

 Navigation

 	
 index

 	
 next |

 	Pachyderm 1.8.0 documentation

Pachyderm Developer Documentation

Welcome to the Pachyderm documentation portal! Below you’ll find guides and information for beginners and experienced Pachyderm users. You’ll also find API references docs.

If you can’t find what you’re looking for or have a an issue not mentioned here, we’d love to hear from you either on GitHub [https://github.com/pachyderm/pachyderm], our Users Slack channel [http://slack.pachyderm.io/], or email us at support@pachyderm.io.

Note: if you are using a Pachyderm version < 1.4, you can find relevant docs here [http://docs.pachyderm.io/en/v1.3.18/].

Getting Started

	Getting Started

	Local Installation

	Beginner Tutorial

Pachyderm Fundamentals

	Getting Your Data into Pachyderm

	Creating Analysis Pipelines

	Getting Data Out of Pachyderm

	Deleting Data in Pachyderm

	Updating Pipelines

	Distributed Computing

	Incremental Processing

Pachyderm Enterprise Edition

	Overview

	Deploying Enterprise Edition

	Access Controls

	Advanced Statistics

Deploy Pachyderm

	Overview

	Google Cloud Platform

	Amazon Web Services

	Azure

	OpenShift

	On Premises

	Custom Object Stores

	AWS CloudFront

	Pachyderm Version Upgrades

	Pachyderm Migrations

	Non-Default Namespaces

	RBAC

Manage Pachyderm

	Autoscaling a Pachyderm Cluster

	Data Management Best Practices

	Sharing GPU Resources

	Without configuration

	Configuring your pipelines to share GPUs

	General Troubleshooting

	Deploy Specific Troubleshooting

Full Examples

	Examples

Pachyderm Cookbook

	Splitting Data for Distributed Processing

	Combining/Merging/Joining Data

	Creating Machine Learning Workflows

	Processing Time-Windowed Data

	Utilizing GPUs

	Triggering Pipelines Periodically (cron)

	Deferred Processing of Data

	Ingressing From a Separate Object Store

	Vault Secret Engine

Reference

	Pipeline Specification
	JSON Manifest Format

	The Input Glob Pattern

	PPS Mounts and File Access

	Environment Variables

	Pachctl Command Line Tool
	Synopsis

	Options

	Pachyderm language clients
	Go Client

	Python Client -

	Scala Client

	Other languages

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Getting Started

Welcome to the documentation portal for first time Pachyderm users! We’ve organized information into two sections:

	Local Installation: Get Pachyderm deployed locally on OSX or Linux.

	Beginner Tutorial: Learn to use Pachdyerm through a quick and simple tutorial.

If you’d like to read about the Pachyderm’s open source and enterprise features before actually running it, check out the following:

	The open source core [http://pachyderm.io/open_source.html]

	Enterprise edition [http://pachyderm.io/enterprise.html]

	Use Cases [http://pachyderm.io/use_cases.html]

Looking for more in-depth development docs? Check out the Pachyderm fundamentals:

	Getting data into Pachyderm

	Creating analysis pipelines

	Distributed computing

	Incremental processing

	Getting data out of Pachyderm

	Updating pipelines

Need to see different or more advanced Pachyderm examples? You can find a bunch of them here.

Note - If you’ve already got a Kubernetes cluster running or would rather use AWS, GCE or Azure to deploy Pachyderm, check out our deployment guides.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Local Installation

This guide will walk you through the recommended path to get Pachyderm running locally on OSX or Linux.

If you hit any errors not covered in this guide, check our troubleshooting [http://pachyderm.readthedocs.io/en/stable/getting_started/troubleshooting.html] docs for common errors, submit an issue on GitHub [https://github.com/pachyderm/pachyderm], join our users channel on Slack [http://slack.pachyderm.io/], or email us at support@pachyderm.io and we can help you right away.

Prerequisites

	Minikube (and VirtualBox)

	Pachyderm Command Line Interface

Minikube

Kubernetes offers a fantastic guide to install minikube [http://kubernetes.io/docs/getting-started-guides/minikube]. Follow the Kubernetes installation guide to install Virtual Box, Minikube, and Kubectl. Then come back here to start Minikube:

minikube start

Note: Any time you want to stop and restart Pachyderm, you should start fresh with minikube delete and minikube start. Minikube isn’t meant to be a production environment and doesn’t handle being restarted well without a full wipe.

Pachctl

pachctl is a command-line utility used for interacting with a Pachyderm cluster.

For OSX:
$ brew tap pachyderm/tap && brew install pachyderm/tap/pachctl@1.8

For Debian based linux (64 bit) or Window 10+ on WSL:
$ curl -o /tmp/pachctl.deb -L https://github.com/pachyderm/pachyderm/releases/download/v1.8.0/pachctl_1.8.0_amd64.deb && sudo dpkg -i /tmp/pachctl.deb

For all other linux flavors
$ curl -o /tmp/pachctl.tar.gz -L https://github.com/pachyderm/pachyderm/releases/download/v1.8.0/pachctl_1.8.0_linux_amd64.tar.gz && tar -xvf /tmp/pachctl.tar.gz -C /tmp && sudo cp /tmp/pachctl_1.8.0_linux_amd64/pachctl /usr/local/bin

Note: To install an older version of Pachyderm, navigate to that version using the menu in the bottom left.

To check that installation was successful, you can try running pachctl help, which should return a list of Pachyderm commands.

Deploy Pachyderm

Now that you have Minikube running, it’s incredibly easy to deploy Pachyderm.

$ pachctl deploy local

This generates a Pachyderm manifest and deploys Pachyderm on Kubernetes. It may take a few minutes for the Pachyderm pods to be in a Running state, because the containers have to be pulled from DockerHub. You can see the status of the Pachyderm pods using kubectl get pods. When Pachyderm is ready for use, this should return something similar to:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-6c9dc97d9c-vb972 2/2 Running 0 6m
etcd-7dbb489f44-9v5jj 1/1 Running 0 6m
pachd-6c878bbc4c-f2h2c 1/1 Running 0 6m

Note: If you see a few restarts on the pachd nodes, that’s ok. That simply means that Kubernetes tried to bring up those pods before etcd was ready so it restarted them.

Port Forwarding

The last step is to set up port forwarding so commands you send can reach Pachyderm within the VM. We background this process since port forwarding blocks.

$ pachctl port-forward &

Once port forwarding is complete, pachctl should automatically be connected. Try pachctl version to make sure everything is working.

$ pachctl version
COMPONENT VERSION
pachctl 1.7.0
pachd 1.7.0

We’re good to go!

If for any reason port-forward doesn’t work, you can connect directly by setting ADDRESS to the minikube IP with port 30650.

$ minikube ip
192.168.99.100
$ export ADDRESS=192.168.99.100:30650

Next Steps

Now that you have everything installed and working, check out our Beginner Tutorial to learn the basics of Pachyderm such as adding data and building pipelines for analysis.

The Pachyderm Enterprise dashboard is deployed by default with Pachyderm. You can get a FREE trial token and experiment with this interface to Pachyderm by visiting localhost:30080 in your Internet browser (e.g., Google Chrome).

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Beginner Tutorial

Welcome to the beginner tutorial for Pachyderm! If you’ve already got Pachyderm installed, this guide should take about 15 minutes, and it will introduce you to the basic concepts of Pachyderm.

Image processing with OpenCV

This guide will walk you through the deployment of a Pachyderm pipeline to do some simple edge detection [https://en.wikipedia.org/wiki/Edge_detection] on a few images. Thanks to Pachyderm’s built in processing primatives, we’ll be able to keep our code simple but still run the pipeline in a distributed, streaming fashion. Moreover, as new data is added, the pipeline will automatically process it and output the results.

If you hit any errors not covered in this guide, get help in our public commity Slack [http://slack.pachyderm.io], submit an issue on GitHub [https://github.com/pachyderm/pachyderm], or email us at support@pachyderm.io. We are more than happy to help!

Prerequisites

This guide assumes that you already have Pachyderm running locally. Check out our Local Installation instructions if haven’t done that yet and then come back here to continue.

Create a Repo

A repo is the highest level data primitive in Pachyderm. Like many things in Pachyderm, it shares it’s name with primitives in Git and is designed to behave analogously. Generally, repos should be dedicated to a single source of data such as log messages from a particular service, a users table, or training data for an ML model. Repos are dirt cheap so don’t be shy about making tons of them.

For this demo, we’ll simply create a repo called images to hold the data we want to process:

$ pachctl create-repo images

See the repo we just created
$ pachctl list-repo
NAME CREATED SIZE
images 2 minutes ago 0 B

Adding Data to Pachyderm

Now that we’ve created a repo it’s time to add some data. In Pachyderm, you write data to an explicit commit (again, similar to Git). Commits are immutable snapshots of your data which give Pachyderm its version control properties. Files can be added, removed, or updated in a given commit.

Let’s start by just adding a file, in this case an image, to a new commit. We’ve provided some sample images for you that we host on Imgur.

We’ll use the put-file command along with the -f flag. -f can take either a local file, a URL, or a object storage bucket which it’ll automatically scrape. In our case, we’ll simply pass the URL.

Unlike Git though, commits in Pachyderm must be explicitly started and finished as they can contain huge amounts of data and we don’t want that much “dirty” data hanging around in an unpersisted state. Put-file automatically starts and finishes a commit for you so you can add files more easily. In a situation where you want to add many files over a period of time, you can do start-commit and finish-commit yourself.

We also specify the repo name “images”, the branch name “master”, and what we want to name the file, “liberty.png”.

$ pachctl put-file images master liberty.png -f http://imgur.com/46Q8nDz.png

Finally, we check to make sure the data we just added is in Pachyderm.

If we list the repos, we can see that there is now data
$ pachctl list-repo
NAME CREATED SIZE
images 5 minutes ago 57.27 KiB

We can view the commit we just created
$ pachctl list-commit images
REPO ID PARENT STARTED DURATION SIZE
images 7162f5301e494ec8820012576476326c <none> 2 minutes ago 38 seconds 57.27 KiB

And view the file in that commit
$ pachctl list-file images master
NAME TYPE SIZE
liberty.png file 57.27 KiB

We can view the file we just added to Pachyderm. Since this is an image, we can’t just print it out in the terminal, but the following commands will let you view it easily.

on OSX
$ pachctl get-file images master liberty.png | open -f -a /Applications/Preview.app

on Linux
$ pachctl get-file images master liberty.png | display

Create a Pipeline

Now that we’ve got some data in our repo, it’s time to do something with it. Pipelines are the core processing primitive in Pachyderm and they’re specified with a JSON encoding. For this example, we’ve already created the pipeline for you and you can find the code on Github [https://github.com/pachyderm/pachyderm/blob/master/doc/examples/opencv].

When you want to create your own pipelines later, you can refer to the full Pipeline Specification to use more advanced options. This includes building your own code into a container instead of the pre-built Docker image we’ll be using here.

For now, we’re going to create a single pipeline that takes in images and does some simple edge detection.

[image: ../_images/opencv-liberty.png]
Below is the pipeline spec and python code we’re using. Let’s walk through the details.

edges.json
{
 "pipeline": {
 "name": "edges"
 },
 "transform": {
 "cmd": ["python3", "/edges.py"],
 "image": "pachyderm/opencv"
 },
 "input": {
 "atom": {
 "repo": "images",
 "glob": "/*"
 }
 }
}

Our pipeline spec contains a few simple sections. First is the pipeline name, edges. Then we have the transform which specifies the docker image we want to use, pachyderm/opencv (defaults to DockerHub as the registry), and the entry point edges.py. Lastly, we specify the input. Here we only have one “atom” input, our images repo with a particular glob pattern.

The glob pattern defines how the input data can be broken up if we wanted to distribute our computation. /* means that each file can be processed individually, which makes sense for images. Glob patterns are one of the most powerful features of Pachyderm so when you start creating your own pipelines, check out the Pipeline Specification.

edges.py
import cv2
import numpy as np
from matplotlib import pyplot as plt
import os

make_edges reads an image from /pfs/images and outputs the result of running
edge detection on that image to /pfs/out. Note that /pfs/images and
/pfs/out are special directories that Pachyderm injects into the container.
def make_edges(image):
 img = cv2.imread(image)
 tail = os.path.split(image)[1]
 edges = cv2.Canny(img,100,200)
 plt.imsave(os.path.join("/pfs/out", os.path.splitext(tail)[0]+'.png'), edges, cmap = 'gray')

walk /pfs/images and call make_edges on every file found
for dirpath, dirs, files in os.walk("/pfs/images"):
 for file in files:
 make_edges(os.path.join(dirpath, file))

Our python code is really straight forward. We’re simply walking over all the images in /pfs/images, do our edge detection and write to /pfs/out.

/pfs/images and /pfs/out are special local directories that Pachyderm creates within the container for you. All the input data for a pipeline will be found in /pfs/<input_repo_name> and your code should always write out to /pfs/out. Pachyderm will automatically gather everything you write to /pfs/out and version it as this pipeline’s output.

Now let’s create the pipeline in Pachyderm:

$ pachctl create-pipeline -f https://raw.githubusercontent.com/pachyderm/pachyderm/master/doc/examples/opencv/edges.json

What Happens When You Create a Pipeline

Creating a pipeline tells Pachyderm to run your code on the data currently in your input repo (the HEAD commit) as well as all future commits that happen after the pipeline is created. Our repo already had a commit, so Pachyderm automatically launched a job to process that data.

This first time Pachyderm runs a pipeline job, it needs to download the Docker image (specified in the pipeline spec) from the specified Docker registry (DockerHub in this case). As such, this first run this might take a minute or so, depending on your Internet connection. Subsequent runs will be much faster.

You can view the job with:

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
490a28be32de491e942372018cd42460 edges/bc2d20d0c23740f397622a62b0978c57 2 minutes ago 35 seconds 0 1 + 0 / 1 57.27KiB 22.22KiB success

Yay! Our pipeline succeeded! Notice, that there is an OUTPUT COMMIT column specified above. Pachyderm creates a corresponding output repo for every pipeline. This output repo will have the same name as the pipeline, and all the results of that pipeline will be versioned in this output repo. In our example, the “edges” pipeline created a repo called “edges” to store the results.

$ pachctl list-repo
NAME CREATED SIZE
edges 2 minutes ago 22.22 KiB
images 10 minutes ago 57.27 KiB

Reading the Output

We can view the output data from the “edges” repo in the same fashion that we viewed the input data.

on OSX
$ pachctl get-file edges master liberty.png | open -f -a /Applications/Preview.app

on Linux
$ pachctl get-file edges master liberty.png | display

The output should look similar to:

[image: ../_images/edges-screenshot.png]

Processing More Data

Pipelines will also automatically process the data from new commits as they are created. Think of pipelines as being subscribed to any new commits on their input repo(s). Also similar to Git, commits have a parental structure that tracks which files have changed. In this case we’re going to be adding more images.

Let’s create two new commits in a parental structure. To do this we will simply do two more put-file commands and by specifying master as the branch, it’ll automatically parent our commits onto each other. Branch names are just references to a particular HEAD commit.

$ pachctl put-file images master AT-AT.png -f http://imgur.com/8MN9Kg0.png

$ pachctl put-file images master kitten.png -f http://imgur.com/g2QnNqa.png

Adding a new commit of data will automatically trigger the pipeline to run on the new data we’ve added. We’ll see corresponding jobs get started and commits to the output “edges” repo. Let’s also view our new outputs.

view the jobs that were kicked off
$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
81ae47a802f14038b95f8f248cddbed2 edges/146a5e398f3f40a09f5151559fd4a6cb 7 seconds ago Less than a second 0 1 + 2 / 3 102.4KiB 74.21KiB success
ce448c12d0dd4410b3a5ae0c0f07e1f9 edges/c5d7ded9ba214d9aa4aa2c044625198c 16 seconds ago Less than a second 0 1 + 1 / 2 78.7KiB 37.15KiB success
490a28be32de491e942372018cd42460 edges/bc2d20d0c23740f397622a62b0978c57 9 minutes ago 35 seconds 0 1 + 0 / 1 57.27KiB 22.22KiB success

View the output data

on OSX
$ pachctl get-file edges master AT-AT.png | open -f -a /Applications/Preview.app

$ pachctl get-file edges master kitten.png | open -f -a /Applications/Preview.app

on Linux
$ pachctl get-file edges master AT-AT.png | display

$ pachctl get-file edges master kitten.png | display

Adding Another Pipeline

We have succesfully deployed and utilized a single stage Pachyderm pipeline, but now let’s add a processing stage to illustrate a multi-stage Pachyderm pipeline. Specifically, let’s add a montage pipeline that take our original and edge detected images and arranges them into a single montage of images:

[image: ../_images/opencv-liberty-montage.png]
Below is the pipeline spec for this new pipeline:

montage.json
{
 "pipeline": {
 "name": "montage"
 },
 "input": {
 "cross": [{
 "atom": {
 "glob": "/",
 "repo": "images"
 }
 },
 {
 "atom": {
 "glob": "/",
 "repo": "edges"
 }
 }]
 },
 "transform": {
 "cmd": ["sh"],
 "image": "v4tech/imagemagick",
 "stdin": ["montage -shadow -background SkyBlue -geometry 300x300+2+2 $(find /pfs -type f | sort) /pfs/out/montage.png"]
 }
}

This pipeline spec is very similar to our edges pipeline except, for montage: (1) we are using a different Docker image that has imagemagick installed, (2) we are executing a sh command with stdin instead of a python script, and (3) we have multiple input data repositories.

In this case we are combining our multiple input data repositories using a cross pattern. There are multiple interesting ways to combine data in Pachyderm, which are further discussed here [http://pachyderm.readthedocs.io/en/latest/reference/pipeline_spec.html#input-required] and here [http://pachyderm.readthedocs.io/en/latest/cookbook/combining.html]. For the purposes of this example, suffice it to say that this cross pattern creates a single pairing of our input images with our edge detected images.

We create this next pipeline as before, with pachctl:

$ pachctl create-pipeline -f https://raw.githubusercontent.com/pachyderm/pachyderm/master/doc/examples/opencv/montage.json

This will automatically trigger a job that generates a montage for all the current HEAD commits of the input repos:

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
92cecc40c3144fd5b4e07603bb24b104 montage/1af4657db2404fcfba1c6cee6c71ae16 45 seconds ago 6 seconds 0 1 + 0 / 1 371.9KiB 1.284MiB success
81ae47a802f14038b95f8f248cddbed2 edges/146a5e398f3f40a09f5151559fd4a6cb 2 minutes ago Less than a second 0 1 + 2 / 3 102.4KiB 74.21KiB success
ce448c12d0dd4410b3a5ae0c0f07e1f9 edges/c5d7ded9ba214d9aa4aa2c044625198c 2 minutes ago Less than a second 0 1 + 1 / 2 78.7KiB 37.15KiB success
490a28be32de491e942372018cd42460 edges/bc2d20d0c23740f397622a62b0978c57 11 minutes ago 35 seconds 0 1 + 0 / 1 57.27KiB 22.22KiB success

And you can view the generated montage image via:

on OSX
$ pachctl get-file montage master montage.png | open -f -a /Applications/Preview.app

on Linux
$ pachctl get-file montage master montage.png | display

[image: ../_images/montage-screenshot.png]

Exploring your DAG in the Pachyderm dashboard

When you deployed Pachyderm locally, the Pachyderm Enterprise dashboard was also deployed by default. This dashboard will let you interactively explore your pipeline, visualize the structure of the pipeline, explore your data, debug jobs, etc. To access the dashboard visit localhost:30080 in an Internet browser (e.g., Google Chrome). You will see something similar to this:

[image: ../_images/dashboard1.png]
Enter your email address if you would like to obtain a free trial token for the dashboard. Upon entering this trial token, you will be able to see your pipeline structure and interactively explore the various pieces of your pipeline as pictured below:

[image: ../_images/dashboard2.png]
[image: ../_images/dashboard3.png]

Next Steps

We’ve now got Pachyderm running locally with data and a pipeline! If you want to keep playing with Pachyderm locally, you can use what you’ve learned to build on or change this pipeline. You can also dig in and learn more details about:

	Deploying Pachyderm to the cloud or on prem [http://pachyderm.readthedocs.io/en/latest/deployment/deploy_intro.html]

	Getting Your Data into Pachyderm

	Creating Analysis Pipelines

We’d love to help and see what you come up with so submit any issues/questions you come across on GitHub [https://github.com/pachyderm/pachyderm] , Slack [http://slack.pachyderm.io] or email at support@pachyderm.io if you want to show off anything nifty you’ve created!

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Getting Your Data into Pachyderm

Data that you put (or “commit”) into Pachyderm ultimately lives in an object
store of your choice (S3, Minio, GCS, etc.). This data is content-addressed by
Pachyderm to build our version control semantics for data and is therefore not
“human-readable” directly in the object store. That being said, Pachyderm
allows you and your pipeline stages to interact with versioned data like you
would in a normal file system.

Jargon associated with putting data in Pachyderm

“Data Repositories”

Versioned data in Pachyderm lives in repositories (again think about something
similar to “git for data”). Each data “repository” can contain one file,
multiple files, multiple files arranged in directories, etc. Regardless of the
structure, Pachyderm will version the state of each data repository as it
changes over time.

“Commits”

Regardless of the method you use to get data into Pachyderm (CLI, language client, etc.),
the mechanism that is used is a “commit” of data into a data
repository. In order to put data into Pachyderm, a commit must be “started” (aka
an “open commit”). Data can then be put into Pachyderm as part of that open commit and will
be available once the commit is “finished” (aka a “closed commit”).
Although you have to do this opening, putting, and closing for all data that is
committed into Pachyderm, we have built in some convenient ways to do that with our
CLI tool and clients (see below).

How to get data into Pachyderm

In terms of actually getting data into Pachyderm via “commits,” there are
a few options:

	Via the pachctl CLI tool: This is the great option for testing, development,
integration with CI/CD, and for users who prefer scripting.

	Via one of the Pachyderm language clients: This option is ideal for Go, Python,
or Scala users who want to push data to Pachyderm from services or
applications written in those languages. Actually, even if you don’t use Go,
Python, or Scala, Pachyderm uses a protobuf API which supports many other
languages, we just haven’t built the full clients yet.

	Via the Pachyderm dashboard: The Pachyderm Enterprise dashboard provides a
very convenient way to upload data right from the GUI. You can find out more
about Pachyderm Enterprise Edition here.

pachctl

To get data into Pachyderm using pachctl, you first need to create one or
more data repositories to hold your data:

$ pachctl create-repo <repo name>

Then, to put data into the created repo, you use the put-file command. Below
are a few example uses of put-file, but you can see the complete
documentation here. Note again, commits in
Pachyderm must be explicitly started and finished, so put-file can only be
called on an open commit (started, but not finished). The -c is a convenient option that allows
you to start and finish a commit in addition to putting data as a one-line
command.

Add a single file to a new branch:

first start a commit
$ pachctl start-commit <repo> <branch>

then put <file> at <path> in the <repo> on <branch>
$ pachctl put-file <repo> <branch> </path/to/file> -f <file>

then finish the commit
$ pachctl finish-commit <repo> <branch>

Start and finish a commit while adding a file using -c:

$ pachctl put-file <repo> <branch> </path/to/file> -c -f <file>

Put data from a URL:

$ pachctl put-file <repo> <branch> </path/to/file> -c -f http://url_path

Put data directly from an object store:

here you can use s3://, gcs://, or as://
$ pachctl put-file <repo> <branch> </path/to/file> -c -f s3://object_store_url

Put data directly from another location within Pachyderm:

$ pachctl put-file <repo> <branch> </path/to/file> -c -f pfs://pachyderm_location

Add multiple files at once by using the -i option or multiple -f flags. In
the case of -i, the target file should be a list of files, paths, or URLs
that you want to input all at once:

$ pachctl put-file <repo> <branch> -c -i <file containing list of files, paths, or URLs>

Pipe data from stdin into a data repository:

$ echo "data" | pachctl put-file <repo> <branch> </path/to/file> -c

Add an entire directory or all of the contents at a particular URL (either
HTTP(S) or object store URL, s3://, gcs://, and as://) by using the
recursive flag, -r:

$ pachctl put-file <repo> <branch> -c -r <dir>

Pachyderm Language Clients

There are a number of Pachyderm language clients. These can be used to
programmatically put data into Pachyderm, and much more. You can find out more
about these clients here.

The Pachyderm Dashboard

When you deployed Pachyderm, the Pachyderm Enterprise dashboard was also
deployed automatically (if you followed one of our deploy guides here). You can
get a FREE trial token to experiment with this dashboard, which will let you create
data repositories and add data to those repositories via a GUI. More information
about getting your FREE trial token and activating the dashboard can be found
here [http://pachyderm.readthedocs.io/en/latest/enterprise/deployment.html#activate-via-the-dashboard].

In the dashboard, you can create a data repository by clicking on the + sign icon
in the lower right hand corner of the screen:

[image: alt tag]

When you click “Create Repo,” a box will pop up prompting you for a name and
optional description for the repo:

[image: alt tag]

Once you fill in your name and click save, the new data repository will show up
in the main dashboard screen:

[image: alt tag]

To add data to this repository, you can click on the blue icon representing
the repo. This will present you with some details about the repo along with an
“ingest data” icon:

[image: alt tag]

You can add data from an object store or other URL by clicking this “ingest data”
icon:

[image: alt tag]

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Creating Analysis Pipelines

There are three steps to running an analysis in a Pachyderm “pipeline”:

	Write your code.

	Build a Docker [https://docs.docker.com/engine/getstarted/step_four/] image that includes your code and dependencies.

	Create a Pachyderm “pipeline” referencing that Docker image.

Multi-stage pipelines (e.g., parsing -> modeling -> output) can be created by repeating these three steps to build up a graph of processing steps.

1. Writing your analysis code

Code used to process data in Pachyderm can be written using any languages or
libraries you want. It can be as simple as a bash command or as complicated as
a TensorFlow neural network. At the end of the day, all your code and
dependencies will be built into a container that can run anywhere (including
inside of Pachyderm). We’ve got demonstrative examples on
GitHub [https://github.com/pachyderm/pachyderm/tree/master/doc/examples] using
bash, Python, TensorFlow, and OpenCV and we’re constantly adding more.

As we touch on briefly in the beginner
tutorial, your code itself only
needs to read and write files from a local file system. It does NOT have to
import any special Pachyderm functionality or libraries. You just need to be
able to read files and write files.

For the reading files part, Pachyderm automatically mounts each input data
repository as /pfs/<repo_name> in the running instances of your Docker image
(called “containers”). The code that you write just needs to read input data
from this directory, just like in any other file system. Your analysis code
also does NOT have to deal with data sharding or parallelization as Pachyderm
will automatically shard the input data across parallel containers. For
example, if you’ve got four containers running your Python code, Pachyderm will
automatically supply 1/4 of the input data to /pfs/<repo_name> in each
running container. That being said, you also have a lot of control over how
that input data is split across containers. Check out our guide on parallelism
and distributed computing for more details on that
subject.

