

 Navigation

 	
 index

 	
 next |

 	Pachyderm 1.9.3 documentation

Pachyderm Developer Documentation

Welcome to the Pachyderm documentation portal! Below you find guides
and information for beginners and experienced Pachyderm users, as well
as the Pachyderm API reference docs.

If you cannot find what you are looking for or have an issue that is
not mentioned here, we’d love to hear from you either on
GitHub [https://github.com/pachyderm/pachyderm], in our
Users Slack channel [http://slack.pachyderm.io/], or by
email at support@pachyderm.io.

Note

If you are using a Pachyderm version 1.4 or earlier, you
can find relevant documentation published in our old
documentation portal [http://docs.pachyderm.io/en/v1.3.18/].

QuickStart

	Getting Started
	Local Installation

	Beginner Tutorial

	Fundamentals
	Getting Your Data into Pachyderm

	Creating Analysis Pipelines

	Getting Data Out of Pachyderm

	Deleting Data in Pachyderm

	Appending vs Overwriting Files

	Lifecycle of a Datum

	Updating Pipelines

	Distributed Computing

	Incremental Processing

	Spouts

	History

Enterprise Edition

	Pachyderm Enterprise Edition Guide
	Overview

	Deploying Enterprise Edition

	Access Controls

	Advanced Statistics

	Using the S3 Gateway

Admin Tasks

	Deploy Pachyderm
	Overview

	Google Cloud Platform

	Deploy Pachyderm on Amazon AWS

	Azure

	OpenShift

	On Premises

	Custom Object Stores

	Non-Default Namespaces

	RBAC

	Troubleshooting Deployments

	Manage Pachyderm
	Autoscaling a Pachyderm Cluster

	Batching Pachyderm with “Transactions”

	Pachctl

	Data Management Best Practices

	Sharing GPU Resources

	Backup and Restore

	Upgrades and Migrations

	General Troubleshooting

	Troubleshooting Pipelines

Cookbook and How-Tos

	Splitting Data for Distributed Processing
	JSON and Text File Splitting Examples

	Specifying a Header

	Ingesting PostgresSQL data

	Combining/Merging/Joining Data
	Grouping the records that need to be processed together

	Processing grouped records

	Example Developer Workflow
	Introduction

	Basic workflow

	Tracking provenance

	Summary

	Triggering Pipelines Periodically (cron)
	Cron Example

	Creating Machine Learning Workflows
	Examples

	Processing Time-Windowed Data
	Fixed time windows

	Moving or rolling time windows

	Ingressing From a Separate Object Store

	Utilizing GPUs
	Setting up a GPU Enabled Kubernetes Cluster

	Using GPUs in Pipelines

	Deferred Processing of Data
	Using a staging branch

	More complicated staging patterns

	Deferred processing on pipeline outputs

	Vault Secret Engine
	Deployment

	Usage

Reference and APIs

	Pipeline Specification

	Environment Variables

	Config Specification

	Pachyderm language clients

	S3Gateway API

	Pachctl Command Line Tool

	Examples

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

Getting Started

Welcome to the documentation portal for first-time Pachyderm users!
This page is a great place to start using Pachyderm. Complete the sections
below to get a taste of what working with Pachyderm feels like.

	Local Installation
	Prerequisites

	Deploy Pachyderm

	Next Steps

	Beginner Tutorial
	Image processing with OpenCV

	Exploring your DAG in the Pachyderm dashboard

	Next Steps

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Getting Started

Local Installation

This guide walks you through the steps to install Pachyderm
on macOS®, Linux®, or Windows®. Local installation helps you to learn
some of the Pachyderm basics and is not designed to be a production
environment.

Prerequisites

Before you can deploy Pachyderm, make sure you have the following
programs installed on your computer:

	Minikube

	Oracle® VirtualBox™ or Docker Desktop (v18.06+)

	Pachyderm Command Line Interface

If you install Pachyderm on Windows 10 or later, you must have the following
components installed in addition to the ones listed above:

	Windows Subsystem for Linux (WSL) [https://docs.microsoft.com/en-us/windows/wsl/install-win10]

Note: For a Windows installation, use Minikube.

Using Minikube

On your local machine, you can run Pachyderm in a minikube virtual machine.
Minikube is a tool that creates a single-node Kubernetes cluster. This limited
installation is sufficient to try basic Pachyderm functionality and complete
the Beginner Tutorial.

To configure Minikube, follow these steps:

	Install minikube and VirtualBox in your operating system as described in the
Kubernetes documentation [http://kubernetes.io/docs/getting-started-guides/minikube].

	Install kubectl [https://kubernetes.io/docs/tasks/tools/install-kubectl/].

	Start minikube:

minikube start

Note: Any time you want to stop and restart Pachyderm, run minikube delete
and minikube start. Minikube is not meant to be a production environment
and does not handle being restarted well without a full wipe.

Docker Desktop

If you use Minikube, skip this section and proceed to Install pachctl

You can use Docker Desktop instead of Minikube on macOS or Linux
by following these steps:

	In the Docker Desktop settings, verify that Kubernetes is enabled:

[image: Docker Desktop Enable K8s]

	From the command prompt, confirm that Kubernetes is running:

$ kubectl get all
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 56d

	To reset your Kubernetes cluster that runs on Docker Desktop, click
the Reset button in the Preferences sub-menu.

[image: Reset K8s]

Install pachctl

pachctl is a command-line utility that you can use to interact
with a Pachyderm cluster.

To deploy Pachyderm locally, you need
to have pachctl installed on your machine by following these steps:

	Run the corresponding steps for your operating system:

	For macOS, run:

$ brew tap pachyderm/tap && brew install pachyderm/tap/pachctl@1.9

	For a Debian-based Linux 64-bit or Windows 10 or later running on
WSL:

$ curl -o /tmp/pachctl.deb -L https://github.com/pachyderm/pachyderm/releases/download/v1.9.3/pachctl_1.9.3_amd64.deb && sudo dpkg -i /tmp/pachctl.deb

	For all other Linux flavors:

$ curl -o /tmp/pachctl.tar.gz -L https://github.com/pachyderm/pachyderm/releases/download/v1.9.3/pachctl_1.9.3_linux_amd64.tar.gz && tar -xvf /tmp/pachctl.tar.gz -C /tmp && sudo cp /tmp/pachctl_1.9.3_linux_amd64/pachctl /usr/local/bin

	Verify that installation was successful by running pachctl version:

$ pachctl version
COMPONENT VERSION
pachctl 1.9.1

Deploy Pachyderm

After you configure all the Prerequisites,
deploy Pachyderm by following these steps:

	For macOS or Linux, run:

$ pachctl deploy local

This command generates a Pachyderm manifest and deploys Pachyderm on
Kubernetes.

	For Windows:

	Start WSL.

	In WSL, run:

$ pachctl deploy local --dry-run > pachyderm.json

	Copy the pachyderm.json file into your Pachyderm directory.

	From the same directory, run:

kubectl create -f .\pachyderm.json

Because Pachyderm needs to pull the Pachyderm Docker image
from DockerHub, it might take a few minutes for the Pachyderm pods status
to change to Running.

	Check the status of the Pachyderm pods by periodically
running kubectl get pods. When Pachyderm is ready for use,
all Pachyderm pods must be in the Running status.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-6c9dc97d9c-vb972 2/2 Running 0 6m
etcd-7dbb489f44-9v5jj 1/1 Running 0 6m
pachd-6c878bbc4c-f2h2c 1/1 Running 0 6m

Note: If you see a few restarts on the pachd nodes, that means that
Kubernetes tried to bring up those pods before etcd was ready. Therefore,
Kubernetes restarted those pods. You can safely ignore that message.

	Run pachctl version to verify that pachd has been deployed.

$ pachctl version
COMPONENT VERSION
pachctl 1.9.1
pachd 1.9.1

	Open a new terminal window.

	Use port forwarding to access the Pachyderm dashboard.

pachctl port-forward

This command runs continuosly and does not exit unless you interrupt it.

	Alternatively, you can set up Pachyderm to directly connect to
the Minikube instance:

	Get your Minikube IP address:

$ minikube ip

	Configure Pachyderm to connect directly to the Minikube instance:

pachctl config update context `pachctl config get active-context` --pachd-address=`minikube ip`:30650

Next Steps

After you install and configure Pachyderm,
continue exploring Pachyderm:

	Complete the Beginner Tutorial
to learn the basics of Pachyderm, such as adding data and building
analysis pipelines.

	Explore the Pachyderm Dashboard.
By default, Pachyderm deploys the Pachyderm Enterprise dashboard. You can
use a FREE trial token to experiment with the dashboard. Point your
browser to port 30080 on your minikube IP.
Alternatively, if you cannot connect directly, enable port forwarding
by running pachctl port-forward, and then point your browser to
localhost:30080.

See Also:

	General Troubleshooting

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Getting Started

Beginner Tutorial

Welcome to the beginner tutorial for Pachyderm! If you’ve already got Pachyderm installed, this guide should take about 15 minutes, and it will introduce you to the basic concepts of Pachyderm.

Image processing with OpenCV

This guide will walk you through the deployment of a Pachyderm pipeline to do some simple edge detection [https://en.wikipedia.org/wiki/Edge_detection] on a few images. Thanks to Pachyderm’s built-in processing primitives, we’ll be able to keep our code simple but still run the pipeline in a distributed, streaming fashion. Moreover, as new data is added, the pipeline will automatically process it and output the results.

If you hit any errors not covered in this guide, get help in our public community Slack [http://slack.pachyderm.io], submit an issue on GitHub [https://github.com/pachyderm/pachyderm], or email us at support@pachyderm.io. We are more than happy to help!

Prerequisites

This guide assumes that you already have Pachyderm running locally. Check out our Local Installation instructions if haven’t done that yet and then come back here to continue.

Create a Repo

A repo is the highest level data primitive in Pachyderm. Like many things in Pachyderm, it shares its name with a primitive in Git and is designed to behave analogously. Generally, repos should be dedicated to a single source of data such as log messages from a particular service, a users table, or training data for an ML model. Repos are dirt cheap so don’t be shy about making tons of them.

For this demo, we’ll simply create a repo called images to hold the data we want to process:

$ pachctl create repo images
$ pachctl list repo
NAME CREATED SIZE (MASTER)
images 7 seconds ago 0B

This shows that the repo has been successfully created, and the size of repo’s HEAD commit on the master branch is 0B, since we haven’t added anything to it yet.

Adding Data to Pachyderm

Now that we’ve created a repo it’s time to add some data. In Pachyderm, you write data to an explicit commit (again, similar to Git). Commits are immutable snapshots of your data which give Pachyderm its version control properties. Files can be added, removed, or updated in a given commit.

Let’s start by just adding a file, in this case an image, to a new commit. We’ve provided some sample images for you that we host on Imgur.

We’ll use the put file command along with the -f flag. -f can take either a local file, a URL, or a object storage bucket which it’ll automatically scrape. In our case, we’ll simply pass the URL.

Unlike Git, commits in Pachyderm must be explicitly started and finished as they can contain huge amounts of data and we don’t want that much “dirty” data hanging around in an unpersisted state. put file automatically starts and finishes a commit for you so you can add files more easily. If you want to add many files over a period of time, you can do start commit and finish commit yourself.

We also specify the repo name “images”, the branch name “master”, and the file name: “liberty.png”.

Here’s an example atomic commit of the file liberty.png to the images repo’s master branch:

$ pachctl put file images@master:liberty.png -f http://imgur.com/46Q8nDz.png

We can check to make sure the data we just added is in Pachyderm.

If we list the repos, we can see that there is now data
$ pachctl list repo
NAME CREATED SIZE (MASTER)
images About a minute ago 57.27KiB

We can view the commit we just created
$ pachctl list commit images
REPO COMMIT PARENT STARTED DURATION SIZE
images d89758a7496a4c56920b0eaa7d7d3255 <none> 29 seconds ago Less than a second 57.27KiB

And view the file in that commit
$ pachctl list file images@master
COMMIT NAME TYPE COMMITTED SIZE
d89758a7496a4c56920b0eaa7d7d3255 /liberty.png file About a minute ago 57.27KiB

We can also view the file we just added to Pachyderm. Since this is an image, we can’t just print it out in the terminal, but the following commands will let you view it easily.

on macOS
$ pachctl get file images@master:liberty.png | open -f -a /Applications/Preview.app

on Linux
$ pachctl get file images@master:liberty.png | display

Create a Pipeline

Now that we’ve got some data in our repo, it’s time to do something with it. Pipelines are the core processing primitive in Pachyderm and they’re specified with a JSON encoding. For this example, we’ve already created the pipeline for you and you can find the code on Github [https://github.com/pachyderm/pachyderm/blob/master/examples/opencv].

When you want to create your own pipelines later, you can refer to the full Pipeline Specification to use more advanced options. Options include building your own code into a container instead of the pre-built Docker image we’ll be using here.

For now, we’re going to create a single pipeline that takes in images and does some simple edge detection.

[image: ../_images/opencv-liberty.png]
Below is the pipeline spec and python code we’re using. Let’s walk through the details.

edges.json
{
 "pipeline": {
 "name": "edges"
 },
 "transform": {
 "cmd": ["python3", "/edges.py"],
 "image": "pachyderm/opencv"
 },
 "input": {
 "pfs": {
 "repo": "images",
 "glob": "/*"
 }
 }
}

Our pipeline spec contains a few simple sections. First is the pipeline name, edges. Then we have the transform which specifies the docker image we want to use, pachyderm/opencv (defaults to DockerHub as the registry), and the entry point edges.py. Lastly, we specify the input. Here we only have one PFS input, our images repo with a particular glob pattern.

The glob pattern defines how the input data can be broken up if we want to distribute our computation. /* means that each file can be processed individually, which makes sense for images. Glob patterns are one of the most powerful features of Pachyderm so when you start creating your own pipelines, check out the Pipeline Specification.

edges.py
import cv2
import numpy as np
from matplotlib import pyplot as plt
import os

make_edges reads an image from /pfs/images and outputs the result of running
edge detection on that image to /pfs/out. Note that /pfs/images and
/pfs/out are special directories that Pachyderm injects into the container.
def make_edges(image):
 img = cv2.imread(image)
 tail = os.path.split(image)[1]
 edges = cv2.Canny(img,100,200)
 plt.imsave(os.path.join("/pfs/out", os.path.splitext(tail)[0]+'.png'), edges, cmap = 'gray')

walk /pfs/images and call make_edges on every file found
for dirpath, dirs, files in os.walk("/pfs/images"):
 for file in files:
 make_edges(os.path.join(dirpath, file))

We simply walk over all the images in /pfs/images, do our edge detection, and write to /pfs/out.

/pfs/images and /pfs/out are special local directories that Pachyderm creates within the container automatically. All the input data for a pipeline will be found in /pfs/<input_repo_name> and your code should always write out to /pfs/out. Pachyderm will automatically gather everything you write to /pfs/out and version it as this pipeline’s output.

Now let’s create the pipeline in Pachyderm:

$ pachctl create pipeline -f https://raw.githubusercontent.com/pachyderm/pachyderm/master/examples/opencv/edges.json

What Happens When You Create a Pipeline

Creating a pipeline tells Pachyderm to run your code on the data in your input repo (the HEAD commit) as well as all future commits that occur after the pipeline is created. Our repo already had a commit, so Pachyderm automatically launched a job to process that data.

The first time Pachyderm runs a pipeline job, it needs to download the Docker image (specified in the pipeline spec) from the specified Docker registry (DockerHub in this case). This first run this might take a minute or so because of the image download, depending on your Internet connection. Subsequent runs will be much faster.

You can view the job with:

$ pachctl list job
ID PIPELINE STARTED DURATION RESTART PROGRESS DL UL STATE
0f6a53829eeb4ca193bb7944fe693700 edges 16 seconds ago Less than a second 0 1 + 0 / 1 57.27KiB 22.22KiB success

Yay! Our pipeline succeeded! Pachyderm creates a corresponding output repo for every pipeline. This output repo will have the same name as the pipeline, and all the results of that pipeline will be versioned in this output repo. In our example, the “edges” pipeline created a repo called “edges” to store the results.

$ pachctl list repo
NAME CREATED SIZE (MASTER)
edges 2 minutes ago 22.22KiB
images 5 minutes ago 57.27KiB

Reading the Output

We can view the output data from the “edges” repo in the same fashion that we viewed the input data.

on macOS
$ pachctl get file edges@master:liberty.png | open -f -a /Applications/Preview.app

on Linux
$ pachctl get file edges@master:liberty.png | display

The output should look similar to:

[image: ../_images/edges-screenshot.png]

Processing More Data

Pipelines will also automatically process the data from new commits as they are created. Think of pipelines as being subscribed to any new commits on their input repo(s). Also similar to Git, commits have a parental structure that tracks which files have changed. In this case we’re going to be adding more images.

Let’s create two new commits in a parental structure. To do this we will simply do two more put file commands and by specifying master as the branch, it’ll automatically parent our commits onto each other. Branch names are just references to a particular HEAD commit.

$ pachctl put file images@master:AT-AT.png -f http://imgur.com/8MN9Kg0.png

$ pachctl put file images@master:kitten.png -f http://imgur.com/g2QnNqa.png

Adding a new commit of data will automatically trigger the pipeline to run on the new data we’ve added. We’ll see corresponding jobs get started and commits to the output “edges” repo. Let’s also view our new outputs.

view the jobs that were kicked off
$ pachctl list job
ID STARTED DURATION RESTART PROGRESS DL UL STATE
81ae47a802f14038b95f8f248cddbed2 7 seconds ago Less than a second 0 1 + 2 / 3 102.4KiB 74.21KiB success
ce448c12d0dd4410b3a5ae0c0f07e1f9 16 seconds ago Less than a second 0 1 + 1 / 2 78.7KiB 37.15KiB success
490a28be32de491e942372018cd42460 9 minutes ago 35 seconds 0 1 + 0 / 1 57.27KiB 22.22KiB success

View the output data

on macOS
$ pachctl get file edges@master:AT-AT.png | open -f -a /Applications/Preview.app

$ pachctl get file edges@master:kitten.png | open -f -a /Applications/Preview.app

on Linux
$ pachctl get file edges@master:AT-AT.png | display

$ pachctl get file edges@master:kitten.png | display

Adding Another Pipeline

We have succesfully deployed and used a single stage Pachyderm pipeline. Now let’s add a processing stage to illustrate a multi-stage Pachyderm pipeline. Specifically, let’s add a montage pipeline that take our original and edge detected images and arranges them into a single montage of images:

[image: ../_images/opencv-liberty-montage.png]
Below is the pipeline spec for this new pipeline:

montage.json
{
 "pipeline": {
 "name": "montage"
 },
 "input": {
 "cross": [{
 "pfs": {
 "glob": "/",
 "repo": "images"
 }
 },
 {
 "pfs": {
 "glob": "/",
 "repo": "edges"
 }
 }]
 },
 "transform": {
 "cmd": ["sh"],
 "image": "v4tech/imagemagick",
 "stdin": ["montage -shadow -background SkyBlue -geometry 300x300+2+2 $(find /pfs -type f | sort) /pfs/out/montage.png"]
 }
}

This montage pipeline spec is similar to our edges pipeline except for three differences: (1) we are using a different Docker image that has imagemagick installed, (2) we are executing a sh command with stdin instead of a python script, and (3) we have multiple input data repositories.

In the montage pipeline we are combining our multiple input data repositories using a cross pattern. This cross pattern creates a single pairing of our input images with our edge detected images. There are several interesting ways to combine data in Pachyderm, which are discussed here [http://pachyderm.readthedocs.io/en/latest/reference/pipeline_spec.html#input-required] and here [http://pachyderm.readthedocs.io/en/latest/cookbook/combining.html].

We create the montage pipeline as before, with pachctl:

$ pachctl create pipeline -f https://raw.githubusercontent.com/pachyderm/pachyderm/master/examples/opencv/montage.json

Pipeline creating triggers a job that generates a montage for all the current HEAD commits of the input repos:

$ pachctl list job
ID STARTED DURATION RESTART PROGRESS DL UL STATE
92cecc40c3144fd5b4e07603bb24b104 45 seconds ago 6 seconds 0 1 + 0 / 1 371.9KiB 1.284MiB success
81ae47a802f14038b95f8f248cddbed2 2 minutes ago Less than a second 0 1 + 2 / 3 102.4KiB 74.21KiB success
ce448c12d0dd4410b3a5ae0c0f07e1f9 2 minutes ago Less than a second 0 1 + 1 / 2 78.7KiB 37.15KiB success
490a28be32de491e942372018cd42460 11 minutes ago 35 seconds 0 1 + 0 / 1 57.27KiB 22.22KiB success

And you can view the generated montage image via:

on macOS
$ pachctl get file montage@master:montage.png | open -f -a /Applications/Preview.app

on Linux
$ pachctl get file montage@master:montage.png | display

[image: ../_images/montage-screenshot.png]

Exploring your DAG in the Pachyderm dashboard

When you deployed Pachyderm locally, the Pachyderm Enterprise dashboard was also deployed by default. This dashboard will let you interactively explore your pipeline, visualize the structure of the pipeline, explore your data, debug jobs, etc. To access the dashboard visit localhost:30080 in an Internet browser (e.g., Google Chrome). You should see something similar to this:

[image: ../_images/dashboard1.png]
Enter your email address if you would like to obtain a free trial token for the dashboard. Upon entering this trial token, you will be able to see your pipeline structure and interactively explore the various pieces of your pipeline as pictured below:

[image: ../_images/dashboard2.png]
[image: ../_images/dashboard3.png]

Next Steps

Pachyderm is now running locally with data and a pipeline! To play with Pachyderm locally, you can use what you’ve learned to build on or change this pipeline. You can also dig in and learn more details about:

	Deploying Pachyderm to the cloud or on prem [http://pachyderm.readthedocs.io/en/latest/deployment/deploy_intro.html]

	Getting Your Data into Pachyderm

	Creating Analysis Pipelines

We’d love to help and see what you come up with, so submit any issues/questions you come across on GitHub [https://github.com/pachyderm/pachyderm] , Slack [http://slack.pachyderm.io], or email at support@pachyderm.io if you want to show off anything nifty you’ve created!

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

Fundamentals

This section describes some of the main Pachyderm concepts and basic
operations.

	Getting Your Data into Pachyderm
	Jargon associated with putting data in Pachyderm

	How to get data into Pachyderm

	Creating Analysis Pipelines
	1. Writing your analysis code

	2. Building a Docker Image

	3. Creating a Pipeline

	Getting Data Out of Pachyderm
	Getting files with pachctl

	Examining file provenance with flush commit

	Exporting data by using egress

	Other ways to view, interact with, or export data in Pachyderm

	Deleting Data in Pachyderm
	Deleting The HEAD of a Branch

	Deleting Non-HEAD Commits

	Deleting Sensitive Data

	Appending vs Overwriting Files
	Introduction

	Loading data into Pachyderm

	Lifecycle of a Datum
	Introduction

	Cross and union inputs

	Output repositories

	Summary

	Updating Pipelines
	Updating your pipeline specification

	Updating the code used in a pipeline

	Building pipeline images within pachyderm

	Re-processing data

	Distributed Computing
	Pachyderm Workers

	Controlling the Number of Workers (Parallelism)

	Spreading Data Across Workers (Glob Patterns)

	Incremental Processing
	Inter-datum Incrementality

	Spouts
	Introduction

	Creating your containerized spout code

	Writing the spout pipeline specification

	Combine a Spout with a Service

	History
	Commits

	Branches

	Ancestry Syntax

	The history flag

	Pipelines

	Jobs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Fundamentals

Getting Your Data into Pachyderm

Data that you put (or “commit”) into Pachyderm ultimately lives in an object
store of your choice (S3, Minio, GCS, etc.). This data is content-addressed by
Pachyderm to build our version control semantics for data and is therefore not
“human-readable” directly in the object store. That being said, Pachyderm
allows you and your pipeline stages to interact with versioned data like you
would in a normal file system.

Jargon associated with putting data in Pachyderm

“Data Repositories”

Versioned data in Pachyderm lives in repositories (again think about something
similar to “git for data”). Each data “repository” can contain one file,
multiple files, multiple files arranged in directories, etc. Regardless of the
structure, Pachyderm will version the state of each data repository as it
changes over time.

“Commits”

Regardless of the method you use to get data into Pachyderm (CLI, language client, etc.),
the mechanism that is used is a “commit” of data into a data
repository. In order to put data into Pachyderm, a commit must be “started” (aka
an “open commit”). Data can then be put into Pachyderm as part of that open commit and will be available once the commit is “finished” (aka a “closed commit”).

How to get data into Pachyderm

In terms of actually getting data into Pachyderm via “commits,” there are
a few options:

	Via the pachctl CLI tool: This is the great option for testing, development,
integration with CI/CD, and for users who prefer scripting.

	Via one of the Pachyderm language clients: This option is ideal for Go, Python,
or Scala users who want to push data to Pachyderm from services or
applications written in those languages. Actually, even if you don’t use Go,
Python, or Scala, Pachyderm uses a protobuf API which supports many other
languages, we just haven’t built the full clients yet.

If you’re on Pachyderm Enterprise, you additionally get these options:

	Via the s3gateway: This is ideal when using existing tools
or libraries that interact with object stores.

	Via the Pachyderm dashboard: The Pachyderm Enterprise dashboard provides a
very convenient way to upload data right from the GUI. You can find out more
about Pachyderm Enterprise Edition here.

pachctl

To get data into Pachyderm using pachctl, you first need to create one or
more data repositories to hold your data:

$ pachctl create repo <repo name>

Then, to put data into the created repo, you use the put file command. Below
are a few example uses of put file, but you can see the complete
documentation here.

If there is an open commit, put file will add files to that commit. This example will add two files to a new commit, then close the commit:

first start a commit
$ pachctl start commit <repo>@<branch>

put <file1> in the <repo> on <branch>
$ pachctl put file <repo>@<branch>:</path/to/file1> -f <file1>

put <file2> in the <repo> on <branch>
$ pachctl put file <repo>@<branch>:</path/to/file2> -f <file2>

then finish the commit
$ pachctl finish commit <repo>@<branch>

If there is not an open commit, put file will implicitly start and finish the commit. This is called an atomic commit:

$ pachctl put file <repo>@<branch>:</path/to/file> -f <file>

Put data from a URL:

$ pachctl put file <repo>@<branch>:</path/to/file> -f http://url_path

Put data directly from an object store:

here you can use s3://, gcs://, or as://
$ pachctl put file <repo>@<branch>:</path/to/file> -f s3://object_store_url

Add multiple files at once by using the -i option or multiple -f flags. In
the case of -i, the target file should be a list of files, paths, or URLs
that you want to input all at once:

$ pachctl put file <repo>@<branch> -i <file containing list of files, paths, or URLs>

Pipe data from stdin into a data repository:

$ echo "data" | pachctl put file <repo>@<branch> -f </path/to/file>

Add an entire directory or all of the contents at a particular URL (either
HTTP(S) or object store URL, s3://, gcs://, and as://) by using the
recursive flag, -r:

$ pachctl put file <repo>@<branch> -r -f <dir>

Pachyderm Language Clients

There are a number of Pachyderm language clients. These can be used to
programmatically put data into Pachyderm, and much more. You can find out more
about these clients here.

The S3Gateway

We support an HTTP API that offers a subset of S3’s functionality. With this,
you can use existing tools or libraries that work with object stores, such as
minio. See the s3gateway docs for more information.

The Pachyderm Dashboard

When you deployed Pachyderm, the Pachyderm Enterprise dashboard was also
deployed automatically (if you followed one of our deploy guides here). You can
get a FREE trial token to experiment with this dashboard, which will let you create
data repositories and add data to those repositories via a GUI. More information
about getting your FREE trial token and activating the dashboard can be found
here [http://pachyderm.readthedocs.io/en/latest/enterprise/deployment.html#activate-via-the-dashboard].

In the dashboard, you can create a data repository by clicking on the + sign icon
in the lower right hand corner of the screen:

[image: alt tag]

When you click “Create Repo,” a box will pop up prompting you for a name and
optional description for the repo:

[image: alt tag]

Once you fill in your name and click save, the new data repository will show up
in the main dashboard screen:

[image: alt tag]

To add data to this repository, you can click on the blue icon representing
the repo. This will present you with some details about the repo along with an
“ingest data” icon:

[image: alt tag]

You can add data from an object store or other URL by clicking this “ingest data”
icon:

[image: alt tag]

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Fundamentals

Creating Analysis Pipelines

There are three steps to running an analysis in a Pachyderm “pipeline”:

	Write your code.

	Build a Docker [https://docs.docker.com/engine/getstarted/step_four/] image that includes your code and dependencies.

	Create a Pachyderm “pipeline” referencing that Docker image.

Multi-stage pipelines (e.g., parsing -> modeling -> output) can be created by repeating these three steps to build up a graph of processing steps.

1. Writing your analysis code

Code used to process data in Pachyderm can be written using any languages or
libraries you want. It can be as simple as a bash command or as complicated as
a TensorFlow neural network. At the end of the day, all your code and
dependencies will be built into a container that can run anywhere (including
inside of Pachyderm). We’ve got demonstrative examples on
GitHub [https://github.com/pachyderm/pachyderm/tree/master/examples] using
bash, Python, TensorFlow, and OpenCV and we’re constantly adding more.

As we touch on briefly in the beginner
tutorial, your code itself only
needs to read and write files from a local file system. It does NOT have to
import any special Pachyderm functionality or libraries. You just need to be
able to read files and write files.

For the reading files part, Pachyderm automatically mounts each input data
repository as /pfs/<repo_name> in the running instances of your Docker image
(called “containers”). The code that you write just needs to read input data
from this directory, just like in any other file system. Your analysis code
also does NOT have to deal with data sharding or parallelization as Pachyderm
will automatically shard the input data across parallel containers. For
example, if you’ve got four containers running your Python code, Pachyderm will
automatically supply 1/4 of the input data to /pfs/<repo_name> in each
running container. That being said, you also have a lot of control over how
that input data is split across containers. Check out our guide on parallelism
and distributed computing for more details on that
subject.

For the writing files part (saving results, etc.), your code simply needs to
write to /pfs/out. This is a special directory mounted by Pachyderm in all of
your running containers. Similar to reading data, your code doesn’t have to
manage parallelization or sharding, just write data to /pfs/out and Pachyderm
will make sure it all ends up in the correct place.

2. Building a Docker Image

When you create a Pachyderm pipeline (which will be discussed next), you need
to specify a Docker image including the code or binary you want to run. Please
refer to the official
documentation [https://docs.docker.com/engine/tutorials/dockerimages/] to learn
how to build a Docker images.

Note: You specify what commands should run in the container in your
pipeline specification (see Creating a Pipeline below) rather than the
CMD field of your Dockerfile, and Pachyderm runs that command inside the
container during jobs rather than relying on Docker to run it. The reason is
that Pachyderm can’t execute your code immediately when your container starts,
so it runs a shim process in your container instead, and then calls your
pipeline specification’s cmd from there.

Unless Pachyderm is running on the same host that you used to build your image,
you’ll need to use a public or private registry to get your image into the
Pachyderm cluster. One (free) option is to use Docker’s DockerHub registry.
You can refer to the official
documentation [https://docs.docker.com/engine/tutorials/dockerimages/#/push-an-image-to-docker-hub]
to learn how to push your images to DockerHub. That being said, you are more
than welcome to use any other public or private Docker registry.

Note, it is best practice to uniquely tag your Docker images with something
other than :latest. This allows you to track which Docker images were used
to process which data, and will help you as you update your pipelines. You can
also utilize the --build or --push-images flags on update pipeline to
help you tag your images as they are updated. See the updating pipelines
docs for more information.

3. Creating a Pipeline

Now that you’ve got your code and image built, the final step is to tell
Pachyderm to run the code in your image on certain input data. To do this, you
need to supply Pachyderm with a JSON pipeline specification. There are four
main components to a pipeline specification: name, transform, parallelism and
input. Detailed explanations of the specification parameters and how they work
can be found in the pipeline specification
docs.

Here’s an example pipeline spec:

{
 "pipeline": {
 "name": "wordcount"
 },
 "transform": {
 "image": "wordcount-image",
 "cmd": ["/binary", "/pfs/data", "/pfs/out"]
 },
 "input": {
 "pfs": {
 "repo": "data",
 "glob": "/*"
 }
 }
}

After you create the JSON pipeline spec (and save it, e.g., as your_pipeline.json), you can create the pipeline in Pachyderm using pachctl:

$ pachctl create pipeline -f your_pipeline.json

(-f can also take a URL if your JSON manifest is hosted on GitHub or elsewhere. Keeping pipeline specifications under version control is a great idea so you can track changes and seamlessly view or deploy older pipelines if needed.)

Creating a pipeline tells Pachyderm to run the cmd (i.e., your code) in your
image on the data in the HEAD (most recent) commit of the input repo(s) as
well as all future commits to the input repo(s). You can think of this
pipeline as being “subscribed” to any new commits that are made on any of its
input repos. It will automatically process the new data as it comes in.

As soon as you create your pipeline, Pachyderm will launch worker pods on
Kubernetes. These worker pods will remain up and running, such that they are
ready to process any data committed to their input repos. This allows the
pipeline to immediately respond to new data when it’s committed without having
to wait for their pods to “spin up”. However, this has the downside that pods
will consume resources even while there’s no data to process. You can trade-off
the other way by setting the standby field to true in your pipeline spec.
With this field set, the pipelines will “spin down” when there is no data to
process, which means they will consume no resources. However, when new data
does come in, the pipeline pods will need to spin back up, which introduces some
extra latency. Generally speaking, you should default to not setting standby
until cluster utilization becomes a concern. When it does, pipelines that
run infrequently and are highly parallel are the best candidates for standby.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Fundamentals

Getting Data Out of Pachyderm

Once you’ve got one or more pipelines built and have data flowing through Pachyderm,
you need to be able to track that data flowing through your pipeline(s) and
get results out of Pachyderm. Let’s use the OpenCV pipeline as an example.

Here’s what our pipeline and the corresponding data repositories look like:

[image: alt tag]
Every commit of new images into the “images” data repository results in a corresponding output commit of results into the “edges” data repository. But how do we get our results out of Pachyderm? Moreover, how would we get the particular result corresponding to a particular input image? That’s what we will explore here.

Getting files with pachctl

The pachctl CLI tool command pachctl get file can be used to get versioned data out of any data repository:

pachctl get file <repo>@<branch-or-commit>:<path/to/file>

In the case of the OpenCV pipeline, we could get out an image named example_pic.jpg:

pachctl get file edges@master:example_pic.jpg

But how do we know which files to get? Of course we can use the pachctl list file command to see what files are available. But how do we know which results are the latest, came from certain input, etc.? In this case, we would like to know which edge detected images in the edges repo come from which input images in the images repo. This is where provenance and the flush commit command come in handy.

Examining file provenance with flush commit

Generally, flush commit will let our process block on an input commit until all of the output results are ready to read. In other words, flush commit lets you view a consistent global snapshot of all your data at a given commit. Note, we are just going to cover a few aspects of flush commit here.

Let’s demonstrate a typical workflow using flush commit. First, we’ll make a few commits of data into the images repo on the master branch. That will then trigger our edges pipeline and generate three output commits in our edges repo:

$ pachctl list commit images
REPO ID PARENT STARTED DURATION SIZE
images c721c4bb9a8046f3a7319ed97d256bb9 a9678d2a439648c59636688945f3c6b5 About a minute ago 1 seconds 932.2 KiB
images a9678d2a439648c59636688945f3c6b5 87f5266ef44f4510a7c5e046d77984a6 About a minute ago Less than a second 238.3 KiB
images 87f5266ef44f4510a7c5e046d77984a6 <none> 10 minutes ago Less than a second 57.27 KiB
$ pachctl list commit edges
REPO ID PARENT STARTED DURATION SIZE
edges f716eabf95854be285c3ef23570bd836 026536b547a44a8daa2db9d25bf88b79 About a minute ago Less than a second 233.7 KiB
edges 026536b547a44a8daa2db9d25bf88b79 754542b89c1c47a5b657e60381c06c71 About a minute ago Less than a second 133.6 KiB
edges 754542b89c1c47a5b657e60381c06c71 <none> 2 minutes ago Less than a second 22.22 KiB

In this case, we have one output commit per input commit on images. However, this might get more complicated for pipelines with multiple branches, multiple PFS inputs, etc. To confirm which commits correspond to which outputs, we can use flush commit. In particular, we can call flush commit on any one of our commits into images to see which output came from this particular commit:

$ pachctl flush commit images@a9678d2a439648c59636688945f3c6b5
REPO ID PARENT STARTED DURATION SIZE
edges 026536b547a44a8daa2db9d25bf88b79 754542b89c1c47a5b657e60381c06c71 3 minutes ago Less than a second 133.6 KiB

Exporting data by using egress

In addition to getting data out of Pachyderm by using
pachctl get file, you can add an optional egress field
to your pipeline specification.
egress enables you to push the results of a pipeline to an
external datastore such as Amazon S3, Google Cloud Storage, or
Azure Blob Storage. After the user code has finished running, but
before the job is marked as successful, Pachyderm pushes the data
to the specified destination.

You can specify the following egress protocols for the
corresponding storage:

Note

Use the horizontal scroll bar in the table below
to view full descriptions and syntax.

	Cloud Platform
	Protocol
	Description
	Syntax

	Google Cloud Storage
	gs://
	GCP uses the utility called gsutil to access GCP storage resources
from a CLI. This utility uses the gs:// prefix to access those
resources.
	gs://gs-bucket/gs-dir

	Amazon S3
	s3://
	The Amazon S3 storage protocol requires you to specify an s3://
prefix before the address of an Amazon resource. A valid address must
include an endpoint and a bucket, and, optionally, a directory in
your Amazon storage.
	s3://s3-endpoint/s3-bucket/s3-dir

	Azure Blob Storage
	wasb://
	Microsoft Windows Azure Storage Blob (WASB) is the default Azure
filesystem that outputs your data through HDInsight. To output your
data to Azure Blob Storage, use the wasb:// prefix, the container
name, and your storage account in the path to your directory.
	wasb://default-container@storage-account/az-dir

Example:

"output_branch": string,
 "egress": {
 "URL": "s3://bucket/dir"
 },

Other ways to view, interact with, or export data in Pachyderm

Although pachctl and egress provide easy ways to interact with data in Pachyderm repos, they are by no means the only ways. For example, you can:

	Have one or more of your pipeline stages connect and export data to databases running outside of Pachyderm.

	Use a Pachyderm service to launch a long running service, like Jupyter, that has access to internal Pachyderm data and can be accessed externally via a specified port.

	Mount versioned data from the distributed file system via pachctl mount ... (a feature best suited for experimentation and testing).

	If you’re on Pachyderm Enterprise, you can use the s3gateway, which allows
you to reuse existing tools or libraries that work with object stores.
See the s3gateway docs for more information.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Fundamentals

Deleting Data in Pachyderm

Sometimes “bad” data gets committed to Pachyderm and you need a way to delete
it. There are a couple of ways to address this, which depend on
what exactly was “bad” about the data you committed and what’s happened in the
system since you committed the “bad” data.

	Deleting the HEAD of a branch - You should
follow this guide if you’ve just made a commit to a branch with some corrupt, incorrect,
or otherwise bad changes to your data.

	Deleting non-HEAD commits - You should follow
this guide if you’ve committed data to the branch after committing the data that
needs to be deleted.

	Deleting sensitive data - You should follow these
steps when you have committed sensitive data that you need to completely
purge from Pachyderm, such that no trace remains.

Deleting The HEAD of a Branch

The simplest case is when you’ve just made a commit to a branch with some
incorrect, corrupt, or otherwise bad data. In this scenario, the HEAD of your branch
(i.e., the latest commit) is bad. Users who read from it are likely to be misled, and/or
pipeline subscribed to it are likely to fail or produce bad downstream output.

To fix this you should use delete commit as follows:

$ pachctl delete commit <repo>@<branch-or-commit-id>

When you delete the bad commit, several things will happen (all atomically):

	The commit metadata will be deleted.

	Any branch that the commit was the HEAD of will have its HEAD set to the
commit’s parent. If the commit’s parent is nil, the branch’s HEAD will be set
to nil.

	If the commit has children (commits which it is the parent of), those
children’s parent will be set to the deleted commit’s parent. Again, if the
deleted commit’s parent is nil then the children commit’s parent will be
set to nil.

	Any jobs which were created due to this commit will be deleted (running jobs
get killed). This includes jobs which don’t directly take the commit as
input, but are farther downstream in your DAG.

	Output commits from deleted jobs will also be deleted, and all the above
effects will apply to those commits as well.

Deleting Non-HEAD Commits

Recovering from commits of bad data is a little more complicated if you’ve
committed more data to the branch after the bad data was added. You can
still delete the commit as in the previous section, however, unless the subsequent
commits overwrote or deleted the bad data, it will still be present in the
children commits. Deleting a commit does not modify its children.

In git terms, delete commit is equivalent to squashing a commit out of existence.
It’s not equivalent to reverting a commit. The reason for this behavior is that the
semantics of revert can get ambiguous when the files being reverted have been
otherwise modified. Git’s revert can leave you with a merge conflict to solve,
and merge conflicts don’t make sense with Pachyderm due to the shared nature of
the system and the size of the data being stored.

In these scenario, you can also delete the children commits, however those commits
may also have good data that you don’t want to delete. If so, you should:

	Start a new commit on the branch with pachctl start commit.

	Delete all bad files from the newly opened commit with pachctl delete file.

	Finish the commit with pachctl finish commit.

	Delete the initial bad commits and all children up to the newly finished
commit.

Depending on how you’re using Pachyderm, the final step may be optional. After
you finish the “fixed” commit, the HEADs of all your branches will converge to
correct results as downstream jobs finish. However, deleting those commits
allow you to clean up your commit history and makes sure that no one will ever
access errant data when reading non-HEAD version of the data.

Deleting Sensitive Data

If the data you committed is bad because it’s sensitive and you want to make
sure that nobody ever accesses it, you should complete an extra step in addition to those
above.

Pachyderm stores data in a content addressed way and when you delete
a file or a commit, Pachyderm only deletes references to the underlying data, it
doesn’t delete the actual data until it performs garbage collection. To truly
purge the data you must delete all references to it using the methods described
above, and then you must run a garbage collect with pachctl garbage collect.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Fundamentals

Appending vs Overwriting Files

Introduction

Pachyderm is designed to work with pipelined data processing in a
containerized environment. The Pachyderm File System (pfs) is a
file-based system that is distributed and supports data of all types of
files (binary, csv, json, images, etc) from many sources and users. That
data is processed in parallel across many different jobs and pipelines
using the Pachyderm Pipeline System (pps). The Pachyderm File System
(pfs) and Pachyderm Pipeline System (pps) are designed to work together
to get the right version of the right data to the right container at the
right time.

Among the many complexities you must consider are these:

	Files can be put into pfs in “append” or “overwrite” mode.

	Pipeline definitions use glob
patterns
to filter a view of input
repositories.

	The Pachyderm Pipeline System must merge data from what may be
multiple containers running the same pipeline code, at the same time.

When you add in the ability to do “cross” and “union” operators on
multiple input repositories to those three considerations, it can be a
little confusing to understand what’s actually happening with your
files!

This document will take you through some of the advanced details, best
practices, and conventions for the following. If you’re unfamiliar with
the topic, each link below will take you to the basics.

	loading data into Pachyderm,

	using glob
patterns
to filter the data to your pipelines, and

	processing data with your
pipelines and
placing it in output repos.

Loading data into Pachyderm

Appending to files

When putting files into a pfs repo via Pachyderm’s pachctl utility
or via the Pachyderm APIs, it’s vital to know about the default
behaviors of the put file command. The following commands create the
repo “voterData” and place a local file called “OHVoterData.csv” into
it.

$ pachctl create repo voterData
$ pachctl put file voterData@master -f OHVoterData.csv

The file will, by default, be placed into the top-level directory of
voterData with the name “OHVoterData.csv”. If the file were 153.8KiB,
running the command to list files in that repo would result in

$ pachctl list file voterData@master
COMMIT NAME TYPE COMMITTED SIZE
8560235e7d854eae80aa03a33f8927eb /OHVoterData.csv file 1 second ago 153.8KiB

If you were to re-run the put file command above, by default, the
file would be appended to itself and listing the repo would look like
this:

$ pachctl list file voterData@master
COMMIT NAME TYPE COMMITTED SIZE
105aab526f064b58a351fe0783686c54 /OHVoterData.csv file 2 seconds ago 307.6KiB

In this case, any pipelines that use this repo for input will see an
updated file that has double the data in it. It may also have an
intermediate header row. (See Specifying
Header/Footer
for details on headers and footers in files.) This is Pachyderm’s
default behavior. What if you want to overwrite the files?

Overwriting files

This is where the -o (or --overwrite) flag comes in handy. It
will, as you’ve probably guessed, overwrite the file, rather than append
it.

$ pachctl put file voterData@master -f OHVoterData.csv --overwrite
$ pachctl list file voterData@master
COMMIT NAME TYPE COMMITTED SIZE
8560235e7d854eae80aa03a33f8927eb /OHVoterData.csv file 1 second ago 153.8KiB
$ pachctl put file voterData@master -f OHVoterData.csv --overwrite
$ pachctl list file voterData@master
COMMIT NAME TYPE COMMITTED SIZE
4876f99951cc4ea9929a6a213554ced8 /OHVoterData.csv file 1 second ago 153.8KiB

Deduplication

Pachyderm will deduplicate data loaded into input repositories. If you
were to load another file that hashed identically to “OHVoterData.csv”,
there would be one copy of the data in Pachyderm with two files’
metadata pointing to it. This works even when using the append behavior
above. If you were to put a file named OHVoterData2004.csv that was
identical to that first put file of OHVoterData.csv, and then update
OHVoterData.csv as shown above, there would be two sets of bits in
Pachyderm:

	a set of bits that would be returned when asking for the old branch
of OHVoterData.csv & OHVoterData2004.csv and

	a set of bits that would be appended to that first set to assemble
the new, master branch of OHVoterData.csv.

This deduping happens with each file as it’s added to Pachyderm. We
don’t do deduping within the file (“intrafile deduplication”) because
this system is built to work with any file type.

Important

Pachyderm is smart about keeping the minimum set of bits in the object store and
assembling the version of the file you (or your code!) have asked for.

Use cases for large datasets in single files

Splitting large files in Pachyderm

Unlike a system like Git,
which expects almost all of your files to be text,
Pachyderm does not do intra-file diffing
because we work with any file type:

	text

	JSON

	images

	video

	binary

	and so on…

Pachyderm diffs content at the per-file level.
Therefore,
if one bit in content of a file changes,
Pachyderm sees that as a new file.
Similarly,
Pachyderm can only distribute computation at the level of a single file;
if your data is only one large file,
it can only be processed by a single worker.

Because of these reasons, it’s pretty common to break up large files
into smaller chunks. For simple data types, Pachyderm provides the
--split flag to put file to automatically do this for you. For
more complex splitting patterns (e.g.avro or other binary formats),
you’ll need to manually split your data either at ingest or with a
Pachyderm pipeline.

Split and target-file flags

For common file types that are often used in data science, such as CSV,
line-delimited text files, JavaScript Object Notation (json) files,
Pachyderm includes the powerful --split, --target-file-bytes and
--target-file-datums flags.

--split will divide those files into chunks based on what a “record”
is. In line-delimited files, it’s a line. In json files, it’s an object.
--split takes one argument: line, json or
sql.

Note

See the Splitting Data for Distributed Processing cookbook for more details on SQL support.

This argument tells Pachyderm how you want the file split into chunks. For
example, if you use --split line, Pachyderm will only divide your
file on newline boundaries, never in the middle of a line. Along with
the --split flag, it’s common to use additional “target” flags to
get better control over the details of the split.

Note

We’ll call each of the chunks a “split-file” in this document.

	--target-file-bytes will fill each of the split-files with data
up to the number of bytes you specify, splitting on the nearest
record boundary. Let’s say you have a line-delimited file of 50
lines, with each line having about 20 bytes. If you use the flags
--split lines --target-file-bytes 100, you’ll see the input file
split into about 10 files or so, each of which will have 5 or so
lines. Each split-file’s size will hover above the target value of
100 bytes, not going below 100 bytes until the last split-file, which
may be less than 100 bytes.

	--target-file-datums will attempt to fill each split-file with
the number of datums you specify. Going back to that same
line-delimited 50-line file above, if you use
--split lines --target-file-datums 2, you’ll see the file split
into 50 split-files, each of which will have 2 lines.

	Specifying both flags, --target-file-datums and
--target-file-bytes, will result in each split-file containing just
enough data to satisfy whichever constraint is hit first. Pachyderm
will split the file and then fill the first target split-file with
line-based records until it hits the record limit. If it passes the
target byte number with just one record, it will move on to the next
split-file. If it hits the target datum number after adding another
line, it will move on to the next split-file. Using the example
above, if the flags supplied to put file are
--split lines --target-file-datums 2 --target-file-bytes 100, it
will have the same result as --target-file-datums 2, since that’s
the most compact constraint, and file sizes will hover around 40
bytes.

What split data looks like in a Pachyderm repository

Going back to our 50-line file example, let’s say that file is named
“my-data.txt”. We’ll create a repo named “line-data” and load
my-data.txt into Pachyderm with the following commands:

$ pachctl create repo line-data
$ pachctl put file line-data@master -f my-data.txt --split line

After put file is complete, list the files in the repo.

$ pachctl list file line-data@master
COMMIT NAME TYPE COMMITTED SIZE
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt dir About a minute ago 1.071KiB

Important

The list file command indicates that the line-oriented file we uploaded, “my-data.txt”, is actually a directory.

This file looks like a directory because
the --split flag has instructed Pachyderm to split the file up, and
it has created a directory with all the chunks in it. And, as you can
see below, each chunk will be put into a file. Those are the
split-files. Each split-file will be given a 16-character filename,
left-padded with 0.

Note

--split does not currently allow you to define more sophisticated file names.
This is a set of features we’ll add in future releases.
(See Issue 3568 [https://github.com/pachyderm/pachyderm/issues/3568], for example).

Each filename will be numbered sequentially in hexadecimal. We
modify the command to list the contents of “my-data.txt”, and the output
reveals the naming structure used:

$ pachctl list file line-data@master my-data.txt
COMMIT NAME TYPE COMMITTED SIZE
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000000 file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000001 file About a minute ago 22B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000002 file About a minute ago 24B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000003 file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000004 file About a minute ago 22B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000005 file About a minute ago 24B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000006 file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000007 file About a minute ago 22B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000008 file About a minute ago 23B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000009 file About a minute ago 24B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000000a file About a minute ago 24B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000000b file About a minute ago 24B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000000c file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000000d file About a minute ago 23B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000000e file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000000f file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000010 file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000011 file About a minute ago 22B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000012 file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000013 file About a minute ago 23B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000014 file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000015 file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000016 file About a minute ago 24B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000017 file About a minute ago 22B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000018 file About a minute ago 23B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000019 file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000001a file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000001b file About a minute ago 22B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000001c file About a minute ago 22B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000001d file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000001e file About a minute ago 22B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000001f file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000020 file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000021 file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000022 file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000023 file About a minute ago 22B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000024 file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000025 file About a minute ago 23B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000026 file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000027 file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000028 file About a minute ago 24B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000029 file About a minute ago 22B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000002a file About a minute ago 23B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000002b file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000002c file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000002d file About a minute ago 22B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000002e file About a minute ago 22B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/000000000000002f file About a minute ago 21B
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000030 file About a minute ago 22B
COMMIT NAME TYPE COMMITTED SIZE
8cce4de3571f46459cbe4d7fe222a466 /my-data.txt/0000000000000031 file About a minute ago 22B

Appending to files with –split

Combining --split with the default “append” behavior of
pachctl put file allows flexible and scalable processing of
record-oriented file data from external, legacy systems. Each of the
split-files will be deduplicated. You would have to ensure that
put file commands always have the --split flag.

pachctl will reject the command if --split is not specified to
append a file that it was previously specified with an error like this

could not put file at "/my-data.txt"; a file of type directory is already there

Pachyderm will ensure that only the added data will get reprocessed when
you append to a file using --split. Each of the split-files is
subject to deduplication, so storage will be optimized. A large file
with many duplicate lines (or objects that hash identically) which you
with --split may actually take up less space in pfs than it does as
a single file outside of pfs.

Appending files can make for efficient processing in downstream
pipelines. For example, let’s say you have a file named “count.txt”
consisting of 5 lines

One
Two
Three
Four
Five

Loading that local file into Pachyderm using --split with a command
like

pachctl put file line-data@master:count.txt -f ./count.txt --split line

will result in five files in a directory named “count.txt” in the input
repo, each of which will have the following contents

count.txt/0000000000000000: One
count.txt/0000000000000001: Two
count.txt/0000000000000002: Three
count.txt/0000000000000003: Four
count.txt/0000000000000004: Five

This would result in five datums being processed in any pipelines that
use this repo.

Now, take a one-line file containing

Six

and load it into Pachyderm appending it to the count.txt file. If that
file were named, “more-count.txt”, the command might look like

pachctl put file line-data@master:my-data.txt -f more-count.txt --split line

That will result in six files in the directory named “count.txt” in the
input repo, each of which will have the following contents

count.txt/0000000000000000: One
count.txt/0000000000000001: Two
count.txt/0000000000000002: Three
count.txt/0000000000000003: Four
count.txt/0000000000000004: Five
count.txt/0000000000000005: Six

This would result in one datum being processed in any pipelines that use
this repo: the new file count.txt/0000000000000005.

Overwriting files with –split

The behavior of Pachyderm when a file loaded with --split is
overwritten is simple to explain but subtle in its implications.
Remember that the loaded file will be split into those
sequentially-named files, as shown above. If any of those resulting
split-files hashes differently than the one it’s replacing, that will
cause the Pachyderm Pipeline System to process that data.

This can have important consequences for downstream processing. For
example, let’s say you have that same file named “count.txt” consisting
of 5 lines that we used in the previous example

One
Two
Three
Four
Five

As discussed prior, loading that file into Pachyderm using --split
will result in five files in a directory named “count.txt” in the input
repo, each of which will have the following contents

count.txt/0000000000000000: One
count.txt/0000000000000001: Two
count.txt/0000000000000002: Three
count.txt/0000000000000003: Four
count.txt/0000000000000004: Five

This would result in five datums being processed in any pipelines that
use this repo.

Now, modify that file by inserting the word “Zero” on the first line.

Zero
One
Two
Three
Four
Five

Let’s upload it to Pachyderm using --split and --overwrite.

pachctl put file line-data@master:count.txt -f ./count.txt --split line --overwrite

The input repo will now look like this

count.txt/0000000000000000: Zero
count.txt/0000000000000001: One
count.txt/0000000000000002: Two
count.txt/0000000000000003: Three
count.txt/0000000000000004: Four
count.txt/0000000000000005: Five

As far as Pachyderm is concerned,
every single file existing has changed,
and a new file has been added.
This is because the filename is taken into account when hashing the data for the pipeline.
While only one new piece of content is being stored,
Zero,
all six datums would be processed by a downstream pipeline.

