/distutils/setupscript.html#additional-meta-data

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

Team

Project Leads

	Audrey Roy <audreyr@gmail.com> (@audreyr)

	Daniel Greenfeld <pydanny@gmail.com> (@pydanny)

Core Developer at Server Move 2012

	Randall Degges

Core Developers at DjangoCon 2011

	James Punteney

	Mike Johnson

	Taylor Mitchell

Core Developer at DataMigrationCon 2011

	Katharine Jarmul

Core Developers at PyCon 2011

	Gisle Aas

	Nate Aune

	Szilveszter Farkas

Core Developers at DjangoCon 2011

	James Punteney

	Jonas Obrist

	Taavi Taijala

Direct Contributors

	Aaron Kavlie

	Adam Saegebarth

	Alex Robbins

	Andrii Kurinny

	Brian Ball

	Bryan Weingarten

	Chris Adams

	Christopher Clark

	David Peters

	Dougal Matthews (@d0ugal)

	Eric Spunagle

	Evgeny Fadeev

	Flaviu Simihaian

	George Dorn

	Gisle Aas (Repo Man)

	Jacob Burch

	James Pacileo

	James Punteney

	Jeff Schenck

	Jim Allman

	John M. Camara

	Jonas Obrist

	jrothenbuhler

	Kenneth Love

	Kenneth Reitz

	@kerridge0

	Marc Tamlyn

	Mike Fiedler

	Mike Johnson

	Nate Aune

	Nolan Brubaker

	PA Parent

	Preston Holmes

	Randall Degges

	Skot Carruth

	Stuart Powers

	Szilveszter Farkas (Repo Man)

	Taavi Taijala

	Taylor Mitchell

	Tom Brander

	Vasja Volin

Other Contributors

	The entire Python community for providing us the tools we needed to build this thing.

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

Contributing

Setup

Fork on GitHub

Before you do anything else, login/signup on GitHub and fork OpenComparison from the GitHub project [https://github.com/opencomparison/opencomparison].

Clone your fork locally

If you have git-scm installed, you now clone your git repo using the following command-line argument where <my-github-name> is your account name on GitHub:

git clone git@github.com:<my-github-name>/opencomparison.git

Installing OpenComparison

Follow our detailed installation instructions. Please record any difficulties you have and share them with the OpenComparison community via our issue tracker [https://github.com/opencomparison/opencomparison/issues].

Issues!

The list of outstanding OpenComparison feature requests and bugs can be found on our on our GitHub issue tracker [https://github.com/opencomparison/opencomparison/issues]. Pick an unassigned issue that you think you can accomplish, add a comment that you are attempting to do it, and shortly your own personal label matching your GitHub ID will be assigned to that issue.

Feel free to propose issues that aren’t described!

Tips

	starter labeled issues are deemed to be good low-hanging fruit for newcomers to the project, Django, or even Python.

	doc labeled issues must only touch content in the docs folder.

Setting up topic branches and generating pull requests

While it’s handy to provide useful code snippets in an issue, it is better for
you as a developer to submit pull requests. By submitting pull request your
contribution to OpenComparison will be recorded by Github.

In git it is best to isolate each topic or feature into a “topic branch”. While
individual commits allow you control over how small individual changes are made
to the code, branches are a great way to group a set of commits all related to
one feature together, or to isolate different efforts when you might be working
on multiple topics at the same time.

While it takes some experience to get the right feel about how to break up
commits, a topic branch should be limited in scope to a single issue as
submitted to an issue tracker.

Also since GitHub pegs and syncs a pull request to a specific branch, it is the
ONLY way that you can submit more than one fix at a time. If you submit
a pull from your master branch, you can’t make any more commits to your master
without those getting added to the pull.

To create a topic branch, its easiest to use the convenient -b argument to git
checkout:

git checkout -b fix-broken-thing
Switched to a new branch 'fix-broken-thing'

You should use a verbose enough name for your branch so it is clear what it is
about. Now you can commit your changes and regularly merge in the upstream
master as described below.

When you are ready to generate a pull request, either for preliminary review,
or for consideration of merging into the project you must first push your local
topic branch back up to GitHub:

git push origin fix-broken-thing

Now when you go to your fork on GitHub, you will see this branch listed under
the “Source” tab where it says “Switch Branches”. Go ahead and select your
topic branch from this list, and then click the “Pull request” button.

Here you can add a comment about your branch. If this in response to
a submitted issue, it is good to put a link to that issue in this initial
comment. The repo managers will be notified of your pull request and it will
be reviewed (see below for best practices). Note that you can continue to add
commits to your topic branch (and push them up to GitHub) either if you see
something that needs changing, or in response to a reviewer’s comments. If
a reviewer asks for changes, you do not need to close the pull and reissue it
after making changes. Just make the changes locally, push them to GitHub, then
add a comment to the discussion section of the pull request.

Pull upstream changes into your fork regularly

OpenComparison is advancing quickly. It is therefore critical that you pull upstream changes from master into your fork on a regular basis. Nothing is worse than putting in a days of hard work into a pull request only to have it rejected because it has diverged too far from master.

To pull in upstream changes:

git remote add upstream https://github.com/opencomparison/opencomparison.git
git fetch upstream

Check the log to be sure that you actually want the changes, before merging:

git log upstream/master

Then merge the changes that you fetched:

git merge upstream/master

For more info, see http://help.github.com/fork-a-repo/

How to get your pull request accepted

We want your submission. But we also want to provide a stable experience for our users and the community. Follow these rules and you should succeed without a problem!

Run the tests!