For the writing files part (saving results, etc.), your code simply needs to
write to /pfs/out. This is a special directory mounted by Pachyderm in all of
your running containers. Similar to reading data, your code doesn’t have to
manage parallelization or sharding, just write data to /pfs/out and Pachyderm
will make sure it all ends up in the correct place.

2. Building a Docker Image

When you create a Pachyderm pipeline (which will be discussed next), you need
to specify a Docker image including the code or binary you want to run. Please
refer to the official
documentation [https://docs.docker.com/engine/tutorials/dockerimages/] to learn
how to build a Docker images.

Note: You specify what commands should run in the container in your
pipeline specification (see Creating a Pipeline below) rather than the
CMD field of your Dockerfile, and Pachyderm runs that command inside the
container during jobs rather than relying on Docker to run it. The reason is
that Pachyderm can’t execute your code immediately when your container starts,
so it runs a shim process in your container instead, and then calls your
pipeline specification’s cmd from there.

Unless Pachyderm is running on the same host that you used to build your image,
you’ll need to use a public or private registry to get your image into the
Pachyderm cluster. One (free) option is to use Docker’s DockerHub registry.
You can refer to the official
documentation [https://docs.docker.com/engine/tutorials/dockerimages/#/push-an-image-to-docker-hub]
to learn how to push your images to DockerHub. That being said, you are more
than welcome to use any other public or private Docker registry.

Note, it is best practice to uniquely tag your Docker images with something
other than :latest. This allows you to track which Docker images were used
to process which data, and will help you as you update your pipelines. You can
also utilize the --push-images flag on update-pipeline to help you tag your
images as they are updated. See the updating pipelines
docs for more information.

3. Creating a Pipeline

Now that you’ve got your code and image built, the final step is to tell
Pachyderm to run the code in your image on certain input data. To do this, you
need to supply Pachyderm with a JSON pipeline specification. There are four
main components to a pipeline specification: name, transform, parallelism and
input. Detailed explanations of the specification parameters and how they work
can be found in the pipeline specification
docs.

Here’s an example pipeline spec:

{
 "pipeline": {
 "name": "wordcount"
 },
 "transform": {
 "image": "wordcount-image",
 "cmd": ["/binary", "/pfs/data", "/pfs/out"]
 },
 "input": {
 "atom": {
 "repo": "data",
 "glob": "/*"
 }
 }
}

After you create the JSON pipeline spec (and save it, e.g., as your_pipeline.json), you can create the pipeline in Pachyderm using pachctl:

$ pachctl create-pipeline -f your_pipeline.json

(-f can also take a URL if your JSON manifest is hosted on GitHub or elsewhere. Keeping pipeline specifications under version control is a great idea so you can track changes and seamlessly view or deploy older pipelines if needed.)

Creating a pipeline tells Pachyderm to run the cmd (i.e., your code) in your
image on the data in the HEAD (most recent) commit of the input repo(s) as
well as all future commits to the input repo(s). You can think of this
pipeline as being “subscribed” to any new commits that are made on any of its
input repos. It will automatically process the new data as it comes in.

As soon as you create your pipeline, Pachyderm will launch worker pods on
Kubernetes. These worker pods will remain up and running, such that they are
ready to process any data committed to their input repos. This allows the
pipeline to immediately respond to new data when it’s committed without having
to wait for their pods to “spin up”. However, this has the downside that pods
will consume resources even while there’s no data to process. You can trade-off
the other way by setting the standby field to true in your pipeline spec.
With this field set, the pipelines will “spin down” when there is no data to
process, which means they will consume no resources. However, when new data
does come in, the pipeline pods will need to spin back up, which introduces some
extra latency. Generally speaking, you should default to not setting standby
until cluster utilization becomes a concern. When it does, pipelines that
run infrequently and are highly parallel are the best candidates for standby.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Getting Data Out of Pachyderm

Once you’ve got one or more pipelines built and have data flowing through Pachyderm, you need to be able to track that data flowing through your pipeline(s) and get results out of Pachyderm. Let’s use the OpenCV pipeline as an example.

Here’s what our pipeline and the corresponding data repositories look like:

[image: alt tag]

Every commit of new images into the “images” data repository results in a corresponding output commit of results into the “edges” data repository. But how do we get our results out of Pachyderm? Moreover, how would we get the particular result corresponding to a particular input image? That’s what we will explore here.

Getting files with pachctl

The pachctl CLI tool command get-file can be used to get versioned data out of any data repository:

pachctl get-file <repo> <commit-id or branch> path/to/file

In the case of the OpenCV pipeline, we could get out an image named example_pic.jpg:

pachctl get-file edges master example_pic.jpg

But how do we know which files to get? Of course we can use the pachctl list-file command to see what files are available. But how do we know which results are the latest, came from certain input, etc.? In this case, we would like to know which edge detected images in the edges repo come from which input images in the images repo. This is where provenance and the flush-commit command come in handy.

Examining file provenance with flush-commit

Generally, flush-commit will let our process block on an input commit until all of the output results are ready to read. In other words, flush-commit lets you view a consistent global snapshot of all your data at a given commit. Note, we are just going to cover a few aspects of flush-commit here.

Let’s demonstrate a typical workflow using flush-commit. First, we’ll make a few commits of data into the images repo on the master branch. That will then trigger our edges pipeline and generate three output commits in our edges repo:

$ pachctl list-commit images
REPO ID PARENT STARTED DURATION SIZE
images c721c4bb9a8046f3a7319ed97d256bb9 a9678d2a439648c59636688945f3c6b5 About a minute ago 1 seconds 932.2 KiB
images a9678d2a439648c59636688945f3c6b5 87f5266ef44f4510a7c5e046d77984a6 About a minute ago Less than a second 238.3 KiB
images 87f5266ef44f4510a7c5e046d77984a6 <none> 10 minutes ago Less than a second 57.27 KiB
$ pachctl list-commit edges
REPO ID PARENT STARTED DURATION SIZE
edges f716eabf95854be285c3ef23570bd836 026536b547a44a8daa2db9d25bf88b79 About a minute ago Less than a second 233.7 KiB
edges 026536b547a44a8daa2db9d25bf88b79 754542b89c1c47a5b657e60381c06c71 About a minute ago Less than a second 133.6 KiB
edges 754542b89c1c47a5b657e60381c06c71 <none> 2 minutes ago Less than a second 22.22 KiB

In this case, we have one output commit per input commit on images. However, this might get more complicated for pipelines with multiple branches, multiple input atoms, etc. To confirm which commits correspond to which outputs, we can use flush-commit. In particular, we can call flush-commit on any one of our commits into images to see which output came from this particular commit:

$ pachctl flush-commit images/a9678d2a439648c59636688945f3c6b5
REPO ID PARENT STARTED DURATION SIZE
edges 026536b547a44a8daa2db9d25bf88b79 754542b89c1c47a5b657e60381c06c71 3 minutes ago Less than a second 133.6 KiB

Exporting data via egress

In addition to getting data out of Pachyderm with pachctl get-file, you can add an optional egress field to your pipeline specification. egress allows you to push the results of a Pipeline to an external data store such as S3, Google Cloud Storage or Azure Blob Storage. Data will be pushed after the user code has finished running but before the job is marked as successful.

Other ways to view, interact with, or export data in Pachyderm

Although pachctl and egress provide easy ways to interact with data in Pachyderm repos, they are by no means the only ways. For example, you can:

	Have one or more of your pipeline stages connect and export data to databases running outside of Pachyderm.

	Use a Pachyderm service to launch a long running service, like Jupyter, that has access to internal Pachyderm data and can be accessed externally via a specified port.

	Mount versioned data from the distributed file system via pachctl mount ... (a feature best suited for experimentation and testing).

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Deleting Data in Pachyderm

Sometimes “bad” data gets committed to Pachyderm and you need a way to delete
it. There are a couple of ways to address this, which depend on
what exactly was “bad” about the data you committed and what’s happened in the
system since you committed the “bad” data.

	Deleting the HEAD of a branch - You should
follow this guide if you’ve just made a commit to a branch with some corrupt, incorrect,
or otherwise bad changes to your data.

	Deleting non-HEAD commits - You should follow
this guide if you’ve committed data to the branch after committing the data that
needs to be deleted.

	Deleting sensitive data - You should follow these
steps when you have committed sensitive data that you need to completely
purge from Pachyderm, such that no trace remains.

Deleting The HEAD of a Branch

The simplest case is when you’ve just made a commit to a branch with some
incorrect, corrupt, or otherwise bad data. In this scenario, the HEAD of your branch
(i.e., the latest commit) is bad. Users who read from it are likely to be misled, and/or
pipeline subscribed to it are likely to fail or produce bad downstream output.

To fix this you should use delete-commit as follows:

$ pachctl delete-commit <repo> <branch-or-commit-id>

When you delete the bad commit, several things will happen (all atomically):

	The commit metadata will be deleted.

	Any branch that the commit was the HEAD of will have its HEAD set to the
commit’s parent. If the commit’s parent is nil, the branch’s HEAD will be set
to nil.

	If the commit has children (commits which it is the parent of), those
children’s parent will be set to the deleted commit’s parent. Again, if the
deleted commit’s parent is nil then the children commit’s parent will be
set to nil.

	Any jobs which were created due to this commit will be deleted (running jobs
get killed). This includes jobs which don’t directly take the commit as
input, but are farther downstream in your DAG.

	Output commits from deleted jobs will also be deleted, and all the above
effects will apply to those commits as well.

Deleting Non-HEAD Commits

Recovering from commits of bad data is a little more complicated if you’ve
committed more data to the branch after the bad data was added. You can
still delete the commit as in the previous section, however, unless the subsequent
commits overwrote or deleted the bad data, it will still be present in the
children commits. Deleting a commit does not modify its children.

In git terms, delete-commit is equivalent to squashing a commit out of existence.
It’s not equivalent to reverting a commit. The reason for this behavior is that the
semantics of revert can get ambiguous when the files being reverted have been
otherwise modified. Git’s revert can leave you with a merge conflict to solve,
and merge conflicts don’t make sense with Pachyderm due to the shared nature of
the system and the size of the data being stored.

In these scenario, you can also delete the children commits, however those commits
may also have good data that you don’t want to delete. If so, you should:

	Start a new commit on the branch with pachctl start-commit.

	Delete all bad files from the newly opened commit with pachctl delete-file.

	Finish the commit with pachctl finish-commit.

	Delete the initial bad commits and all children up to the newly finished
commit.

Depending on how you’re using Pachyderm, the final step may be optional. After
you finish the “fixed” commit, the HEADs of all your branches will converge to
correct results as downstream jobs finish. However, deleting those commits
allow you to clean up your commit history and makes sure that no one will ever
access errant data when reading non-HEAD version of the data.

Deleting Sensitive Data

If the data you committed is bad because it’s sensitive and you want to make
sure that nobody ever accesses it, you should complete an extra step in addition to those
above.

Pachyderm stores data in a content addressed way and when you delete
a file or a commit, Pachyderm only deletes references to the underlying data, it
doesn’t delete the actual data until it performs garbage collection. To truly
purge the data you must delete all references to it using the methods described
above, and then you must run a garbage collect with pachctl garbage-collect.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Updating Pipelines

During development, it’s very common to update pipelines, whether it’s changing
your code or just cranking up parallelism. For example, when developing a
machine learning model you will likely need to try out a bunch of different
versions of your model while your training data stays relatively constant.
This is where update-pipeline comes in.

Updating your pipeline specification

In cases in which you are updating parallelism, adding another input repo, or
otherwise modifying your pipeline
specification, you just need to update your
JSON file and call update-pipeline:

$ pachctl update-pipeline -f pipeline.json

Similar to create-pipeline, update-pipeline with the -f flag can also
take a URL if your JSON manifest is hosted on GitHub or elsewhere.

Updating the code used in a pipeline

You can also use update-pipeline to update the code you are using in one or
more of your pipelines. To update the code in your pipeline:

	Make the code changes.

	Re-build your Docker image.

	Call update-pipeline with the --push-images flag.

You need to call update-pipeline with the --push-images flag because, if
you have already run your pipeline, Pachyderm has already pulled the specified
images. It won’t re-pull new versions of the images, unless we tell it to
(which ensures that we don’t waste time pulling images when we don’t need to).
When --push-images is specified, Pachyderm will do the following:

	Tag your image with a new unique tag.

	Push that tagged image to your registry (e.g., DockerHub).

	Update the pipeline specification that you previously gave to Pachyderm with
the new unique tag.

For example, you could update the Python code used in the OpenCV
pipeline via:

pachctl update-pipeline -f edges.json --push-images --password <registry password> -u <registry user>

Re-processing data

As of 1.5.1, updating a pipeline will NOT reprocess previously
processed data by default. New data that’s committed to the inputs will be processed with
the new code and “mixed” with the results of processing data with the previous
code. Furthermore, data that Pachyderm tried and failed to process with the
previous code due to code erroring will be processed with the new code.

update-pipeline (without flags) is designed for the situation where your code needs to be
fixed because it encountered an unexpected new form of data.

If you’d like to update your pipeline and have that updated pipeline reprocess all the data
that is currently in the HEAD commit of your input repos, you
should use the --reprocess flag. This type of update will automatically trigger a job that reprocesses all of the input data in its current state (i.e., the HEAD commits)
with the updated pipeline. Then from that point on, the updated pipeline will continue to be used to process any new input data. Previous results will still be
available in via their corresponding commit IDs.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Distributed Computing

Distributing computation across multiple workers is a fundamental part of processing any big data or computationally intensive workload. There are two main questions to think about when trying to distribute computation:

	How many workers to spread computation across?

	How to define which workers are responsible for which data?

Pachyderm Workers

Before we dive into the above questions, there are a few details you should understand about Pachyderm workers.

Every worker for a given pipeline is an identical pod running the Docker image you specified in the pipeline spec. Your analysis code does not need do anything special to run in a distributed fashion. Instead, Pachyderm will spread out the data that needs to be processed across the various workers and make that data available for your code.

Pachyderm workers are spun up when you create the pipeline and are left running in the cluster waiting for new jobs (data) to be available for processing (committed). This saves having to recreate and schedule the worker for every new job.

Controlling the Number of Workers (Parallelism)

The number of workers that are used for a given pipeline is controlled by the parallelism_spec defined in the pipeline specification.

 "parallelism_spec": {
 // Exactly one of these two fields should be set
 "constant": int
 "coefficient": double

Pachyderm has two parallelism strategies: constant and coefficient. You should set one of the two corresponding fields in the parallelism_spec, and pachyderm chooses a parallelism strategy based on which field is set.

If you set the constant field, Pachyderm will start the number of workers that you specify. For example, set "constant":10 to use 10 workers.

If you set the coefficient field, Pachyderm will start a number of workers that is a multiple of your Kubernetes cluster’s size. For example, if your Kubernetes cluster has 10 nodes, and you set "coefficient": 0.5, Pachyderm will start five workers. If you set it to 2.0, Pachyderm will start 20 workers (two per Kubernetes node).

NOTE: The parallelism_spec is optional and will default to “coefficient": 1, which means that it’ll spawn one worker per Kubernetes node for this pipeline if left unset.

Spreading Data Across Workers (Glob Patterns)

Defining how your data is spread out among workers is arguably the most important aspect of distributed computation and is the fundamental idea around concepts like Map/Reduce.

Instead of confining users to just data-distribution patterns such as Map (split everything as much as possible) and Reduce (all the data must be grouped together), Pachyderm uses Glob Patterns [https://en.wikipedia.org/wiki/Glob_(programming)] to offer incredible flexibility in defining your data distribution.

Glob patterns are defined by the user for each atom within the input of a pipeline, and they tell Pachyderm how to divide the input data into individual “datums” that can be processed independently.

"input": {
 "atom": {
 "repo": "string",
 "glob": "string",
 }
}

That means you could easily define multiple “atoms”, one with the data highly distributed and another where it’s grouped together. You can then join the datums in these atoms via a cross product or union (as shown above) for combined, distributed processing.

"input": {
 "cross" or "union": [
 {
 "atom": {
 "repo": "string",
 "glob": "string",
 }
 },
 {
 "atom": {
 "repo": "string",
 "glob": "string",
 }
 },
 etc...
]
}

More information about “atoms,” unions, and crosses can be found in our Pipeline Specification [http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html].

Datums

Pachyderm uses the glob pattern to determine how many “datums” an input atom consists of. Datums are the unit of parallelism in Pachyderm. That is, Pachyderm attempts to process datums in parallel whenever possible.

If you have two workers and define 2 datums, Pachyderm will send one datum to each worker. In a scenario where there are more datums than workers, Pachyderm will queue up extra datums and send them to workers as they finish processing previous datums.

Defining Datums via Glob Patterns

Intuitively, you should think of the input atom repo as a file system where the glob pattern is being applied to the root of the file system. The files and directories that match the glob pattern are considered datums.

For example, a glob pattern of just / would denote the entire input repo as a single datum. All of the input data would be given to a single worker similar to a typical reduce-style operation.

Another commonly used glob pattern is /*. /* would define each top level object (file or directory) in the input atom repo as its own datum. If you have a repo with just 10 files in it and no directory structure, every file would be a datum and could be processed independently. This is similar to a typical map-style operation.

But Pachyderm can do anything in between too. If you have a directory structure with each state as a directory and a file for each city such as:

/California
 /San-Francisco.json
 /Los-Angeles.json
 ...
/Colorado
 /Denver.json
 /Boulder.json
 ...
...

and you need to process all the data for a given state together, /* would also be the desired glob pattern. You’d have one datum per state, meaning all the cities for a given state would be processed together by a single worker, but each state can be processed independently.

If we instead used the glob pattern /*/* for the states example above, each <city>.json would be it’s own datum.

Glob patterns also let you take only a particular directory (or subset of directories) as an input atom instead of the whole input repo. If we create a pipeline that is specifically only for California, we can use a glob pattern of /California/* to only use the data in that directory as input to our pipeline.

Only Processing New Data

A datum defines the granularity at which Pachyderm decides what data is new and what data has already been processed. Pachyderm will never reprocess datums it’s already seen with the same analysis code. But if any part of a datum changes, the entire datum will be reprocessed.

Note: If you change your code (or pipeline spec), Pachyderm will of course allow you to process all of the past data through the new analysis code.

Let’s look at our states example with a few different glob patterns to demonstrate what gets processed and what doesn’t. Suppose we have an input data layout such as:

/California
 /San-Francisco.json
 /Los-Angeles.json
 ...
/Colorado
 /Denver.json
 /Boulder.json
 ...
...

If our glob pattern is /, then the entire input atom is a single datum, which means anytime any file or directory is changed in our input, all the the data will be processed from scratch. There are plenty of usecases where this is exactly what we need (e.g. some machine learning training algorithms).

If our glob pattern is /*, then each state directory is it’s own datum and we’ll only process the ones that have changed. So if we add a new city file, Sacramento.json to the /California directory, only the California datum, will be reprocessed.

If our glob pattern was /*/* then each <city>.json file would be it’s own datum. That means if we added a Sacramento.json file, only that specific file would be processed by Pachyderm.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Incremental Processing

Pachyderm performs computations in an incremental fashion. That is, rather
than computing a result all at once, it computes it in small pieces and
then stitches those pieces together to form results. This allows Pachyderm to reuse results and compute
things much more efficiently than traditional systems, which are forced to compute everything from
scratch during every job.

Pachyderm supports two kinds of incremental processing:

	Inter-Datum Incrementality

	Intra-Datum Incrementality

If you are new to the idea of Pachyderm “datums,” you can learn more here [http://pachyderm.readthedocs.io/en/latest/fundamentals/distributed_computing.html#datums].

Inter-datum Incrementality

Each of the input datums in a Pachyderm pipeline is processed in isolation, and the results of these isolated
computations are combined to create the final result. Pachyderm will never
process the same datum twice (unless you update a pipeline with the
--reprocess flag). If you commit new data in Pachyderm that leaves some of the previously existing datums
intact, the results of processing those pre-existing datums in a previous job will
also remain intact. That is, the previous results for those pre-existing datums won’t
be recalculated.

This inter-datum incrementality is best illustrated with
an example. Suppose we have a pipeline with a single input that looks like this:

{
 "atom": {
 "repo": "R",
 "glob": "/*",
 }
}

Now, suppose you make a commit to R which adds a single file F1. Your
pipeline will run a job, and that job will find a single datum to process (F1).
This datum will be processed, because it’s the first time the pipeline has
seen F1.

[image: alt tag]

If you then make a second commit to R adding another file F2,
the pipeline will run a second job. This job will find two datums to
process (F1 and F2). F2 will be processed, because it hasn’t been seen before. However F1 will NOT be
processed, because an output from processing it already exists in Pachyderm.

Instead, the output from the previous job for F1 will be combined with the
new result from processing F2 to create the
output of this second job. This reuse of the result for F1 effectively halves the amount of work necessary
to process the second commit.

[image: alt tag]

Finally, suppose you make a third commit to R, which modifies F1. Again
you’ll have a job that sees two datums (the new F1 and the already processed F2). This time
F2 won’t get processed, but the new F1 will be processed because it has different
content as compared to the old F1.

[image: alt tag]

Note, you as a user don’t need to do anything to enable this
inter-datum incrementality. It happens automatically, and it should should be transparent from
your perspective. In the above example, you get the
same result you would have gotten if you committed the same data in a single
commit.

As of Pachyderm v1.5.1, list-job and inspect-job will tell you how many
datums the job processed and how many it skipped. Below is an example of
a job that had 5 datums, 3 that were processed and 2 that were skipped.

ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
54fbc366-3f11-41f6-9000-60fc8860fa55 pipeline/9c348deb64304d118101e5771e18c2af 13 seconds ago 10 seconds 0 3 + 2 / 5 0B 0B success

Intra-datum Incrementality

Pachyderm also supports intra-datum incrementality, which is useful when
the processing you’re doing can be done
“online” [https://en.wikipedia.org/wiki/Online_algorithm]. For example, when you are
performing online training of a model or when you are summing a set of
numbers in an aggregation.

Not all computations can be done online. Thus, this intra-datum incrementality
is optionally enabled for Pachyderm pipelines via the
incremental [http://pachyderm.readthedocs.io/en/latest/reference/pipeline_spec.html#incremental-optional] field in the pipeline specification.

Again, an example is instructive. Suppose you have a pipeline like the
one illustrated above in the inter-datum section.
However, instead of each datum being a single file, it is now
a directory (D1, D2, etc.) which contains multiple files (F1, F2, etc.).

Each of these files in the directories contain
numbers, and our pipeline sums the numbers in all of the files to produce a
result that includes the sum of the numbers per directory. The pipeline also
enables incrementality via the incremental field.

In a first commit, we add D1/F1. Our pipeline will run
a job which sums up the numbers in all of the files in D1 (in this case, just D1/F1).
This is similar to what would happen if the
pipeline did not enable intra-datum incrementality.

[image: alt tag]

Then, in a second commit, we add D1/F2. Another job will be triggered process
D1. However, the data it sees in D1 will be different from what it
would be if the pipeline weren’t incremental. Instead of seeing D1/F1
and D1/F2, it will only see D1/F2.

Moreover, the output directory, /pfs/out, won’t be empty. /pfs/out will
contain the results of last job that processed D1. That is, it will
contain the sum of all the numbers in D1/F1.

As such, all our code needs to do is
sum the numbers in D1/F2 and add them to the previous result, which we can access at /pfs/out/D1/result.
We can then overwrite the previous result in /pfs/out with the new result.

[image: alt tag]

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Overview

[image: alt tag]

Pachyderm Enterprise Edition includes everything you need to scale and manage Pachyderm data pipelines in an enterprise setting. It delivers the most recent version of Pachyderm along with:

	Administrative and security features needed for enterprise-scale implementations of Pachyderm

	Visual and interactive interfaces to Pachyderm

	Detailed job and data statistics for faster development and data insight

Pachdyerm Enterprise Edition can be deployed easily on top of an existing or new deployment of Pachyderm, and we have engineers available to help enterprise customers get up and running very quickly. To get more information about Pachyderm Enterprise Edition, to ask questions, or to get access for evaluation, please contact us at sales@pachyderm.io or on our Slack [http://slack.pachyderm.io/].

Pipeline Visualization and Data Exploration

[image: alt tag]

Pachyderm Enterprise Edition includes a full UI for visualizing pipelines and exploring data. Pachyderm Enterprise will automatically infer the structure of data scientists’ DAG pipelines and display them visually. Data scientists and cluster admins can even click on individual segments of the pipelines to see what data is being processed, how many jobs have run, what images and commands are being run, and much more! Data scientists can also explore the versioned data in Pachyderm data repositories and see how the state of data has changed over time.

Access Controls

[image: alt tag]

Enterprise-scale deployments require access controls and multitenancy. Pachyderm Enterprise Edition gives teams the ability to control access to production pipelines, data, and configuration. Administrators can silo data, prevent unintended modifications to production pipelines, and support multiple data scientists or even multiple data science groups.

Advanced Statistics

[image: alt tag]

Pachyderm Enterprise Edition gives data scientists advanced insights into their data, jobs, and results. For example, data scientists can see how much time jobs spend downloading/uploading data, what data was processed or skipped, and which workers were given particular datums. This information can be explored programmatically or via a number of charts and plots that help users parse the information quickly.

Administrative Controls, Interactive Pipeline Configuration

With Pachyderm Enterprise, cluster admins don’t have to rely solely on command line tools and language libraries to configure and control Pachyderm. With new versions of our UI you can control, scale, and configure Pachyderm interactively.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Deploying Enterprise Edition

To deploy and use Pachyderm’s Enterprise Edition, you simply need to follow one of our guides to deploy Pachyderm and then activate the Enterprise Edition.

Note - Pachyderm’s Enterprise dashboard is now deployed by default with Pachyderm. If you wish to deploy without the dashboard please use pachctl deploy [command] --no-dashboard

Note - You can get a FREE evaluation token for the enterprise edition on the landing page of the Enterprise dashboard.

Activating Pachyderm Enterprise Edition

There are two ways to activate Pachyderm’s enterprise features::

	Activate Pachyderm Enterprise via the pachctl CLI

	Activate Pachyderm Enterprise via the dashboard

For either method, you will need to have your Pachyderm Enterprise activation code available. You should have received this from Pachyderm sales/support when registering for the Enterprise Edition. If you are a new user evaluating Pachyderm, you can receive a FREE evaluation code on the landing page of the dashboard. Please contact support@pachyderm.io if you are having trouble locating your activation code.