It’s important to remember that what looks like a simple upsert can be a
kind of a fencepost
error [https://en.wikipedia.org/wiki/Off-by-one_error#Fencepost_error].
Being “off by one line” in your data can be expensive, consuming
processing resources you didn’t intend to spend.

Datums in Pachyderm pipelines

The “datum” is the fundamental unit of data processing in Pachyderm
pipelines. It is defined at the file level and filtered by the “globs”
you specify in your pipelines. What makes a datum is defined by you.
How do you do that?

When creating a pipeline, you can specify one or more input repos.
Each of these will contain files.
Those files are filtered by the “glob” you specify in the pipeline’s definition,
along with the input operators you use.
That determines how the datums you want your pipeline to process appear in the pipeline:
globs and input operators,
along with other pipeline configuration operators,
specify how you would like those datums orchestrated across your processing containers.
Pachyderm Pipeline System (pps) processes each datum individually in containers in pods,
using Pachyderm File System (pfs) to get the right data to the right code at the right time and merge the results.

To summarize:

	repos contain files in pfs

	pipelines filter and organize those files into datums for
processing through globs and input repo operators

	pps will use available resources to process each datum, using pfs to
assign datums to containers and merge results in the pipeline’s
output repo.

Let’s start with one of the simplest pipelines. The pipeline has a
single input repo, my-data. All it does is copy data from its input
to its output.

{
 "pipeline": {
 "name": "my-pipeline"
 },
 "input": {
 "pfs": {
 "glob": "/*",
 "repo": "my-data"
 }
 },
 "transform": {
 "cmd": ["sh"],
 "stdin": ["/bin/cp -r /pfs/my-data/* /pfs/out/"],
 "image": "ubuntu:14.04"
 }
}

With this configuration, the my-pipeline repo will always be a copy
of the my-data repo. Where it gets interesting is in the view of
jobs processed. Let’s say you have two data files and
you use the put file command to load both of those into my-data

$ pachctl put file my-data@master -f my-data-file-1.txt -f my-data-file-2.txt

Listing jobs will show that the job had 2 input datums, something like
this:

$ pachctl list job
ID PIPELINE STARTED DURATION RESTART PROGRESS DL UL STATE
0517ff33742a4fada32d8d43d7adb108 my-pipeline 20 seconds ago Less than a second 0 2 + 0 / 2 3.218KiB 3.218KiB success

What if you had defined the pipeline to use the “/” glob, instead? That
list job output would’ve showed one datum, because it treats the
entire input directory as one datum.

$ pachctl list job
ID PIPELINE STARTED DURATION RESTART PROGRESS DL UL STATE
aa436dbb53ba4cee9baaf84a1cc6717a my-pipeline 19 seconds ago Less than a second 0 1 + 0 / 1 3.218KiB 3.218KiB success

If we had written that pipeline to have a parallelism_spec of
greater than 1, there would have still been only one pod used to process
that data. You can find more detailed information on how to use
Pachyderm Pipeline System and globs to do sophisticated configurations
in the Distributed
Computing [http://docs.pachyderm.io/en/latest/fundamentals/distributed_computing.html]
section of our documentation.

When you have loaded data via a --split flag, as discussed above,
you can use the glob to select the split-files to be sent to a pipeline.
A detailed discussion of this is available in the Pachyderm cookbook
section Splitting Data for Distributed
Processing [http://docs.pachyderm.io/en/latest/cookbook/splitting.html#splitting-data-for-distributed-processing].

Summary

Pachyderm provides powerful operators for combining and merging your
data through input operations and the glob operator. Each of these have
subtleties that are worth working through with concrete examples.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Fundamentals

Lifecycle of a Datum

Introduction

Pachyderm’s idea of a “datum” in the context of parallel processing has
subtle implications for how data is written to output files. It’s
important to understand under what conditions data will be overwritten
or merged in output files.

There are four basic rules to how Pachyderm will process your data in
the pipelines you create.

	Pachyderm will split your input into individual datums as you
specified
in your pipeline spec

	each datum will be processed independently, using the parallelism
you
specified
in your pipeline spec, with no guarantee of the order of processing

	Pachyderm will merge the output of each pod into each output file,
with no guarantee of ordering

	the output files will look as if everything was done in one
processing step

If one of your pipelines is written to take all its input, whatever it
may be, process it, and put the output into one file, the final output
will be one file.

The many datums in your pipeline’s input would become one file at the
end, with the processing of every datum reflected in that file.

If you write a pipeline to write to multiple files, each of those files
may contained merged data that looks as if it were all processed in one
step, even if you would have specified the pipeline to process each
datum in one container via a parallelism_spec set to the default
value of 1.

This sounds a little complicated, but it breaks down simply into three
distinct relationships between the datums in your pipeline’s input
repository and in its output repository. We’ll list them, and then go
into them in detail, pointing to examples that illustrate them.

	1 to 1: 1 unique datum in to 1 unique datum out

	1 to many: 1 unique datum in to many unique datums out

	Many to many: many unique datums in map to many datums out.

1:1

The best example of this is the opencv example and beginner’s tutorial.

One datum,
in this case an image,
is transformed into another datum,
in this case, another image.

[image: opencv example animation showing 1 unique datum into 1 unique datum out]

1:many or 1:N

A good example of this is a pipeline designed to split an image into many tiles for further analysis,
an easy extension of the opencv example,
left as an exercise for you.
Each tile is unique in the output by necessity;
you can’t have one image stomping on another image’s tile!

[image: opencv example animation showing 1 unique datum into N unique datums out]

Many:Many or N:M

This is the most general case of a Pachyderm pipeline:
it takes many unique datums in and may write to many output files for each one.
Those output files may not be unique across datums.
That means that the results from processing many datums may be represented in a single file.
One of the things Pachyderm does is merge all those results into the single file for you.
This is what “merging” in the output from pachctl list jobs means.

To visualize what the many-to-many case looks like,
we’ll use the wordcount [https://github.com/pachyderm/pachyderm/tree/master/examples/word_count] example.
(We’ll also use a version of wordcount [https://github.com/pachyderm/pachyderm/tree/master/examples/word_count] later on in this document.)
The illustration below shows what this might look like in action
by showing a subset of the wordcount pipeline’s output datums.
In this example,
after processing the first paragraph of each book,
Moby Dick (md.txt) and A Tale of Two Cities (ttc.txt),
we show ten example output wordcount files.

The words was,
best,
worst,
wisdom,
and foolishness are unique to A Tale of Two Cities and
thus each eponymous file solely contains output from processing ttc.txt.

The words Ishmael and money are unique to Moby Dick,
thus the files each solely contain output from processing md.txt.

The files it,
the,
and of are not unique to each text.
The pipeline will output to the word file in each container
and Pachyderm will handle merging the results,
as shown in the image.

Important

The order of results isn’t guaranteed.

[image: wordcount example animation showing N unique datums in to M datums out]
The Pachyderm Pipeline System works with the Pachyderm File System to make sure
that files output by each pipeline are merged successfully
at the end of every commit.

Cross and union inputs

When creating pipelines,
you can use “union” and “cross” operations to combine inputs.

Union
input
will combine each of the datums in the input repos as one set of datums.
The result is that the number of datums processed is the sum of all the
datums in each repo.

For example, let’s say you have two input repos, A and B. Each of them
contain three files with the same names: 1.txt,
2.txt, and 3.txt. Each file hashes
differently, because each of the files contains different content,
despite the identical filenames. If you were to cross them in a
pipeline, the “input” object in the pipeline spec might look like this.

"input": {
 "union": [
 {
 "pfs": {
 "glob": "/*",
 "repo": "A"
 }
 },
 {
 "pfs": {
 "glob": "/*",
 "repo": "B"
 }
 }
]
}

If each repo had those three files at the top, there would be six (6)
datums overall, which is the sum of the number of input files. You’d see
the following datums, in a random order, in your pipeline as it ran
through them.

/pfs/A/1.txt

/pfs/A/2.txt

/pfs/A/3.txt

/pfs/B/1.txt

/pfs/B/2.txt

/pfs/B/3.txt

This is shown in the animation below.
Remember that the order in which the datums will be processed is not guaranteed;
we’ll show them in a random order.

[image: Each datum will get be visible to the input repo of a pipeline using a cross input]
One of the ways you can make your code simpler is to use the name
field for the pfs object and give each of those repos the same name.

"input": {
 "union": [
 {
 "pfs": {
 "name": "C",
 "glob": "/*",
 "repo": "A"
 }
 },
 {
 "pfs": {
 "name": "C",
 "glob": "/*",
 "repo": "B"
 }
 }
]
}

You’d still see the same six datums, in a random order, in your pipeline
as it ran through them, but they’d all be in a directory with the same
name: C.

/pfs/C/1.txt # from A

/pfs/C/2.txt # from A

/pfs/C/3.txt # from A

/pfs/C/1.txt # from B

/pfs/C/2.txt # from B

/pfs/C/3.txt # from B

This is shown in the animation below.
Remember that the order in which the datums will be processed is not guaranteed,
so we show them in a random order.
We also highlight the input file at the top of the image,
so it’s easier to understand when a file from a particular repo is being processed.

[image: If you give each input to a union the same name, it can make your code simpler.]
Cross input
is a cross-product of all the datums,
selected by the globs on the repos you’re crossing.
It provides a combination of all the datums to the pipeline that uses it as input,
treating each combination as a datum.

There are many examples that show the power of this operator:
Combining/Merging/Joining Data
cookbook and
the Distributed hyperparameter tuning [https://github.com/pachyderm/pachyderm/tree/master/examples/ml/hyperparameter]
example are good ones.

It’s important to remember that paths in your input repo will be
preserved and prefixed by the repo name to prevent collisions between
identically-named files. For example, let’s take those same two input
repos, A and B, each of which with the same files as above. If you were
to cross them in a pipeline, the “input” object in the pipeline spec
might look like this

"input": {
 "cross": [
 {
 "pfs": {
 "glob": "/*",
 "repo": "A"
 }
 },
 {
 "pfs": {
 "glob": "/*",
 "repo": "B"
 }
 }
]
}

In the case of cross inputs, you can’t give the repos being crossed
identical names, because of that need to avoid name collisions. If each
repo had those three files at the top, there would be nine (9) datums
overall, which is every permutation of the input files. You’d see the
following datums, in a random order, in your pipeline as it ran through
the nine permutations.

/pfs/A/1.txt
/pfs/B/1.txt

/pfs/A/2.txt
/pfs/B/1.txt

/pfs/A/3.txt
/pfs/B/1.txt

/pfs/A/1.txt
/pfs/B/2.txt

/pfs/A/2.txt
/pfs/B/2.txt

/pfs/A/3.txt
/pfs/B/2.txt

/pfs/A/1.txt
/pfs/B/3.txt

/pfs/A/1.txt
/pfs/B/2.txt

/pfs/A/1.txt
/pfs/B/3.txt

Important

You (or your code) will always see both input directories involved in the cross!

Output repositories

Every Pachyderm pipeline has an output repository associated with it,
with the same name as the pipeline. For
example, an “edges”
pipeline would have an “edges” repository you can use as input to other
pipelines, like a “montage” pipeline.

Your code, regardless of the pipeline you put it in, should place data
in a filesystem mounted under “/pfs/out” and it will appear in the named
repository for the current pipeline.

Appending vs overwriting data in output repositories

The Pachyderm File System keeps track of which datums are being
processed in which containers, and makes sure that each datum leaves its
unique data in output files. Let’s say you have a simple pipeline,
“wordcount [https://github.com/pachyderm/pachyderm/tree/master/examples/word_count]”,
that counts references to words in documents by writing the number of
occurrences of a word to an output file named for each word in
/pfs/out, followed by a newline. We intend to process the data by
treating each input file as a datum. We specify the glob in the
“wordcount” pipeline json accordingly, something like "glob": "/*".
We load a file containing the first paragraph of Charles Dickens’s “A
Tale of Two Cities” into our input repo, but mistakenly just put the
first four lines in the file ttc.txt.

It was the best of times,
it was the worst of times,
it was the age of wisdom,
it was the age of foolishness,

In this case, after the pipeline runs on this single datum, /pfs/out
would contain the files

it -> 4\n
was -> 4\n
the -> 4\n
best -> 1\n
worst -> 1\n
of -> 4\n
times -> 2\n
age -> 2\n
wisdom -> 1\n
foolishness -> 1\n

Where \n is the newline appended by our “wordcount” code
after it outputs the word count. If we were to fix ttc.txt, either
by appending the missing text or replacing it with the entire first
paragraph using pachctl put file with the --overwrite flag, the
file would then look like this

It was the best of times,
it was the worst of times,
it was the age of wisdom,
it was the age of foolishness,
it was the epoch of belief,
it was the epoch of incredulity,
it was the season of Light,
it was the season of Darkness,
it was the spring of hope,
it was the winter of despair,
we had everything before us,
we had nothing before us,
we were all going direct to Heaven,
we were all going direct the other way--
in short, the period was so far like the present period, that some of
its noisiest authorities insisted on its being received, for good or for
evil, in the superlative degree of comparison only.

We would see each file in the “wordcount” repo overwritten with one line
with an updated number. Using our existing examples, we’d see a few of
the files replaced with new content

it -> 10\n
was -> 10\n
the -> 14\n
best -> 1\n
worst -> 1\n
of -> 4\n
times -> 2\n
age -> 2\n
wisdom -> 1\n
foolishness -> 1\n

The reason that the entire file gets reprocessed, even if we just append
to it, is because the entire file is the datum. We haven’t used the
--split flag combined with the appropriate glob to split it into
lots of datums.

What if we put other texts in the pipeline’s input repo?
Such as the first paragraph of Herman Melville’s Moby Dick, put into “md.txt”.

Call me Ishmael. Some years ago—never mind how long precisely—having
little or no money in my purse, and nothing particular to interest me
on shore, I thought I would sail about a little and see the watery part of the world.
It is a way I have of driving off the spleen and
regulating the circulation. Whenever I find myself growing grim about
the mouth; whenever it is a damp, drizzly November in my soul; whenever
I find myself involuntarily pausing before coffin warehouses, and
bringing up the rear of every funeral I meet; and especially whenever
my hypos get such an upper hand of me, that it requires a strong moral
principle to prevent me from deliberately stepping into the street, and
methodically knocking people's hats off—then, I account it high time to
get to sea as soon as I can. This is my substitute for pistol and ball.
With a philosophical flourish Cato throws himself upon his sword; I
quietly take to the ship. There is nothing surprising in this. If they
but knew it , almost all men in their degree, some time or other,
cherish very nearly the same feelings towards the ocean with me.

What happens to our word files?
Will they all get overwritten?
Not as long as each input file
–ttc.txt and md.txt–
is being treated as a separate datum.
Only files that contain words that are common between the text will change,
because only the added datum will get processed.

You’ll see the data in the “wordcount” repo looking something like this:

it -> 10\n5\n
was -> 10\n
the -> 14\n7\n
best -> 1\n
worst -> 1\n
of -> 4\n4\n
times -> 2\n
age -> 2\n
wisdom -> 1\n
foolishness -> 1\n

During each job that is run,
each distinct datum in Pachyderm will put data in an output file.
If the file shares a name with the files from other datums,
the previously-computed output from each other datum is merged with the new output after processing the new datum.
This will happen during the appropriately-named merge stage after your pipeline runs.
You should not count on the data appearing in a particular order.
Before that merge occurs,
when your pipeline code is running,
you shouldn’t expect an output file in the pipeline’s repo have any other data in it
other than the data from processing that single datum.
You won’t see it in the output file
until all datums have been processed
and the merge is complete,
after that pipeline and the commit is finished.

What happens if we delete md.txt? The “wordcount” repo would go back
to its condition with just ttc.txt.

it -> 10\n
was -> 10\n
the -> 14\n
best -> 1\n
worst -> 1\n
of -> 4\n
times -> 2\n
age -> 2\n
wisdom -> 1\n
foolishness -> 1\n

What if didn’t delete md.txt; we appended to it? Then we’d see the
appropriate counts change only on the lines of the files affected by
md.txt; the counts for ttc.txt would not change. Let’s say we
append the second paragraph to md.txt:

There now is your insular city of the Manhattoes, belted round by
wharves as Indian isles by coral reefs—commerce surrounds it with her
surf. Right and left, the streets take you waterward. Its extreme
downtown is the battery, where that noble mole is washed by waves, and
cooled by breezes, which a few hours previous were out of sight of
land. Look at the crowds of water-gazers there.

The “wordcount” repo might now look like this. (We’re not using stemmed
parser, and “it” is a different word than “its”)

it -> 10\n6\n
was -> 10\n
the -> 14\n11\n
best -> 1\n
worst -> 1\n
of -> 4\n8\n
times -> 2\n
age -> 2\n
wisdom -> 1\n
foolishness -> 1\n

Pachyderm is smart enough to keep track of what changes to what datums
affect what downstream results, and only reprocesses and re-merges as
needed.

Summary

To summarize,

	Your output datums should always reflect the state of processing all the input datums in your HEAD commit,
independent of whether those input datums were added in separate commits or
all added at once.

	If your downstream pipeline processes multiple input datums, putting
the result a single file, adding or removing an input datum will only
remove its effect from that file. The effect of the other datums will
still be seen in that file.

You can see this in action in the word count example [https://github.com/pachyderm/pachyderm/tree/master/examples/word_count]
in the Pachyderm git repo.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Fundamentals

Updating Pipelines

During development, it’s very common to update pipelines, whether it’s changing
your code or just cranking up parallelism. For example, when developing a
machine learning model you will likely need to try out a bunch of different
versions of your model while your training data stays relatively constant.
This is where update pipeline comes in.

Updating your pipeline specification

In cases in which you are updating parallelism, adding another input repo, or
otherwise modifying your pipeline
specification, you just need to update your
JSON file and call update pipeline:

$ pachctl update pipeline -f pipeline.json

Similar to create pipeline, update pipeline with the -f flag can also
take a URL if your JSON manifest is hosted on GitHub or elsewhere.

Updating the code used in a pipeline

You can also use update pipeline to update the code you are using in one or
more of your pipelines. To update the code in your pipeline:

	Make the code changes.

	Build, tag, and push the image in docker to the place specified in the pipeline spec.

	Call pachctl update pipeline again.

Building pipeline images within pachyderm

Building, tagging and pushing the image in docker requires a bit of ceremony,
so there’s a shortcut: the --build flag for pachctl update pipeline. When
used, Pachyderm will do the following:

	Rebuild the docker image.

	Tag your image with a new unique name.

	Push that tagged image to your registry (e.g., DockerHub).

	Update the pipeline specification that you previously gave to Pachyderm to
use the new unique tag.

For example, you could update the Python code used in the OpenCV
pipeline via:

pachctl update pipeline -f edges.json --build --username <registry user>

You’ll then be prompted for the password associated with the registry user.

Private registries

--build supports private registries as well. Make sure the private registry
is specified as part of the pipeline spec, and use the --registry flag when
calling pachctl update pipeline --build.

For example, if you wanted to push the image pachyderm/opencv to a registry
located at localhost:5000, you’d have this in your pipeline spec:

"image": "localhost:5000/pachyderm/opencv"

And would run this to update the pipeline:

pachctl update pipeline -f edges.json --build --registry localhost:5000 --username <registry user>

Re-processing data

As of 1.5.1, updating a pipeline will NOT reprocess previously
processed data by default. New data that’s committed to the inputs will be processed with
the new code and “mixed” with the results of processing data with the previous
code. Furthermore, data that Pachyderm tried and failed to process with the
previous code due to code erroring will be processed with the new code.

update pipeline (without flags) is designed for the situation where your code needs to be
fixed because it encountered an unexpected new form of data.

If you’d like to update your pipeline and have that updated pipeline reprocess all the data
that is currently in the HEAD commit of your input repos, you
should use the --reprocess flag. This type of update will automatically trigger a job that reprocesses all of the input data in its current state (i.e., the HEAD commits)
with the updated pipeline. Then from that point on, the updated pipeline will continue to be used to process any new input data. Previous results will still be
available in via their corresponding commit IDs.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Fundamentals

Distributed Computing

Distributing computation across multiple workers is a fundamental part of processing any big data or computationally intensive workload. There are two main questions to think about when trying to distribute computation:

	How many workers to spread computation across?

	How to define which workers are responsible for which data?

Pachyderm Workers

Before we dive into the above questions, there are a few details you should understand about Pachyderm workers.

Every worker for a given pipeline is an identical pod running the Docker image you specified in the pipeline spec. Your analysis code does not need do anything special to run in a distributed fashion. Instead, Pachyderm will spread out the data that needs to be processed across the various workers and make that data available for your code.

Pachyderm workers are spun up when you create the pipeline and are left running in the cluster waiting for new jobs (data) to be available for processing (committed). This saves having to recreate and schedule the worker for every new job.

Controlling the Number of Workers (Parallelism)

The number of workers that are used for a given pipeline is controlled by the parallelism_spec defined in the pipeline specification.

 "parallelism_spec": {
 // Exactly one of these two fields should be set
 "constant": int
 "coefficient": double

Pachyderm has two parallelism strategies: constant and coefficient. You should set one of the two corresponding fields in the parallelism_spec, and pachyderm chooses a parallelism strategy based on which field is set.

If you set the constant field, Pachyderm will start the number of workers that you specify. For example, set "constant":10 to use 10 workers.

If you set the coefficient field, Pachyderm will start a number of workers that is a multiple of your Kubernetes cluster’s size. For example, if your Kubernetes cluster has 10 nodes, and you set "coefficient": 0.5, Pachyderm will start five workers. If you set it to 2.0, Pachyderm will start 20 workers (two per Kubernetes node).

NOTE: The parallelism_spec is optional and will default to “coefficient": 1, which means that it’ll spawn one worker per Kubernetes node for this pipeline if left unset.

Spreading Data Across Workers (Glob Patterns)

Defining how your data is spread out among workers is arguably the most important aspect of distributed computation and is the fundamental idea around concepts like Map/Reduce.

Instead of confining users to just data-distribution patterns such as Map (split everything as much as possible) and Reduce (all the data must be grouped together), Pachyderm uses Glob Patterns [https://en.wikipedia.org/wiki/Glob_(programming)] to offer incredible flexibility in defining your data distribution.

Glob patterns are defined by the user for each pfs within the input of a pipeline, and they tell Pachyderm how to divide the input data into individual “datums” that can be processed independently.

"input": {
 "pfs": {
 "repo": "string",
 "glob": "string",
 }
}

That means you could easily define multiple PFS inputs, one with the data highly distributed and another where it’s grouped together. You can then join the datums in these PFS inputs via a cross product or union (as shown above) for combined, distributed processing.

"input": {
 "cross" or "union": [
 {
 "pfs": {
 "repo": "string",
 "glob": "string",
 }
 },
 {
 "pfs": {
 "repo": "string",
 "glob": "string",
 }
 },
 etc...
]
}

More information about PFS inputs, unions, and crosses can be found in our Pipeline Specification [http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html].

Datums

Pachyderm uses the glob pattern to determine how many “datums” a PFS input consists of. Datums are the unit of parallelism in Pachyderm. That is, Pachyderm attempts to process datums in parallel whenever possible.

If you have two workers and define 2 datums, Pachyderm will send one datum to each worker. In a scenario where there are more datums than workers, Pachyderm will queue up extra datums and send them to workers as they finish processing previous datums.

Defining Datums via Glob Patterns

Intuitively, you should think of the PFS input repo as a file system where the glob pattern is being applied to the root of the file system. The files and directories that match the glob pattern are considered datums.

For example, a glob pattern of just / would denote the entire input repo as a single datum. All of the input data would be given to a single worker similar to a typical reduce-style operation.

Another commonly used glob pattern is /*. /* would define each top level object (file or directory) in the PFS input repo as its own datum. If you have a repo with just 10 files in it and no directory structure, every file would be a datum and could be processed independently. This is similar to a typical map-style operation.

But Pachyderm can do anything in between too. If you have a directory structure with each state as a directory and a file for each city such as:

/California
 /San-Francisco.json
 /Los-Angeles.json
 ...
/Colorado
 /Denver.json
 /Boulder.json
 ...
...

and you need to process all the data for a given state together, /* would also be the desired glob pattern. You’d have one datum per state, meaning all the cities for a given state would be processed together by a single worker, but each state can be processed independently.

If we instead used the glob pattern /*/* for the states example above, each <city>.json would be its own datum.

Glob patterns also let you take only a particular directory (or subset of directories) as a PFS input instead of the whole input repo. If we create a pipeline that is specifically only for California, we can use a glob pattern of /California/* to only use the data in that directory as input to our pipeline.

Only Processing New Data

A datum defines the granularity at which Pachyderm decides what data is new and what data has already been processed. Pachyderm will never reprocess datums it’s already seen with the same analysis code. But if any part of a datum changes, the entire datum will be reprocessed.

Note: If you change your code (or pipeline spec), Pachyderm will of course allow you to process all of the past data through the new analysis code.

Let’s look at our states example with a few different glob patterns to demonstrate what gets processed and what doesn’t. Suppose we have an input data layout such as:

/California
 /San-Francisco.json
 /Los-Angeles.json
 ...
/Colorado
 /Denver.json
 /Boulder.json
 ...
...

If our glob pattern is /, then the entire PFS input is a single datum, which means anytime any file or directory is changed in our input, all the the data will be processed from scratch. There are plenty of usecases where this is exactly what we need (e.g. some machine learning training algorithms).

If our glob pattern is /*, then each state directory is its own datum and we’ll only process the ones that have changed. So if we add a new city file, Sacramento.json to the /California directory, only the California datum, will be reprocessed.

If our glob pattern was /*/* then each <city>.json file would be its own datum. That means if we added a Sacramento.json file, only that specific file would be processed by Pachyderm.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Fundamentals

Incremental Processing

Pachyderm performs computations in an incremental fashion. That is, rather
than computing a result all at once, it computes it in small pieces and
then stitches those pieces together to form results. This allows Pachyderm to reuse results and compute
things much more efficiently than traditional systems, which are forced to compute everything from
scratch during every job.

If you are new to the idea of Pachyderm “datums,” you can learn more here [http://pachyderm.readthedocs.io/en/latest/fundamentals/distributed_computing.html#datums].

Inter-datum Incrementality

Each of the input datums in a Pachyderm pipeline is processed in isolation, and the results of these isolated
computations are combined to create the final result. Pachyderm will never
process the same datum twice (unless you update a pipeline with the
--reprocess flag). If you commit new data in Pachyderm that leaves some of the previously existing datums
intact, the results of processing those pre-existing datums in a previous job will
also remain intact. That is, the previous results for those pre-existing datums won’t
be recalculated.

This inter-datum incrementality is best illustrated with
an example. Suppose we have a pipeline with a single input that looks like this:

{
 "pfs": {
 "repo": "R",
 "glob": "/*",
 }
}

Now, suppose you make a commit to R which adds a single file F1. Your
pipeline will run a job, and that job will find a single datum to process (F1).
This datum will be processed, because it’s the first time the pipeline has
seen F1.

[image: alt tag]

If you then make a second commit to R adding another file F2,
the pipeline will run a second job. This job will find two datums to
process (F1 and F2). F2 will be processed, because it hasn’t been seen before. However F1 will NOT be
processed, because an output from processing it already exists in Pachyderm.

Instead, the output from the previous job for F1 will be combined with the
new result from processing F2 to create the
output of this second job. This reuse of the result for F1 effectively halves the amount of work necessary
to process the second commit.

[image: alt tag]

Finally, suppose you make a third commit to R, which modifies F1. Again
you’ll have a job that sees two datums (the new F1 and the already processed F2). This time
F2 won’t get processed, but the new F1 will be processed because it has different
content as compared to the old F1.

[image: alt tag]

Note, you as a user don’t need to do anything to enable this
inter-datum incrementality. It happens automatically, and it should should be transparent from
your perspective. In the above example, you get the
same result you would have gotten if you committed the same data in a single
commit.

As of Pachyderm v1.5.1, list job and inspect job will tell you how many
datums the job processed and how many it skipped. Below is an example of
a job that had 5 datums, 3 that were processed and 2 that were skipped.

ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
54fbc366-3f11-41f6-9000-60fc8860fa55 pipeline/9c348deb64304d118101e5771e18c2af 13 seconds ago 10 seconds 0 3 + 2 / 5 0B 0B success

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Fundamentals

Spouts

Introduction

Spouts are a way to get streaming data from any source into Pachyderm.
To create a spout, you need three things

	A source of streaming data: a message queue (Kafka, nifi, rabbitMQ, etc.), a database’s change feed, the stream of Event Notifications on an S3 bucket (via Amazon SQS) [https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html], etc.

	A Docker container holding your spout code that reads from the data source.

	A spout pipeline specification file that uses the container.

Your spout code will do four things:

	connect to your source of streaming data

	read the data

	package it into files in a tar stream

	write that tar stream to the named pipe /pfs/out

In this document,
we’ll take you through writing the spout code (with example code in Golang) and writing the spout pipeline specification.

Creating your containerized spout code

To create the spout process,
you’ll need access to client libraries
for your streaming data source,
a library that can write the tar archive format
(such as Go’s tar package [https://golang.org/pkg/archive/tar/]
or Python’s tarfile module [https://docs.python.org/3.7/library/tarfile.html]),
and requirements for how you would like to batch your data.
For the purposes of this document,
we’ll assume each message in the stream
is a single file.

You need that tar library because,
in spouts,
/pfs/out is a named pipe.
This is different than in pipelines,
where /pfs/out is a directory.

In the example below,
written in Go
and taken from the kafka example [https://github.com/pachyderm/pachyderm/tree/master/examples/kafka]
in the Pachyderm repo,
we’ll go through every step you need to take.

If you have trouble following this Go code,
just read the text to get an idea of what you need to do.

Import necessary libraries

We’ll import the libraries necessary for creating a tar archive data stream
and connecting to our Kafka data source.

package main

import (
 "archive/tar"
 "context"
 "os"
 "strings"
 "time"

 kafka "github.com/segmentio/kafka-go"
)

Parameterizing connection information

It’s a good idea to get parameters
for connecting to your data source
from the environment
or command-line parameters.
That way you can connect to new data sources
using the same container code
without recompiling
by just setting appropriate parameters
in the pipeline specification.

func main() {
 // Get the connection info from the ENV vars
 host := os.Getenv("HOST")
 port := os.Getenv("PORT")
 topic := os.Getenv("TOPIC")

Connect to the streaming data source

We’re creating an object
that can be used to read from our data source.

That defer statement is the Go way to guarantee
that the open file will be closed
after the code in main() runs,
but before it returns.
That is,
reader.Close() won’t be executed
until after main() is finished with everything else.
(This is a common idiom in Go;
to defer the close of a resource
right after you open it.)

 // And create a new kafka reader
 reader := kafka.NewReader(kafka.ReaderConfig{
 Brokers: []string{host + ":" + port},
 Topic: topic,
 MinBytes: 10e1,
 MaxBytes: 10e6,
 })
 defer reader.Close()

Open /pfs/out for writing

We’re opening the named pipe /pfs/out for writing,
so we can send it a tar archive stream with the files we want to output.
Note that the named pipe has to be opened with write-only permissions.

 // Open the /pfs/out pipe with write only permissons (the pachyderm spout will be reading at the other end of this)
 // Note: it won't work if you try to open this with read, or read/write permissions
 out, err := os.OpenFile("/pfs/out", os.O_WRONLY, 0644)
 if err != nil {
 panic(err)
 }
 defer out.Close()

Write the outer file loop

Here we open a tar stream into the directory we opened above,
so that Pachyderm can place files into the output repo.
For clarity’s sake,
we’ll omit the message-processing loop inside this file loop.
The err variable is used in the message-processing loop for errors reading from the stream and writing to the directory.
The stream is opened at the top of the loop and should be closed at the bottom.
In this case,
it’ll be closed after a message is processed.
The commit is finished after the file stream closes.
(The defer tw.Close() is wrapped in an anonymous function to control when it gets run;
it’ll run right before the anonymous function is finished.)
Think of the tw.Close() as a FinishCommit().

 // this is the file loop
 for {
 if err := func() error {
 tw := tar.NewWriter(out)
 defer tw.Close()
 // this is the message loop
 for {

 // ...omitted

 }
 }(); err != nil {
 panic(err)
 }
 }

Create the message processing loop

Once again, if you have trouble following this Go code,
just read the text to get an idea of what you need to do.

First,
we read a message from our Kafka queue.
Note the use of a 5-second timeout on the read.
That’s so if the data source,
Kafka,
hangs for some reason,
the spout itself doesn’t hang,
but gives a hopefully useful error message in the logs after crashing.

 // this is the message loop
 for {
 // read a message
 ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
 defer cancel()
 m, err := reader.ReadMessage(ctx)
 if err != nil {
 return err
 }

Then we write a filename and the size of the file in a file header to the tar stream we opened at the beginning of the file loop.
This tar stream will be used by Pachyderm to create files in the output repo.

 // give it a unique name
 name := topic + time.Now().Format(time.RFC3339Nano)
 // write the header
 for err = tw.WriteHeader(&tar.Header{
 Name: name,
 Mode: 0600,
 Size: int64(len(m.Value)),
 }); err != nil; {
 if !strings.Contains(err.Error(), "broken pipe") {
 return err
 }
 // if there's a broken pipe, just give it some time to get ready for the next message
 time.Sleep(5 * time.Millisecond)
 }

Then we write the actual message as the contents of the file.
Note the use of a timeout in case the named pipe is broken.
The reason for this is that the other end of the spout
(Pachyderm’s code)
has closed the named pipe at the end of the previous read.
If it gets an error writing to the named pipe,
our code should back off,
because Pachyderm may not have reopened the named pipe yet.

If you’re batching the messages with longer time intervals between writes,
this may not be necessary,
but it is a good practice to establish for ruggedizing your code.
Note:
If a more serious error occurs on the named pipe,
it may be that a crash has occurred that will be visible in the logs for the pipeline.
Any of these errors will be visible in the pipeline’s user logs,
accessible with pachctl logs --pipeline=<your pipeline name>.

 // and the message
 for _, err = tw.Write(m.Value); err != nil; {
 if !strings.Contains(err.Error(), "broken pipe") {
 return err
 }
 // if there's a broken pipe, just give it some time to get ready for the next message
 time.Sleep(5 * time.Millisecond)
 }
 return nil
 }

That’s the rough outline of operations for processing data in queues and writing it to Pachyderm via a spout.

Create the container for the code

To start, you’ll need to create a Dockerfile [https://docs.docker.com/develop/develop-images/dockerfile_best-practices/]
In our example above,
we created a server using Go.
The Dockerfile for creating a container
with that server in it is in the kafka example [https://github.com/pachyderm/pachyderm/tree/master/examples/kafka].

With your Dockerfile written, you can build your container by running docker build -t myaccount/myimage:0.1 . and push it to Docker Hub (or any other registry) with docker push myaccount/myimage:0.1.

Once you have containerized your code,
you can place it in a Pachyderm spout by writing an appropriate pipeline specification.

Writing the spout pipeline specification

A spout is defined using a pipeline spec with a spout field,
and created using the pachctl create pipeline command.

Continuing with our example Docker container from above,
we might define the specification for the spout as something like this:

{
 "pipeline": {
 "name": "my-spout"
 },
 "transform": {
 "cmd": ["go", "run", "./main.go"],
 "image": "myaccount/myimage:0.1"
 },
 "env": {
 "HOST": "kafkahost",
 "TOPIC": "mytopic",
 "PORT": "9092"
 },
 "spout": {
 "overwrite": false
 }
}

Note that the overwrite property on the spout is false by default;
setting it to true would be like having the --overwrite flag specified on every pachctl put file.

With the spec written, we would then use pachctl create pipeline -f my-spout.json to install the spout.
It would begin processing messages
and placing them in the my-spout repo.

Combine a Spout with a Service

You can create a pipeline that can act as both a spout and a service.
If you want your spout pipeline to combine these two functionalities, add
the following to the spout pipeline specification:

"spout": {
 "overwrite": false,
 "service": {
 "internal_port": 8200,
 "external_port": 31467,
 "annotations": {
 "foo": "bar"
 }
 }
}

This specification creates an endpoint that can read and serve
data from Pachyderm and write data back into a Pachyderm repository.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Fundamentals

History

Pachyderm implements rich version-control and history semantics. This doc
lays out the core concepts and architecture of Pachyderm’s version-control
and the various ways to use the system to access historical data.

Commits

Commits are the core version-control primitive in Pachyderm, similar to
git, commits represent an immutable snapshot of a filesystem and can be
accessed with an ID. Commits have a parentage structure, with new commits
inheriting content from their parents and then adding to it, you can think
of it as a linked list, it’s also often referred to as “a chain of
commits.” Commit IDs are useful if you want to have a static pointer to
a snapshot of a filesystem. However, because they’re static their use is
limited, and you’ll mostly deal with branches instead.

Branches

Branches are pointers to commits, again similar to git, branches have
semantically meaningful names such as master and staging. Branches
are mutable, they move along a growing chain of commits as you commit to
the branch, and can even be reassigned to any commit within the repo (with
create branch). The commit that a branch points to is referred to as the
branches “head,” and the head’s ancestors are referred to as “on the
branch.” Branches can be substituted for commits in Pachyderm’s API and
will behave as if the head of the branch were passed. This allows you to
deal with semantic meaningful names for commits that can be updated,
rather than static opaque identifiers.

Ancestry Syntax

Pachyderm’s commits and branches support a familiar git syntax for
referencing their history. A commit or branch’s parent can be referenced
by adding a ^ to the end of the commit or branch. Similar to how
master resolves to the head commit of master, master^ resolves
to the parent of the head commit. You can add multiple ^s, for example
master^^ resolves to the parent of the parent of the head commit of
master, and so on. This gets unwieldy quickly so it can also be written
as master^3, which has the same meaning as master^^^. Git supports two
characters for ancestor references, ^ and ~ with slightly different
meanings, Pachyderm supports both characters as well, for familiarity’s
sake, but their meaning is identical.

Pachyderm also supports a type of ancestor reference that git doesn’t:
forward references, these use a different special character . and
resolve to commits on the beginning of commit chains. For example
master.1 is the first (oldest) commit on the master branch, master.2
is the second commit, and so on.

Note that resolving ancestry syntax requires traversing chains of commits
high numbers passed to ^ and low numbers passed to . will require
traversing a large number of commits which, will take a long time. If you
plan to repeatedly access an ancestor it may be worth it to resolve that
ancestor to a static commit ID with inspect commit and use that ID for
future accesses.

The history flag

Pachyderm also allows you to list the history of objects using
a --history flag. This flag takes a single argument, an integer, which
indicates how many historical versions you want. For example you can get
the two most recent versions of a file with the following command:

$ pachctl list file repo@master:/file --history 2
COMMIT NAME TYPE COMMITTED SIZE
73ba56144be94f5bad1ce64e6b96eade /file file 16 seconds ago 8B
c5026f053a7f482fbd719dadecec8f89 /file file 21 seconds ago 4B

Note that this isn’t necessarily the same result you’d get if you did:
pachctl list file repo@master:/file followed by pachctl list file repo@master^:/file, because the history flag actually looks for changes
to the file, and the file need not change in every commit. Similar to the
ancestry syntax above, the history flag requires traversing through
a linked list of commits, and thus can be expensive. You can get back the
full history of a file by passing all to the history flag.

Pipelines

Pipelines are the main processing primitive in Pachyderm, however they
expose version-control and history semantics similar to filesystem
objects, this is largely because, under the hood, they are implemented in
terms of filesystem objects. You can access previous versions of
a pipeline using the same ancestry syntax that works for commits and
branches, for example pachctl inspect pipeline foo^ will give you the
previous version of the pipeline foo, pachctl inspect pipeline foo.1
will give you the first ever version of that same pipeline. This syntax
can be used wherever pipeline names are accepted. A common workflow is
reverting a pipeline to a previous version, which can be accomplished with:

$ pachctl extract pipeline pipeline^ | pachctl create pipeline

Historical versions of pipelines can also be returned with a --history
flag passed to pachctl list pipeline for example:

$ pachctl list pipeline --history all
NAME VERSION INPUT CREATED STATE / LAST JOB
Pipeline2 1 input2:/* 4 hours ago running / success
Pipeline1 3 input1:/* 4 hours ago running / success
Pipeline1 2 input1:/* 4 hours ago running / success
Pipeline1 1 input1:/* 4 hours ago running / success

Jobs

Jobs do not have versioning semantics associated with them, however, they
are associated strongly with the pipelines that created them and thus
inherit some of their versioning semantics. This is reflected in pachctl list job, by default this command will return all jobs from the most recent
versions of all pipelines. You can focus it on a single pipeline by passing -p pipeline and you can focus it on a previous version of that pipeline by
passing -p pipeline^. Furthermore you can get jobs from multiple versions of
pipelines by passing the --history flag, for example: pachctl list job --history all will get you all jobs from all versions of all pipelines.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

Pachyderm Enterprise Edition Guide

This document describes the features that you can use
in the Pachyderm Enterprise Edition.

	Overview
	Pipeline Visualization and Data Exploration

	Access Controls

	Advanced Statistics

	Administrative Controls, Interactive Pipeline Configuration

	S3Gateway

	Deploying Enterprise Edition
	Activating Pachyderm Enterprise Edition

	Access Controls
	Understanding Pachyderm access controls

	Advanced Statistics
	Enabling stats for a pipeline

	Accessing stats via the dashboard

	Using the S3 Gateway
	Viewing the List of S3 Buckets

	Configure the S3 client

	Examples of Command-Line Operations

	Unsupported operations

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachyderm Enterprise Edition Guide

Overview

[image: alt tag]

Pachyderm Enterprise Edition includes everything you need to scale and manage Pachyderm data pipelines in an enterprise setting. It delivers the most recent version of Pachyderm along with:

	Administrative and security features needed for enterprise-scale implementations of Pachyderm

	Visual and interactive interfaces to Pachyderm

	Detailed job and data statistics for faster development and data insight

Pachyderm Enterprise Edition can be deployed easily on top of an existing or new deployment of Pachyderm, and we have engineers available to help enterprise customers get up and running very quickly. To get more information about Pachyderm Enterprise Edition, to ask questions, or to get access for evaluation, please contact us at sales@pachyderm.io or on our Slack [http://slack.pachyderm.io/].

Pipeline Visualization and Data Exploration

[image: alt tag]

Pachyderm Enterprise Edition includes a full UI for visualizing pipelines and exploring data. Pachyderm Enterprise will automatically infer the structure of data scientists’ DAG pipelines and display them visually. Data scientists and cluster admins can even click on individual segments of the pipelines to see what data is being processed, how many jobs have run, what images and commands are being run, and much more! Data scientists can also explore the versioned data in Pachyderm data repositories and see how the state of data has changed over time.

Access Controls

[image: alt tag]

Enterprise-scale deployments require access controls and multitenancy. Pachyderm Enterprise Edition gives teams the ability to control access to production pipelines, data, and configuration. Administrators can silo data, prevent unintended modifications to production pipelines, and support multiple data scientists or even multiple data science groups.

Advanced Statistics

[image: alt tag]

Pachyderm Enterprise Edition gives data scientists advanced insights into their data, jobs, and results. For example, data scientists can see how much time jobs spend downloading/uploading data, what data was processed or skipped, and which workers were given particular datums. This information can be explored programmatically or via a number of charts and plots that help users parse the information quickly.

Administrative Controls, Interactive Pipeline Configuration

With Pachyderm Enterprise, cluster admins don’t have to rely solely on command line tools and language libraries to configure and control Pachyderm. With new versions of our UI you can control, scale, and configure Pachyderm interactively.

S3Gateway

Pachyderm Enterprise Edition includes the s3gateway, an S3-like API for interacting with PFS content. With it, you can interact with PFS content with tools and libraries built to work with S3.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachyderm Enterprise Edition Guide

Deploying Enterprise Edition

To deploy and use Pachyderm’s Enterprise Edition, you simply need to follow one of our guides to deploy Pachyderm and then activate the Enterprise Edition.

Note - Pachyderm’s Enterprise dashboard is now deployed by default with Pachyderm. If you wish to deploy without the dashboard please use pachctl deploy [command] --no-dashboard

Note - You can get a FREE evaluation token for the enterprise edition on the landing page of the Enterprise dashboard.

Activating Pachyderm Enterprise Edition

There are two ways to activate Pachyderm’s enterprise features::

	Activate Pachyderm Enterprise via the pachctl CLI

	Activate Pachyderm Enterprise via the dashboard

For either method, you will need to have your Pachyderm Enterprise activation code available. You should have received this from Pachyderm sales/support when registering for the Enterprise Edition. If you are a new user evaluating Pachyderm, you can receive a FREE evaluation code on the landing page of the dashboard. Please contact support@pachyderm.io if you are having trouble locating your activation code.

Activate via the pachctl CLI

Assuming you followed one of our deploy guides [http://pachyderm.readthedocs.io/en/latest/deployment/deploy_intro.html] and you have a Pachyderm cluster running, you should see that the state of your Pachyderm cluster is similar to the following:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-6c9dc97d9c-vb972 2/2 Running 0 6m
etcd-7dbb489f44-9v5jj 1/1 Running 0 6m
pachd-6c878bbc4c-f2h2c 1/1 Running 0 6m

You should also be able to connect to the Pachyderm cluster via the pachctl CLI:

$ pachctl version
COMPONENT VERSION
pachctl 1.6.8
pachd 1.6.8

Activating the Enterprise features of Pachyderm is then as easy as:

$ pachctl enterprise activate <activation-code>

If this command returns no error, then the activation was successful. The state of the Enterprise activation can also be retrieved at any time via:

$ pachctl enterprise get-state
ACTIVE

Activate via the dashboard

You can active Enterprise Edition directly in the dashboard. There’s two ways to access the dashboard:

	If you can directly connect, simply point your browser to port 30080 on your kubernetes cluster’s IP address.

	You can enable port forwarding by calling pachctl port-forward, then point your browser to localhost:30080.

When you first visit the dashboard, it will prompt you for your activation code:

[image: alt tag]

Once you enter your activation code, you should have full access to the Enterprise dashboard and your cluster will be an active Enterprise Edition cluster. This could be confirmed with:

$ pachctl enterprise get-state
ACTIVE

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachyderm Enterprise Edition Guide

Access Controls

The access controls features of Pachyderm Enterprise
let you create and manage users that interact
with your Pachyderm cluster. You can restrict
access to individual data repositories on a
per user basis and, as a result, limit the
subscription of pipelines to those data repositories.

This document guides you through the following sections:

	Understanding Pachyderm access controls
	Enabling access control

	Logging in to Pachyderm

	Manage and update user access

	Behavior of pipelines as related to access control

	Manage the Activation Code

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachyderm Enterprise Edition Guide

 	Access Controls

Understanding Pachyderm access controls

If access controls are activated, each data repository, or repo,
in Pachyderm has an Access Control List (ACL) associated with it.
The ACL includes:

	READERs - users who can read the data versioned in the repo.

	WRITERs - users with READER access who can also submit
additions, deletions, or modifications of data into the repo.

	OWNERs - users with READER and WRITER access who can also
modify the repo’s ACL.

Pachyderm defines the following account types:

	GitHub user is a user account that is associated with
a GitHub account and logs in through the GitHub OAuth flow. If you do not
use any third-party identity provider, you use this option. When a user tries
to log in with a GitHub account, Pachyderm verifies the identity and
sends a Pachyderm token for that account.

	Robot user is a user account that logs in with a pach-generated authentication
token. Typically, you create a user in simplified workflow scenarios, such
as initial SAML configuration.

	Pipeline is an account that Pachyderm creates for
data pipelines. Pipelines inherit access control from its creator.

	SAML user is a user account that is associated with a Security Assertion
Markup Language (SAML) identity provider.
When a user tries to log in through a SAML ID provider, the system
confirms the identity, associates
that identity with a SAML identity provider account, and responds with
the SAML identity provider token for that user. Pachyderm verifies the token,
drops it, and creates a new internal token that encapsulates the information
about the user.

By default, Pachyderm defines one hardcoded group called admin.
Users in the admin group can perform any
action on the cluster including appointing other admins.
Furthermore, only the cluster admins can manage a repository
without ACLs.

Enabling access control

Before you enable access controls, make sure that
you have activated Pachyderm Enterprise Edition
as described in this guide.

To enable access controls, complete the following steps:

	Verify the status of the Enterprise
features by opening the Pachyderm dashboard in your browser or
by running the following pachctl command:

$ pachctl enterprise get-state
ACTIVE

	Activate the Enterprise access control features by completing
the steps in one of these sections:

	Activating Access Control with the Dashboard

	Activating Access Control with pachctl

Activating access controls with the dashboard

To activate access controls in the Pachyderm dashboard,
complete the following steps:

	Go to the Settings page.

	Click the Activate Access Controls button.
After you click the button, Pachyderm enables you to add GitHub users
as cluster admins and activate access control:

[image: alt tag]

After activating access controls, you should see the following screen
that asks you to log in to Pachyderm:

[image: alt tag]

Activating access controls with pachctl

To activate access controls with pachctl, choose one of these options:

	Activate access controls by specifying an initial admin user:

$ pachctl auth activate --initial-admin=<prefix>:<user>

Note: You must prefix the username with the appropriate account
type, either github:<user> or robot:<user>. If you select the
latter, Pachyderm generates and returns a Pachyderm auth token
that might be used to authenticate as the initial robot admin by using
pachctl auth use-auth-token. You can use this option when
you cannot use GitHub as an identity provider.

	Activate access controls with a GitHub account:

$ pachctl auth activate

Pachyderm prompts you to log in with your GitHub account. The
GitHub account that you sign in with is the only admin until
you add more by running pachctl auth modify-admins.

Logging in to Pachyderm

After you activate access controls, log in to your cluster either
through the dashboard or CLI. The CLI and the dashboard have
independent login workflows:

	Log in to the dashboard.

	Log in to the CLI.

Log in to the dashboard

After you have activated access controls for Pachyderm, you
need to log in to use the Pachyderm dashboard as shown above
in this section.

To log in to the dashboard, complete the following steps:

	Click the Get GitHub token button. If you
have not previously authorized Pachyderm on GitHub, an option
to Authorize Pachyderm appears. After you authorize
Pachyderm, a Pachyderm user token appears:

[image: alt tag]

	Copy and paste this token back into the Pachyderm login
screen and press Enter. You are now logged in to Pachyderm,
and you should see your GitHub avatar and an indication of your
user in the upper left-hand corner of the dashboard:

[image: alt tag]

Log in to the CLI

To log in to pachctl, complete the following steps:

	Type the following command:

pachctl auth login

When you run this command, pachctl provides
you with a GitHub link to authenticate as a
GitHub user.

If you have not previously authorized Pachyderm on GitHub, an option
to Authorize Pachyderm appears. After you authorize Pachyderm,
a Pachyderm user token appears:

[image: alt tag]

	Copy and paste this token back into the terminal and press enter.

You are now logged in to Pachyderm!

	Alternatively, you can run the command:

pachctl auth use-auth-token

	Paste an authentication token recieved from
pachctl auth activate --initial-admin=robot:<user> or
pachctl auth get-auth-token

Manage and update user access

You can manage user access in the UI and CLI.
For example, you are logged in to Pachyderm as the user dwhitena
and have a repository called test. Because the user dwhitena created
this repository, dwhitena has full OWNER-level access to the repo.
You can confirm this in the dashboard by navigating to or clicking on
the repo test:

[image: alt tag]

Alternatively, you can confirm your access by running the
pachctl auth get ... command.

Example:

$ pachctl auth get dwhitena test`
OWNER

An OWNER of test or a cluster admin can then set other user’s
level of access to the repo by using
the pachctl auth set ... command or through the dashboard.

For example, to give the GitHub users JoeyZwicker and
msteffen READER, but not WRITER or OWNER, access to
test and jdoliner WRITER, but not OWNER, access,
click on Modify access controls under the repo details
in the dashboard. This functionality allows you to add
the users easily one by one:

[image: alt tag]

Behavior of pipelines as related to access control

In Pachyderm, you do not explicitly grant users access to
pipelines. Instead, pipelines infer access from their input
and output repositories. To update a pipeline, you must have
at least READER-level access to all pipeline inputs and at
least WRITER-level access to the pipeline output. This is
because pipelines read from their input repos and write
to their output repos, and you cannot grant a pipeline
more access than you have yourself.

	An OWNER, WRITER, or READER of a repo can subscribe a
pipeline to that repo.

	When a user subscribes a pipeline to a repo, Pachyderm sets
that user as an OWNER of that pipeline’s output repo.

	If additional users need access to the output repository,
the initial OWNER of a pipeline’s output repo, or an admin,
needs to configure these access rules.

	To update a pipeline, you must have WRITER access to the
pipeline’s output repos and READER access to the
pipeline’s input repos.

Manage the Activation Code

When an enterprise activation code expires, an auth-activated
Pachyderm cluster goes into an admin-only state. In this
state, only admins have access to data that is in Pachyderm.
This safety measure keeps sensitive data protected, even when
an enterprise subscription becomes stale. As soon as the enterprise
activation code is updated by using the dashboard or CLI, the
Pachyderm cluster returns to its previous state.

When you deactivate access controls on a Pachyderm cluster
by running pachctl auth deactivate, the cluster returns
its original state that including the
following changes:

	All ACLs are deleted.

	The cluster returns to being a blank slate in regards to
access control. Everyone that can connect to Pachyderm can access
and modify the data in all repos.

	No users are present in Pachyderm, and no one can log in to Pachyderm.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachyderm Enterprise Edition Guide

Advanced Statistics

To take advantage of the advanced statistics features in Pachyderm Enterprise Edition, you need to:

	Run your pipelines on a Pachyderm cluster that has activated Enterprise features (see Deploying Enterprise Edition for more details).

	Enable stats collection in your pipelines by including "enable_stats": true in your pipeline specifications [http://pachyderm.readthedocs.io/en/latest/reference/pipeline_spec.html#enable-stats-optional].

You will then be able to access the following information for any jobs corresponding to your pipelines:

	The amount of data that was uploaded and downloaded during the job and on a per-datum level (see here [http://pachyderm.readthedocs.io/en/latest/fundamentals/distributed_computing.html#datums] for info about Pachyderm datums).

	The time spend uploading and downloading data on a per-datum level.

	The amount of data uploaded and downloaded on a per-datum level.

	The total time spend processing on a per-datum level.

	Success/failure information on a per-datum level.

	The directory structure of input data that was seen by the job.

The primary and recommended way to view this information is via the Pachyderm Enterprise dashboard, which can be deployed as detailed here. However, the same information is available through the inspect datum and list datum pachctl commands or through their language client equivalents.

Note - We recommend enabling stats for all of your pipeline and only disabling the feature for very stable, long-running pipelines. In most cases, the debugging/maintenance benefits of the stats data will outweigh any disadvantages of storing the extra data associated with the stats. Also note, none of your data is duplicated in producing the stats.