Before you submit a pull request, please run the entire OpenComparison test suite via:

python manage.py test --settings=settings.test

The first thing the core committers will do is run this command. Any pull request that fails this test suite will be rejected.

If you add code/views you need to add tests!

We’ve learned the hard way that code without tests is undependable. If your pull request reduces our test coverage because it lacks tests then it will be rejected.

For now, we use the Django Test framework (based on unittest).

Also, keep your tests as simple as possible. Complex tests end up requiring their own tests. We would rather see duplicated assertions across test methods then cunning utility methods that magically determine which assertions are needed at a particular stage. Remember: Explicit is better than implicit.

Don’t mix code changes with whitespace cleanup

If you change two lines of code and correct 200 lines of whitespace issues in a file the diff on that pull request is functionally unreadable and will be rejected. Whitespace cleanups need to be in their own pull request.

Keep your pull requests limited to a single issue

OpenComparison pull requests should be as small/atomic as possible. Large, wide-sweeping changes in a pull request will be rejected, with comments to isolate the specific code in your pull request. Some examples:

	If you are making spelling corrections in the docs, don’t modify the settings.py file (pydanny [http://pydanny.com] is guilty of this mistake).

	Adding a new repo handler must not touch the Package model or its methods.

	If you are adding a new view don’t ‘cleanup‘ unrelated views. That cleanup belongs in another pull request.

	Changing permissions on a file should be in its own pull request with explicit reasons why.

Follow PEP-8 and keep your code simple!

Memorize the Zen of Python:

>>> python -c 'import this'

Please keep your code as clean and straightforward as possible. When we see more than one or two functions/methods starting with _my_special_function or things like __builtins__.object = str we start to get worried. Rather than try and figure out your brilliant work we’ll just reject it and send along a request for simplification.

Furthermore, the pixel shortage is over. We want to see:

	package instead of pkg

	grid instead of g

	my_function_that_does_things instead of mftdt

Test any css/layout changes in multiple browsers

Any css/layout changes need to be tested in Chrome, Safari, Firefox, IE8, and IE9 across Mac, Linux, and Windows. If it fails on any of those browsers your pull request will be rejected with a note explaining which browsers are not working.

How pull requests are checked, tested, and done

First we pull the code into a local branch:

git remote add <submitter-github-name> git@github.com:<submitter-github-name>/opencomparison.git
git fetch <submitter-github-name>
git checkout -b <branch-name> <submitter-github-name>/<branch-name>

Then we run the tests:

python manage.py test

We finish with a non-fastforward merge (to preserve the branch history) and push to GitHub:

git checkout master
git merge --no-ff <branch-name>
git push upstream master

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

Repo Handler API

Adding a new repo system like Github in OpenComparison is a relatively straightforward task. You need to provide two things:

	Add a new repo handler in the apps.models.repos directory that follows the described API

	Add tests to check your work

	Document any special settings.

	Change the SUPPORTED_REPO to include the name of the new repo handler.

What if my target repo doesn’t support all the necessary fields?

Lets say you want to use GitBlarg, a new service whose API doesn’t provide the number of repo_watchers or participants. In order to handle them you would just set those values until such a time as GitBlarg would support the right data.

For example, as you can see in the apps.models.repos.base_handler.BaseHandler.fetch_metadata() method, the Package instance that it expects to see is a comma-seperated value:

def fetch_metadata(self, package):
 """ Accepts a package.models.Package instance:

 return: package.models.Package instance

 Must set the following fields:

 package.repo_watchers (int)
 package.repo_forks (int)
 package.repo_description (text)
 package.participants = (comma-seperated value)

 """
 raise NotImplemented()

So your code might do the following:

from GitBlargLib import GitBlargAPI
def fetch_metadata(self, package):

 # fetch the GitBlarg data
 git_blarg_data = GitBlargAPI.get(package.repo_name())

 # set the package attributes
 package.repo_watchers = 0 # GitBlagAPI doesn't have this so we set to 0
 package.repo_forks = git_blarg_data.forks
 package.repo_description = git_blarg_data.note
 package.participants = u"" # GitBlagAPI doesn't have this so we set to an empty string

 return package

How about cloning GitBlarg’s repos so we can get a better view of the data?

The problem is that developers, designers, and managers will happily put gigabytes of data into a git/hg/svn/fossil/cvs repo. For a single project that doesn’t sound like much, but when you are dealing with thousands of packages in a OpenComparison instance the scale of the data becomes... well... terrifying. What is now a mild annoyance becomes a staggeringly large problem.

Therefore, pull requests on repo handlers that attempt to solve the problem this way will be summarily rejected.

Can I make a repo handler for Google Project Hosting?

Not at this time. Please read the FAQ.

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

Webservice API

This is the API documentation for OpenComparison. It is designed to be language and tool agnostic.

API Usage

The current API is limited to read-only GET requests. Other HTTP methods will fail. Only JSON is provided

API Reference

Representation Formats

Representation formats

	JSON.

	UTF-8.