Activate via the pachctl CLI

Assuming you followed one of our deploy guides [http://pachyderm.readthedocs.io/en/latest/deployment/deploy_intro.html] and you have a Pachyderm cluster running, you should see that the state of your Pachyderm cluster is similar to the following:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-6c9dc97d9c-vb972 2/2 Running 0 6m
etcd-7dbb489f44-9v5jj 1/1 Running 0 6m
pachd-6c878bbc4c-f2h2c 1/1 Running 0 6m

You should also be able to connect to the Pachyderm cluster via the pachctl CLI:

$ pachctl version
COMPONENT VERSION
pachctl 1.6.8
pachd 1.6.8

Activating the Enterprise features of Pachyderm is then as easy as:

$ pachctl enterprise activate <activation-code>

If this command returns no error, then the activation was successful. The state of the Enterprise activation can also be retrieved at any time via:

$ pachctl enterprise get-state
ACTIVE

Activate via the dashboard

Assuming that you have a running Pachyderm cluster and you have deployed the Pachyderm Enterprise dashboard using this guide, you should be able to visit <pachyderm host IP>:30080 (e.g., localhost:30080 when you are using pachctl port-forward) to see the dashboard. When you first visit the dashboard, it will prompt you for your activation code:

[image: alt tag]

Once you enter your activation code, you should have full access to the Enterprise dashboard and your cluster will be an active Enterprise Edition cluster. This could be confirmed with:

$ pachctl enterprise get-state
ACTIVE

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Access Controls

The access control features of Pachyderm Enterprise let you create and manage various users that interact with your Pachyderm cluster. You can restrict access to individual data repositories on a per user basis and, as a result, restrict the subscription of pipelines to those data repositories.

These docs will guide you through:

	Understanding Pachyderm access controls.

	Activating access control features (aka “auth” features).

	Logging into Pachyderm.

	Managing/updating user access to data repositories.

We will also discuss:

	The behavior of pipelines when using access control

	The behavior of a cluster when access control is de-activated or an enterprise token expires

Understanding Pachyderm access controls

Assuming access controls are activated, each data repository (aka repo) in Pachyderm will have an Access Control List (ACL) associated with it. The ACL will include:

	READERs - users who can read the data versioned in the repo.

	WRITERs - users with READER access who can also commit additions, deletions, or modifications of data into the repo.

	OWNERs - users with READER and WRITER access who can also modify the repo’s ACL.

Currently, Pachyderm accounts correspond to GitHub users, who authenticate inside of Pachyderm using OAuth integration with GitHub. Pachyderm user accounts are identified within Pachyderm via their GitHub usernames.

There is a single, hardcoded “admin” group (and no other groups) in Pachyderm. Users in that admin group have the ability to perform any action in the cluster, including appointing other admins. Further, a repo with no ACL can only be managed by the cluster admins.

Activating access control

First, you will need to make sure that your cluster has Pachyderm Enterprise Edition activated (you can follow this guide to activate Enterprise Edition). The status of the Enterprise features can be verified by accessing the Pachyderm dashboard or with pachctl as follows:

$ pachctl enterprise get-state
ACTIVE

Next, we need to activate the Enterprise access control features. This can be done in the dashboard or with pachctl auth activate. However, before executing that command, we should decide on at least one user that will have admin privileges on the cluster. Pachyderm admins will be able to modify the scope of access for any non-admin users on the cluster. All users in Pachyderm are identified by their GitHub usernames.

Activating access controls with the dashboard

To activate access controls via the Pachyderm dashboard, go to the settings page where you should see a “Activate Access Controls” button. Click on that button. You will then be able to enter one or more Github users as cluster admins and activate access controls:

[image: alt tag]

After activating access controls, you should see the following screen asking you to login to Pachyderm:

[image: alt tag]

Activating access controls with pachctl

To activate access controls on a cluster and set the GitHub user dwhitena as an admin, we would execute the following pachctl command:

$ pachctl auth activate --admins=dwhitena

Your Pachyderm cluster can have more than one admin if you like, but you need to supply at least one with this command. To add multiple admins, You would just need to specify them here as a comma separated list.

Logging into Pachyderm

Now that we have activated access control, we can login to our cluster. When using the Pachyderm dashboard, you will need to login on the dashboard, and, when using the pachctl CLI, you will need to login via the CLI.

Login on the dashboard

Once you have authorized access controls for Pachyderm, you will need to login to use the Pachyderm dashboard as shown above in this section. To login, click the “Get GitHub token” button. You will then be presented with an option to “Authorize Pachyderm” (assuming that you haven’t authorized Pachyderm on GitHub previously). Once you authorize Pachyderm, you will be presented with a Pachyderm user token:

[image: alt tag]

Copy and paste this token back into the Pachyderm login screen and press enter. You are now logged in to Pachyderm, and you should see your Github avatar and an indication of your user in the upper left hand corner of the dashboard:

[image: alt tag]

Login using pachctl

You can use the pachctl auth login <username> to login via the CLI. When we execute this command, pachctl will provide us with a GitHub link to authenticate ourselves as the provided GitHub user, as shown below:

$ pachctl auth login dwhitena
(1) Please paste this link into a browser:

https://github.com/login/oauth/authorize?client_id=d3481e92b4f09ea74ff8&redirect_uri=https%3A%2F%2Fpachyderm.io%2Flogin-hook%2Fdisplay-token.html

(You will be directed to GitHub and asked to authorize Pachyderm's login app on Github. If you accept, you will be given a token to paste here, which will give you an externally verified account in this Pachyderm cluster)

(2) Please paste the token you receive from GitHub here:

When visiting this link in a browser, you will be presented with an option to “Authorize Pachyderm” (assuming that you haven’t authorized Pachyderm via GitHub previously). Once you authorize Pachyderm, you will be presented with a Pachyderm user token:

[image: alt tag]

Copy and paste this token back into the terminal, as requested by pachctl, and press enter. You are now logged in to Pachyderm!

Managing and updating user access

Let’s suppose that we create a repository call test when we are logged into Pachyderm as the user dwhitena. Because, the user dwhitena created this repository, dwhitena will have full read/write access to the repo. This can be confirmed on the dashboard by navigating to or clicking on the repo test. The results repo details will show your current access to the repository:

[image: alt tag]

You can also confirm your access via the pachctl auth get ... command:

$ pachctl auth get dwhitena test`
OWNER

An OWNER of test or a cluster admin can then set other user’s scope of access to the repo. This can be done via the pachctl auth set ... command or via the dashboard. For example, to give the GitHub users JoeyZwicker and msteffen READER (but not WRITER or OWNER) access to test and jdoliner WRITER (but not OWNER) access, we can click on Modify access controls under the repo details in the dashboard. This will allow us to easily add the users one by one:

[image: alt tag]

Behavior of pipelines as related to access control

In Pachyderm, you don’t explicitly set the scope of access for users on pipelines. Rather, pipelines infer access from the repositories that are input to the pipeline, as follows:

	An OWNER, WRITER, or READER of a repo may subscribe a pipeline to that repo.

	When a user subscribes a pipeline to a repo, they will be set as an OWNER of that pipeline’s output repo.

	The initial OWNER of a pipeline’s output repo (or an admin) needs to set the scope of access for other users to that output repo.

Activation code expiration and de-activation

When an enterprise activation code expires, an auth-activated Pachyderm cluster goes into an “admin only” state. In this state, only admins will have access to data that is in Pachyderm. This safety measure keeps sensitive data protected, even when an enterprise subscription becomes stale. As soon as the enterprise activation code is updated (via the dashboard or via pachctl enterprise activate ...), the Pachyderm cluster will return to it’s previous state.

When access controls are de-activated on a Pachyderm cluster via pachctl auth deactivate, the cluster returns to being a non-access controlled Pachyderm cluster. That is,

	All ACLs are deleted.

	The cluster returns to being a blank slate in regards to access control. Everyone that can connect to Pachyderm will be able to access and modify the data in all repos.

	There will no longer be a concept of users (i.e., no one will be able to login to Pachyderm).

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Advanced Statistics

To take advantage of the advanced statistics features in Pachyderm Enterprise Edition, you need to:

	Run your pipelines on a Pachyderm cluster that has activated Enterprise features (see Deploying Enterprise Edition for more details).

	Enable stats collection in your pipelines by including "enable_stats": true in your pipeline specifications [http://pachyderm.readthedocs.io/en/latest/reference/pipeline_spec.html#enable-stats-optional].

You will then be able to access the following information for any jobs corresponding to your pipelines:

	The amount of data that was uploaded and downloaded during the job and on a per-datum level (see here [http://pachyderm.readthedocs.io/en/latest/fundamentals/distributed_computing.html#datums] for info about Pachyderm datums).

	The time spend uploading and downloading data on a per-datum level.

	The amount of data uploaded and downloaded on a per-datum level.

	The total time spend processing on a per-datum level.

	Success/failure information on a per-datum level.

	The directory structure of input data that was seen by the job.

The primary and recommended way to view this information is via the Pachyderm Enterprise dashboard, which can be deployed as detailed here. However, the same information is available through the inspect-datum and list-datum pachctl commands or through their language client equivalents.

Note - We recommend enabling stats for all of your pipeline and only disabling the feature for very stable, long-running pipelines. In most cases, the debugging/maintenance benefits of the stats data will outweigh any disadvantages of storing the extra data associated with the stats. Also note, none of your data is duplicated in producing the stats.

Enabling stats for a pipeline

As mentioned above, enabling stats collection for a pipeline is as simple as adding the "enable_stats": true field to a pipeline specification. For example, to enable stats collection for our OpenCV demo pipeline [http://pachyderm.readthedocs.io/en/latest/getting_started/beginner_tutorial.html#image-processing-with-opencv], we would modify the pipeline specification as follows:

{
 "pipeline": {
 "name": "edges"
 },
 "input": {
 "atom": {
 "glob": "/*",
 "repo": "images"
 }
 },
 "transform": {
 "cmd": ["python3", "/edges.py"],
 "image": "pachyderm/opencv"
 },
 "enable_stats": true
}

Once the pipeline has been created and you have utilized it to process data, you can confirm that stats are being collected with list-file. There should now be stats data in the output repo of the pipeline under a branch called stats:

$ pachctl list-file edges stats
NAME TYPE SIZE
002f991aa9db9f0c44a92a30dff8ab22e788f86cc851bec80d5a74e05ad12868 dir 342.7KiB
0597f2df3f37f1bb5b9bcd6397841f30c62b2b009e79653f9a97f5f13432cf09 dir 1.177MiB
068fac9c3165421b4e54b358630acd2c29f23ebf293e04be5aa52c6750d3374e dir 270.3KiB
0909461500ce508c330ca643f3103f964a383479097319dbf4954de99f92f9d9 dir 109.6KiB
etc...

Don’t worry too much about this view of the stats data. It just confirms that stats are being collected.

Accessing stats via the dashboard

Assuming that you have deployed and activated the Pachyderm Enterprise dashboard, you can explore your advanced statistics in just a few clicks. For example, if we navigate to our edges pipeline (specified above), we will see something similar to this:

[image: alt tag]

In this example case, we can see that the pipeline has had 1 recent successful job and 2 recent job failures. Pachyderm advanced stats can be very helpful in debugging these job failures. When we click on one of the job failures we will see the following general stats about the failed job (total time, total data upload/download, etc.):

[image: alt tag]

To get more granular per-datum stats (see here [http://pachyderm.readthedocs.io/en/latest/fundamentals/distributed_computing.html#datums] for info on Pachyderm datums), we can click on the 41 datums total, which will reveal the following:

[image: alt tag]

We can easily identify the exact datums that caused our pipeline to fail and the associated stats:

	Total time

	Time spent downloading data

	Time spent processing

	Time spent uploading data

	Amount of data downloaded

	Amount of data uploaded

If we need to, we can even go a level deeper and explore the exact details of a failed datum. Clicking on one of the failed datums will reveal the logs corresponding to the datum processing failure along with the exact input files of the datum:

[image: alt tag]

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Overview

Pachyderm runs on Kubernetes [http://kubernetes.io/] and is backed by an object store of your choice. As such, Pachyderm can run on any platform that supports Kubernetes and an object store. These following docs cover common deployments and related topics:

	Google Cloud Platform [http://pachyderm.readthedocs.io/en/stable/deployment/google_cloud_platform.html]

	Amazon Web Services [http://pachyderm.readthedocs.io/en/stable/deployment/amazon_web_services.html]

	Azure [http://pachyderm.readthedocs.io/en/stable/deployment/azure.html]

	OpenShift [http://pachyderm.readthedocs.io/en/stable/deployment/openshift.html]

	On Premises [http://pachyderm.readthedocs.io/en/stable/deployment/on_premises.html]

	Custom Object Stores [http://pachyderm.readthedocs.io/en/stable/deployment/custom_object_stores.html]

	Migrations [http://pachyderm.readthedocs.io/en/stable/deployment/migrations.html]

	Upgrading Pachyderm Versions

	Non-Default Namespaces

	RBAC

Usage Metrics

Pachyderm automatically reports anonymized usage metrics. These metrics help us
understand how people are using Pachyderm and make it better. They can be
disabled by setting the env variable METRICS to false in the pachd
container.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Google Cloud Platform

Google Cloud Platform has excellent support for Kubernetes, and thus Pachyderm, through the Google Kubernetes Engine [https://cloud.google.com/kubernetes-engine/] (GKE). The following guide will walk you through deploying a Pachyderm cluster on GCP.

Prerequisites

	Google Cloud SDK [https://cloud.google.com/sdk/] >= 124.0.0

	kubectl [https://kubernetes.io/docs/user-guide/prereqs/]

	pachctl

If this is the first time you use the SDK, make sure to follow the quick start guide [https://cloud.google.com/sdk/docs/quickstarts]. Note, this may update your ~/.bash_profile and point your $PATH at the location where you extracted google-cloud-sdk. We recommend extracting the SDK to ~/bin.

Note, you can also install kubectl installed via the Google Cloud SDK using:

$ gcloud components install kubectl

Deploy Kubernetes

To create a new Kubernetes cluster via GKE, run:

$ CLUSTER_NAME=<any unique name, e.g. "pach-cluster">

$ GCP_ZONE=<a GCP availability zone. e.g. "us-west1-a">

$ gcloud config set compute/zone ${GCP_ZONE}

$ gcloud config set container/cluster ${CLUSTER_NAME}

$ MACHINE_TYPE=<machine type for the k8s nodes, we recommend "n1-standard-4" or larger>

By default the following command spins up a 3-node cluster. You can change the default with `--num-nodes VAL`.
$ gcloud container clusters create ${CLUSTER_NAME} --scopes storage-rw --machine-type ${MACHINE_TYPE}

Note that you must create the Kubernetes cluster via the gcloud command-line tool rather than the Google Cloud Console, as it’s currently only possible to grant the storage-rw scope via the command-line tool. Also note, you should deploy a 1.8.x cluster if possible to take full advantage of Pachyderm’s latest features.

This may take a few minutes to start up. You can check the status on the GCP Console [https://console.cloud.google.com/compute/instances]. A kubeconfig entry will automatically be generated and set as the current context. As a sanity check, make sure your cluster is up and running via kubectl:

List all pods in the kube-system namespace.
$ kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
event-exporter-v0.1.7-5c4d9556cf-fd9j2 2/2 Running 0 1m
fluentd-gcp-v2.0.9-68vhs 2/2 Running 0 1m
fluentd-gcp-v2.0.9-fzfpw 2/2 Running 0 1m
fluentd-gcp-v2.0.9-qvk8f 2/2 Running 0 1m
heapster-v1.4.3-5fbfb6bf55-xgdwx 3/3 Running 0 55s
kube-dns-778977457c-7hbrv 3/3 Running 0 1m
kube-dns-778977457c-dpff4 3/3 Running 0 1m
kube-dns-autoscaler-7db47cb9b7-gp5ns 1/1 Running 0 1m
kube-proxy-gke-pach-cluster-default-pool-9762dc84-bzcz 1/1 Running 0 1m
kube-proxy-gke-pach-cluster-default-pool-9762dc84-hqkr 1/1 Running 0 1m
kube-proxy-gke-pach-cluster-default-pool-9762dc84-jcbg 1/1 Running 0 1m
kubernetes-dashboard-768854d6dc-t75rp 1/1 Running 0 1m
l7-default-backend-6497bcdb4d-w72k5 1/1 Running 0 1m

If you don’t see something similar to the above output, you can point kubectl to the new cluster manually via:

Update your kubeconfig to point at your newly created cluster.
$ gcloud container clusters get-credentials ${CLUSTER_NAME}

Deploy Pachyderm

To deploy Pachyderm we will need to:

	Create some storage resources,

	Install the Pachyderm CLI tool, pachctl, and

	Deploy Pachyderm on the k8s cluster

Set up the Storage Resources

Pachyderm needs a GCS bucket [https://cloud.google.com/storage/docs/] and a persistent disk [https://cloud.google.com/compute/docs/disks/] to function correctly. We can specify the size of the persistent disk, the bucket name, and create the bucket as follows:

For the persistent disk, 10GB is a good size to start with.
This stores PFS metadata. For reference, 1GB
should work fine for 1000 commits on 1000 files.
$ STORAGE_SIZE=<the size of the volume that you are going to create, in GBs. e.g. "10">

The Pachyderm bucket name needs to be globally unique across the entire GCP region.
$ BUCKET_NAME=<The name of the GCS bucket where your data will be stored>

Create the bucket.
$ gsutil mb gs://${BUCKET_NAME}

To check that everything has been set up correctly, try:

$ gsutil ls
You should see the bucket you created.

Install pachctl

pachctl is a command-line utility for interacting with a Pachyderm cluster. You can install it locally as follows:

For OSX:
$ brew tap pachyderm/tap && brew install pachyderm/tap/pachctl@1.8

For Linux (64 bit) or Window 10+ on WSL:
$ curl -o /tmp/pachctl.deb -L https://github.com/pachyderm/pachyderm/releases/download/v1.8.0/pachctl_1.8.0_amd64.deb && sudo dpkg -i /tmp/pachctl.deb

You can then run pachctl version --client-only to check that the installation was successful.

$ pachctl version --client-only
1.7.0

Deploy Pachyderm on the k8s cluster

Now we’re ready to deploy Pachyderm itself. This can be done in one command:

$ pachctl deploy google ${BUCKET_NAME} ${STORAGE_SIZE} --dynamic-etcd-nodes=1
serviceaccount "pachyderm" created
storageclass "etcd-storage-class" created
service "etcd-headless" created
statefulset "etcd" created
service "etcd" created
service "pachd" created
deployment "pachd" created
service "dash" created
deployment "dash" created
secret "pachyderm-storage-secret" created

Pachyderm is launching. Check its status with "kubectl get all"
Once launched, access the dashboard by running "pachctl port-forward"

Note, here we are using 1 etcd node to manage Pachyderm metadata. The number of etcd nodes can be adjusted as needed. Also, RBAC can be enabled as further documented here.

It may take a few minutes for the pachd nodes to be running because it’s pulling containers from DockerHub. You can see the cluster status with kubectl, which should output the following when Pachyderm is up and running:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-482120938-np8cc 2/2 Running 0 4m
etcd-0 1/1 Running 0 4m
pachd-3677268306-9sqm0 1/1 Running 0 4m

If you see a few restarts on the pachd pod, that’s totally ok. That simply means that Kubernetes tried to bring up those containers before other components were ready, so it restarted them.

Finally, assuming your pachd is running as shown above, we need to set up forward a port so that pachctl can talk to the cluster.

Forward the ports. We background this process because it blocks.
$ pachctl port-forward &

And you’re done! You can test to make sure the cluster is working by trying pachctl version or even creating a new repo.

$ pachctl version
COMPONENT VERSION
pachctl 1.7.0
pachd 1.7.0

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Amazon Web Services

Advanced

	Deploy within an existing VPC [https://github.com/pachyderm/pachyderm/blob/master/doc/deployment/amazon_web_services/existing_vpc.md]

	Connect to your Pachyderm Cluster [https://github.com/pachyderm/pachyderm/blob/master/doc/deployment/amazon_web_services/connecting_to_your_cluster.md]

Standard Deployment

We recommend one of the following two methods for deploying Pachyderm on AWS:

	By manually deploying Kubernetes and Pachyderm.
	This is appropriate if you (i) already have a kubernetes deployment, (ii) if you would like to customize the types of instances, size of volumes, etc. in your cluster, (iii) if you’re setting up a production cluster, or (iv) if you are processing a lot of data or have computationally expensive workloads.

	By executing a one shot deploy script that will both deploy Kubernetes and Pachyderm.
	This option is appropriate if you are just experimenting with Pachyderm. The one-shot script will get you up and running in no time!

In addition, we recommend setting up AWS CloudFront for any production deployments. AWS puts S3 rate limits in place that can limit the data throughput for your cluster, and CloudFront helps mitigate this issue. Follow these instructions to deploy with CloudFront

	Deploy a Pachyderm cluster with CloudFront

Manual Pachyderm Deploy

Prerequisites

	AWS CLI [https://aws.amazon.com/cli/] - have it installed and have your AWS credentials [http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html] configured.

	kubectl [https://kubernetes.io/docs/user-guide/prereqs/]

	kops [https://github.com/kubernetes/kops/blob/master/docs/install.md]

	pachctl

Deploy Kubernetes

The easiest way to install Kubernetes on AWS (currently) is with kops. You can follow this step-by-step guide from Kubernetes [https://github.com/kubernetes/kops/blob/master/docs/aws.md] for the deploy. Note, we recommend using at r4.xlarge or larger instances in the cluster.

Once, you have a Kubernetes cluster up and running in AWS, you should be able to see the following output from kubectl:

$ kubectl get all
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/kubernetes ClusterIP 100.64.0.1 <none> 443/TCP 7m

Deploy Pachyderm

To deploy Pachyderm on your k8s cluster you will need to:

	Install the pachctl CLI tool,

	Add some storage resources on AWS,

	Deploy Pachyderm on top of the storage resources.

Install pachctl

To deploy and interact with Pachyderm, you will need pachctl, Pachyderm’s command-line utility. To install pachctl run one of the following:

For OSX:
$ brew tap pachyderm/tap && brew install pachyderm/tap/pachctl@1.8

For Linux (64 bit) or Window 10+ on WSL:
$ curl -o /tmp/pachctl.deb -L https://github.com/pachyderm/pachyderm/releases/download/v1.8.0/pachctl_1.8.0_amd64.deb && sudo dpkg -i /tmp/pachctl.deb

You can try running pachctl version --client-only to verify that pachctl has been successfully installed.

$ pachctl version --client-only
1.7.0

Set up the Storage Resources

Pachyderm needs an S3 bucket [https://aws.amazon.com/documentation/s3/], and a persistent disk [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumes.html] (EBS in AWS) to function correctly.

Here are the environmental variables you should set up to create and utilize these resources:

BUCKET_NAME needs to be globally unique across the entire AWS region
$ BUCKET_NAME=<The name of the S3 bucket where your data will be stored>

We recommend between 1 and 10 GB. This stores PFS metadata. For reference 1GB
should work for 1000 commits on 1000 files.
$ STORAGE_SIZE=<the size of the EBS volume that you are going to create, in GBs. e.g. "10">

$ AWS_REGION=<the AWS region of your Kubernetes cluster. e.g. "us-west-2" (not us-west-2a)>

Then to actually create the backing S3 bucket, you can run one of the following:

If AWS_REGION is us-east-1.
$ aws s3api create-bucket --bucket ${BUCKET_NAME} --region ${AWS_REGION}

If AWS_REGION is outside of us-east-1.
$ aws s3api create-bucket --bucket ${BUCKET_NAME} --region ${AWS_REGION} --create-bucket-configuration LocationConstraint=${AWS_REGION}

As a sanity check, you should be able to see the bucket that you just created when you run the following:

$ aws s3api list-buckets --query 'Buckets[].Name'

Deploy Pachyderm

You can deploy Pachyderm on AWS using:

	An IAM role, or

	Static credentials

Deploying with an IAM role

Run the following command to deploy your Pachyderm cluster:

$ pachctl deploy amazon ${BUCKET_NAME} ${AWS_REGION} ${STORAGE_SIZE} --dynamic-etcd-nodes=1 --iam-role <your-iam-role>

Note that for this to work, the following need to be true:

	The nodes on which Pachyderm is deployed need to be assigned with the utilized IAM role. If you created your cluster with kops, the nodes should have a dedicated IAM role. You can find this IAM role by going to the AWS console, clicking on one of the EC2 instance in the k8s cluster, and inspecting the “Description” of the instance.

	The IAM role needs to have access to the bucket you just created. To ensure that it has access, you can go to the Permissions tab of the IAM role and edit the policy to include the following segment (Make sure to replace your-bucket with your actual bucket name):

{
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::your-bucket"
]
},
{
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::your-bucket/*"
]
}

	The IAM role needs to have the proper “trust relationships” set up. You can verify this by navigating to the Trust relationships tab of your IAM role, clicking Edit trust relationship, and ensuring that you see a statement with sts:AssumeRole. For instance, this would be a valid trust relationship:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Once you’ve run pachctl deploy ... and waited a few minutes, you should see the following running pods in Kubernetes:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-6c9dc97d9c-89dv9 2/2 Running 0 1m
etcd-0 1/1 Running 0 4m
pachd-65fd68d6d4-8vjq7 1/1 Running 0 4m

Note: If you see a few restarts on the pachd nodes, that’s totally ok. That simply means that Kubernetes tried to bring up those containers before etcd was ready so it restarted them.

If you see the above pods running, the last thing you need to do is forward a couple ports so that pachctl can talk to the cluster:

Forward the ports. We background this process because it blocks.
$ pachctl port-forward &

And you’re done! You can verify that the cluster is working by executing pachctl version, which should return a version for both pachctl and pachd:

$ pachctl version
COMPONENT VERSION
pachctl 1.7.0
pachd 1.7.0

Deploying with static credentials

When you installed kops, you should have created a dedicated IAM user (see here [https://github.com/kubernetes/kops/blob/master/docs/aws.md#aws] for details). You could deploy Pachyderm using the credentials of this IAM user directly, although that’s not recommended:

$ AWS_ACCESS_KEY_ID=<access key ID>

$ AWS_SECRET_ACCESS_KEY=<secret access key>

Run the following command to deploy your Pachyderm cluster:

$ pachctl deploy amazon ${BUCKET_NAME} ${AWS_REGION} ${STORAGE_SIZE} --dynamic-etcd-nodes=1 --credentials "${AWS_ACCESS_KEY_ID},${AWS_SECRET_ACCESS_KEY},"

Note, the , at the end of the credentials flag in the deploy command is for an optional temporary AWS token. You might utilize this sort of temporary token if you are just experimenting with a deploy. However, such a token should NOT be used for a production deploy.

It may take a few minutes for Pachyderm to start running on the cluster, but you you should eventually see the following running pods:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-6c9dc97d9c-89dv9 2/2 Running 0 1m
etcd-0 1/1 Running 0 4m
pachd-65fd68d6d4-8vjq7 1/1 Running 0 4m

If you see an output similar to the above, the last thing you need to do is forward a couple ports so that pachctl can talk to the cluster.