Enabling stats for a pipeline

As mentioned above, enabling stats collection for a pipeline is as simple as adding the "enable_stats": true field to a pipeline specification. For example, to enable stats collection for our OpenCV demo pipeline [http://pachyderm.readthedocs.io/en/latest/getting_started/beginner_tutorial.html#image-processing-with-opencv], we would modify the pipeline specification as follows:

{
 "pipeline": {
 "name": "edges"
 },
 "input": {
 "pfs": {
 "glob": "/*",
 "repo": "images"
 }
 },
 "transform": {
 "cmd": ["python3", "/edges.py"],
 "image": "pachyderm/opencv"
 },
 "enable_stats": true
}

Once the pipeline has been created and you have utilized it to process data, you can confirm that stats are being collected with list file. There should now be stats data in the output repo of the pipeline under a branch called stats:

$ pachctl list file edges@stats
NAME TYPE SIZE
002f991aa9db9f0c44a92a30dff8ab22e788f86cc851bec80d5a74e05ad12868 dir 342.7KiB
0597f2df3f37f1bb5b9bcd6397841f30c62b2b009e79653f9a97f5f13432cf09 dir 1.177MiB
068fac9c3165421b4e54b358630acd2c29f23ebf293e04be5aa52c6750d3374e dir 270.3KiB
0909461500ce508c330ca643f3103f964a383479097319dbf4954de99f92f9d9 dir 109.6KiB
etc...

Don’t worry too much about this view of the stats data. It just confirms that stats are being collected.

Accessing stats via the dashboard

Assuming that you have deployed and activated the Pachyderm Enterprise dashboard, you can explore your advanced statistics in just a few clicks. For example, if we navigate to our edges pipeline (specified above), we will see something similar to this:

[image: alt tag]

In this example case, we can see that the pipeline has had 1 recent successful job and 2 recent job failures. Pachyderm advanced stats can be very helpful in debugging these job failures. When we click on one of the job failures we will see the following general stats about the failed job (total time, total data upload/download, etc.):

[image: alt tag]

To get more granular per-datum stats (see here [http://pachyderm.readthedocs.io/en/latest/fundamentals/distributed_computing.html#datums] for info on Pachyderm datums), we can click on the 41 datums total, which will reveal the following:

[image: alt tag]

We can easily identify the exact datums that caused our pipeline to fail and the associated stats:

	Total time

	Time spent downloading data

	Time spent processing

	Time spent uploading data

	Amount of data downloaded

	Amount of data uploaded

If we need to, we can even go a level deeper and explore the exact details of a failed datum. Clicking on one of the failed datums will reveal the logs corresponding to the datum processing failure along with the exact input files of the datum:

[image: alt tag]

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachyderm Enterprise Edition Guide

Using the S3 Gateway

Pachyderm Enterprise includes an S3 gateway that enables you to interact
with PFS storage through an HTTP application programming interface (API)
that imitates the Amazon S3 Storage API. Therefore, with Pachyderm S3
gateway, you can enable tools or applications that are designed
to work with object stores, such as MinIO™ [https://min.io/] and
Boto3 [https://boto3.amazonaws.com/v1/documentation/api/latest/index.html],
to interact with Pachyderm.

When you deploy pachd, the S3 gateway starts automatically. However, the
S3 gateway is an enterprise feature that is only available to paid customers or
during the free trial evaluation. You can confirm that the S3 gateway is running
by pointing your browser to the following URL:

http://localhost:30600/

Through the S3 gateway, you can only interact with the HEAD commits of
your Pachyderm branches that do not require authorization. If you need
to have a more granular access to branches and commits, use the PFS
gRPC Remote Procedure Call (gRPC) interface instead.

You can use any S3 compliant client, such as MinIO [https://docs.min.io/docs/minio-client-complete-guide],
AWS CLI S3 [https://docs.aws.amazon.com/cli/latest/reference/s3/index.html], or
S3cmd [https://s3tools.org/usage] to interact with the Pachyderm S3 gateway.

Viewing the List of S3 Buckets

The S3 gateway presents each branch from every Pachyderm repository as
an S3 bucket.
For example, if you have a master branch in the images repository,
an S3 tool sees images@master as the master.images S3 bucket.

To view the list of S3 buckets, complete the following steps:

	If you have not done so already, forward Pachyderm ports to
enable access to the Pachyderm UI and the S3 gateway:

pachctl port-forward

	Point your browser to http://<cluster-ip>:30600/. A list of
S3 buckets appears. Example:

[image: S3 buckets]

	Alternatively, you can use curl:

$ curl http://localhost:30600
<ListAllMyBucketsResult><Owner><ID>00000000000000000000000000000000</ID><DisplayName>pachyderm</DisplayName></Owner><Buckets><Bucket><Name>master. train</Name><CreationDate>2019-07-12T22:09:50.274391271Z</CreationDate></Bucket><Bucket><Name>master.pre_process</Name><CreationDate>2019-07-12T21: 58:50.930608352z</CreationDate></Bucket><Bucket><Name>master.split</Name><CreationDate>2019-07-12T21:58:09.074523275Z</CreationDate></ Bucket><Bucket><Name>stats.split</Name><CreationDate>2019-07-12T21:58:09.074523275Z</CreationDate></Bucket><Bucket><Name>master.raw_data</Name><CreationDate>2019-07-12T21:36:27.975670319Z</CreationDate></Bucket></Buckets></ListAllMyBucketsResult>

You can specify localhost instead of the cluster IP
address to access the Pachyderm Dashboard and the S3 gateway.
For this to work, enable
port forwarding by running the pachctl port-forward command.

However, Pachyderm does not recommend to heavily rely on port forwarding.
Because Kubernetes’ port forwarder incurs overhead, it might
not recover well from broken connections. Therefore, using
Pachyderm contexts or connecting to the S3 gateway directly
through the cluster IP address are more reliable and preferred
options.

Configure the S3 client

Before you can work with the S3 gateway, configure your S3 client
to access Pachyderm. Complete the steps in one of the sections below that
correspond to your S3 client.

Configure MinIO

If you are using AWS CLI or S3cmd, skip this section.

To install and configure MinIO, complete the following steps:

	Install the MinIO client on your platform as
described on the MinIO download page [https://min.io/download#/macos].

	Verify that MinIO components are successfully installed by running
the following command:

$ minio version
$ mc version
Version: 2019-07-11T19:31:28Z
Release-tag: RELEASE.2019-07-11T19-31-28Z
Commit-id: 31e5ac02bdbdbaf20a87683925041f406307cfb9

	Set up the MinIO configuration file to use the 30600 port for your host:

vi ~/.mc/config.json

You should see a configuration similar to the following:

	For a minikube deployment, verify the
local host configuration:

"local": {
 "url": "http://localhost:30600",
 "accessKey": "",
 "secretKey": "",
 "api": "S3v4",
 "lookup": "auto"
 },

Configure the AWS CLI

If you are using the MinIO client or S3cmd, skip this section.

If you have not done so already, you need to install and
configure the AWS CLI client on your machine. You need to
provide the AWS Access Key ID and the AWS Secret Access Keys
for the account that has access to the S3 bucket that you want
to use with Pachyderm.
To configure the AWS CLI, complete the following steps:

	Install the AWS CLI for your operating system as described
in the AWS documentation [https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html].

	Verify that the AWS CLI is installed:

$ aws --version aws-cli/1.16.204 Python/2.7.16 Darwin/17.7.0 botocore/1.12.194

	Configure AWS CLI:

$ aws configure
AWS Access Key ID:
AWS Secret Access Key:
Default region name:
Default output format [None]:

Configure S3cmd

If you are using AWS CLI or MinIO, skip this section.

S3cmd is an open-source command line client that enables you
to access S3 object store buckets. To configure S3cmd, complete
the following steps:

	If you do not have S3cmd installed on your machine, install
it as described in the S3cmd documentation [https://s3tools.org/download].
For example, in macOS, run:

$ brew install s3cmd

	Verify that S3cmd is installed:

$ s3cmd --version
s3cmd version 2.0.2

	Configure S3cmd to use Pachyderm:

$ s3cmd --configure
 ...

	Fill all fields and specify the following settings for Pachyderm.

Example:

New settings:
 Access Key: ""
 Secret Key: ""
 Default Region: US
 S3 Endpoint: localhost:30600
 DNS-style bucket+hostname:port template for accessing a bucket: localhost:30600/%(bucket)
 Encryption password:
 Path to GPG program: /usr/local/bin/gpg
 Use HTTPS protocol: False
 HTTP Proxy server name:
 HTTP Proxy server port: 0

Examples of Command-Line Operations

The Pachyderm S3 gateway supports the following operations:

	Create buckets: Creates a repo and branch.

	Delete buckets: Deletes a branch or a repo with all branches.

	List buckets: Lists all branches on all repos as S3 buckets.

	Write objects: Atomically overwrites a file on the HEAD of a branch.

	Remove objects: Atomically removes a file on the HEAD of a branch.

	List objects: Lists the files in the HEAD of a branch.

	Get objects: Gets file contents on the HEAD of a branch.

You can use any S3 compatible tool, such as MinIO, AWS CLI, or
S3cmd to interact with the Pachyderm S3 gateway.

List Filesystem Objects

If you have configured your S3 client correctly, you should be
able to see the list of filesystem objects in your Pachyderm
repository by running an S3 client ls command.

To list filesystem objects, complete the following steps:

	Verify that your S3 client can access all of your Pachyderm repositories:

	If you are using MinIO, type:

$ mc ls local
[2019-07-12 15:09:50 PDT] 0B master.train/
[2019-07-12 14:58:50 PDT] 0B master.pre_process/
[2019-07-12 14:58:09 PDT] 0B master.split/
[2019-07-12 14:58:09 PDT] 0B stats.split/
[2019-07-12 14:36:27 PDT] 0B master.raw_data/

	If you are using AWS, type:

$ aws --endpoint-url http://localhost:30600 s3 ls
2019-07-12 15:09:50 master.train
2019-07-12 14:58:50 master.pre_process
2019-07-12 14:58:09 master.split
2019-07-12 14:58:09 stats.split
2019-07-12 14:36:27 master.raw_data

	If you are using S3cmd, type:

$ s3cmd ls
2019-07-12 15:09 master.train
2019-07-12 14:58 master.pre_process
2019-07-12 14:58 master.split
2019-07-12 14:58 stats.split
2019-07-12 14:36 master.raw_data

	List the contents of a repository:

	If you are using MinIO, type:

$ mc ls local/master.raw_data
[2019-07-19 12:11:37 PDT] 2.6MiB github_issues_medium.csv

	If you are using AWS, type:

$ aws --endpoint-url http://localhost:30600/ s3 ls s3://master.raw_data
2019-07-26 11:22:23 2685061 github_issues_medium.csv

	If you are using S3cmd, type:

$ s3cmd ls s3://master.raw_data/
2019-07-26 11:22 2685061 s3://master.raw_data/github_issues_medium.csv

Create an S3 Bucket

You can create an S3 bucket in Pachyderm by using the AWS CLI or
the MinIO client commands.
The S3 bucket that you create is a branch in a repository
in Pachyderm.

To create an S3 bucket, complete the following steps:

	Use the mb <host/branch.repo> command to create a new
S3 bucket, which is a repository with a branch in Pachyderm.

	If you are using MinIO, type:

$ mc mb local/master.test
Bucket created successfully `local/master.test`.

	If you are using AWS, type:

$ aws --endpoint-url http://localhost:30600/ s3 mb s3://master.test
make_bucket: master.test

	If you are using S3cmd, type:

$ s3cmd mb s3://master.test

This command creates the test repository with the master branch.

	Verify that the S3 bucket has been successfully created:

	If you are using MinIO, type:

$ mc ls local
[2019-07-18 13:32:44 PDT] 0B master.test/
[2019-07-12 15:09:50 PDT] 0B master.train/
[2019-07-12 14:58:50 PDT] 0B master.pre_process/
[2019-07-12 14:58:09 PDT] 0B master.split/
[2019-07-12 14:58:09 PDT] 0B stats.split/
[2019-07-12 14:36:27 PDT] 0B master.raw_data/

	If you are using AWS, type:

$ aws --endpoint-url http://localhost:30600/ s3 ls
2019-07-26 11:35:28 master.test
2019-07-12 14:58:50 master.pre_process
2019-07-12 14:58:09 master.split
2019-07-12 14:58:09 stats.split
2019-07-12 14:36:27 master.raw_data

	If you are using S3cmd, type:

$ s3cmd ls
2019-07-26 11:35 master.test
2019-07-12 14:58 master.pre_process
2019-07-12 14:58 master.split
2019-07-12 14:58 stats.split
2019-07-12 14:36 master.raw_data

	You can also use the pachctl list repo command to view the
list of repositories:

$ pachctl list repo
NAME CREATED SIZE (MASTER)
test About an hour ago 0B
train 6 days ago 68.57MiB
pre_process 6 days ago 1.18MiB
split 6 days ago 1.019MiB
raw_data 6 days ago 2.561MiB

You should see the newly created repository in this list.

Delete an S3 Bucket

You can delete an S3 bucket in Pachyderm from the AWS CLI or
MinIO client by running the following command:

	If you are using MinIO, type:

$ mc rb local/master.test
Removed `local/master.test` successfully.

	If you are using AWS, type:

$ aws --endpoint-url http://localhost:30600/ s3 rb s3://master.test
remove_bucket: master.test

	If you are using S3cmd, type:

$ s3cmd rb s3://master.test

Upload and Download File Objects

For input repositories at the top of your DAG, you can both add files
to and download files from the repository.

When you add files, Pachyderm automatically overwrites the previous
version of the file if it already exists.
Uploading new files is not supported for output repositories,
these are the repositories that are the output of a pipeline.

If you try to upload
a file to an output repository, you get an error message:

Failed to copy `github_issues_medium.csv`. cannot start a commit on an output
branch

Not all the repositories that you see in the results of the ls command are
input repositories that can be written to. Some of them might be read-only
output repos. Check your pipeline specification to verify which
repositories are the input repos.

To add a file to a repository, complete the following steps:

	Run the cp command for your S3 client:

	If you are using MinIO, type:

$ mc cp test.csv local/master.raw_data/test.csv
test.csv: 62 B / 62 B ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ 100.00% 206 B/s 0s

	If you are using AWS, type:

$ aws --endpoint-url http://localhost:30600/ s3 cp test.csv s3://master.raw_data
upload: ./test.csv to s3://master.raw_data/test.csv

	If you are using S3cmd, type:

$ s3cmd cp test.csv s3://master.raw_data

These commands add the test.csv file to the master branch in
the raw_data repository. raw_data is an input repository.

	Check that the file was added:

	If you are using MinIO, type:

$ mc ls local/master.raw_data
[2019-07-19 12:11:37 PDT] 2.6MiB github_issues_medium.csv
[2019-07-19 12:11:37 PDT] 62B test.csv

	If you are using AWS, type:

$ aws --endpoint-url http://localhost:30600/ s3 ls s3://master.raw_data/
2019-07-19 12:11:37 2685061 github_issues_medium.csv
2019-07-19 12:11:37 62 test.csv

	If you are using S3cmd, type:

$ s3cmd ls s3://master.raw_data/
2019-07-19 12:11 2685061 github_issues_medium.csv
2019-07-19 12:11 62 test.csv

	Download a file from MinIO to the
current directory by running the following commands:

	If you are using MinIO, type:

$ mc cp local/master.raw_data/github_issues_medium.csv .
...hub_issues_medium.csv: 2.56 MiB / 2.56 MiB ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ 100.00% 1.26 MiB/s 2s

	If you are using AWS, type:

$ aws --endpoint-url http://localhost:30600/ s3 cp s3://master.raw_data/test.csv .
download: s3://master.raw_data/test.csv to ./test.csv

	If you are using S3cmd, type:

$ s3cmd cp s3://master.raw_data/test.csv .

Remove a File Object

You can delete a file in the HEAD of a Pachyderm branch by using the
MinIO command-line interface:

	List the files in the input repository:

	If you are using MinIO, type:

$ mc ls local/master.raw_data/
[2019-07-19 12:11:37 PDT] 2.6MiB github_issues_medium.csv
[2019-07-19 12:11:37 PDT] 62B test.csv

	If you are using AWS, type:

$ aws --endpoint-url http://localhost:30600/ s3 ls s3://master.raw_data
2019-07-19 12:11:37 2685061 github_issues_medium.csv
2019-07-19 12:11:37 62 test.csv

	If you are using S3cmd, type:

$ s3cmd ls s3://master.raw_data
2019-07-19 12:11 2685061 github_issues_medium.csv
2019-07-19 12:11 62 test.csv

	Delete a file from a repository. Example:

	If you are using MinIO, type:

$ mc rm local/master.raw_data/test.csv
Removing `local/master.raw_data/test.csv`.

	If you are using AWS, type:

$ aws --endpoint-url http://localhost:30600/ s3 rm s3://master.raw_data/test.csv
delete: s3://master.raw_data/test.csv

	If you are using S3cmd, type:

$ s3cmd rm s3://master.raw_data/test.csv

Unsupported operations

Some of the S3 functionalities are not yet supported by Pachyderm..
If you run any of these operations, Pachyderm returns a standard
NotImplemented error.

The S3 Gateway does not support the following S3 operations:

	Accelerate

	Analytics

	Object copying. PFS supports this functionality through gRPC.

	CORS configuration

	Encryption

	HTML form uploads

	Inventory

	Legal holds

	Lifecycles

	Logging

	Metrics

	Multipart uploads. See writing object documentation above for a workaround.

	Notifications

	Object locks

	Payment requests

	Policies

	Public access blocks

	Regions

	Replication

	Retention policies

	Tagging

	Torrents

	Website configuration

In addition, the Pachyderm S3 gateway has the following limitations:

	No support for authentication or ACLs.

	As per PFS rules, you cannot write to an output repo. At the
moment, Pachyderm returns a 500 error code.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

Deploy Pachyderm

This section descirbes how to deploy Pachyderm on premises or
on a supported cloud platform of your choice.

	Overview
	Usage Metrics

	Google Cloud Platform
	Prerequisites

	Deploy Kubernetes

	Deploy Pachyderm

	Additional Tips for Performance Improvements

	Deploy Pachyderm on Amazon AWS
	Deploy Pachyderm on Amazon EKS

	Deploy Kubernetes with kops

	Deploy Pachyderm on AWS

	Deploy a Pachyderm Cluster with CloudFront

	Azure
	Install Prerequisites

	Deploy Kubernetes

	Add storage resources

	Deploy Pachyderm

	OpenShift
	Prerequisites

	The OCPify script

	Preparing to deploy Pachyderm

	Deploying Pachyderm

	7. Deploy the Pachyderm manifest you modified.

	On Premises
	Introduction

	Best practices

	Prerequisites

	Setting up to deploy on-premises

	See Also

	Custom Object Stores
	Common Prerequisites

	Google + Custom Object Store

	AWS + Custom Object Store

	Azure + Custom Object Store

	Non-Default Namespaces

	RBAC
	RBAC and DNS

	RBAC Permissions on GKE

	Troubleshooting Deployments
	General Pachyderm cluster deployment

	AWS Deployment

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Deploy Pachyderm

Overview

Pachyderm runs on Kubernetes [http://kubernetes.io/] and is backed by an object store of your choice. As such, Pachyderm can run on any platform that supports Kubernetes and an object store. These following docs cover common deployments and related topics:

	Google Cloud Platform [http://pachyderm.readthedocs.io/en/stable/deployment/google_cloud_platform.html]

	Amazon Web Services [http://pachyderm.readthedocs.io/en/stable/deployment/amazon_web_services.html]

	Azure [http://pachyderm.readthedocs.io/en/stable/deployment/azure.html]

	OpenShift [http://pachyderm.readthedocs.io/en/stable/deployment/openshift.html]

	On Premises [http://pachyderm.readthedocs.io/en/stable/deployment/on_premises.html]

	Custom Object Stores [http://pachyderm.readthedocs.io/en/stable/deployment/custom_object_stores.html]

	Migrations [http://pachyderm.readthedocs.io/en/stable/deployment/migrations.html]

	Upgrading Pachyderm Versions

	Non-Default Namespaces

	RBAC

Usage Metrics

Pachyderm automatically reports anonymized usage metrics. These metrics help us
understand how people are using Pachyderm and make it better. They can be
disabled by setting the env variable METRICS to false in the pachd
container.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Deploy Pachyderm

Google Cloud Platform

Google Cloud Platform has excellent support for Kubernetes, and thus Pachyderm, through the Google Kubernetes Engine [https://cloud.google.com/kubernetes-engine/] (GKE). The following guide will walk you through deploying a Pachyderm cluster on GCP.

Prerequisites

	Google Cloud SDK [https://cloud.google.com/sdk/] >= 124.0.0

	kubectl [https://kubernetes.io/docs/user-guide/prereqs/]

	pachctl

If this is the first time you use the SDK, make sure to follow the quick start guide [https://cloud.google.com/sdk/docs/quickstarts]. Note, this may update your ~/.bash_profile and point your $PATH at the location where you extracted google-cloud-sdk. We recommend extracting the SDK to ~/bin.

Note, you can also install kubectl installed via the Google Cloud SDK using:

$ gcloud components install kubectl

Deploy Kubernetes

To create a new Kubernetes cluster via GKE, run:

$ CLUSTER_NAME=<any unique name, e.g. "pach-cluster">

$ GCP_ZONE=<a GCP availability zone. e.g. "us-west1-a">

$ gcloud config set compute/zone ${GCP_ZONE}

$ gcloud config set container/cluster ${CLUSTER_NAME}

$ MACHINE_TYPE=<machine type for the k8s nodes, we recommend "n1-standard-4" or larger>

By default the following command spins up a 3-node cluster. You can change the default with `--num-nodes VAL`.
$ gcloud container clusters create ${CLUSTER_NAME} --scopes storage-rw --machine-type ${MACHINE_TYPE}

By default, GKE clusters have RBAC enabled. To allow 'pachctl deploy' to give the 'pachyderm' service account
the requisite privileges via clusterrolebindings, you will need to grant *your user account* the privileges
needed to create those clusterrolebindings.
#
Note that this command is simple and concise, but gives your user account more privileges than necessary. See
https://docs.pachyderm.io/en/latest/deployment/rbac.html for the complete list of privileges that the
pachyderm serviceaccount needs.
$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --user=$(gcloud config get-value account)

Important Note: You must create the Kubernetes cluster via the gcloud command-line tool rather than the Google Cloud Console, as it’s currently only possible to grant the storage-rw scope via the command-line tool. Also note, you should deploy a 1.8.x cluster if possible to take full advantage of Pachyderm’s latest features.

This may take a few minutes to start up. You can check the status on the GCP Console [https://console.cloud.google.com/compute/instances]. A kubeconfig entry will automatically be generated and set as the current context. As a sanity check, make sure your cluster is up and running via kubectl:

List all pods in the kube-system namespace.
$ kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
event-exporter-v0.1.7-5c4d9556cf-fd9j2 2/2 Running 0 1m
fluentd-gcp-v2.0.9-68vhs 2/2 Running 0 1m
fluentd-gcp-v2.0.9-fzfpw 2/2 Running 0 1m
fluentd-gcp-v2.0.9-qvk8f 2/2 Running 0 1m
heapster-v1.4.3-5fbfb6bf55-xgdwx 3/3 Running 0 55s
kube-dns-778977457c-7hbrv 3/3 Running 0 1m
kube-dns-778977457c-dpff4 3/3 Running 0 1m
kube-dns-autoscaler-7db47cb9b7-gp5ns 1/1 Running 0 1m
kube-proxy-gke-pach-cluster-default-pool-9762dc84-bzcz 1/1 Running 0 1m
kube-proxy-gke-pach-cluster-default-pool-9762dc84-hqkr 1/1 Running 0 1m
kube-proxy-gke-pach-cluster-default-pool-9762dc84-jcbg 1/1 Running 0 1m
kubernetes-dashboard-768854d6dc-t75rp 1/1 Running 0 1m
l7-default-backend-6497bcdb4d-w72k5 1/1 Running 0 1m

If you don’t see something similar to the above output, you can point kubectl to the new cluster manually via:

Update your kubeconfig to point at your newly created cluster.
$ gcloud container clusters get-credentials ${CLUSTER_NAME}

Deploy Pachyderm

To deploy Pachyderm we will need to:

	Create some storage resources,

	Install the Pachyderm CLI tool, pachctl, and

	Deploy Pachyderm on the k8s cluster

Set up the Storage Resources

Pachyderm needs a GCS bucket [https://cloud.google.com/storage/docs/] and a persistent disk [https://cloud.google.com/compute/docs/disks/] to function correctly. We can specify the size of the persistent disk, the bucket name, and create the bucket as follows:

For the persistent disk, 10GB is a good size to start with.
This stores PFS metadata. For reference, 1GB
should work fine for 1000 commits on 1000 files.
$ STORAGE_SIZE=<the size of the volume that you are going to create, in GBs. e.g. "10">

The Pachyderm bucket name needs to be globally unique across the entire GCP region.
$ BUCKET_NAME=<The name of the GCS bucket where your data will be stored>

Create the bucket.
$ gsutil mb gs://${BUCKET_NAME}

To check that everything has been set up correctly, try:

$ gsutil ls
You should see the bucket you created.

Install pachctl

pachctl is a command-line utility for interacting with a Pachyderm cluster. You can install it locally as follows:

For macOS:
$ brew tap pachyderm/tap && brew install pachyderm/tap/pachctl@1.9

For Linux (64 bit) or Window 10+ on WSL:
$ curl -o /tmp/pachctl.deb -L https://github.com/pachyderm/pachyderm/releases/download/v1.9.3/pachctl_1.9.3_amd64.deb && sudo dpkg -i /tmp/pachctl.deb

You can then run pachctl version --client-only to check that the installation was successful.

$ pachctl version --client-only
1.8.0

Deploy Pachyderm on the k8s cluster

Now we’re ready to deploy Pachyderm itself. This can be done in one command:

$ pachctl deploy google ${BUCKET_NAME} ${STORAGE_SIZE} --dynamic-etcd-nodes=1
serviceaccount "pachyderm" created
storageclass "etcd-storage-class" created
service "etcd-headless" created
statefulset "etcd" created
service "etcd" created
service "pachd" created
deployment "pachd" created
service "dash" created
deployment "dash" created
secret "pachyderm-storage-secret" created

Pachyderm is launching. Check its status with "kubectl get all"
Once launched, access the dashboard by running "pachctl port-forward"

Note, here we are using 1 etcd node to manage Pachyderm metadata. The number of etcd nodes can be adjusted as needed.

Important Note: If RBAC authorization is a requirement or you run into any RBAC errors please read our docs on the subject here [https://docs.pachyderm.io/en/latest/deployment/rbac.html].

It may take a few minutes for the pachd nodes to be running because it’s pulling containers from DockerHub. You can see the cluster status with kubectl, which should output the following when Pachyderm is up and running:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-482120938-np8cc 2/2 Running 0 4m
etcd-0 1/1 Running 0 4m
pachd-3677268306-9sqm0 1/1 Running 0 4m

If you see a few restarts on the pachd pod, that’s totally ok. That simply means that Kubernetes tried to bring up those containers before other components were ready, so it restarted them.

Finally, assuming your pachd is running as shown above, we need to set up forward a port so that pachctl can talk to the cluster.

Forward the ports. We background this process because it blocks.
$ pachctl port-forward &

And you’re done! You can test to make sure the cluster is working by trying pachctl version or even creating a new repo.

$ pachctl version
COMPONENT VERSION
pachctl 1.8.0
pachd 1.8.0

Additional Tips for Performance Improvements

Increasing Ingress Throughput

One way to improve Ingress performance is to restrict Pachd to a specific, more powerful node in the cluster. This is accomplished by the use of node-taints [https://cloud.google.com/kubernetes-engine/docs/how-to/node-taints] in GKE. By creating a node-taint for Pachd, we’re telling the kubernetes scheduler that the only pod that should be on that node is Pachd. Once that’s completed, you then deploy Pachyderm with the --pachd-cpu-request and --pachd-memory-request set to match the resources limits of the machine type. And finally, you’ll modify the Pachd deployment such that it has an appropriate toleration:

tolerations:
- key: "dedicated"
 operator: "Equal"
 value: "pachd"
 effect: "NoSchedule"

Increasing upload performance

The most straightfoward approach to increasing upload performance is to simply leverage SSD’s as the boot disk [https://cloud.google.com/kubernetes-engine/docs/how-to/custom-boot-disks] in your cluster as SSD’s provide higher throughput and lower latency than standard disks. Additionally, you can increase the size of the SSD for further performance gains as IOPS improve with disk size.

Increasing merge performance

Performance tweaks when it comes to merges can be done directly in the Pachyderm pipeline spec [http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html]. More specifically, you can increase the number of hashtrees (hashtree spec) in the pipeline spec. This number determines the number of shards for the filesystem metadata. In general this number should be lower than the number of workers (parallelism spec) and should not be increased unless merge time (the time before the job is done and after the number of processed datums + skipped datums is equal to the total datums) is too slow.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Deploy Pachyderm

Deploy Pachyderm on Amazon AWS

Pachyderm can run in a Kubernetes cluster deployed in Amazon®
Web Services (AWS), whether it is an Elastic Container
Service (EKS) or a Kubernetes cluster deployed directly on
EC2 by using a deployment tool.
AWS removes the need to maintain the underlying virtual cloud.
This advantage makes AWS a logical choice for organizations that
decide to offload the cloud infrastructure operational burden
to a third-party vendor. Pachyderm seamlessly integrates with
Amazon EKS and runs in the same fashion as on your computer.

You can install Pachyderm on Amazon AWS by using one of the following
options:

	Deploy Pachyderm on Amazon EKS

	If you already have an Amazon EKS cluster, you can quickly deploy
Pachyderm on top of it. If you are just starting with Amazon EKS,
this section guides you through the EKS deployment process.

	Deploy Pachyderm on Amazon EC2 by using kops

	Instead of EKS, you can deploy Kubernetes on AWS EC2 directly by
using a Kubernetes deployment tool such as kops
and then deploy Pachyderm on that Kubernetes cluster.
If you deploy a cluster with kops, you
remain responsible for the Kubernetes operations and maintenance.

	Deploy Pachyderm with CloudFront

	Use this option in production environments that require
high throughput and secure data delivery.

	Deploy Pachyderm on Amazon EKS
	Prerequisites

	Deploy an EKS cluster by using eksctl

	Deploy Kubernetes with kops
	Prerequisites

	Configure kops

	Deploy Pachyderm on AWS
	Add Stateful Storage

	Deploy Pachyderm with an IAM Role

	Deploy Pachyderm with an Access Key

	Deploy a Pachyderm Cluster with CloudFront
	Apply the CloudFront Key Pair

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Deploy Pachyderm

 	Deploy Pachyderm on Amazon AWS

Deploy Pachyderm on Amazon EKS

Amazon EKS provides an easy way to deploy, configure, and
manage Kubernetes clusters. If you want to avoid managing your
Kubernetes infrastructure, EKS might be
the right choice for your organization. Pachyderm seamlessly
deploys on Amazon EKS.

Prerequisites

Before you can deploy Pachyderm on an EKS cluster, verify that
you have the following prerequisites installed and configured:

	kubectl [https://kubernetes.io/docs/tasks/tools/install-kubectl/]

	AWS CLI [https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html]

	eksctl [https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html]

	aws-iam-authenticator [https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html].

	pachctl

Deploy an EKS cluster by using eksctl

Use the eksctl tool to deploy an EKS cluster in your
Amazon AWS environment. The eksctl create cluster command
creates a virtual private cloud (VPC), a security group,
and an IAM role for Kubernetes to create resources.
For detailed instructions, see Amazon documentation [https://docs.aws.amazon.com/eks/latest/userguide/getting-started-console.html].

To deploy an EKS cluster, complete the following steps:

	Deploy an EKS cluster:

eksctl create cluster --name <name> --version <version> \
--nodegroup-name <name> --node-type <vm-flavor> \
--nodes <number-of-nodes> --nodes-min <min-number-nodes> \
--nodes-max <max-number-nodes> --node-ami auto

Example output:

[ℹ] using region us-east-1
[ℹ] setting availability zones to [us-east-1a us-east-1f]
[ℹ] subnets for us-east-1a - public:192.168.0.0/19 private:192.168.64.0/19
[ℹ] subnets for us-east-1f - public:192.168.32.0/19 private:192.168.96.0/19
[ℹ] nodegroup "pachyderm-test-workers" will use "ami-0f2e8e5663e16b436" [AmazonLinux2/1.13]
[ℹ] using Kubernetes version 1.13
[ℹ] creating EKS cluster "pachyderm-test-eks" in "us-east-1" region
[ℹ] will create 2 separate CloudFormation stacks for cluster itself and the initial nodegroup
[ℹ] if you encounter any issues, check CloudFormation console or try 'eksctl utils describe-stacks --region=us-east-1 --name=pachyderm-test-eks'
[ℹ] 2 sequential tasks: { create cluster control plane "svetkars-eks", create nodegroup "pachyderm-test-workers" }
[ℹ] building cluster stack "eksctl-pachyderm-test-eks-cluster"
[ℹ] deploying stack "eksctl-pachyderm-test-eks-cluster"

...
[✔] EKS cluster "pachyderm-test" in "us-east-1" region is ready

	Verify the deployment:

$ kubectl get all
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.100.0.1 <none> 443/TCP 7m9s

	Deploy Pachyderm as described in Deploy Pachyderm on AWS.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Deploy Pachyderm

 	Deploy Pachyderm on Amazon AWS

Deploy Kubernetes with kops

kops is one of the most popular open-source tools
that enable you to deploy, manage, and upgrade a
Kubernetes cluster in the cloud. By using kops you can
quickly spin-up a highly-available Kubernetes cluster in
a supported cloud platform.

Prerequisites

Before you can deploy Pachyderm on Amazon AWS with
kops, you must have the following components configured:

	Install AWS CLI [https://aws.amazon.com/cli/]

	Install kubectl [https://kubernetes.io/docs/user-guide/prereqs/]

	Install kops [https://github.com/kubernetes/kops/blob/master/docs/install.md]

	Install pachctl

	Install jq [https://stedolan.github.io/jq/download/]

	Install uuid [http://man7.org/linux/man-pages/man1/uuidgen.1.html]

Configure kops

kops [https://github.com/kubernetes/kops/], which stands for
Kubernetes Operations, is an open-source tool that deploys
a production-grade Kubernetes cluster on a cloud environment of choice.
You need to have access to the
AWS Management console to add an Identity and Access Management (IAM) user
for kops.

For more information about kops, see
kops AWS documentation [https://github.com/kubernetes/kops/blob/master/docs/aws.md].
These instructions provide more details about configuring
additional cluster parameters, such as enabling version control
or encryption on your S3 bucket, and so on.

To configure kops, complete the following steps:

	In the IAM console or by using the command line, create a kops group
with the following permissions:

	AmazonEC2FullAccess

	AmazonRoute53FullAccess

	AmazonS3FullAccess

	IAMFullAccess

	AmazonVPCFullAccess

	Add a user that will create a Kubernetes cluster to that group.

	In the list of users, select that user and navigate to the
Security credentials tab.

	Create an access key and save the access and secret keys in a
location on your computer.

	Configure an AWS CLI client:

$ aws configure

	Use the access and secret keys to configure the AWSL client.

	Create an S3 bucket for your cluster:

$ aws s3api create-bucket --bucket <name> --region <region>

Example:

$ aws s3api create-bucket --bucket test-pachyderm --region us-east-1
{
 "Location": "/test-pachyderm"
}

	Optionally, configure DNS as described in Configure DNS [https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns].
In this example, a gossip-based cluster that ends with k8s.local
is deployed.

	Export the name of your cluster and the S3 bucket for the Kubernetes
cluster as variables.

Example:

export NAME=test-pachyderm.k8s.local
export KOPS_STATE_STORE=s3://test-pachyderm

	Create the cluster configuration:

kops create cluster --zones <region> ${NAME}

	Optionally, edit your cluster:

kops edit cluster ${NAME}

	Build and deploy the cluster:

kops update cluster ${NAME} --yes

The deployment might take some time.

	Run kops cluster validate periodically to monitor cluster deployment.
When kops finishes deploying the cluster, you should see the output
similar to the following:

$ kops validate cluster
 Using cluster from kubectl context: test-pachyderm.k8s.local

 Validating cluster svetkars.k8s.local

 INSTANCE GROUPS
 NAME ROLE MACHINETYPE MIN MAX SUBNETS
 master-us-west-2a Master m3.medium 1 1 us-west-2a
 nodes Node t2.medium 2 2 us-west-2a

 NODE STATUS
 NAME ROLE READY
 ip-172-20-45-231.us-west-2.compute.internal node True
 ip-172-20-50-8.us-west-2.compute.internal master True
 ip-172-20-58-132.us-west-2.compute.internal node True

	Proceed to Deploy Pachyderm on AWS.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Deploy Pachyderm

 	Deploy Pachyderm on Amazon AWS

Deploy Pachyderm on AWS

After you deploy Kubernetes cluster by using kops or eksctl,
you can deploy Pachyderm on top of that cluster.

You need to complete the following steps to deploy Pachyderm:

	Install pachctl as described in Install pachctl.

	Add stateful storage for Pachyderm as described in Add Stateful Storage.

	Deploy Pachyderm by using an IAM role
(recommended) or an access key.

Add Stateful Storage

Pachyderm requires the following types of persistent storage:

An S3 object store bucket for data. The S3 bucket name
must be globally unique across the whole
Amazon region. Therefore, add a descriptive prefix to the S3 bucket
name, such as your username.

An Elastic Block Storage (EBS) persistent volume (PV) for Pachyderm
metadata. Pachyderm recommends that you assign at least 10 GB for this
persistent EBS volume. If you expect your cluster to be very
long running a scale to thousands of jobs per commits, you might
need to go add more storage. However, you can easily increase the
size of the persistent volume later.

To add stateful storage, complete the following steps:

	Set up the following system variables:

	BUCKET_NAME — A globally unique S3 bucket name.

	STORAGE_SIZE — The size of the persistent volume in GB. For example, 10.

	AWS_REGION — The AWS region of your Kubernetes cluster. For example,
us-west-2 and not us-west-2a.

	Create an S3 bucket:

	If you are creating an S3 bucket in the us-east-1 region, run the following
command:

$ aws s3api create-bucket --bucket ${BUCKET_NAME} --region ${AWS_REGION}

	If you are creating an S3 bucket in any region but the us-east-1
region, run the following command:

$ aws s3api create-bucket --bucket ${BUCKET_NAME} --region ${AWS_REGION} --create-bucket-configuration LocationConstraint=${AWS_REGION}

	Verify that the S3 bucket was created:

$ aws s3api list-buckets --query 'Buckets[].Name'

Deploy Pachyderm with an IAM Role

IAM roles provide better user management and security
capabilities compared to access keys. If a malicious user gains access to
an access key, your data might become compromised. Therefore, enterprises
often opt out to use IAM roles rather than access keys for production
deployments.

You need to configure the following IAM settings:

	The worker nodes on which Pachyderm is deployed must be associated
with the IAM role that is assigned to the Kubernetes cluster.
If you created your cluster by using kops or eksctl
the nodes must have a dedicated IAM role already assigned.

	The IAM role must have access to the S3 bucket that you created for
Pachyderm.

	The IAM role must have correct trust relationships.

To deploy Pachyderm with an IAM role, complete the following steps:

	Find the IAM role assigned to the cluster:

	Go to the AWS Management console.

	Select an EC2 instance in the Kubernetes cluster.

	Click Description.

	Find the IAM Role field.

	Enable access to the S3 bucket for the IAM role:

	In the IAM Role field, click on the IAM role.

	In the Permissions tab, click Edit policy.

	Select the JSON tab.

	Append the following text to the end of the existing JSON:

{
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::<your-bucket>"
]
},
{
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::<your-bucket>/*"
]
}

Replace <your-bucket> with the name of your S3 bucket.

Note: For the EKS cluster, you might need to use the
Add inline policy button and create a name for the new policy.

	Set up trust relationships for the IAM role:

	Click the Trust relationships > Edit trust relationship.

	Ensure that you see a statement with sts:AssumeRole. Example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

	Deploy Pachyderm:

$ pachctl deploy amazon ${BUCKET_NAME} ${AWS_REGION} ${STORAGE_SIZE} --dynamic-etcd-nodes=1 --iam-role <your-iam-role>

The deployment takes some time. You can run kubectl get pods periodically
to check the status of deployment. When Pachyderm is deployed, the command
shows all pods as READY:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-6c9dc97d9c-89dv9 2/2 Running 0 1m
etcd-0 1/1 Running 0 4m
pachd-65fd68d6d4-8vjq7 1/1 Running 0 4m

Note: If you see a few restarts on the pachd nodes, it means that
Kubernetes tried to bring up those pods before etcd was ready. Therefore,
Kubernetes restarted those pods. You can safely ignore this message.

	Verify that the Pachyderm cluster is up and running:

$ pachctl version

COMPONENT VERSION
pachctl 1.9.1
pachd 1.9.1

	If you want to access the Pachyderm UI or use the S3 gateway, you need to
forward Pachyderm ports. Open a new terminal window and run the
following command:

$ pachctl port-forward

Deploy Pachyderm with an Access Key

When you installed kops, you created a dedicated IAM
user with access credentials such as an access key and
secret key. You can deploy
Pachyderm by using the credentials of this IAM user
directly. However, deploying Pachyderm with an
access key might not satisfy your enterprise security
requirements. Therefore, deploying with an IAM role
is preferred.

To deploy Pachyderm with an access key, complete the following
steps:

	Run the following command to deploy your Pachyderm cluster:

$ pachctl deploy amazon ${BUCKET_NAME} ${AWS_REGION} ${STORAGE_SIZE} --dynamic-etcd-nodes=1 --credentials "${AWS_ACCESS_KEY_ID},${AWS_SECRET_ACCESS_KEY},"

The , at the end of the credentials flag in the deploy
command is for an optional temporary AWS token. You might use
such a token if you are just experimenting with
Pachyderm. However, do not use this token in a
production deployment.

The deployment takes some time. You can run kubectl get pods periodically
to check the status of deployment. When Pachyderm is deployed, the command
shows all pods as READY:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-6c9dc97d9c-89dv9 2/2 Running 0 1m
etcd-0 1/1 Running 0 4m
pachd-65fd68d6d4-8vjq7 1/1 Running 0 4m

Note: If you see a few restarts on the pachd nodes, it means that
Kubernetes tried to bring up those pods before etcd was ready.
Therefore, Kubernetes restarted those pods. You can safely ignore this
message.

	Verify that the Pachyderm cluster is up and running:

$ pachctl version

COMPONENT VERSION
pachctl 1.9.1
pachd 1.9.1

	If you want to access the Pachyderm UI or use S3 gateway, you need to
forward Pachyderm ports. Open a new terminal window and run the
following command:

$ pachctl port-forward

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Deploy Pachyderm

 	Deploy Pachyderm on Amazon AWS

Deploy a Pachyderm Cluster with CloudFront

After you have an EKS cluster or a Kubernetes cluster
deployed with kops ready,
you can integrate it with Amazon
CloudFront™.

Amazon CloudFront is a content delivery network (CDN) that
streams data to your website, service, or application securely
and with great performance. Pachyderm recommends that you
set up Pachyderm with CloudFront for all production
deployments.

To deploy Pachyderm cluster with CloudFront,
complete the following steps:

	Create a CloudFront Distribution [https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/GettingStarted.html#GettingStartedCreateDistribution]

	Deploy Pachyderm with an IAM role

	Apply the CloudFront Key Pair

Apply the CloudFront Key Pair

If you need to create signed URLs and
signed cookies for the data that goes to Pachyderm, you need to
configure your AWS account to use a valid CloudFront key pair.
Only a root AWS account can generate these secure credentials. Therefore,
you might need to request your IT department to create them for you.

For more information, see the Amazon documentation [http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-trusted-signers.html#private-content-creating-cloudfront-key-pairs].

The CloudFront key pair includes the following attributes:

	The private and public key. For this deployment, you only need the private
key.

	The key pair ID. Typically, the key pair ID is recorded in the filename.

Example:

rsa-APKAXXXXXXXXXXXXXXXX.pem
pk-APKAXXXXXXXXXXXXXXXX.pem

The key-pair ID is APKAXXXXXXXXXXXXXXXX. The other file is
the private key, which looks similar to the following text:

$ cat pk-APKAXXXXXXXXXXXX.pem
-----BEGIN RSA PRIVATE KEY-----
...

To apply this key pair to your CloudFront distribution, complete
the following steps:

	Download the secure-cloudfront.sh script from the Pachyderm
repository:

$ curl -o secure-cloudfront.sh https://raw.githubusercontent.com/pachyderm/pachyderm/master/etc/deploy/cloudfront/secure-cloudfront.sh

	Make the script executable:

$ chmod +x secure-cloudfront.sh

	From the deploy.log file, obtain the S3 bucket name for your
deployment and the CloudFront distribution ID.

	Apply the key pair to your CloudFront distribution:

$./secure-cloudfront.sh --region us-west-2 --zone us-west-2c --bucket YYYY-pachyderm-store --cloudfront-distribution-id E1BEBVLIDYTLEV --cloudfront-keypair-id APKAXXXXXXXXXXXX --cloudfront-private-key-file ~/Downloads/pk-APKAXXXXXXXXXXXX.pem

	Restart the pachd pod for the
changes to take effect:

$ kubectl scale --replicas=0 deployment/pachd && kubectl scale --replicas=1 deployment/pachd && kubectl get pod

	Verify the setup by checking the pachd logs and confirming that
Kubernetes uses the CloudFront credentials:

$ kubectl get pod
NAME READY STATUS RESTARTS AGE
etcd-0 1/1 Running 0 19h
etcd-1 1/1 Running 0 19h
etcd-2 1/1 Running 0 19h
pachd-2796595787-9x0qf 1/1 Running 0 16h

$ kubectl logs pachd-2796595787-9x0qf | grep cloudfront
2017-06-09T22:56:27Z INFO AWS deployed with cloudfront distribution at d3j9kenawdv8p0
2017-06-09T22:56:27Z INFO Using cloudfront security credentials - keypair ID (APKAXXXXXXXXX) - to sign cloudfront URLs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Deploy Pachyderm

Azure

You can deploy Pachyderm in a new or existing Microsoft® Azure® Kubernetes
Service environment and use Azure’s resource to run your Pachyderm
workloads.
To deploy Pachyderm to AKS, you need to:

	Install Prerequisites

	Deploy Kubernetes

	Deploy Pachyderm

Install Prerequisites

Before you can deploy Pachyderm on Azure, you need to configure a few
prerequisites on your client machine. If not explicitly specified, use the
latest available version of the components listed below.
Install the following prerequisites:

	Azure CLI 2.0.1 or later [https://docs.microsoft.com/en-us/cli/azure/install-azure-cli]

	jq [https://stedolan.github.io/jq/download/]

	kubectl [https://docs.microsoft.com/cli/azure/aks?view=azure-cli-latest#az_aks_install_cli]

	pachctl

Install pachctl

pachctl is a primary command-line utility for interacting with Pachyderm clusters.
You can run the tool on Linux®, macOS®, and Microsoft® Windows® 10 or later operating
systems and install it by using your favorite command line package manager.
This section describes how you can install pachctl by using
brew and curl.

If you are installing pachctl on Windows, you need to first install
Windows Subsystem (WSL) for Linux.

To install pachctl, complete the following steps:

	To install on macOS by using brew, run the following command:

$ brew tap pachyderm/tap && brew install pachyderm/tap/pachctl@1.9

	To install on Linux 64-bit or Windows 10 or later, run the following command:

$ curl -o /tmp/pachctl.deb -L https://github.com/pachyderm/pachyderm/releases/download/v1.9.3/pachctl_1.9.3_amd64.deb && sudo dpkg -i /tmp/pachctl.deb

	Verify your installation by running pachctl version:

$ pachctl version --client-only
COMPONENT VERSION
pachctl 1.9.0

Deploy Kubernetes

You can deploy Kubernetes on Azure by following the official Azure Container Service documentation [https://docs.microsoft.com/azure/aks/tutorial-kubernetes-deploy-cluster] or by
following the steps in this section. When you deploy Kubernetes on Azure,
you need to specify the following parameters:

 	Variable
 	Description

 	RESOURCE_GROUP
 	A unique name for the resource group where Pachyderm is deployed. For example, `pach-resource-group`.

 	LOCATION
 	An Azure availability zone where AKS is available. For example, `centralus`.

 	NODE_SIZE
 	The size of the Kubernetes virtual machine (VM) instances. To avoid performance issues, Pachyderm recommends that you
 set this value to at least `Standard_DS4_v2` which gives you 8 CPUs, 28 Gib of Memory, 56 Gib SSD.

 	CLUSTER_NAME
 	A unique name for the Pachyderm cluster. For example, `pach-aks-cluster`.

To deploy Kubernetes on Azure, complete the following steps:

	Log in to Azure:

$ az login
Note, we have launched a browser for you to login. For old experience with
device code, use "az login --use-device-code"

If you have not already logged in this command opens a browser window. Log in with your Azure credentials.
After you log in, the following message appears in the command prompt:

You have logged in. Now let us find all the subscriptions to which you have access...
[
 {
 "cloudName": "AzureCloud",
 "id": "your_id",
 "isDefault": true,
 "name": "Microsoft Azure Sponsorship",
 "state": "Enabled",
 "tenantId": "your_tenant_id",
 "user": {
 "name": "your_contact_id",
 "type": "user"
 }
 }
]

	Create an Azure resource group.

$ az group create --name=${RESOURCE_GROUP} --location=${LOCATION}

Example:

$ az group create --name="test-group" --location=centralus
{
 "id": "/subscriptions/6c9f2e1e-0eba-4421-b4cc-172f959ee110/resourceGroups/pach-resource-group",
 "location": "centralus",
 "managedBy": null,
 "name": "pach-resource-group",
 "properties": {
 "provisioningState": "Succeeded"
 },
 "tags": null,
 "type": null
}

	Create an AKS cluster:

$ az aks create --resource-group ${RESOURCE_GROUP} --name ${CLUSTER_NAME} --generate-ssh-keys --node-vm-size ${NODE_SIZE}

Example:

$ az aks create --resource-group test-group --name test-cluster --generate-ssh-keys --node-vm-size Standard_DS4_v2
{
 "aadProfile": null,
 "addonProfiles": null,
 "agentPoolProfiles": [
 {
 "availabilityZones": null,
 "count": 3,
 "enableAutoScaling": null,
 "maxCount": null,
 "maxPods": 110,
 "minCount": null,
 "name": "nodepool1",
 "orchestratorVersion": "1.12.8",
 "osDiskSizeGb": 100,
 "osType": "Linux",
 "provisioningState": "Succeeded",
 "type": "AvailabilitySet",
 "vmSize": "Standard_DS4_v2",
 "vnetSubnetId": null
 }
],
...

	Confirm the version of the Kubernetes server:

$ kubectl version
Client Version: version.Info{Major:"1", Minor:"13", GitVersion:"v1.13.4", GitCommit:"c27b913fddd1a6c480c229191a087698aa92f0b1", GitTreeState:"clean", BuildDate:"2019-03-01T23:36:43Z", GoVersion:"go1.12", Compiler:"gc", Platform:"darwin/amd64"}
Server Version: version.Info{Major:"1", Minor:"13", GitVersion:"v1.13.4", GitCommit:"c27b913fddd1a6c480c229191a087698aa92f0b1", GitTreeState:"clean", BuildDate:"2019-02-28T13:30:26Z", GoVersion:"go1.11.5", Compiler:"gc", Platform:"linux/amd64"}

See also:

	Azure Virtual Machine sizes [https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general]

Add storage resources

Pachyderm requires you to deploy an object store and a persistent
volume in your cloud environment to function correctly. For best
results, you need to use faster disk drives, such as Premium SSD
Managed Disks that are available with the Azure Premium Storage offering.

You need to specify the following parameters when you create storage
resources:

 	Variable
 	Description

 	STORAGE_ACCOUNT
 	The name of the storage account where you store your data, unique in the Azure location

 	CONTAINER_NAME
 	The name of the Azure blob container where you store your data

 	STORAGE_SIZE
 	The size of the persistent volume to create in GBs. Allocate at least 10 GB.

To create these resources, follow these steps:

	Clone the Pachyderm GitHub repo [https://github.com/pachyderm/pachyderm].

	Change the directory to the root directory of the pachyderm repository.

	Create an Azure storage account:

$ az storage account create \
 --resource-group="${RESOURCE_GROUP}" \
 --location="${LOCATION}" \
 --sku=Premium_LRS \
 --name="${STORAGE_ACCOUNT}" \
 --kind=BlockBlobStorage

System response:

{
 "accessTier": null,
 "creationTime": "2019-06-20T16:05:55.616832+00:00",
 "customDomain": null,
 "enableAzureFilesAadIntegration": null,
 "enableHttpsTrafficOnly": false,
 "encryption": {
 "keySource": "Microsoft.Storage",
 "keyVaultProperties": null,
 "services": {
 "blob": {
 "enabled": true,
 ...

Make sure that you set Stock Keeping Unit (SKU) to Premium_LRS
and the kind parameter is set to BlockBlobStorage. This
configuration results in a storage that uses SSDs rather than
standard Hard Disk Drives (HDD).
If you set this parameter to an HDD-based storage option, your Pachyderm
cluster will be too slow and might malfunction.

	Verify that your storage account has been successfully created:

$ az storage account list

	Build a Microsoft tool for creating Azure VMs from an image:

$ STORAGE_KEY="$(az storage account keys list \
 --account-name="${STORAGE_ACCOUNT}" \
 --resource-group="${RESOURCE_GROUP}" \
 --output=json \
 | jq '.[0].value' -r
)"

	Find the generated key in the Storage accounts > Access keys
section in the Azure Portal or by running the following command:

$ az storage account keys list --account-name=${STORAGE_ACCOUNT}
[
 {
 "keyName": "key1",
 "permissions": "Full",
 "value": ""
 }
]

See Also

	Azure Storage [https://azure.microsoft.com/documentation/articles/storage-introduction/]

Deploy Pachyderm

After you complete all the sections above, you can deploy Pachyderm
on Azure. If you have previously tried to run Pachyderm locally,
make sure that you are using the right Kubernetes context. Otherwise,
you might accidentally deploy your cluster on Minikube.

	Verify cluster context:

$ kubectl config current-context

This command should return the name of your Kubernetes cluster that
runs on Azure.

	If you have a different contents displayed, configure kubectl
to use your Azure configuration:

$ az aks get-credentials --resource-group ${RESOURCE_GROUP} --name ${CLUSTER_NAME}
Merged "${CLUSTER_NAME}" as current context in /Users/test-user/.kube/config

	Run the following command:

$ pachctl deploy microsoft ${CONTAINER_NAME} ${STORAGE_ACCOUNT} ${STORAGE_KEY} ${STORAGE_SIZE} --dynamic-etcd-nodes 1

Example:

$ pachctl deploy microsoft test-container teststorage <key> 10 --dynamic-etcd-nodes 1
serviceaccount/pachyderm configured
clusterrole.rbac.authorization.k8s.io/pachyderm configured
clusterrolebinding.rbac.authorization.k8s.io/pachyderm configured
service/etcd-headless created
statefulset.apps/etcd created
service/etcd configured
service/pachd configured
deployment.apps/pachd configured
service/dash configured
deployment.apps/dash configured
secret/pachyderm-storage-secret configured

Pachyderm is launching. Check its status with "kubectl get all"
Once launched, access the dashboard by running "pachctl port-forward"

Because Pachyderm pulls containers from DockerHub, it might take some time
before the pachd pods start. You can check the status of the
deployment by periodically running kubectl get all.