Base URI

	URI
	Resource
	Methods

	<http-my-domain.com>/api/v1/
	Root
	GET

URIs

	URI
	Resource
	Methods

	/category/
	Category list
	GET

	/category/{slug}/
	Category
	GET

	/grid/
	Grid list
	GET

	/grid/{slug}/
	Grid
	GET

	/grid/{slug}`/packages`_/
	Grid Packages list
	GET

	/grid-of-the-week/
	Featured Grid list
	GET

	/grid-of-the-week/{slug}/
	Featured Grid
	GET

	/package/
	Package list
	GET

	/package/{slug}/
	Package
	GET

	/package-of-the-week/
	Featured Package list
	GET

	/package-of-the-week/{slug}/
	Featured Package
	GET

Resources

Category

Representation:

{
 created: "Sat, 14 Aug 2010 19:47:52 -0400"
 description: "Small components used to build projects. An app is anything that is installed by placing in settings.INSTALLED_APPS."
 modified: "Sat, 28 Aug 2010 11:20:36 -0400"
 resource_uri: "/api/v1/category/apps/"
 slug: "apps"
 title: "App"
 title_plural: "Apps"
}

Grid

Representation:

{
 absolute_url: "/grids/g/cms/"
 created: "Sat, 14 Aug 2010 20:12:46 -0400"
 description: "This page lists a few well-known reusable Content Management System applications for Django and tries to gather a comparison of essential features in those applications."
 is_locked: false
 modified: "Sat, 11 Sep 2010 14:57:16 -0400"
 packages: [
 "/api/v1/package/django-cms/"
 "/api/v1/package/django-page-cms/"
 "/api/v1/package/django-lfc/"
 "/api/v1/package/merengue/"
 "/api/v1/package/mezzanine/"
 "/api/v1/package/philo/"
 "/api/v1/package/pylucid/"
 "/api/v1/package/django-gitcms/"
 "/api/v1/package/django-simplepages/"
 "/api/v1/package/djpcms/"
 "/api/v1/package/feincms/"
]
 resource_uri: "/api/v1/grid/cms/"
 slug: "cms"
 title: "CMS"
}

Grid-of-the-week

Representation:

{
 absolute_url: "/grids/g/cms/"
 created: "Sun, 15 Aug 2010 01:36:59 -0400"
 end_date: "22 Aug 2010"
 modified: "Sun, 15 Aug 2010 01:36:59 -0400"
 resource_uri: "/api/v1/grid-of-the-week/cms/"
 start_date: "15 Aug 2010"
}

Package

Representation:

{
 absolute_url: "/packages/p/pinax/"
 category: "/api/v1/category/frameworks/"
 created: "Mon, 16 Aug 2010 23:25:16 -0400"
 grids: [
 "/api/v1/grid/profiles/"
 "/api/v1/grid/social/"
 "/api/v1/grid/this-site/"
]
 modified: "Sun, 12 Sep 2010 17:02:10 -0400"
 participants: "pinax,brosner,jtauber,jezdez,ericflo,gregnewman,pydanny,edcrypt,paltman,dougn,alex,vgarvardt,alibrahim,lukeman,shentonfreude,jpic,httpdss,mikl,empty,brutasse,kwadrat,sunoano,robertrv,stephrdev,justinlilly,deepthawtz,skyl,googletorp,maicki,havan,zerok,hellp,asenchi,haplo,chimpymike,beshrkayali,zain,bartTC,ntoll,fernandoacorreia,oppianmatt,dartdog,gklein,acdha,ariddell,vikingosegundo,thraxil,rhouse2"
 pypi_downloads: 0
 pypi_url: "http://pypi.python.org/pypi/Pinax"
 pypi_version: "0.9a1"
 repo: "/api/v1/repo/1/"
 repo_commits: 0
 repo_description: "a Django-based platform for rapidly developing websites"
 repo_forks: 184
 repo_url: "http://github.com/pinax/pinax"
 repo_watchers: 913
 resource_uri: "/api/v1/package/pinax/"
 slug: "pinax"
 title: "Pinax"
}

Package-of-the-week

Representation:

{
 absolute_url: "/packages/p/django-uni-form/"
 created: "Sun, 15 Aug 2010 01:36:38 -0400"
 end_date: "15 Aug 2010"
 modified: "Mon, 16 Aug 2010 23:54:36 -0400"
 resource_uri: "/api/v1/package-of-the-week/django-uni-form/"
 start_date: "14 Aug 2010"
}

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

Lessons Learned

Some of these are common sense, and others we learned during the events in question.

DjangoCon 2010

	For sprints, show up early the first day.

	Stay in a hotel near the sprint. If you have to spend an hour going each way that’s up to 20% of sprint time you are wasting each day. If necessary, switch hotels.

PyCon 2011

Getting Sprinters

	Mark easy stuff for beginners. After they knock out an issue or two the stuff they’ve learned lets them handle harder tasks.

	Sit-down with each new contributor individually for at least 15 minutes to help them through the installation process. They get started much faster. you’ll spot the mistakes in your docs, and they’ll hang around longer.

	If you see anyone during the sprints who looks lost or without a project, invite them to join you.

	If you have a full sprint table and a non-sprinter is sitting with you get them to contribute something small. They go from being a distraction to a valued member of the team.

	Go out for dinner at a fun restaurant the first night with just your team. On other nights try to keep meals short since long meals mean hours of missed sprint time.

Assigning Work

	Assign issues in the issue tracker to specific people. No one should work a task unless they have had it assigned to them. This way you avoid duplication of effort.

	Tell people if they get stuck on something for 30 minutes to ask questions. We are all beginners and the hardest problems often become simple spelling mistakes when you try and explain them.

Be conservative

You don’t want to stall people from doing the work they are trying to get done. So that means:

	Keep the database as stable as possible during a large sprint.

	Freeze the design during a sprint. Have designer-oriented people prettify neglected views e.g. the login page, server error pages.

Helping people get stuff done

	If you are leading a sprint don’t expect to get any code done yourself. Your job is to facilitate other people to have fun hacking, learning, and getting things done.

	Go around and ask questions of your sprinters periodically. People are often too shy to come up to you but if you go up to them they’ll readily ask for help.

	Update your install documentation as your sprinters discover problems.

	If you have new dependencies, let everyone know as soon and as loudly as possible.