Forward the ports. We background this process because it blocks.
$ pachctl port-forward &

And you’re done! You can verify that the cluster is working by running pachctl version, which should return a version for both pachctl and pachd:

$ pachctl version
COMPONENT VERSION
pachctl 1.7.0
pachd 1.7.0

One Shot Script

Prerequisites

	AWS CLI [https://aws.amazon.com/cli/] - have it installed and have your AWS credentials [http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html] configured.

	kubectl [https://kubernetes.io/docs/user-guide/prereqs/]

	kops [https://github.com/kubernetes/kops/blob/master/docs/install.md]

	pachctl

	jq [https://stedolan.github.io/jq/download/]

	uuid [http://man7.org/linux/man-pages/man1/uuidgen.1.html]

Run the deploy script

Once you have the prerequisites mentioned above, download and run our AWS deploy script by running:

$ curl -o aws.sh https://raw.githubusercontent.com/pachyderm/pachyderm/master/etc/deploy/aws.sh
$ chmod +x aws.sh
$ sudo -E ./aws.sh

This script will use kops to deploy Kubernetes and Pachyderm in AWS. The script will ask you for your AWS credentials, region preference, etc. If you would like to customize the number of nodes in the cluster, node types, etc., you can open up the deploy script and modify the respective fields.

The script will take a few minutes, and Pachyderm will take an addition couple of minutes to spin up. Once it is up, kubectl get pods should return something like:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-6c9dc97d9c-89dv9 2/2 Running 0 1m
etcd-0 1/1 Running 0 4m
pachd-65fd68d6d4-8vjq7 1/1 Running 0 4m

Connect pachctl

You will then need to forward a couple ports so that pachctl can talk to the cluster:

Forward the ports. We background this process because it blocks.
$ pachctl port-forward &

And you’re done! You can verify that the cluster is working by executing pachctl version, which should return a version for both pachctl and pachd:

$ pachctl version
COMPONENT VERSION
pachctl 1.7.0
pachd 1.7.0

Remove

You can delete your Pachyderm cluster using kops:

$ kops delete cluster

In addition, there is the entry in /etc/hosts pointing to the cluster that will need to be manually removed. Similarly, kubernetes state s3 bucket and pachyderm storage bucket will need to be manually removed.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Azure

To deploy Pachyderm to Azure, you need to:

	Install Prerequisites

	Deploy Kubernetes

	Deploy Pachyderm on Kubernetes

Prerequisites

Install the following prerequisites:

	Azure CLI [https://docs.microsoft.com/en-us/cli/azure/install-azure-cli] >= 2.0.1

	jq [https://stedolan.github.io/jq/download/]

	kubectl [https://docs.microsoft.com/cli/azure/aks?view=azure-cli-latest#az_aks_install_cli]

	pachctl

Deploy Kubernetes

The easiest way to deploy a Kubernetes cluster is through the Azure Container Service (AKS) [https://docs.microsoft.com/azure/aks/tutorial-kubernetes-deploy-cluster]. To create a new AKS Kubernetes cluster using the Azure CLI az, run:

$ RESOURCE_GROUP=<a unique name for the resource group where Pachyderm will be deployed, e.g. "pach-resource-group">

$ LOCATION=<a Azure availability zone where AKS is available, e.g, "Central US">

$ NODE_SIZE=<size for the k8s instances, we recommend at least "Standard_DS4_v2">

$ CLUSTER_NAME=<unique name for the cluster, e.g., "pach-aks-cluster">

Create the Azure resource group.
$ az group create --name=${RESOURCE_GROUP} --location=${LOCATION}

Create the AKS cluster.
$ az aks create --resource-group ${RESOURCE_GROUP} --name ${CLUSTER_NAME} --generate-ssh-keys --node-vm-size ${NODE_SIZE}

Once Kubernetes is up and running you should be able to confirm the version of the Kubernetes server via:

$ kubectl version
Client Version: version.Info{Major:"1", Minor:"9", GitVersion:"v1.9.3", GitCommit:"d2835416544f298c919e2ead3be3d0864b52323b", GitTreeState:"clean", BuildDate:"2018-02-07T12:22:21Z", GoVersion:"go1.9.2", Compiler:"gc", Platform:"darwin/amd64"}
Server Version: version.Info{Major:"1", Minor:"7", GitVersion:"v1.7.9", GitCommit:"19fe91923d584c30bd6db5c5a21e9f0d5f742de8", GitTreeState:"clean", BuildDate:"2017-10-19T16:55:06Z", GoVersion:"go1.8.3", Compiler:"gc", Platform:"linux/amd64"}

Note - Azure AKS is still a relatively new managed service. As such, we have had some issues consistently deploying AKS clusters in certain availability zones. If you get timeouts or issues when provisioning an AKS cluster, we recommend trying in a fresh resource group and possibly trying a different zone.

Deploy Pachyderm

To deploy Pachyderm we will need to:

	Add some storage resources on Azure,

	Install the Pachyderm CLI tool, pachctl, and

	Deploy Pachyderm on top of the storage resources.

Set up the Storage Resources

Pachyderm requires an object store and persistent volume (Azure Storage [https://azure.microsoft.com/documentation/articles/storage-introduction/]) to function correctly. To create these resources, you need to clone the Pachyderm GitHub repo [https://github.com/pachyderm/pachyderm] and then run the following from the root of that repo:

$ STORAGE_ACCOUNT=<The name of the storage account where your data will be stored, unique in the Azure location>

$ CONTAINER_NAME=<The name of the Azure blob container where your data will be stored>

$ STORAGE_SIZE=<the size of the persistent volume that you are going to create in GBs, we recommend at least "10">

Create an Azure storage account
az storage account create \
 --resource-group="${RESOURCE_GROUP}" \
 --location="${LOCATION}" \
 --sku=Standard_LRS \
 --name="${STORAGE_ACCOUNT}" \
 --kind=Storage

Build a microsoft tool for creating Azure VMs from an image. Necessary to create the blank PV.
$ STORAGE_KEY="$(az storage account keys list \
 --account-name="${STORAGE_ACCOUNT}" \
 --resource-group="${RESOURCE_GROUP}" \
 --output=json \
 | jq '.[0].value' -r
)"

Install pachctl

pachctl is a command-line utility used for interacting with a Pachyderm cluster.

For OSX:
$ brew tap pachyderm/tap && brew install pachyderm/tap/pachctl@1.8

For Linux (64 bit) or Window 10+ on WSL:
$ curl -o /tmp/pachctl.deb -L https://github.com/pachyderm/pachyderm/releases/download/v1.8.0/pachctl_1.8.0_amd64.deb && sudo dpkg -i /tmp/pachctl.deb

You can try running pachctl version to check that this worked correctly:

$ pachctl version --client-only
COMPONENT VERSION
pachctl 1.7.0

Deploy Pachyderm

Now we’re ready to deploy Pachyderm:

$ pachctl deploy microsoft ${CONTAINER_NAME} ${STORAGE_ACCOUNT} ${STORAGE_KEY} ${STORAGE_SIZE} --dynamic-etcd-nodes 1

It may take a few minutes for the pachd pods to be running because it’s pulling containers from Docker Hub. When Pachyderm is up and running, you should see something similar to the following state:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-482120938-vdlg9 2/2 Running 0 54m
etcd-0 1/1 Running 0 54m
pachd-1971105989-mjn61 1/1 Running 0 54m

Note: If you see a few restarts on the pachd nodes, that’s totally ok. That simply means that Kubernetes tried to bring up those containers before etcd was ready so it restarted them.

Finally, assuming you want to connect to the cluster from your local machine (i.e., your laptop), we need to set up forward a port so that pachctl can talk to the cluster:

Forward the ports. We background this process because it blocks.
$ pachctl port-forward &

And you’re done! You can test to make sure the cluster is working by trying pachctl version or even by creating a new repo.

$ pachctl version
COMPONENT VERSION
pachctl 1.7.0
pachd 1.7.0

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

OpenShift

OpenShift [https://www.openshift.com/] is a popular enterprise Kubernetes distribution. Pachyderm can run on OpenShift with a few small tweaks in the deployment process, which will be outlined below.

Deploy Pachyderm

	How you deploy Pachyderm on OpenShift is largely going to depend on where OpenShift is deployed.

	OpenShift Deployed on AWS [https://pachyderm.readthedocs.io/en/latest/deployment/amazon_web_services.html]

	OpenShift Deployed on GCP [https://pachyderm.readthedocs.io/en/latest/deployment/google_cloud_platform.html]

	OpenShift Deployed on Azure [https://pachyderm.readthedocs.io/en/latest/deployment/azure.html]

	OpenShift Deployed on-premise [https://pachyderm.readthedocs.io/en/latest/deployment/on_premises.html]

	Replace hostPath with emptyDir in your cluster manifest (Your manifest is generated by the pachctl deploy ... command or can be generated manually. To only generate the manifest, run pachctl deploy ... with the --dry-run flag).

 "spec": {
 "volumes": [
 {
 "name": "pach-disk",
 "emptyDir": {}
 }
],

 ... <snip> ...

 "spec": {
 "volumes": [
 {
 "name": "etcd-storage",
 "emptyDir": {}
 }
],

Please note that emptyDir does not persist your data. You need to configure persistent volume or hostPath to persist your data.

	Deploy Pachyderm manifest you modified.

$ oc create -f pachyderm.json

You can see the cluster status by using oc get pods as in upstream Kubernetes:

$ oc get pods
NAME READY STATUS RESTARTS AGE
dash-6c9dc97d9c-89dv9 2/2 Running 0 1m
etcd-0 1/1 Running 0 4m
pachd-65fd68d6d4-8vjq7 1/1 Running 0 4m

Configure your cluster to run pipelines

	Add cluster-reader and edit role to pachyderm service account:

$ oadm policy add-cluster-role-to-user cluster-reader system:serviceaccount:<PROJECT_NAME>:pachyderm
$ oadm policy add-cluster-role-to-user edit system:serviceaccount:<PROJECT_NAME>:pachyderm

	Add the pachyderm service account to the pipeline Pod (ReplicationController).

oc patch rc pipeline-edges-v1 -p 'spec:
 template:
 spec:
 serviceAccount: pachyderm
 serviceAccountName: pachyderm'

or manually edit rc oc edit rc <RC_PIPELINE> -o json:

 ...
 "dnsPolicy": "ClusterFirst",
 "serviceAccountName": "pachyderm",
 "serviceAccount": "pachyderm",
 "securityContext": {}
 ...

	Replace hostPath with emptyDir. Again, please note that emptyDir does not persist your data. You need to configure persistent volume or hostPath to persist.

	Redeploy the updated Pods.

$ oc scale rc pipeline-edges-v1 --replicas=0
$ oc scale rc pipeline-edges-v1 --replicas=4

You can see the pipeline pods are running and successful job.

$ oc get pods
NAME READY STATUS RESTARTS AGE
etcd-kbi4n 1/1 Running 0 1h
pachd-z3b7y 1/1 Running 0 1h
pipeline-edges-v1-28vdj 1/1 Running 0 12s
pipeline-edges-v1-fpa8v 1/1 Running 0 12s
pipeline-edges-v1-mshi0 1/1 Running 0 12s
pipeline-edges-v1-yx2wa 1/1 Running 0 12s

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS STATE
1b2c1b49-f536-484f-b0e3-07b3906572be edges/006f0aecb2b048d5b5edee0cdb766879 55 minutes ago 51 minutes 0 1 / 1 success

Problems related to OpenShift deployment are tracked in this issue [https://github.com/pachyderm/pachyderm/issues/336]. If you have additional related questions, please ask them on Pachyderm’s slack channel [https://pachyderm-users.slack.com/messages] or via email support@pachyderm.io.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

On Premises

Pachyderm is built on Kubernetes [https://kubernetes.io/] and can be backed by an object store of your choice. As such, Pachyderm can run on any on premise platforms/frameworks that support Kubernetes, a persistent disk/volume, and an object store.

Prerequisites

	kubectl [https://kubernetes.io/docs/user-guide/prereqs/]

	pachctl [http://docs.pachyderm.io/en/latest/pachctl/pachctl.html]

Kubernetes

The Kubernetes docs have instructions for deploying Kubernetes in a variety of on-premise scenarios [https://kubernetes.io/docs/getting-started-guides/#on-premises-vms]. We recommend following one of these guides to get Kubernetes running on premise.

Object Store

Once you have Kubernetes up and running, deploying Pachyderm is a matter of supplying Kubernetes with a JSON/YAML manifest to create the Pachyderm resources. This includes providing information that Pachyderm will use to connect to a backing object store.

For on premise deployments, we recommend using Minio [https://minio.io/] as a backing object store. However, at this point, you could utilize any backing object store that has an S3 compatible API. To create a manifest template for your on premise deployment, run:

pachctl deploy custom --persistent-disk google --object-store s3 <persistent disk name> <persistent disk size> <object store bucket> <object store id> <object store secret> <object store endpoint> --static-etcd-volume=${STORAGE_NAME} --dry-run > deployment.json

Then you can modify deployment.json to fit your environment and kubernetes deployment. Once, you have your manifest ready, deploying Pachyderm is as simple as:

kubectl create -f deployment.json

Need Help?

If you need help with your on premises deploy, please reach out to us on Pachyderm’s slack channel [https://pachyderm-users.slack.com/messages] or via email at support@pachyderm.io. We are happy to help!

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Custom Object Stores

In other sections of this guide was have demonstrated how to deploy Pachyderm in a single cloud using that cloud’s object store offering. However, Pachyderm can be backed by any object store, and you are not restricted to the object store service provided by the cloud in which you are deploying.

As long as you are running an object store that has an S3 compatible API, you can easily deploy Pachyderm in a way that will allow you to back Pachyderm by that object store. For example, we have seen Pachyderm be backed by Minio [https://minio.io/], GlusterFS [https://www.gluster.org/], Ceph [http://ceph.com/], and more.

To deploy Pachyderm with your choice of object store in Google, Azure, or AWS, see the below guides. To deploy Pachyderm on premise with a custom object store, see the on premise docs [http://pachyderm.readthedocs.io/en/stable/deployment/on_premises.html].

Common Prerequisites

	A working Kubernetes cluster and kubectl.

	An account on or running instance of an object store with an S3 compatible API. You should be able to get an ID, secret, bucket name, and endpoint that point to this object store.

Google + Custom Object Store

Additional prerequisites:

	Google Cloud SDK [https://cloud.google.com/sdk/] >= 124.0.0 - If this is the first time you use the SDK, make sure to follow the quick start guide [https://cloud.google.com/sdk/docs/quickstarts].

First, we need to create a persistent disk for Pachyderm’s metadata:

Name this whatever you want, we chose pach-disk as a default
$ STORAGE_NAME=pach-disk

For a demo you should only need 10 GB. This stores PFS metadata. For reference, 1GB
should work for 1000 commits on 1000 files.
$ STORAGE_SIZE=[the size of the volume that you are going to create, in GBs. e.g. "10"]

Create the disk.
gcloud compute disks create --size=${STORAGE_SIZE}GB ${STORAGE_NAME}

Then we can deploy Pachyderm:

pachctl deploy custom --persistent-disk google --object-store s3 ${STORAGE_NAME} ${STORAGE_SIZE} <object store bucket> <object store id> <object store secret> <object store endpoint> --static-etcd-volume=${STORAGE_NAME}

AWS + Custom Object Store

Additional prerequisites:

	AWS CLI [https://aws.amazon.com/cli/] - have it installed and have your AWS credentials [http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html] configured.

First, we need to create a persistent disk for Pachyderm’s metadata:

We recommend between 1 and 10 GB. This stores PFS metadata. For reference 1GB
should work for 1000 commits on 1000 files.
$ STORAGE_SIZE=[the size of the EBS volume that you are going to create, in GBs. e.g. "10"]

$ AWS_REGION=[the AWS region of your Kubernetes cluster. e.g. "us-west-2" (not us-west-2a)]

$ AWS_AVAILABILITY_ZONE=[the AWS availability zone of your Kubernetes cluster. e.g. "us-west-2a"]

Create the volume.
$ aws ec2 create-volume --size ${STORAGE_SIZE} --region ${AWS_REGION} --availability-zone ${AWS_AVAILABILITY_ZONE} --volume-type gp2

Store the volume ID.
$ aws ec2 describe-volumes
$ STORAGE_NAME=[volume id]

The we can deploy Pachyderm:

pachctl deploy custom --persistent-disk aws --object-store s3 ${STORAGE_NAME} ${STORAGE_SIZE} <object store bucket> <object store id> <object store secret> <object store endpoint> --static-etcd-volume=${STORAGE_NAME}

Azure + Custom Object Store

Additional prerequisites:

	Install Azure CLI [https://docs.microsoft.com/en-us/cli/azure/install-azure-cli] >= 2.0.1

	Install jq [https://stedolan.github.io/jq/download/]

	Clone github.com/pachyderm/pachyderm and work from the root of that project.

First, we need to create a persistent disk for Pachyderm’s metadata. To do this, start by declaring some environmental variables:

Needs to be globally unique across the entire Azure location
$ RESOURCE_GROUP=[The name of the resource group where the Azure resources will be organized]

$ LOCATION=[The Azure region of your Kubernetes cluster. e.g. "West US2"]

Needs to be globally unique across the entire Azure location
$ STORAGE_ACCOUNT=[The name of the storage account where your data will be stored]

Needs to end in a ".vhd" extension
$ STORAGE_NAME=pach-disk.vhd

We recommend between 1 and 10 GB. This stores PFS metadata. For reference 1GB
should work for 1000 commits on 1000 files.
$ STORAGE_SIZE=[the size of the data disk volume that you are going to create, in GBs. e.g. "10"]

And then run:

Create a resource group
$ az group create --name=${RESOURCE_GROUP} --location=${LOCATION}

Create azure storage account
az storage account create \
 --resource-group="${RESOURCE_GROUP}" \
 --location="${LOCATION}" \
 --sku=Standard_LRS \
 --name="${STORAGE_ACCOUNT}" \
 --kind=Storage

Build microsoft tool for creating Azure VMs from an image
$ STORAGE_KEY="$(az storage account keys list \
 --account-name="${STORAGE_ACCOUNT}" \
 --resource-group="${RESOURCE_GROUP}" \
 --output=json \
 | jq .[0].value -r
)"
$ make docker-build-microsoft-vhd
$ VOLUME_URI="$(docker run -it microsoft_vhd \
 "${STORAGE_ACCOUNT}" \
 "${STORAGE_KEY}" \
 "${CONTAINER_NAME}" \
 "${STORAGE_NAME}" \
 "${STORAGE_SIZE}G"
)"

To check that everything has been setup correctly, try:

$ az storage account list | jq '.[].name'

The we can deploy Pachyderm:

pachctl deploy custom --persistent-disk azure --object-store s3 ${VOLUME_URI} ${STORAGE_SIZE} <object store bucket> <object store id> <object store secret> <object store endpoint> --static-etcd-volume=${VOLUME_URI}

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

AWS CloudFront

To deploy a production ready AWS cluster with CloudFront:

	Deploy a cloudfront enabled Pachyderm cluster in AWS

	Obtain a cloudfront keypair

	Apply the security credentials

	Verify the setup

Deploy a cloudfront enabled cluster in AWS

You’ll need to use our “one shot” AWS deployment script to deploy this cluster as follows:

$ curl -o aws.sh https://raw.githubusercontent.com/pachyderm/pachyderm/master/etc/deploy/aws.sh
$ chmod +x aws.sh
$ sudo -E ./aws.sh --region=us-east-1 --zone=us-east-1b --use-cloudfront &> deploy.log

Here we’ve redirected the output to a file. Make sure you keep this file around for reference.

Note: You may see a few extra restarts on your pachd pod. Sometimes it takes a bit before your cloudfront distribution comes online

Obtain a cloudfront keypair

You will most likely need to Ask your IT department for a cloudfront keypair, because only a root AWS account can generate this keypair. You can pass along this link with instructions [http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-trusted-signers.html#private-content-creating-cloudfront-key-pairs].

When you get the keypair, you should receive:

	the private/public key (although you only need the private key)

	the keypair ID (which is usually in the filename)

For example,

rsa-APKAXXXXXXXXXXXXXXXX.pem
pk-APKAXXXXXXXXXXXXXXXX.pem

Here we see that the Key Pair ID is APKAXXXXXXXXXXXXXXXX, and the second file is the private key, which should look similar to the following:

$ cat pk-APKAXXXXXXXXXXXX.pem
-----BEGIN RSA PRIVATE KEY-----
...

Apply the security credentials

You can now run the following script to apply these security credentials to your cloudfront distribution:

$ curl -o secure-cloudfront.sh https://raw.githubusercontent.com/pachyderm/pachyderm/master/etc/deploy/cloudfront/secure-cloudfront.sh
$ chmod +x secure-cloudfront.sh
$./secure-cloudfront.sh --region us-west-2 --zone us-west-2c --bucket YYYY-pachyderm-store --cloudfront-distribution-id E1BEBVLIDYTLEV --cloudfront-keypair-id APKAXXXXXXXXXXXX --cloudfront-private-key-file ~/Downloads/pk-APKAXXXXXXXXXXXX.pem

where the values for the --bucket and --cloudfront-distribution-id flags can be obtained from the deploy.log file containing your deployment logs.

You will then need to restart the pachd pod in kubernetes for the changes to take effect:

$ kubectl scale --replicas=0 deployment/pachd && kubectl scale --replicas=1 deployment/pachd && kubectl get pod

Verify the setup

To verify the setup, we can look at the pachd logs to confirm usage of the cloudfront credentials:

$ kubectl get pod
NAME READY STATUS RESTARTS AGE
etcd-0 1/1 Running 0 19h
etcd-1 1/1 Running 0 19h
etcd-2 1/1 Running 0 19h
pachd-2796595787-9x0qf 1/1 Running 0 16h
$ kubectl logs pachd-2796595787-9x0qf | grep cloudfront
2017-06-09T22:56:27Z INFO AWS deployed with cloudfront distribution at d3j9kenawdv8p0
2017-06-09T22:56:27Z INFO Using cloudfront security credentials - keypair ID (APKAXXXXXXXXX) - to sign cloudfront URLs

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Pachyderm Version Upgrades

Pachyderm releases new major versions (1.4, 1.5, 1.6, etc.) roughly every 2-3 months and releases minor versions as needed/warranted. Upgrading the version of your Pachyderm cluster should be relatively painless, and you should try to upgrade to make sure that you benefit from the latest features, bug fixes, etc. This guide will walk you through that upgrading process.

Note - Occasionally, Pachyderm introduces changes that are backward-incompatible. For example, repos/commits/files created on an old version of Pachyderm may be unusable on a new version of Pachyderm. When that happens (which isn’t very often), migrations of Pachyderm metadata will happen automatically upon upgrading. We try our best to make these type of changes transparent (in blog posts, changelogs, etc.), and you can read more about the migration process and best practices here.

Before Upgrading

Pachyderm’s state (the data you have/are processing and metadata associated with commits, jobs, etc.) is stored in the object store bucket and persistent volume(s) you specified at deploy time. As such, you may want to back up one or both of these storage resources before upgrading, just in case something unexpected happens. You should follow your cloud provider’s recommendation for backing up these resources. For example, here are official guides on backing up persistent volumes on Google Cloud Platform and AWS, respectively:

	Creating snapshots of GCE persistent volumes [https://cloud.google.com/compute/docs/disks/create-snapshots]

	Creating snapshots of Elastic Block Store (EBS) volumes [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-snapshot.html]

In addition or alternatively, you can utilize pachctl extract and pachctl restore to extract the state of a Pachyderm cluster and restore a Pachyderm cluster to an extracted state. This process is further described here.

That being said, the upgrading steps detailed below should not effect these storage resources, and it’s perfectly fine to upgrade to the new version of Pachyderm with the same storage resources.

It’s also good idea to version or otherwise save the Pachyderm deploy commands (pachctl deploy ...) that you utilize when deploying, because you can re-use those exact same commands when re-deploying, as further detailed below.

Upgrading Pachyderm

Upgrading your Pachyderm version is as easy as:

	Spin down current pachd server

	Upgrading pachctl

	Re-deploying Pachyderm

Spin down old cluster

pachctl undeploy

Upgrading pachctl

To deploy an upgraded Pachyderm, we need to retrieve the latest version of pachctl. Details on installing the latest version can be found here [http://pachyderm.readthedocs.io/en/latest/getting_started/local_installation.html#pachctl]. You should be able to upgrade via brew upgrade or apt depending on your environment.

Once you install the new version of pachctl (e.g., 1.7.0 in our example), you can confirm this via:

$ pachctl version --client-only
COMPONENT VERSION
pachctl 1.7.0

Re-deploying Pachyderm

You can now re-deploy Pachyderm with the same deploy command that you originally used to deploy Pachyderm. That is, you should specify the same arguments, fields, and storage resources that you specified when deploying the previously utilized version of Pachyderm. The various deploy options/commands are further detailed here. However, it should look something like:

$ pachctl deploy <args>
serviceaccount "pachyderm" created
storageclass "etcd-storage-class" created
service "etcd-headless" created
statefulset "etcd" created
service "etcd" created
service "pachd" created
deployment "pachd" created
service "dash" created
deployment "dash" created
secret "pachyderm-storage-secret" created

Pachyderm is launching. Check its status with "kubectl get all"
Once launched, access the dashboard by running "pachctl port-forward"

After a few minutes, you should then see a healthy Pachyderm cluster running in Kubernetes:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dash-482120938-np8cc 2/2 Running 0 4m
etcd-0 1/1 Running 0 4m
pachd-3677268306-9sqm0 1/1 Running 0 4m

And you can confirm the new version of Pachyderm as follows:

pachctl version
COMPONENT VERSION
pachctl 1.7.0
pachd 1.7.0

Common Issues, Questions

Dynamic/static volumes

It is recommended that you deploy Pachyderm using dynamically etcd volumes when possible. If you have deployed Pachyderm using dynamic volumes, you can still use the same deploy command to re-deploy Pachyderm (i.e., the one specifying dynamic etcd volumes). Kubernetes is smart enough to see the previously utilized volumes and re-use them.

etcd re-deploy problems

Depending on the cloud you are deploying to and the previous deployment configuration, we have seen certain cases in which volumes don’t get attached to the right nodes on re-deploy (especially when using AWS). In these scenarios, you may see the etcd pod stuck in a Pending, CrashLoopBackoff, or other failed state. Most often, deleting the corresponding etcd pod(s) or nodes (to redeploy them) or re-deploying all of Pachyderm again will fix the issue.

AlreadyExists errors on re-deploy

Occasionally, you might see errors similar to the following:

Error from server (AlreadyExists): error when creating "STDIN": secrets "pachyderm-storage-secret" already exists

This might happen when re-deploying the enterprise dashboard, for example. These warning are benign.

Reconnecting pachctl

When you upgrade Pachyderm versions, you may lose your local port-forward to connect pachctl to your cluster. Alternatively, if you are setting the ADDRESS environmental variable manually to connect pachctl to your cluster, the IP address for Pachyderm may have changed. To fix this, you can either:

	Re-run pachctl port-forward &, or

	Set the ADDRESS environmental variable to the update value, e.g., export ADDRESS=<k8s master IP>:30650.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Pachyderm Migrations

New versions of Pachyderm often require a migration for some or all of the
on disk objects which persist Pachyderm’s metadata for commits, jobs, etc.
This document describes how Pachyderm migration works and the best
practices surrounding it.