	When pachyderm is up and running, get the information about the pods:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-482120938-vdlg9 2/2 Running 0 54m
etcd-0 1/1 Running 0 54m
pachd-1971105989-mjn61 1/1 Running 0 54m

Note: Sometimes Kubernetes tries to start pachd nodes before
the etcd nodes are ready which might result in the pachd nodes
restarting. You can safely ignore those restarts.

	To connect to the cluster from your local machine, such as your laptop,
set up port forwarding to enable pachctl and cluster communication:

$ pachctl port-forward

	Verify that the cluster is up and running:

$ pachctl version
COMPONENT VERSION
pachctl 1.9.0
pachd 1.9.0

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Deploy Pachyderm

OpenShift

OpenShift [https://www.openshift.com/] is a popular enterprise Kubernetes distribution.
Pachyderm can run on OpenShift with a few small tweaks in the deployment process, which will be outlined below.
Please see known issues below for currently issues with OpenShift deployments.

Prerequisites

Pachyderm needs a few things to install and run successfully in any Kubernetes environment

	A persistent volume, used by Pachyderm’s etcd for storage of system metatada.
The kind of PV you provision will be dependent on your infrastructure.
For example, many on-premises deployments use Network File System (NFS) access to some kind of enterprise storage.

	An object store, used by Pachyderm’s pachd for storing all your data.
The object store you use will probably be dependent on where you’re going to run OpenShift: S3 for AWS [https://pachyderm.readthedocs.io/en/latest/deployment/amazon_web_services.html], GCS for Google Cloud Platform [https://pachyderm.readthedocs.io/en/latest/deployment/google_cloud_platform.html], Azure Blob Storage for Azure [https://pachyderm.readthedocs.io/en/latest/deployment/azure.html], or a storage provider like Minio, EMC’s ECS or Swift providing S3-compatible access to enterprise storage for on-premises deployment.

	Access to particular TCP/IP ports for communication.

Persistent volume

You’ll need to create a persistent volume with enough space for the metadata associated with the data you plan to store Pachyderm.
The pachctl deploy command for AWS, GCP and Azure creates persistent storage for you, when you follow the instructions below.
A custom deploy can also create storage.We’ll show you below how to take out the PV that’s automatically created, in case you want to create it outside of the Pachyderm deployment and just consume it.

We’re currently developing good rules of thumb for scaling this storage as your Pachyderm deployment grows,
but it looks like 10G of disk space is sufficient for most purposes.

Object store

Size your object store generously, once you start using Pachyderm, you’ll start versioning all your data.
You’ll need four items to configure object storage

	The access endpoint.
For example, Minio’s endpoints are usually something like minio-server:9000.
Don’t begin it with the protocol; it’s an endpoint, not an url.

	The bucket name you’re dedicating to Pachyderm. Pachyderm will need exclusive access to this bucket.

	The access key id for the object store. This is like a user name for logging into the object store.

	The secret key for the object store. This is like the above user’s password.

TCP/IP ports

For more details on how Kubernetes networking and service definitions work, see the Kubernetes services
documentation [https://kubernetes.io/docs/concepts/services-networking/service/].

Incoming ports (port)

These are the ports internal to the containers,
You’ll find these on both the pachd and dash containers.
OpenShift runs containers and pods as unprivileged users which don’t have access to port numbers below 1024.
Pachyderm’s default manifests use ports below 1024, so you’ll have to modify the manifests to use other port numbers.
It’s usually as easy as adding a “1” in front of the port numbers we use.

Pod ports (targetPort)

This is the port exposed by the pod to Kubernetes, which is forwarded to the port.
You should leave the targetPort set at 0 so it will match the port definition.

External ports (nodePorts)

This is the port accessible from outside of Kubernetes.
You probably don’t need to change nodePort values unless your network security requirements or architecture requires you to change to another method of access.
Please see the Kubernetes services documentation [https://kubernetes.io/docs/concepts/services-networking/service/] for details.

The OCPify script

A bash script that automates many of the substitutions below is available at this gist [https://gist.github.com/gabrielgrant/86c1a5b590ae3f4b3fd32d7e9d622dc8].
You can use it to modify a manifest created using the --dry-run flag to pachctl deploy custom, as detailed below, and then use this guide to ensure the modifications it makes are relevant to your OpenShift environment.
It requires certain prerequisites, just as jq [https://github.com/stedolan/jq] and sponge, found in moreutils [https://joeyh.name/code/moreutils/].

This script may be useful as a basis for automating redeploys of Pachyderm as needed.

Best practices: Infrastructure as code

We highly encourage you to apply the best practices used in developing software to managing the deployment process.

	Create scripts that automate as much of your processes as possible and keep them under version control.

	Keep copies of all artifacts, such as manifests, produced by those scripts and keep those under version control.

	Document your practices in the code and outside it.

Preparing to deploy Pachyderm

Things you’ll need

	Your PV. It can be created separately.

	Your object store information

	Your project in OpenShift

	A text editor for editing your deployment manifest

Deploying Pachyderm

1. Setting up PV and object stores

How you deploy Pachyderm on OpenShift is largely going to depend on where OpenShift is deployed.
Below you’ll find links to the documentation for each kind of deployment you can do.
Follow the instructions there for setting up persistent volumes and object storage resources.
Don’t yet deploy your manifest, come back here after you’ve set up your PV and object store.

	OpenShift Deployed on AWS [https://pachyderm.readthedocs.io/en/latest/deployment/amazon_web_services.html]

	OpenShift Deployed on GCP [https://pachyderm.readthedocs.io/en/latest/deployment/google_cloud_platform.html]

	OpenShift Deployed on Azure [https://pachyderm.readthedocs.io/en/latest/deployment/azure.html]

	OpenShift Deployed on-premise [https://pachyderm.readthedocs.io/en/latest/deployment/on_premises.html]

2. Determine your role security policy

Pachyderm is deployed by default with cluster roles.
Many institutional Openshift security policies require namespace-local roles rather than cluster roles.
If your security policies require namespace-local roles, use the pachctl deploy command below with the --local-roles flag.

3. Run the deploy command with –dry-run

Once you have your PV, object store, and project, you can create a manifest for editing using the --dry-run argument to pachctl deploy.
That step is detailed in the deployment instructions for each type of deployment, above.

Below, find examples,
with cluster roles and with namespace-local roles,
using AWS elastic block storage as a persistent disk with a custom deploy.
We’ll show how to remove this PV in case you want to use a PV you create separately.

Cluster roles

$ pachctl deploy custom --persistent-disk aws --object-store s3 \
 <pv-storage-name> <pv-storage-size> \
 <s3-bucket-name> <s3-access-key-id> <s3-access-secret-key> <s3-access-endpoint-url> \
 --static-etcd-volume=<pv-storage-name> > manifest.json

Namespace-local roles

$ pachctl deploy custom --persistent-disk aws --object-store s3 \
 <pv-storage-name> <pv-storage-size> \
 <s3-bucket-name> <s3-access-key-id> <s3-access-secret-key> <s3-access-endpoint-url> \
 --static-etcd-volume=<pv-storage-name> --local-roles > manifest.json

4. Modify pachd Service ports

In the deployment manifest, which we called manifest.json, above, find the stanza for the pachd Service. An example is shown below.

{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "pachd",
 "namespace": "default",
 "creationTimestamp": null,
 "labels": {
 "app": "pachd",
 "suite": "pachyderm"
 },
 "annotations": {
 "prometheus.io/port": "9091",
 "prometheus.io/scrape": "true"
 }
 },
 "spec": {
 "ports": [
 {
 "name": "api-grpc-port",
 "port": 650,
 "targetPort": 0,
 "nodePort": 30650
 },
 {
 "name": "trace-port",
 "port": 651,
 "targetPort": 0,
 "nodePort": 30651
 },
 {
 "name": "api-http-port",
 "port": 652,
 "targetPort": 0,
 "nodePort": 30652
 },
 {
 "name": "saml-port",
 "port": 654,
 "targetPort": 0,
 "nodePort": 30654
 },
 {
 "name": "api-git-port",
 "port": 999,
 "targetPort": 0,
 "nodePort": 30999
 },
 {
 "name": "s3gateway-port",
 "port": 600,
 "targetPort": 0,
 "nodePort": 30600
 }
],
 "selector": {
 "app": "pachd"
 },
 "type": "NodePort"
 },
 "status": {
 "loadBalancer": {}
 }
}

While the nodePort declarations are fine, the port declarations are too low for OpenShift. Good example values are shown below.

 "spec": {
 "ports": [
 {
 "name": "api-grpc-port",
 "port": 1650,
 "targetPort": 0,
 "nodePort": 30650
 },
 {
 "name": "trace-port",
 "port": 1651,
 "targetPort": 0,
 "nodePort": 30651
 },
 {
 "name": "api-http-port",
 "port": 1652,
 "targetPort": 0,
 "nodePort": 30652
 },
 {
 "name": "saml-port",
 "port": 1654,
 "targetPort": 0,
 "nodePort": 30654
 },
 {
 "name": "api-git-port",
 "port": 1999,
 "targetPort": 0,
 "nodePort": 30999
 },
 {
 "name": "s3gateway-port",
 "port": 1600,
 "targetPort": 0,
 "nodePort": 30600
 }
],

5. Modify pachd Deployment ports and add environment variables

In this case you’re editing two parts of the pachd Deployment json.Here, we’ll omit the example of the unmodified version.
Instead, we’ll show you the modified version.

5.1 pachd Deployment ports

The pachd Deployment also has a set of port numbers in the spec for the pachd container.
Those must be modified to match the port numbers you set above for each port.

{
 "kind": "Deployment",
 "apiVersion": "apps/v1beta1",
 "metadata": {
 "name": "pachd",
 "namespace": "default",
 "creationTimestamp": null,
 "labels": {
 "app": "pachd",
 "suite": "pachyderm"
 }
 },
 "spec": {
 "replicas": 1,
 "selector": {
 "matchLabels": {
 "app": "pachd",
 "suite": "pachyderm"
 }
 },
 "template": {
 "metadata": {
 "name": "pachd",
 "namespace": "default",
 "creationTimestamp": null,
 "labels": {
 "app": "pachd",
 "suite": "pachyderm"
 },
 "annotations": {
 "iam.amazonaws.com/role": ""
 }
 },
 "spec": {
 "volumes": [
 {
 "name": "pach-disk"
 },
 {
 "name": "pachyderm-storage-secret",
 "secret": {
 "secretName": "pachyderm-storage-secret"
 }
 }
],
 "containers": [
 {
 "name": "pachd",
 "image": "pachyderm/pachd:1.9.0rc1",
 "ports": [
 {
 "name": "api-grpc-port",
 "containerPort": 1650,
 "protocol": "TCP"
 },
 {
 "name": "trace-port",
 "containerPort": 1651
 },
 {
 "name": "api-http-port",
 "containerPort": 1652,
 "protocol": "TCP"
 },
 {
 "name": "peer-port",
 "containerPort": 1653,
 "protocol": "TCP"
 },
 {
 "name": "api-git-port",
 "containerPort": 1999,
 "protocol": "TCP"
 },
 {
 "name": "saml-port",
 "containerPort": 1654,
 "protocol": "TCP"
 }
],

5.2 Add environment variables

There are six environment variables necessary for OpenShift

	WORKER_USES_ROOT: This controls whether worker pipelines run as the root user or not. You’ll need to set it to false

	PORT: This is the grpc port used by pachd for communication with pachctl and the api. It should be set to the same value you set for api-grpc-port above.

	PPROF_PORT: This is used for Prometheus. It should be set to the same value as trace-port above.

	HTTP_PORT: The port for the api proxy. It should be set to api-http-port above.

	PEER_PORT: Used to coordinate pachd‘s. Same as peer-port above.

	PPS_WORKER_GRPC_PORT: Used to talk to pipelines. Should be set to a value above 1024. The example value of 1680 below is recommended.

The added values below are shown inserted above the PACH_ROOT value, which is typically the first value in this array.
The rest of the stanza is omitted for clarity.

 "env": [
 {
 "name": "WORKER_USES_ROOT",
 "value": "false"
 },
 {
 "name": "PORT",
 "value": "1650"
 },
 {
 "name": "PPROF_PORT",
 "value": "1651"
 },
 {
 "name": "HTTP_PORT",
 "value": "1652"
 },
 {
 "name": "PEER_PORT",
 "value": "1653"
 },
 {
 "name": "PPS_WORKER_GRPC_PORT",
 "value": "1680"
 },
 {
 "name": "PACH_ROOT",
 "value": "/pach"
 },

6. (Optional) Remove the PV created during the deploy command

If you’re using a PV you’ve created separately, remove the PV that was added to your manifest by pachctl deploy --dry-run. Here’s the example PV we created with the deploy command we used above, so you can recognize it.

{
 "kind": "PersistentVolume",
 "apiVersion": "v1",
 "metadata": {
 "name": "etcd-volume",
 "namespace": "default",
 "creationTimestamp": null,
 "labels": {
 "app": "etcd",
 "suite": "pachyderm"
 }
 },
 "spec": {
 "capacity": {
 "storage": "10Gi"
 },
 "awsElasticBlockStore": {
 "volumeID": "pach-disk",
 "fsType": "ext4"
 },
 "accessModes": [
 "ReadWriteOnce"
],
 "persistentVolumeReclaimPolicy": "Retain"
 },
 "status": {}
}

7. Deploy the Pachyderm manifest you modified.

$ oc create -f pachyderm.json

You can see the cluster status by using oc get pods as in upstream Kubernetes:

 $ oc get pods
 NAME READY STATUS RESTARTS AGE
 dash-6c9dc97d9c-89dv9 2/2 Running 0 1m
 etcd-0 1/1 Running 0 4m
 pachd-65fd68d6d4-8vjq7 1/1 Running 0 4m

Known issues

Problems related to OpenShift deployment are tracked in issues with the “openshift” label [https://github.com/pachyderm/pachyderm/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+label%3Aopenshift].

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Deploy Pachyderm

On Premises

This document is broken down into the following sections, available at the links below

	Introduction to on-premises deployments takes you through what you need to know about Kubernetes, persistent volumes, object stores and best practices. That’s this page.

	Customizing your Pachyderm deployment for on-premises use details the various options of the pachctl deploy custom ... command for an on-premises deployment.

	Single-node Pachyderm deployment is the document you should read when deploying Pachyderm for personal, low-volume usage.

	Registries takes you through on-premises, private Docker registry configuration.

	Ingress details the Kubernetes ingress configuration you’d need for using pachctl and the dashboard outside of the Kubernetes cluster

	Non-cloud object stores discusses common configurations for on-premises object stores.

Need information on a particular flavor of Kubernetes or object store? Check out the see also section.

Troubleshooting a deployment? Check out Troubleshooting Deployments.

Introduction

Deploying Pachyderm successfully on-premises requires a few prerequisites and some planning.
Pachyderm is built on Kubernetes [https://kubernetes.io/].
Before you can deploy Pachyderm, you or your Kubernetes administrator will need to perform the following actions:

	Deploy Kubernetes on-premises.

	Deploy a Kubernetes persistent volume that Pachyderm will use to store administrative data.

	Deploy an on-premises object store using a storage provider like MinIO [https://min.io], EMC’s ECS [https://www.dellemc.com/storage/ecs/index.htm], or SwiftStack [https://www.swiftstack.com/] to provide S3-compatible access to your on-premises storage.

	Create a Pachyderm manifest by running the pachctl deploy custom command with appropriate arguments and the --dry-run flag to create a Kubernetes manifest for the Pachyderm deployment.

	Edit the Pachyderm manifest for your particular Kubernetes deployment

In this series of documents, we’ll take you through the steps unique to Pachyderm.
We assume you have some Kubernetes knowledge.
We will point you to external resources for the general Kubernetes steps to give you background.

Best practices

Infrastructure as code

We highly encourage you to apply the best practices used in developing software to managing the deployment process.

	Create scripts that automate as much of your processes as possible and keep them under version control.

	Keep copies of all artifacts, such as manifests, produced by those scripts and keep those under version control.

	Document your practices in the code and outside it.

Infrastructure in general

Be sure that you design your Kubernetes infrastructure in accordance with recommended guidelines.
Don’t mix on-premises Kubernetes and cloud-based storage.
It’s important that bandwidth to your storage deployment meet the guidelines of your storage provider.

Prerequisites

Software you will need

	kubectl [https://kubernetes.io/docs/user-guide/prereqs/]

	pachctl [http://docs.pachyderm.io/en/latest/pachctl/pachctl.html]

Setting up to deploy on-premises

Deploying Kubernetes

The Kubernetes docs have instructions for deploying Kubernetes in a variety of on-premise scenarios [https://kubernetes.io/docs/getting-started-guides/#on-premises-vms].
We recommend following one of these guides to get Kubernetes running on premise.

Deploying a persistent volume

Persistent volumes: how do they work?

A Kubernetes persistent volume [https://kubernetes.io/docs/concepts/storage/persistent-volumes/] is used by Pachyderm’s etcd for storage of system metatada.
In Kubernetes, persistent volumes [https://kubernetes.io/docs/concepts/storage/persistent-volumes/] are a mechanism for providing storage for consumption by the users of the cluster.
They are provisioned by the cluster administrators.
In a typical enterprise Kubernetes deployment, the administrators have configured persistent volumes that your Pachyderm deployment will consume by means of a persistent volume claim [https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims] in the Pachyderm manifest you generate.

You can deploy PV’s to Pachyderm using our command-line arguments in three ways: using a static PV, with StatefulSets, or with StatefulSets using a StorageClass.

If your administrators are using selectors [https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector], or you want to use StorageClasses in a different way, you’ll need to edit the Pachyderm manifest appropriately before applying it.

Static PV

In this case, etcd will be deployed in Pachyderm as a ReplicationController [https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/] with one (1) pod that uses a static PV. This is a common deployment for testing.

StatefulSets

StatefulSets [https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/] are a mechanism provided in Kubernetes 1.9 and newer to manage the deployment and scaling of applications. It uses either Persistent Volume Provisioning [https://github.com/kubernetes/examples/blob/master/staging/persistent-volume-provisioning/README.md] or pre-provisioned PV’s.

If you’re using StatefulSets in your Kubernetes cluster, you will need to find out the particulars of your cluster’s PV configuration and use appropriate flags to pachctl deploy custom

StorageClasses

If your administrators require specification of classes [https://kubernetes.io/docs/concepts/storage/persistent-volumes/#class-1] to consume persistent volumes,
you will need to find out the particulars of your cluster’s PV configuration and use appropriate flags to pachctl deploy custom.

Common tasks to all types of PV deployments

Sizing the PV

You’ll need to use a PV with enough space for the metadata associated with the data you plan to store in Pachyderm.
We’re currently developing good rules of thumb for scaling this storage as your Pachyderm deployment grows,
but it looks like 10G of disk space is sufficient for most purposes.

Creating the PV

In the case of cloud-based deployments, the pachctl deploy command for AWS, GCP and Azure creates persistent volumes for you, when you follow the instructions for those infrastructures.

In the case of on-premises deployments, the kind of PV you provision will be dependent on what kind of storage your Kubernetes administrators have attached to your cluster and configured, and whether you are expected to consume that storage as a static PV, with Persistent Volume Provisioning or as a StorageClass.

For example, many on-premises deployments use Network File System (NFS) to access to some kind of enterprise storage.
Persistent volumes are provisioned in Kubernetes like all things in Kubernetes: by means of a manifest.
You can learn about creating volumes [https://kubernetes.io/docs/concepts/storage/volumes/] and persistent volumes [https://kubernetes.io/docs/concepts/storage/persistent-volumes/] in the Kubernetes documentation.

You or your Kubernetes administrators will be responsible for configuring the PVs you create to be consumable as static PV’s, with Persistent Volume Provisioning or as a StorageClass.

What you’ll need for Pachyderm configuration of PV storage

Keep the information below at hand for when you run pachctl deploy custom further on

Configuring with static volumes

You’ll need the name of the PV and the amount of space you can use, in gigabytes.
We’ll refer to those, respectively, as PVC_STORAGE_NAME and PVC_STORAGE_SIZE further on.
With this kind of PV,
you’ll use the flag --static-etcd-volume with PVC_STORAGE_NAME as its argument in your deployment.

Note: this will override any attempt to configure with StorageClasses, below.

Configuring with StatefulSets

If you’re deploying using StatefulSets,
you’ll just need the amount of space you can use, in gigabytes,
which we’ll refer to as PVC_STORAGE_SIZE further on..

Note: The --etcd-storage-class flag and argument will be ignored if you use the flag --static-etcd-volume along with it.

Configuring with StatefulSets using StorageClasses

If you’re deploying using StatefulSets with StorageClasses,
you’ll need the name of the storage class and the amount of space you can use, in gigabytes.
We’ll refer to those, respectively, as PVC_STORAGECLASS and PVC_STORAGE_SIZE further on.
With this kind of PV,
you’ll use the flag --etcd-storage-class with PVC_STORAGECLASS as its argument in your deployment.

Note: The --etcd-storage-class flag and argument will be ignored if you use the flag --static-etcd-volume along with it.

Deploying an object store

Object store: what’s it for?

An object store is used by Pachyderm’s pachd for storing all your data.
The object store you use must be accessible via a low-latency, high-bandwidth connection like Gigabit [https://en.wikipedia.org/wiki/Gigabit_Ethernet] or 10G Ethernet [https://en.wikipedia.org/wiki/10_Gigabit_Ethernet].

For an on-premises deployment,
it’s not advisable to use a cloud-based storage mechanism.
Don’t deploy an on-premises Pachyderm cluster against cloud-based object stores such as S3 from AWS [https://pachyderm.readthedocs.io/en/latest/deployment/amazon_web_services.html], GCS from Google Cloud Platform [https://pachyderm.readthedocs.io/en/latest/deployment/google_cloud_platform.html], Azure Blob Storage from Azure [https://pachyderm.readthedocs.io/en/latest/deployment/azure.html].

Object store prerequisites

Object stores are accessible using the S3 protocol, created by Amazon.
Storage providers like MinIO [https://min.io], EMC’s ECS [https://www.dellemc.com/storage/ecs/index.htm], or SwiftStack [https://www.swiftstack.com/] provide S3-compatible access to enterprise storage for on-premises deployment.
You can find links to instructions for providers of particular object stores in the See also section.

Sizing the object store

Size your object store generously.
Once you start using Pachyderm, you’ll start versioning all your data.
We’re currently developing good rules of thumb for scaling your object store as your Pachyderm deployment grows,
but it’s a good idea to start with a large multiple of your current data set size.

What you’ll need for Pachyderm configuration of the object store

You’ll need four items to configure the object store.
We’re prefixing each item with how we’ll refer to it further on.

	OS_ENDPOINT: The access endpoint.
For example, MinIO’s endpoints are usually something like minio-server:9000.
Don’t begin it with the protocol; it’s an endpoint, not an url.

	OS_BUCKET_NAME: The bucket name you’re dedicating to Pachyderm. Pachyderm will need exclusive access to this bucket.

	OS_ACCESS_KEY_ID: The access key id for the object store. This is like a user name for logging into the object store.

	OS_SECRET_KEY: The secret key for the object store. This is like the above user’s password.

Keep this information handy.

Next step: creating a custom deploy manifest for Pachyderm

Once you have Kubernetes deployed, your persistent volume created, and your object store configured, it’s time to create the Pachyderm manifest for deploying to Kubernetes.

See Also

Kubernetes variants

	OpenShift

Object storage variants

	EMC ECS

	MinIO

	SwiftStack

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Deploy Pachyderm

Custom Object Stores

In other sections of this guide was have demonstrated how to deploy Pachyderm in a single cloud using that cloud’s object store offering. However, Pachyderm can be backed by any object store, and you are not restricted to the object store service provided by the cloud in which you are deploying.

As long as you are running an object store that has an S3 compatible API, you can easily deploy Pachyderm in a way that will allow you to back Pachyderm by that object store. For example, we have seen Pachyderm be backed by Minio [https://minio.io/], GlusterFS [https://www.gluster.org/], Ceph [http://ceph.com/], and more.

To deploy Pachyderm with your choice of object store in Google, Azure, or AWS, see the below guides. To deploy Pachyderm on premise with a custom object store, see the on premise docs [http://pachyderm.readthedocs.io/en/stable/deployment/on_premises.html].

Common Prerequisites

	A working Kubernetes cluster and kubectl.

	An account on or running instance of an object store with an S3 compatible API. You should be able to get an ID, secret, bucket name, and endpoint that point to this object store.

Google + Custom Object Store

Additional prerequisites:

	Google Cloud SDK [https://cloud.google.com/sdk/] >= 124.0.0 - If this is the first time you use the SDK, make sure to follow the quick start guide [https://cloud.google.com/sdk/docs/quickstarts].

First, we need to create a persistent disk for Pachyderm’s metadata:

Name this whatever you want, we chose pach-disk as a default
$ STORAGE_NAME=pach-disk

For a demo you should only need 10 GB. This stores PFS metadata. For reference, 1GB
should work for 1000 commits on 1000 files.
$ STORAGE_SIZE=[the size of the volume that you are going to create, in GBs. e.g. "10"]

Create the disk.
gcloud compute disks create --size=${STORAGE_SIZE}GB ${STORAGE_NAME}

Then we can deploy Pachyderm:

pachctl deploy custom --persistent-disk google --object-store s3 ${STORAGE_NAME} ${STORAGE_SIZE} <object store bucket> <object store id> <object store secret> <object store endpoint> --static-etcd-volume=${STORAGE_NAME}

AWS + Custom Object Store

Additional prerequisites:

	AWS CLI [https://aws.amazon.com/cli/] - have it installed and have your AWS credentials [http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html] configured.

First, we need to create a persistent disk for Pachyderm’s metadata:

We recommend between 1 and 10 GB. This stores PFS metadata. For reference 1GB
should work for 1000 commits on 1000 files.
$ STORAGE_SIZE=[the size of the EBS volume that you are going to create, in GBs. e.g. "10"]

$ AWS_REGION=[the AWS region of your Kubernetes cluster. e.g. "us-west-2" (not us-west-2a)]

$ AWS_AVAILABILITY_ZONE=[the AWS availability zone of your Kubernetes cluster. e.g. "us-west-2a"]

Create the volume.
$ aws ec2 create-volume --size ${STORAGE_SIZE} --region ${AWS_REGION} --availability-zone ${AWS_AVAILABILITY_ZONE} --volume-type gp2

Store the volume ID.
$ aws ec2 describe-volumes
$ STORAGE_NAME=[volume id]

The we can deploy Pachyderm:

pachctl deploy custom --persistent-disk aws --object-store s3 ${STORAGE_NAME} ${STORAGE_SIZE} <object store bucket> <object store id> <object store secret> <object store endpoint> --static-etcd-volume=${STORAGE_NAME}

Azure + Custom Object Store

Additional prerequisites:

	Install Azure CLI [https://docs.microsoft.com/en-us/cli/azure/install-azure-cli] >= 2.0.1

	Install jq [https://stedolan.github.io/jq/download/]

	Clone github.com/pachyderm/pachyderm and work from the root of that project.

First, we need to create a persistent disk for Pachyderm’s metadata. To do this, start by declaring some environmental variables:

Needs to be globally unique across the entire Azure location
$ RESOURCE_GROUP=[The name of the resource group where the Azure resources will be organized]

$ LOCATION=[The Azure region of your Kubernetes cluster. e.g. "West US2"]

Needs to be globally unique across the entire Azure location
$ STORAGE_ACCOUNT=[The name of the storage account where your data will be stored]

Needs to end in a ".vhd" extension
$ STORAGE_NAME=pach-disk.vhd

We recommend between 1 and 10 GB. This stores PFS metadata. For reference 1GB
should work for 1000 commits on 1000 files.
$ STORAGE_SIZE=[the size of the data disk volume that you are going to create, in GBs. e.g. "10"]

And then run:

Create a resource group
$ az group create --name=${RESOURCE_GROUP} --location=${LOCATION}

Create azure storage account
az storage account create \
 --resource-group="${RESOURCE_GROUP}" \
 --location="${LOCATION}" \
 --sku=Standard_LRS \
 --name="${STORAGE_ACCOUNT}" \
 --kind=Storage

Build microsoft tool for creating Azure VMs from an image
$ STORAGE_KEY="$(az storage account keys list \
 --account-name="${STORAGE_ACCOUNT}" \
 --resource-group="${RESOURCE_GROUP}" \
 --output=json \
 | jq .[0].value -r
)"
$ make docker-build-microsoft-vhd
$ VOLUME_URI="$(docker run -it microsoft_vhd \
 "${STORAGE_ACCOUNT}" \
 "${STORAGE_KEY}" \
 "${CONTAINER_NAME}" \
 "${STORAGE_NAME}" \
 "${STORAGE_SIZE}G"
)"

To check that everything has been setup correctly, try:

$ az storage account list | jq '.[].name'

The we can deploy Pachyderm:

pachctl deploy custom --persistent-disk azure --object-store s3 ${VOLUME_URI} ${STORAGE_SIZE} <object store bucket> <object store id> <object store secret> <object store endpoint> --static-etcd-volume=${VOLUME_URI}

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Deploy Pachyderm

Non-Default Namespaces

Often, production deploys of Pachyderm involve deploying Pachyderm to a non-default namespace. This helps administrators of the cluster more easily manage Pachyderm components alongside other things that might be running inside of Kubernetes (DataDog, TensorFlow Serving, etc.).

To deploy Pachyderm to a non-default namespace, you just need to create that namespace with kubectl and then add the --namespace flag to your deploy command:

$ kubectl create namespace pachyderm
$ kubectl config set-context $(kubectl config current-context) --namespace=pachyderm
$ pachctl deploy <args> --namespace pachyderm

After the Pachyderm pods are up and running, you should see something similar to:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-68578d4bb4-mmtbj 2/2 Running 0 3m
etcd-69fcfb5fcf-dgc8j 1/1 Running 0 3m
pachd-784bdf7cd7-7dzxr 1/1 Running 0 3m

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Deploy Pachyderm

RBAC

Pachyderm has support for Kubernetes Role-Based Access Controls (RBAC) and is a default part of all Pachyderm deployments. For most users, you shouldn’t have any issues as Pachyderm takes care of setting all the RBAC permissions automatically. However, if you are deploying Pachyderm on a cluster that your company owns, security policies might not allow certain RBAC permissions by default. Therefore, it’s suggested that you contact your Kubernetes admin and provide the following to ensure you don’t encounter any permissions issues:

Pachyderm Permission Requirements

Rules: []rbacv1.PolicyRule{{
 APIGroups: []string{""},
 Verbs: []string{"get", "list", "watch"},
 Resources: []string{"nodes", "pods", "pods/log", "endpoints"},
}, {
 APIGroups: []string{""},
 Verbs: []string{"get", "list", "watch", "create", "update", "delete"},
 Resources: []string{"replicationcontrollers", "services"},
}, {
 APIGroups: []string{""},
 Verbs: []string{"get", "list", "watch", "create", "update", "delete"},
 Resources: []string{"secrets"},
 ResourceNames: []string{client.StorageSecretName},
}},

RBAC and DNS

Kubernetes currently (as of 1.8.0) has a bug that prevents kube-dns from
working with RBAC. Not having DNS will make Pachyderm effectively unusable. You
can tell if you’re being affected by the bug like so:

$ kubectl get all --namespace=kube-system
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/kube-dns 1 1 1 0 3m

NAME DESIRED CURRENT READY AGE
rs/kube-dns-86f6f55dd5 1 1 0 3m

NAME READY STATUS RESTARTS AGE
po/kube-addon-manager-oryx 1/1 Running 0 3m
po/kube-dns-86f6f55dd5-xksnb 2/3 Running 4 3m
po/kubernetes-dashboard-bzjjh 1/1 Running 0 3m
po/storage-provisioner 1/1 Running 0 3m

NAME DESIRED CURRENT READY AGE
rc/kubernetes-dashboard 1 1 1 3m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP 3m
svc/kubernetes-dashboard NodePort 10.97.194.16 <none> 80:30000/TCP 3m

Notice how po/kubernetes-dashboard-bzjjh only has 2/3 pods ready and has 4 restarts.
To fix this do:

kubectl -n kube-system create sa kube-dns
kubectl -n kube-system patch deploy/kube-dns -p '{"spec": {"template": {"spec": {"serviceAccountName": "kube-dns"}}}}'

this will tell Kubernetes that kube-dns should use the appropriate
ServiceAccount. Kubernetes creates the ServiceAccount, it just doesn’t actually
use it.

RBAC Permissions on GKE

If you’re deploying Pachyderm on GKE and run into the following error:

Error from server (Forbidden): error when creating "STDIN": clusterroles.rbac.authorization.k8s.io "pachyderm" is forbidden: attempt to grant extra privileges:

Run the following and redeploy Pachyderm:

kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --user=$(gcloud config get-value account)

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Deploy Pachyderm

Troubleshooting Deployments

Here are some common issues by symptom related to certain deploys.

	General Pachyderm cluster deployment

	Environment-specific
	AWS
	Can’t connect to the Pachyderm cluster after a rolling update

	The one shot deploy script, aws.sh, never completes

	VPC limit exceeded

	GPU node never appears

	Google - coming soon...

	Azure - coming soon...

General Pachyderm cluster deployment

	Pod stuck in CrashLoopBackoff

	Pod stuck in CrashLoopBackoff - with error attaching volume

	[

Pod stuck in CrashLoopBackoff

Symptoms

The pachd pod keeps crashing/restarting:

$ kubectl get all
NAME READY STATUS RESTARTS AGE
po/etcd-281005231-qlkzw 1/1 Running 0 7m
po/pachd-1333950811-0sm1p 0/1 CrashLoopBackOff 6 7m

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/etcd 100.70.40.162 <nodes> 2379:30938/TCP 7m
svc/kubernetes 100.64.0.1 <none> 443/TCP 9m
svc/pachd 100.70.227.151 <nodes> 650:30650/TCP,651:30651/TCP 7m

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/etcd 1 1 1 1 7m
deploy/pachd 1 1 1 0 7m

NAME DESIRED CURRENT READY AGE
rs/etcd-281005231 1 1 1 7m
rs/pachd-1333950811 1 1 0 7m

Recourse

First describe the pod:

$ kubectl describe po/pachd-1333950811-0sm1p

If you see an error including Error attaching EBS volume or similar, see the recourse for that error here under the corresponding section below. If you don’t see that error, but do see something like:

 1m 3s 9 {kubelet ip-172-20-48-123.us-west-2.compute.internal} Warning FailedSync Error syncing pod, skipping: failed to "StartContainer" for "pachd" with CrashLoopBackOff: "Back-off 2m40s restarting failed container=pachd pod=pachd-1333950811-0sm1p_default(a92b6665-506a-11e7-8e07-02e3d74c49ac)"

it means Kubernetes tried running pachd, but pachd generated an internal error. To see the specifics of this internal error, check the logs for the pachd pod:

$kubectl logs po/pachd-1333950811-0sm1p

Note: If you’re using a log aggregator service (e.g. the default in GKE), you won’t see any logs when using kubectl logs ... in this way. You will need to look at your logs UI (e.g. in GKE’s case the stackdriver console).

These logs will most likely reveal the issue directly, or at the very least, a good indicator as to what’s causing the problem. For example, you might see, BucketRegionError: incorrect region, the bucket is not in 'us-west-2' region. In that case, your object store bucket in a different region than your pachyderm cluster and the fix would be to recreate the bucket in the same region as your pachydermm cluster.

If the error / recourse isn’t obvious from the error message, post the error as well as the pachd logs in our Slack channel, or open a GitHub Issue [https://github.com/pachyderm/pachyderm/issues/new] and provide the necessary details prompted by the issue template. Please do be sure provide these logs either way as it is extremely helpful in resolving the issue.

Pod stuck in CrashLoopBackoff - with error attaching volume

Symptoms

A pod (could be the pachd pod or a worker pod) fails to startup, and is stuck in CrashLoopBackoff. If you execute kubectl describe po/pachd-xxxx, you’ll see an error message like the following at the bottom of the output:

 30s 30s 1 {attachdetach } Warning FailedMount Failed to attach volume "etcd-volume" on node "ip-172-20-44-17.us-west-2.compute.internal" with: Error attaching EBS volume "vol-0c1d403ac05096dfe" to instance "i-0a12e00c0f3fb047d": VolumeInUse: vol-0c1d403ac05096dfe is already attached to an instance

This would indicate that the peristent volume claim [https://kubernetes.io/docs/concepts/storage/persistent-volumes/] is failing to get attached to the node in your kubernetes cluster.

Recourse

Your best bet is to manually detach the volume and restart the pod.

For example, to resolve this issue when Pachyderm is deployed to AWS, pull up your AWS web console and look up the node mentioned in the error message (ip-172-20-44-17.us-west-2.compute.internal in our case). Then on the bottom pane for the attached volume. Follow the link to the attached volume, and detach the volume. You may need to “Force Detach” it.

Once it’s detached (and marked as available). Restart the pod by killing it, e.g:

$kubectl delete po/pachd-xxx

It will take a moment for a new pod to get scheduled.

AWS Deployment

Can’t connect to the Pachyderm cluster after a rolling update

Symptom

After running kops rolling-update, kubectl (and/or pachctl) all requests hang and you can’t connect to the cluster.

Recourse

First get your cluster name. You can easily locate that information by running kops get clusters. If you used the one shot deployment](http://docs.pachyderm.io/en/latest/deployment/amazon_web_services.html#one-shot-script), you can also get this info in the deploy logs you created by aws.sh.

Then you’ll need to grab the new public IP address of your master node. The master node will be named something like master-us-west-2a.masters.somerandomstring.kubernetes.com

Update the etc hosts entry in /etc/hosts such that the api endpoint reflects the new IP, e.g:

54.178.87.68 api.somerandomstring.kubernetes.com

One shot script never completes

Symptom

The aws.sh one shot deploy script hangs on the line:

Retrieving ec2 instance list to get k8s master domain name (may take a minute)

If it’s been more than 10 minutes, there’s likely an error.

Recourse

Check the AWS web console / autoscale group / activity history. You have probably hit an instance limit. To confirm, open the AWS web console for EC2 and check to see if you have any instances with names like:

master-us-west-2a.masters.tfgpu.kubernetes.com
nodes.tfgpu.kubernetes.com

If you don’t see instances similar to the ones above the next thing to do is to navigate to “Auto Scaling Groups” in the left hand menu. Then find the ASG with your cluster name:

master-us-west-2a.masters.tfgpu.kubernetes.com

Look at the “Activity History” in the lower pane. More than likely, you’ll see a “Failed” error message describing why it failed to provision the VM. You’re probably run into an instance limit for your account for this region. If you’re spinning up a GPU node, make sure that your region supports the instance type you’re trying to spin up.

A successful provisioning message looks like:

Successful
Launching a new EC2 instance: i-03422f3d32658e90c
2017 June 13 10:19:29 UTC-7
2017 June 13 10:20:33 UTC-7
Description:DescriptionLaunching a new EC2 instance: i-03422f3d32658e90c
Cause:CauseAt 2017-06-13T17:19:15Z a user request created an AutoScalingGroup changing the desired capacity from 0 to 1. At 2017-06-13T17:19:28Z an instance was started in response to a difference between desired and actual capacity, increasing the capacity from 0 to 1.

While a failed one looks like:

Failed
Launching a new EC2 instance
2017 June 12 13:21:49 UTC-7
2017 June 12 13:21:49 UTC-7
Description:DescriptionLaunching a new EC2 instance. Status Reason: You have requested more instances (1) than your current instance limit of 0 allows for the specified instance type. Please visit http://aws.amazon.com/contact-us/ec2-request to request an adjustment to this limit. Launching EC2 instance failed.
Cause:CauseAt 2017-06-12T20:21:47Z an instance was started in response to a difference between desired and actual capacity, increasing the capacity from 0 to 1.

VPC Limit Exceeded

Symptom

When running aws.sh or otherwise deploying with kops, you will see:

W0426 17:28:10.435315 26463 executor.go:109] error running task "VPC/5120cf0c-pachydermcluster.kubernetes.com" (3s remaining to succeed): error creating VPC: VpcLimitExceeded: The maximum number of VPCs has been reached.

Recourse

You’ll need to increase your VPC limit or delete some existing VPCs that are not in use. On the AWS web console navigate to the VPC service. Make sure you’re in the same region where you’re attempting to deploy.

It’s not uncommon (depending on how you tear down clusters) for the VPCs not to be deleted. You’ll see a list of VPCs here with cluster names, e.g. aee6b566-pachydermcluster.kubernetes.com. For clusters that you know are no longer in use, you can delete the VPC here.

GPU Node Never Appears

Symptom

After running kops edit ig gpunodes and kops update (as outlined here [http://docs.pachyderm.io/en/latest/cookbook/gpus.html]) the GPU node never appears, which can be confirmed via the AWS web console.

Recourse

It’s likely you have hit an instance limit for the GPU instance type you’re using, or it’s possible that AWS doesn’t support that instance type in the current region.

Follow these instructions to check for and update Instance Limits [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html]. If this region doesn’t support your instance type, you’ll see an error message like:

Failed
Launching a new EC2 instance
2017 June 12 13:21:49 UTC-7
2017 June 12 13:21:49 UTC-7
Description:DescriptionLaunching a new EC2 instance. Status Reason: You have requested more instances (1) than your current instance limit of 0 allows for the specified instance type. Please visit http://aws.amazon.com/contact-us/ec2-request to request an adjustment to this limit. Launching EC2 instance failed.
Cause:CauseAt 2017-06-12T20:21:47Z an instance was started in response to a difference between desired and actual capacity, increasing the capacity from 0 to 1.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

Manage Pachyderm

This document describes basic management operations that you
need to perfom in Pachyderm.

	Autoscaling a Pachyderm Cluster
	Pachyderm Autoscaling of Workers

	Cloud Provider Autoscaling

	Batching Pachyderm with “Transactions”

	Pachctl

	Data Management Best Practices
	Shuffling files

	Garbage collection

	Setting a root volume size

	Sharing GPU Resources
	Without configuration

	Configuring your pipelines to share GPUs

	Backup and Restore
	Contents

	Introduction

	Backup & restore concepts

	General backup procedure

	General restore procedure

	Notes and design considerations

	Upgrades and Migrations

	General Troubleshooting
	Connecting to a Pachyderm Cluster

	Troubleshooting Pipelines
	Introduction

	Specific scenarios

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Manage Pachyderm

Autoscaling a Pachyderm Cluster

There are 2 levels of autoscaling in Pachyderm:

	Pachyderm can scale down workers when they’re not in use.

	Cloud providers can scale workers down/up based on resource utilization (most often CPU).

Pachyderm Autoscaling of Workers

Refer to the scaleDownThreshold [http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html#scale-down-threshold-optional] field in the pipeline specification. This allows you to specify a time window after which idle workers are removed. If new inputs come in on the pipeline corresponding to those deleted workers, they get scaled back up.

Cloud Provider Autoscaling

Out of the box, autoscaling at the cloud provider layer doesn’t work well with Pachyderm. However, if configure it properly, cloud provider autoscaling can complement Pachyderm autoscaling of workers.

Default Behavior with Cloud Autoscaling

Normally when you create a pipeline, Pachyderm asks the k8s cluster how many nodes are available. Pachyderm then uses that number as the default value for the pipeline’s parallelism. (To read more about parallelism, refer to the distributed processing docs [http://docs.pachyderm.io/en/latest/fundamentals/distributed_computing.html]).

If you have cloud provider autoscaling activated, it is possible that your number of nodes will be scaled down to a few or maybe even a single node. A pipeline created on this cluster would have a default parallelism will be set to this low value (e.g., 1 or 2). Then, once the autoscale group notices that more nodes are needed, the parallelism of the pipeline won’t increase, and you won’t actually make effective use of those new nodes.

Configuration of Pipelines to Complement Cloud Autoscaling

The goal of Cloud autoscaling is to:

	To schedule nodes only as the processing demand necessitates it.

The goals of Pachyderm worker autoscaling are:

	To make sure your job uses a maximum amount of parallelism.

	To ensure that you process the job efficiently.

Thus, to accomplish both of these goals, we recommend:

	Setting a constant, high level of parallelism. Specifically, setting the constant parallelism to the number of workers you will need when your pipeline is active.

	Setting the cpu and/or mem resource requirements in the resource_requests field on your pipeline [http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html#resource-requests-optional].

To determine the right values for cpu / mem, first set these values rather high. Then use the monitoring tools that come with your cloud provider (or try out our monitoring deployment [https://github.com/pachyderm/pachyderm/blob/master/Makefile#L330]) so you can see the actual CPU/mem utilization per pod.

Example Scenario

Let’s say you have a certain pipeline with a constant parallelism set to 16. Let’s also assume that you’ve set cpu to 1.0 and your instance type has 4 cores.

When a commit of data is made to the input of the pipeline, your cluster might be in a scaled down state (e.g., 2 nodes running). After accounting for the pachyderm services (pachd and etcd), ~6 cores are available with 2 nodes. K8s then schedules 6 of your workers. That accounts for all 8 of the CPUs across the nodes in your instance group. Your autoscale group then notices that all instances are being heavily utilized, and subsequently scales up to 5 nodes total. Now the rest of your workers get spun up (k8s can now schedule them), and your job proceeds.

This type of setup is best suited for long running jobs, or jobs that take a lot of CPU time. Such jobs give the cloud autoscaling mechanisms time to scale up, while still having data that needs to be processed when the new nodes are up and running.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Manage Pachyderm

Batching Pachyderm with “Transactions”

Transactions were added to Pachyderm as a way to make multiple changes to the state of Pachyderm while only triggering jobs once. This is done by constructing a batch of operations to perform on the cluster state, then running the set of operations in a single ETCD transaction.

The transaction framework provides a method for batching together commit propagation such that changed branches are collected over the course of the transaction and all propagated in one batch at the end. This allows Pachyderm to dedupe changed branches and branches provenant on the changed branches so that the minimum number of new commits are issued.

This is useful in particular for pipelines with multiple inputs. If you need to update two or more input repos, you might not want pipeline jobs for each state change. You can issue a transaction to start commits in each of the input repos, which will create a single downstream commit in the pipeline repo. After the transaction, you can put files and finish the commits at will, and the pipeline job will run once all the input commits have been finished.

Pachctl

In pachctl, a transaction can be initiated through the start transaction command. This will generate a transaction object in the cluster and save its ID into the local pachyderm config (~/.pachyderm/config.json by default).

While there is a transaction object in the config file, all transactionally-supported API requests will append the request to the transaction instead of running directly. These commands (as of v1.9.0) are:

create repo
delete repo
start commit
finish commit
delete commit
create branch
delete branch

Each time a command is added to a transaction, the transaction is dry-run against the current state of the cluster metadata to make sure it is still valid and to obtain any return values (important for commands like start commit). If the dry-run fails for any reason, the operation will not be added to the transaction. If the transaction has been invalidated by changing cluster state, the transaction will need to be deleted and started over, taking into account the new state of the cluster.

From a command-line perspective, these commands should work identically within a transaction as without with the exception that the changes will not be committed until finish transaction is run, and a message will be logged to stderr to indicate that the command was placed in a transaction rather than run directly.

There are several other supporting commands for transactions:

	list transaction - list all unfinished transactions available in the pachyderm cluster

	stop transaction - remove the currently active transaction from the local pachyderm config file - it remains in the pachyderm cluster and may be resumed later

	resume transaction - set an already-existing transaction as the active transaction in the local pachyderm config file

	delete transaction - deletes a transaction from the pachyderm cluster

	inspect transaction - provide detailed information about an existing transaction, including which operations it will perform

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Manage Pachyderm

Data Management Best Practices

This document discusses best practices for minimizing the space needed to store your Pachyderm data, increasing the performance of your data processing as related to data organization, and general good ideas when you are using Pachyderm to version/process your data.

	Shuffling files

	Garbage collection

	Setting a root volume size

Shuffling files

Certain pipelines simply shuffle files around (e.g., organizing files into buckets). If you find yourself writing a pipeline that does a lot of copying, such as Time Windowing [http://docs.pachyderm.io/en/latest/cookbook/time_windows.html], it probably falls into this category.

The best way to shuffle files, especially large files, is to create symlinks in the output directory that point to files in the input directory.

For instance, to move a file log.txt to logs/log.txt, you might be tempted to write a transform [http://pachyderm.readthedocs.io/en/latest/reference/pipeline_spec.html#transform-required] like this:

cp /pfs/input/log.txt /pfs/out/logs/log.txt

However, it’s more efficient to create a symlink:

ln -s /pfs/input/log.txt /pfs/out/logs/log.txt

Under the hood, Pachyderm is smart enough to recognize that the output file simply symlinks to a file that already exists in Pachyderm, and therefore skips the upload altogether.

Note that if your shuffling pipeline only needs the names of the input files but not their content, you can use empty_files: true [http://pachyderm.readthedocs.io/en/latest/reference/pipeline_spec.html#pfs-input]. That way, your shuffling pipeline can skip both the download and the upload. An example for this type of shuffle pipeline is here [https://github.com/pachyderm/pachyderm/tree/master/examples/shuffle]

Garbage collection

When a file/commit/repo is deleted, the data is not immediately removed from the underlying storage system (e.g. S3) for performance and architectural reasons. This is similar to how when you delete a file on your computer, the file is not necessarily wiped from disk immediately.

To actually remove the data, you may need to manually invoke garbage collection. The easiest way to do it is through pachctl garbage-collect. Currently pachctl garbage-collect can only be started when there are no active jobs running. You also need to ensure that there’s no ongoing put file. Garbage collection puts the cluster into a readonly mode where no new jobs can be created and no data can be added.

Setting a root volume size

When planning and configuring your Pachyderm deploy, you need to make sure that each node’s root volume is big enough to accommodate your total processing bandwidth. Specifically, you should calculate the bandwidth for your expected running jobs as follows:

(storage needed per datum) x (number of datums being processed simultaneously) / (number of nodes)

Here, the storage needed per datum should be the storage needed for the largest “datum” you expect to process anywhere on your DAG plus the size of the output files that will be written for that datum. If your root volume size is not large enough, pipelines might fail when downloading the input. The pod would get evicted and rescheduled to a different node, where the same thing will happen (assuming that node had a similar volume). This scenario is further discussed here.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Manage Pachyderm

Sharing GPU Resources

Often times, teams are running big ML models on instances with GPU resources.

GPU instances are expensive! You want to make sure that you’re utilizing the GPUs you’re paying for!

Without configuration

To deploy a pipeline that relies on GPU, you’ll already have set the gpu resource requirement in the pipeline specification. But Pachyderm workers by default are long lived ... the worker is spun up and waits for new input. That works great for pipelines that are processing a lot of new incoming commits.

For ML workflows, especially during the development cycle, you probably will see lower volume of input commits. Which means that you could have your pipeline workers ‘taking’ the GPU resource as far as k8s is concerned, but ‘idling’ as far as you’re concerned.

Let’s use an example.

Let’s say your cluster has a single GPU node with 2 GPUs. Let’s say you have a pipeline running that requires 1 GPU. You’ve trained some models, and found the results were surprising. You suspect your feature extraction code, and are delving into debugging that stage of your pipeline. Meanwhile, the worker you’ve spun up for your GPU training job is sitting idle, but telling k8s it’s using the GPU instance.

Now your coworker is actively trying to develop their GPU model with their pipeline. Their model requires 2 GPUs. But your pipeline is still marked as using 1 GPU, so their pipeline can’t run!

Configuring your pipelines to share GPUs

Whenever you have a limited amount of a resource on your cluster (in this case GPU), you want to make sure you’ve specified how much of that resource you need via the resource_requests as part of your pipeline specification [http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html]. But, you also need to make sure you set the standby field to true so that if your pipeline is not getting used, the worker pods get spun down and you free the GPU resource.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Manage Pachyderm

Backup and Restore

Contents

	Introduction

	Backup & restore concepts

	General backup procedure
	1. Pause all pipeline and data loading/unloading operations

	2. Extract a pachyderm backup

	3. Restart all pipeline and data loading operations

	General restore procedure
	 Restore your backup to a pachyderm cluster, same version

	Notes and Design Considerations
	Loading data from other sources into pachyderm

	Note about releases prior to Pachyderm 1.7

Introduction

Since release 1.7, Pachyderm provides the commands pachctl extract and pachctl restore to backup and restore the state of a Pachyderm cluster. (Please see the note below about releases prior to Pachyderm 1.7.)

The pachctl extract command requires that all pipeline and data loading activity into Pachyderm stop before the extract occurs. This enables Pachyderm to create a consistent, point-in-time backup. In this document, we’ll talk about how to create such a backup and restore it to another Pachyderm instance.

Extract and restore commands are currently used to migrate between minor and major releases of Pachyderm, so it’s important to understand how to perform them properly. In addition, there are a few design points and operational techniques that data engineers should take into consideration when creating complex pachyderm deployments to minimize disruptions to production pipelines.

In this document, we’ll take you through the steps to backup and restore a cluster, migrate an existing cluster to a newer minor or major release, and elaborate on some of those design and operations considerations.

Backup & restore concepts

Backing up Pachyderm involves the persistent volume (PV) that etcd uses for administrative data
and the object store bucket that holds Pachyderm’s actual data.
Restoring involves populating that PV and object store with data to recreate a Pachyderm cluster.

General backup procedure

1. Pause all pipeline and data loading/unloading operations

Pausing pipelines

From the directed acyclic graphs (DAG) that define your pachyderm cluster, stop each pipeline. You can either run a multiline shell command, shown below, or you must, for each pipeline, manually run the pachctl stop pipeline command.

pachctl stop pipeline <pipeline-name>

You can confirm each pipeline is paused using the pachctl list pipeline command

pachctl list pipeline

Alternatively, a useful shell script for running stop pipeline on all pipelines is included below. It may be necessary to install the utilities used in the script, like jq and xargs, on your system.

pachctl list pipeline --raw \
 | jq -r '.pipeline.name' \
 | xargs -P3 -n1 -I{} pachctl stop pipeline {}

It’s also a useful practice, for simple to moderately complex deployments, to keep a terminal window up showing the state of all running kubernetes pods.

watch -n 5 kubectl get pods

You may need to install the watch and kubectl commands on your system, and configure kubectl to point at the cluster that Pachyderm is running in.

Pausing data loading operations

Input repositories or input repos in pachyderm are repositories created with the pachctl create repo command. They’re designed to be the repos at the top of a directed acyclic graph of pipelines. Pipelines have their own output repos associated with them, and are not considered input repos. If there are any processes external to pachyderm that put data into input repos using any method (the Pachyderm APIs, pachctl put file, etc.), they need to be paused. See Loading data from other sources into pachyderm below for design considerations for those processes that will minimize downtime during a restore or migration.

Alternatively, you can use the following commands to stop all data loading into Pachyderm from outside processes.