	Good documentation is as important as code. When people ask questions rather than just answering the question, walk them through the specific answer in your docs. If the answer doesn’t exist, document it yourself and have them help you write the answer.

	Demonstrate coverage.py to the sprinters, show them how to write tests, and provide good test examples. Good test coverage will save everyone a lot of grief during development and deployment.

	Have your code working on all major platforms with installation instructions for each platform. Your code on all platforms will be that much stable for it.

	Have a portable drive with the dependencies for your project on it. You can never count on the network being reliable at a sprint.

	If a beginning developer asks for help, try to get your advanced sprinters to answer the questions and possibly pair with them for a while.

	When someone is working really hard and is trying to focus, run interference for them.

Pull Requests

	Provide good and bad pull request examples.

	Don’t be afraid of sounding stupid if you don’t understand someone’s pull request. If it confuses you it’s going to confuse newcomers even more and hence make your code unmaintainable. Remember that simplicity is a virtue and is one of the best things of projects like Python, Pyramid, and Flask.

	Each time someone submits a pull request, ask them if they’ve run the full test suite. Yeah, it’s repetitive but they’ll thank you for it.

	If someone submits a broken pull request, see if you can work out the issue with them. If the problem is not easily corrected, ask them to fix the problem and resubmit the pull request.

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

Development reference documentation

All of the modules listed are applications.

apiv1 - restful API

Restful api for opencomparison, based on django-tastypie
(docs [http://django-tastypie.readthedocs.org/]
|
pypi [http://pypi.python.org/pypi/django-tastypie/]
|
repo [https://github.com/toastdriven/django-tastypie/]).

This module consists of two components - module api
and the resource definition module resources.

The api urls are exposed in project’s main urls.py file

apiv1.api

apiv1.resources

core - Kernal bits

core.fields

core.models

feeds - RSS and Atom feeds

This application defines RSS and Atom feeds
that are made available to the users of OpenComparison

feeds.urls

feeds.feeds

grid - package grid app

Grid application - displays and
manipulates the package grid

grid.views

grid.models

grid.forms

profiles - profiles app

Manages user profiles

profiles.models

profiles.context_processors

	
profiles.context_processors.lazy_profile(request)[source]

	Returns context variables required by templates that assume a profile
on each request

pypi - pypi app

All connection points with PyPI

pypi.slurper

pypi.versioning

	
pypi.versioning.compare_versions(version1, version2)[source]

	Determines the order of versions

	
pypi.versioning.highest_version(versions)[source]

	returns the highest version

searchv2 - searchv2 app

searchv2.views

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenComparison documentation

Package Extenders

Warning

This is a work in progress. Much of the work was done in the package_refactor branch.

What remains

	Get apiv2 in place since apiv1 is broken hard

How it works

settings.PACKAGE_EXTENDERS = [
 {
 'form':'apps.dummy.forms.DummyForm',
 'model':'dummy.DummyModel'
 # form
 # model
 # grid_items
 # package_displays
 },
]

Originally OpenComparison packages just dealt with packages stored in the Python Package Index (PyPI) and with extra data provided by common repo systems like Bitbucket, Github and Launchpad. The purpose of this setting is to remove the tight coupling used for that and allow for Packages. This abstraction is designed to allow Python apps that follow a standard interface to be plugged seamlessly into OpenComparison, and unplugged - all without additional wiring in regards to settings, templates, and urls.

The interface system is described as follows:

forms

	Can provide extra fields for use in the add/edit PackageForm

	Can provide add/edit forms for use on Package detail page to capture extra data. e.g. examples.

models (optional)

Models can be assigned to related to package.models.Package:

class DummyModel(object):

 package = models.ForeignKey(Package)

templates

	TODO provide style guide

	TODO allow for inlines/blocks that can be looped through if named correctly. Sample

	TODO xyz/snippets/_grid.html

	TODO xyz/snippets/_package.html

urls

	standard

	Added via loop in root urls.py on settings.PACKAGE_EXTENDERS

views

	standard

	Added thanks to urls.py

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	OpenComparison documentation

PostgreSQL setup instructions for new contributors

Mac

EnterpriseDB maintains a Mac OS X binary installer. First, download
and install from here:

http://www.enterprisedb.com/products-services-training/pgdownload#osx

The package will take care of most of the PostgreSQL installation
needs but it needs a couple of small tweaks.

Become the new postgres user that the package added:

sudo su - postgres

Source the environment file:

source pg_env.sh

Next, setup postgres to listen on TCP/IP sockets. Edit
$PGDATA/postgresql.conf and listen_addresses is set to
‘localhost’.

Also, for a more convenient development server setup, it is nice to
loosen the host-based security settings for localhost. Edit
$PGDATA/pg_hba.conf and set the local and 127.0.0.1/32 lines to
use “trust” authentication (change the last column from md5 to trust).

Lastly, apply the changes using pg_ctl reload and exit to log
out as the postgres user.

Now you should be able to access postgres using psql -U
postgres. Create a new database using createdb -U postgres
opencomparison.

Another way

If you prefer to use Homebrew [http://mxcl.github.io/homebrew/] to install
your software you can do this:

brew install postgresql
initdb /usr/local/var/postgres -E utf8
pg_ctl -D /usr/local/var/postgres -l /usr/local/var/postgres/server.log start

Change the path used in initdb and other commands if you’d rather store
your data files somewhere other than /usr/local/var/postgres.

Once the server is started, execute:

createdb opencomparison

Then you should be able to access the database you created via psql so:

psql --dbname opencomparison

Remeber to shut down the service when not in use:

pg_ctl -D /usr/local/var/postgres stop

The security defaults are already in place, and will allow a lot of access.
This should never be considered a production-ready deployment scenario.