How To Migrate

As of 1.7, Pachyderm’s migration works by extracting objects into a stream of
API requests, and replaying those requests onto the newer version of pachd.
This process happens automatically using Kubernetes’ “rolling update”
functionality. All you need to do is upgrade Pachyderm (with pachctl deploy) as further described here.
Generally, you will need to:

	Have version 1.6.10 or later of Pachyderm up and running in Kubernetes.

	(Optional, but recommended) Create a backup of your cluster state with
pachctl extract (see below).

	Upgrade pachctl (see here for more details).

	Run pachctl deploy ... with whatever arguments you used to deploy Pachyderm
previously.

While the migration is running, you will see 2 pachd pods running, the one that was
already running and the new one. The original pachd pod (deployed with the previous version of Pachyderm) will
still respond to requests. However, write operations will race with the
migration and may not make it to the new cluster. Thus, you should make sure
that all external processes that write data to repos (i.e., calls to put-file) or create new
pipelines are turned down before migration begins. You don’t need to worry
about pipelines running during the migration process.

Backups

It is highly recommended that you backup your cluster before you perform
a migration. This is accomplished with the pachctl extract command. Running
this command will generate a stream of API requests, similar to the stream used
by migration above. This stream can then be used to reconstruct your cluster by
running pachctl restore. See the docs for pachctl extract [http://docs.pachyderm.io/en/latest/pachctl/pachctl_extract.html] and
pachctl restore [http://docs.pachyderm.io/en/latest/pachctl/pachctl_restore.html] for
further usage.

Before You Migrate 1.6.x to 1.7.x+

1.7 is the first Pachyderm version to support extract and restore which are
necessary for migration. To bridge the gap to previous Pachyderm versions,
we’ve made a final 1.6 release, 1.6.10, which backports the extract and
restore functionality to the 1.6 series of releases. 1.6.10 requires no
migration from other 1.6.x versions. You can simply pachctl undeploy and then pachctl deploy after upgrading pachctl to version 1.6.10. After 1.6.10 is deployed you
should make a backup using pachctl extract and then upgrade pachctl again,
to 1.7.0. Finally you can pachctl deploy ... with pachctl 1.7.0 to trigger
the migration.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Non-Default Namespaces

Often, production deploys of Pachyderm involve deploying Pachyderm to a non-default namespace. This helps administrators of the cluster more easily manage Pachyderm components alongside other things that might be running inside of Kubernetes (DataDog, TensorFlow Serving, etc.).

To deploy Pachyderm to a non-default namespace, you just need to create that namespace with kubectl and then add the --namespace flag to your deploy command:

$ kubectl create namespace pachyderm
$ pachctl deploy <args> --namespace pachyderm

After the Pachyderm pods are up and running, you should see something similar to:

$ kubectl get pods --namespace pachyderm
NAME READY STATUS RESTARTS AGE
dash-68578d4bb4-mmtbj 2/2 Running 0 3m
etcd-69fcfb5fcf-dgc8j 1/1 Running 0 3m
pachd-784bdf7cd7-7dzxr 1/1 Running 0 3m

Note - When using a non-default namespace for Pachyderm, you will have to use the --namespace flag for various other pachctl command for them to work as expected. These include port-forwarding and undeploy:

forward Pachyderm ports when it was deployed to a non-default namespace
$ pachctl port-forward --namespace pachyderm &

undeploying Pachyderm when it was deployed to a non-default namespace
$ pachctl undeploy --namespace pachyderm

Alternatively or additionally, you might want to set a context similar to the following at the Kubernetes level, such that you can get Pachyderm logs, pod statuses, etc. easily via kubectl logs ..., kubectl get pods, etc.:

$ kubectl config set-context pach --namespace=<pachyderm namespace> \
 --cluster=<cluster> \
 --user=<user>

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

RBAC

Pachyderm has support for Kubernetes Role-Based Access Controls (RBAC).
This support is a default part of all Pachyderm deployments, there’s nothing
special for you to do as a user. You can see the ClusterRole which is created
for Pachyderm’s service account by doing:

kubectl get clusterrole/pachyderm -o json

RBAC and DNS

Kubernetes currently (as of 1.8.0) has a bug that prevents kube-dns from
working with RBAC. Not having DNS will make Pachyderm effectively unusable. You
can tell if you’re being affected by the bug like so:

$ kubectl get all --namespace=kube-system
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/kube-dns 1 1 1 0 3m

NAME DESIRED CURRENT READY AGE
rs/kube-dns-86f6f55dd5 1 1 0 3m

NAME READY STATUS RESTARTS AGE
po/kube-addon-manager-oryx 1/1 Running 0 3m
po/kube-dns-86f6f55dd5-xksnb 2/3 Running 4 3m
po/kubernetes-dashboard-bzjjh 1/1 Running 0 3m
po/storage-provisioner 1/1 Running 0 3m

NAME DESIRED CURRENT READY AGE
rc/kubernetes-dashboard 1 1 1 3m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP 3m
svc/kubernetes-dashboard NodePort 10.97.194.16 <none> 80:30000/TCP 3m

Notice how po/kubernetes-dashboard-bzjjh only has 2/3 pods ready and has 4 restarts.
To fix this do:

kubectl -n kube-system create sa kube-dns
kubectl -n kube-system patch deploy/kube-dns -p '{"spec": {"template": {"spec": {"serviceAccountName": "kube-dns"}}}}'

this will tell Kubernetes that kube-dns should use the appropriate
ServiceAccount. Kubernetes creates the ServiceAccount, it just doesn’t actually
use it.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Autoscaling a Pachyderm Cluster

There are 2 levels of autoscaling in Pachyderm:

	Pachyderm can scale down workers when they’re not in use.

	Cloud providers can scale workers down/up based on resource utilization (most often CPU).

Pachyderm Autoscaling of Workers

Refer to the scaleDownThreshold [http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html#scale-down-threshold-optional] field in the pipeline specification. This allows you to specify a time window after which idle workers are removed. If new inputs come in on the pipeline corresponding to those deleted workers, they get scaled back up.

Cloud Provider Autoscaling

Out of the box, autoscaling at the cloud provider layer doesn’t work well with Pachyderm. However, if configure it properly, cloud provider autoscaling can complement Pachyderm autoscaling of workers.

Default Behavior with Cloud Autoscaling

Normally when you create a pipeline, Pachyderm asks the k8s cluster how many nodes are available. Pachyderm then uses that number as the default value for the pipeline’s parallelism. (To read more about parallelism, refer to the distributed processing docs [http://docs.pachyderm.io/en/latest/fundamentals/distributed_computing.html]).

If you have cloud provider autoscaling activated, it is possible that your number of nodes will be scaled down to a few or maybe even a single node. A pipeline created on this cluster would have a default parallelism will be set to this low value (e.g., 1 or 2). Then, once the autoscale group notices that more nodes are needed, the parallelism of the pipeline won’t increase, and you won’t actually make effective use of those new nodes.

Configuration of Pipelines to Complement Cloud Autoscaling

The goal of Cloud autoscaling is to:

	To schedule nodes only as the processing demand necessitates it.

The goals of Pachyderm worker autoscaling are:

	To make sure your job uses a maximum amount of parallelism.

	To ensure that you process the job efficiently.

Thus, to accomplish both of these goals, we recommend:

	Setting a constant, high level of parallelism. Specifically, setting the constant parallelism to the number of workers you will need when your pipeline is active.

	Setting the cpu and/or mem resource requirements in the resource_requests field on your pipeline [http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html#resource-requests-optional].

To determine the right values for cpu / mem, first set these values rather high. Then use the monitoring tools that come with your cloud provider (or try out our monitoring deployment [https://github.com/pachyderm/pachyderm/blob/master/Makefile#L330]) so you can see the actual CPU/mem utilization per pod.

Example Scenario

Let’s say you have a certain pipeline with a constant parallelism set to 16. Let’s also assume that you’ve set cpu to 1.0 and your instance type has 4 cores.

When a commit of data is made to the input of the pipeline, your cluster might be in a scaled down state (e.g., 2 nodes running). After accounting for the pachyderm services (pachd and etcd), ~6 cores are available with 2 nodes. K8s then schedules 6 of your workers. That accounts for all 8 of the CPUs across the nodes in your instance group. Your autoscale group then notices that all instances are being heavily utilized, and subsequently scales up to 5 nodes total. Now the rest of your workers get spun up (k8s can now schedule them), and your job proceeds.

This type of setup is best suited for long running jobs, or jobs that take a lot of CPU time. Such jobs give the cloud autoscaling mechanisms time to scale up, while still having data that needs to be processed when the new nodes are up and running.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Data Management Best Practices

This document discusses best practices for minimizing the space needed to store your Pachyderm data, increasing the performance of your data processing as related to data organization, and general good ideas when you are using Pachyderm to version/process your data.

	Shuffling files

	Garbage collection

	Setting a root volume size

Shuffling files

Certain pipelines simply shuffle files around (e.g., organizing files into buckets). If you find yourself writing a pipeline that does a lot of copying, such as Time Windowing [http://docs.pachyderm.io/en/latest/cookbook/time_windows.html], it probably falls into this category.

The best way to shuffle files, especially large files, is to create symlinks in the output directory that point to files in the input directory.

For instance, to move a file log.txt to logs/log.txt, you might be tempted to write a transform [http://pachyderm.readthedocs.io/en/latest/reference/pipeline_spec.html#transform-required] like this:

cp /pfs/input/log.txt /pfs/out/logs/log.txt

However, it’s more efficient to create a symlink:

ln -s /pfs/input/log.txt /pfs/out/logs/log.txt

Under the hood, Pachyderm is smart enough to recognize that the output file simply symlinks to a file that already exists in Pachyderm, and therefore skips the upload altogether.

Note that if your shuffling pipeline only needs the names of the input files but not their content, you can use lazy input [http://pachyderm.readthedocs.io/en/latest/reference/pipeline_spec.html#atom-input]. That way, your shuffling pipeline can skip both the download and the upload. An example for this type of shuffle pipeline is here [https://github.com/pachyderm/pachyderm/tree/master/doc/examples/lazy_shuffle]

Garbage collection

When a file/commit/repo is deleted, the data is not immediately removed from the underlying storage system (e.g. S3) for performance and architectural reasons. This is similar to how when you delete a file on your computer, the file is not necessarily wiped from disk immediately.

To actually remove the data, you may need to manually invoke garbage collection. The easiest way to do it is through pachctl garbage-collect. Currently pachctl garbage-collect can only be started when there are no active jobs running. You also need to ensure that there’s no ongoing put-file. Garbage collection puts the cluster into a readonly mode where no new jobs can be created and no data can be added.

Setting a root volume size

When planning and configuring your Pachyderm deploy, you need to make sure that each node’s root volume is big enough to accommodate your total processing bandwidth. Specifically, you should calculate the bandwidth for your expected running jobs as follows:

(storage needed per datum) x (number of datums being processed simultaneously) / (number of nodes)

Here, the storage needed per datum should be the storage needed for the largest “datum” you expect to process anywhere on your DAG plus the size of the output files that will be written for that datum. If your root volume size is not large enough, pipelines might fail when downloading the input. The pod would get evicted and rescheduled to a different node, where the same thing will happen (assuming that node had a similar volume). This scenario is further discussed here.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Sharing GPU Resources

Often times, teams are running big ML models on instances with GPU resources.

GPU instances are expensive! You want to make sure that you’re utilizing the GPUs you’re paying for!

Without configuration

To deploy a pipeline that relies on GPU [http://docs.pachyderm.io/en/latest/cookbook/tensorflow_gpu.html], you’ll already have set the gpu resource requirement in the pipeline specification. But Pachyderm workers by default are long lived ... the worker is spun up and waits for new input. That works great for pipelines that are processing a lot of new incoming commits.

For ML workflows, especially during the development cycle, you probably will see lower volume of input commits. Which means that you could have your pipeline workers ‘taking’ the GPU resource as far as k8s is concerned, but ‘idling’ as far as you’re concerned.

Let’s use an example.

Let’s say your cluster has a single GPU node with 2 GPUs. Let’s say you have a pipeline running that requires 1 GPU. You’ve trained some models, and found the results were surprising. You suspect your feature extraction code, and are delving into debugging that stage of your pipeline. Meanwhile, the worker you’ve spun up for your GPU training job is sitting idle, but telling k8s it’s using the GPU instance.

Now your coworker is actively trying to develop their GPU model with their pipeline. Their model requires 2 GPUs. But your pipeline is still marked as using 1 GPU, so their pipeline can’t run!

Configuring your pipelines to share GPUs

Whenever you have a limited amount of a resource on your cluster (in this case GPU), you want to make sure you’ve specified how much of that resource you need via the resource_requests as part of your pipeline specification [http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html]. But, you also need to make sure you set the standby field to true so that if your pipeline is not getting used, the worker pods get spun down and you free the GPU resource.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

General Troubleshooting

Here are some common issues by symptom along with steps to resolve them. They are organized into the following categories:

	Deploying a Pachyderm cluster

	Connecting to a Pachyderm cluster

	Problems running pipelines

Deploying A Pachyderm Cluster

	Pod stuck in CrashLoopBackoff

	Pod stuck in CrashLoopBackoff - with error attaching volume

Pod stuck in CrashLoopBackoff

Symptoms

The pachd pod keeps crashing/restarting:

$ kubectl get all
NAME READY STATUS RESTARTS AGE
po/etcd-281005231-qlkzw 1/1 Running 0 7m
po/pachd-1333950811-0sm1p 0/1 CrashLoopBackOff 6 7m

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/etcd 100.70.40.162 <nodes> 2379:30938/TCP 7m
svc/kubernetes 100.64.0.1 <none> 443/TCP 9m
svc/pachd 100.70.227.151 <nodes> 650:30650/TCP,651:30651/TCP 7m

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/etcd 1 1 1 1 7m
deploy/pachd 1 1 1 0 7m

NAME DESIRED CURRENT READY AGE
rs/etcd-281005231 1 1 1 7m
rs/pachd-1333950811 1 1 0 7m

Recourse

First describe the pod:

$ kubectl describe po/pachd-1333950811-0sm1p

If you see an error including Error attaching EBS volume or similar, see the recourse for that error here under the corresponding section below this one. If you don’t see that error, but do see something like:

 1m 3s 9 {kubelet ip-172-20-48-123.us-west-2.compute.internal} Warning FailedSync Error syncing pod, skipping: failed to "StartContainer" for "pachd" with CrashLoopBackOff: "Back-off 2m40s restarting failed container=pachd pod=pachd-1333950811-0sm1p_default(a92b6665-506a-11e7-8e07-02e3d74c49ac)"

That means Kubernetes tried running pachd, but pachd generated an internal error. To see the specifics of this internal error, check the logs for the pachd pod:

$kubectl logs po/pachd-1333950811-0sm1p

Note: If you’re using a log aggregator service (e.g. the default in GKE), you won’t see any logs when using kubectl logs ... in this way. You will need to look at your logs UI (e.g. in GKE’s case the stackdriver console).

These logs will likely reveal a misconfiguration in your deploy. For example, you might see, BucketRegionError: incorrect region, the bucket is not in 'us-west-2' region. In that case, you’ve deployed your bucket in a different region than your cluster.

If the error / recourse isn’t obvious from the error message, you can now provide the content of the pachd logs when getting help in our Slack channel or by opening a GitHub Issue. Please provide these logs either way as it is extremely helpful in resolving the issue..

Pod stuck in CrashLoopBackoff - with error attaching volume

Symptoms

A pod (could be the pachd pod or a worker pod) fails to startup, and is stuck in CrashLoopBackoff. If you execute kubectl describe po/pachd-xxxx, you’ll see an error message like the following at the bottom of the output:

 30s 30s 1 {attachdetach } Warning FailedMount Failed to attach volume "etcd-volume" on node "ip-172-20-44-17.us-west-2.compute.internal" with: Error attaching EBS volume "vol-0c1d403ac05096dfe" to instance "i-0a12e00c0f3fb047d": VolumeInUse: vol-0c1d403ac05096dfe is already attached to an instance

Recourse

Your best bet is to manually detach the volume and restart the pod.

For example, to resolve this issue when Pachyderm is deployed to AWS, first find the node of which the pod is scheduled. In the output of the kubectl describe po/pachd-xxx command above, you should see the name of the node on which the pod is running. In the AWS web console, find that node.. Once you have the right node, look in the bottom pane for the attached volume. Follow the link to the attached volume, and detach the volume. You may need to “Force Detach” it.

Once it’s detached (and marked as available). Restart the pod by killing it, e.g:

$kubectl delete po/pachd-xxx

It will take a moment for a new pod to get scheduled.

Connecting to a Pachyderm Cluster

	Cannot connect via pachctl - context deadline exceeded

	Certificate error when using kubectl

	Uploads/downloads are slow

Cannot connect via pachctl - context deadline exceeded

Symptom

You may be using the environmental variable ADDRESS to specify how pachctl talks to your Pachyderm cluster, or you may be forwarding the pachyderm port via pachctl port-forward. In any event, you might see something similar to:

$ echo $ADDRESS
1.2.3.4:30650
$ pachctl version
COMPONENT VERSION
pachctl 1.4.8
context deadline exceeded

Recourse

It’s possible that the connection is just taking a while. Occasionally this can happen if your cluster is far away (deployed in a region across the country). Check your internet connection.

It’s also possible that you haven’t poked a hole in the firewall to access the node on this port. Usually to do that you adjust a security rule (in AWS parlance a security group). For example, on AWS, if you find your node in the web console and click on it, you should see a link to the associated security group. Inspect that group. There should be a way to “add a rule” to the group. You’ll want to enable TCP access (ingress) on port 30650. You’ll usually be asked which incoming IPs should be whitelisted. You can choose to use your own, or enable it for everyone (0.0.0.0/0).

Certificate Error When Using Kubectl

Symptom

This can happen on any request using kubectl (e.g. kubectl get all), but it can also be seen when running pachctl port-forward because it uses kubectl under the hood. In particular you’ll see:

$ kubectl version
Client Version: version.Info{Major:"1", Minor:"6", GitVersion:"v1.6.4", GitCommit:"d6f433224538d4f9ca2f7ae19b252e6fcb66a3ae", GitTreeState:"clean", BuildDate:"2017-05-19T20:41:24Z", GoVersion:"go1.8.1", Compiler:"gc", Platform:"darwin/amd64"}
Unable to connect to the server: x509: certificate signed by unknown authority

Recourse

Check if you’re on any sort of VPN or other egress proxy that would break SSL. Also, there is a possibility that your credentials have expired. In the case where you’re using GKE and gcloud, renew your credentials via:

$ kubectl get all
Unable to connect to the server: x509: certificate signed by unknown authority
$ gcloud container clusters get-credentials my-cluster-name-dev
Fetching cluster endpoint and auth data.
kubeconfig entry generated for my-cluster-name-dev.
$ kubectl config current-context
gke_my-org_us-east1-b_my-cluster-name-dev

Uploads/Downloads are Slow

Symptom

Any pachctl put-file or pachctl get-file commands are slow.

Recourse

Check if you’re using port-forwarding. Port forwarding throttles traffic to ~1MB/s. If you need to do large downloads/uploads you should consider using the ADDRESS variable instead to connect directly to your k8s master node. See this note

You’ll also want to make sure you’ve allowed ingress access through any firewalls to your k8s cluster.

Problems Running Pipelines

All your pods / jobs get evicted

Symptom

Running:

$ kubectl get all

shows a bunch of pods that are marked Evicted. If you kubectl describe ... one of those evicted pods, you see an error saying that it was evicted due to disk pressure.

Recourse

Your nodes are not configured with a big enough root volume size. You need to make sure that each node’s root volume is big enough to store the biggest datum you expect to process anywhere on your DAG plus the size of the output files that will be written for that datum.

Let’s say you have a repo with 100 folders. You have a single pipeline with this repo as an input, and the glob pattern is /*. That means each folder will be processed as a single datum. If the biggest folder is 50GB and your pipeline’s output is about 3 times as big, then your root volume size needs to be bigger than:

50 GB (to accommodate the input) + 50 GB x 3 (to accommodate the output) = 200GB

In this case we would recommend 250GB to be safe. If your root volume size is less than 50GB (many defaults are 20GB), this pipeline will fail when downloading the input. The pod may get evicted and rescheduled to a different node, where the same thing will happen.

Pipeline Exists But Never Runs

Symptom

You can see the pipeline via:

$ pachctl list-pipeline

But if you look at the job via:

$ pachctl list-job

It’s marked as running with 0/0 datums having been processed. If you inspect the job via:

$ pachctl inspect-job

You don’t see any worker set. E.g:

Worker Status:
WORKER JOB DATUM STARTED
...

If you do kubectl get pod you see the worker pod for your pipeline, e.g:

po/pipeline-foo-5-v1-273zc

But it’s state is Pending or CrashLoopBackoff.

Recourse

First make sure that there is no parent job still running. Do pachctl list-job | grep yourPipelineName to see if there are pending jobs on this pipeline that were kicked off prior to your job. A parent job is the job that corresponds to the parent output commit of this pipeline. A job will block until all parent jobs complete.

If there are no parent jobs that are still running, then continue debugging:

Describe the pod via:

$kubectl describe po/pipeline-foo-5-v1-273zc

If the state is CrashLoopBackoff, you’re looking for a descriptive error message. One such cause for this behavior might be if you specified an image for your pipeline that does not exist.

If the state is Pending it’s likely the cluster doesn’t have enough resources. In this case, you’ll see a could not schedule type of error message which should describe which resource you’re low on. This is more likely to happen if you’ve set resource requests (cpu/mem/gpu) for your pipelines. In this case, you’ll just need to scale up your resources. If you deployed using kops, you’ll want to do edit the instance group, e.g. kops edit ig nodes ... and up the number of nodes. If you didn’t use kops to deploy, you can use your cloud provider’s auto scaling groups to increase the size of your instance group. Either way, it can take up to 10 minutes for the changes to go into effect.

You can read more about autoscaling here

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Deploy Specific Troubleshooting

Here are some common issues by symptom related to certain deploys. They are organized into the following categories:

	AWS

	Google - coming soon...

	Azure - coming soon...

AWS Deployment

	Can’t connect to to the Pachyderm cluster after a rolling update

	The one shot deploy script, aws.sh, never completes

	VPC limit exceeded

	GPU node never appears

Can’t connect to the Pachyderm cluster after a rolling update

Symptom

After running kops rolling-update, kubectl (and/or pachctl) cannot connect to the cluster. All kubectl requests hang.

Recourse

First get your cluster name. This will be in the deploy logs you saved from running aws.sh (if you utilized the one shot deployment [http://docs.pachyderm.io/en/latest/deployment/amazon_web_services.html#one-shot-script]), or can be retrieved via kops get clusters.

Then you’ll need to grab the new public IP address of your master node. The master node will be named something like master-us-west-2a.masters.somerandomstring.kubernetes.com

Update the etc hosts entry in /etc/hosts such that the api endpoint reflects the new IP, e.g:

54.178.87.68 api.somerandomstring.kubernetes.com

One shot script never completes

Symptom

The aws.sh one shot deploy script hangs on the line:

Retrieving ec2 instance list to get k8s master domain name (may take a minute)

If it’s been more than 10 minutes, there’s likely an error.

Recourse

Check the AWS web console / autoscale group / activity history. You have probably hit an instance limit. To navigate there, open the AWS web console for EC2. Check to see if you have any instances with names like::

master-us-west-2a.masters.tfgpu.kubernetes.com
nodes.tfgpu.kubernetes.com

If not, navigate to “Auto Scaling Groups” in the left hand menu. Then find the ASG with your cluster name:

master-us-west-2a.masters.tfgpu.kubernetes.com

Look at the “Activity History” in the lower pane. More than likely, you’ll see a “Failed” error message describing why it failed to provision the VM. You’re probably run into an instance limit for your account for this region. If you’re spinning up a GPU node, make sure that your region supports the instance type you’re trying to spin up.

A successful provisioning message looks like:

Successful
Launching a new EC2 instance: i-03422f3d32658e90c
2017 June 13 10:19:29 UTC-7
2017 June 13 10:20:33 UTC-7
Description:DescriptionLaunching a new EC2 instance: i-03422f3d32658e90c
Cause:CauseAt 2017-06-13T17:19:15Z a user request created an AutoScalingGroup changing the desired capacity from 0 to 1. At 2017-06-13T17:19:28Z an instance was started in response to a difference between desired and actual capacity, increasing the capacity from 0 to 1.

While a failed one looks like:

Failed
Launching a new EC2 instance
2017 June 12 13:21:49 UTC-7
2017 June 12 13:21:49 UTC-7
Description:DescriptionLaunching a new EC2 instance. Status Reason: You have requested more instances (1) than your current instance limit of 0 allows for the specified instance type. Please visit http://aws.amazon.com/contact-us/ec2-request to request an adjustment to this limit. Launching EC2 instance failed.
Cause:CauseAt 2017-06-12T20:21:47Z an instance was started in response to a difference between desired and actual capacity, increasing the capacity from 0 to 1.

VPC Limit Exceeded

Symptom

When running aws.sh or otherwise deploying with kops, you will see:

W0426 17:28:10.435315 26463 executor.go:109] error running task "VPC/5120cf0c-pachydermcluster.kubernetes.com" (3s remaining to succeed): error creating VPC: VpcLimitExceeded: The maximum number of VPCs has been reached.

Recourse

You’ll need to increase your VPC limit or delete some existing VPCs that are not in use. On the AWS web console navigate to the VPC service. Make sure you’re in the same region where you’re attempting to deploy.

It’s not uncommon (depending on how you tear down clusters) for the VPCs not to be deleted. You’ll see a list of VPCs here with cluster names, e.g. aee6b566-pachydermcluster.kubernetes.com. For clusters that you know are no longer in use, you can delete the VPC here.

GPU Node Never Appears

Symptom

After running kops edit ig gpunodes and kops update (as outlined here [http://docs.pachyderm.io/en/latest/cookbook/gpus.html]) the GPU node never appears, which can be confirmed via the AWS web console..

Recourse

It’s likely you have hit an instance limit for the GPU instance type you’re using, or it’s possible that AWS doesn’t support that instance type in the current region.

Follow these instructions to check for and update Instance Limits [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html]. If this region doesn’t support your instance type, you’ll see an error message like:

Failed
Launching a new EC2 instance
2017 June 12 13:21:49 UTC-7
2017 June 12 13:21:49 UTC-7
Description:DescriptionLaunching a new EC2 instance. Status Reason: You have requested more instances (1) than your current instance limit of 0 allows for the specified instance type. Please visit http://aws.amazon.com/contact-us/ec2-request to request an adjustment to this limit. Launching EC2 instance failed.
Cause:CauseAt 2017-06-12T20:21:47Z an instance was started in response to a difference between desired and actual capacity, increasing the capacity from 0 to 1.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Examples

OpenCV Edge Detection

This example does edge detection using OpenCV. This is our canonical starter demo. If you haven’t used Pachyderm before, start here. We’ll get you started running Pachyderm locally in just a few minutes and processing sample log lines.

Open CV [http://pachyderm.readthedocs.io/en/stable/getting_started/beginner_tutorial.html]

Word Count (Map/Reduce)

Word count is basically the “hello world” of distributed computation. This example is great for benchmarking in distributed deployments on large swaths of text data.