Once you have stopped all running pachyderm pipelines, such as with this command,
$ pachctl list pipeline --raw \
| jq -r '.pipeline.name' \
| xargs -P3 -n1 -I{} pachctl stop pipeline {}

all pipelines in your cluster should be suspended. To stop all
data loading processes, we're going to modify the pachd Kubernetes service so that
it only accepts traffic on port 30649 (instead of the usual 30650). This way,
any background users and services that send requests to your Pachyderm cluster
while 'extract' is running will not interfere with the process
#
Backup the Pachyderm service spec, in case you need to restore it quickly
$ kubectl get svc/pach -o json >pach_service_backup_30650.json

Modify the service to accept traffic on port 30649
Note that you'll likely also need to modify your cloud provider's firewall
rules to allow traffic on this port
$ kubectl get svc/pachd -o json | sed 's/30650/30649/g' | kc apply -f -

Modify your environment so that *you* can talk to pachd on this new port
$ pachctl config update context `pachctl config get active-context` --pachd-address=<cluster ip>:30649

Make sure you can talk to pachd (if not, firewall rules are a common culprit)
$ pachctl version
COMPONENT VERSION
pachctl 1.7.11
pachd 1.7.11

2. Extract a pachyderm backup

You can use pachctl extract alone or in combination with cloning/snapshotting services.

Using pachctl extract

Using the pachctl extract command, create the backup you need.

pachctl extract > path/to/your/backup/file

You can also use the -u or --url flag to put the backup directly into an object store.

pachctl extract --url s3://...

If you are planning on backing up the object store using its own built-in clone operation, be sure to add the --no-objects flag to the pachctl extract command.

Using your cloud provider’s clone and snapshot services

You should follow your cloud provider’s recommendation
for backing up these resources. Here are some pointers to the relevant documentation.

Snapshotting persistent volumes

For example, here are official guides on creating snapshots of persistent volumes on Google Cloud Platform, Amazon Web Services (AWS) and Microsoft Azure, respectively:

	Creating snapshots of GCE persistent volumes [https://cloud.google.com/compute/docs/disks/create-snapshots]

	Creating snapshots of Elastic Block Store (EBS) volumes [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-snapshot.html]

	Creating snapshots of Azure Virtual Hard Disk volumes [https://docs.microsoft.com/en-us/azure/virtual-machines/windows/snapshot-copy-managed-disk]

For on-premises Kubernetes deployments, check the vendor documentation for your PV implementation on backing up and restoring.

Cloning object stores

Below, we give an example using the Amazon Web Services CLI to clone one bucket to another, taken from the documentation for that command [https://docs.aws.amazon.com/cli/latest/reference/s3/sync.html]. Similar commands are available for Google Cloud [https://cloud.google.com/storage/docs/gsutil/commands/cp] and Azure blob storage [https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-linux?toc=%2fazure%2fstorage%2ffiles%2ftoc.json].

aws s3 sync s3://mybucket s3://mybucket2

For on-premises Kubernetes deployments, check the vendor documentation for your on-premises object store for details on backing up and restoring a bucket.

Combining cloning, snapshots and extract/restore

You can use pachctl extract command with the --no-objects flag to exclude the object store, and use an object store snapshot or clone command to back up the object store. You can run the two commands at the same time. For example, on Amazon Web Services, the following commands can be run simultaneously.

aws s3 sync s3://mybucket s3://mybucket2

pachctl extract --no-objects --url s3://anotherbucket

Use case: minimizing downtime during a migration

The above cloning/snapshotting technique is recommended when doing a migration where minimizing downtime is desirable, as it allows the duplicated object store to be the basis of the upgraded, new cluster instead of requiring Pachyderm to extract the data from object store.

3. Restart all pipeline and data loading operations

Once the backup is complete, restart all paused pipelines and data loading operations.

From the directed acyclic graphs (DAG) that define your pachyderm cluster, start each pipeline. You can either run a multiline shell command, shown below, or you must, for each pipeline, manually run the pachctl start pipeline command.

pachctl start pipeline <pipeline-name>

You can confirm each pipeline is started using the list pipeline command

pachctl list pipeline

A useful shell script for running start pipeline on all pipelines is included below. It may be necessary to install the utilities used in the script, like jq and xargs, on your system.

pachctl list pipeline --raw \
 | jq -r '.pipeline.name' \
 | xargs -P3 -n1 -I{} pachctl start pipeline {}

If you used the port-changing technique, above, to stop all data loading into Pachyderm from outside processes, you should change the ports back.

Once you have restarted all running pachyderm pipelines, such as with this command,
$ pachctl list pipeline --raw \
| jq -r '.pipeline.name' \
| xargs -P3 -n1 -I{} pachctl start pipeline {}

all pipelines in your cluster should be restarted. To restart all data loading
processes, we're going to change the pachd Kubernetes service so that
it only accepts traffic on port 30650 again (from 30649).
#
Backup the Pachyderm service spec, in case you need to restore it quickly
$ kubectl get svc/pach -o json >pach_service_backup_30649.json

Modify the service to accept traffic on port 30650, again
$ kubectl get svc/pachd -o json | sed 's/30649/30650/g' | kc apply -f -

Modify your environment so that *you* can talk to pachd on the old port
$ pachctl config update context `pachctl config get active-context` --pachd-address=<cluster ip>:30650

Make sure you can talk to pachd (if not, firewall rules are a common culprit)
$ pc version
COMPONENT VERSION
pachctl 1.7.11
pachd 1.7.11

General restore procedure

Restore your backup to a pachyderm cluster, same version

Spin up a Pachyderm cluster and run pachctl restore with the backup you created earlier.

pachctl restore < path/to/your/backup/file

You can also use the -u or --url flag to get the backup directly from the object store you placed it in

pachctl restore --url s3://...

Notes and design considerations

Loading data from other sources into Pachyderm

When writing systems that place data into Pachyderm input repos (see above for a definition of ‘input repo’),
it is important to provide ways of ‘pausing’ output while queueing any data output requests to be output when the systems are ‘resumed’.
This allows all Pachyderm processing to be stopped while the extract takes place.

In addition, it is desirable for systems that load data into Pachyderm have a mechanism for replaying a queue from any checkpoint in time.
This is useful when doing migrations from one release to another, where you would like to minimize downtime of a production Pachyderm system.
After an extract,
the old system is kept running with the checkpoint established while a duplicate, upgraded pachyderm cluster is migrated with duplicated data.
Transactions that occur while the migrated,
upgraded cluster is being brought up are not lost,
and can be replayed into this new cluster to reestablish state and minimize downtime.

Note about releases prior to Pachyderm 1.7

Pachyderm 1.7 is the first version to support extract and restore. To bridge the gap to previous Pachyderm versions,
we’ve made a final 1.6 release, 1.6.10, which backports the extract and
restore functionality to the 1.6 series of releases.

Pachyderm 1.6.10 requires no
migration from other 1.6.x versions. You can simply pachctl undeploy and then pachctl deploy after upgrading pachctl to version 1.6.10. After 1.6.10 is deployed you
should make a backup using pachctl extract and then upgrade pachctl again,
to 1.7.0. Finally you can pachctl deploy ... with pachctl 1.7.0 to trigger the migration.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Manage Pachyderm

Upgrades and Migrations

As new versions of Pachyderm are released, you may need to update your cluster to get access to bug fixes and new features.
These updates fall into two categories, which are covered in detail at the links below:

	Upgrades - An upgrade is moving between point releases within the same major release (e.g. 1.7.2 –> 1.7.3).
Upgrades are typically a simple process that require little to no downtime.

	Migrations – A migration what you must perform to move between major releases such as 1.8.7 –> 1.9.0.

Important: Performing an upgrade when going between major releases may lead to corrupted data.
You must perform a migration when going between major releases!

Whether you’re doing an upgrade or migration, it is recommended you backup Pachyderm prior.
That will guarantee you can restore your cluster to its previous, good state.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Manage Pachyderm

General Troubleshooting

Here are some common issues by symptom along with steps to resolve them.

	Connecting to a Pachyderm cluster
	Cannot connect via pachctl - context deadline exceeded

	Certificate error when using kubectl

	Uploads/downloads are slow

Connecting to a Pachyderm Cluster

Cannot connect via pachctl - context deadline exceeded

Symptom

You may be using the pachd address config value or environment variable to specify how pachctl talks to your Pachyderm cluster, or you may be forwarding the pachyderm port. In any event, you might see something similar to:

$ pachctl version
COMPONENT VERSION
pachctl 1.4.8
context deadline exceeded

Recourse

It’s possible that the connection is just taking a while. Occasionally this can happen if your cluster is far away (deployed in a region across the country). Check your internet connection.

It’s also possible that you haven’t poked a hole in the firewall to access the node on this port. Usually to do that you adjust a security rule (in AWS parlance a security group). For example, on AWS, if you find your node in the web console and click on it, you should see a link to the associated security group. Inspect that group. There should be a way to “add a rule” to the group. You’ll want to enable TCP access (ingress) on port 30650. You’ll usually be asked which incoming IPs should be whitelisted. You can choose to use your own, or enable it for everyone (0.0.0.0/0).

Certificate Error When Using Kubectl

Symptom

This can happen on any request using kubectl (e.g. kubectl get all). In particular you’ll see:

$ kubectl version
Client Version: version.Info{Major:"1", Minor:"6", GitVersion:"v1.6.4", GitCommit:"d6f433224538d4f9ca2f7ae19b252e6fcb66a3ae", GitTreeState:"clean", BuildDate:"2017-05-19T20:41:24Z", GoVersion:"go1.8.1", Compiler:"gc", Platform:"darwin/amd64"}
Unable to connect to the server: x509: certificate signed by unknown authority

Recourse

Check if you’re on any sort of VPN or other egress proxy that would break SSL. Also, there is a possibility that your credentials have expired. In the case where you’re using GKE and gcloud, renew your credentials via:

$ kubectl get all
Unable to connect to the server: x509: certificate signed by unknown authority
$ gcloud container clusters get-credentials my-cluster-name-dev
Fetching cluster endpoint and auth data.
kubeconfig entry generated for my-cluster-name-dev.
$ kubectl config current-context
gke_my-org_us-east1-b_my-cluster-name-dev

Uploads/Downloads are Slow

Symptom

Any pachctl put file or pachctl get file commands are slow.

Recourse

If you do not explicitly set the pachd address config value, pachctl will default to using port forwarding, which throttles traffic to ~1MB/s. If you need to do large downloads/uploads you should consider using pachd address config value. You’ll also want to make sure you’ve allowed ingress access through any firewalls to your k8s cluster.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Manage Pachyderm

Troubleshooting Pipelines

Introduction

Job failures can occur for a variety of reasons, but they generally categorize into 3 failure types:

	User-code-related: An error in the user code running inside the container or the json pipeline config.

	Data-related: A problem with the input data such as incorrect file type or file name.

	System- or infrastructure-related: An error in Pachyderm or Kubernetes such as missing credentials, transient network errors, or resource constraints (for example, out-of-memory–OOM–killed).

In this document, we’ll show you the tools for determining what kind of failure it is. For each of the failure modes, we’ll describe Pachyderm’s and Kubernetes’s specific retry and error-reporting behaviors as well as typical user triaging methodologies.

Failed jobs in a pipeline will propagate information to downstream pipelines with empty commits to preserve provenance and make tracing the failed job easier. A failed job is no longer running.

In this document, we’ll describe what you’ll see, how Pachyderm will respond, and techniques for triaging each of those three categories of failure.

At the bottom of the document, we’ll provide specific troubleshooting steps for specific scenarios.

	Pipeline exists but never runs

	All your pods / jobs get evicted

Determining the kind of failure

First off, you can see the status of Pachyderm’s jobs with pachctl list job, which will show you the status of all jobs. For a failed job, use pachctl inspect job <job-id> to find out more about the failure. The different categories of failures are addressed below.

User Code Failures

When there’s an error in user code, the typical error message you’ll see is

failed to process datum <UUID> with error: <user code error>

This means pachyderm successfully got to the point where it was running user code, but that code exited with a non-zero error code. If any datum in a pipeline fails, the entire job will be marked as failed, but datums that did not fail will not need to be reprocessed on future jobs. You can use pachctl inspect datum <job-id> <datum-id> or pachctl logs with the --pipeline, --job or --datum flags to get more details.

There are some cases where users may want mark a datum as successful even for a non-zero error code by setting the transform.accept_return_code field in the pipeline config .

Retries

Pachyderm will automatically retry user code three (3) times before marking the datum as failed. This mitigates datums failing for transient connection reasons.

Triage

pachctl logs --job=<job_ID> or pachctl logs --pipeline=<pipeline_name> will print out any logs from your user code to help you triage the issue. Kubernetes will rotate logs occasionally so if nothing is being returned, you’ll need to make sure that you have a persistent log collection tool running in your cluster. If you set enable_stats:true in your pachyderm pipeline, pachyderm will persist the user logs for you.

In cases where user code is failing, changes first need to be made to the code and followed by updating the pachyderm pipeline. This involves building a new docker container with the corrected code, modifying the pachyderm pipeline config to use the new image, and then calling pachctl update pipeline -f updated_pipeline_config.json. Depending on the issue/error, user may or may not want to also include the --reprocess flag with update pipeline.

Data Failures

When there’s an error in the data, this will typically manifest in a user code error such as

failed to process datum <UUID> with error: <user code error>

This means pachyderm successfully got to the point where it was running user code, but that code exited with a non-zero error code, usually due to being unable to find a file or a path, a misformatted file, or incorrect fields/data within a file. If any datum in a pipeline fails, the entire job will be marked as failed. Datums that did not fail will not need to be reprocessed on future jobs.

Retries

Just like with user code failures, Pachyderm will automatically retry running a datum 3 times before marking the datum as failed. This mitigates datums failing for transient connection reasons.

Triage

Data failures can be triaged in a few different way depending on the nature of the failure and design of the pipeline.

In some cases, where malformed datums are expected to happen occasionally, they can be “swallowed” (e.g. marked as successful using transform.accept_return_codes or written out to a “failed_datums” directory and handled within user code). This would simply require the necessary updates to the user code and pipeline config as described above. For cases where your code detects bad input data, a “dead letter queue” design pattern may be needed. Many pachyderm developers use a special directory in each output repo for “bad data” and pipelines with globs for detecting bad data direct that data for automated and manual intervention.

Pachyderm’s engineering team is working on changes to the Pachyderm Pipeline System in a future release that may make implementation of design patterns like this easier. Take a look at the pipeline design changes for pachyderm 1.9 [https://github.com/pachyderm/pachyderm/issues/3345]

If a few files as part of the input commit are causing the failure, they can simply be removed from the HEAD commit with start commit, delete file, finish commit. The files can also be corrected in this manner as well. This method is similar to a revert in Git – the “bad” data will still live in the older commits in Pachyderm, but will not be part of the HEAD commit and therefore not processed by the pipeline.

If the entire commit is bad and you just want to remove it forever as if it never happened, delete commit will both remove that commit and all downstream commits and jobs that were created as downstream effects of that input data.

System-level Failures

System-level failures are the most varied and often hardest to debug. We’ll outline a few common patterns and triage steps. Generally, you’ll need to look at deeper logs to find these errors using pachctl logs --pipeline=<pipeline_name> --raw and/or --master and kubectl logs pod <pod_name>.

Here are some of the most common system-level failures:

	Malformed or missing credentials such that a pipeline cannot connect to object storage, registry, or other external service. In the best case, you’ll see permission denied errors, but in some cases you’ll only see “does not exist” errors (this is common reading from object stores)

	Out-of-memory (OOM) killed or other resource constraint issues such as not being able to schedule pods on available cluster resources.

	Network issues trying to connect Pachd, etcd, or other internal or external resources

	Failure to find or pull a docker image from the registry

Retries

For system-level failures, Pachyderm or Kubernetes will generally continually retry the operation with exponential backoff. If a job is stuck in a given state (e.g. starting, merging) or a pod is in CrashLoopBackoff, those are common signs of a system-level failure mode.

Triage

Triaging system failures varies as widely as the issues do themselves. Here are options for the common issues mentioned previously.

	Credentials: check your secrets in k8s, make sure they’re added correctly to the pipeline config, and double check your roles/perms within the cluster

	OOM: Increase the memory limit/request or node size for your pipeline. If you are very resource constrained, making your datums smaller to require less resources may be necessary.

	Network: Check to make sure etcd and pachd are up and running, that k8s DNS is correctly configured for pods to resolve each other and outside resources, firewalls and other networking configurations allow k8s components to reach each other, and ingress controllers are configured correctly

	Check your container image name in the pipeline config and image_pull_secret.

Specific scenarios

All your pods / jobs get evicted

Symptom

Running:

$ kubectl get all

shows a bunch of pods that are marked Evicted. If you kubectl describe ... one of those evicted pods, you see an error saying that it was evicted due to disk pressure.

Recourse

Your nodes are not configured with a big enough root volume size. You need to make sure that each node’s root volume is big enough to store the biggest datum you expect to process anywhere on your DAG plus the size of the output files that will be written for that datum.

Let’s say you have a repo with 100 folders. You have a single pipeline with this repo as an input, and the glob pattern is /*. That means each folder will be processed as a single datum. If the biggest folder is 50GB and your pipeline’s output is about 3 times as big, then your root volume size needs to be bigger than:

50 GB (to accommodate the input) + 50 GB x 3 (to accommodate the output) = 200GB

In this case we would recommend 250GB to be safe. If your root volume size is less than 50GB (many defaults are 20GB), this pipeline will fail when downloading the input. The pod may get evicted and rescheduled to a different node, where the same thing will happen.

Pipeline exists but never runs

Symptom

You can see the pipeline via:

$ pachctl list pipeline

But if you look at the job via:

$ pachctl list job

It’s marked as running with 0/0 datums having been processed. If you inspect the job via:

$ pachctl inspect job

You don’t see any worker set. E.g:

Worker Status:
WORKER JOB DATUM STARTED
...

If you do kubectl get pod you see the worker pod for your pipeline, e.g:

po/pipeline-foo-5-v1-273zc

But it’s state is Pending or CrashLoopBackoff.

Recourse

First make sure that there is no parent job still running. Do pachctl list job | grep yourPipelineName to see if there are pending jobs on this pipeline that were kicked off prior to your job. A parent job is the job that corresponds to the parent output commit of this pipeline. A job will block until all parent jobs complete.

If there are no parent jobs that are still running, then continue debugging:

Describe the pod via:

$kubectl describe po/pipeline-foo-5-v1-273zc

If the state is CrashLoopBackoff, you’re looking for a descriptive error message. One such cause for this behavior might be if you specified an image for your pipeline that does not exist.

If the state is Pending it’s likely the cluster doesn’t have enough resources. In this case, you’ll see a could not schedule type of error message which should describe which resource you’re low on. This is more likely to happen if you’ve set resource requests (cpu/mem/gpu) for your pipelines. In this case, you’ll just need to scale up your resources. If you deployed using kops, you’ll want to do edit the instance group, e.g. kops edit ig nodes ... and up the number of nodes. If you didn’t use kops to deploy, you can use your cloud provider’s auto scaling groups to increase the size of your instance group. Either way, it can take up to 10 minutes for the changes to go into effect.

You can read more about autoscaling here

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	<no title>

Splitting Data for Distributed Processing

Before you read this section, make sure that you understand
the concepts described in
Distributed Computing [http://pachyderm.readthedocs.io/en/latest/fundamentals/distributed_computing.html].

Pachyderm enables you to parallelize computations over data as long as
that data can be split up into multiple datums. However, in many
cases, you might have a dataset that you want or need to commit
into Pachyderm as a single file rather than a bunch of smaller
files that are easily mapped to datums, such as one file per record.
For such cases, Pachyderm provides an easy way to prepare your dataset
for subsequent distributed computing by splitting it upon uploading
to a Pachyderm repository.

In this example, you have a dataset that consists of information about your
users and a repository called user.
This data is in CSV format in a single file called user_data.csv
with one record per line:

$ head user_data.csv
1,cyukhtin0@stumbleupon.com,144.155.176.12
2,csisneros1@over-blog.com,26.119.26.5
3,jeye2@instagram.com,13.165.230.106
4,rnollet3@hexun.com,58.52.147.83
5,bposkitt4@irs.gov,51.247.120.167
6,vvenmore5@hubpages.com,161.189.245.212
7,lcoyte6@ask.com,56.13.147.134
8,atuke7@psu.edu,78.178.247.163
9,nmorrell8@howstuffworks.com,28.172.10.170
10,afynn9@google.com.au,166.14.112.65

If you put this data into Pachyderm as a single
file, Pachyderm processes them a single datum.
It cannot process each of
these user records in parallel as separate datums.
Potentially, you can manually separate
these user records into standalone files before you
commit them into the users repository or through
a pipeline stage dedicated to this splitting task.
However, Pachyderm provides an optimized way of completing
this task.

The put file API includes an option for splitting
the file into separate datums automatically. You can use
the --split flag with the put file command.

To complete this example, follow the steps below:

	Create a users repository by running:

$ pachctl create repo users

	Create a file called user_data.csv with the
contents listed above.

	Put your user_data.csv file into Pachyderm and
automatically split it into separate datums for each line:

$ pachctl put file users@master -f user_data.csv --split line --target-file-datums 1

The --split line argument specifies that Pachyderm
splits this file into lines, and the --target-file-datums 1
argument specifies that each resulting file must include
at most one datum or one line.

	View the list of files in the master branch of the users
repository:

$ pachctl list file users@master
NAME TYPE SIZE
user_data.csv dir 5.346 KiB

If you run pachctl list file command for the master branch
in the users repository, Pachyderm
still shows the user_data.csv entity to you as one
entity in the repo
However, this entity is now a directory that contains all
of the split records.

	To view the detailed information about
the user_data.csv file, run the command with the file name
specified after a colon:

$ pachctl list file users@master:user_data.csv
NAME TYPE SIZE
user_data.csv/0000000000000000 file 43 B
user_data.csv/0000000000000001 file 39 B
user_data.csv/0000000000000002 file 37 B
user_data.csv/0000000000000003 file 34 B
user_data.csv/0000000000000004 file 35 B
user_data.csv/0000000000000005 file 41 B
user_data.csv/0000000000000006 file 32 B
etc...

Then, a pipeline that takes the repo users as input
with a glob pattern of /user_data.csv/* processes each
user record, such as each line in the CSV file in parallel.

JSON and Text File Splitting Examples

Pachyderm supports this type of splitting for lines or
JSON blobs as well. See the examples below.

	Split a json file on json blobs by putting each json
blob into a separate file.

$ pachctl put file users@master -f user_data.json --split json --target-file-datums 1

	Split a json file on json blobs by putting three json
blobs into each split file.

$ pachctl put file users@master -f user_data.json --split json --target-file-datums 3

	Split a file on lines by putting each 100-bytes chunk into
the split files.

$ pachctl put file users@master -f user_data.txt --split line --target-file-bytes 100

Specifying a Header

If your data has a common header, you can specify it
manually by using pachctl put file with the --header-records flag.
You can use this functionality with JSON and CSV data.

To specify a header, complete the following steps:

	Create a new or use an existing data file. For example, the user_data.csv
from the section above with the following header:

NUMBER,EMAIL,IP_ADDRESS

	Create a new repository or use an existing one:

$ pachctl create repo users

	Put your file into the repository by separating the header from
other lines:

$ pachctl put file users@master -f user_data.csv --split=csv --header-records=1 --target-file-datums=1

	Verify that the file was added and split:

$ pachctl list file users@master:/user_data.csv

Example:

NAME TYPE SIZE
/user_data.csv/0000000000000000 file 70B
/user_data.csv/0000000000000001 file 66B
/user_data.csv/0000000000000002 file 64B
/user_data.csv/0000000000000003 file 61B
/user_data.csv/0000000000000004 file 62B
/user_data.csv/0000000000000005 file 68B
/user_data.csv/0000000000000006 file 59B
/user_data.csv/0000000000000007 file 59B
/user_data.csv/0000000000000008 file 71B
/user_data.csv/0000000000000009 file 65B

	Get the first file from the repository:

$ pachctl get file users@master:/user_data.csv/0000000000000000
NUMBER,EMAIL,IP_ADDRESS
1,cyukhtin0@stumbleupon.com,144.155.176.12

	Get all files:

$ pachctl get file users@master:/user_data.csv/*
NUMBER,EMAIL,IP_ADDRESS
1,cyukhtin0@stumbleupon.com,144.155.176.12
2,csisneros1@over-blog.com,26.119.26.5
3,jeye2@instagram.com,13.165.230.106
4,rnollet3@hexun.com,58.52.147.83
5,bposkitt4@irs.gov,51.247.120.167
6,vvenmore5@hubpages.com,161.189.245.212
7,lcoyte6@ask.com,56.13.147.134
8,atuke7@psu.edu,78.178.247.163
9,nmorrell8@howstuffworks.com,28.172.10.170
10,afynn9@google.com.au,166.14.112.65

For more information, type pachctl put file --help.

Ingesting PostgresSQL data

Pachyderm supports direct data ingestion from PostgreSQL.
You need first extract your database into a script file
by using pg_dump and then add the data from the file
into Pachyderm by running the pachctl put file with the
--split flag.

When you use pachctl put file --split sql ..., Pachyderm
splits your pgdump file into three parts - the header, rows,
and the footer. The header contains all the SQL statements
in the pgdump file that set up the schema and tables.
The rows are split into individual files, or if you specify
the --target-file-datums or --target-file-bytes, multiple
rows per file. The footer contains the remaining
SQL statements for setting up the tables.

The header and footer are stored in the directory that contains
the rows. If you request a get file on that directory, you
get just the header and footer. If you request an individual
file, you see the header, the row or rows, and the footer.
If you request all the files with a glob pattern, for example,
/directoryname/*, you receive the header, all the rows, and
the footer recreating the full pgdump. Therefore, you can
construct full or partial pgdump files so that you can
load full or partial datasets.

To put your PostgreSQL data into Pachyderm, complete the following
steps:

	Generate a pgdump file:

Example:

$ pg_dump -t users -f users.pgdump

	View the pgdump file

Example:

$ cat users.pgdump
--
-- PostgreSQL database dump
--

-- Dumped from database version 9.5.12
-- Dumped by pg_dump version 9.5.12

SET statement_timeout = 0;
SET lock_timeout = 0;
SET client_encoding = 'UTF8';
SET standard_conforming_strings = on;
SELECT pg_catalog.set_config('search_path', '', false);
SET check_function_bodies = false;
SET client_min_messages = warning;
SET row_security = off;

SET default_tablespace = '';

SET default_with_oids = false;

--
-- Name: users; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.users (
 id integer NOT NULL,
 name text NOT NULL,
 saying text NOT NULL
);

ALTER TABLE public.users OWNER TO postgres;

--
-- Data for Name: users; Type: TABLE DATA; Schema: public; Owner: postgres
--

COPY public.users (id, name, saying) FROM stdin;
0 wile E Coyote ...
1 road runner \\.
\.

--
-- PostgreSQL database dump complete
--

	Ingest the SQL data by using the pachctl put file command
with the --split file:

$ pachctl put file data@master -f users.pgdump --split sql
$ pachctl put file data@master:users --split sql -f users.pgdump

	View the information about your repository:

$ pachctl list file data@master
NAME TYPE SIZE
users dir 914B

The users.pgdump file is added to the master branch in the data
repository.

	View the information about the users.pgdump file:

$ pachctl list file data@master:users
NAME TYPE SIZE
/users/0000000000000000 file 20B
/users/0000000000000001 file 18B

	In your pipeline, where you have started and forked PostgreSQL,
you can load the data by running the following or a similar script:

$ cat /pfs/data/users/* | sudo -u postgres psql

By using the glob pattern /*, this code loads each raw PostgreSQL chunk
into your PostgreSQL instance for processing by your pipeline.

Tip: For this use case, you might want to use --target-file-datums or
--target-file-bytes because these commands enable your queries to run
against many rows at a time.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	<no title>

Combining/Merging/Joining Data

Before you read this section, make sure you understand the concepts
described in Distributed Processing [http://pachyderm.readthedocs.io/en/latest/fundamentals/distributed_computing.html]

In some of your projects, you might need to match datums from
multiple data repositories to process, join, or aggregate. For example,
you might need to process multiple records that correspond to a certain
user, experiment, or device together. In these scenarios, you can use
the following approach:

	Create a pipeline that groups all of the records for a specific
key and index.

	Create another pipeline that takes that grouped output and performs
the merging, joining, or other processing for the group.

You can use these two data-combining pipelines for
merging or grouped processing of data from various experiments,
devices, and so on. You can also apply the same pattern to
perform distributed joins of tabular data or data from database
tables. For example, you can join user email records together
with user IP records on the key/index of a user ID.

You can parallelize each of the stages across workers to
scale with the size of your data and the number of data
sources that you want to merge.

Tip: If your data is not split into separate files for
each record. In these cases, you can split it automatically as described in
Splitting Data for Distributed Processing to
prepare your data for this sort of distributed merging.

Grouping the records that need to be processed together

In this example, you have two repositories A and B both
with JSON records.
These repositories may correspond to two experiments, two geographic
regions, two different devices that generate data, or other.

[image: alt tag]

The repository A has the following structure:

$ pachctl list file A@master
NAME TYPE SIZE
1.json file 39 B
2.json file 39 B
3.json file 39 B

The repository B has the following structure:

$ pachctl list file B@master
NAME TYPE SIZE
1.json file 39 B
2.json file 39 B
3.json file 39 B

If you want to process A/1.json with B/1.json to merge
their contents or otherwise process them together, you need to
group each set of JSON records into respective datums that
the pipelines that you create in
Processing the grouped records
can process together.

The grouping pipeline takes a union of A and B as inputs,
each with glob pattern /*. As the pipeline processes a JSON file,
the data is copied to a folder in the output corresponding to the
key and index for that record. In this example, it is just the
number in the file name. Pachyderm also renames the files to
unique names that correspond to the source:

/1
 A.json
 B.json
/2
 A.json
 B.json
/3
 A.json
 B.json

When you group your data, set the following parameters in the pipeline
specification:

	In the “pfs” section, set "empty_files": true to avoid
unnecessary downloads of data.

	Use symlinks to avoid unnecessary uploads of data and unnecessary data
duplication.

For more information, read about copy elision in Data Management [http://pachyderm.readthedocs.io/en/latest/managing_pachyderm/data_management.html].

Processing grouped records

[image: alt tag]

After you group the records together by using the grouping pipeline, use
the pipeline in this section on the group repository. This pipeline
as input with a glob pattern of /*. By using the glob pattern of /*
the pipeline can process each grouping of records in parallel.

The second pipeline performs merging, aggregation, or other
processing on the respective grouping of records. It can also
output each respective result to the root of the output directory:

$ pachctl list file merge@master
NAME TYPE SIZE
result_1.json file 39 B
result_2.json file 39 B
result_3.json file 39 B

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	<no title>

Example Developer Workflow

Introduction

Pachyderm is a powerful system for providing data provenance and scalable processing to data scientists and engineers. You can make it even more powerful by integrating it with your existing continuous integration and continuous deployment workflows. If your organization is fielding a new, production data science application, this workflow can help you by making it the foundation of new CI/CD processes you establish within your data science and engineering groups. In this document, we’ll discuss this basic workflow you can use as the basis for your own workflows.

Basic workflow

[image: alt tag]

As you write code, you test it in containers and notebooks against sample data in Pachyderm repos. You can also run your code in development pipelines in Pachyderm. Pachyderm provides facilities to help with day-to-day development practices, including the --build and --push-images flags to the update pipeline command, which can build & push or just push images to a docker registry.

There are a couple of things to note about the files shown in git, in the left-hand side of the diagram above. The pipeline.json template file, in addition to being used for CI/CD as noted below, could be used with local build targets in a makefile for development purposes: the local build uses DOCKERFILE and creates a pipeline.json for use in development pipelines. This is optional, of course, but may fit in with some workflows.

Once your code is ready to commit to your git repo, here are the steps that can form the basis of a production workflow.

1. Git commit hook

A commit hook in git [https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks] for your kicks off the
Continous Integration/Continuous Deployment process. It should use the information present in a template for your Pachyderm pipelines for subsequent steps.

2. Build image

Your CI process should automatically kick off the build of an docker container image based on your code and the DOCKERFILE. That image will be used in the next step.

3. Push to registry tagged with commit id

The docker image created in the prior step is then pushed to your preferred docker registry and tagged with the git commit SHA, shown as just “tag” in the figure above.

4. ‘update pipeline’ using template with tagged image

In this step, your CI/CD infrastructure would use the pipeline.json template that was checked in, and fill in the git commit SHA for the version of the image that should be used in this pipeline. It will then use the pachctl update pipeline command to push it to pachyderm.

5. Pull tagged image from registry

Pachyderm handles this part automatically for you, but we include it here for completeness. When the production pipeline is updated with the pipeline.json file that has the correct image tag in it, it will automatically restart all pods for this pipeline with the new image.

Tracking provenance

When looking at a job using the pachctl inspect job command, you can see the exact image tag that produced the commits in that job, bridging from data provenance to code provenance.

pachctl list job gives you --input and --output flags that can be used with an argument in the form of repo@branch-or-commit to get you complete provenance on the jobs that produced a particular commit in a particular repo.

Summary

Pachyderm can provide data provenance and reproducibility to your production data science applications by integrating it with your existing continuous integration and continuous deployment workflows, or creating new workflows using standard technologies.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	<no title>

Triggering Pipelines Periodically (cron)

Pachyderm pipelines are triggered by changes to their input data repositories (as further discussed in What Happens When You Create a Pipeline). However, if a pipeline consumes data from sources outside of Pachyderm, it can’t use Pachyderm’s triggering mechanism to process updates from those sources. For example, you might need to:

	Scrape websites

	Make API calls

	Query a database

	Retrieve a file from S3 or FTP

You can schedule pipelines like these to run regularly with Pachyderm’s built-in cron input type. You can find an example pipeline that queries MongoDB periodically here [https://github.com/pachyderm/pachyderm/tree/master/examples/db].

Cron Example

Let’s say that we want to query a database every 10 seconds and update our dataset with the new data every time the pipeline is triggered. We could do this with cron input as follows:

 "input": {
 "cron": {
 "name": "tick",
 "spec": "@every 10s"
 }
 }

When we create this pipeline, Pachyderm will create a new input data repository corresponding to the cron input. It will then automatically commit a timestamp file every 10 seconds to the cron input repository, which will automatically trigger our pipeline.

[image: alt tag]

The pipeline will run every 10 seconds, querying our database and updating its output.

We have used the @every 10s cron spec here, but you can use any cron spec formatted according to RFC 3339 [https://www.ietf.org/rfc/rfc3339.txt]. For example, */10 * * * * would indicate that the pipeline should run every 10 minutes (these time formats should be familiar to those who have used cron in the past, and you can find more examples here [https://en.wikipedia.org/wiki/Cron])

By default, Pachyderm will run the pipeline on input data that has come in since the last tick. If instead we would like the pipeline to reprocess all the data, we can set the overwrite flag to true:

 "input": {
 "cron": {
 "name": "tick",
 "spec": "@every 10s",
 "overwrite": true
 }
 }

Now, it will overwrite the timestamp file each tick. Since the processed data is associated with the old file, its absence will indicate to Pachyderm that it needs to be reprocessed.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	<no title>

Creating Machine Learning Workflows

Because Pachyderm is language/framework agnostic and because it easily distributes analyses over large data sets, data scientists can use whatever tooling they like for ML. Even if that tooling isn’t familiar to the rest of an engineering organization, data scientists can autonomously develop and deploy scalable solutions via containers. Moreover, Pachyderm’s pipelining logic paired with data versioning, allows any results to be exactly reproduced (e.g., for debugging or during the development of improvements to a model).

We recommend combining model training processes, persisted models, and a model utilization processes (e.g., making inferences or generating results) into a single Pachyderm pipeline DAG (Directed Acyclic Graph). Such a pipeline allows us to:

	Keep a rigorous historical record of exactly what models were used on what data to produce which results.

	Automatically update online ML models when training data or parameterization changes.

	Easily revert to other versions of an ML model when a new model is not performing or when “bad data” is introduced into a training data set.

This sort of sustainable ML pipeline looks like this:

[image: alt tag]

A data scientist can update the training dataset at any time to automatically train a new persisted model. This training could utilize any language or framework (Spark, Tensorflow, scikit-learn, etc.) and output any format of persisted model (pickle, XML, POJO, etc.). Regardless of framework, the model will be versioned by Pachyderm, and you will be able to track what “Input data” was input into which model AND exactly what “Training data” was used to train that model.

Any new input data coming into the “Input data” repository will be processed with the updated model. Old predictions can be re-computed with the updated model, or new models could be backtested on previously input and versioned data. This will allow you to avoid manual updates to historical results or having to worry about how to swap out ML models in production!

Examples

We have implemented this machine learning workflow in some example pipelines [https://pachyderm.readthedocs.io/en/latest/examples/examples.html#machine-learning] using a couple of different frameworks. These examples are a great starting point if you are trying to implement ML in Pachyderm.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	<no title>

Processing Time-Windowed Data

If you are analyzing data that is changing over time, chances are that you will want to perform some sort of analysis on “the last two weeks of data,” “January’s data,” or some other moving or static time window of data. There are a few different ways of doing these types of analyses in Pachyderm, depending on your use case. We recommend one of the following patterns for:

	Fixed time windows - for rigid, fixed time windows, such as months (Jan, Feb, etc.) or days (01-01-17, 01-02-17, etc.).

	Moving or rolling time windows - for rolling time windows of data, such as three day windows or two week windows.

Fixed time windows

As further discussed in Creating Analysis Pipelines [http://docs.pachyderm.io/en/latest/fundamentals/creating_analysis_pipelines.html] and Distributed Computing [http://docs.pachyderm.io/en/latest/fundamentals/distributed_computing.html], the basic unit of data partitioning in Pachyderm is a “datum” which is defined by a glob pattern. When analyzing data within fixed time windows (e.g., corresponding to fixed calendar times/dates), we recommend organizing your data repositories such that each of the time windows that you are going to analyze corresponds to a separate files or directories in your repository. By doing this, you will be able to:

	Analyze each time window in parallel.

	Only re-process data within a time window when that data, or a corresponding data pipeline, changes.

For example, if you have monthly time windows of JSON sales data that need to be analyzed, you could create a sales data repository and structure it like:

sales
├── January
| ├── 01-01-17.json
| ├── 01-02-17.json
| └── etc...
├── February
| ├── 01-01-17.json
| ├── 01-02-17.json
| └── etc...
└── March
 ├── 01-01-17.json
 ├── 01-02-17.json
 └── etc...

When you run a pipeline with an input repo of sales having a glob pattern of /*, each month’s worth of sales data is processed in parallel (if possible). Further, when you add new data into a subset of the months or add data into a new month (e.g., May), only those updated datums will be re-processed.

More generally, this structure allows you to create:

	Pipelines that aggregate, or otherwise process, daily data on a monthly basis via a /* glob pattern.

	Pipelines that only analyze a certain month’s data via, e.g., a /January/* or /January/ glob pattern.

	Pipelines that process data on a daily basis via a /*/* glob pattern.

	Any combination of the above.

Moving or rolling time windows

In certain use cases, you need to run analyses for moving or rolling time windows, even when those don’t correspond to certain calendar months, days, etc. For example, you may need to analyze the last three days of data, the three days of data prior to that, the three days of data prior to that, etc. In other words, you need to run an analysis for every rolling length of time.

For rolling or moving time windows, there are a couple of recommended patterns:

	Bin your data in repository folders for each of the rolling/moving time windows.

	Maintain a time windowed set of data corresponding to the latest of the rolling/moving time windows.

Binning data into rolling/moving time windows

In this method of processing rolling time windows, we’ll use a two-pipeline DAG [http://docs.pachyderm.io/en/latest/fundamentals/creating_analysis_pipelines.html] to analyze time windows efficiently:

	Pipeline 1 - Read in data, determine which bins the data corresponds to, and write the data into those bins

	Pipeline 2 - Read in and analyze the binned data.

By splitting this analysis into two pipelines we can benefit from parallelism at the file level. In other words, Pipeline 1 can be easily parallelized for each file, and Pipeline 2 can be parallelized per bin. Now we can scale the pipelines easily as the number of files increases.

Let’s take the three day rolling time windows as an example, and let’s say that we want to analyze three day rolling windows of sales data. In a first repo, called sales, a first day’s worth of sales data is committed:

sales
└── 01-01-17.json

We then create a first pipeline to bin this into a repository directory corresponding to our first rolling time window from 01-01-17 to 01-03-17:

binned_sales
└── 01-01-17_to_01-03-17
 └── 01-01-17.json

When our next day’s worth of sales is committed,

sales
├── 01-01-17.json
└── 01-02-17.json

the first pipeline executes again to bin the 01-02-17 data into any relevant bins. In this case, we would put it in the previously created bin for 01-01-17 to 01-03-17, but we would also put it into a bin starting on 01-02-17:

binned_sales
├── 01-01-17_to_01-03-17
| ├── 01-01-17.json
| └── 01-02-17.json
└── 01-02-17_to_01-04-17
 └── 01-02-17.json

As more and more daily data is added, you will end up with a directory structure that looks like:

binned_sales
├── 01-01-17_to_01-03-17
| ├── 01-01-17.json
| ├── 01-02-17.json
| └── 01-03-17.json
├── 01-02-17_to_01-04-17
| ├── 01-02-17.json
| ├── 01-03-17.json
| └── 01-04-17.json
├── 01-03-17_to_01-05-17
| ├── 01-03-17.json
| ├── 01-04-17.json
| └── 01-05-17.json
└── etc...

and is maintained over time as new data is committed:

[image: alt tag]

Your second pipeline can then process these bins in parallel, via a glob pattern of /*, or in any other relevant way as discussed further in the “Fixed time windows” section. Both your first and second pipelines can be easily parallelized.

Note - When looking at the above directory structure, it may seem like there is an unnecessary duplication of the data. However, under the hood Pachyderm deduplicates all of these files and maintains a space efficient representation of your data. The binning of the data is merely a structural re-arrangement to allow you to process these types of rolling time windows.

Note - It might also seem as if there is unnecessary data transfers over the network to perform the above binning. Pachyderm can ensure that performing these types of “shuffles” doesn’t actually require transferring data over the network. Read more about that here.

Maintaining a single time-windowed data set

The advantage of the binning pattern above is that any of the rolling time windows are available for processing. They can be compared, aggregated, combined, etc. in any way, and any results or aggregations are kept in sync with updates to the bins. However, you do need to put in some logic to maintain the binning directory structure.

There is another pattern for moving time windows that avoids the binning of the above approach and maintains an up-to-date version of a moving time-windowed data set. It also involves two pipelines:

	Pipeline 1 - Read in data, determine which files belong in your moving time window, and write the relevant files into an updated version of the moving time-windowed data set.

	Pipeline 2 - Read in and analyze the moving time-windowed data set.

Let’s utilize our sales example again to see how this would work. In the example, we want to keep a moving time window of the last three days worth of data. Now say that our daily sales repo looks like the following:

sales
├── 01-01-17.json
├── 01-02-17.json
├── 01-03-17.json
└── 01-04-17.json

When the January 4th file, 01-04-17.json, is committed, our first pipeline pulls out the last three days of data and arranges it like so:

last_three_days
├── 01-02-17.json
├── 01-03-17.json
└── 01-04-17.json

Think of this as a “shuffle” step. Then, when the January 5th file, 01-05-17.json, is committed,

sales
├── 01-01-17.json
├── 01-02-17.json
├── 01-03-17.json
├── 01-04-17.json
└── 01-05-17.json

the first pipeline would again update the moving window:

last_three_days
├── 01-03-17.json
├── 01-04-17.json
└── 01-05-17.json

Whatever analysis we need to run on the moving windowed data set in moving_sales_window can use a glob pattern of / or /* (depending on whether we need to process all of the time windowed files together or they can be processed in parallel).

Warning - When creating this type of moving time-windowed data set, the concept of “now” or “today” is relative. It is important that you make a sound choice for how to define time based on your use case (e.g., by defaulting to UTC). You should not use a function such as time.now() to figure out a current day. The actual time at which this analysis is run may vary. If you have further questions about this issue, please do not hesitate to reach out to us via Slack [http://slack.pachyderm.io/] or at support@pachyderm.io.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	<no title>

Ingressing From a Separate Object Store

Occasionally, you might find yourself needing to ingress data from or egress data (with the put file command or egress field in the pipeline spec) to/from an object store that runs in a different cloud. For instance, you might be running a Pachyderm cluster in Azure, but you need to ingress files from a S3 bucket.

Fortunately, Pachyderm can be configured to ingress/egress from any number of supported cloud object stores, which currently include S3, Azure, and GCS. In general, all you need to do is to provide Pachyderm with the credentials it needs to communicate with the cloud provider.

To provide Pachyderm with the credentials, you use the pachctl deploy storage command:

$ pachctl deploy storage <backend> ...

Here, <backend> can be one of aws, google, and azure, and the different backends take different parameters. Execute pachctl deploy storage <backend> to view detailed usage information.

For example, here’s how you would deploy credentials for a S3 bucket:

$ pachctl deploy storage aws <region> <bucket-name> <access key id> <secret access key>

Credentials are stored in a Kubernetes secret [https://kubernetes.io/docs/concepts/configuration/secret/] and therefore share the same security properties.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	<no title>

Utilizing GPUs

Pachyderm currently supports GPUs through Kubernetes device plugins. If you already have a GPU enabled Kubernetes cluster through device plugins, then skip to Using GPUs in Pipelines.

Setting up a GPU Enabled Kubernetes Cluster

For guidance on how to set up a GPU enabled Kubernetes cluster through device plugins, refer to the Kubernetes docs [https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/].

Setting up a GPU enabled Kubernetes cluster can be a difficult process depending on the application/framework and hardware being used. Some general things to check for if you are running into issues are:

	The correct software is installed on the GPU machines such that applications running in Docker containers can use the GPUs. This is going to be highly dependent on the manufacturer of the GPUs and how you are using them. The most straightforward approach is to get a VM image with this pre-installed and/or use management software such as kops (nvidia-device-plugin [https://github.com/kubernetes/kops/tree/master/hooks/nvidia-device-plugin]).

	Kubernetes is exposing the GPU resources. This can be checked by describing the GPU nodes with kubectl describe node. You should see the GPU resources marked as allocatable/scheduleable if they are setup properly.

	Your application/framework can access and use the GPUs. This may be as simple as making shared libraries accesible by the application/framework running in your container. Which can be done by baking environment variables into the Docker image or passing in environment variables through the pipeline spec.

Using GPUs in Pipelines

If you already have a GPU enabled Kubernetes cluster through device plugins, then using GPUs in your pipelines is as simple as setting up a GPU resource limit with the type and number of GPUs. An example pipeline spec for a GPU enabled pipeline is as follows:

{
 "pipeline": {
 "name": "train"
 },
 "transform": {
 "image": "acme/your-gpu-image",
 "cmd": [
 "python",
 "train.py"
],
 },
 "resource_limits": {
 "memory": "1024M",
 "gpu": {
 "type": "nvidia.com/gpu",
 "number": 1
 }
 },
 "inputs": {
 "pfs": {
 "repo": "data",
 "glob": "/*"
 }
]
}

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	<no title>

Deferred Processing of Data

While they’re running, Pachyderm Pipelines will process any new data you
commit to their input branches. This can be annoying in cases where you
want to commit data more frequently than you want to process.

This is generally not an issue because Pachyderm pipelines are smart about
not reprocessing things they’ve already processed, but some pipelines need
to process everything from scratch. For example, you may want to commit
data every hour, but only want to retrain a machine learning model on that
data daily since it needs to train on all the data from scratch.

In these cases there’s a massive performance benefit to deferred
processing. This document covers how to achieve that and control exactly
what gets processed when using the Pachyderm system.

The key thing to understand about controlling when data is processed in
Pachyderm is that you control this using the filesystem, rather than at
the pipeline level. Pipelines are inflexible but simple, they always try
to process the data at the heads of their input branches. The filesystem,
on the other hand, is much more flexible and gives you the ability to
commit data in different places and then efficiently move and rename the
data so that it gets processed when you want. The examples below describe
how specifically this should work for common cases.

Using a staging branch

The simplest and most common pattern for deferred processing is using
a staging branch in addition to the usual master branch that the
pipeline takes as input. To begin, create your input repo and your
pipeline (which by default will read from the master branch). This will
automatically create a branch on your input repo called master. You can
check this with list branch:

$ pachctl list branch data
BRANCH HEAD
master -

Notice that the head commit is empty. This is why the pipeline has no jobs
as pipelines process the HEAD commit of their input branches. No HEAD
commit means no processing. If you were to commit data to the master
branch, the pipeline would immediately kick off a job to process what you
committed. However, if you want to commit something without immediately
processing it you need to commit it to a different branch. That’s where
a staging branch comes in – you’re essentially adding your data into
a staging area to then process later.

Commit a file to the staging branch:

$ pachctl put file data@staging -f <file>

Your repo now has 2 branches, staging and master (put file
automatically creates branches if they don’t exist). If you do
list branch again you should see:

$ pachctl list branch data
BRANCH HEAD
staging f3506f0fab6e483e8338754081109e69
master -

Notice that master still doesn’t have a head commit, but the new branch,
staging, does. There still have been no jobs, because there are no
pipelines taking staging as inputs. You can continue to commit to
staging to add new data to the branch and it still won’t process
anything. True to its name, it’s acting as a staging ground for data.

When you’re ready to actually process the data all you need to do is
update the master branch to point to the head of the staging branch:

$ pachctl create branch data@master --head staging
$ pachctl list branch
staging f3506f0fab6e483e8338754081109e69
master f3506f0fab6e483e8338754081109e69

Notice that master and staging now have the same head commit. This
means that your pipeline finally has something to process. If you do
list job you should see a new job. Notice that even if you created
multiple commits on staging before updating master you still only get
1 job. Despite the fact that those other commits are ancestors of the
current HEAD of master, they were never the actual HEAD of master
themselves, so they don’t get processed. This is often fine because
commits in Pachyderm are generally additive, so processing the HEAD commit
also processes data from previous commits.

[image: deffered processing]

However, sometimes you want to
process specific intermediary commits. To do this, all you need to do is
set master to have them as HEAD. For example if you had 10 commits on
staging and you wanted to process the 7th, 3rd, and most recent
commits, you would do:

$ pachctl create branch data@master --head staging^7
$ pachctl create branch data@master --head staging^3
$ pachctl create branch data@master --head staging

If you do list job while running the above commands, you will see
between 1 and 3 new jobs. Eventually there will be a job for each of the
HEAD commits, however Pachyderm won’t create a new job until the previous
job has completed.

What to do if you accidentally process something you didn’t want to

In all of the examples above we’ve been advancing the master branch to
later commits. However, this isn’t a requirement of the system, you can
move backward to previous commits just as easily. For example, if after
the above commands you realized that actually want your final output to be
the result of processing staging^1, you can “roll back” your HEAD commit
the same way we did before.

$ pachctl create branch data@master --head staging^1

This will kick off a new job to process staging^1. The HEAD commit on
your output repo will be the result of processing staging^1 instead of
staging.

More complicated staging patterns

Using a staging branch allows you to defer processing, but it’s
inflexible, in that you need to know ahead of time what you want your
input commits to look like. Sometimes you want to be able to commit data
in an ad-hoc, disorganized way and then organize it later. For this,
instead of updating your master branch to point at commits from
staging, you can copy files directly from staging to master. With
copy file, this only copies references, it doesn’t move the actual data
for the files around.

This would look like:

$ pachctl start commit data@master
$ pachctl copy file data@staging:file1 data@master
$ pachctl copy file data@staging:file2 data@master
...
$ pachctl finish commit data@master

You can also, of course, issue delete file and put file while the commit is
open if you want to remove something from the parent commit or add something
that isn’t stored anywhere else.

Deferred processing on pipeline outputs

So far this document has focussed on deferred processing of data in input
repos, however the same techniques apply to output repos. The only real
difference is that rather than committing to a staging branch, you tell your
pipeline to commit to that branch, by setting the output_branch field in your
pipeline spec. Then when you want to process data you’d do:

$ pachctl create-branch pipeline master --head staging

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	<no title>

Vault Secret Engine

Pachyderm supports Vault integration by providing a Vault Secret Engine.

Deployment

Vault instructions for the admin deploying/configuring/managing vault

	Get plugin binary

	Navigate to the Pachyderm Repo on github
	Go to the latest release page

	Download the vault asset

	Download / Install that binary on your vault server instance

On your vault server:

Assuming the binary was downloaded to /tmp/vault-plugins/pachyderm
export SHASUM=$(shasum -a 256 "/tmp/vault-plugins/pachyderm" | cut -d " " -f1)
echo $SHASUM
vault write sys/plugins/catalog/pachyderm sha_256="$SHASUM" command="pachyderm"
vault secrets enable -path=pachyderm -plugin-name=pachyderm plugin

Note: You may need to enable memory locking on the pachyderm plugin (see
[https://www.vaultproject.io/docs/configuration/#disable_mlock]). That will look
like:

sudo setcap cap_ipc_lock=+ep $(readlink -f /tmp/vault-plugins/pachyderm)

	Configure the plugin

We’ll need to gather and provide this information to the plugin for it to work:

	admin_token : is the (machine user) pachyderm token the plugin will use to cut new credentials on behalf of users

	pachd_address : is the URL where the pachyderm cluster can be accessed

	ttl : is the max TTL a token can be issued

Admin Token

To get a machine user admin_token from pachyderm:

If auth is not activated

(this activates auth with a robot user. It’s also possible to activate auth with a github user. Also, the choice of robot:admin is arbitrary. You could name this admin robot:<any string>)

$ pachctl auth activate --initial-admin=robot:admin
Retrieving Pachyderm token...
WARNING: DO NOT LOSE THE ROBOT TOKEN BELOW WITHOUT ADDING OTHER ADMINS.
IF YOU DO, YOU WILL BE PERMANENTLY LOCKED OUT OF YOUR CLUSTER!
Pachyderm token for "robot:admin":
34cffc9254df40f0a277ee23e9fb005d

$ ADMIN_TOKEN=34cffc9254df40f0a277ee23e9fb005d
$ echo "${ADMIN_TOKEN}" | pachctl auth use-auth-token # authenticates you as the cluster admin

If auth is already activated

Login as a cluster admin
$ pachctl auth login
... login as cluster admin ...

Appoint a new robot user as the cluster admin (if needed)
$ pachctl auth modify-admins --add=robot:admin

Get a token for that robot user admin
$ pachctl auth get-auth-token robot:admin
New credentials:
 Subject: robot:admin
 Token: 3090e53de6cb4108a2c6591f3cbd4680

$ ADMIN_TOKEN=3090e53de6cb4108a2c6591f3cbd4680

Pass the new admin token to Pachyderm:

vault write pachyderm/config \
 admin_token="${ADMIN_TOKEN}" \
 pachd_address="127.0.0.1:30650" \
 ttl=5m # optional

	Test the plugin

vault read pachyderm/version

If this fails, check if the problem is in the client (rather than the server):
vault read pachyderm/version/client-only

	Manage user tokens with revoke

$ vault token revoke d2f1f95c-2445-65ab-6a8b-546825e4997a
Success! Revoked token (if it existed)

Which will revoke the vault token. But if you also want to manually revoke a pachyderm token, you can do so by issuing:

$vault write pachyderm/revoke user_token=xxx

Usage

When your application needs to access pachyderm, you will first do the following:

	Connect / login to vault

Depending on your language / deployment this can vary. see the vault documentation for more details.