Ubuntu

Install Postgres 8.4 (the version used on the site, as of this writing) with:

sudo apt-get install postgresql-8.4 libpq-dev

Edit /etc/postgresql/8.4/main/postgresql.conf and make sure the
listen line is either listen = 'localhost' or listen = '*' to
listen on all interfaces.

Also, for a more convenient development server setup, it is nice to
loosen the host-based security settings for localhost. Edit
/etc/postgresql/8.4/main/pg_hba.conf and set the local and
127.0.0.1/32 lines to use “trust” authentication (change the last
column from md5 to trust).

Apply those changes with /etc/init.d/postgresql-8.4 reload.

Lastly, create a new database using createdb -U postgres opencomparison.

Windows

EnterpriseDB maintains a Windows binary installer. First, download
and install from here:

http://www.enterprisedb.com/products-services-training/pgdownload#windows

The package will take care of most of the PostgreSQL installation
needs but it needs a couple of small tweaks.

Install the Windows port of psycopg2 from http://www.stickpeople.com/projects/python/win-psycopg/

Open pgAdmin III. Right-click on PostgreSQL 8.4 (localhost:5432) and
choose Connect. Enter the Postgres user password.

Right-click Databases and choose New Database. Give it the name
opencomparison and the owner postgres. Click OK.

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	OpenComparison documentation

 Python Module Index

 a |
 c |
 f |
 g |
 p |
 s

 			

 		
 a	

 	
 	
 apiv1	

 			

 		
 c	

 	
 	
 core	

 			

 		
 f	

 	
 	
 feeds	

 			

 		
 g	

 	
 	
 grid	

 			

 		
 p	

 	[image: -]
 	
 profiles	

 	
 	
 profiles.context_processors	

 	[image: -]
 	
 pypi	

 	
 	
 pypi.versioning	

 			

 		
 s	

 	
 	
 searchv2	

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	OpenComparison documentation

Index

 A
 | C
 | F
 | G
 | H
 | L
 | P
 | S

A

 	

 	apiv1 (module)

C

 	

 	compare_versions() (in module pypi.versioning)

 	

 	core (module)

F

 	

 	feeds (module)

G

 	

 	grid (module)

H

 	

 	highest_version() (in module pypi.versioning)

L

 	

 	lazy_profile() (in module profiles.context_processors)

P

 	

 	profiles (module)

 	profiles.context_processors (module)

 	

 	pypi (module)

 	pypi.versioning (module)

S

 	

 	searchv2 (module)

 Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 _static/minus.png

_modules/pypi/slurper.html

 Navigation

 		
 index

 		
 modules |

 		OpenComparison documentation »

 		Module code »

 Source code for pypi.slurper

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""
PyPI interface (see http://wiki.python.org/moin/PyPiXmlRpc)
"""

import re
import xmlrpclib

from django.template.defaultfilters import slugify

from package.models import Category, Package
from package.pypi import highest_version

base_url = "http://pypi.python.org/pypi/"
PYPI = xmlrpclib.Server(base_url)

[docs]class Slurper(object):
 """ Fetches data from PyPI """

 def __init__(self, package):
 self.package_name = package
 self.dumb_category, created = Category.objects.get_or_create(
 title='Python', slug='python')
 self.dumb_category.save()

[docs] def get_latest_version_number(self, package_name, versions=None):
 """ Returns the latest version number for a package """
 if versions:
 return highest_version(versions)
 else:
 return highest_version(PYPI.package_releases(package_name))

[docs] def get_or_create_package(self, package_name, version):
 data = PYPI.release_data(package_name, version)
 pypi_url = base_url + package_name
 package, created = Package.objects.get_or_create(
 title=data['name'],
 slug=slugify(package_name),
 category=self.dumb_category,
 pypi_url=base_url + data['name']
)
 package.repo_description = data['summary'] or data['description']
 if not package.repo_url:
 url = data.get("home_page", None) or data.get('project_url', "") or pypi_url
 repo_pattern = '((?:http|https|git)://github.com/[^/]*/[^/]*)/{0,1}'
 match = re.match(repo_pattern, url)
 if match and match.group(1):
 package.repo_url = match.group(1)
 else:
 # TODO do we want to assume this is a repo url?
 # should there be more checking for repo patterns?
 package.repo_url = url
 package.save()
 package.fetch_metadata()
 return (package, created)

 © Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_modules/profiles/models.html

 Navigation

 		
 index

 		
 modules |

 		OpenComparison documentation »

 		Module code »

 Source code for profiles.models

from django.conf import settings
from django.contrib.auth.models import User
from django.db import models
from django.utils.translation import ugettext_lazy as _

from core.models import BaseModel

[docs]class Profile(BaseModel):
 user = models.OneToOneField(User)

 # Note to coders: The '_url' fields below need to JUST be the name of the account.
 # Examples:
 # github_url = 'pydanny'
 # bitbucket_url = 'pydanny'
 # google_code_url = 'pydanny'
 github_account = models.CharField(_("Github account"), null=True, blank=True, max_length=40)
 github_url = models.CharField(_("Github account"), null=True, blank=True, max_length=100, editable=False)
 bitbucket_url = models.CharField(_("Bitbucket account"), null=True, blank=True, max_length=100)
 google_code_url = models.CharField(_("Google Code account"), null=True, blank=True, max_length=100)
 email = models.EmailField(_("Email"), null=True, blank=True)

 def __unicode__(self):
 if not self.github_account:
 return self.user.username
 return self.github_account

[docs] def save(self, **kwargs):
 """ Override save to always populate email changes to auth.user model
 """
 if self.email is not None:

 email = self.email.strip()
 user_obj = User.objects.get(username=self.user.username)
 user_obj.email = email
 user_obj.save()

 super(Profile, self).save(**kwargs)

[docs] def url_for_repo(self, repo):
 """Return the profile's URL for a given repo.