Word Count [https://github.com/pachyderm/pachyderm/tree/master/doc/examples/word_count]

Periodic Ingress from a Database

This example pipeline executes a query periodically against a MongoDB database outside of Pachyderm. The results of the query are stored in a corresponding output repository. This repository could be used to drive additional pipeline stages periodically based on the results of the query.

Periodic Ingress from MongoDB [https://github.com/pachyderm/pachyderm/tree/master/doc/examples/db]

Lazy Shuffle pipeline

This example demonstrates how lazy shuffle pipeline i.e. a pipeline that shuffles, combines files without downloading/uploading can be created. These types of pipelines are useful for intermediate processing step that aggregates or rearranges data from one or many sources. For more information see [https://pachyderm.readthedocs.io/en/latest/managing_pachyderm/data_management.html]

Lazy Shuffle pipeline [https://github.com/pachyderm/pachyderm/tree/master/doc/examples/lazy_shuffle]

Variant Calling and Joint Genotyping with GATK

This example illustrates the use of GATK in Pachyderm for Germline variant calling and joint genotyping. Each stage of this GATK best practice pipeline can be scaled individually and is automatically triggered as data flows into the top of the pipeline. The example follows this tutorial [https://drive.google.com/open?id=0BzI1CyccGsZiQ1BONUxfaGhZRGc] from GATK, which includes more details about the various stages.

GATK - Variant Calling [https://github.com/pachyderm/pachyderm/tree/master/doc/examples/gatk]

Machine Learning

Iris flower classification with R, Python, or Julia

The “hello world” of machine learning implemented in Pachyderm. You can deploy this pipeline using R, Python, or Julia components, where the pipeline includes the training of a SVM, LDA, Decision Tree, or Random Forest model and the subsequent utilization of that model to perform inferences.

R, Python, or Julia - Iris flower classification [https://github.com/pachyderm/pachyderm/tree/master/doc/examples/ml/iris]

Sentiment analysis with Neon

This example implements the machine learning template pipeline discussed in this blog post [https://medium.com/pachyderm-data/sustainable-machine-learning-workflows-8c617dd5506d#.hhkbsj1dn]. It trains and utilizes a neural network (implemented in Python using Nervana Neon) to infer the sentiment of movie reviews based on data from IMDB.

Neon - Sentiment Analysis [https://github.com/pachyderm/pachyderm/tree/master/doc/examples/ml/neon]

pix2pix with TensorFlow

If you haven’t seen pix2pix, check out this great demo [https://affinelayer.com/pixsrv/]. In this example, we implement the training and image translation of the pix2pix model in Pachyderm, so you can generate cat images from edge drawings, day time photos from night time photos, etc.

TensorFlow - pix2pix [https://github.com/pachyderm/pachyderm/tree/master/doc/examples/ml/tensorflow]

Recurrent Neural Network with Tensorflow

Based on this Tensorflow example [https://www.tensorflow.org/tutorials/recurrent#recurrent-neural-networks], this pipeline generates a new Game of Thrones script using a model trained on existing Game of Thrones scripts.

Tensorflow - Recurrent Neural Network [https://github.com/pachyderm/pachyderm/tree/master/doc/examples/ml/rnn]

Distributed Hyperparameter Tuning

This example demonstrates how you can evaluate a model or function in a distributed manner on multiple sets of parameters. In this particular case, we will evaluate many machine learning models, each configured uses different sets of parameters (aka hyperparameters), and we will output only the best performing model or models.

Hyperparameter Tuning [https://github.com/pachyderm/pachyderm/tree/master/doc/examples/ml/hyperparameter]

Spark Example

This example demonstrates integration of Spark with Pachyderm by launching a Spark job on an existing cluster from within a Pachyderm Job. The job uses configuration info that is versioned within Pachyderm, and stores it’s reduced result back into a Pachyderm output repo, maintaining full provenance and version history within Pachyderm, while taking advantage of Spark for computation.

Spark Example [https://github.com/pachyderm/pachyderm/tree/master/doc/examples/spark/pi]

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Splitting Data for Distributed Processing

As described in the distributed computing with Pachyderm docs [http://pachyderm.readthedocs.io/en/latest/fundamentals/distributed_computing.html], Pachyderm allows you to parallelize computations over data as long as that data can be split up into multiple “datums.” However, in many cases, you might have a data set that you want or need to commit into Pachyderm as a single file, rather than a bunch of smaller files (e.g., one per record) that are easily mapped to datums. In these cases, Pachyderm provides an easy way to automatically split your data set for subsequent distributed computing.

Let’s say that we have a data set consisting of information about our users. This data is in CSV format in a single file, user_data.csv, with one record per line:

$ head user_data.csv
1,cyukhtin0@stumbleupon.com,144.155.176.12
2,csisneros1@over-blog.com,26.119.26.5
3,jeye2@instagram.com,13.165.230.106
4,rnollet3@hexun.com,58.52.147.83
5,bposkitt4@irs.gov,51.247.120.167
6,vvenmore5@hubpages.com,161.189.245.212
7,lcoyte6@ask.com,56.13.147.134
8,atuke7@psu.edu,78.178.247.163
9,nmorrell8@howstuffworks.com,28.172.10.170
10,afynn9@google.com.au,166.14.112.65

If we just put this into Pachyderm as a single file, we could not subsequently process each of these user records in parallel as separate “datums” (see this guide [http://pachyderm.readthedocs.io/en/latest/fundamentals/distributed_computing.html] for more information on datums and distributed computing). Of course, you could manually separate out each of these user records into separate files before you commit them into the users repo or via a pipeline stage dedicated to this splitting task. This would work, but Pachyderm actually makes it much easier for you.

The put-file API includes an option for splitting up the file into separate datums automatically. You can do this with the pachctl CLI tool via the --split flag on put-file. For example, to automatically split the user_data.csv file up into separate datums for each line, you could execute the following:

$ pachctl put-file users master -c -f user_data.csv --split line --target-file-datums 1

The --split line argument specifies that Pachyderm should split this file on lines, and the --target-file-datums 1 arguments specifies that each resulting file should include at most one “datum” (or one line). Note, that Pachyderm will still show the user_data.csv entity to you as one entity in the repo:

$ pachctl list-file users master
NAME TYPE SIZE
user_data.csv dir 5.346 KiB

But, this entity is now a directory containing all of the split records:

$ pachctl list-file users master user_data.csv
NAME TYPE SIZE
user_data.csv/0000000000000000 file 43 B
user_data.csv/0000000000000001 file 39 B
user_data.csv/0000000000000002 file 37 B
user_data.csv/0000000000000003 file 34 B
user_data.csv/0000000000000004 file 35 B
user_data.csv/0000000000000005 file 41 B
user_data.csv/0000000000000006 file 32 B
etc...

A pipeline that then takes the repo users as input with a glob pattern of /user_data.csv/* would process each user record (i.e., each line of the CSV) in parallel.

This is, of course, just one example. Right now, Pachyderm supports this type of splitting on lines or on JSON blobs. Here are a few more examples:

Split a json file on json blobs, putting
each json blob into it's own file.
$ pachctl put-file users master -c -f user_data.json --split json --target-file-datums 1

Split a json file on json blobs, putting
3 json blobs into each split file.
$ pachctl put-file users master -c -f user_data.json --split json --target-file-datums 3

Split a file on lines, putting each 100
bytes chunk into the split files.
$ pachctl put-file users master -c -f user_data.txt --split line --target-file-bytes 100

Specifying Header/Footer

Additionally, if your data has a common header or footer, you can specify these
manually via pachctl put-header or pachctl put-footer. This is helpful for CSV data.

To do this, you’ll need to specify the header/footer on the parent directory of your data. It’s a little “magical”, but you’re essentially embedding the header/footer into the directory and then Pachyderm will apply that header/footer to all the files in that directory. Below we have an example of splitting a CSV with a header, then setting the header explicitly. Notice that once we’ve set the header, whenever we get a file under that directory, the header is applied. You can still use glob patterns to get all the data under the directory, and in that case the header is still applied.

Raw CSV
$ cat users.csv
id,name,email
4,alice,aaa@place.com
7,bob,bbb@place.com

Take the raw CSV data minus the header and split it into multiple files:
$ cat users.csv | tail -n +2 | pachctl put-file bar master users --split line
Reading from stdin.
$ pachctl list-file bar master
NAME TYPE SIZE
users dir 42B
$ pachctl list-file bar master /users/
NAME TYPE SIZE
/users/0000000000000000 file 22B
/users/0000000000000001 file 20B
Before we set the header, we just see the raw data when we issue a get-file
$ pachctl get-file bar master /users/0000000000000000
4,alice,aaa@place.com

Now we take the CSV header and apply it to the directory:
$ cat users.csv | head -n 1 | pachctl put-header bar master users
Now when we read an individual file, we see the header plus the contents
$ pachctl get-file bar master /users/0000000000000000
id,name,email
4,alice,aaa@place.com

If you issue a get-file on the directory, it returns just the header/footer
$ pachctl get-file bar master /users
id,name,email
We can get the entire CSV file back with:
$ pachctl get-file bar master /users/*
id,name,email
4,alice,aaa@place.com
7,bob,bbb@place.com

Delete the existing header:
$ echo "" | pachctl put-header repo branch path -f -
We've now deleted the header
pachctl get-file bar master /users/*
4,alice,aaa@place.com
7,bob,bbb@place.com

For more info, such as how to delete a header/footer, see pachctl put-header --help.

PG Dump / SQL Support

You can also ingest data from postgres using split file.

	Generate your PG Dump file

$ pg_dump -t users -f users.pgdump
$ cat users.pgdump
--
-- PostgreSQL database dump
--

-- Dumped from database version 9.5.12
-- Dumped by pg_dump version 9.5.12

SET statement_timeout = 0;
SET lock_timeout = 0;
SET client_encoding = 'UTF8';
SET standard_conforming_strings = on;
SELECT pg_catalog.set_config('search_path', '', false);
SET check_function_bodies = false;
SET client_min_messages = warning;
SET row_security = off;

SET default_tablespace = '';

SET default_with_oids = false;

--
-- Name: users; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.users (
 id integer NOT NULL,
 name text NOT NULL,
 saying text NOT NULL
);

ALTER TABLE public.users OWNER TO postgres;

--
-- Data for Name: users; Type: TABLE DATA; Schema: public; Owner: postgres
--

COPY public.users (id, name, saying) FROM stdin;
0 wile E Coyote ...
1 road runner \\.
\.

--
-- PostgreSQL database dump complete
--

	Ingest SQL data using split file

When you use pachctl put-file --split sql ... your pg dump file is split into
three parts - the header, rows, and the footer. The header contains all the SQL
statements in the pg dump that setup the schema and tables. The rows are split
into individual files (or if you specify the --target-file-datums or
--target-file-bytes multiple rows per file). The footer contains the remaining
SQL statements for setting up the tables.

The header and footer are stored on the directory containing the rows. This way,
if you request a get-file on the directory, you’ll get just the header and
footer. If you request an individual file, you’ll see the header plus the row(s)
plus the footer. If you request all the files with a glob pattern, e.g.
/directoryname/*, you’ll receive the header plus all the rows plus the footer,
recreating the full pg dump. In this way, you can construct full or partial
pg dump files so that you can load full or partial data sets.

$ pachctl put-file data master -f users.pgdump --split sql
$ pachctl put-file data master users --split sql -f users.pgdump
$ pachctl list-file data master
NAME TYPE SIZE
users dir 914B
$ pachctl list-file data master /users
NAME TYPE SIZE
/users/0000000000000000 file 20B
/users/0000000000000001 file 18B

Then in your pipeline (where you’ve started and forked postgres), you can load
the data by doing something like:

$ cat /pfs/data/users/* | sudo -u postgres psql

And with a glob pattern /* this code would load each raw postgres chunk
into your postgres instance for processing by your pipeline.

For this use case, you’ll likely want to use --target-file-datums or
--target-file-bytes since it’s likely that you’ll want to run your queries
against many rows at a time.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Combining/Merging/Joining Data

There are a variety of use cases in which you would want to match datums from multiple data repositories to do some combined processing, joining, or aggregation. For example, you may need to process multiple records corresponding to a certain user, a certain experiment, or a certain device together. In these scenarios, we recommend a 2-stage method of merging your data:

	A first pipeline that groups all of the records for a specific key/index.

	A second pipeline that takes that grouped output and performs the merging, joining, or other processing for the group.

1. Grouping records that need to be processed together

[image: alt tag]

Let’s say that we have two repositories containing JSON records, A and B. These repositories may correspond to two experiments, two geographic regions, two different devices generating data, etc. In any event, the repositories look similar to:

$ pachctl list-file A master
NAME TYPE SIZE
1.json file 39 B
2.json file 39 B
3.json file 39 B
$ pachctl list-file B master
NAME TYPE SIZE
1.json file 39 B
2.json file 39 B
3.json file 39 B

We need to process A/1.json with B/1.json to merge their contents or otherwise process them together. Thus, we need to group each set of JSON records into respective “datums” that can each be processed together by our second pipeline (read more about datums and distributed processing here [http://pachyderm.readthedocs.io/en/latest/fundamentals/distributed_computing.html]).

The first pipeline takes a union of A and B as inputs, each with glob pattern /*. As each JSON file is processed, it is copied to a folder in the output corresponding to the key/index for that record (in this case, just the number in the file name). It is also re-named to a unique name corresponding to it’s source:

/1
 A.json
 B.json
/2
 A.json
 B.json
/3
 A.json
 B.json

Note, that when performing this grouping:

	You should use "lazy": true to avoid unnecessary downloads of data.

	You should use sym-links to avoid unnecessary uploads of data and unnecessary duplication of data (see more information on “copy elision” here [http://pachyderm.readthedocs.io/en/latest/managing_pachyderm/data_management.html]).

2. Processing the grouped records

[image: alt tag]

Once the records that need to be processed together are grouped by the first pipeline, our second pipeline can take the group repository as input with a glob pattern of /*. This will let the second pipeline process each grouping of records in parallel.

The second pipeline will perform any merging, aggregation, or other processing on the respective grouping of records and could, for example, output each respective result to the root of the output directory:

$ pachctl list-file merge master
NAME TYPE SIZE
result_1.json file 39 B
result_2.json file 39 B
result_3.json file 39 B

Implications and Notes

	This 2-stage pattern of combining data could be used for merging or grouped processing of data from various experiments, devices, etc. However, the same pattern can be applied to perform distributed joins of tabular data or data from database tables. For example, you could join user email records together with user IP records on the key/index of a user ID.

	Each of the 2 stages can be parallelized across workers to scaled with the size of your data and the number of data sources that you are merging.

	In some cases, your data may not be split into separate files for each record. In these cases, you can utilize Pachyderm splitting functionality to prepare your data for this sort of distributed merging/joining.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Creating Machine Learning Workflows

Because Pachyderm is language/framework agnostic and because it easily distributes analyses over large data sets, data scientists can use whatever tooling they like for ML. Even if that tooling isn’t familiar to the rest of an engineering organization, data scientists can autonomously develop and deploy scalable solutions via containers. Moreover, Pachyderm’s pipelining logic paired with data versioning, allows any results to be exactly reproduced (e.g., for debugging or during the development of improvements to a model).

We recommend combining model training processes, persisted models, and a model utilization processes (e.g., making inferences or generating results) into a single Pachyderm pipeline DAG (Directed Acyclic Graph). Such a pipeline allows us to:

	Keep a rigorous historical record of exactly what models were used on what data to produce which results.

	Automatically update online ML models when training data or parameterization changes.

	Easily revert to other versions of an ML model when a new model is not performing or when “bad data” is introduced into a training data set.

This sort of sustainable ML pipeline looks like this:

[image: alt tag]

A data scientist can update the training dataset at any time to automatically train a new persisted model. This training could utilize any language or framework (Spark, Tensorflow, scikit-learn, etc.) and output any format of persisted model (pickle, XML, POJO, etc.). Regardless of framework, the model will be versioned by Pachyderm, and you will be able to track what “Input data” was input into which model AND exactly what “Training data” was used to train that model.

Any new input data coming into the “Input data” repository will be processed with the updated model. Old predictions can be re-computed with the updated model, or new models could be backtested on previously input and versioned data. This will allow you to avoid manual updates to historical results or having to worry about how to swap out ML models in production!

Examples

We have implemented this machine learning workflow in some example pipelines [https://pachyderm.readthedocs.io/en/latest/examples/README.html#machine-learning] using a couple of different frameworks. These examples are a great starting point if you are trying to implement ML in Pachyderm.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Processing Time-Windowed Data

If you are analyzing data that is changing over time, chances are that you will want to perform some sort of analysis on “the last two weeks of data,” “January’s data,” or some other moving or static time window of data. There are a few different ways of doing these types of analyses in Pachyderm, depending on your use case. We recommend one of the following patterns for:

	Fixed time windows - for rigid, fixed time windows, such as months (Jan, Feb, etc.) or days (01-01-17, 01-02-17, etc.).

	Moving or rolling time windows - for rolling time windows of data, such as three day windows or two week windows.

Fixed time windows

As further discussed in Creating Analysis Pipelines [http://docs.pachyderm.io/en/latest/fundamentals/creating_analysis_pipelines.html] and Distributed Computing [http://docs.pachyderm.io/en/latest/fundamentals/distributed_computing.html], the basic unit of data partitioning in Pachyderm is a “datum” which is defined by a glob pattern. When analyzing data within fixed time windows (e.g., corresponding to fixed calendar times/dates), we recommend organizing your data repositories such that each of the time windows that you are going to analyze corresponds to a separate files or directories in your repository. By doing this, you will be able to:

	Analyze each time window in parallel.

	Only re-process data within a time window when that data, or a corresponding data pipeline, changes.

For example, if you have monthly time windows of JSON sales data that need to be analyzed, you could create a sales data repository and structure it like:

sales
├── January
| ├── 01-01-17.json
| ├── 01-02-17.json
| └── etc...
├── February
| ├── 01-01-17.json
| ├── 01-02-17.json
| └── etc...
└── March
 ├── 01-01-17.json
 ├── 01-02-17.json
 └── etc...

When you run a pipeline with an input repo of sales having a glob pattern of /*, each month’s worth of sales data is processed in parallel (if possible). Further, when you add new data into a subset of the months or add data into a new month (e.g., May), only those updated datums will be re-processed.

More generally, this structure allows you to create:

	Pipelines that aggregate, or otherwise process, daily data on a monthly basis via a /* glob pattern.

	Pipelines that only analyze a certain month’s data via, e.g., a /January/* or /January/ glob pattern.

	Pipelines that process data on a daily basis via a /*/* glob pattern.

	Any combination of the above.

Moving or rolling time windows

In certain use cases, you need to run analyses for moving or rolling time windows, even when those don’t correspond to certain calendar months, days, etc. For example, you may need to analyze the last three days of data, the three days of data prior to that, the three days of data prior to that, etc. In other words, you need to run an analysis for every rolling length of time.

For rolling or moving time windows, there are a couple of recommended patterns:

	Bin your data in repository folders for each of the rolling/moving time windows.

	Maintain a time windowed set of data corresponding to the latest of the rolling/moving time windows.

Binning data into rolling/moving time windows

In this method of processing rolling time windows, we’ll use a two-pipeline DAG [http://docs.pachyderm.io/en/latest/fundamentals/creating_analysis_pipelines.html] to analyze time windows efficiently:

	Pipeline 1 - Read in data, determine which bins the data corresponds to, and write the data into those bins

	Pipeline 2 - Read in and analyze the binned data.

By splitting this analysis into two pipelines we can benefit from parallelism at the file level. In other words, Pipeline 1 can be easily parallelized for each file, and Pipeline 2 can be parallelized per bin. Now we can scale the pipelines easily as the number of files increases.

Let’s take the three day rolling time windows as an example, and let’s say that we want to analyze three day rolling windows of sales data. In a first repo, called sales, a first day’s worth of sales data is committed:

sales
└── 01-01-17.json

We then create a first pipeline to bin this into a repository directory corresponding to our first rolling time window from 01-01-17 to 01-03-17:

binned_sales
└── 01-01-17_to_01-03-17
 └── 01-01-17.json

When our next day’s worth of sales is committed,

sales
├── 01-01-17.json
└── 01-02-17.json

the first pipeline executes again to bin the 01-02-17 data into any relevant bins. In this case, we would put it in the previously created bin for 01-01-17 to 01-03-17, but we would also put it into a bin starting on 01-02-17:

binned_sales
├── 01-01-17_to_01-03-17
| ├── 01-01-17.json
| └── 01-02-17.json
└── 01-02-17_to_01-04-17
 └── 01-02-17.json

As more and more daily data is added, you will end up with a directory structure that looks like:

binned_sales
├── 01-01-17_to_01-03-17
| ├── 01-01-17.json
| ├── 01-02-17.json
| └── 01-03-17.json
├── 01-02-17_to_01-04-17
| ├── 01-02-17.json
| ├── 01-03-17.json
| └── 01-04-17.json
├── 01-03-17_to_01-05-17
| ├── 01-03-17.json
| ├── 01-04-17.json
| └── 01-05-17.json
└── etc...

and is maintained over time as new data is committed:

[image: alt tag]

Your second pipeline can then process these bins in parallel, via a glob pattern of /*, or in any other relevant way as discussed further in the “Fixed time windows” section. Both your first and second pipelines can be easily parallelized.

Note - When looking at the above directory structure, it may seem like there is an unnecessary duplication of the data. However, under the hood Pachyderm deduplicates all of these files and maintains a space efficient representation of your data. The binning of the data is merely a structural re-arrangement to allow you to process these types of rolling time windows.

Note - It might also seem as if there is unnecessary data transfers over the network to perform the above binning. Pachyderm can ensure that performing these types of “shuffles” doesn’t actually require transferring data over the network. Read more about that here.

Maintaining a single time-windowed data set

The advantage of the binning pattern above is that any of the rolling time windows are available for processing. They can be compared, aggregated, combined, etc. in any way, and any results or aggregations are kept in sync with updates to the bins. However, you do need to put in some logic to maintain the binning directory structure.

There is another pattern for moving time windows that avoids the binning of the above approach and maintains an up-to-date version of a moving time-windowed data set. It also involves two pipelines:

	Pipeline 1 - Read in data, determine which files belong in your moving time window, and write the relevant files into an updated version of the moving time-windowed data set.

	Pipeline 2 - Read in and analyze the moving time-windowed data set.

Let’s utilize our sales example again to see how this would work. In the example, we want to keep a moving time window of the last three days worth of data. Now say that our daily sales repo looks like the following:

sales
├── 01-01-17.json
├── 01-02-17.json
├── 01-03-17.json
└── 01-04-17.json

When the January 4th file, 01-04-17.json, is committed, our first pipeline pulls out the last three days of data and arranges it like so:

last_three_days
├── 01-02-17.json
├── 01-03-17.json
└── 01-04-17.json

Think of this as a “shuffle” step. Then, when the January 5th file, 01-05-17.json, is committed,

sales
├── 01-01-17.json
├── 01-02-17.json
├── 01-03-17.json
├── 01-04-17.json
└── 01-05-17.json

the first pipeline would again update the moving window:

last_three_days
├── 01-03-17.json
├── 01-04-17.json
└── 01-05-17.json

Whatever analysis we need to run on the moving windowed data set in moving_sales_window can use a glob pattern of / or /* (depending on whether we need to process all of the time windowed files together or they can be processed in parallel).

Warning - When creating this type of moving time-windowed data set, the concept of “now” or “today” is relative. It is important that you make a sound choice for how to define time based on your use case (e.g., by defaulting to UTC). You should not use a function such as time.now() to figure out a current day. The actual time at which this analysis is run may vary. If you have further questions about this issue, please do not hesitate to reach out to us via Slack [http://slack.pachyderm.io/] or at support@pachyderm.io.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Utilizing GPUs

Pachyderm has support for utilizing GPUs within Pachyderm pipelines (e.g., for training machine learning models). To do this you will need to:

	Create a Docker image that is able to utilize GPUs

	Write a pipeline spec that specifies GPU nodes

	Deploy a GPU enabled pachyderm cluster

For a concrete example, see our example Tensorflow pipeline [https://github.com/pachyderm/pachyderm/tree/master/doc/examples/ml/tensorflow] for image-to-image translation, which includes a pipeline specification for running model training on a GPU node.

Creating a GPU Enabled Docker Image

For your Docker image, you’ll want to use or build an image that can utilize GPU resources. If you are using Tensorflow, for example, you could build your Docker image FROM the public GPU enabled Tensorflow image:

FROM tensorflow/tensorflow:0.12.0-gpu
...

Or you might follow this guide [https://github.com/NVIDIA/nvidia-docker] for working with Docker and NVIDIA (although we haven’t full tested this guide).

Writing Your Pipeline Specification

Ensuring that your environment can access GPU drivers

You can bake this into your Docker image in some cases, but other images, such as the TensorFlow base image, may require that you explicitly tell your application about shared libraries (e.g., CUDA). To do that, you may need to set one or more environmental variables. This will be application/framework dependent. For example, if we were using the Tensorflow base image, we would need to make sure that we set LD_LIBRARY_PATH, such that TensorFlow knows about CUDA:

LD_LIBRARY_PATH="/usr/lib/nvidia:/usr/local/cuda/lib64:/rootfs/usr/lib/x86_64-linux-gnu"

Again, this can be baked into your Docker image via an ENV statement in your Dockerfile:

ENV LD_LIBRARY_PATH /usr/lib/nvidia:/usr/local/cuda/lib64:/rootfs/usr/lib/x86_64-linux-gnu

or it can be defined in your pipeline specification [http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html] via the env field (as shown below).

Creating your pipeline specification with access to GPU resources

In addition to properly setting up the environment, we need to tell the Pachyderm cluster that our pipeline needs a GPU resource. To do that we’ll add a gpu entry to the resources field in the pipeline specification [http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html].

An example pipeline definition for a GPU enabled Pachyderm Pipeline is as follows:

{
 "pipeline": {
 "name": "train"
 },
 "transform": {
 "image": "acme/your-gpu-image",
 "cmd": [
 "python",
 "train.py"
],
 "env": {
 "LD_LIBRARY_PATH": "/usr/lib/nvidia:/usr/local/cuda/lib64:/rootfs/usr/lib/x86_64-linux-gnu"
 }
 },
 "resource_requests": {
 "gpu": 1
 },
 "inputs": {
 "atom": {
 "repo": "data",
 "glob": "/*"
 }
]
}

Deploy a GPU Enabled Pachyderm Cluster

NOTE: You can also test Pachyderm + GPUs locally

To deploy a Pachyderm cluster with GPU support we assume:

	You’re using kops for your deployment (which means you’re using AWS or GCE, not GKE because k8s is done for you). Other deploy methods are available, but these are the ones we’ve tested most thoroughly.

	You have a working pachyderm cluster already up and running that you can connect to with kubectl.