	Anytime you are going to issue a request to a pachyderm cluster first:

	check to see if you have a valid pachyderm token
	if you do not have a token, hit the login path as described below

	if you have a token but it’s TTL will expire soon (latter half of TTL is what’s recommended), hit the renew path as described below

	then use the response token when constructing your client to talk to the pachyderm cluster

Login

Again, your client could be in any language. But as an example using the vault CLI:

$ vault write -f pachyderm/login/robot:test
Key Value
--- -----
lease_id pachyderm/login/robot:test/e93d9420-7788-4846-7d1a-8ac4815e4274
lease_duration 768h
lease_renewable true
pachd_address 192.168.99.100:30650
user_token aa425375f03d4a5bb0f529379d82aa39

The response metadata contains the user_token that you need to use to connect to the pachyderm cluster,
as well as the pachd_address.
Again, if you wanted to use this Pachyderm token on the command line:

$ echo "aa425375f03d4a5bb0f529379d82aa39" | pachctl auth use-auth-token
$ pachctl config update context `pachctl config get active-context` --pachd-address=127.0.0.1:30650
$ pachctl list repo

The TTL is tied to the vault lease in lease_id, which can be inspected or revoked
using the vault lease API (documented here: https://www.vaultproject.io/api/system/leases.html):

$ vault write /sys/leases/lookup lease_id=pachyderm/login/robot:test/e93d9420-7788-4846-7d1a-8ac4815e4274
Key Value
--- -----
expire_time 2018-06-17T23:32:23.317795215-07:00
id pachyderm/login/robot:test/e93d9420-7788-4846-7d1a-8ac4815e4274
issue_time 2018-05-16T23:32:23.317794929-07:00
last_renewal <nil>
renewable true
ttl 2764665

Renew

You should issue a renew request once the halfway mark of the TTL has elapsed.
Like revocation, renewal is handled using the vault lease API:

$ vault write /sys/leases/renew lease_id=pachyderm/login/robot:test/e93d9420-7788-4846-7d1a-8ac4815e4274 increment=3600
Key Value
--- -----
lease_id pachyderm/login/robot:test/e93d9420-7788-4846-7d1a-8ac4815e4274
lease_duration 2h
lease_renewable true

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

Pipeline Specification

This document discusses each of the fields present in a pipeline specification.
To see how to use a pipeline spec to create a pipeline, refer to the pachctl
create pipeline doc.

JSON Manifest Format

{
 "pipeline": {
 "name": string
 },
 "description": string,
 "transform": {
 "image": string,
 "cmd": [string],
 "stdin": [string],
 "err_cmd": [string],
 "err_stdin": [string],
 "env": {
 string: string
 },
 "secrets": [{
 "name": string,
 "mount_path": string
 },
 {
 "name": string,
 "env_var": string,
 "key": string
 }],
 "image_pull_secrets": [string],
 "accept_return_code": [int],
 "debug": bool,
 "user": string,
 "working_dir": string,
 },
 "parallelism_spec": {
 // Set at most one of the following:
 "constant": int,
 "coefficient": number
 },
 "hashtree_spec": {
 "constant": int,
 },
 "resource_requests": {
 "memory": string,
 "cpu": number,
 "disk": string,
 },
 "resource_limits": {
 "memory": string,
 "cpu": number,
 "gpu": {
 "type": string,
 "number": int
 }
 "disk": string,
 },
 "datum_timeout": string,
 "datum_tries": int,
 "job_timeout": string,
 "input": {
 <"pfs", "cross", "union", "cron", or "git" see below>
 },
 "output_branch": string,
 "egress": {
 "URL": "s3://bucket/dir"
 },
 "standby": bool,
 "cache_size": string,
 "enable_stats": bool,
 "service": {
 "internal_port": int,
 "external_port": int
 },
 "spout": {
 "overwrite": bool
 \\ Optionally, you can combine a spout with a service:
 "service": {
 "internal_port": int,
 "external_port": int,
 "annotations": {
 "foo": "bar"
 }
 }
 },
 "max_queue_size": int,
 "chunk_spec": {
 "number": int,
 "size_bytes": int
 },
 "scheduling_spec": {
 "node_selector": {string: string},
 "priority_class_name": string
 },
 "pod_spec": string,
 "pod_patch": string,
}

"pfs" input

"pfs": {
 "name": string,
 "repo": string,
 "branch": string,
 "glob": string,
 "lazy" bool,
 "empty_files": bool
}

"cross" or "union" input

"cross" or "union": [
 {
 "pfs": {
 "name": string,
 "repo": string,
 "branch": string,
 "glob": string,
 "lazy" bool,
 "empty_files": bool
 }
 },
 {
 "pfs": {
 "name": string,
 "repo": string,
 "branch": string,
 "glob": string,
 "lazy" bool,
 "empty_files": bool
 }
 }
 etc...
]

"cron" input

"cron": {
 "name": string,
 "spec": string,
 "repo": string,
 "start": time,
 "overwrite": bool
}

"git" input

"git": {
 "URL": string,
 "name": string,
 "branch": string
}

In practice, you rarely need to specify all the fields.
Most fields either come with sensible defaults or can be empty.
The following text is an example of a minimum spec:

{
 "pipeline": {
 "name": "wordcount"
 },
 "transform": {
 "image": "wordcount-image",
 "cmd": ["/binary", "/pfs/data", "/pfs/out"]
 },
 "input": {
 "pfs": {
 "repo": "data",
 "glob": "/*"
 }
 }
}

Name (required)

pipeline.name is the name of the pipeline that you are creating. Each
pipeline needs to have a unique name. Pipeline names must meet the following
prerequisites:

	Include only alphanumeric characters, _ and -.

	Begin or end with only alphanumeric characters (not _ or -).

	Not exceed 50 characters in length.

Description (optional)

description is an optional text field where you can add information
about the pipeline.

Transform (required)

transform.image is the name of the Docker image that your jobs use.

transform.cmd is the command passed to the Docker run invocation. Similarly
to Docker, cmd is not run inside a shell which means that
wildcard globbing (*), pipes (|), and file redirects (> and >>) do
not work. To specify these settings, you can set cmd to be a shell of your
choice, such as sh and pass a shell script to stdin.

transform.stdin is an array of lines that are sent to your command on
stdin.
Lines do not have to end in newline characters.

transform.err_cmd is an optional command that is executed on failed datums.
If the err_cmd is successful and returns 0 error code, it does not prevent
the job from succeeding.
This behavior means that transform.err_cmd can be used to ignore
failed datums while still writing successful datums to the output repo,
instead of failing the whole job when some datums fail. The transform.err_cmd
command has the same limitations as transform.cmd.

transform.err_stdin is an array of lines that are sent to your error command
on stdin.
Lines do not have to end in newline characters.

transform.env is a key-value map of environment variables that
Pachyderm injects into the container.

Note: There are environment variables that are automatically injected
into the container, for a comprehensive list of them see the Environment
Variables section below.

transform.secrets is an array of secrets. You can use the secrets to
embed sensitive data, such as credentials. The secrets reference
Kubernetes secrets by name and specify a path to map the secrets or
an environment variable (env_var) that the value should be bound to. Secrets
must set name which should be the name of a secret in Kubernetes. Secrets
must also specify either mount_path or env_var and key. See more
information about Kubernetes secrets here [https://kubernetes.io/docs/concepts/configuration/secret/].

transform.image_pull_secrets is an array of image pull secrets, image pull
secrets are similar to secrets except that they are mounted before the
containers are created so they can be used to provide credentials for image
pulling. For example, if you are using a private Docker registry for your
images, you can specify it by running the following command:

$ kubectl create secret docker-registry myregistrykey --docker-server=DOCKER_REGISTRY_SERVER --docker-username=DOCKER_USER --docker-password=DOCKER_PASSWORD --docker-email=DOCKER_EMAIL

And then, notify your pipeline about it by using
"image_pull_secrets": ["myregistrykey"]. Read more about image pull secrets
here [https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod].

transform.accept_return_code is an array of return codes, such as exit codes
from your Docker command that are considered acceptable.
If your Docker command exits with one of the codes in this array, it is
considered a successful run to set job status. 0
is always considered a successful exit code.

transform.debug turns on added debug logging for the pipeline.

transform.user sets the user that your code runs as, this can also be
accomplished with a USER directive in your Dockerfile.

transform.working_dir sets the directory that your command runs from. You
can also specify the WORKDIR directive in your Dockerfile.

transform.dockerfile is the path to the Dockerfile used with the --build
flag. This defaults to ./Dockerfile.

Parallelism Spec (optional)

parallelism_spec describes how Pachyderm parallelizes your pipeline.
Currently, Pachyderm has two parallelism strategies: constant and
coefficient.

If you set the constant field, Pachyderm starts the number of workers
that you specify. For example, set "constant":10 to use 10 workers.

If you set the coefficient field, Pachyderm starts a number of workers
that is a multiple of your Kubernetes cluster’s size. For example, if your
Kubernetes cluster has 10 nodes, and you set "coefficient": 0.5, Pachyderm
starts five workers. If you set it to 2.0, Pachyderm starts 20 workers
(two per Kubernetes node).

The default if left unset is “constant=1”.

Resource Requests (optional)

resource_requests describes the amount of resources you expect the
workers for a given pipeline to consume. Knowing this in advance
lets Pachyderm schedule big jobs on separate machines, so that they do not
conflict and either slow down or die.

The memory field is a string that describes the amount of memory, in bytes,
each worker needs (with allowed SI suffixes (M, K, G, Mi, Ki, Gi, and so on).
For example, a worker that needs to read a 1GB file into memory might set
"memory": "1.2G" with a little extra for the code to use in addition to the
file. Workers for this pipeline will be placed on machines with at least
1.2GB of free memory, and other large workers will be prevented from using it
(if they also set their resource_requests).

The cpu field is a number that describes the amount of CPU time in cpu seconds/real seconds that each worker needs. Setting "cpu": 0.5 indicates that
the worker should get 500ms of CPU time per second. Setting "cpu": 2
indicates that the worker gets 2000ms of CPU time per second. In other words,
it is using 2 CPUs, though worker threads might spend 500ms on four
physical CPUs instead of one second on two physical CPUs.

The disk field is a string that describes the amount of ephemeral disk space,
in bytes, each worker needs with allowed SI suffixes (M, K, G, Mi, Ki, Gi,
and so on).

In both cases, the resource requests are not upper bounds. If the worker uses
more memory than it is requested, it does not mean that it will be shut down.
However, if the whole node runs out of memory, Kubernetes starts deleting
pods that have been placed on it and exceeded their memory request,
to reclaim memory.
To prevent deletion of your worker node, you must set your memory request to
a sufficiently large value. However, if the total memory requested by all
workers in the system is too large, Kubernetes cannot schedule new
workers because no machine has enough unclaimed memory. cpu works
similarly, but for CPU time.

By default, workers are scheduled with an effective resource request of 0 (to
avoid scheduling problems that prevent users from being unable to run
pipelines). This means that if a node runs out of memory, any such worker
might be terminated.

For more information about resource requests and limits see the
Kubernetes docs [https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/]
on the subject.

Resource Limits (optional)

resource_limits describes the upper threshold of allowed resources a given
worker can consume. If a worker exceeds this value, it will be evicted.

The gpu field is a number that describes how many GPUs each worker needs.
Only whole number are supported, Kubernetes does not allow multiplexing of
GPUs. Unlike the other resource fields, GPUs only have meaning in Limits, by
requesting a GPU the worker will have sole access to that GPU while it is
running. It’s recommended to enable standby if you are using GPUs so other
processes in the cluster will have access to the GPUs while the pipeline has
nothing to process. For more information about scheduling GPUs see the
Kubernetes docs [https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/]
on the subject.

Datum Timeout (optional)

datum_timeout is a string (e.g. 1s, 5m, or 15h) that determines the
maximum execution time allowed per datum. So no matter what your parallelism
or number of datums, no single datum is allowed to exceed this value.

Datum Tries (optional)

datum_tries is a int (e.g. 1, 2, or 3) that determines the number of retries that a job should attempt given failure was observed. Only failed datums are retries in retry attempt. The the operation succeeds in retry attempts then job is successful, otherwise the job is marked as failure.

Job Timeout (optional)

job_timeout is a string (e.g. 1s, 5m, or 15h) that determines the
maximum execution time allowed for a job. It differs from datum_timeout
in that the limit gets applied across all workers and all datums. That
means that you’ll need to keep in mind the parallelism, total number of
datums, and execution time per datum when setting this value. Keep in
mind that the number of datums may change over jobs. Some new commits may
have a bunch of new files (and so new datums). Some may have fewer.

Input (required)

input specifies repos that will be visible to the jobs during runtime.
Commits to these repos will automatically trigger the pipeline to create new
jobs to process them. Input is a recursive type, there are multiple different
kinds of inputs which can be combined together. The input object is a
container for the different input types with a field for each, only one of
these fields be set for any instantiation of the object.

{
 "pfs": pfs_input,
 "union": union_input,
 "cross": cross_input,
 "cron": cron_input
}

PFS Input

Note: Atom inputs were renamed to PFS inputs in version 1.8.1. If you are using an
older version of Pachyderm, replace every instance of pfs with
atom in the code below.

PFS inputs are the simplest inputs, they take input from a single branch on a
single repo.

{
 "name": string,
 "repo": string,
 "branch": string,
 "glob": string,
 "lazy" bool,
 "empty_files": bool
}

input.pfs.name is the name of the input. An input with the name XXX is
visible under the path /pfs/XXX when a job runs. Input names must be unique
if the inputs are crossed, but they may be duplicated between PFSInputs that
are combined by using the union operator. This is because when
PFSInputs are combined, you only ever see a datum from one input
at a time. Overlapping the names of combined inputs allows
you to write simpler code since you no longer need to consider which
input directory a particular datum comes from. If an input’s name is not
specified, it defaults to the name of the repo. Therefore, if you have two
crossed inputs from the same repo, you must give at least one of them a unique name.

input.pfs.repo is the repo to be used for the input.

input.pfs.branch is the branch to watch for commits. If left blank,
master is used by default.

input.pfs.glob is a glob pattern that is used to determine how the
input data is partitioned. It is explained in detail in the next section.

input.pfs.lazy controls how the data is exposed to jobs. The default is false
which means the job eagerly downloads the data it needs to process and
exposes it as normal files on disk. If lazy is set to true, data is
exposed as named pipes instead, and no data is downloaded until the job
opens the pipe and reads it. If the pipe is never opened, then no data is
downloaded.

Some applications do not work with pipes. For example, pipes do not support
applications that makes syscalls such as Seek. Applications that can work
with pipes must use them since they are more performant. The difference will
be especially notable if the job only reads a subset of the files that are
available to it.

Note: lazy currently does not support datums that
contain more than 10000 files.

input.pfs.empty_files controls how files are exposed to jobs. If
set to true, it causes files from this PFS to be presented as empty files.
This is useful in shuffle pipelines where you want to read the names of
files and reorganize them by using symlinks.

Union Input

Union inputs take the union of other inputs. In the example
below, each input includes individual datums, such as if foo and bar
were in the same repository with the glob pattern set to /*.
Alternatively, each of these datums might have come from separate repositories
with the glob pattern set to / and being the only filesystm objects in these
repositories.

inputA	inputB	inputA ∪ inputB
foo	fizz	foo
bar	buzz	fizz
		bar
		buzz

The union inputs do not take a name and maintain the names of the
sub-inputs. In the example above, you would see files under
/pfs/inputA/... or /pfs/inputB/..., but never both at the same time.
When you write code to address this behavior, make sure that
your code first determines which input directory is present. Starting
with Pachyderm 1.5.3, we recommend that you give your inputs the
same Name. That way your code only needs to handle data being present
in that directory. This only works if your code does not need to be
aware of which of the underlying inputs the data comes from.

input.union is an array of inputs to combine. The inputs do not have to be
pfs inputs. They can also be union and cross inputs. Although, there is
no reason to take a union of unions because union is associative.

Cross Input

Cross inputs create the cross product of other inputs. In other words,
a cross input creates tuples of the datums in the inputs. In the example
below, each input includes individual datums, such as if foo and bar
were in the same repository with the glob pattern set to /*.
Alternatively, each of these datums might have come from separate repositories
with the glob pattern set to / and being the only filesystm objects in these
repositories.

inputA	inputB	inputA ⨯ inputB
foo	fizz	(foo, fizz)
bar	buzz	(foo, buzz)
		(bar, fizz)
		(bar, buzz)

The cross inputs above do not take a name and maintain
the names of the sub-inputs.
In the example above, you would see files under /pfs/inputA/...
and /pfs/inputB/....

input.cross is an array of inputs to cross.
The inputs do not have to be pfs inputs. They can also be
union and cross inputs. Although, there is
no reason to take a union of unions because union is associative.

Cron Input

Cron inputs allow you to trigger pipelines based on time. A Cron input is
based on the Unix utility called cron. When you create a pipeline with
one or more Cron inputs, pachd creates a repo for each of them. The start
time for Cron input is specified in its spec.
When a Cron input triggers,
pachd commits a single file, named by the current RFC
3339 timestamp [https://www.ietf.org/rfc/rfc3339.txt] to the repo which
contains the time which satisfied the spec.

{
 "name": string,
 "spec": string,
 "repo": string,
 "start": time,
 "overwrite": bool
}

input.cron.name is the name for the input. Its semantics is similar to
those of input.pfs.name. Except that it is not optional.

input.cron.spec is a cron expression which specifies the schedule on
which to trigger the pipeline. To learn more about how to write schedules,
see the Wikipedia page on cron [https://en.wikipedia.org/wiki/Cron].
Pachyderm supports non-standard schedules, such as "@daily".

input.cron.repo is the repo which Pachyderm creates for the input. This
parameter is optional. If you do not specify this parameter, then
"<pipeline-name>_<input-name>" is used by default.

input.cron.start is the time to start counting from for the input. This
parameter is optional. If you do not specify this parameter, then the
time when the pipeline was created is used by default. Specifying a
time enables you to run on matching times from the past or skip times
from the present and only start running
on matching times in the future. Format the time value according to RFC
3339 [https://www.ietf.org/rfc/rfc3339.txt].

input.cron.overwrite is a flag to specify whether you want the timestamp file
to be overwritten on each tick. This parameter is optional, and if you do not
specify it, it defaults to simply writing new files on each tick. By default,
pachd expects only the new information to be written out on each tick
and combines that data with the data from the previous ticks. If "overwrite"
is set to true, it expects the full dataset to be written out for each tick and
replaces previous outputs with the new data written out.

Git Input (alpha feature)

Git inputs allow you to pull code from a public git URL and execute that code as part of your pipeline. A pipeline with a Git Input will get triggered (i.e. will see a new input commit and will spawn a job) whenever you commit to your git repository.

Note: This only works on cloud deployments, not local clusters.

input.git.URL must be a URL of the form: https://github.com/foo/bar.git

input.git.name is the name for the input, its semantics are similar to
those of input.pfs.name. It is optional.

input.git.branch is the name of the git branch to use as input

Git inputs also require some additional configuration. In order for new commits on your git repository to correspond to new commits on the Pachyderm Git Input repo, we need to setup a git webhook. At the moment, only GitHub is supported. (Though if you ask nicely, we can add support for GitLab or BitBucket).

	Create your Pachyderm pipeline with the Git Input.

	To get the URL of the webhook to your cluster, do pachctl inspect pipeline on your pipeline. You should see a Githook URL field with a URL set. Note - this will only work if you’ve deployed to a cloud provider (e.g. AWS, GKE). If you see pending as the value (and you’ve deployed on a cloud provider), it’s possible that the service is still being provisioned. You can check kubectl get svc to make sure you see the githook service running.

	To setup the GitHub webhook, navigate to:

https://github.com/<your_org>/<your_repo>/settings/hooks/new

Or navigate to webhooks under settings. Then you’ll want to copy the Githook URL into the ‘Payload URL’ field.

Output Branch (optional)

This is the branch where the pipeline outputs new commits. By default,
it’s “master”.

Egress (optional)

egress allows you to push the results of a Pipeline to an external data
store such as s3, Google Cloud Storage or Azure Storage. Data will be pushed
after the user code has finished running but before the job is marked as
successful.

For more information, see Exporting Data by using egress

Standby (optional)

standby indicates that the pipeline should be put into “standby” when there’s
no data for it to process. A pipeline in standby will have no pods running and
thus will consume no resources, it’s state will be displayed as “standby”.

Standby replaces scale_down_threshold from releases prior to 1.7.1.

Cache Size (optional)

cache_size controls how much cache a pipeline’s sidecar containers use. In
general, your pipeline’s performance will increase with the cache size, but
only up to a certain point depending on your workload.

Every worker in every pipeline has a limited-functionality pachd server
running adjacent to it, which proxies PFS reads and writes (this prevents
thundering herds when jobs start and end, which is when all of a pipeline’s
workers are reading from and writing to PFS simultaneously). Part of what these
“sidecar” pachd servers do is cache PFS reads. If a pipeline has a cross input,
and a worker is downloading the same datum from one branch of the input
repeatedly, then the cache can speed up processing significantly.

Enable Stats (optional)

enable_stats turns on stat tracking for the pipeline. This will cause the
pipeline to commit to a second branch in its output repo called "stats". This
branch will have information about each datum that is processed including:
timing information, size information, logs and a /pfs snapshot. This
information can be accessed through the inspect datum and list datum
pachctl commands and through the webUI.

Note: enabling stats will use extra storage for logs and timing information.
However it will not use as much extra storage as it appears to due to the fact
that snapshots of the /pfs directory, which are generally the largest thing
stored, don’t actually require extra storage because the data is already stored
in the input repos.

Service (alpha feature, optional)

service specifies that the pipeline should be treated as a long running
service rather than a data transformation. This means that transform.cmd is
not expected to exit, if it does it will be restarted. Furthermore, the service
is exposed outside the container using a Kubernetes service.
"internal_port" should be a port that the user code binds to inside the
container, "external_port" is the port on which it is exposed through the
NodePorts functionality of Kubernetes services. After a service has been
created, you should be able to access it at
http://<kubernetes-host>:<external_port>.

Spout (optional)

spout is a type of pipeline that processes streaming data.
Unlike a union or cross pipeline, a spout pipeline does not have
a PFS input. Instead, it opens a Linux named pipe into the source of the
streaming data. Your pipeline
can be either a spout or a service and not both. Therefore, if you added
the service as a top-level object in your pipeline, you cannot add spout.
However, you can expose a service from inside of a spout pipeline by
specifying it as a field in the spout spec. Then, Kubernetes creates
a service endpoint that you can expose externally. You can get the information
about the service by running kubectl get services.

For more information, see Spouts.

Max Queue Size (optional)

max_queue_size specifies that maximum number of datums that a worker should
hold in its processing queue at a given time (after processing its entire
queue, a worker “checkpoints” its progress by writing to persistent storage).
The default value is 1 which means workers will only hold onto the value that
they’re currently processing.

Increasing this value can improve pipeline performance, as that allows workers
to simultaneously download, process and upload different datums at the same
time (and reduces the total time spent on checkpointing). Decreasing this value
can make jobs more robust to failed workers, as work gets checkpointed more
often, and a failing worker will not lose as much progress. Setting this value
too high can also cause problems if you have lazy inputs, as there’s a cap of
10,000 lazy files per worker and multiple datums that are running all count
against this limit.

Chunk Spec (optional)

chunk_spec specifies how a pipeline should chunk its datums.

chunk_spec.number if nonzero, specifies that each chunk should contain number
datums. Chunks may contain fewer if the total number of datums don’t
divide evenly.

chunk_spec.size_bytes , if nonzero, specifies a target size for each chunk of datums.
Chunks may be larger or smaller than size_bytes, but will usually be
pretty close to size_bytes in size.

Scheduling Spec (optional)

scheduling_spec specifies how the pods for a pipeline should be scheduled.

scheduling_spec.node_selector allows you to select which nodes your pipeline
will run on. Refer to the Kubernetes docs [https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector]
on node selectors for more information about how this works.

scheduling_spec.priority_class_name allows you to select the prioriy class
for the pipeline, which will how Kubernetes chooses to schedule and deschedule
the pipeline. Refer to the Kubernetes docs [https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass]
on priority and preemption for more information about how this works.

Pod Spec (optional)

pod_spec is an advanced option that allows you to set fields in the pod spec
that haven’t been explicitly exposed in the rest of the pipeline spec. A good
way to figure out what JSON you should pass is to create a pod in Kubernetes
with the proper settings, then do:

kubectl get po/<pod-name> -o json | jq .spec

this will give you a correctly formated piece of JSON, you should then remove
the extraneous fields that Kubernetes injects or that can be set else where.

The JSON is applied after the other parameters for the pod_spec have already
been set as a JSON Merge Patch [https://tools.ietf.org/html/rfc7386]. This
means that you can modify things such as the storage and user containers.

Pod Patch (optional)

pod_patch is similar to pod_spec above but is applied as a JSON
Patch [https://tools.ietf.org/html/rfc6902]. Note, this means that the
process outlined above of modifying an existing pod spec and then manually
blanking unchanged fields won’t work, you’ll need to create a correctly
formatted patch by diffing the two pod specs.

The Input Glob Pattern

Each PFS input needs to specify a glob pattern.

Pachyderm uses the glob pattern to determine how many “datums” an input
consists of. Datums are the unit of parallelism in Pachyderm. That is,
Pachyderm attempts to process datums in parallel whenever possible.

Intuitively, you may think of the input repo as a file system, and you are
applying the glob pattern to the root of the file system. The files and
directories that match the glob pattern are considered datums.

For instance, let’s say your input repo has the following structure:

/foo-1
/foo-2
/bar
 /bar-1
 /bar-2

Now let’s consider what the following glob patterns would match respectively:

	/: this pattern matches /, the root directory itself, meaning all the data would be a single large datum.

	/*: this pattern matches everything under the root directory given us 3 datums:
/foo-1., /foo-2., and everything under the directory /bar.

	/bar/*: this pattern matches files only under the /bar directory: /bar-1 and /bar-2

	/foo*: this pattern matches files under the root directory that start with the characters foo

	/*/*: this pattern matches everything that’s two levels deep relative
to the root: /bar/bar-1 and /bar/bar-2

The datums are defined as whichever files or directories match by the glob pattern. For instance, if we used
/*, then the job will process three datums (potentially in parallel):
/foo-1, /foo-2, and /bar. Both the bar-1 and bar-2 files within the directory bar would be grouped together and always processed by the same worker.

PPS Mounts and File Access

Mount Paths

The root mount point is at /pfs, which contains:

	/pfs/input_name which is where you would find the datum.
	Each input will be found here by its name, which defaults to the repo
name if not specified.

	/pfs/out which is where you write any output.

Environment Variables

There are several environment variables that get injected into the user code
before it runs. They are:

	PACH_JOB_ID the id the currently run job.

	PACH_OUTPUT_COMMIT_ID the id of the commit being outputted to.

	For each input there will be an environment variable with the same name
defined to the path of the file for that input. For example if you are
accessing an input called foo from the path /pfs/foo which contains a
file called bar then the environment variable foo will have the value
/pfs/foo/bar. The path in the environment variable is the path which
matched the glob pattern, even if the file is a directory, ie if your glob
pattern is /* it would match a directory /bar, the value of $foo
would then be /pfs/foo/bar. With a glob pattern of /*/* you would match
the files contained in /bar and thus the value of foo would be
/pfs/foo/bar/quux.

	For each input there will be an environment variable named input_COMMIT
indicating the id of the commit being used for that input.

In addition to these environment variables Kubernetes also injects others for
Services that are running inside the cluster. These allow you to connect to
those outside services, which can be powerful but also can be hard to reason
about, as processing might be retried multiple times. For example if your code
writes a row to a database that row may be written multiple times due to
retries. Interaction with outside services should be idempotent [https://en.wikipedia.org/wiki/Idempotence] to prevent
unexpected behavior. Furthermore, one of the running services that your code
can connect to is Pachyderm itself, this is generally not recommended as very
little of the Pachyderm API is idempotent, but in some specific cases it can be
a viable approach.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

Config Specification

This document outlines the fields in pachyderm configs. This should act as a
reference. If you wish to change a config value, you should do so via
pachctl config.

JSON format

{
 "user_id": string,
 "v2": {
 "active_context": string,
 "contexts": {
 string: {
 "pachd_address": string,
 "server_cas": string,
 "session_token": string,
 "active_transaction": string
 },
 ...
 },
 "metrics": bool
 }
}

If a field is not set, it will be omitted from JSON entirely. Following is an
example of a simple config:

{
 "user_id": "514cbe16-e615-46fe-92d9-3156f12885d7",
 "v2": {
 "active_context": "default",
 "contexts": {
 "default": {}
 },
 "metrics": true
 }
}

Following is a walk-through of all the fields.

User ID

A UUID giving a unique ID for this user for metrics.

Metrics

Whether metrics is enabled.

Active Context

v2.active_context specifies the name of the currently actively pachyderm
context, as specified in v2.contexts.

Contexts

A map of context names to their configurations. Pachyderm contexts are akin to
kubernetes contexts (and in fact reference the kubernetes context that they’re
associated with.)

Pachd Address

A host:port specification for connecting to pachd. If this is set, pachyderm
will directly connect to the cluster, rather than resorting to kubernetes’
port forwarding. If you can set this (because there’s no firewall between you
and the cluster), you should, as kubernetes’ port forwarder is not designed to
handle large amounts of data.

Server CAs

Trusted root certificates for the cluster, formatted as a base64-encoded PEM.
This is only set when TLS is enabled.

Session token

A secret token identifying the current pachctl user within their pachyderm
cluster. This is included in all RPCs sent by pachctl, and used to determine
if pachctl actions are authorized. This is only set when auth is enabled.

Active transaction

The currently active transaction for batching together pachctl commands. This
can be set or cleared via many of the pachctl * transaction commands.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

Pachyderm language clients

Go Client

The Go client is officially supported by the Pachyderm team. It implements almost all of the functionality that is provided with the pachctl CLI tool, and, thus, you can easily integrated operations like put file into your applications.

For more info, check out the godocs [https://godoc.org/github.com/pachyderm/pachyderm/src/client].

Note - A compatible version of grpc is needed when using the Go client. You can deduce the compatible version from our vendor.json [https://github.com/pachyderm/pachyderm/blob/master/src/server/vendor/vendor.json] file, where you will see something like:

 {
 "checksumSHA1": "mEyChIkG797MtkrJQXW8X/qZ0l0=",
 "path": "google.golang.org/grpc",
 "revision": "21f8ed309495401e6fd79b3a9fd549582aed1b4c",
 "revisionTime": "2017-01-27T15:26:01Z"
 },

You can then get this version via:

go get google.golang.org/grpc
cd $GOPATH/src/google.golang.org/grpc
git checkout 21f8ed309495401e6fd79b3a9fd549582aed1b4c

Python Client

The Python client is officially supported by the Pachyderm team. It implements almost all of the functionality that is provided with the pachctl CLI tool, and, thus, you can easily integrated operations like put file into your applications.

For more info, check out the repo [http://github.com/pachyderm/python-pachyderm].

Scala Client

Our users are currently working on a Scala client for Pachyderm. Please contact us if you are interested in helping with this or testing it out.

Other languages

Pachyderm uses a simple protocol buffer API [https://github.com/pachyderm/pachyderm/blob/master/src/client/pfs/pfs.proto]. Protobufs support a bunch of other languages [https://developers.google.com/protocol-buffers/], any of which can be used to programmatically use Pachyderm. We haven’t built clients for them yet, but it’s not too hard. It’s an easy way to contribute to Pachyderm if you’re looking to get involved.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

S3Gateway API

This outlines the HTTP API exposed by the s3gateway and any peculiarities
relative to S3. The operations largely mirror those documented in S3’s
official docs [https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html].

Generally, you would not call these endpoints directly, but rather use a
tool or library designed to work with S3-like APIs. Because of that, some
working knowledge of S3 and HTTP is assumed.

Operations on buckets

Buckets are represented via branch.repo, e.g. the master.images bucket
corresponds to the master branch of the images repo.

Creating buckets

Route: PUT /branch.repo/.

If the repo does not exist, it is created. If the branch does not exist, it
is likewise created. As per S3’s behavior in some regions (but not all),
trying to create the same bucket twice will return a BucketAlreadyOwnedByYou
error.

Deleting buckets

Route: DELETE /branch.repo/.

Deletes the branch. If it is the last branch in the repo, the repo is also
deleted. Unlike S3, you can delete non-empty branches.

Listing buckets

Route: GET /.

Lists all of the branches across all of the repos as S3 buckets.

Object operations

Object operations act upon the HEAD commit of branches. Authorization-gated
PFS branches are not supported.

Writing objects

Route: PUT /branch.repo/filepath.

Writes the PFS file at filepath in an atomic commit on the HEAD of branch.
Any existing file content is overwritten. Unlike S3, there is no limit to
upload size.

The s3gateway does not support multipart uploads, but you can use this
endpoint to upload very large files. We recommend setting the Content-MD5
request header - especially for larger files - to ensure data integrity.

Some S3 libraries and clients will detect that our s3gateway does not support
multipart uploads and automatically fallback to using this endpoint. Notably,
this includes minio.

Removing objects

Route: DELETE /branch.repo/filepath.

Deletes the PFS file filepath in an atomic commit on the HEAD of branch.

Listing objects

Route: GET /branch.repo/

Only S3’s list objects v1 is supported.

PFS directories are represented via CommonPrefixes. This largely mirrors how
S3 is used in practice, but leads to a couple of differences:

	If you set the delimiter parameter, it must be /.

	Empty directories are included in listed results.

With regard to listed results:

	Due to PFS peculiarities, the LastModified field references when the most
recent commit to the branch happened, which may or may not have modified the
specific object listed.

	The HTTP ETag field does not use MD5, but is a cryptographically secure
hash of the file contents.

	The S3 StorageClass and Owner fields always have the same filler value.

Getting objects

Route: GET /branch.repo/filepath.

There is support for range queries and conditional requests, however error
response bodies for bad requests using these headers are not standard S3 XML.

With regard to HTTP response headers:

	Due to PFS peculiarities, the HTTP Last-Modified header references when
the most recent commit to the branch happened, which may or may not have
modified this specific object.

	The HTTP ETag does not use MD5, but is a cryptographically secure hash of
the file contents.

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

Pachctl Command Line Tool

This document describes Pachyderm Command Line Interface (CLI) tool
pachctl.

	pachctl

	pachctl auth

	pachctl auth activate

	pachctl auth check

	pachctl auth deactivate

	pachctl auth get-auth-token

	pachctl auth get-config

	pachctl auth get

	pachctl auth list-admins

	pachctl auth login

	pachctl auth logout

	pachctl auth modify-admins

	pachctl auth set-config

	pachctl auth set

	pachctl auth use-auth-token

	pachctl auth whoami

	pachctl completion

	pachctl config

	pachctl config delete

	pachctl config delete context

	pachctl config get

	pachctl config get active-context

	pachctl config get context

	pachctl config get metrics

	pachctl config list

	pachctl config list context

	pachctl config set

	pachctl config set active-context

	pachctl config set context

	pachctl config set metrics

	pachctl config update

	pachctl config update context

	pachctl copy

	pachctl copy file

	pachctl create

	pachctl create branch

	pachctl create pipeline

	pachctl create repo

	pachctl debug

	pachctl debug binary

	pachctl debug dump

	pachctl debug pprof

	pachctl debug profile

	pachctl delete

	pachctl delete all

	pachctl delete branch

	pachctl delete commit

	pachctl delete file

	pachctl delete job

	pachctl delete pipeline

	pachctl delete repo

	pachctl delete transaction

	pachctl deploy

	pachctl deploy amazon

	pachctl deploy custom

	pachctl deploy export-images

	pachctl deploy google

	pachctl deploy import-images

	pachctl deploy list-images

	pachctl deploy local

	pachctl deploy microsoft

	pachctl deploy storage

	pachctl deploy storage amazon

	pachctl deploy storage google

	pachctl deploy storage microsoft

	pachctl diff

	pachctl diff file

	pachctl edit

	pachctl edit pipeline

	pachctl enterprise

	pachctl enterprise activate

	pachctl enterprise get-state

	pachctl extract

	pachctl extract pipeline

	pachctl finish

	pachctl finish commit

	pachctl finish transaction

	pachctl flush

	pachctl flush commit

	pachctl flush job

	pachctl fsck

	pachctl garbage-collect

	pachctl get

	pachctl get file

	pachctl get object

	pachctl get tag

	pachctl glob

	pachctl glob file

	pachctl inspect

	pachctl inspect cluster

	pachctl inspect commit

	pachctl inspect datum

	pachctl inspect file

	pachctl inspect job

	pachctl inspect pipeline

	pachctl inspect repo

	pachctl inspect transaction

	pachctl list

	pachctl list branch

	pachctl list commit

	pachctl list datum

	pachctl list file

	pachctl list job

	pachctl list pipeline

	pachctl list repo

	pachctl list transaction

	pachctl logs

	pachctl mount

	pachctl port-forward

	pachctl put

	pachctl put file

	pachctl restart

	pachctl restart datum

	pachctl restore

	pachctl resume

	pachctl resume transaction

	pachctl run

	pachctl run pipeline

	pachctl start

	pachctl start commit

	pachctl start pipeline

	pachctl start transaction

	pachctl stop

	pachctl stop job

	pachctl stop pipeline

	pachctl stop transaction

	pachctl subscribe

	pachctl subscribe commit

	pachctl undeploy

	pachctl unmount

	pachctl update-dash

	pachctl update

	pachctl update pipeline

	pachctl update repo

	pachctl version

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl

Synopsis

Access the Pachyderm API.

Environment variables:
PACHD_ADDRESS=:, the pachd server to connect to (e.g. 127.0.0.1:30650).
PACH_CONFIG=, the path where pachctl will attempt to load your pach config.
JAEGER_ENDPOINT=:, the Jaeger server to connect to, if PACH_TRACE is set
PACH_TRACE={true,false}, If true, and JAEGER_ENDPOINT is set, attach a
Jaeger trace to any outgoing RPCs

 pachctl auth

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth

Auth commands manage access to data in a Pachyderm cluster

Synopsis

Auth commands manage access to data in a Pachyderm cluster

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl auth activate

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth activate

Activate Pachyderm’s auth system

Synopsis

Activate Pachyderm’s auth system, and restrict access to existing data to the
user running the command (or the argument to –initial-admin), who will be the
first cluster admin

pachctl auth activate

Options

 --initial-admin string The subject (robot user or github user) who
 will be the first cluster admin; the user running 'activate' will identify as
 this user once auth is active. If you set 'initial-admin' to a robot
 user, pachctl will print that robot user's Pachyderm token; this token is
 effectively a root token, and if it's lost you will be locked out of your
 cluster

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl auth check

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth check

Check whether you have reader/writer/etc-level access to ‘repo’

Synopsis

Check whether you have reader/writer/etc-level access to ‘repo’. For example, ‘pachctl auth check reader private-data’ prints “true” if the you have at least “reader” access to the repo “private-data” (you could be a reader, writer, or owner). Unlike pachctl auth get, you do not need to have access to ‘repo’ to discover your own access level.

pachctl auth check (none|reader|writer|owner) <repo>

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl auth deactivate

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth deactivate

Delete all ACLs, tokens, and admins, and deactivate Pachyderm auth

Synopsis

Deactivate Pachyderm’s auth system, which will delete ALL auth tokens, ACLs and admins, and expose all data in the cluster to any user with cluster access. Use with caution.

pachctl auth deactivate

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl auth get-auth-token

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth get-auth-token

Get an auth token that authenticates the holder as “username”

Synopsis

Get an auth token that authenticates the holder as “username”; this can only be called by cluster admins

pachctl auth get-auth-token <username>

Options

 -q, --quiet if set, only print the resulting token (if successful). This is useful for scripting, as the output can be piped to use-auth-token

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl auth get-config

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth get-config

Retrieve Pachyderm’s current auth configuration

Synopsis

Retrieve Pachyderm’s current auth configuration

pachctl auth get-config

Options

 -o, --output-format string output format ("json" or "yaml") (default "json")

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl auth get

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth get

Get the ACL for ‘repo’ or the access that ‘username’ has to ‘repo’

Synopsis

Get the ACL for ‘repo’ or the access that ‘username’ has to ‘repo’. For example, ‘pachctl auth get github-alice private-data’ prints “reader”, “writer”, “owner”, or “none”, depending on the privileges that “github-alice” has in “repo”. Currently all Pachyderm authentication uses GitHub OAuth, so ‘username’ must be a GitHub username

pachctl auth get [<username>] <repo>

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl auth list-admins

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth list-admins

List the current cluster admins

Synopsis

List the current cluster admins

pachctl auth list-admins

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl auth login

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth login

Log in to Pachyderm

Synopsis

Login to Pachyderm. Any resources that have been restricted to the account you have with your ID provider (e.g. GitHub, Okta) account will subsequently be accessible.

pachctl auth login

Options

 -o, --one-time-password If set, authenticate with a Dash-provided One-Time Password, rather than via GitHub

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl auth logout

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth logout

Log out of Pachyderm by deleting your local credential

Synopsis

Log out of Pachyderm by deleting your local credential. Note that it’s not necessary to log out before logging in with another account (simply run ‘pachctl auth login’ twice) but ‘logout’ can be useful on shared workstations.

pachctl auth logout

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl auth modify-admins

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth modify-admins

Modify the current cluster admins

Synopsis

Modify the current cluster admins. –add accepts a comma-separated list of users to grant admin status, and –remove accepts a comma-separated list of users to revoke admin status

pachctl auth modify-admins

Options

 --add strings Comma-separated list of users to grant admin status
 --remove strings Comma-separated list of users revoke admin status

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl auth set-config

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth set-config

Set Pachyderm’s current auth configuration

Synopsis

Set Pachyderm’s current auth configuration

pachctl auth set-config

Options

 -f, --file string input file (to use as the new config (default "-")

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl auth set

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth set

Set the scope of access that ‘username’ has to ‘repo’

Synopsis

Set the scope of access that ‘username’ has to ‘repo’. For example, ‘pachctl auth set github-alice none private-data’ prevents “github-alice” from interacting with the “private-data” repo in any way (the default). Similarly, ‘pachctl auth set github-alice reader private-data’ would let “github-alice” read from “private-data” but not create commits (writer) or modify the repo’s access permissions (owner). Currently all Pachyderm authentication uses GitHub OAuth, so ‘username’ must be a GitHub username

pachctl auth set <username> (none|reader|writer|owner) <repo>

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl auth use-auth-token

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth use-auth-token

Read a Pachyderm auth token from stdin, and write it to the current user’s Pachyderm config file

Synopsis

Read a Pachyderm auth token from stdin, and write it to the current user’s Pachyderm config file

pachctl auth use-auth-token

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl auth whoami

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl auth whoami

Print your Pachyderm identity

Synopsis

Print your Pachyderm identity.

pachctl auth whoami

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl completion

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl completion

Print or install the bash completion code.

Synopsis

Print or install the bash completion code. This should be placed as the file pachctl in the bash completion directory (by default this is /etc/bash_completion.d. If bash-completion was installed via homebrew, this would be $(brew --prefix)/etc/bash_completion.d.)

pachctl completion

Options

 --install Install the completion.
 --path /etc/bash_completion.d/ Path to install the completion to. This will default to /etc/bash_completion.d/ if unspecified. (default "/etc/bash_completion.d/pachctl")

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config

Manages the pachyderm config.

Synopsis

Gets/sets pachyderm config values.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config delete

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config delete

Commands for deleting pachyderm config values

Synopsis

Commands for deleting pachyderm config values

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config delete context

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config delete context

Deletes a context.

Synopsis

Deletes a context.

pachctl config delete context

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config get

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config get

Commands for getting pachyderm config values

Synopsis

Commands for getting pachyderm config values

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config get active-context

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config get active-context

Gets the currently active context.

Synopsis

Gets the currently active context.

pachctl config get active-context

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config get context

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config get context

Gets a context.

Synopsis

Gets the config of a context by its name.

pachctl config get context

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config get metrics

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config get metrics

Gets whether metrics are enabled.

Synopsis

Gets whether metrics are enabled.

pachctl config get metrics

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config list

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config list

Commands for listing pachyderm config values

Synopsis

Commands for listing pachyderm config values

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config list context

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config list context

Lists contexts.

Synopsis

Lists contexts.

pachctl config list context

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config set

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config set

Commands for setting pachyderm config values

Synopsis

Commands for setting pachyderm config values

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config set active-context

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config set active-context

Sets the currently active context.

Synopsis

Sets the currently active context.

pachctl config set active-context

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config set context

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config set context

Set a context.

Synopsis

Set a context config from a given name and JSON stdin.

pachctl config set context

Options

 --overwrite Overwrite a context if it already exists.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config set metrics

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config set metrics

Sets whether metrics are enabled.

Synopsis

Sets whether metrics are enabled.

pachctl config set metrics

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config update

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config update

Commands for updating pachyderm config values

Synopsis

Commands for updating pachyderm config values

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl config update context

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl config update context

Updates a context.

Synopsis

Updates an existing context config from a given name.

pachctl config update context

Options

 --pachd-address string Set a new name pachd address.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl copy

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl copy

Copy a Pachyderm resource.

Synopsis

Copy a Pachyderm resource.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl copy file

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl copy file

Copy files between pfs paths.

Synopsis

Copy files between pfs paths.

pachctl copy file <src-repo>@<src-branch-or-commit>:<src-path> <dst-repo>@<dst-branch-or-commit>:<dst-path>

Options

 -o, --overwrite Overwrite the existing content of the file, either from previous commits or previous calls to 'put file' within this commit.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl create

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl create

Create a new instance of a Pachyderm resource.

Synopsis

Create a new instance of a Pachyderm resource.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl create branch

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl create branch

Create a new branch, or update an existing branch, on a repo.

Synopsis

Create a new branch, or update an existing branch, on a repo, starting a commit on the branch will also create it, so there’s often no need to call this.

pachctl create branch <repo>@<branch-or-commit>

Options

 --head string The head of the newly created branch.
 -p, --provenance []string The provenance for the branch. format: <repo>@<branch-or-commit> (default [])

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl create pipeline

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl create pipeline

Create a new pipeline.

Synopsis

Create a new pipeline from a pipeline specification. For details on the format, see http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html.

pachctl create pipeline

Options

 -b, --build If true, build and push local docker images into the docker registry.
 -f, --file string The JSON file containing the pipeline, it can be a url or local file. - reads from stdin. (default "-")
 -p, --push-images If true, push local docker images into the docker registry.
 -r, --registry string The registry to push images to. (default "docker.io")
 -u, --username string The username to push images as, defaults to your docker username.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl create repo

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl create repo

Create a new repo.

Synopsis

Create a new repo.

pachctl create repo <repo>

Options

 -d, --description string A description of the repo.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl debug

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl debug

Debug commands for analyzing a running cluster.

Synopsis

Debug commands for analyzing a running cluster.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl debug binary

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl debug binary

Return the binary the server is running.

Synopsis

Return the binary the server is running.

pachctl debug binary

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl debug dump

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl debug dump

Return a dump of running goroutines.

Synopsis

Return a dump of running goroutines.

pachctl debug dump

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl debug pprof

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl debug pprof

Analyze a profile of pachd in pprof.

Synopsis

Analyze a profile of pachd in pprof.

pachctl debug pprof <profile>

Options

 --binary-file string File to write the binary to. (default "binary")
 -d, --duration duration Duration to run a CPU profile for. (default 1m0s)
 --profile-file string File to write the profile to. (default "profile")

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl debug profile

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl debug profile

Return a profile from the server.

Synopsis

Return a profile from the server.

pachctl debug profile <profile>

Options

 -d, --duration duration Duration to run a CPU profile for. (default 1m0s)

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl delete

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl delete

Delete an existing Pachyderm resource.

Synopsis

Delete an existing Pachyderm resource.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl delete all

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl delete all

Delete everything.

Synopsis

Delete all repos, commits, files, pipelines and jobs.
This resets the cluster to its initial state.

pachctl delete all

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl delete branch

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl delete branch

Delete a branch

Synopsis

Delete a branch, while leaving the commits intact

pachctl delete branch <repo>@<branch-or-commit>

Options

 -f, --force remove the branch regardless of errors; use with care

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl delete commit

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl delete commit

Delete an input commit.

Synopsis

Delete an input commit. An input is a commit which is not the output of a pipeline.

pachctl delete commit <repo>@<branch-or-commit>

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl delete file

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl delete file

Delete a file.

Synopsis

Delete a file.

pachctl delete file <repo>@<branch-or-commit>:<path/in/pfs>

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl delete job

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl delete job

Delete a job.

Synopsis

Delete a job.

pachctl delete job <job>

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl delete pipeline

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl delete pipeline

Delete a pipeline.

Synopsis

Delete a pipeline.

pachctl delete pipeline (<pipeline>|--all)

Options

 --all delete all pipelines
 -f, --force delete the pipeline regardless of errors; use with care

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl delete repo

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl delete repo

Delete a repo.

Synopsis

Delete a repo.

pachctl delete repo <repo>

Options

 --all remove all repos
 -f, --force remove the repo regardless of errors; use with care

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl delete transaction

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl delete transaction

Cancel and delete an existing transaction.

Synopsis

Cancel and delete an existing transaction.

pachctl delete transaction [<transaction>]

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl deploy

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl deploy

Deploy a Pachyderm cluster.

Synopsis

Deploy a Pachyderm cluster.

Options

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 -c, --context string Name of the context to add to the pachyderm config.
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to.
 --new-hash-tree-flag (feature flag) Do not set, used for testing
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output format. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl deploy amazon

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl deploy amazon

Deploy a Pachyderm cluster running on AWS.

Synopsis

Deploy a Pachyderm cluster running on AWS.
<bucket-name>: An S3 bucket where Pachyderm will store PFS data.
: The AWS region where Pachyderm is being deployed (e.g. us-west-1)
<disk-size>: Size of EBS volumes, in GB (assumed to all be the same).

 pachctl deploy custom

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl deploy custom

Deploy a custom Pachyderm cluster configuration

Synopsis

Deploy a custom Pachyderm cluster configuration.
If

 pachctl deploy export-images

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl deploy export-images

Export a tarball (to stdout) containing all of the images in a deployment.

Synopsis

Export a tarball (to stdout) containing all of the images in a deployment.

pachctl deploy export-images <output-file>

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 -c, --context string Name of the context to add to the pachyderm config.
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to.
 --new-hash-tree-flag (feature flag) Do not set, used for testing
 --no-color Turn off colors.
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output format. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl deploy google

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl deploy google

Deploy a Pachyderm cluster running on Google Cloud Platform.

Synopsis

Deploy a Pachyderm cluster running on Google Cloud Platform.
<bucket-name>: A Google Cloud Storage bucket where Pachyderm will store PFS data.
<disk-size>: Size of Google Compute Engine persistent disks in GB (assumed to all be the same).
<credentials-file>: A file containing the private key for the account (downloaded from Google Compute Engine).

pachctl deploy google <bucket-name> <disk-size> [<credentials-file>]

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 -c, --context string Name of the context to add to the pachyderm config.
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to.
 --new-hash-tree-flag (feature flag) Do not set, used for testing
 --no-color Turn off colors.
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output format. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl deploy import-images

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl deploy import-images

Import a tarball (from stdin) containing all of the images in a deployment and push them to a private registry.

Synopsis

Import a tarball (from stdin) containing all of the images in a deployment and push them to a private registry.

pachctl deploy import-images <input-file>

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 -c, --context string Name of the context to add to the pachyderm config.
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to.
 --new-hash-tree-flag (feature flag) Do not set, used for testing
 --no-color Turn off colors.
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output format. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl deploy list-images

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl deploy list-images

Output the list of images in a deployment.

Synopsis

Output the list of images in a deployment.

pachctl deploy list-images

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 -c, --context string Name of the context to add to the pachyderm config.
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to.
 --new-hash-tree-flag (feature flag) Do not set, used for testing
 --no-color Turn off colors.
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output format. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl deploy local

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl deploy local

Deploy a single-node Pachyderm cluster with local metadata storage.

Synopsis

Deploy a single-node Pachyderm cluster with local metadata storage.

pachctl deploy local

Options

 -d, --dev Deploy pachd with local version tags, disable metrics, expose Pachyderm's object/block API, and use an insecure authentication mechanism (do not set on any cluster with sensitive data)
 --host-path string Location on the host machine where PFS metadata will be stored. (default "/var/pachyderm")

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 -c, --context string Name of the context to add to the pachyderm config.
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to.
 --new-hash-tree-flag (feature flag) Do not set, used for testing
 --no-color Turn off colors.
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output format. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl deploy microsoft

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl deploy microsoft

Deploy a Pachyderm cluster running on Microsoft Azure.

Synopsis

Deploy a Pachyderm cluster running on Microsoft Azure.
: An Azure container where Pachyderm will store PFS data.
<disk-size>: Size of persistent volumes, in GB (assumed to all be the same).

 pachctl deploy storage

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl deploy storage

Deploy credentials for a particular storage provider.

Synopsis

Deploy credentials for a particular storage provider, so that Pachyderm can ingress data from and egress data to it.

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 -c, --context string Name of the context to add to the pachyderm config.
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to.
 --new-hash-tree-flag (feature flag) Do not set, used for testing
 --no-color Turn off colors.
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output format. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl deploy storage amazon

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl deploy storage amazon

Deploy credentials for the Amazon S3 storage provider.

Synopsis

Deploy credentials for the Amazon S3 storage provider, so that Pachyderm can ingress data from and egress data to it.

pachctl deploy storage amazon <region> <access-key-id> <secret-access-key> [<session-token>]

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 -c, --context string Name of the context to add to the pachyderm config.
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to.
 --new-hash-tree-flag (feature flag) Do not set, used for testing
 --no-color Turn off colors.
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output format. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl deploy storage google

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl deploy storage google

Deploy credentials for the Google Cloud storage provider.

Synopsis

Deploy credentials for the Google Cloud storage provider, so that Pachyderm can ingress data from and egress data to it.

pachctl deploy storage google <credentials-file>

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 -c, --context string Name of the context to add to the pachyderm config.
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to.
 --new-hash-tree-flag (feature flag) Do not set, used for testing
 --no-color Turn off colors.
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output format. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl deploy storage microsoft

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl deploy storage microsoft

Deploy credentials for the Azure storage provider.

Synopsis

Deploy credentials for the Azure storage provider, so that Pachyderm can ingress data from and egress data to it.

pachctl deploy storage microsoft <account-name> <account-key>

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 -c, --context string Name of the context to add to the pachyderm config.
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to.
 --new-hash-tree-flag (feature flag) Do not set, used for testing
 --no-color Turn off colors.
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output format. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl diff

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl diff

Show the differences between two Pachyderm resources.

Synopsis

Show the differences between two Pachyderm resources.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl diff file

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl diff file

Return a diff of two file trees.