 If url doesn't exist return None.
 """
 url_mapping = {
 'Github': self.github_account,
 'BitBucket': self.bitbucket_url,
 'Google Code': self.google_code_url}
 return url_mapping.get(repo.title)

[docs] def my_packages(self):
 """Return a list of all packages the user contributes to.

 List is sorted by package name.
 """
 from package.repos import get_repo, supported_repos

 packages = []
 for repo in supported_repos():
 repo = get_repo(repo)
 repo_packages = repo.packages_for_profile(self)
 packages.extend(repo_packages)
 packages.sort(lambda a, b: cmp(a.title, b.title))
 return packages

 # define permission properties as properties so we can access in templates

 @property
 def can_add_package(self):
 if getattr(settings, 'RESTRICT_PACKAGE_EDITORS', False):
 return self.user.has_perm('package.add_package')
 # anyone can add
 return True

 @property
 def can_edit_package(self):
 if getattr(settings, 'RESTRICT_PACKAGE_EDITORS', False):
 # this is inconsistent, fix later?
 return self.user.has_perm('package.change_package')
 # anyone can edit
 return True

 # Grids
 @property
 def can_edit_grid(self):
 if getattr(settings, 'RESTRICT_GRID_EDITORS', False):
 return self.user.has_perm('grid.change_grid')
 return True

 @property
 def can_add_grid(self):
 if getattr(settings, 'RESTRICT_GRID_EDITORS', False):
 return self.user.has_perm('grid.add_grid')
 return True

 # Grid Features
 @property
 def can_add_grid_feature(self):
 if getattr(settings, 'RESTRICT_GRID_EDITORS', False):
 return self.user.has_perm('grid.add_feature')
 return True

 @property
 def can_edit_grid_feature(self):
 if getattr(settings, 'RESTRICT_GRID_EDITORS', False):
 return self.user.has_perm('grid.change_feature')
 return True

 @property
 def can_delete_grid_feature(self):
 if getattr(settings, 'RESTRICT_GRID_EDITORS', False):
 return self.user.has_perm('grid.delete_feature')
 return True

 # Grid Packages
 @property
 def can_add_grid_package(self):
 if getattr(settings, 'RESTRICT_GRID_EDITORS', False):
 return self.user.has_perm('grid.add_gridpackage')
 return True

 @property
 def can_delete_grid_package(self):
 if getattr(settings, 'RESTRICT_GRID_EDITORS', False):
 return self.user.has_perm('grid.delete_gridpackage')
 return True

 # Grid Element (cells in grid)
 @property
 def can_edit_grid_element(self):
 if getattr(settings, 'RESTRICT_GRID_EDITORS', False):
 return self.user.has_perm('grid.change_element')
 return True

 © Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

search.html

 Navigation

 		
 index

 		
 modules |

 		OpenComparison documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		OpenComparison documentation »

 All modules for which code is available

		core.fields

		core.models

		feeds.feeds

		grid.forms

		grid.models

		profiles.context_processors

		profiles.models

		pypi.slurper

		pypi.versioning

		searchv2.views

 © Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_modules/grid/forms.html

 Navigation

 		
 index

 		
 modules |

 		OpenComparison documentation »

 		Module code »

 Source code for grid.forms

"""Forms for the :mod:`grid` app
"""

from django.forms import ModelForm

from grid.models import Element, Feature, Grid, GridPackage

[docs]class GridForm(ModelForm):
 """collects data for the new grid - a
 django ``ModelForm`` for :class:`grid.models.Grid`
 """

[docs] def clean_slug(self):
 """returns lower-cased slug"""
 return self.cleaned_data['slug'].lower()

 class Meta:
 model = Grid
 fields = ['title', 'slug', 'description']

[docs]class ElementForm(ModelForm):
 """collects data for a new grid element -
 a ``ModelForm`` for :class:`grid.models.Element`
 """

 class Meta:
 model = Element
 fields = ['text',]

[docs]class FeatureForm(ModelForm):
 """collects data for the feature -
 a ``ModelForm`` for :class:`grid.models.Feature`
 """

 class Meta:
 model = Feature
 fields = ['title', 'description',]

[docs]class GridPackageForm(ModelForm):
 """collects data for a new package -
 a ``ModelForm`` for :class:`grid.models.GridPackage`
 """

 class Meta:
 model = GridPackage
 fields = ['package']

 © Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_modules/feeds/feeds.html

 Navigation

 		
 index

 		
 modules |

 		OpenComparison documentation »

 		Module code »

 Source code for feeds.feeds

"""Contains classes for the feeds"""

from django.conf import settings
from django.contrib.syndication.views import Feed
from django.utils.feedgenerator import Atom1Feed

from package.models import Package

[docs]class RssLatestPackagesFeed(Feed):
 """RSS Feed for the packages"""
 title = "Latest {0} packages added".format(settings.FRAMEWORK_TITLE)
 link = "/packages/latest/"
 description = "The last 15 packages added"

[docs] def items(self):
 """Returns 15 most recently created repositories"""
 return Package.objects.all().order_by("-created")[:15]

[docs] def item_title(self, item):
 """Get title of the repository"""
 return item.title

[docs] def item_description(self, item):
 """Get description of the repository"""
 return item.repo_description

[docs] def item_pubdate(self, item):
 """Get publication date"""
 return item.created