Add GPU nodes to your k8s cluster

You can create GPU nodes by first using kops to create a new instance group:

$ kops create ig gpunodes --name XXXXXX-pachydermcluster.kubernetes.com --state s3://k8scom-state-store-pachyderm-YYYYY --subnet us-west-2c

where your specification will look something like:

 1 apiVersion: kops/v1alpha2
 2 kind: InstanceGroup
 3 metadata:
 4 creationTimestamp: null
 5 name: gpunodes
 6 spec:
 7 image: kope.io/k8s-1.5-debian-jessie-amd64-hvm-ebs-2017-01-09
 8 machineType: p2.xlarge
 9 maxSize: 1
 10 minSize: 1
 11 role: Node
 12 subnets:
 13 - us-west-2c

In this example we used Amazon’s p2.xlarge instance which contains a single GPU node.

Node - If you upped your rootVolumeSize (and set the rootVolumeType in your other instance group), you should do the same here. In the absence of GPU jobs, normal jobs could get scheduled on this node, in which case you’ll have the same disk requirements as the rest of your cluster. There is currently no way of setting “disk” resource requests, so we have to use a convention instead.

Enable GPUs only on the GPU nodes

Again, you can use kops to edit your new instance group:

$ kops edit ig gpunodes --name XXXXXXX-pachydermcluster.kubernetes.com --state s3://k8scom-state-store-pachyderm-YYYY

and add the fields:

spec:
...
 hooks:
 - execContainer:
 image: pachyderm/nvidia_driver_install:dcde76f919475a6585c9959b8ec41334b05103bb
 kubelet:
 featureGates:
 Accelerators: "true"

Note: It’s YAML and spaces are very important. Also, if you see “fields were not recognized,” you likely need to update the version of kops.

These lines provide an image that gets run on every GPU node’s startup. This image will install the NVIDIA drivers on the host machine, update the host machine to mount the device at startup, and restart the host machine.

The feature gate enables k8s GPU detection. That’s what gives us the alpha.kubernetes.io/nvidia-gpu: "1" resources.

Update your cluster

Finally, we “update” our cluster to actually make the above changes:

$ kops update cluster --name XXXXXXX-pachydermcluster.kubernetes.com --state s3://k8scom-state-store-pachyderm-YYYY --yes

This will spin up the new gpunodes instance group, and apply the changes to your kops cluster.

Sanity check

You’ll know the cluster is ready to schedule GPU resources when:

	you see the new node in the output of kubectl get nodes and the state is Ready, and

	the node has the alpha.kubernetes.io/nvidia-gpu: "1" field set (and the value is 1 not 0)

$ kubectl get nodes/ip-172-20-38-179.us-west-2.compute.internal -o yaml | grep nvidia
 alpha.kubernetes.io/nvidia-gpu: "1"
 alpha.kubernetes.io/nvidia-gpu-name: Tesla-K80
 alpha.kubernetes.io/nvidia-gpu: "1"
 alpha.kubernetes.io/nvidia-gpu: "1"

Deal with known issues (if necessary)

If you’re not seeing the node, its possible that your resource limits (from your cloud provider) are preventing you from creating the GPU node(s). You should check your resource limits and ensure that GPU nodes are available in your region/zone (as further discussed here).

If you have checked your resource limits and everything seems ok, its very possible that you’re hitting a known k8s bug [https://github.com/kubernetes/kubernetes/issues/45753]. In this case, you can try to overcome the issue by restarting the k8s api server. To do that, run:

$ kubectl --namespace=kube-system get pod | grep kube-apiserver | cut -f 1 -d " " | while read pod; do kubectl --namespace=kube-system delete po/$pod; done

It can take a few minutes for the node to get recognized by the k8s cluster again.

Test Locally

NOTE - This has only been tested on a linux machine.

If you want to test that your pipeline is working on a local cluster (you’re Pachyderm in a local cluster), you can do so, but you’ll need to attach the NVIDIA drivers correctly. There are two methods for this:

1. Fresh install

Install the NVIDIA drivers locally if you haven’t already. If you’re not sure, run which nvidia-smi. If it returns no result, you probably don’t have them installed. To install them, you can run the following command. Warning! This command will restart your system and will modify your /etc/rc.local file, which you may want to backup.

$ sudo /usr/bin/docker run -v /:/rootfs/ -v /var/run/dbus:/var/run/dbus -v /run/systemd:/run/systemd --net=host --privileged pachyderm/nvidia_driver_install:dcde76f919475a6585c9959b8ec41334b05103bb

After the restart, you should see the nvidia devices mounted:

$ ls /dev | grep nvidia
nvidia0
nvidiactl
nvidia-modeset
nvidia-uvm

At this point your local machine should be recognized by kubernetes. To check you’ll do something like:

$ kubectl get nodes
NAME STATUS AGE VERSION
127.0.0.1 Ready 13d v1.7.10
$ kubectl get nodes/127.0.0.1 -o yaml | grep nvidia
 alpha.kubernetes.io/nvidia-gpu: "1"
 alpha.kubernetes.io/nvidia-gpu-name: Quadro-M2000M
 alpha.kubernetes.io/nvidia-gpu: "1"
 alpha.kubernetes.io/nvidia-gpu: "1"

If you don’t see any alpha.kubernetes.io/nvidia-gpu fields it’s likely that you didn’t deploy k8s locally with the correct flags. An example of the right flags can be found here [https://github.com/pachyderm/pachyderm/blob/master/etc/kube/internal.sh]. You can clone git@github.com:pachyderm/pachyderm and run make launch-kube locally if you’re already running docker on your local machine.

2. Hook in existing drivers

Pachyderm expects to find the shared libraries it needs under /usr/lib. It mounts in /usr/lib into the container as /rootfs/usr/lib (only when you’ve specified a GPU resource). In this case, if your drivers are not found, you can update the LD_LIBRARY_PATH in your container as appropriate.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Triggering Pipelines Periodically (cron)

Pachyderm pipelines are triggered by changes to their input data repositories (as further discussed in What Happens When You Create a Pipeline). However, if a pipeline consumes data from sources outside of Pachyderm, it can’t use Pachyderm’s triggering mechanism to process updates from those sources. For example, you might need to:

	Scrape websites

	Make API calls

	Query a database

	Retrieve a file from S3 or FTP

You can schedule pipelines like these to run regularly with Pachyderm’s built-in cron input type. You can find an example pipeline that queries MongoDB periodically here [https://github.com/pachyderm/pachyderm/tree/master/doc/examples/db].

There are two types of cron inputs:

	Non-incremental cron input - For when you want to overwrite a single dataset regularly

	Incremental cron input - For when you want to store new datasets alongside previous results.

Non-Incremental Cron

Let’s say that we want to query a database every 10 seconds and update our dataset every time the pipeline is triggered. We could do this with a non-incremental cron input as follows:

 "input": {
 "cron": {
 "name": "tick",
 "spec": "@every 10s"
 }
 }

When we create this pipeline, Pachyderm will create a new input data repository corresponding to the cron input. It will then automatically commit an updated timestamp file every 10 seconds to the cron input repository, which will automatically trigger our pipeline.

[image: alt tag]

The pipeline will run every 10 seconds, querying our database and updating its output.

We have used the @every 10s cron spec here, but you can use any cron spec formatted according to RFC 3339 [https://www.ietf.org/rfc/rfc3339.txt]. For example, */10 * * * * would indicate that the pipeline should run every 10 minutes (these time formats should be familiar to those who have used cron in the past, and you can find more examples here [https://en.wikipedia.org/wiki/Cron])

Incremental Cron

In the above example, Pachyderm will overwrite the output data from our cron triggered pipeline each time it runs. This happens because Pachyderm is updating the same input datum (the timestamp) after every period (see our incremental processing docs for more information on datums and incrementality).

If we don’t want to replace our previous datasets during every run, we must enable incrementality in the pipeline specification:

{

 ...

 "input": {
 "cron": {
 "name": "tick",
 "spec": "@every 10s"
 }
 },
 "incremental": true
}

When we do this, Pachyderm won’t update the same timestamp in the cron data repository, and we can accumulate results periodically over time:

[image: alt tag]

Note: even with "incremental": true you can still overwrite data in the output data repository (e.g. by replacing a file with a new file having the same name). The point is that the pipeline controls this process—it’s not automatic.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Deferred Processing of Data

While they’re running, Pachyderm Pipelines will process any new data you
commit to their input branches. This can be annoying in cases where you
want to commit data more frequently than you want to process.

This is generally not an issue because Pachyderm pipelines are smart about
not reprocessing things they’ve already processed, but some pipelines need
to process everything from scratch. For example, you may want to commit
data every hour, but only want to retrain a machine learning model on that
data daily since it needs to train on all the data from scratch.

In these cases there’s a massive performance benefit to deferred
processing. This document covers how to achieve that and control exactly
what gets processed when using the Pachyderm system.

The key thing to understand about controlling when data is processed in
Pachyderm is that you control this using the filesystem, rather than at
the pipeline level. Pipelines are inflexible but simple, they always try
to process the data at the heads of their input branches. The filesystem,
on the other hand, is much more flexible and gives you the ability to
commit data in different places and then efficiently move and rename the
data so that it gets processed when you want. The examples below describe
how specifically this should work for common cases.

Using a staging branch

The simplest and most common pattern for deferred processing is using
a staging branch in addition to the usual master branch that the
pipeline takes as input. To begin, create your input repo and your
pipeline (which by default will read from the master branch). This will
automatically create a branch on your input repo called master. You can
check this with list-branch:

$ pachctl list-branch data
BRANCH HEAD
master -

Notice that the head commit is empty. This is why the pipeline has no jobs
as pipelines process the HEAD commit of their input branches. No HEAD
commit means no processing. If you were to commit data to the master
branch, the pipeline would immediately kick off a job to process what you
committed. However, if you want to commit something without immediately
processing it you need to commit it to a different branch. That’s where
a staging branch comes in – you’re essentially adding your data into
a staging area to then process later.

Commit a file to the staging branch:

$ pachctl put-file data staging -f <file>

Your repo now has 2 branches, staging and master (put-file
automatically creates branches if they don’t exist). If you do
list-branch again you should see:

$ pachctl list-branch data
BRANCH HEAD
staging f3506f0fab6e483e8338754081109e69
master -

Notice that master still doesn’t have a head commit, but the new branch,
staging, does. There still have been no jobs, because there are no
pipelines taking staging as inputs. You can continue to commit to
staging to add new data to the branch and it still won’t process
anything. True to its name, it’s acting as a staging ground for data.

When you’re ready to actually process the data all you need to do is
update the master branch to point to the head of the staging branch:

$ pachctl create-branch data master --head staging
$ pachctl list-branch
staging f3506f0fab6e483e8338754081109e69
master f3506f0fab6e483e8338754081109e69

Notice that master and staging now have the same head commit. This
means that your pipeline finally has something to process. If you do
list-job you should see a new job. Notice that even if you created
multiple commits on staging before updating master you still only get
1 job. Despite the fact that those other commits are ancestors of the
current HEAD of master, they were never the actual HEAD of master
themselves, so they don’t get processed. This is often fine because
commits in Pachyderm are generally additive, so processing the HEAD commit
also processes data from previous commits.

 Ingressing From a Separate Object Store

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Ingressing From a Separate Object Store

Occasionally, you might find yourself needing to ingress data from or egress data (with the put-file command or egress field in the pipeline spec) to/from an object store that runs in a different cloud. For instance, you might be running a Pachyderm cluster in Azure, but you need to ingress files from a S3 bucket.

Fortunately, Pachyderm can be configured to ingress/egress from any number of supported cloud object stores, which currently include S3, Azure, and GCS. In general, all you need to do is to provide Pachyderm with the credentials it needs to communicate with the cloud provider.

To provide Pachyderm with the credentials, you use the pachctl deploy storage command:

$ pachctl deploy storage <backend> ...

Here, <backend> can be one of aws, google, and azure, and the different backends take different parameters. Execute pachctl deploy storage <backend> to view detailed usage information.

For example, here’s how you would deploy credentials for a S3 bucket:

$ pachctl deploy storage aws <bucket-name> <access key id> <secret access key>

Credentials are stored in a Kubernetes secret [https://kubernetes.io/docs/concepts/configuration/secret/] and therefore share the same security properties.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Vault Secret Engine

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Vault Secret Engine

Pachyderm supports Vault integration by providing a Vault Secret Engine.

Deployment

Vault instructions for the admin deploying/configuring/managing vault

	Get plugin binary

	Navigate to the Pachyderm Repo on github
	Go to the latest release page

	Download the vault asset

	Download / Install that binary on your vault server instance

On your vault server:

Assuming the binary was downloaded to /tmp/vault-plugins/pachyderm
export SHASUM=$(shasum -a 256 "/tmp/vault-plugins/pachyderm" | cut -d " " -f1)
echo $SHASUM
vault write sys/plugins/catalog/pachyderm sha_256="$SHASUM" command="pachyderm"
vault secrets enable -path=pachyderm -plugin-name=pachyderm plugin

Note: You may need to enable memory locking on the pachyderm plugin (see
[https://www.vaultproject.io/docs/configuration/#disable_mlock]). That will look
like:

sudo setcap cap_ipc_lock=+ep $(readlink -f /tmp/vault-plugins/pachyderm)

	Configure the plugin

We’ll need to gather and provide this information to the plugin for it to work:

	admin_token : is the (machine user) pachyderm token the plugin will use to cut new credentials on behalf of users

	pachd_address : is the URL where the pachyderm cluster can be accessed

	ttl : is the max TTL a token can be issued

Admin Token

To get a machine user admin_token from pachyderm:

If auth is not activated

(this activates auth with a robot user. It’s also possible to activate auth with a github user. Also, the choice of robot:admin is arbitrary. You could name this admin robot:<any string>)

$ pachctl auth activate --initial-admin=robot:admin
Retrieving Pachyderm token...
WARNING: DO NOT LOSE THE ROBOT TOKEN BELOW WITHOUT ADDING OTHER ADMINS.
IF YOU DO, YOU WILL BE PERMANENTLY LOCKED OUT OF YOUR CLUSTER!
Pachyderm token for "robot:admin":
34cffc9254df40f0a277ee23e9fb005d

$ ADMIN_TOKEN=34cffc9254df40f0a277ee23e9fb005d
$ echo "${ADMIN_TOKEN}" | pachctl auth use-auth-token # authenticates you as the cluster admin

If auth is already activated

Login as a cluster admin
$ pachctl auth login
... login as cluster admin ...

Appoint a new robot user as the cluster admin (if needed)
$ pachctl auth modify-admins --add=robot:admin

Get a token for that robot user admin
$ pachctl auth get-auth-token robot:admin
New credentials:
 Subject: robot:admin
 Token: 3090e53de6cb4108a2c6591f3cbd4680

$ ADMIN_TOKEN=3090e53de6cb4108a2c6591f3cbd4680

Pass the new admin token to Pachyderm:

vault write pachyderm/config \
 admin_token="${ADMIN_TOKEN}" \
 pachd_address="${ADDRESS:-127.0.0.1:30650}" \
 ttl=5m # optional

	Test the plugin

vault read pachyderm/version

If this fails, check if the problem is in the client (rather than the server):
vault read pachyderm/version/client-only

	Manage user tokens with revoke

$ vault token revoke d2f1f95c-2445-65ab-6a8b-546825e4997a
Success! Revoked token (if it existed)

Which will revoke the vault token. But if you also want to manually revoke a pachyderm token, you can do so by issuing:

$vault write pachyderm/revoke user_token=xxx

Usage

When your application needs to access pachyderm, you will first do the following:

	Connect / login to vault

Depending on your language / deployment this can vary. see the vault documentation for more details.

	Anytime you are going to issue a request to a pachyderm cluster first:

	check to see if you have a valid pachyderm token
	if you do not have a token, hit the login path as described below

	if you have a token but it’s TTL will expire soon (latter half of TTL is what’s recommended), hit the renew path as described below

	then use the response token when constructing your client to talk to the pachyderm cluster

Login

Again, your client could be in any language. But as an example using the vault CLI:

$ vault write -f pachyderm/login/robot:test
Key Value
--- -----
lease_id pachyderm/login/robot:test/e93d9420-7788-4846-7d1a-8ac4815e4274
lease_duration 768h
lease_renewable true
pachd_address 192.168.99.100:30650
user_token aa425375f03d4a5bb0f529379d82aa39

The response metadata contains the user_token that you need to use to connect to the pachyderm cluster,
as well as the pachd_address.
Again, if you wanted to use this Pachyderm token on the command line:

$ echo "aa425375f03d4a5bb0f529379d82aa39" | pachctl auth use-auth-token
$ ADDRESS=127.0.0.1:30650 pachctl list-repo

The TTL is tied to the vault lease in lease_id, which can be inspected or revoked
using the vault lease API (documented here: https://www.vaultproject.io/api/system/leases.html):

$ vault write /sys/leases/lookup lease_id=pachyderm/login/robot:test/e93d9420-7788-4846-7d1a-8ac4815e4274
Key Value
--- -----
expire_time 2018-06-17T23:32:23.317795215-07:00
id pachyderm/login/robot:test/e93d9420-7788-4846-7d1a-8ac4815e4274
issue_time 2018-05-16T23:32:23.317794929-07:00
last_renewal <nil>
renewable true
ttl 2764665

Renew

You should issue a renew request once the halfway mark of the TTL has elapsed.
Like revocation, renewal is handled using the vault lease API:

$ vault write /sys/leases/renew lease_id=pachyderm/login/robot:test/e93d9420-7788-4846-7d1a-8ac4815e4274 increment=3600
Key Value
--- -----
lease_id pachyderm/login/robot:test/e93d9420-7788-4846-7d1a-8ac4815e4274
lease_duration 2h
lease_renewable true

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Pipeline Specification

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Pipeline Specification

This document discusses each of the fields present in a pipeline specification.
To see how to use a pipeline spec to create a pipeline, refer to the pachctl
create-pipeline doc.

JSON Manifest Format

{
 "pipeline": {
 "name": string
 },
 "description": string,
 "transform": {
 "image": string,
 "cmd": [string],
 "stdin": [string]
 "env": {
 string: string
 },
 "secrets": [{
 "name": string,
 "mount_path": string
 },
 {
 "name": string,
 "env_var": string,
 "key": string
 }],
 "image_pull_secrets": [string],
 "accept_return_code": [int],
 "debug": bool,
 "user": string,
 "working_dir": string,
 },
 "parallelism_spec": {
 // Set at most one of the following:
 "constant": int,
 "coefficient": number
 },
 "resource_requests": {
 "memory": string,
 "cpu": number,
 "disk": string,
 },
 "resource_limits": {
 "memory": string,
 "cpu": number,
 "gpu": number,
 "disk": string,
 },
 "datum_timeout": string,
 "datum_tries": int,
 "job_timeout": string,
 "input": {
 <"atom", "cross", "union", "cron", or "git" see below>
 },
 "output_branch": string,
 "egress": {
 "URL": "s3://bucket/dir"
 },
 "standby": bool,
 "incremental": bool,
 "cache_size": string,
 "enable_stats": bool,
 "service": {
 "internal_port": int,
 "external_port": int
 },
 "max_queue_size": int,
 "chunk_spec": {
 "number": int,
 "size_bytes": int
 },
 "scheduling_spec": {
 "node_selector": {string: string},
 "priority_class_name": string
 },
 "pod_spec": string
}

"atom" input

"atom": {
 "name": string,
 "repo": string,
 "branch": string,
 "glob": string,
 "lazy" bool,
 "empty_files": bool
}

"cross" or "union" input

"cross" or "union": [
 {
 "atom": {
 "name": string,
 "repo": string,
 "branch": string,
 "glob": string,
 "lazy" bool,
 "empty_files": bool
 }
 },
 {
 "atom": {
 "name": string,
 "repo": string,
 "branch": string,
 "glob": string,
 "lazy" bool,
 "empty_files": bool
 }
 }
 etc...
]

"cron" input

"cron": {
 "name": string,
 "spec": string,
 "repo": string,
 "start": time
}

"git" input

"git": {
 "URL": string,
 "name": string,
 "branch": string
}

In practice, you rarely need to specify all the fields. Most fields either come with sensible defaults or can be nil. Following is an example of a minimal spec:

{
 "pipeline": {
 "name": "wordcount"
 },
 "transform": {
 "image": "wordcount-image",
 "cmd": ["/binary", "/pfs/data", "/pfs/out"]
 },
 "input": {
 "atom": {
 "repo": "data",
 "glob": "/*"
 }
 }
}

Following is a walk-through of all the fields.

Name (required)

pipeline.name is the name of the pipeline that you are creating. Each
pipeline needs to have a unique name. Pipeline names must:

	contain only alphanumeric characters, _ and -

	begin or end with only alphanumeric characters (not _ or -)

	be no more than 50 characters in length

Description (optional)

description is an optional text field where you can put documentation about the pipeline.

Transform (required)

transform.image is the name of the Docker image that your jobs run in.

transform.cmd is the command passed to the Docker run invocation. Note that
as with Docker, cmd is not run inside a shell which means that things like
wildcard globbing (*), pipes (|) and file redirects (> and >>) will not
work. To get that behavior, you can set cmd to be a shell of your choice
(e.g. sh) and pass a shell script to stdin.

transform.stdin is an array of lines that are sent to your command on stdin.
Lines need not end in newline characters.

transform.env is a map from key to value of environment variables that will be
injected into the container

Note: there are environment variables that are automatically injected into the
container, for a comprehensive list of them see the Environment
Variables section below.

transform.secrets is an array of secrets, they are useful for embedding
sensitive data such as credentials. Secrets reference Kubernetes secrets by
name and specify a path that the secrets should be mounted to, or an
environment variable (env_var) that the value should be bound to. Secrets
must set name which should be the name of a secret in Kubernetes. Secrets
must also specify either mount_path or env_var and key.

here [https://kubernetes.io/docs/concepts/configuration/secret/].

transform.image_pull_secrets is an array of image pull secrets, image pull
secrets are similar to secrets except that they’re mounted before the
containers are created so they can be used to provide credentials for image
pulling. For example, if you are using a private Docker registry for your
images, you can specify it via:

$ kubectl create secret docker-registry myregistrykey --docker-server=DOCKER_REGISTRY_SERVER --docker-username=DOCKER_USER --docker-password=DOCKER_PASSWORD --docker-email=DOCKER_EMAIL

And then tell your pipeline about it via "image_pull_secrets": ["myregistrykey"]. Read more about image pull secrets
here [https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod].

transform.accept_return_code is an array of return codes (i.e. exit codes)
from your docker command that are considered acceptable, which means that
if your docker command exits with one of the codes in this array, it will
be considered a successful run for the purpose of setting job status. 0
is always considered a successful exit code.

transform.debug turns on added debug logging for the pipeline.

transform.user sets the user that your code runs as, this can also be
accomplished with a USER directive in your Dockerfile.

transform.working_dir sets the directory that your command will be run from,
this can also be accomplished with a WORKDIR directive in your Dockerfile.

Parallelism Spec (optional)

parallelism_spec describes how Pachyderm should parallelize your pipeline.
Currently, Pachyderm has two parallelism strategies: constant and
coefficient.

If you set the constant field, Pachyderm will start the number of workers
that you specify. For example, set "constant":10 to use 10 workers.

If you set the coefficient field, Pachyderm will start a number of workers
that is a multiple of your Kubernetes cluster’s size. For example, if your
Kubernetes cluster has 10 nodes, and you set "coefficient": 0.5, Pachyderm
will start five workers. If you set it to 2.0, Pachyderm will start 20 workers
(two per Kubernetes node).

By default, we use the parallelism spec “coefficient=1”, which means that
we spawn one worker per node for this pipeline.

Resource Requests (optional)

resource_requests describes the amount of resources you expect the
workers for a given pipeline to consume. Knowing this in advance
lets us schedule big jobs on separate machines, so that they don’t
conflict and either slow down or die.

The memory field is a string that describes the amount of memory, in bytes,
each worker needs (with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc). For
example, a worker that needs to read a 1GB file into memory might set
"memory": "1.2G" (with a little extra for the code to use in addition to the
file. Workers for this pipeline will only be placed on machines with at least
1.2GB of free memory, and other large workers will be prevented from using it
(if they also set their resource_requests).

The cpu field is a number that describes the amount of CPU time (in (cpu
seconds)/(real seconds) each worker needs. Setting "cpu": 0.5 indicates that
the worker should get 500ms of CPU time per second. Setting "cpu": 2
indicates that the worker should get 2000ms of CPU time per second (i.e. it’s
using 2 CPUs, essentially, though worker threads might spend e.g. 500ms on four
physical CPUs instead of one second on two physical CPUs).

The disk field is a string that describes the amount of ephemeral disk space,
in bytes, each worker needs (with allowed SI suffixes (M, K, G, Mi, Ki, Gi,
etc).

In both cases, the resource requests are not upper bounds. If the worker uses
more memory than it’s requested, it will not (necessarily) be killed. However,
if the whole node runs out of memory, Kubernetes will start killing pods that
have been placed on it and exceeded their memory request, to reclaim memory.
To prevent your worker getting killed, you must set your memory request to
a sufficiently large value. However, if the total memory requested by all
workers in the system is too large, Kubernetes will be unable to schedule new
workers (because no machine will have enough unclaimed memory). cpu works
similarly, but for CPU time.

By default, workers are scheduled with an effective resource request of 0 (to
avoid scheduling problems that prevent users from being unable to run
pipelines). This means that if a node runs out of memory, any such worker
might be killed.

For more information about resource requests and limits see the
Kubernetes docs [https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/]
on the subject.

Resource Limits (optional)

resource_limits describes the upper threshold of allowed resources a given
worker can consume. If a worker exceeds this value, it will be evicted.

The gpu field is a number that describes how many GPUs each worker needs.
Only whole number are supported, Kubernetes does not allow multiplexing of
GPUs. Unlike the other resource fields, GPUs only have meaning in Limits, by
requesting a GPU the worker will have sole access to that GPU while it is
running. It’s recommended to enable standby if you are using GPUs so other
processes in the cluster will have access to the GPUs while the pipeline has
nothing to process. For more information about scheduling GPUs see the
Kubernetes docs [https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/]
on the subject.

Datum Timeout (optional)

datum_timeout is a string (e.g. 1s, 5m, or 15h) that determines the
maximum execution time allowed per datum. So no matter what your parallelism
or number of datums, no single datum is allowed to exceed this value.

Datum Tries (optional)

datum_tries is a int (e.g. 1, 2, or 3) that determines the number of retries that a job should attempt given failure was observed. Only failed datums are retries in retry attempt. The the operation succeeds in retry attempts then job is successful, otherwise the job is marked as failure.

Job Timeout (optional)

job_timeout is a string (e.g. 1s, 5m, or 15h) that determines the
maximum execution time allowed for a job. It differs from datum_timeout
in that the limit gets applied across all workers and all datums. That
means that you’ll need to keep in mind the parallelism, total number of
datums, and execution time per datum when setting this value. Keep in
mind that the number of datums may change over jobs. Some new commits may
have a bunch of new files (and so new datums). Some may have fewer.