Synopsis

Return a diff of two file trees.

pachctl diff file <new-repo>@<new-branch-or-commit>:<new-path> [<old-repo>@<old-branch-or-commit>:<old-path>]

Examples

Return the diff of the file "path" of the repo "foo" between the head of the
"master" branch and its parent.
$ pachctl diff file foo@master:path

Return the diff between the master branches of repos foo and bar at paths
path1 and path2, respectively.
$ pachctl diff file foo@master:path1 bar@master:path2

Options

 --diff-command string Use a program other than git to diff files.
 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 --name-only Show only the names of changed files.
 --no-pager Don't pipe output into a pager (i.e. less).
 -s, --shallow Don't descend into sub directories.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl edit

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl edit

Edit the value of an existing Pachyderm resource.

Synopsis

Edit the value of an existing Pachyderm resource.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl edit pipeline

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl edit pipeline

Edit the manifest for a pipeline in your text editor.

Synopsis

Edit the manifest for a pipeline in your text editor.

pachctl edit pipeline <pipeline>

Options

 --editor string Editor to use for modifying the manifest.
 --reprocess If true, reprocess datums that were already processed by previous version of the pipeline.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl enterprise

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl enterprise

Enterprise commands enable Pachyderm Enterprise features

Synopsis

Enterprise commands enable Pachyderm Enterprise features

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl enterprise activate

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl enterprise activate

Activate the enterprise features of Pachyderm with an activation code

Synopsis

Activate the enterprise features of Pachyderm with an activation code

pachctl enterprise activate <activation-code>

Options

 --expires string A timestamp indicating when the token provided above should expire (formatted as an RFC 3339/ISO 8601 datetime). This is only applied if it's earlier than the signed expiration time encoded in 'activation-code', and therefore is only useful for testing.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl enterprise get-state

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl enterprise get-state

Check whether the Pachyderm cluster has enterprise features activated

Synopsis

Check whether the Pachyderm cluster has enterprise features activated

pachctl enterprise get-state

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl extract

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl extract

Extract Pachyderm state to stdout or an object store bucket.

Synopsis

Extract Pachyderm state to stdout or an object store bucket.

pachctl extract

Examples

Extract into a local file:
$ pachctl extract > backup

Extract to s3:
$ pachctl extract -u s3://bucket/backup

Options

 --no-objects don't extract from object storage, only extract data from etcd
 -u, --url string An object storage url (i.e. s3://...) to extract to.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl extract pipeline

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl extract pipeline

Return the manifest used to create a pipeline.

Synopsis

Return the manifest used to create a pipeline.

pachctl extract pipeline <pipeline>

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl finish

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl finish

Finish a Pachyderm resource.

Synopsis

Finish a Pachyderm resource.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl finish commit

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl finish commit

Finish a started commit.

Synopsis

Finish a started commit. Commit-id must be a writeable commit.

pachctl finish commit <repo>@<branch-or-commit>

Options

 --description string A description of this commit's contents (synonym for --message)
 -m, --message string A description of this commit's contents (overwrites any existing commit description)

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl finish transaction

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl finish transaction

Execute and clear the currently active transaction.

Synopsis

Execute and clear the currently active transaction.

pachctl finish transaction [<transaction>]

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl flush

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl flush

Wait for the side-effects of a Pachyderm resource to propagate.

Synopsis

Wait for the side-effects of a Pachyderm resource to propagate.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl flush commit

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl flush commit

Wait for all commits caused by the specified commits to finish and return them.

Synopsis

Wait for all commits caused by the specified commits to finish and return them.

pachctl flush commit <repo>@<branch-or-commit> ...

Examples

return commits caused by foo@XXX and bar@YYY
$ pachctl flush commit foo@XXX bar@YYY

return commits caused by foo@XXX leading to repos bar and baz
$ pachctl flush commit foo@XXX -r bar -r baz

Options

 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 --raw disable pretty printing, print raw json
 -r, --repos []string Wait only for commits leading to a specific set of repos (default [])

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl flush job

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl flush job

Wait for all jobs caused by the specified commits to finish and return them.

Synopsis

Wait for all jobs caused by the specified commits to finish and return them.

pachctl flush job <repo>@<branch-or-commit> ...

Examples

Return jobs caused by foo@XXX and bar@YYY.
$ pachctl flush job foo@XXX bar@YYY

Return jobs caused by foo@XXX leading to pipelines bar and baz.
$ pachctl flush job foo@XXX -p bar -p baz

Options

 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 -p, --pipeline []string Wait only for jobs leading to a specific set of pipelines (default [])
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl fsck

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl fsck

Run a file system consistency check on pfs.

Synopsis

Run a file system consistency check on the pachyderm file system, ensuring the correct provenance relationships are satisfied.

pachctl fsck

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl garbage-collect

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl garbage-collect

Garbage collect unused data.

Synopsis

Garbage collect unused data.

When a file/commit/repo is deleted, the data is not immediately removed from
the underlying storage system (e.g. S3) for performance and architectural
reasons. This is similar to how when you delete a file on your computer, the
file is not necessarily wiped from disk immediately.

To actually remove the data, you will need to manually invoke garbage
collection with “pachctl garbage-collect”.

Currently “pachctl garbage-collect” can only be started when there are no
pipelines running. You also need to ensure that there’s no ongoing “put file”.
Garbage collection puts the cluster into a readonly mode where no new jobs can
be created and no data can be added.

Pachyderm’s garbage collection uses bloom filters to index live objects. This
means that some dead objects may erronously not be deleted during garbage
collection. The probability of this happening depends on how many objects you
have; at around 10M objects it starts to become likely with the default values.
To lower Pachyderm’s error rate and make garbage-collection more comprehensive,
you can increase the amount of memory used for the bloom filters with the
–memory flag. The default value is 10MB.

pachctl garbage-collect

Options

 -m, --memory string The amount of memory to use during garbage collection. Default is 10MB. (default "0")

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl get

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl get

Get the raw data represented by a Pachyderm resource.

Synopsis

Get the raw data represented by a Pachyderm resource.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl get file

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl get file

Return the contents of a file.

Synopsis

Return the contents of a file.

pachctl get file <repo>@<branch-or-commit>:<path/in/pfs>

Examples

get file "XXX" on branch "master" in repo "foo"
$ pachctl get file foo@master:XXX

get file "XXX" in the parent of the current head of branch "master"
in repo "foo"
$ pachctl get file foo@master^:XXX

get file "XXX" in the grandparent of the current head of branch "master"
in repo "foo"
$ pachctl get file foo@master^2:XXX

Options

 -o, --output string The path where data will be downloaded.
 -p, --parallelism int The maximum number of files that can be downloaded in parallel (default 10)
 -r, --recursive Recursively download a directory.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl get object

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl get object

Print the contents of an object.

Synopsis

Print the contents of an object.

pachctl get object <hash>

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl get tag

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl get tag

Print the contents of a tag.

Synopsis

Print the contents of a tag.

pachctl get tag <tag>

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl glob

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl glob

Print a list of Pachyderm resources matching a glob pattern.

Synopsis

Print a list of Pachyderm resources matching a glob pattern.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl glob file

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl glob file

Return files that match a glob pattern in a commit.

Synopsis

Return files that match a glob pattern in a commit (that is, match a glob pattern in a repo at the state represented by a commit). Glob patterns are documented here [https://golang.org/pkg/path/filepath/#Match].

pachctl glob file <repo>@<branch-or-commit>:<pattern>

Examples

Return files in repo "foo" on branch "master" that start
with the character "A". Note how the double quotation marks around the
parameter are necessary because otherwise your shell might interpret the "*".
$ pachctl glob file "foo@master:A*"

Return files in repo "foo" on branch "master" under directory "data".
$ pachctl glob file "foo@master:data/*"

Options

 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl inspect

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl inspect

Show detailed information about a Pachyderm resource.

Synopsis

Show detailed information about a Pachyderm resource.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl inspect cluster

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl inspect cluster

Returns info about the pachyderm cluster

Synopsis

Returns info about the pachyderm cluster

pachctl inspect cluster

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl inspect commit

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl inspect commit

Return info about a commit.

Synopsis

Return info about a commit.

pachctl inspect commit <repo>@<branch-or-commit>

Options

 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl inspect datum

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl inspect datum

Display detailed info about a single datum.

Synopsis

Display detailed info about a single datum. Requires the pipeline to have stats enabled.

pachctl inspect datum <job> <datum>

Options

 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl inspect file

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl inspect file

Return info about a file.

Synopsis

Return info about a file.

pachctl inspect file <repo>@<branch-or-commit>:<path/in/pfs>

Options

 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl inspect job

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl inspect job

Return info about a job.

Synopsis

Return info about a job.

pachctl inspect job <job>

Options

 -b, --block block until the job has either succeeded or failed
 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl inspect pipeline

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl inspect pipeline

Return info about a pipeline.

Synopsis

Return info about a pipeline.

pachctl inspect pipeline <pipeline>

Options

 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl inspect repo

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl inspect repo

Return info about a repo.

Synopsis

Return info about a repo.

pachctl inspect repo <repo>

Options

 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl inspect transaction

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl inspect transaction

Print information about an open transaction.

Synopsis

Print information about an open transaction.

pachctl inspect transaction [<transaction>]

Options

 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl list

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl list

Print a list of Pachyderm resources of a specific type.

Synopsis

Print a list of Pachyderm resources of a specific type.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl list branch

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl list branch

Return all branches on a repo.

Synopsis

Return all branches on a repo.

pachctl list branch <repo>

Options

 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl list commit

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl list commit

Return all commits on a repo.

Synopsis

Return all commits on a repo.

pachctl list commit <repo>[@<branch>]

Examples

return commits in repo "foo"
$ pachctl list commit foo

return commits in repo "foo" on branch "master"
$ pachctl list commit foo@master

return the last 20 commits in repo "foo" on branch "master"
$ pachctl list commit foo@master -n 20

return commits in repo "foo" since commit XXX
$ pachctl list commit foo@master --from XXX

Options

 -f, --from string list all commits since this commit
 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 -n, --number int list only this many commits; if set to zero, list all commits
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl list datum

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl list datum

Return the datums in a job.

Synopsis

Return the datums in a job.

pachctl list datum <job>

Options

 --page int Specify the page of results to send
 --pageSize int Specify the number of results sent back in a single page
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl list file

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl list file

Return the files in a directory.

Synopsis

Return the files in a directory.

pachctl list file <repo>@<branch-or-commit>[:<path/in/pfs>]

Examples

list top-level files on branch "master" in repo "foo"
$ pachctl list file foo@master

list files under directory "dir" on branch "master" in repo "foo"
$ pachctl list file foo@master:dir

list top-level files in the parent commit of the current head of "master"
in repo "foo"
$ pachctl list file foo@master^

list top-level files in the grandparent of the current head of "master"
in repo "foo"
$ pachctl list file foo@master^2

list the last n versions of top-level files on branch "master" in repo "foo"
$ pachctl list file foo@master --history n

list all versions of top-level files on branch "master" in repo "foo"
$ pachctl list file foo@master --history all

Options

 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 --history string Return revision history for files. (default "none")
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl list job

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl list job

Return info about jobs.

Synopsis

Return info about jobs.

pachctl list job

Examples

Return all jobs
$ pachctl list job

Return all jobs from the most recent version of pipeline "foo"
$ pachctl list job -p foo

Return all jobs from all versions of pipeline "foo"
$ pachctl list job -p foo --history all

Return all jobs whose input commits include foo@XXX and bar@YYY
$ pachctl list job -i foo@XXX -i bar@YYY

Return all jobs in pipeline foo and whose input commits include bar@YYY
$ pachctl list job -p foo -i bar@YYY

Options

 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 --history string Return jobs from historical versions of pipelines. (default "none")
 -i, --input strings List jobs with a specific set of input commits. format: <repo>@<branch-or-commit>
 --no-pager Don't pipe output into a pager (i.e. less).
 -o, --output string List jobs with a specific output commit. format: <repo>@<branch-or-commit>
 -p, --pipeline string Limit to jobs made by pipeline.
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl list pipeline

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl list pipeline

Return info about all pipelines.

Synopsis

Return info about all pipelines.

pachctl list pipeline [<pipeline>]

Options

 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 --history string Return revision history for pipelines. (default "none")
 --raw disable pretty printing, print raw json
 -s, --spec Output 'create pipeline' compatibility specs.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl list repo

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl list repo

Return all repos.

Synopsis

Return all repos.

pachctl list repo

Options

 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl list transaction

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl list transaction

List transactions.

Synopsis

List transactions.

pachctl list transaction

Options

 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl logs

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl logs

Return logs from a job.

Synopsis

Return logs from a job.

pachctl logs [--pipeline=<pipeline>|--job=<job>] [--datum=<datum>]

Examples

Return logs emitted by recent jobs in the "filter" pipeline
$ pachctl logs --pipeline=filter

Return logs emitted by the job aedfa12aedf
$ pachctl logs --job=aedfa12aedf

Return logs emitted by the pipeline \"filter\" while processing /apple.txt and a file with the hash 123aef
$ pachctl logs --pipeline=filter --inputs=/apple.txt,123aef

Options

 --datum string Filter for log lines for this datum (accepts datum ID)
 -f, --follow Follow logs as more are created.
 --inputs string Filter for log lines generated while processing these files (accepts PFS paths or file hashes)
 --job string Filter for log lines from this job (accepts job ID)
 --master Return log messages from the master process (pipeline must be set).
 -p, --pipeline string Filter the log for lines from this pipeline (accepts pipeline name)
 --raw Return log messages verbatim from server.
 -t, --tail int Lines of recent logs to display.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl mount

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl mount

Mount pfs locally. This command blocks.

Synopsis

Mount pfs locally. This command blocks.

pachctl mount <path/to/mount/point>

Options

 -c, --commits []string Commits to mount for repos, arguments should be of the form "repo@commit" (default [])
 -d, --debug Turn on debug messages.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl port-forward

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl port-forward

Forward a port on the local machine to pachd. This command blocks.

Synopsis

Forward a port on the local machine to pachd. This command blocks.

pachctl port-forward

Options

 --namespace string Kubernetes namespace Pachyderm is deployed in. (default "default")
 -f, --pfs-port uint16 The local port to bind PFS over HTTP to. (default 30652)
 -p, --port uint16 The local port to bind pachd to. (default 30650)
 -x, --proxy-port uint16 The local port to bind Pachyderm's dash proxy service to. (default 30081)
 --remote-port uint16 The remote port that pachd is bound to in the cluster. (default 650)
 -s, --s3gateway-port uint16 The local port to bind the s3gateway to. (default 30600)
 --saml-port uint16 The local port to bind pachd's SAML ACS to. (default 30654)
 -u, --ui-port uint16 The local port to bind Pachyderm's dash service to. (default 30080)

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl put

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl put

Insert data into Pachyderm.

Synopsis

Insert data into Pachyderm.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl put file

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl put file

Put a file into the filesystem.

Synopsis

Put a file into the filesystem. This supports a number of ways to insert data into pfs.

pachctl put file <repo>@<branch-or-commit>[:<path/in/pfs>]

Examples

Put data from stdin as repo/branch/path:
$ echo "data" | pachctl put file repo@branch:/path

Put data from stdin as repo/branch/path and start / finish a new commit on the branch.
$ echo "data" | pachctl put file -c repo@branch:/path

Put a file from the local filesystem as repo/branch/path:
$ pachctl put file repo@branch:/path -f file

Put a file from the local filesystem as repo/branch/file:
$ pachctl put file repo@branch -f file

Put the contents of a directory as repo/branch/path/dir/file:
$ pachctl put file -r repo@branch:/path -f dir

Put the contents of a directory as repo/branch/dir/file:
$ pachctl put file -r repo@branch -f dir

Put the contents of a directory as repo/branch/file, i.e. put files at the top level:
$ pachctl put file -r repo@branch:/ -f dir

Put the data from a URL as repo/branch/path:
$ pachctl put file repo@branch:/path -f http://host/path

Put the data from a URL as repo/branch/path:
$ pachctl put file repo@branch -f http://host/path

Put the data from an S3 bucket as repo/branch/s3_object:
$ pachctl put file repo@branch -r -f s3://my_bucket

Put several files or URLs that are listed in file.
Files and URLs should be newline delimited.
$ pachctl put file repo@branch -i file

Put several files or URLs that are listed at URL.
NOTE this URL can reference local files, so it could cause you to put sensitive
files into your Pachyderm cluster.
$ pachctl put file repo@branch -i http://host/path

Options

 -c, --commit DEPRECATED: Put file(s) in a new commit.
 -f, --file strings The file to be put, it can be a local file or a URL. (default [-])
 --header-records uint the number of records that will be converted to a PFS 'header', and prepended to future retrievals of any subset of data from PFS; needs to be used with --split=(json|line|csv)
 -i, --input-file string Read filepaths or URLs from a file. If - is used, paths are read from the standard input.
 -o, --overwrite Overwrite the existing content of the file, either from previous commits or previous calls to 'put file' within this commit.
 -p, --parallelism int The maximum number of files that can be uploaded in parallel. (default 10)
 -r, --recursive Recursively put the files in a directory.
 --split line Split the input file into smaller files, subject to the constraints of --target-file-datums and --target-file-bytes. Permissible values are line, `json`, `sql` and `csv`.
 --target-file-bytes uint The target upper bound of the number of bytes that each file contains; needs to be used with --split.
 --target-file-datums uint The upper bound of the number of datums that each file contains, the last file will contain fewer if the datums don't divide evenly; needs to be used with --split.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl restart

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl restart

Cancel and restart an ongoing task.

Synopsis

Cancel and restart an ongoing task.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl restart datum

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl restart datum

Restart a datum.

Synopsis

Restart a datum.

pachctl restart datum <job> <datum-path1>,<datum-path2>,...

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl restore

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl restore

Restore Pachyderm state from stdin or an object store.

Synopsis

Restore Pachyderm state from stdin or an object store.

pachctl restore

Examples

Restore from a local file:
$ pachctl restore < backup

Restore from s3:
$ pachctl restore -u s3://bucket/backup

Options

 -u, --url string An object storage url (i.e. s3://...) to restore from.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl resume

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl resume

Resume a stopped task.

Synopsis

Resume a stopped task.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl resume transaction

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl resume transaction

Set an existing transaction as active.

Synopsis

Set an existing transaction as active.

pachctl resume transaction <transaction>

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl run

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl run

Manually run a Pachyderm resource.

Synopsis

Manually run a Pachyderm resource.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl run pipeline

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl run pipeline

Run an existing Pachyderm pipeline on the specified commits or branches.

Synopsis

Run a Pachyderm pipeline on the datums from specific commits. Note: pipelines run automatically when data is committed to them. This command is for the case where you want to run the pipeline on a specific set of data, or if you want to rerun the pipeline.

pachctl run pipeline <pipeline> [commits...]

Examples

 # Rerun the latest job for the "filter" pipeline
 $ pachctl run pipeline filter

 # Reprocess the pipeline "filter" on the data from commits a23e4 and bf363
 $ pachctl run pipeline filter a23e4 and bf363

 # Run the pipeline "filter" on the data from the "staging" branch
 $ pachctl run pipeline filter staging

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl start

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl start

Start a Pachyderm resource.

Synopsis

Start a Pachyderm resource.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl start commit

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl start commit

Start a new commit.

Synopsis

Start a new commit with parent-commit as the parent, or start a commit on the given branch; if the branch does not exist, it will be created.

pachctl start commit <repo>@<branch-or-commit>

Examples

Start a new commit in repo "test" that's not on any branch
$ pachctl start commit test

Start a commit in repo "test" on branch "master"
$ pachctl start commit test@master

Start a commit with "master" as the parent in repo "test", on a new branch "patch"; essentially a fork.
$ pachctl start commit test@patch -p master

Start a commit with XXX as the parent in repo "test", not on any branch
$ pachctl start commit test -p XXX

Options

 --description string A description of this commit's contents (synonym for --message)
 -m, --message string A description of this commit's contents
 -p, --parent string The parent of the new commit, unneeded if branch is specified and you want to use the previous head of the branch as the parent.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl start pipeline

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl start pipeline

Restart a stopped pipeline.

Synopsis

Restart a stopped pipeline.

pachctl start pipeline <pipeline>

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl start transaction

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl start transaction

Start a new transaction.

Synopsis

Start a new transaction.

pachctl start transaction

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl stop

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl stop

Cancel an ongoing task.

Synopsis

Cancel an ongoing task.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl stop job

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl stop job

Stop a job.

Synopsis

Stop a job. The job will be stopped immediately.

pachctl stop job <job>

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl stop pipeline

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl stop pipeline

Stop a running pipeline.

Synopsis

Stop a running pipeline.

pachctl stop pipeline <pipeline>

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl stop transaction

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl stop transaction

Stop modifying the current transaction.

Synopsis

Stop modifying the current transaction.

pachctl stop transaction

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl subscribe

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl subscribe

Wait for notifications of changes to a Pachyderm resource.

Synopsis

Wait for notifications of changes to a Pachyderm resource.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl subscribe commit

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl subscribe commit

Print commits as they are created (finished).

Synopsis

Print commits as they are created in the specified repo and branch. By default, all existing commits on the specified branch are returned first. A commit is only considered ‘created’ when it’s been finished.

pachctl subscribe commit <repo>@<branch>

Examples

subscribe to commits in repo "test" on branch "master"
$ pachctl subscribe commit test@master

subscribe to commits in repo "test" on branch "master", but only since commit XXX.
$ pachctl subscribe commit test@master --from XXX

subscribe to commits in repo "test" on branch "master", but only for new commits created from now on.
$ pachctl subscribe commit test@master --new

Options

 --from string subscribe to all commits since this commit
 --full-timestamps Return absolute timestamps (as opposed to the default, relative timestamps).
 --new subscribe to only new commits created from now on
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl undeploy

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl undeploy

Tear down a deployed Pachyderm cluster.

Synopsis

Tear down a deployed Pachyderm cluster.

pachctl undeploy

Options

 -a, --all
 Delete everything, including the persistent volumes where metadata
 is stored. If your persistent volumes were dynamically provisioned (i.e. if
 you used the "--dynamic-etcd-nodes" flag), the underlying volumes will be
 removed, making metadata such repos, commits, pipelines, and jobs
 unrecoverable. If your persistent volume was manually provisioned (i.e. if
 you used the "--static-etcd-volume" flag), the underlying volume will not be
 removed.
 --namespace string Kubernetes namespace to undeploy Pachyderm from.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl unmount

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl unmount

Unmount pfs.

Synopsis

Unmount pfs.

pachctl unmount <path/to/mount/point>

Options

 -a, --all unmount all pfs mounts

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl update-dash

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl update-dash

Update and redeploy the Pachyderm Dashboard at the latest compatible version.

Synopsis

Update and redeploy the Pachyderm Dashboard at the latest compatible version.

pachctl update-dash

Options

 --dry-run Don't actually deploy Pachyderm Dash to Kubernetes, instead just print the manifest.
 -o, --output string Output format. One of: json|yaml (default "json")

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl update

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl update

Change the properties of an existing Pachyderm resource.

Synopsis

Change the properties of an existing Pachyderm resource.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl update pipeline

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl update pipeline

Update an existing Pachyderm pipeline.

Synopsis

Update a Pachyderm pipeline with a new pipeline specification. For details on the format, see http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html.

pachctl update pipeline

Options

 -b, --build If true, build and push local docker images into the docker registry.
 -f, --file string The JSON file containing the pipeline, it can be a url or local file. - reads from stdin. (default "-")
 -p, --push-images If true, push local docker images into the docker registry.
 -r, --registry string The registry to push images to. (default "docker.io")
 --reprocess If true, reprocess datums that were already processed by previous version of the pipeline.
 -u, --username string The username to push images as, defaults to your OS username.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl update repo

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl update repo

Update a repo.

Synopsis

Update a repo.

pachctl update repo <repo>

Options

 -d, --description string A description of the repo.

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 pachctl version

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.9.3 documentation

 	Pachctl Command Line Tool

pachctl version

Print Pachyderm version information.

Synopsis

Print Pachyderm version information.

pachctl version

Options

 --client-only If set, only print pachctl's version, but don't make any RPCs to pachd. Useful if pachd is unavailable
 --raw disable pretty printing, print raw json
 --timeout string If set, 'pachctl version' will timeout after the given duration (formatted as a golang time duration--a number followed by ns, us, ms, s, m, or h). If --client-only is set, this flag is ignored. If unset, pachctl will use a default timeout; if set to 0s, the call will never time out. (default "default")

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Examples

 Navigation

 	
 index

 	
 previous |

 	Pachyderm 1.9.3 documentation

Examples

OpenCV Edge Detection

This example does edge detection using OpenCV. This is our canonical starter demo. If you haven’t used Pachyderm before, start here. We’ll get you started running Pachyderm locally in just a few minutes and processing sample log lines.

Open CV [http://pachyderm.readthedocs.io/en/stable/getting_started/beginner_tutorial.html]

Word Count (Map/Reduce)

Word count is basically the “hello world” of distributed computation. This example is great for benchmarking in distributed deployments on large swaths of text data.

Word Count [https://github.com/pachyderm/pachyderm/tree/master/examples/word_count]

Periodic Ingress from a Database

This example pipeline executes a query periodically against a MongoDB database outside of Pachyderm. The results of the query are stored in a corresponding output repository. This repository could be used to drive additional pipeline stages periodically based on the results of the query.

Periodic Ingress from MongoDB [https://github.com/pachyderm/pachyderm/tree/master/examples/db]

Lazy Shuffle pipeline

This example demonstrates how lazy shuffle pipeline i.e. a pipeline that shuffles, combines files without downloading/uploading can be created. These types of pipelines are useful for intermediate processing step that aggregates or rearranges data from one or many sources. For more information see [https://pachyderm.readthedocs.io/en/latest/managing_pachyderm/data_management.html]

Lazy Shuffle pipeline [https://github.com/pachyderm/pachyderm/tree/master/examples/shuffle]

Variant Calling and Joint Genotyping with GATK

This example illustrates the use of GATK in Pachyderm for Germline variant calling and joint genotyping. Each stage of this GATK best practice pipeline can be scaled individually and is automatically triggered as data flows into the top of the pipeline. The example follows this tutorial [https://drive.google.com/open?id=0BzI1CyccGsZiQ1BONUxfaGhZRGc] from GATK, which includes more details about the various stages.

GATK - Variant Calling [https://github.com/pachyderm/pachyderm/tree/master/examples/gatk]

Machine Learning

Iris flower classification with R, Python, or Julia

The “hello world” of machine learning implemented in Pachyderm. You can deploy this pipeline using R, Python, or Julia components, where the pipeline includes the training of a SVM, LDA, Decision Tree, or Random Forest model and the subsequent utilization of that model to perform inferences.

R, Python, or Julia - Iris flower classification [https://github.com/pachyderm/pachyderm/tree/master/examples/ml/iris]

Sentiment analysis with Neon

This example implements the machine learning template pipeline discussed in this blog post [https://medium.com/pachyderm-data/sustainable-machine-learning-workflows-8c617dd5506d#.hhkbsj1dn]. It trains and utilizes a neural network (implemented in Python using Nervana Neon) to infer the sentiment of movie reviews based on data from IMDB.

Neon - Sentiment Analysis [https://github.com/pachyderm/pachyderm/tree/master/examples/ml/neon]

pix2pix with TensorFlow

If you haven’t seen pix2pix, check out this great demo [https://affinelayer.com/pixsrv/]. In this example, we implement the training and image translation of the pix2pix model in Pachyderm, so you can generate cat images from edge drawings, day time photos from night time photos, etc.

TensorFlow - pix2pix [https://github.com/pachyderm/pachyderm/tree/master/examples/ml/tensorflow]

Recurrent Neural Network with Tensorflow

Based on this Tensorflow example [https://www.tensorflow.org/tutorials/recurrent#recurrent-neural-networks], this pipeline generates a new Game of Thrones script using a model trained on existing Game of Thrones scripts.

Tensorflow - Recurrent Neural Network [https://github.com/pachyderm/pachyderm/tree/master/examples/ml/rnn]

Distributed Hyperparameter Tuning

This example demonstrates how you can evaluate a model or function in a distributed manner on multiple sets of parameters. In this particular case, we will evaluate many machine learning models, each configured uses different sets of parameters (aka hyperparameters), and we will output only the best performing model or models.

Hyperparameter Tuning [https://github.com/pachyderm/pachyderm/tree/master/examples/ml/hyperparameter]

Spark Example

This example demonstrates integration of Spark with Pachyderm by launching a Spark job on an existing cluster from within a Pachyderm Job. The job uses configuration info that is versioned within Pachyderm, and stores it’s reduced result back into a Pachyderm output repo, maintaining full provenance and version history within Pachyderm, while taking advantage of Spark for computation.

Spark Example [https://github.com/pachyderm/pachyderm/tree/master/examples/spark/pi]

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Index

 Navigation

 	
 index

 	Pachyderm 1.9.3 documentation

Index

 Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/dash_data1.png
®

PACH DASH Search Pachyderm

Home

Recent Changes

Repos

Pipelines

Jobs

Settings

Welcome to PachDash!

Your Pachyderm cluster is empty. Check out the beginner tutorial

Create Repo | ()

Create Pipeline from Spec | (@)

Create Pipeline via form | ("

_images/stats2.png
@ localhost:30080/app/jobs/777b12d4-fab1-4f6F-b1d2-aa408b4d 1a8e

PACH DASH Search Pachyderm
edges/777b12d4

Home

Recent Changes

Created by Pipeline

Repos edges
(| actve pipeine

Updated 2 hours ago
Pipelines 0 active jobs * 1 Inputs * 4 output commits
Jobs
@ 41 datums total O 368
datums processed) 0Binput data downloaded
P P!
Pl 39 datums skipped Q) 0Boutput data uploaded

Transform Details

Image

pachydern/opencv

_images/s_list_of_buckets.png
< C @ localhost:30600

This XML file does not appear to have any style information associated with it. The document tree is shown below.

v<ListAllMyBucketsResult>
v <Owner>
<ID>00000000000000000000000000000000</ID>
<DisplayName>pachyderm</DisplayName>
</Owner>
Vv <Buckets>
v <Bucket>
<Name>master.train</Name>
<CreationDate>2019-07-12T22:09:50.2743912712</CreationDate>
</Bucket>
v <Bucket>
<Name>master.pre_process</Name>
<CreationDate>2019-07-12T21:58:50.9306083522</CreationDate>
</Bucket>
v <Bucket>
<Name>master.split</Name>
<CreationDate>2019-07-12T21:58:09.0745232752</CreationDate>
</Bucket>
v <Bucket>
<Name>stats.split</Name>
<CreationDate>2019-07-12T21:58:09.0745232752</CreationDate>
</Bucket>
v <Bucket>
<Name>master.raw_data</Name>
<CreationDate>2019-07-12T21:36:27.9756703192</CreationDate>
</Bucket>
</Buckets>
</ListAllMyBucketsResult>

_images/saml_dag_images_readable.png
< C @ localhost:30080/app e

Apps €) Pachyderm % Pachyderm [l pachyderm|Re: [} Kubernetes API MW Slack Channels B8 Authentication @ AWSsignin B Docker B Github

PACH DASH Search Pachyderm Q%

msteffen@pachyderm.io

Log out
A Home .
4) RecentChanges images

= Repos '

13'_ Pipelines
W@ Jobs

. !

montage

edges

fundamentals/creating_services.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Creating Services

Services are special kinds of pipelines, rather than processing data, they
serve it to the outside world. For example you might use a service to expose a
Jupyter notebook that’s always got the most up-to-date version of your data
exposed to it. Creating a service is much like creating a pipeline, the only
difference is that your pipeline spec should contain a "Service" field. This
is an example of Jupyter service:

{
 "input": {
 "pfs": {
 "glob": "/",
 "repo": "input"
 }
 },
 "service": {
 "external_port": 30888,
 "internal_port": 8888
 },
 "transform": {
 "cmd": [
 "start-notebook.sh"
],
 "image": "jupyter/datascience-notebook"
 }
}

Accessing Services

The service section specifies 2 ports, "internal_port" and "external_port".
"internal_port" is the port that the code running inside the container (in
this case Jupyter) binds to. "external_port" is the port that will be
exposed outside the container, this value must be in the range 30000-32767.
Once the service is created you should be able to access it by going to
http://<kubernetes-host>:<external_port> on any of the kubernetes nodes.

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/A-B-union-no-names.gif
union inputs: what each
pipeline job will see

1t 24t Bixt 1xt
"input": {
"union": [
{
Tpfs:
"glob":
"repo:
}
1,
{
Tpfst:
"glob":
"repo:
}
¥
1
}

2.4xt

24xt 3t

e,
g

ey
ngn

_images/saml_display_otp.png
PACH DASH

msteffen@pachyderm.io

Log out

Search Pachyderm

GEN

One-Time Password

The authenticate your pachctl dlient, run the following

Note: the provided code can only be used once, and will expire if not used immediately.

_static/up.png

fundamentals/run_pipeline.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Running pipelines on passed commits

Sometimes you need to see the result of merging different commits
to analyze and identify correct combinations and potential flows in
data collection and processing. Or, you just want to rerun a failed job
manually.

Pachyderm enables you to run your pipelines with old commits or in different
handpicked combinations of old commits that are stored in separate
repositories or branches. This functionality is particularly useful for
cross-pipelines, but you can also use it with other types of pipelines.

For example, you have branches A, B, and C. Each of these branches has
had commits on it at various times, and each new commit
triggered a new job from the pipeline.

Your branches have the following commit history:

		Branch A has commits A1, A2, A3, and A4.

		Branch B has commits B1 and B2.

		Branch C has commits C1, C2, and C3.

For example, you need to see the result of the
pipeline with the combination of data after A4, B1, and C2 were committed.
But none of the output commits were triggered on this particular combination.

To get the result of this combination, you can run the pachctl run pipeline cross-pipe command.

Example:

pachctl run pipeline cross-pipe A4 B1 C2

This command triggers a new job that creates a commit on the
pipeline’s output branch with the result of that combination of data.

Because A4 is the head of branch A, you can also omit the A4 commit
in the command and specify only the C2 and B1 commits:

pachctl run pipeline cross-pipe C2 B1

Pachyderm automatically uses the head for any branch that did not have a
commit specified. The order in which you specify the commits does not
matter. Pachyderm knows how to match them to the right place.

Also, you can reference the head commit of a branch by using the branch
name.

Example:

pachctl run pipeline cross-pipe A B1 C2

This behaviour implies that if you want to re-run the pipeline on the
most recent commits, you can just run pachctl run pipeline cross-pipe.

If you try to use a commit from a branch that is not an input
branch, pachctl returns an error.
Similarly, specifying multiple commits from the same branch results in error.

You do not need to run the pachctl run pipeline cross-pipe
command to initiate a newly created pipeline. Pachyderm runs the new
pipelines automatically as you add new commits to the corresponding
input branches.

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/opencv.jpg
“images” “edges”
Data repository Data repository

“edges’
Data pipeline

$ pachctl put-file ...

edges

Running edges.py

_images/stats1.png
€ 5 € [locahomtso0mppipiinesiesses

edges
o Sendsouputo
s @
. s)
. o
¥ en

voss 2 job failures
1jOb SUCCESS mecencions

images

edges

_images/time_windows.png
01-01-17_to_01_03_17

window

window

01-03-17_to_01_05_17

iow e |
window
~

_images/dash_data5.png
Home test_repo

Manually Ingested Repo

Recent Changes No commits yet!

B Odatafiles ®
W Odirectories 5
Pipelines O o8 °

Jobs
Latest content

Commit finished a few seconds ago

Settings
Nothing here yet!

Danger Zone

test_repo

(@) (&)

auth/saml.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Overview

This guide will walk through an example of using Pachyderm’s SAML support. Specifically, we will:

		Activate Pachyderm enterprise and Pachyderm auth

		Configure Pachyderm’s auth system to enable its SAML ACS, receive SAML
assertions, and allow us to log in via Okta

		Log in to both the dash and CLI

Activation

When starting out, we highly recommend running Pachyderm in Minikube, as
mistakes in this configuration could lock you out of your cluster.

To activate Pachyderm enterprise and Pachyderm auth:

pachctl enterprise activate <enterprise code>
pachctl auth activate --initial-admin=robot:admin

At this point, Pachyderm is ready to authenticate & authorize users.

What the --initial-admin flag does is this:

		Pachyderm requires there to be at least one cluster admin if auth is
activated

		Pachyderm’s authentication is built around GitHub by default. Without this
flag, Pachyderm asks the caller to go through an OAuth flow with GitHub, and
then at the conclusion, makes the caller the cluster admin. Then whoever
activated Pachyderm’s auth system can modify it by re-authenticating via
GitHub and performing any necessary actions

		To avoid the OAuth flow, though, it’s also possible to make the initial
cluster admin a “robot user”. This is what
--initial-admin=robot:<something> does.

		Pachyderm will print out a Pachyderm token that authenticates the holder as
this robot user. At any point, you can authenticate as this robot user by
running

$ pachctl auth use-auth-token
Please paste your Pachyderm auth token:
<paste robot token emitted by "pachctl auth activate --initial-admin=robot:admin">
$ # you are now robot:admin, cluster administrator

The rest of this example assumes that your Pachyderm cluster is running in
minikube, and you’re accessing it via pachctl‘s port forwarding. Many of the
SAML service provider URLs below are set to some variation of localhost,
which will only work if you’re using port forwarding and your browser is able
to access Pachyderm via localhost on the port forwarder’s usual ports.

Create IdP test app

The ID provider (IdP) that this example uses is Okta. Here is an example
configuration for an Okta test app that authenticates Okta users
with Pachyderm:

[image: Okta test app config]

Once created, you can get the IdP Metadata URL associated with the test Okta
app here:

[image: Metadata image]

Write Pachyderm config

Broadly, setting an auth config is what enables SAML in Pachyderm
(specifically, it enables Pachyderm’s ACS). Below is an example config that will
allow users to authenticate in your Pachyderm cluster using the Okta app above.
Note that this example assumes

Lookup current config version--pachyderm config has a barrier to prevent
read-modify-write conflicts between admins
live_config_version="$(pachctl auth get-config | jq .live_config_version)"
live_config_version="${live_config_version:-0}"
Set the Pachyderm config
pachctl auth set-config <<EOF
{
 # prevent read-modify-write conflicts by explicitly specifying live version
 "live_config_version": ${live_config_version},
 "id_providers": [
 {
 "name": "okta",
 "description": "Okta test app",
 "saml": {
 "metadata_url": <okta app metadata URL>,
 "group_attribute": "memberOf" # optional: enable group support
 }
 }
],
 "saml_svc_options": {
 # These URLs work if using pachctl port-forward
 "acs_url": "http://localhost:30654/saml/acs",
 "metadata_url": "http://localhost:30654/saml/metadata",
 "dash_url": "http://localhost:30080/auth/autologin",
 }
}
EOF

Logging In

Currently Pachyderm only supports IdP-initiated authentication. To proceed,
configure your Okta app to point to the Pachyderm ACS
(http://localhost:30654/saml/acs if using pachctl‘s port forwarding), then
sign in via the new Okta app in your Okta dashboard.

After clicking on the test Okta app, your browser will do a SAML authentication
handshake with your pachyderm cluster, and you will arrive at your Pachyderm
dashboard fully authenticated. To log in with the Pachyderm CLI, get a One-Time
Password from the Pachyderm dash, and then run pachctl auth login --code=<one-time password> in your terminal.

Groups

If your SAML ID provider supports setting group attributes, you can use groups to manage access in Pachyderm with the "group_attribute" in the IDProvider field of the auth config:

pachctl auth set-config <<EOF
{
 ...
 "id_providers": [
 {
 ...
 "saml": {
 "group_attribute": "memberOf"
 }
 }
],
}
EOF

Then, try:

pachctl create repo group-test
pachctl put file group-test@master -f some-data.txt
pachctl auth set group/saml:"Test Group" reader group-test

Elsewhere:

pachctl auth login --code=<auth code>
pachctl get file group-test@master:some-data.txt # should work for members of "Test Group"

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/IdPMetadata_highlight.png
© 7| Pachyderm

G Sgon on Asigmens

Settngs o

© JEETIISrE——

[[viw s s

@ et 14 ppcatn s i s,

CREDENTIALS DETALS

auth/saml_setup.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Overview

This guide will walk through testing Pachyderm’s experimental SAML support.
These features aren’t integrated into mainline Pachyderm yet and aren’t
available in any official releases. This will describe the process of:

		Activating Pachyderm enterprise and Pachyderm auth

		Configuring Pachyderm’s auth system and enabling its SAML ACS (Assertion
Consumer Service—the HTTP endpoint to which users will forward SAML
assertions).

		Logging in to both the dash and CLI

		Enabling debug logging in case anything goes wrong

Activation

For testing, we highly recommend running Pachyderm in Minikube, in case any
early bugs make it necessary to restart the cluster.

To activate Pachyderm enterprise and Pachyderm auth:

pachctl enterprise activate <enterprise code>
pachctl auth activate --initial-admin=robot:admin

These commands cause Pachyderm’s auth system to start verifying attempts to
read and write Pachyderm data and blocking unauthorized users. Whichever user
ran this command automatically authenticates as robot:admin and has admin
privileges in the cluster (run pachctl auth whoami, as shown below, to
confirm)

Users will either need to set the --initial-admin admin flag or have one
GitHub-based user in the system. The reason:

		Pachyderm requires there to be at least one cluster admin if auth is
activated

		Pachyderm uses GitHub for authentication by default. Without this flag,
Pachyderm asks the caller to go through an OAuth flow with GitHub, and then
at the conclusion, makes the caller the cluster admin. Then whoever
activated Pachyderm’s auth system can assume admin status by
re-authenticating via GitHub and performing any necessary actions

		To avoid the OAuth flow, though, it’s also possible to make the initial
cluster admin a “robot user”. Setting --initial-admin=robot:<something>
does this.

		Pachyderm will print out a Pachyderm token that authenticates the holder as
this robot user. At any point, you can authenticate as this robot user by
running

$ pachctl auth use-auth-token
Please paste your Pachyderm auth token:
<paste robot token emitted by "pachctl auth activate --initial-admin=robot:admin">

$ pachctl auth whoami
You are "robot:admin"
You are an administrator of this Pachyderm cluster

Create IdP test app

This image shows an example configuration for an Okta test app that
authenticates Okta users with Pachyderm:
[image: Okta test app config]

Pachyderm also needs a URL where it can scrape SAML metadata from the ID
provider. All SAML ID providers should provide such a URL; the Okta metadata
URL, for example, can be retrieved here:
[image: Metadata image]

Write Pachyderm config

This enables the Pachyderm ACS. See inline comments

Lookup current config version--pachyderm config has a barrier to prevent
read-modify-write conflicts between admins
live_config_version="$(pachctl auth get-config | jq .live_config_version)"
live_config_version="${live_config_version:-0}"

Set the Pachyderm config
pachctl auth set-config <<EOF
{
 "live_config_version": ${live_config_version},

 "id_providers": [
 {
 "name": "saml",
 "description": "Okta test app metadata",
 "saml": {
 "metadata_url": <okta app metadata URL>,
 "group_attribute": "memberOf"
 }
 }
],

 "saml_svc_options": {
 "acs_url": "http://localhost:30654/saml/acs",
 "metadata_url": "http://localhost:30654/saml/metadata",
 "dash_url": "http://localhost:30080/auth/autologin?lol=wut",
 "session_duration": "8h",
 }
}
EOF

Logging In

Currently Pachyderm only supports IdP-initiated authentication. Configure
an Okta app to point to the Pachyderm ACS
(http://localhost:30654/saml/acs if using pachctl‘s port forwarding, then
sign in via the new Okta app

This should allow you to log in at the Pachyderm dash. To log in with the
Pachyderm CLI, get a One-Time Password from the Pachyderm dash, and then
run pachctl auth login --code=<one-time password> in your terminal.

Other features

Debug Logging

If we run into issues while deploying this, it may be useful to enable
a collection of debug logs that we added during development. To do so,
add the option "debug_logging": true to "saml_svc_options":

pachctl auth set-config <<EOF
{
 ...
 "saml_svc_options": {
 ...
 "debug_logging": true
 }
}
EOF

Groups

Pachyderm has very preliminary, experimental support for groups. While they won’t
appear in ACLs in the dash (and may have other issues), you can experiment using
the CLI by setting "group_attribute" in the IDProvider field of the auth config:

pachctl auth set-config <<EOF
{
 ...
 "id_providers": [
 {
 ...
 "saml": {
 "group_attribute": "memberOf"
 }
 }
],
}
EOF

Then, try:

pachctl create repo group-test
pachctl put file group-test@master -f some-data.txt
pachctl auth set group/saml:"Test Group" reader group-test

Elsewhere:

pachctl auth login --code=<auth code>
pachctl get file group-test@master:some-data.txt # should work for members of "Test Group"

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/1-1-datum-relationship.gif
edges

1:1 datum:datum relationship

_images/deferred_processing.gif
Repo: Data

Staging

Commit
0

Pipeline: Foo
Input Repo: Data (master branch)

Jobs:
D Input_Commit Status

auth/saml_usage.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Overview

This guide will walk through an example of using Pachyderm’s experimental SAML
support. We’ll describe:

		Authenticating via a SAML ID Provider

		Authenticating in the CLI

		Authorizing a user or group to access data

Setup

Follow the instructions in saml_setup to enable auth in a
Pachyderm cluster and connect it to a SAML ID provider. Then, we’ll authenticate
as a cluster admin in one console and set up our open CV
demo.

In the CLI, that would look like:

(admin)$ pachctl auth use-auth-token
Please paste your Pachyderm auth token:
<auth token>

(admin)$ pachctl auth whoami
You are "robot:admin"
You are an administrator of this Pachyderm cluster

(admin)$ pachctl create repo images
(admin)$ pachctl create pipeline -f examples/opencv/edges.json
(admin)$ pachctl create pipeline -f examples/opencv/montage.json
(admin)$ pachctl put file images@master -i examples/opencv/images.txt
(admin)$ pachctl put file images@master -i examples/opencv/images2.txt

(admin)$ pachctl list repo
NAME CREATED SIZE (MASTER) ACCESS LEVEL
montage 2 minutes ago 1.653MiB OWNER
edges 2 minutes ago 133.6KiB OWNER
images 2 minutes ago 238.3KiB OWNER

(admin)$ pachctl list job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
023a478b16e849b4996c19632fee6782 montage/e3dd7e9cacc5450c92e0e62ab844bd26 2 minutes ago 8 seconds 0 1 + 0 / 1 371.9KiB 1.283MiB success
fe8b409e0db54f96bbb757d4d0679186 edges/9cc634a63f794a14a78e931bea47fa73 2 minutes ago 5 seconds 0 2 + 1 / 3 181.1KiB 111.4KiB success
152cb8a0b0854d44affb4bf4bd57228f montage/82a49260595246fe8f6a7d381e092650 2 minutes ago 5 seconds 0 1 + 0 / 1 79.49KiB 378.6KiB success
86e6eb4ae1e74745b993c2e47eba05e9 edges/ee7ebdddd31d46d1af10cee25f17870b 2 minutes ago 4 seconds 0 1 + 0 / 1 57.27KiB 22.22KiB success

Authenticating via a SAML ID Provider (in the dashboard)

Before authenticating, navigating to the dash will yield a blank screen:

[image: Blocked-out dash]

Even through the dash suggests logging in via GitHub, we will log in using a
SAML IdP (which has hopefully already been configured). To see your Pachyderm
DAG, navigate to your SAML ID provider and sign in to your Pachyderm cluster
there (currently Pachyderm only supports IdP-initiate SAML authentication).

[image: SSO image]

Once you’ve authenticated, you’ll be redirected to the Pachyderm dash (the
redirect URL is configured in the Pachyderm auth system). You’ll be given the
opportunity to generate a one-time password (OTP), though you can always do this
later from the settings panel.

[image: Dash logged in]

After closing the OTP panel, you’ll be able to see the Pachyderm DAG, but you
may not have access to any of the repos inside (a repo that you cannot read is
indicated by a lock symbol):

[image: Dash with locked repos]

Authenticating in the CLI

After authenticating in the dash, you’ll be given the opportunity to generate a
one-time password (OTP) and sign in on the CLI. You can also generate an OTP
from the settings panel:

[image: OTP Image]

(user)$ pachctl auth login --code auth_code:73db4686e3e142508fa74aae920cc58b
(user)$ pachctl auth whoami
You are "saml:msteffen@pachyderm.io"
session expires: 14 Sep 18 20:55 PDT

Note that this session expires after 8 hours. The duration of sessions is
configurable in the Pachyderm auth config, but it’s important that they be
relatively short, as SAML group memberships are only updated when users sign in.
If a user is removed from a group, they’ll still be able to access the group’s
resources until their session expires.

Authorizing a user or group to access data

First, we’ll give the example of an admin granting a user access. This can be
accomplished on the CLI like so:

(admin)$ pachctl auth set saml:msteffen@pachyderm.io reader images

Now, the images repo is no longer locked when that user views the DAG:

[image: Unlocked images repo image]

At this point, you can click on the images repo and preview data inside:

[image: Unlocked images repo image]

Likewise, you can grant access to repos via groups. You’ll need a SAML ID
provider that supports group attributes, and you’ll need to put the name of that
attribute in the Pachyderm auth config. Here, we’ll grant access to the Everyone
group:

(admin)$ pachctl auth set group/saml:Everyone owner edges

Now, the edges repo is also not locked:

[image: Unlocked edges repo]

Also, becase msteffen@pachyderm.io has OWNER provileges in the edges repo
(via the Everyone group), the ACL for edges can be edited.
msteffen@pachyderm.io will use OWNER privileges gained via the Everyone group
to add msteffen@pachyderm.io (the user principal) directly to that ACL:

[image: Adding user to ACL image]

this change is reflected in the CLI as well:

(admin)$ pachctl auth get edges
pipeline:edges: WRITER
pipeline:montage: READER
group/saml:Everyone: OWNER
saml:msteffen@pachyderm.io: READER
robot:admin: OWNER

Conclusion

This is just an example of Pachyderm’s auth system, meant to illustrate the
general nature of available features. Hopefully, it clarifies whether Pachyderm
can meet your requirements.

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/A-B-union-names.gif
same repos, using
“name” attribute in union

1t 24t Bixt 1xt
"input": {
"union": [
{
Tpfst:
“name”:
"glob":
"repo:
}
1,
{
Tpfst:
“name”:
"glob":
"repo:
}
}
1
}

24xt 3t

wr,
iy
g

wcr,
iy
ngn

_images/saml_okta_with_app.png
< C | @ secure | httpsy/dev-667923.oktapreview.com/app/UserHome

Apps €) Pachyderm % Pachyderm [E] pachyderm|Re: [} Kubernetes AP

okta

Work +

©

Pachyderm

_images/ml_workflow.png
Training data
updates

Streaming or
batch input

;b Training

! data

--—>

_images/stats.png
41 Datums

12cf5c14
Folled Datum
Updated a few seconds ago

519ms total time + 6ms downloading 513ms processing + 0ms uploading * 0 B uploaded * 0 B downloaded

70e4991
Folled Datum
Updated a few seconds ago

409ms total time + 15ms downloading * 394ms processing * Oms uploading * 0 B uploaded + 0 B downloaded

002f991a
Skipped Datum
Updated a few seconds ago

total time + downloading * processing * uploading * 0 8 uploaded * 0 B downloaded

09094615
Skipped Datum
Updated a few seconds ago

total time + downloading * processing * uploading * 0 8 uploaded * 0 B downloaded

0d7aec1b

Skipped Datum
Updated a few seconds ago

total time + downloading * processing uploading + 0 B uploaded * 0 B downloaded

_images/incrementality1.png
mypipeline result1

input: R o
glob: /* mypipeline
result1

contributing/docs-style-guide.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Documentation Style Guide

This document provides

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

contributing/gcloud-setup.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Gcloud cluster setup

In order to develop pachyderm against a gcloud-deployed cluster, follow these instructions.

First steps

First follow the general setup instructions [https://github.com/pachyderm/pachyderm/blob/master/doc/contributing/setup.md].

gcloud

Download Page [https://cloud.google.com/sdk/]

Setup Google Cloud Platform via the web

		login with your Gmail or G Suite account
		click the silhouette in the upper right to make sure you’re logged in with the right account

		get your owner/admin to setup a project for you (e.g. YOURNAME-dev)

		then they need to go into the project > settings > permissions and add you
		hint to owner/admin: its the permissions button in one of the left hand popin menus (GKE UI can be confusing)

		you should have an email invite to accept

		click ‘use google APIS’ (or something along the lines of enable/manage APIs)

		click through to google compute engine API and enable it or click the ‘get started’ button to make it provision

Then, locally, run the following commands one at a time:

gcloud auth login
gcloud init

This should have you logged in / w gcloud
The following will only work after your GKE owner/admin adds you to the right project on gcloud:

gcloud config set project YOURNAME-dev
gcloud compute instances list

Now create instance using our bash helper
create_docker_machine

And attach to the right docker daemon
eval "$(docker-machine env dev)"

Setup a project on gcloud

		go to console.cloud.google.com/start

		make sure you’re logged in w your gmail account

		create project ‘YOURNAME-dev’

kubectl

Now that you have gcloud, just do:

gcloud components update kubectl
Now you need to start port forwarding to allow kubectl client talk to the kubernetes service on GCE

portfowarding
To see this alias, look at the bash_helpers

kubectl version
should report a client version, not a server version yet

make launch-kube
to deploy kubernetes service

kubectl version
now you should see a client and server version

docker ps
you should see a few processes

Pachyderm cluster deployment

make launch

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

contributing/coding-conventions.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Coding Conventions

All code in this repo should be written in Go, Shell or Make. Exceptions are
made for things under examples because we want to be able to give people
examples of using the product in other languages. And for things like
doc/conf.py which configures an outside tool we want to use for docs. However
in choosing outside tooling we prefer tools that we can interface with entirely
using Go. Go’s new enough that it’s not always possible to find such a tool so
we expect to make compromises on this. In general you should operate under the
assumption that code written in Go, Shell or Make is accessible to all
developers of the project and code written in other languages is accessible to
only a subset and thus represents a higher liability.

Shell

		https://google.github.io/styleguide/shell.xml

		Scripts should work on macOS as well as Linux.

Go

Go has pretty unified conventions for style, we vastly prefer embracing these
standards to developing our own.

Stylistic Conventions

		We have several Go checks that run as part of CI, those should pass. You can
run them with make pretest and make lint.

		Go Code Review Comments [https://github.com/golang/go/wiki/CodeReviewComments]

		Effective Go [https://golang.org/doc/effective_go.html]

		Command-line flags should use dashes, not underscores.

		Naming
		Please consider package name when selecting an interface name, and avoid redundancy.

		e.g.: storage.Interface is better than storage.StorageInterface.

		Do not use uppercase characters, underscores, or dashes in package names.

		Unless there’s a good reason, the package foo line should match the name
of the directory in which the .go file exists.

		Importers can use a different name if they need to disambiguate.

		Locks should be called lock and should never be embedded (always lock sync.Mutex). When multiple locks are present, give each lock a distinct name
following Go conventions - stateLock, mapLock etc.