[docs]class AtomLatestPackagesFeed(RssLatestPackagesFeed):
 """Atom feed for the packages"""
 feed_type = Atom1Feed
 subtitle = RssLatestPackagesFeed.description

 © Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_modules/core/models.html

 Navigation

 		
 index

 		
 modules |

 		OpenComparison documentation »

 		Module code »

 Source code for core.models

from django.db import models
from django.utils.translation import ugettext_lazy as _

from core.fields import CreationDateTimeField, ModificationDateTimeField

[docs]class BaseModel(models.Model):
 """ Base abstract base class to give creation and modified times """
 created = CreationDateTimeField(_('created'))
 modified = ModificationDateTimeField(_('modified'))

 class Meta:
 abstract = True

 © Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/down-pressed.png

_modules/profiles/context_processors.html

 Navigation

 		
 index

 		
 modules |

 		OpenComparison documentation »

 		Module code »

 Source code for profiles.context_processors

from django.utils.functional import lazy, memoize, SimpleLazyObject

[docs]def lazy_profile(request):
 """
 Returns context variables required by templates that assume a profile
 on each request
 """

 def get_user_profile():
 if hasattr(request, 'profile'):
 return request.profile
 else:
 return request.user.get_profile()

 data = {
 'profile': SimpleLazyObject(get_user_profile),
 }
 return data

 © Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_modules/searchv2/views.html

 Navigation

 		
 index

 		
 modules |

 		OpenComparison documentation »

 		Module code »

 Source code for searchv2.views

import simplejson

from django.contrib.auth.decorators import login_required
from django.core.urlresolvers import reverse
from django.db.models import Q
from django.http import HttpResponseForbidden, HttpResponseRedirect, HttpResponse
from django.shortcuts import render

from package.models import Package
from searchv2.forms import SearchForm
from searchv2.builders import build_1
from searchv2.models import SearchV2
from searchv2.utils import remove_prefix, clean_title

@login_required
[docs]def build_search(request, template_name="searchv2/build_results.html"):

 if not request.user.is_superuser:
 return HttpResponseForbidden()

 results = []
 if request.method == 'POST':
 results = build_1(False)

 return render(request, template_name,
 {'results': results})

[docs]def search_function(q):
 """ TODO - make generic title searches have lower weight """

 items = []
 if q:
 items = SearchV2.objects.filter(
 Q(clean_title__startswith=clean_title(remove_prefix(q))) |
 Q(title__icontains=q) |
 Q(title_no_prefix__startswith=q.lower()) |
 Q(slug__startswith=q.lower()) |
 Q(slug_no_prefix__startswith=q.lower()))
 #grids = Grid.objects.filter(Q(title__icontains=q) | Q(description__icontains=q))
 return items

[docs]def search(request, template_name='searchv2/search.html'):
 """
 Searches in Grids and Packages
 """
 q = request.GET.get('q', '')

 if '/' in q:
 lst = q.split('/')
 try:
 if lst[-1]:
 q = lst[-1]
 else:
 q = lst[-2]
 except IndexError:
 pass
 try:
 package = Package.objects.get(title=q)
 url = reverse("package", args=[package.slug.lower()])
 return HttpResponseRedirect(url)
 except Package.DoesNotExist:
 pass
 except Package.MultipleObjectsReturned:
 pass

 try:
 package = Package.objects.get(slug=q)
 url = reverse("package", args=[package.slug.lower()])
 return HttpResponseRedirect(url)
 except Package.DoesNotExist:
 pass
 except Package.MultipleObjectsReturned:
 pass

 form = SearchForm(request.GET or None)

 return render(request, template_name, {
 'items': search_function(q),
 'form': form
 })

[docs]def search_packages_autocomplete(request):
 """
 Searches in Packages
 """
 q = request.GET.get('term', '')
 if q:
 objects = search_function(q)[:15]
 objects = objects.values_list('title', flat=True)
 json_response = simplejson.dumps(list(objects))
 else:
 json_response = simplejson.dumps([])

 return HttpResponse(json_response, mimetype='text/javascript')

 © Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/comment-bright.png

_modules/pypi/versioning.html

 Navigation

 		
 index

 		
 modules |

 		OpenComparison documentation »

 		Module code »

 Source code for pypi.versioning

from distutils.version import StrictVersion, LooseVersion

[docs]def compare_versions(version1, version2):
 """ Determines the order of versions"""
 try:
 return cmp(StrictVersion(version1), StrictVersion(version2))
 # in case of abnormal version number, fall back to LooseVersion
 except ValueError:
 return cmp(LooseVersion(version1), LooseVersion(version2))

[docs]def highest_version(versions):
 """ returns the highest version """
 return reduce((lambda v1, v2: compare_versions(v1, v2) == 1 and v1 or v2), versions)

 © Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/up.png

_static/plus.png

_modules/core/fields.html

 Navigation

 		
 index

 		
 modules |

 		OpenComparison documentation »

 		Module code »

 Source code for core.fields

from django_extensions.db.fields import CreationDateTimeField, ModificationDateTimeField

[docs]class CreationDateTimeField(CreationDateTimeField):

[docs] def south_field_triple(self):
 "Returns a suitable description of this field for South."
 # We'll just introspect ourselves, since we inherit.
 from south.modelsinspector import introspector
 field_class = "django.db.models.fields.DateTimeField"
 args, kwargs = introspector(self)
 return (field_class, args, kwargs)

[docs]class ModificationDateTimeField(ModificationDateTimeField):

[docs] def south_field_triple(self):
 "Returns a suitable description of this field for South."
 # We'll just introspect ourselves, since we inherit.
 from south.modelsinspector import introspector
 field_class = "django.db.models.fields.DateTimeField"
 args, kwargs = introspector(self)
 return (field_class, args, kwargs)

 © Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_modules/grid/models.html

 Navigation

 		
 index

 		
 modules |

 		OpenComparison documentation »

 		Module code »

 Source code for grid.models

from django.conf import settings
from django.core.cache import cache
from django.db import models
from django.utils.translation import ugettext_lazy as _

from core.models import BaseModel
from core.utils import cache_fetcher
from grid import cachekeys
from package.models import Package

[docs]class Grid(BaseModel):
 """Grid object, inherits form :class:`package.models.BaseModel`. Attributes:

 * :attr:`~grid.models.Grid.title` - grid title
 * :attr:`~grid.models.Grid.slug` - grid slug for SEO
 * :attr:`~grid.models.Grid.description` - description of the grid
 with line breaks and urlized links
 * :attr:`~grid.models.Grid.is_locked` - boolean field accessible
 to moderators
 * :attr:`~grid.models.Grid.packages` - many-to-many relation
 with :class:~`grid.models.GridPackage` objects
 """

 title = models.CharField(_('Title'), max_length=100)
 slug = models.SlugField(_('Slug'), help_text="Slugs will be lowercased", unique=True)
 description = models.TextField(_('Description'), blank=True, help_text="Lines are broken and urls are urlized")
 is_locked = models.BooleanField(_('Is Locked'), default=False, help_text="Moderators can lock grid access")
 packages = models.ManyToManyField(Package, through="GridPackage")
 header = models.BooleanField(_("Header tab?"), default=False, help_text="If checked then displayed on homepage header")

 def elements(self):
 elements = []
 for feature in self.feature_set.all():
 for element in feature.element_set.all():
 elements.append(element)
 return elements

 def __unicode__(self):
 return self.title

 @property
[docs] def grid_packages(self):
 """ Gets all the packages and orders them for views and other things
 """
 gp = self.gridpackage_set.select_related('gridpackage', 'package__repo', 'package__category')
 grid_packages = gp.annotate(usage_count=models.Count('package__usage')).order_by('-usage_count', 'package')
 return grid_packages

 """
 key, grid_packages = cache_fetcher(cachekeys.grid_grid_packages, self)
 if grid_packages is not None:
 return grid_packages
 gp = self.gridpackage_set.select_related('gridpackage', 'package__repo', 'package__category')
 grid_packages = gp.annotate(usage_count=models.Count('package__usage')).order_by('-usage_count', 'package')
 cache.set(key, grid_packages, settings.CACHE_TIMEOUT)
 return grid_packages
 """

 def save(self, *args, **kwargs):
 self.grid_packages # fire the cache
 super(Grid, self).save(*args, **kwargs)

 @models.permalink
 def get_absolute_url(self):
 return ("grid", [self.slug])

 class Meta:
 ordering = ['title']

[docs]class GridPackage(BaseModel):
 """Grid package.
 This model describes packages listed on one side of the grids
 and
 explicitly defines the many-to-many relationship between grids
 and the packages
 (i.e - allows any given package to be assigned to several grids at once).

 Attributes:

 * :attr:`grid` - the :class:`~grid.models.Grid` to which the package is assigned
 * :attr:`package` - the :class:`~grid.models.Package`
 """

 grid = models.ForeignKey(Grid)
 package = models.ForeignKey(Package)

 class Meta:
 verbose_name = 'Grid Package'
 verbose_name_plural = 'Grid Packages'

 def save(self, *args, **kwargs):
 self.grid.grid_packages # fire the cache
 super(GridPackage, self).save(*args, **kwargs)

 def __unicode__(self):
 return '%s : %s' % (self.grid.slug, self.package.slug)

[docs]class Feature(BaseModel):
 """ These are the features measured against a grid.
 ``Feature`` has the following attributes:

 * :attr:`grid` - the grid to which the feature is assigned
 * :attr:`title` - name of the feature (100 chars is max)
 * :attr:`description` - plain-text description
 """

 grid = models.ForeignKey(Grid)
 title = models.CharField(_('Title'), max_length=100)
 description = models.TextField(_('Description'), blank=True)

 def save(self, *args, **kwargs):
 self.grid.grid_packages # fire the cache
 super(Feature, self).save(*args, **kwargs)

 def __unicode__(self):
 return '%s : %s' % (self.grid.slug, self.title)

help_text = """
Linebreaks are turned into 'br' tags

Urls are turned into links

You can use just 'check', 'yes', 'good' to place a checkmark icon.

You can use 'bad', 'negative', 'evil', 'sucks', 'no' to place a negative icon.

Plus just '+' or '-' signs can be used but cap at 3 multiples to protect layout

"""

[docs]class Element(BaseModel):
 """ The individual cells on the grid.
 The ``Element`` grid attributes are:

 * :attr:`grid_package` - foreign key to :class:`~grid.models.GridPackage`
 * :attr:`feature` - foreign key to :class:`~grid.models.Feature`
 * :attr:`text` - the actual contents of the grid cell
 """

 grid_package = models.ForeignKey(GridPackage)
 feature = models.ForeignKey(Feature)
 text = models.TextField(_('text'), blank=True, help_text=help_text)

 class Meta:

 ordering = ["-id"]

 def save(self, *args, **kwargs):
 self.feature.save() # fire grid_packages cache
 super(Element, self).save(*args, **kwargs)

 def __unicode__(self):
 return '%s : %s : %s' % (self.grid_package.grid.slug, self.grid_package.package.slug, self.feature.title)

 © Copyright 2010-2012, Audrey Roy, Daniel Greenfeld and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