Testing Conventions

		All new packages and most new significant functionality must come with test coverage

		Avoid waiting for asynchronous things to happen (e.g. waiting 10 seconds and
assuming that a service will be afterward). Instead you try, wait, retry, etc.
with a limited number of tries. If possible use a method of waiting directly
(e.g. ‘flush commit’ is much better than repeatedly trying to read from a
commit).

Go Modules/Third-Party Code

		Go dependencies are managed with go modules (as of 07/11/2019).

		To add a new package or update a package. Do:
		go get foo
or for a more specific version
go get foo@v1.2.3, go get foo@master, go get foo@e3702bed2

		import foo package to you go code as needed.

		Run go mod vendor

		Note: Go modules requires you clone the repo outside of the $GOPATH or you must pass the GO111MODULE=on flag to any go commands. See wiki page on activating module support [https://github.com/golang/go/wiki/Modules#how-to-install-and-activate-module-support]

		See
The official go modules wiki [https://github.com/golang/go/wiki/Modules]
for more info.

Docs

		PRs for code must include documentation updates that reflect the changes
that the code introduces.

		When writing documentation, follow the Style Guide
conventions.

		PRs that have only documentation changes, such as typos, is a great place
to start and we welcome your help!

		For most documentation PRs, you need to make assets and push the new
assets.go file as well.

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

contributing/setup.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Setup For contributors

General requirements

First, go through the general local installation instructions here [http://docs.pachyderm.io/en/latest/getting_started/local_installation.html]. Additionally, make sure you have the following installed:

		etcd

		golang 1.12+

		docker

		jq [https://stedolan.github.io/jq/]

		pv [http://ivarch.com/programs/pv.shtml]

Testing

In order to run some tests locally, you will need the AWS CLI installed and
configured to access Pachyderm S3 buckets. In order to set this up:

		Message an owner of the Pachyderm AWS account (@jdoliner) to get AWS credentials

		Get back a login link and initial username/password - log in

		Configure your own password

		Go to your account settings => My Security Credentials

		In “Access keys for CLI [...]”, click “Create Access Key”

		On the command-line, run sudo apt install awscli (or equivalent for your platform)

		Run aws configure and fill in these fields:

		AWS Access Key ID - the ID for the new Access Key you created

		AWS Secret Access Key - the secret for the new Access Key you created

		Default region name - us-west-1 might be a good choice

		Default output format - json because why not?

		Test that you can access a Pachyderm S3 bucket:

		aws s3 ls s3://pachyderm-engineering/

Bash helpers

To stay up to date, we recommend doing the following.

First clone the code:
(Note, as of 07/11/19 pachyderm is using go modules and recommends cloning the code outside of the $GOPATH, we use the location ~/workspace as an example, but the code can live anywhere)

cd ~/workspace
git clone git@github.com:pachyderm/pachyderm

Then update your ~/.bash_profile by adding the line:

source ~/workspace/pachyderm/etc/contributing/bash_helpers

And you’ll stay up to date!

Special macOS configuration

File Descriptor Limit

If you’re running tests locally, you’ll need to up your file descriptor limit. To do this, first setup a LaunchDaemon to up the limit with sudo privileges:

sudo cp ~/workspace/pachyderm/etc/contributing/com.apple.launchd.limit.plist /Library/LaunchDaemons/

Once you restart, this will take effect. To see the limits, run:

launchctl limit maxfiles

Before the change is in place you’ll see something like 256 unlimited. After the change you’ll see a much bigger number in the first field. This ups the system wide limit, but you’ll also need to set a per-process limit.

Second, up the per process limit by adding something like this to your ~/.bash_profile :

ulimit -n 12288

Unfortunately, even after setting that limit it never seems to report the updated version. So if you try

ulimit

And just see unlimited, don’t worry, it took effect.

To make sure all of these settings are working, you can test that you have the proper setup by running:

make test-pfs-server

If this fails with a timeout, you’ll probably also see ‘too many files’ type of errors. If that test passes, you’re all good!

Timeout helper

You’ll need the timeout utility to run the make launch task. To install on mac, do:

brew install coreutils

And then make sure to prepend the following to your path:

PATH="/usr/local/opt/coreutils/libexec/gnubin:$PATH"

Dev cluster

Now launch the dev cluster: make launch-dev-vm.

And check it’s status: kubectl get all

pachctl

This will install the dev version of pachctl:

cd ~/workspace/pachyderm
make install
pachctl version

And make sure that $GOPATH/bin is on your $PATH somewhere

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

cookbook/index.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Pachyderm 1.9.3 documentation »

 Cookbook
-=======

Pachyderm cookbook includes scenarios and use cases that you
would typically execute while processing your data in Pachyderm.

		Splitting Data for Distributed Processing

		Combining/Merging/Joining Data

		Example Developer Workflow

		Triggering Pipelines Periodically (cron)

		Creating Machine Learning Workflows

		Processing Time-Windowed Data

		Ingressing From a Separate Object Store

		Utilizing GPUs

		Deferred Processing of Data

		Vault Secret Engine

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

doc-style-guide/index.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Pachyderm Technical Documentation Style Guide

This document provides main guidelines for creating technical content
that describes Pachyderm concepts and operations. This style guide is
based on Google Developer Documentation Style Guide and serves as a quick
reference for everyone who wants to contribute to the Pachyderm documentation.
For a more detailed overview, see the Google Developer Documentation
Style Guide [https://developers.google.com/style/]

Overview

We welcome all contributions to the Pachyderm technical documentation and are
happy to help incorporate your content into our docs! We hope that this
document will assits in answering some of your questions about our
contributing guidelines.

Writing Style

Friendly but not overly colloquial. Avoid jargon, idioms, and references
to pop culture. Use shorter sentences and words over longer alternatives.

Things to avoid:

		“Please” and “thank you”.

		Exclamation marks.

		Announcement of features that have not yet been developed.

		All caps to emphasize the importance.

		Parenthesis as much as possible. Use commas instead.

		Do not use:
		Use:

		We’ll walk you through the installation of the product X. It
might be a bit difficult, but don’t worry, we are here to help.
		This guide walks you through the process of installation of the
product X.

Write in the present tense and in second person

Say “you” instead of “we” and use the present tense where possible. Only use
the future tense when talking about the events that will not happen immediately
but sometime in the future. The future tense introduces uncertainty about
when an action takes places. Therefore, in most cases, use the present tense.

		Do not use:
		Use:

		We are going to create a new configuration file that will describe
our deployment.
		To create a new configuration file that describes our deployment,
complete the following steps.

Write for an international audience

Avoid idioms and jargon and write in simple American English. The content
that you are writing might later be translated into other foreign languages.
Translating simple short phrases is much easier than long sentences. Use
consistent terminology and avoid misplacing modifiers. Spell out abbreviations
on the first occurrence.

		Do not use:
		Use:

		After completing these steps, you are off to the races!
		After you complete these steps, you can start using Pachyderm.

Don’t use: aka LGTM.

Write in active voice

Sentences written in active voice are easier for the reader to understand.
A well-written text has about 95% of sentences written in active voice.
Use passive voice only when the performer of the action is unknown or
to avoid blaming the user for an error.

		Do not use:
		Use:

		This behavior means that transform.err_cmd can be used to
ignore failed datums.
		You can use transform.err_cmd to ignore failed datums.

Put the condition before the steps

If your sentence has a condition, start the sentence with the conditional
clause and add the descriptive instructions after the clause.

		Do not use:
		Use:

		See the Spark documentation for more information.
		For more information, see the Spark documentation.

Use numbered lists for a sequence of steps

If the user needs to follow a set of instructions, organize them in a
numbered list rather than in a bulleted list. Options can be described in a
bulleted list. An exception to this rule is when you have just one step.

		Do not use:
		Use:

		
		Create a configuration and run the following command.

		
		Create a configuration file.

		Run the following command:

Break your content into smaller chunks

Users do not read the whole body of the text. Instead, they skip and
scan through looking for the text structures that stand out, such as
headings, numbered and bulleted lists, tables, and so on. Try to structure
your content so that it is easy to scan through by adding more titles,
organizing instructions in sequences of steps, and adding tables and
lists for properties and descriptions.

Avoid ending a sentence with a preposition

Phrasal verbs are a little bit less formal than single-word verbs. If
possible, replace a phrasal word with a single-word verb equivalent and
if you have to use a phrasal word, avoid finishing the sentence with
a preposition.

		Do not use:
		Use:

		The put file API includes an option for splitting
up the file into separate datums automatically.
		The put file API includes an option for splitting
the file into separate datums automatically.

Use meaningful links

Link text should mean something to the users when they read it. Phrases
like Click here and Read more do not provide useful information.
They might be good for call-to-action (CA) buttons on the marketing part
of the website, but in technical content they introduce uncertainty and
confusion.

Furthermore, if a user generates a list of links or uses a speech recognition
technology to navigate through the page, they use keywords and phrases,
such as “Click <text>”. Generic links are not helpful for them.

Also, use a standard phrase For more information, see <link> to
introduce a link.

		Do not use:
		Use:

		More information about getting your FREE trial token and
activating the dashboard can be found
[here](https://pachyderm.readthedocs.io/en/latest/enterprise/deployment.html#activate-via-the-dashboard).
		For more information, see
[Activate your token by using the dashboard](https://pachyderm.readthedocs.io/en/latest/enterprise/deployment.html#activate-via-the-dashboard).

Markdown vs reSTructuredText

The Pachyderm documentation uses both markdown and reSTructuredText to
author documentation. You can use any format you like with markdown being
slightly more preferred. Although reSTructuredText includes a rich set of
features for authoring documentation, markdown is more widely adopted by
various developer’s communities and is supported by all major open-source
documentation platforms. Therefore, it appears to be a better choice for
authoring the Pachyderm documentation. However, if you are an avid
reSTructuredText advocate, feel free to use .rst. An the end of the day,
technical content is most important.

For the table of contents at the top level and all the descending levels of the
documentation hierarchy, you have to use reSTructuredText. If you add
a new .md or .rst file, you must include it to one of toctree
directives. Otherwise, it does not appear in the rendered ReadTheDocs
documentation.

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_static/file.png

_static/comment-close.png

_static/plus.png

_static/up-pressed.png

_static/comment.png

_static/down.png

_static/comment-bright.png

_static/down-pressed.png

_static/minus.png

_static/ajax-loader.gif

_images/saml_dag_images_and_edges_readable.png
€ C O localhost30080/2pp 2

Apps €) Pachyderm % Pachyderm [E] pachyderm [Re: [) Kubernetes APl B Slack Channels B8 Authentication @ AWSsignin @8 Docker B Github

PACH DASH Search Pachyderm Q %

msteffen@pachyderm.io

Log out
A Home .
9D Recent Changes images
= Repos

=) Pipelines

] Jobs

E o] Settings

montage

_images/saml_dag.png
& C @ localhost:30080/app

Apps €) Pachyderm % Pachyderm [] pachyderm|Re: [} Kubernetes APl MW Slack Channels B8 Authentic

PACH DASH Search Pachyderm Q%

msteffen@pachyderm.io

Log out
A Home %
£D Recent Changes images

Repos '

i Pipelines
edges

Jobs

Settings

&

montage

_images/auth_dash1.png
&

c

localhost:

PACH DASH

settings

Search Pachyderm

Setting

Activation Code

Token expires In 10 years

[NV

Activate Access Controls

Pachyderm's access control system uses GitHub for
authentication. Enter the GitHub ID of at least one initial
cluster administrator (space separated). Once activated, the
admin list can only be edited other admins, so it s strongly

recommended that you include your own GitHub account. tash
[the b
2

_images/auth_dash3.png
& © C | ® localhost:30080/app

PACH DASH ‘Search Pachyderm Q%
dwhitena
, Logout Welce
Your Pachyderm cluste
" Home
9D Recent Changes
= Repos
i Pipelines
@ Jobs
R settings

_images/saml_dag_reading_from_images.png
& = C | © localhost:30080/app/repos/images

PACH DASH

[
msteffen@pachyderm.io
- @pachy!
Log out
A Home
£ RecentChanges
= Repos
13'_ Pipelines
W@ Jobs
o] Settings

W 3datafies € 2commits
B O directories X" branch
Q 23835K8 ® 1 committree
Input to

>
montage edges
B 8 See all detalls
Actve Pipeine Actve Pipeine
Updeted 4 hours ago Updted 4 hours ago
0 active jobs - 2 0 active jobs - 1
inputs inputs

Latest content

Commit finished 4 fours g0

B 4608nDzjpg 586448 a few seconds ag
B 3vNKg0jpg 805888 a few seconds ag
B =20nNqajpg 1048368 a few seconds ag
Seeall..

Access Control

You can read this repo (You are a reader).

View access controls

Apps €) Pachyderm % Pachyderm [l pachyderm|Re: [} Kubernetes APl MW Slack Channels B8 Authentication @ AWSsignin B Docker B Github

images

montage

*

_images/stats3.png
41 Datums © 0
> st

s ot s o 513ms procesig G ploacing -0 ploaded 08 owroaded Datums that
were NOT
successfully

s ot e » 1378 onrioacng 384w proceming o plosing 08 apoeded 0 3 doweioaded processed

B
!

prosaam—

09094615
([ot
[resen——
otl time - downloading »pocessing - uploading - 08 upoaded 0.8 down Datums that were
'b 0d7aectb successfully
e o secoras g processed

_images/cron1.png
4

y

pipeline_tick

timestamp

~—

|
|
|
|
| =

pipeline

Input: cron (tick)

> pipeline

>

output data

N~

= timestamp = = = timestamp = = = timestamp = = = =

_images/N-M-datum-relationship.gif
the best of times, Call me Ishmael. Some years ago—never mind how long precisely-having

the worst of times, little or no money in my purse, and nothing particular to interest me

the age of wisdom, on shore, I thought I would sail about a little and see the watery part of the world.

the age of foolishness, It is a way I have of driving off the spleen and
books

A

wordcount

N:M datum:datum relationship

_images/dash_data3.png
]

[=]

&

PACH DASH Search Pachyderm
X

Home

Recent Changes

Repos

Pipelines

Jobs

Settings

test_repo

K<)
k=)

_images/token.png
Do you
Have an activation code?

This dashboard is part of Pachyderm Enterprise Edition
Register with your email to try it Free

Click here to enter it >
Email you@example.com
REGISTER

_images/saml_log_in.png
& & C |® localhost

©) Pachyderm % Pachyderm chyderm|Re: [) Kubernet k Channels B

Pachyderm
Login

Connect to Pachyderm using your GitHub account: you'll
need to paste the token provided into the box below

Token

search.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

release_instructions.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Release procedure

Types of Releases

ReleaseType	Example Version	Built off master	Can build off any branch	Updates docs	Can host multiple install versions
—	—	—	—	—	—
Point Release	v1.7.2	Y	N	Y	N
Release Candidate	v1.8.0rc1	Y	N	Y	N
Custom Release	v1.8.1-aeeff234982735987affee	N	Y	N	Y

Requirements:

NOTE! At the moment, we require the release script to be run on an ubuntu machine.

This is because of a dependency on CGO via this bug [https://github.com/opencontainers/runc/issues/841]

(We don’t want to enable CGO in part because it doesn’t play nice with macOS for us)

You’ll need the following credentials / tools:

		A GitHub Personal Access Token with repo access
		You can get your personal oauth token here: https://github.com/settings/tokens

		goxc (go get github.com/laher/goxc)

		goxc configured ...
		run: make GITHUB_OAUTH_TOKEN=<persional access token from #1> goxc-generate-local

		sha256sum (if you’re on mac ... brew install coreutils)

		access to homebrew-tap and www repositories

		S3 credentials

		A dockerhub account, with write access to https://hub.docker.com/u/pachyderm/ (run docker login)

If you’re doing a custom release (off a branch that isn’t master), skip to the section at the bottom

Releasing:

		Make sure the HEAD commit (that you’re about to release) has a passing build on travis.

		Make sure that you have no uncommitted files in the current branch. Note that make doc (next step) will fail if there are any uncommited changes in the current branch

		Update src/client/version/client.go and doc/conf.py version values, build a new local version of pachctl, and commit the change (locally—you’ll push it to GitHub in the next step, but this allows make doc to run):

> make VERSION_ADDITIONAL= install
> git add src/client/version/client.go doc/conf.py
> git commit -m"Increment version for $(pachctl version --client-only) point release"

		Run make doc or make VERSION_ADDITIONAL=<rc/version suffix> doc-custom with the new version values.

Note in particular:

		VERSION_ADDITIONAL must be of the form rc<N> to comply with PEP 440 [https://www.python.org/dev/peps/pep-0440], which is needed to make ReadTheDocs create a new docs version for the release[1] [http://docs.readthedocs.io/en/latest/versions.html]. If you’re building a custom release for a client, you don’t need follow this form, but if you’re building a release candidate, you do.

		You can also run just make release-custom to use the commit hash as the version suffix. Note that this is not PEP 440-compliant, but may be useful for custom releases (see below)

		Make sure you add any newly created (untracked) doc files, in addition to docs that have been updated (git commit -a might not get everything)

		At this point, all of our auto-generated documentation should be updated. Push a new commit (to master) with:

> git add doc
> git commit -m"Run make doc for $(pachctl version --client-only) (point release|release candidate|etc)"
> git push origin master

		Run docker login (as the release script pushes new versions of the pachd and job-shim binaries to dockerhub)

		Run make GITHUB_OAUTH_TOKEN=<persional access token from #1> goxc-generate-local if you have not yet (or the next step will fail)

		Run make point-release or make VERSION_ADDITIONAL=rc1 release-candidate

		Commit the changes (the dash compatibility file will have been newly created), e.g.:

> git status
On branch master
....
Untracked files:
 (use "git add <file>..." to include in what will be committed)

 etc/compatibility/1.6.4

nothing added to commit but untracked files present (use "git add" to track)
> git add etc/compatibility/$(pachctl version --client-only)
> git commit -m "Update dash compatibility for pachctl $(pachctl version --client-only)"
> git push origin master

If the release failed

You’ll need to do two things: remove the relevant tags in GitHub, and re-build the docs in ReadTheDocs

		Removing the tag in GitHub

You’ll need to delete the release and the release tag in github. Navigate to
https://www.github.com/pachyderm/pachyderm and click on the Releases tab.
Click on the big, blue version number corresponding to the release you want to
delete, and you should be redirected to a page with just that release, and red
“Delete” button on the top right. Click the delete button

From here, go back to the list of Pachyderm releases, and click “tags”. Click
on the tag for the release you want to delete, and then click “delete” again to
delete the tag.

At this point, you can re-run the release process when you’re ready.

		Updating ReadTheDocs

		Repeat the release process until you’re happy with the tagged release in GitHub.

		Navigate to the Builds [https://readthedocs.org/projects/pachyderm/builds/] page in ReadTheDocs, select the version corresponding to this release next to the “Build Version” button, and then click “Build Version”.

		Check the updated ReadTheDocs page for the release, and make the docs (particularly the download link under “Local Installation”) are correct.

Rolling back a release

If a release has a problem and needs to be withdrawn, the steps in rolling back a release are similar to the steps under “If the release failed”. In general, you’ll need to:

		Delete the tag and GitHub Release for both the bad release and the most recent good release

		Re-release the previous version (to update homebrew)

All of these can be accomplished by:

		Following the steps under “If the release failed” for deleting the tag and GitHub release for both the bad release

		Checking out the git commit associated with the most recent good release (git checkout tags/v<good release>). Save this commit SHA (git rev-list tags/v<good> --max-count=1), in case you need it later, as we’ll be deleting the tag.

		Delete the tag and GitHub release for the last good release (the one you just checked out)

		Syncing your local Git tags with the set of tags on Github (either re-clone the Pachyderm repo, or run git tag -l | xargs git tag -d; git fetch origin master --tags). This prevents the release process from failing with tag already exists.

		Run make point-release (or follow the release process for custom releases)

Custom Release

Occasionally we have a need for a custom release off a non master branch. This is usually because some features we need to supply to users that are incompatible w features on master, but the features on master we need to keep longer term.

Often times we can simply cut custom pachd/worker images for a customer. To do that, just run make custom-images. Otherwise, if the user needs a custom version of pachctl, do the following:

		Run docker login (as the release script pushes new versions of the pachd and job-shim binaries to dockerhub)

		Run make custom-release

Which will create a release like v1.2.3-2342345aefda9879e87ad

Which can be installed like:

$ curl -o /tmp/pachctl.deb -L https://github.com/pachyderm/pachyderm/releases/download/v1.9.3/pachctl_1.9.3_amd64.deb && sudo dpkg -i /tmp/pachctl.deb

Or for mac/brew:

Where 1.7 is the major.minor version of the release you just did,
and you use the right commit SHA as well in the URL
$ brew install https://raw.githubusercontent.com/pachyderm/homebrew-tap/1.7.0-5a590ad9d8e9a09d4029f0f7379462620cf589ee/pachctl@1.7.rb

After a successful release, you’ll need to manually update the release [https://github.com/pachyderm/pachyderm/releases] with the tag and publish as a workaround for this issue [https://github.com/laher/goxc/issues/112].

Then check the docs. Note that ReadTheDocs builds docs from our GitHub master branch. If the docs changes you made aren’t checked into the Pachyderm master branch, they won’t show up. If you have checked in your docs changes, but they’re not showing up as the latest version of the docs, tag your version as ‘active’ on the readthedocs dashboard: https://readthedocs.org/projects/pachyderm/versions/

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

README.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Docs

These docs are rendered and searchable on our Developer Documentation Portal [http://pachyderm.readthedocs.io/en/stable]. Here are a few section links for quick access.

		Getting started with Pachyderm [http://pachyderm.readthedocs.io/en/stable/getting_started/getting_started.html] including installation and a beginner tutorial

		Analyzing your own data [http://pachyderm.readthedocs.io/en/stable/deployment/analyze_your_data.html] and creating custom pipelines

		Advanced features [http://pachyderm.readthedocs.io/en/stable/advanced/advanced.html] of Pachyderm such as provenance and using diffs of data for processing.

		Pachctl API Documentation [http://pachyderm.readthedocs.io/en/stable/pachctl/pachctl.html]

		FAQ [http://pachyderm.readthedocs.io/en/stable/FAQ.html]

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/dash_data4.png
o >

&

PACH DASH

Home

Recent Changes

Repos.
Pipelines

Jobs

Settings

Search Pachyderm

X

test_repo
Manually Ingested Repo
No commits yet!

B Odatafiles

BB Odirectories

Q o8

Created a few seconds ago

0 commits
0 branches

0 commit trees

Latest content
Commit finished a few seconds ago

Nothing here yet!

Danger Zone

DELETE THIS REPO

test_repo

(=7

_images/auth.png
€ C | @ secure | https//pachydermio

Please copy and paste the following token into your Pachyderm login session:

141 cddf5715 S

_images/1-N-datum-relationship.gif
images

&

200 x 200 tiles

1:N datum:datum relationship

_images/opencv-liberty-montage.png
“images” “edges”
Data repository

Data repository

“edges’
pipeline
$ pachctl put-file ...
images
edges

Running edges.py

“montage”
Data repository

“montage”
pipeline

_images/dashboard3.png
O >

B i

PACH DASH

Home

Recent Changes

Repos

Pipelines

Jobs

Settings

Search Pachyderm

X

= montage > O/ >

montage.png

1.28 MB * modified a few seconds ago

From commit: 88220e0457574425a2d4818606d7265d

B montagepng

1345398B a few seconds ago

B montage.png ¢ 1.28 MB e Download

Q

_images/dashboard1.png
Do you
Have an activation code?

This dashboard is part of Pachyderm Enterprise Edition
Register with your email to try it Free

Email you@example.com
REGISTER

_images/no-traces.png
Jaeger v

Jaeger Ul _ Search Compare Dependencies

<« pachd: /pps.API/CreatePipeline 8 Trace Timeline v
March 4, 2019 4:17 PM 609.41ms 1 1 1

Oms 152.35ms 304.7ms 457.06ms 609.41ms

Service & Operation v > ¥ » 0ms 152.35ms 304.7ms 457.06ms 609.41ms

pachd /pps.API/CreatePipeline

_images/join1.png
group e

Input Type: n 3
union A and B Ajson Ajson
Bjson Bijson

_images/healthy.png
Jaeger Ul _ Search Compare Dependencies

< v pachd: /pps.API/CreatePipeline

About Jaeger

8 Trace Timeline v

Trace Start March 4, 2019 4:18 PM Duration 420.47ms Services1 Depth6 Total Spans 69

Oms 105.12ms 210.23ms 315.35ms 420.47ms

= o
—
T

Service & Operation v > ¥ » 0ms 105.12ms 210.23ms 315.35ms 420.47ms
v I pachd /pps.API/CreatePipeline

. ____________________________
\/I pachd /pps.API/CreatePipeline . ___]
> I © pachd & @ pachd /pis.API/InspectRepo []
> I © pachd & @ pachd /pis.API/InspectRepo (]
> | @ pachd » @ pachd /auth APIMhoAmI |
vI pachd /pfs.API/CreateRepo []
vI pachd /pfs.API/CreateRepo []
v | @ pachd /auth APiwhoAmI 1
| @ pachd /auth.Apiwhoami |
| pachd etcd.cet -
I pachd etcd.Txn I
\/I pachd /pfs.API/PutFile]
> I © pachd /pis.API/PUtFile .}
> I pachd » @ pachd /pis.API/InspectBranch |
> | @ pachd » ® pachd /auth APi/GetautToken |
| pachd etcd.cet |
I pachd etcd.Txn |
.}

vI pachd /pfs.API/CreateBranch

R B T T

L

_images/enterprise.png
Interactive
Pipeline Configuration

Pachyderm
Open Source
Core

Administr
Control

Access Controls

Pachyderm
Enterprise
Edition

_images/incrementality3.png
L result1*
mypipeline

input: R mypipeline
glob: /* result1*
result2

_images/dashboard.png
& > C [localhost:38080/app/pipelines/inference IR

PACH DASH ‘Search Pachyder { 0
o - inference
ome
£ RecentChanges
/ \
Sends output to SN
— training ~~

= Repos

inference
1 Pipelines W7 Updated a few seconds ago
312files * 0 dirs * 763820 B * 314 commits

@ s ' '
@ 1activejobs € 314 output commits . v “

attributes model r-test-model julia-test-model

€ 2inputs N 1version
Q7934 KB generated 1 278msavg runtime

Takes input from

)) infers
9 @ N inference

attributes model see all detalls...
Monuoly Ingested Repo Computed Output Repo
Updoted 3 minutes ag0 Updoted 16 minutes g0
Ofiles 81448 Ofiles 53228 l l
Recent Jobs post-processing

d25ba857 80ba12e9 ab01998f 7e
Finished Job Fiished Job Fiished Job Fini
Updated a few seconds ago Updated a few seconds ago Updated a few seconds ago Upe

311 0f 311 datums 310 0f 310 datums 309 of 309 datums

_images/montage-screenshot.png
ImageMagick: -

© ImageMagick: -

_images/stats4.png
©e

o . "

0 PR °)

rosries View the input files
<~ corresponding to

[—— the datum

Aspartofob

[—

Logs
e ol st - et o, TR0 i Tl il

Inout 1o e processe, dontondog ats corresponding
ot e st 1o 8 e to the failure
©

_images/Docker_Desktop_Enable_k8s.png
LA A J Kubernetes

o ma o ¢ @ o

General File Sharing Disk Advanced Proxies Daemon Kubemetes Reset

¥ Enable Kubernetes

Start a Kubernetes singl

ode cluster when starting Docker Desktop.

) Deploy Docker Stacks to Kubernetes by default

Make Kubernetes the default orchestrator for "docker stack” commands
(changes "~/.docker/config json")

() Show system containers (advanced)

Show Kubernetes internal containers when using Docker commands.

Apply

® Docker Engine is running @ Kubernetes is running

_images/auth_dash4.png
€& C | @ localhost:30080/app/repos/test

PACH DASH ‘Search Pachyderm
test
dwhitena anually Ingested Repo
No comm
Log out
B odatafies € 0commits
B Odirectories %* 0branches
Home
L Q os ® ocommittrees
9D Recent Changes
Latest content
Nothing here yet!
= Repos

i Pipelines Access Control te St

You can read, modify, and edit access controls on this repo (You are an owner).

Jobs.
Modify access controls

Settings Danger Zone

&

DELETE THIS REPO

_images/okta_form.png
1 Create SAML Integration

@ s @ o

@ s

cenERAL
Siglesnon URL @ [——
s i for RecipntURL and Dt URL
(00 o s ap o et thor S50 UL
Atoncs U 5P ity D) © e ——

ErTa—

Koo D forrt © e .
Arocaton s @ [ry— 5

ATIREUTE STATEMENTS (0PTIONAL) Leamivore.
Heme Nome ormat (o) Vlue
Unected+ =) =

GROUP ATTRAUTE STATEMENTS (OPTIONAL)

Neme Nome format oo Fter
memeecor Unoeoted+ | saswn « x
g nomer

© Frosewve s ssrion g fom e iomtonsbvs

P

e s e ssrton- s 10 vy h ko yu atred v

_images/saml_editing_acl.png
< C' | @ localhost:30080/app/repos/edges/access-control *

Apps €) Pachyderm % Pachyderm [pachyderm|Re: [) Kubernetes APl B Slack Channels B Authentication @ AWSsignin B Docker Bm Github B Kubernetes

You can read, modify, and edit access controls on this repo.

PACH DASH
Other owners
; msteffen@pachyderm.io Can also read, modify, and edit access controls on this repo
Log out Everyone x
i admin ™
+8 Enter username to add
A Home .
£) RecentChanges Writers images
Can read and modify this repo
= Repos edges x
+8 Enter username to add
=) Pipelines
edges
o obs Readers
Can read this repo
& setings 2% montage x
+2 msteffen@pachyderm.iq montage
Admins

Can read, modify, and edit access controls on any repo

admin

_images/auth_dash5.png
¢ > C [® localhost:30080/app/repos/test/accesscontrol

PACH DASH ‘Search Pachyderm

Access Controls for "test"

dwhitena
You are an admin
, Logout
You can read, modify, and edit access controls on this repo.
~ Home Other owners
Can also read, modify, and edit access controls on this repo
9D Recent Changes
44 Enter GitHub username to add +
= Repos N
Writers

rs

Pipelines. Can read and modify this repo t e st
Jobs * Jdoliner x
S +

Enter GitHub username to add +

&

Settings
Readers

Can read this repo

e‘ Joeyzwicker x
. msteffen x
+

Enter GitHub username to add +

Admins

Can read, modify, and edit access controls on any repo

The list of administrators can be edited in settings

_images/developer_workflow.png
account/name:tag

account/name

5. pull tagged
image from
3. push to registry
registry
tagged with
2. build image commit id
) . 4. update-
. 1. git commit pipeline using
] | hook template with

| pipeline,son |
| template |

tagged image

DOCKERFILE|

|
PR

_images/opencv-liberty.png
“‘images” “edges”
Data repository Data repository

“edges”
pipeline
$ pachctl put-file ...
images
edges

- Running edges.py

_images/edges-screenshot.png
a
£

EINIE]. [© L]

ter liberty.png | display

= 3
e Tt
N T R

_images/incrementality2.png
I
result1
mypipeline L——--

input: R resuilt2 mypipeline
glob: /* result1
result2

_images/dash_data2.png
Repo name

Description (optional)

_images/dashboard2.png
O >

B

PACH DASH

Home

Recent Changes

Repos

Pipelines

Jobs

Settings

Search Pachyderm

X

Created 3 minutes ago

montage
Computed Output Repo

Last commit: a few seconds ago e
A4

Holds output of

montage

Active Pipeline
Updated 3 minutes ago

0 active jobs * 2 inputs * 0 output commits

B 1 datafiles € 1 commits
@B O directories N 1branch
Q 128wm8 ® 1 committree

Latest content

Commit finished a few seconds ago

n montage.png 1345398B a few seconds ago

See all...

Danger Zone

DELETE THIS REPO

images

4

edges

"

montage

o

_images/join2.png
merge
merge

Input Type: atom result_1.json
glob: /* result_2.json
result_3.json

_images/auth_dash2.png
Pachyderm
Login

Connect to Pachyderm using your GitHub account: you'll
need to paste the token provided into the box below.

Token

_images/DFD_Reset_K8s.png
® Docker Engine is running

Restart

‘This will restart Docker Desktop. All containers and settings are
preserved.

Reset Kubernetes cluster

Reset the Kubernetes cluster. and Kubernetes
resources will be deleted.

 Reset diskimage 2}

‘This will solve problems with disk corruption, Docker Engine
not booting

Reset to factory defaults
Removes all settings and data. Just like new.

Uninstall

We are sorry to see you go. This completely uninstalls Docker
Desktop.

running

_images/saml_successfully_logged_in.png
& = C @ localhost:30080/spp/settings/otp

Apps () Pachyderm ¥ Pachyderm [E] pachyderm|Re: [) Kubernetes AP B Slack Channels B Authentication @ AWSsignin B Docker BN Github BE Kubernetes

PACH DASH

Successfully logged in as saml:msteffen@pachyderm.io. To authenticate your CLI, generate a
one-time password now (or later through "settings")

[] :
msteffen@pachyderm.io
- ‘@pachy
Log out
" Home
9D Recent Changes
= Repos
=l Pipelines.
[Jobs

£ settings

pachctl/pachctl_auth_get-otp.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

pachctl auth get-otp

Get a one-time password that authenticates the holder as “username”

Synopsis

Get a one-time password that authenticates the holder as “username”

pachctl auth get-otp <username>

Options inherited from parent commands

 --no-color Turn off colors.
 -v, --verbose Output verbose logs

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

managing_pachyderm/upgrades.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Upgrade Pachyderm

If you need to upgrade Pachyderm from one major version
to another, such as from 1.8.x to 1.9.x, follow the
instructions in the [Migrate between major versions]((./migrations.html).

Upgrades from one minor version to another, such as from version 1.9.0 to
version 1.9.2 do not introduce breaking changes. Therefore, the upgrade
procedure is simple and requires little to no downtime.

Warning: Do not use these steps to upgrade between major versions because
it might result in data corruption.

To upgrade Pachyderm to a minor version, complete the following steps:

		Back up your cluster as described in the Backup and Restore
section.

		Destroy your Pachyderm cluster:

pachctl undeploy

		Upgrade pachctl by using brew for macOS or apt for Linux:

Example:

$ brew upgrade pachyderm/tap/pachctl@1.9
==> Upgrading 1 outdated package:
pachyderm/tap/pachctl@1.9
==> Upgrading pachyderm/tap/pachctl@1.9
...

Note: You need to specify the version of pachctl to which
you want to upgrade. For example, if you want to upgrade 1.9.0 to
1.9.2, add @1.9 at the end of the upgrade path.

		Confirm that the new version has been successfully installed by running
the following command:

$ pachctl version --client-only
COMPONENT VERSION
pachctl 1.9.2

		Redeploy Pachyderm by running the pachctl deploy command
with the same arguments, fields, and storage resources
that you specified when you deployed the previous version
of Pachyderm:

$ pachctl deploy <args>
serviceaccount "pachyderm" created
storageclass "etcd-storage-class" created
service "etcd-headless" created
statefulset "etcd" created
service "etcd" created
service "pachd" created
deployment "pachd" created
service "dash" created
deployment "dash" created
secret "pachyderm-storage-secret" created

Pachyderm is launching. Check its status with "kubectl get all"
Once launched, access the dashboard by running "pachctl port-forward"

The deployment takes some time. You can run kubectl get pods periodically
to check the status of the deployment. When Pachyderm is deployed, the command
shows all pods as READY:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-482120938-np8cc 2/2 Running 0 4m
etcd-0 1/1 Running 0 4m
pachd-3677268306-9sqm0 1/1 Running 0 4m

		Verify that the new version has been deployed:

pachctl version
COMPONENT VERSION
pachctl 1.9.2
pachd 1.9.2

The pachd and pachctl versions must both match the new version.

Troubleshooting Minor Upgrades

This section describes issues that you might run into when
upgrading Pachyderm and provides guidelines on how to resolve
them.

StatefulSets vs static persistent volumes

StatefulSets [https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/] are a mechanism provided in Kubernetes 1.9 and newer to manage the deployment and scaling of applications.
It can use Persistent Volume Provisioning or pre-provisioned PV’s,
both of which are dynamically allocated from Pachyderm’s point of view.
Thus, the --dynamic-etcd-nodes flag to pachctl deploy is used to deploy Pachyderm using StatefulSets.

It is recommended that you deploy Pachyderm using StatefulSets when possible.
All of the instructions for cloud provider deployments do this by default.
We also provide instructions for on-premises deployments using StatefulSets [http://docs.pachyderm.io/en/latest/deployment/on_premises.html#statefulsets].

If you have deployed Pachyderm using StatefulSets,
you can still use the same deploy command to re-deploy Pachyderm.
Kubernetes is smart enough to see the previously utilized volumes and re-use them.

etcd re-deploy problems

Depending on the cloud you are deploying to and the previous deployment configuration,
we have seen certain cases in which volumes don’t get attached to the right nodes on re-deploy (especially when using AWS).
In these scenarios, you may see the etcd pod stuck in a Pending, CrashLoopBackoff, or other failed state.
Most often, deleting the corresponding etcd pod(s) or nodes to redeploy them
or re-deploying all of Pachyderm again will fix the issue.

AlreadyExists errors on re-deploy

Occasionally, you might see errors similar to the following:

Error from server (AlreadyExists): error when creating "STDIN": secrets "pachyderm-storage-secret" already exists

This might happen when re-deploying the enterprise dashboard, for example. These warning are benign.

pachctl connnection problems

When you upgrade Pachyderm versions, you may lose your local port-forward to connect pachctl to your cluster.
If you are not using port-forward and you are instead setting pachd address config value to connect pachctl to your cluster,
the IP address for Pachyderm may have changed.

To fix problems with connections to pachd after upgrading, you can perform the appropriate remedy for your situation:

		Re-run pachctl port-forward &, or

		Set the pachd address config value to the updated value, e.g.: pachctl config update context `pachctl config get active-context` --pachd-address=<cluster ip>:30650

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

managing_pachyderm/migrations.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Migration

		Introduction

		[Note about 1.7 to 1.8 migrations](#note-about-1-7-to-1-8-migrations]

		General migration procedure
		Before you start: backups

		Migration steps
		1. Pause all pipeline and data loading operations

		2. Extract a pachyderm backup with the –no-objects flag

		3. Clone your object store bucket

		4. Restart all pipeline and data loading ops

		5. Deploy a 1.X Pachyderm cluster with cloned bucket

		6. Restore the new 1.X Pachyderm cluster from your backup

		7. Load transactional data from checkpoint into new cluster

		8. Disable the old cluster

		9. Reconfigure new cluster as necessary

Introduction

As new versions of Pachyderm are released, you may need to update your cluster to get access to bug fixes and new features.
These updates fall into two categories, upgrades and migrations.

An upgrade is moving between point releases within the same major release,
like 1.7.2 to 1.7.3.
Upgrades are typically a simple process that require little to no downtime.
They’re covered in a separate document.

Migrations involve moving between major releases,
like 1.8.6 to 1.9.0.
Migration is covered in this document.

In general,
Pachyderm stores all of its state in two places:
etcd
(which in turn stores its state in one or more persistent volumes,
which were created when the Pachyderm cluster was deployed)
and an object store bucket
(something like AWS S3, MinIO, or Azure Blob Storage).

In a migration,
the data structures stored in those locations need to be read, transformed, and rewritten,
so the process involves:

		bringing up a new Pachyderm cluster adjacent to the old pachyderm cluster

		exporting the old Pachdyerm cluster’s repos, pipelines, and input commits

		importing the old cluster’s repos, commits, and pipelines into the new
cluster.

You must perform a migration to move between major releases,
such as 1.8.7 to 1.9.0.

Whether you’re doing an upgrade or migration, it is recommended you backup Pachyderm prior.
That will guarantee you can restore your cluster to its previous, good state.

Note about 1.7 to 1.8 migrations

In Pachyderm 1.8,
we rearchitected core parts of the platform to improve speed and scalability [http://www.pachyderm.io/2018/11/15/performance-improvements.html].
Migrating from 1.7.x to 1.8.x using the procedure below can a fairly lengthy process.
If your requirements fit, it may be easier to create a new 1.8 or greater cluster and reload your latest source data into your input repositories.

You may wish to keep your original 1.7 cluster around in a suspended state, reactivating it in case you need access to that provenance data.

General migration procedure

Before you start: backups

Please refer to the documentation on backing up your cluster.

Migration steps

1. Pause all pipeline and data loading operations

From the directed acyclic graphs (DAG) that define your pachyderm cluster, stop each pipeline step. You can either run a multiline shell command, shown below, or you must, for each pipeline, manually run the stop pipeline command.

pachctl stop pipeline <pipeline-name>

You can confirm each pipeline is paused using the list pipeline command

pachctl list pipeline

Alternatively, a useful shell script for running stop pipeline on all pipelines is included below. It may be necessary to install the utilities used in the script, like jq and xargs, on your system.

pachctl list pipeline --raw \
 | jq -r '.pipeline.name' \
 | xargs -P3 -n1 -I{} pachctl stop pipeline {}

It’s also a useful practice, for simple to moderately complex deployments, to keep a terminal window up showing the state of all running kubernetes pods.

watch -n 5 kubectl get pods

You may need to install the watch and kubectl commands on your system, and configure kubectl to point at the cluster that Pachyderm is running in.

Pausing data loading operations

Input repositories or input repos in Pachyderm are repositories created with the pachctl create repo command.
They’re designed to be the repos at the top of a directed acyclic graph of pipelines.
Pipelines have their own output repos associated with them, and are not considered input repos.
If there are any processes external to pachyderm that put data into input repos using any method
(the Pachyderm APIs, pachctl put file, etc.),
they need to be paused.See Loading data from other sources into pachyderm below for design considerations for those processes that will minimize downtime during a restore or migration.

Alternatively, you can use the following commands to stop all data loading into Pachyderm from outside processes.

Once you have stopped all running pachyderm pipelines, such as with this command,
$ pachctl list pipeline --raw \
| jq -r '.pipeline.name' \
| xargs -P3 -n1 -I{} pachctl stop pipeline {}

all pipelines in your cluster should be suspended. To stop all
data loading processes, we're going to modify the pachd Kubernetes service so that
it only accepts traffic on port 30649 (instead of the usual 30650). This way,
any background users and services that send requests to your Pachyderm cluster
while 'extract' is running will not interfere with the process
#
Backup the Pachyderm service spec, in case you need to restore it quickly
$ kubectl get svc/pach -o json >pach_service_backup_30650.json

Modify the service to accept traffic on port 30649
Note that you'll likely also need to modify your cloud provider's firewall
rules to allow traffic on this port
$ kubectl get svc/pachd -o json | sed 's/30650/30649/g' | kc apply -f -

Modify your environment so that *you* can talk to pachd on this new port
$ pachctl config update context `pachctl config get active-context` --pachd-address=<cluster ip>:30649

Make sure you can talk to pachd (if not, firewall rules are a common culprit)
$ pc version
COMPONENT VERSION
pachctl 1.7.11
pachd 1.7.11

2. Extract a pachyderm backup with the –no-objects flag

This step and the following step, 3. Clone your object store bucket, can be run simultaneously.

Using the pachctl extract command, create the backup you need.

pachctl extract --no-objects > path/to/your/backup/file

You can also use the -u or --url flag to put the backup directly into an object store.

pachctl extract --no-objects --url s3://...

Note that this s3 bucket is different than the s3 bucket will create to clone your object store.
This is merely a bucket you allocated to hold the pachyderm backup without objects.

3. Clone your object store bucket

This step and the prior step,
2. Extract a pachyderm backup with the –no-objects flag,
can be run simultaneously.
Run the command that will clone a bucket in your object store.

Below, we give an example using the Amazon Web Services CLI to clone one bucket to another,
taken from the documentation for that command [https://docs.aws.amazon.com/cli/latest/reference/s3/sync.html].
Similar commands are available for Google Cloud [https://cloud.google.com/storage/docs/gsutil/commands/cp]
and Azure blob storage [https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-linux?toc=%2fazure%2fstorage%2ffiles%2ftoc.json].

aws s3 sync s3://mybucket s3://mybucket2

4. Restart all pipeline and data loading ops

Once the backup and clone operations are complete,
restart all paused pipelines and data loading operations,
setting a checkpoint for the started operations that you can use in step 7. Load transactional data from checkpoint into new cluster, below.
See Loading data from other sources into pachyderm to understand why designing this checkpoint into your data loading systems is important.

From the directed acyclic graphs (DAG) that define your pachyderm cluster,
start each pipeline.
You can either run a multiline shell command,
shown below,
or you must,
for each pipeline,
manually run the ‘start pipeline’ command.

pachctl start pipeline <pipeline-name>

You can confirm each pipeline is started using the list pipeline command

pachctl list pipeline

A useful shell script for running start pipeline on all pipelines is included below.
It may be necessary to install several of the utlilies used in the script, like jq, on your system.

pachctl list pipeline --raw \
 | jq -r '.pipeline.name' \
 | xargs -P3 -n1 -I{} pachctl start pipeline {}

If you used the port-changing technique,
above,
to stop all data loading into Pachyderm from outside processes,
you should change the ports back.

Once you have restarted all running pachyderm pipelines, such as with this command,
$ pachctl list pipeline --raw \
| jq -r '.pipeline.name' \
| xargs -P3 -n1 -I{} pachctl start pipeline {}

all pipelines in your cluster should be restarted. To restart all data loading
processes, we're going to change the pachd Kubernetes service so that
it only accepts traffic on port 30650 again (from 30649).
#
Backup the Pachyderm service spec, in case you need to restore it quickly
$ kubectl get svc/pach -o json >pach_service_backup_30649.json

Modify the service to accept traffic on port 30650, again
$ kubectl get svc/pachd -o json | sed 's/30649/30650/g' | kc apply -f -

Modify your environment so that *you* can talk to pachd on the old port
$ pachctl config update context `pachctl config get active-context` --pachd-address=<cluster ip>:30650

Make sure you can talk to pachd (if not, firewall rules are a common culprit)
$ pc version
COMPONENT VERSION
pachctl 1.7.11
pachd 1.7.11

Your old pachyderm cluster can operate while you’re creating a migrated one.
It’s important that your data loading operations are designed to use the “Loading data from other sources into pachyderm” design criteria below for this to work.

5. Deploy a 1.X Pachyderm cluster with cloned bucket

Create a pachyderm cluster using the bucket you cloned in 3. Clone your object store bucket.

You’ll want to bring up this new pachyderm cluster in a different namespace.
You’ll check at the steps below
to see if there was some kind of problem with the extracted data
and steps 2 and
3 need to be run again.
Once your new cluster is up and you’re connected to it, go on to the next step.

Note that there may be modifications needed to Kubernetes ingress to Pachyderm deployment in the new namespace to avoid port conflicts in the same cluster.
Please consult with your Kubernetes administrator for information on avoiding ingress conflicts,
or check with us in your Pachyderm support channel if you need help.

Important: Use the kubectl config current-config command to confirm you’re talking to the correct kubernetes cluster configuration for the new cluster.

6. Restore the new 1.X Pachyderm cluster from your backup

Using the Pachyderm cluster you deployed in the previous step, 5. Deploy a 1.X pachyderm cluster with cloned bucket, run pachctl restore with the backup you created in 2. Extract a pachyderm backup with the –no-objects flag.

Important: Use the kubectl config current-config command to confirm you’re talking to the correct kubernetes cluster configuration

pachctl restore < path/to/your/backup/file

You can also use the -u or --url flag to get the backup directly from the object store you placed it in

pachctl restore --url s3://...

Note that this s3 bucket is different than the s3 bucket you cloned, above.
This is merely a bucket you allocated to hold the Pachyderm backup without objects.

7. Load transactional data from checkpoint into new cluster

Configure an instance of your data loading systems to point at the new, upgraded pachyderm cluster
and play back transactions from the checkpoint you established in 4. Restart all pipeline and data loading operations.

Perform any reconfiguration to data loading or unloading operations.

Confirm that the data output is as expected and the new cluster is operating as expected.

8. Disable the old cluster

Once you’ve confirmed that the new cluster is operating, you can disable the old cluster.

9. Reconfigure new cluster as necessary

You may also need to reconfigure

		data loading operations from Pachyderm to processes outside of it to work as expected

		Kubernetes ingress and port changes taken to avoid conflicts with the old cluster

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

deployment/configuring_k8s_ingress.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Configuring Kubernetes Ingress for Pachyderm

Coming soon.
This document, when complete, will detail the Kubernetes ingress configuration you’d need for using pachctl and the dashboard outside of the Kubernetes cluster.

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

deployment/single-node.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Single-node Pachyderm Deployments

Coming soon.
This document, when complete, will take you through deploying Pachyderm for personal, low-volume usage.

This is distinct from pachctl deploy local, which is not suitable for anything beyond training and evaluation.

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

deployment/tracing.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Overview

Pachyderm has the ability to trace requests using Jaeger (an implementation of
the OpenTracing API written by Uber). This can be useful when diagnosing slow
clusters.

[image: Successful Trace]

Quickstart

Collecting Traces

To use tracing in Pachyderm, you need to:

		Run Jaeger in Kubernetes

kubectl apply -f etc/deploy/tracing/jaeger-all-in-one.yaml

		Point Pachyderm at Jaeger

For pachctl
$ export JAEGER_ENDPOINT=localhost:14268
$ kubectl port-forward svc/jaeger-collector 14268 & # Collector service

For pachd
$ kubectl delete po -l suite=pachyderm,app=pachd

The port-forward command is necessary because pachctl sends traces to
Jaeger (it actually initiates every trace), and reads the JAEGER_ENDPOINT
environment variable for the address to which it will send the trace info.

Restarting the pachd pod is necessary because pachd also sends trace
information to Jaeger, but it reads the environment variables corresponding
to the Jaeger service[1] on startup to find Jaeger (the Jaeger service is
created by the jaeger-all-in-one.yaml manifest). Killing the pods
restarts them, which causes them to connect to Jaeger.

		Send Pachyderm a traced request

Just set the PACH_TRACE environment variable to “true” before
running any pachctl command (note that JAEGER_ENDPOINT must also be
set/exported):

PACH_TRACE=true pachctl list job # for example

We generally don’t recommend exporting PACH_TRACE because
tracing calls can slow them down somewhat and make interesting traces hard
to find in Jaeger. Therefore you may only want to set this variable for
the specific calls you want to trace.

However, Pachyderm’s client library reads this variable and implements the
relevant tracing, so any binary that uses Pachyderm’s go client library can
trace calls if these variables are set.

Viewing Traces

Just run:

$ kubectl port-forward svc/jaeger-query 16686:80 & # UI service

then connect to localhost:16686 in your browser, and you should see all
collected traces.

[1] https://kubernetes.io/docs/concepts/services-networking/service/#environment-variables

Troubleshooting

		If you see <trace-without-root-span>, this likely means that pachd has
connected to Jaeger, but pachctl has not. Make sure that the
JAEGER_ENDPOINT environment variable is set on your local machine, and
that kubectl port-forward "po/${jaeger_pod}" 14268 is running.

		If you see a trace appear in Jaeger with no subtraces, like so:

[image: Trace with no children]

...this likely means that pachd has not connected to Jaeger, but
pachctl has. Make sure to restart the pachd pods after creating the
Jaeger service in Kubernetes

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

deployment/non-cloud-object-stores.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Deploying Pachyderm On-Premises With Non-Cloud Object Stores

Coming soon.
This document, when complete, will discuss common configurations for on-premises objects stores.

General information on non-cloud object stores

Please see the on-premises introduction to object stores for some general information on object stores and how they’re used with Pachyderm.

EMC ECS

Coming soon.

MinIO

Coming soon.

SwiftStack

Coming soon.

Notes

S3 API Signature Algorithms and Regions

The S3 protocol has two different ways of authenticating requests through its api.
S3v2 has been officially deprecated by Amazon [https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAWSSDK.html#UsingAWSSDK-sig2-deprecation],
so it’s not likely that you’ll run into it.
You don’t need to know the details of how they work
(though you can follow these links, S3v2 & S3v4 [https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html], if you’re curious),
but you may run into issues with either mismatch of the signature method or availability regions.

If you have trouble getting Pachyderm to run,
check your Kubernetes logs for the pachd pod.
Use kubectl get pods to find the name of the pachd pod and
kubectl logs <pachd-pod-name> to get the logs.

If you see an error beginning with

INFO error starting grpc server pfs.NewBlockAPIServer

It could have either of two causes.

Availability Region Mismatch

If the error is of the form

INFO error starting grpc server pfs.NewBlockAPIServer: storage is unable to discern NotExist errors, "The authorization header is malformed; the region 'us-east-1' is wrong; expecting 'z1-a'" should count as NotExist

It may be a known issue [https://github.com/pachyderm/pachyderm/issues/3544] with hardcoded region us-east-1 in the minio libraries.
You can correct this by either using the --isS3V2 flag on your the pachctl deploy custom ... command
or by changing the region of your storage to us-east-1.

Signature version mismatch

You’re not likely to run into this in an on-premises deployment
unless your object store has deliberately been set up to use the deprecated S3v2 signature or
you are running your on-premises deployment against Google Cloud Storage,
which is not recommended (see the section Infrastructure in general).

You’ll need to determine what signature algorithm your object store uses in its S3-compatible API: S3v2 or S3v4.
If it’s S3V2,
you can solve this by using the --isS3V2 flag on your the pachctl deploy custom ... command.

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

deployment/docker_registries.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Working With Docker Registries

Coming soon.
This document, when complete, will take you through on-premises, private Docker registry configuration.

 © Copyright 2019, Pachyderm Inc..
 Created using Sphinx 1.4.4.

deployment/deploy_custom.html

 Navigation

 		
 index

 		Pachyderm 1.9.3 documentation »

Custom Deployments

This document details the various options of the pachctl deploy custom ... command for an on-premises deployment.

Prerequisites

Software you will need

		kubectl [https://kubernetes.io/docs/user-guide/prereqs/]

		pachctl [http://docs.pachyderm.io/en/latest/pachctl/pachctl.html]

Preparing your environment

Please see the introduction to on-premises deployment for steps you need to take prior to creating a Pachydemerm deployment manifest.

Creating a Pachyderm manifest

Please see the introduction to on-premises deployment for an explanation of the differences among static persistent volumes, StatefulSets and StatefulSets with StorageClasses, as well as the meanings of the variables, like PVC_STORAGE_SIZE and OS_ENDPOINT, used below.

Configuring with a static persistent volume

The command you’ll want to run is

$ pachctl deploy custom --persistent-disk aws --object-store s3
 ${PVC STORAGE_NAME} ${PVC STORAGE_SIZE} ${OS_BUCKET_NAME} ${OS_ACCESS_KEY_ID} ${OS_SECRET_KEY} ${OS_ENDPOINT} \
 --static-etcd-volume=${PVC_STORAGE_NAME} \
 --dry-run > pachyderm-with-static-volume.json

Configuring with StatefulSets

The command you’ll want to run is

$ pachctl deploy custom --object-store s3 any-string
 ${P