Input (required)

input specifies repos that will be visible to the jobs during runtime.
Commits to these repos will automatically trigger the pipeline to create new
jobs to process them. Input is a recursive type, there are multiple different
kinds of inputs which can be combined together. The input object is a
container for the different input types with a field for each, only one of
these fields be set for any instantiation of the object.

{
 "atom": atom_input,
 "union": [input],
 "cross": [input],
 "cron": cron_input
}

Atom Input

Atom inputs are the simplest inputs, they take input from a single branch on a
single repo.

{
 "name": string,
 "repo": string,
 "branch": string,
 "glob": string,
 "lazy" bool,
 "empty_files": bool
}

input.atom.name is the name of the input. An input with name XXX will be
visible under the path /pfs/XXX when a job runs. Input names must be unique
if the inputs are crossed, but they may be duplicated between AtomInputs that are unioned. This is because when AtomInputs are unioned, you’ll only ever see a datum from one input at a time. Overlapping the names of unioned inputs allows
you to write simpler code since you no longer need to consider which input directory a particular datum come from. If an input’s name is not specified, it defaults to the name of the repo. Therefore, if you have two crossed inputs from the same repo, you’ll be required to give at least one of them a unique name.

input.atom.repo is the repo to be used for the input.

input.atom.branch is the branch to watch for commits on, it may be left blank in
which case "master" will be used.

input.atom.glob is a glob pattern that’s used to determine how the input data
is partitioned. It’s explained in detail in the next section.

input.atom.lazy controls how the data is exposed to jobs. The default is false
which means the job will eagerly download the data it needs to process and it
will be exposed as normal files on disk. If lazy is set to true, data will be
exposed as named pipes instead and no data will be downloaded until the job
opens the pipe and reads it, if the pipe is never opened then no data will be
downloaded. Some applications won’t work with pipes, for example if they make
syscalls such as Seek which pipes don’t support. Applications that can work
with pipes should use them since they’re more performant, the difference will
be especially notable if the job only reads a subset of the files that are
available to it. Note that lazy currently doesn’t support datums that
contain more than 10000 files.

input.atom.empty_files controls how files are exposed to jobs. If true, it will
cause files from this atom to be presented as empty files. This is useful in shuffle
pipelines where you want to read the names of files and reorganize them using symlinks.

Union Input

Union inputs take the union of other inputs. For example:

inputA	inputB	inputA ∪ inputB
foo	fizz	foo
bar	buzz	fizz
		bar
		buzz

Notice that union inputs, do not take a name and maintain the names of the
sub-inputs. In the above example you would see files under
/pfs/inputA/... or /pfs/inputB/..., but never both at the same time.
This can be annoying to write code for since the first thing your code
needs to do is figure out which input directory is present. As of 1.5.3
the recommended way to fix this is to give your inputs the same Name,
that way your code only needs to handle data being present in that
directory. This, of course, only works if your code doesn’t need to be
aware of which of the underlying inputs the data comes from.

input.union is an array of inputs to union, note that these need not be
atom inputs, they can also be union and cross inputs. Although there’s no
reason to take a union of unions since union is associative.

Cross Input

Cross inputs take the cross product of other inputs, in other words it creates
tuples of the datums in the inputs. For example:

inputA	inputB	inputA ⨯ inputB
foo	fizz	(foo, fizz)
bar	buzz	(foo, buzz)
		(bar, fizz)
		(bar, buzz)

Notice that cross inputs, do not take a name and maintain the names of the sub-inputs.
In the above example you would see files under /pfs/inputA/... and /pfs/inputB/....

input.cross is an array of inputs to cross, note that these need not be
atom inputs, they can also be union and cross inputs. Although there’s no
reason to take a cross of crosses since cross products are associative.

Cron Input

Cron inputs allow you to trigger pipelines based on time. It’s based on the
unix utility cron. When you create a pipeline with one or more Cron Inputs
pachd will create a repo for each of them. When a cron input triggers,
that is when the present time satisfies its spec, pachd will commit
a single file, called “time” to the repo which contains the time which
satisfied the spec. The time is formatted according to RFC
3339 [https://www.ietf.org/rfc/rfc3339.txt].

{
 "name": string,
 "spec": string,
 "repo": string,
 "start": time,
}

input.cron.name is the name for the input, its semantics are similar to
those of input.atom.name. Except that it’s not optional.

input.cron.spec is a cron expression which specifies the schedule on
which to trigger the pipeline. To learn more about how to write schedules
see the Wikipedia page on cron [https://en.wikipedia.org/wiki/Cron].
Pachyderm supports Nonstandard schedules such as "@daily".

input.cron.repo is the repo which will be created for the input. It is
optional, if it’s not specified then "<pipeline-name>_<input-name>" will
be used.

input.cron.start is the time to start counting from for the input. It is
optional, if it’s not specified then the present time (when the pipeline
is created) will be used. Specifying a time allows you to run on matching
times from the past or, skip times from the present and only start running
on matching times in the future. Times should be formatted according to RFC
3339 [https://www.ietf.org/rfc/rfc3339.txt].

Git Input (alpha feature)

Git inputs allow you to pull code from a public git URL and execute that code as part of your pipeline. A pipeline with a Git Input will get triggered (i.e. will see a new input commit and will spawn a job) whenever you commit to your git repository.

Note: This only works on cloud deployments, not local clusters.

input.git.URL must be a URL of the form: https://github.com/foo/bar.git

input.git.name is the name for the input, its semantics are similar to
those of input.atom.name. It is optional.

input.git.branch is the name of the git branch to use as input

Git inputs also require some additional configuration. In order for new commits on your git repository to correspond to new commits on the Pachyderm Git Input repo, we need to setup a git webhook. At the moment, only GitHub is supported. (Though if you ask nicely, we can add support for GitLab or BitBucket).

	Create your Pachyderm pipeline with the Git Input.

	To get the URL of the webhook to your cluster, do pachctl inspect-pipeline on your pipeline. You should see a Githook URL field with a URL set. Note - this will only work if you’ve deployed to a cloud provider (e.g. AWS, GKE). If you see pending as the value (and you’ve deployed on a cloud provider), it’s possible that the service is still being provisioned. You can check kubectl get svc to make sure you see the githook service running.

	To setup the GitHub webhook, navigate to:

https://github.com/<your_org>/<your_repo>/settings/hooks/new

Or navigate to webhooks under settings. Then you’ll want to copy the Githook URL into the ‘Payload URL’ field.

Output Branch (optional)

This is the branch where the pipeline outputs new commits. By default,
it’s “master”.

Egress (optional)

egress allows you to push the results of a Pipeline to an external data
store such as s3, Google Cloud Storage or Azure Storage. Data will be pushed
after the user code has finished running but before the job is marked as
successful.

Standby (optional)

standby indicates that the pipeline should be put into “standby” when there’s
no data for it to process. A pipeline in standby will have no pods running and
thus will consume no resources, it’s state will be displayed as “standby”.

Standby replaces scale_down_threshold from releases prior to 1.7.1.

Incremental (optional)

Incremental, if set will cause the pipeline to be run “incrementally”. This
means that when a datum changes it won’t be reprocessed from scratch, instead
/pfs/out will be populated with the previous results of processing that datum
and instead of seeing the full datum under /pfs/repo you will see only
new/modified values. Incremental pipelines are discussed in more detail here.

Incremental processing is useful for online
algorithms [https://en.wikipedia.org/wiki/Online_algorithm], a canonical
example is summing a set of numbers since the new numbers can be added to the
old total without having to reconsider the numbers which went into that old
total. Incremental is designed to work nicely with the --split flag to
put-file because it will cause only the new chunks of the file to be
displayed to each step of the pipeline.

Cache Size (optional)

cache_size controls how much cache a pipeline worker uses. In general,
your pipeline’s performance will increase with the cache size, but only
up to a certain point depending on your workload.

Enable Stats (optional)

enable_stats turns on stat tracking for the pipeline. This will cause the
pipeline to commit to a second branch in its output repo called "stats". This
branch will have information about each datum that is processed including:
timing information, size information, logs and a /pfs snapshot. This
information can be accessed through the inspect-datum and list-datum
pachctl commands and through the webUI.

Note: enabling stats will use extra storage for logs and timing information.
However it will not use as much extra storage as it appears to due to the fact
that snapshots of the /pfs directory, which are generally the largest thing
stored, don’t actually require extra storage because the data is already stored
in the input repos.

Service (alpha feature, optional)

service specifies that the pipeline should be treated as a long running
service rather than a data transformation. This means that transform.cmd is
not expected to exit, if it does it will be restarted. Furthermore, the service
will be exposed outside the container using a kubernetes service.
"internal_port" should be a port that the user code binds to inside the
container, "external_port" is the port on which it is exposed, via the
NodePorts functionality of kubernetes services. After a service has been
created you should be able to access it at
http://<kubernetes-host>:<external_port>.

Max Queue Size (optional)

max_queue_size specifies that maximum number of elements that a worker should
hold in its processing queue at a given time. The default value is 1 which
means workers will only hold onto the value that they’re currently processing.
Increasing this value can improve pipeline performance as it allows workers to
simultaneously download, process and upload different datums at the same time.
Setting this value too high can cause problems if you have lazy inputs as
there’s a cap of 10,000 lazy files per worker and multiple datums that are
running all count against this limit.

Chunk Spec (optional)

chunk_spec specifies how a pipeline should chunk its datums.

chunk_spec.number if nonzero, specifies that each chunk should contain number
datums. Chunks may contain fewer if the total number of datums don’t
divide evenly.

chunk_spec.size_bytes , if nonzero, specifies a target size for each chunk of datums.
Chunks may be larger or smaller than size_bytes, but will usually be
pretty close to size_bytes in size.

Scheduling Spec (optional)

scheduling_spec specifies how the pods for a pipeline should be scheduled.

scheduling_spec.node_selector allows you to select which nodes your pipeline
will run on. Refer to the Kubernetes docs [https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector]
on node selectors for more information about how this works.

scheduling_spec.priority_class_name allows you to select the prioriy class
for the pipeline, which will how Kubernetes chooses to schedule and deschedule
the pipeline. Refer to the Kubernetes docs [https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass]
on priority and preemption for more information about how this works.

Pod Spec (optional)

pod_spec is an advanced option that allows you to set fields in the pod spec
that haven’t been explicitly exposed in the rest of the pipeline spec. A good
way to figure out what JSON you should pass is to create a pod in Kubernetes
with the proper settings, then do:

kubectl get po/<pod-name> -o json | jq .spec

this will give you a correctly formated piece of JSON, you should then remove
the extraneous fields that Kubernetes injects or that can be set else where.

The JSON is applied after the other parameters for the pod_spec have already
been set. This means that you can modify things such as the storage and user
containers.

The Input Glob Pattern

Each atom input needs to specify a glob pattern.

Pachyderm uses the glob pattern to determine how many “datums” an input
consists of. Datums are the unit of parallelism in Pachyderm. That is,
Pachyderm attempts to process datums in parallel whenever possible.

Intuitively, you may think of the input repo as a file system, and you are
applying the glob pattern to the root of the file system. The files and
directories that match the glob pattern are considered datums.

For instance, let’s say your input repo has the following structure:

/foo-1
/foo-2
/bar
 /bar-1
 /bar-2

Now let’s consider what the following glob patterns would match respectively:

	/: this pattern matches /, the root directory itself, meaning all the data would be a single large datum.

	/*: this pattern matches everything under the root directory given us 3 datums:
/foo-1., /foo-2., and everything under the directory /bar.

	/bar/*: this pattern matches files only under the /bar directory: /bar-1 and /bar-2

	/foo*: this pattern matches files under the root directory that start with the characters foo

	/*/*: this pattern matches everything that’s two levels deep relative
to the root: /bar/bar-1 and /bar/bar-2

The datums are defined as whichever files or directories match by the glob pattern. For instance, if we used
/*, then the job will process three datums (potentially in parallel):
/foo-1, /foo-2, and /bar. Both the bar-1 and bar-2 files within the directory bar would be grouped together and always processed by the same worker.

PPS Mounts and File Access

Mount Paths

The root mount point is at /pfs, which contains:

	/pfs/input_name which is where you would find the datum.
	Each input will be found here by its name, which defaults to the repo
name if not specified.

	/pfs/out which is where you write any output.

Environment Variables

There are several environment variables that get injected into the user code
before it runs. They are:

	PACH_JOB_ID the id the currently run job.

	PACH_OUTPUT_COMMIT_ID the id of the commit being outputted to.

	For each input there will be an environment variable with the same name
defined to the path of the file for that input. For example if you are
accessing an input called foo from the path /pfs/foo which contains a
file called bar then the environment variable foo will have the value
/pfs/foo/bar. The path in the environment variable is the path which
matched the glob pattern, even if the file is a directory, ie if your glob
pattern is /* it would match a directory /bar, the value of $foo
would then be /pfs/foo/bar. With a glob pattern of /*/* you would match
the files contained in /bar and thus the value of foo would be
/pfs/foo/bar/quux.

	For each input there will be an environment variable named input_COMMIT
indicating the id of the commit being used for that input.

In addition to these environment variables Kubernetes also injects others for
Services that are running inside the cluster. These allow you to connect to
those outside services, which can be powerful but also can be hard to reason
about, as processing might be retried multiple times. For example if your code
writes a row to a database that row may be written multiple times due to
retries. Interaction with outside services should be idempotent to prevent
unexpected behavior. Furthermore, one of the running services that your code
can connect to is Pachyderm itself, this is generally not recommended as very
little of the Pachyderm API is idempotent, but in some specific cases it can be
a viable approach.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Pachctl Command Line Tool

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pachyderm 1.8.0 documentation

Pachctl Command Line Tool

Pachctl is the command line interface for Pachyderm. To install Pachctl, follow the Local Installation instructions

Synopsis

Access the Pachyderm API.

Environment variables:

ADDRESS=<host>:<port>, the pachd server to connect to (e.g. 127.0.0.1:30650).

Options

	
--no-metrics
	Don’t report user metrics for this command

	
-v, --verbose
	Output verbose logs

pachctl CLI

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Pachyderm language clients

 Navigation

 	
 index

 	
 previous |

 	Pachyderm 1.8.0 documentation

Pachyderm language clients

Go Client

The Go client is officially supported by the Pachyderm team. It implements almost all of the functionality that is provided with the pachctl CLI tool, and, thus, you can easily integrated operations like put-file into your applications.

For more info, check out the godocs [https://godoc.org/github.com/pachyderm/pachyderm/src/client].

Note - A compatible version of grpc is needed when using the Go client. You can deduce the compatible version from our vendor.json [https://github.com/pachyderm/pachyderm/blob/master/src/server/vendor/vendor.json] file, where you will see something like:

 {
 "checksumSHA1": "mEyChIkG797MtkrJQXW8X/qZ0l0=",
 "path": "google.golang.org/grpc",
 "revision": "21f8ed309495401e6fd79b3a9fd549582aed1b4c",
 "revisionTime": "2017-01-27T15:26:01Z"
 },

You can then get this version via:

go get google.golang.org/grpc
cd $GOPATH/src/google.golang.org/grpc
git checkout 21f8ed309495401e6fd79b3a9fd549582aed1b4c

Python Client -

The Python client is a user contributed client that has just recently been brought under the Pachyderm umbrella and made into an official client. We’re working on getting it fully up to date and will be supporting it full going forward.

For more info, check out pypachy on GitHub [https://github.com/kalugny/pypachy].

Scala Client

Our users are currently working on a Scala client for Pachyderm. Please contact us if you are interested in helping with this or testing it out.

Other languages

Pachyderm uses a simple protocol buffer API [https://github.com/pachyderm/pachyderm/blob/master/src/client/pfs/pfs.proto]. Protobufs support a bunch of other languages [https://developers.google.com/protocol-buffers/], any of which can be used to programmatically use Pachyderm. We haven’t built clients for them yet, but it’s not too hard. It’s an easy way to contribute to Pachyderm if you’re looking to get involved.

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

 Index

 Navigation

 	
 index

 	Pachyderm 1.8.0 documentation

Index

 Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

auth/saml_setup.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Overview

This guide will walk through testing Pachyderm’s experimental SAML support.
These features aren’t integrated into mainline Pachyderm yet and aren’t
available in any official releases. This will describe the process of:

		Activating Pachyderm enterprise and Pachyderm auth

		Configuring Pachyderm’s auth system and enabling its SAML ACS (Assertion
Consumer Service—the HTTP endpoint to which users will forward SAML
assertions).

		Logging in to both the dash and CLI

		Enabling debug logging in case anything goes wrong

Activation

For testing, we highly recommend running Pachyderm in Minikube, in case any
early bugs make it necessary to restart the cluster.

To activate Pachyderm enterprise and Pachyderm auth:

pachctl enterprise activate <enterprise code>
pachctl auth activate --initial-admin=robot:admin

These commands cause Pachyderm’s auth system to start verifying attempts to
read and write Pachyderm data and blocking unauthorized users. Whichever user
ran this command automatically authenticates as robot:admin and has admin
privileges in the cluster (run pachctl auth whoami, as shown below, to
confirm)

Users will either need to set the --initial-admin admin flag or have one
GitHub-based user in the system. The reason:

		Pachyderm requires there to be at least one cluster admin if auth is
activated

		Pachyderm uses GitHub for authentication by default. Without this flag,
Pachyderm asks the caller to go through an OAuth flow with GitHub, and then
at the conclusion, makes the caller the cluster admin. Then whoever
activated Pachyderm’s auth system can assume admin status by
re-authenticating via GitHub and performing any necessary actions

		To avoid the OAuth flow, though, it’s also possible to make the initial
cluster admin a “robot user”. Setting --initial-admin=robot:<something>
does this.

		Pachyderm will print out a Pachyderm token that authenticates the holder as
this robot user. At any point, you can authenticate as this robot user by
running

$ pachctl auth use-auth-token
Please paste your Pachyderm auth token:
<paste robot token emitted by "pachctl auth activate --initial-admin=robot:admin">

$ pachctl auth whoami
You are "robot:admin"
You are an administrator of this Pachyderm cluster

Create IdP test app

This image shows an example configuration for an Okta test app that
authenticates Okta users with Pachyderm:
[image: Okta test app config]

Pachyderm also needs a URL where it can scrape SAML metadata from the ID
provider. All SAML ID providers should provide such a URL; the Okta metadata
URL, for example, can be retrieved here:
[image: Metadata image]

Write Pachyderm config

This enables the Pachyderm ACS. See inline comments

Lookup current config version--pachyderm config has a barrier to prevent
read-modify-write conflicts between admins
live_config_version="$(pachctl auth get-config | jq .live_config_version)"
live_config_version="${live_config_version:-0}"

Set the Pachyderm config
pachctl auth set-config <<EOF
{
 "live_config_version": ${live_config_version},

 "id_providers": [
 {
 "name": "saml",
 "description": "Okta test app metadata",
 "saml": {
 "metadata_url": <okta app metadata URL>,
 "group_attribute": "memberOf"
 }
 }
],

 "saml_svc_options": {
 "acs_url": "http://localhost:30654/saml/acs",
 "metadata_url": "http://localhost:30654/saml/metadata",
 "dash_url": "http://localhost:30080/auth/autologin?lol=wut",
 "session_duration": "8h",
 }
}
EOF

Logging In

Currently Pachyderm only supports IdP-initiated authentication. Configure
an Okta app to point to the Pachyderm ACS
(http://localhost:30654/saml/acs if using pachctl port-forward), then
sign in via the new Okta app

This should allow you to log in at the Pachyderm dash. To log in with the
Pachyderm CLI, get a One-Time Password from the Pachyderm dash, and then
run pachctl auth login --code=<one-time password> in your terminal.

Other features

Debug Logging

If we run into issues while deploying this, it may be useful to enable
a collection of debug logs that we added during development. To do so,
add the option "debug_logging": true to "saml_svc_options":

pachctl auth set-config <<EOF
{
 ...
 "saml_svc_options": {
 ...
 "debug_logging": true
 }
}
EOF

Groups

Pachyderm has very preliminary, experimental support for groups. While they won’t
appear in ACLs in the dash (and may have other issues), you can experiment using
the CLI by setting "group_attribute" in the IDProvider field of the auth config:

pachctl auth set-config <<EOF
{
 ...
 "id_providers": [
 {
 ...
 "saml": {
 "group_attribute": "memberOf"
 }
 }
],
}
EOF

Then, try:

pachctl create-repo group-test
pachctl put-file group-test master -f some-data.txt
pachctl auth set group/saml:"Test Group" reader group-test

Elsewhere:

pachctl auth login --code=<auth code>
pachctl get-file group-test master /some-data.txt # should work for members of "Test Group"

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

auth/saml_usage.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Overview

This guide will walk through an example of using Pachyderm’s experimental SAML
support. We’ll describe:

		Authenticating via a SAML ID Provider

		Authenticating in the CLI

		Authorizing a user or group to access data

Setup

Follow the instructions in saml_setup to enable auth in a
Pachyderm cluster and connect it to a SAML ID provider. Then, we’ll authenticate
as a cluster admin in one console and set up our open CV
demo.

In the CLI, that would look like:

(admin)$ pachctl auth use-auth-token
Please paste your Pachyderm auth token:
<auth token>

(admin)$ pachctl auth whoami
You are "robot:admin"
You are an administrator of this Pachyderm cluster

(admin)$ pachctl create-repo images
(admin)$ pachctl create-pipeline -f doc/examples/opencv/edges.json
(admin)$ pachctl create-pipeline -f doc/examples/opencv/montage.json
(admin)$ pachctl put-file images master -i doc/examples/opencv/images.txt
(admin)$ pachctl put-file images master -i doc/examples/opencv/images2.txt

(admin)$ pachctl list-repo
NAME CREATED SIZE ACCESS LEVEL
montage 2 minutes ago 1.653MiB OWNER
edges 2 minutes ago 133.6KiB OWNER
images 2 minutes ago 238.3KiB OWNER

(admin)$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
023a478b16e849b4996c19632fee6782 montage/e3dd7e9cacc5450c92e0e62ab844bd26 2 minutes ago 8 seconds 0 1 + 0 / 1 371.9KiB 1.283MiB success
fe8b409e0db54f96bbb757d4d0679186 edges/9cc634a63f794a14a78e931bea47fa73 2 minutes ago 5 seconds 0 2 + 1 / 3 181.1KiB 111.4KiB success
152cb8a0b0854d44affb4bf4bd57228f montage/82a49260595246fe8f6a7d381e092650 2 minutes ago 5 seconds 0 1 + 0 / 1 79.49KiB 378.6KiB success
86e6eb4ae1e74745b993c2e47eba05e9 edges/ee7ebdddd31d46d1af10cee25f17870b 2 minutes ago 4 seconds 0 1 + 0 / 1 57.27KiB 22.22KiB success

Authenticating via a SAML ID Provider (in the dashboard)

Before authenticating, navigating to the dash will yield a blank screen:

[image: Blocked-out dash]

Even through the dash suggests logging in via GitHub, we will log in using a
SAML IdP (which has hopefully already been configured). To see your Pachyderm
DAG, navigate to your SAML ID provider and sign in to your Pachyderm cluster
there (currently Pachyderm only supports IdP-initiate SAML authentication).

[image: SSO image]

Once you’ve authenticated, you’ll be redirected to the Pachyderm dash (the
redirect URL is configured in the Pachyderm auth system). You’ll be given the
opportunity to generate a one-time password (OTP), though you can always do this
later from the settings panel.

[image: Dash logged in]

After closing the OTP panel, you’ll be able to see the Pachyderm DAG, but you
may not have access to any of the repos inside (a repo that you cannot read is
indicated by a lock symbol):

[image: Dash with locked repos]

Authenticating in the CLI

After authenticating in the dash, you’ll be given the opportunity to generate a
one-time password (OTP) and sign in on the CLI. You can also generate an OTP
from the settings panel:

[image: OTP Image]

(user)$ pachctl auth login --code auth_code:73db4686e3e142508fa74aae920cc58b
(user)$ pachctl auth whoami
You are "saml:msteffen@pachyderm.io"
session expires: 14 Sep 18 20:55 PDT

Note that this session expires after 8 hours. The duration of sessions is
configurable in the Pachyderm auth config, but it’s important that they be
relatively short, as SAML group memberships are only updated when users sign in.
If a user is removed from a group, they’ll still be able to access the group’s
resources until their session expires.

Authorizing a user or group to access data

First, we’ll give the example of an admin granting a user access. This can be
accomplished on the CLI like so:

(admin)$ pachctl auth set saml:msteffen@pachyderm.io reader images

Now, the images repo is no longer locked when that user views the DAG:

[image: Unlocked images repo image]

At this point, you can click on the images repo and preview data inside:

[image: Unlocked images repo image]

Likewise, you can grant access to repos via groups. You’ll need a SAML ID
provider that supports group attributes, and you’ll need to put the name of that
attribute in the Pachyderm auth config. Here, we’ll grant access to the Everyone
group:

(admin)$ pachctl auth set group/saml:Everyone owner edges

Now, the edges repo is also not locked:

[image: Unlocked edges repo]

Also, becase msteffen@pachyderm.io has OWNER provileges in the edges repo
(via the Everyone group), the ACL for edges can be edited.
msteffen@pachyderm.io will use OWNER privileges gained via the Everyone group
to add msteffen@pachyderm.io (the user principal) directly to that ACL:

[image: Adding user to ACL image]

this change is reflected in the CLI as well:

(admin)$ pachctl auth get edges
pipeline:edges: WRITER
pipeline:montage: READER
group/saml:Everyone: OWNER
saml:msteffen@pachyderm.io: READER
robot:admin: OWNER

Conclusion

This is just an example of Pachyderm’s auth system, meant to illustrate the
general nature of available features. Hopefully, it clarifies whether Pachyderm
can meet your requirements.

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_completion.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl completion

Install bash completion code.

Synopsis

Install bash completion code.

./pachctl completion

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_inspect-datum.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl inspect-datum

Display detailed info about a single datum.

Synopsis

Display detailed info about a single datum.

./pachctl inspect-datum job-id datum-id

Options

 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/ml/object-detection/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Object detection

In this example we’re going to use the Tensorflow Object Detection API [https://github.com/tensorflow/models/tree/master/object_detection] to do some general object detection and we’ll use Pachyderm to set up the necessary data pipelines to feed in the data.

Prerequisites

		Clone this repo.

		Install/deploy Pachyderm (See the Pachyderm docs [http://docs.pachyderm.io/en/latest/] for details. In this example we’re going to use the local installation).

1. Make Sure Pachyderm Is Running

You should be able to connect to your Pachyderm cluster via the pachctl CLI. To verify that everything is running correctly on your machine, run the following:

$ pachctl version
COMPONENT VERSION
pachctl 1.7.4
pachd 1.7.4

2. Create The Input Data Repositories

$ pachctl create-repo training
$ pachctl create-repo images

Make sure the repos are there

$ pachctl list-repo
NAME CREATED SIZE
images 4 seconds ago 0B
training 8 seconds ago 0B

3. Fetch The Data And Extract It Locally

$ wget http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_11_06_2017.tar.gz
$ tar -xvf ssd_mobilenet_v1_coco_11_06_2017.tar.gz

4. Import Data Into The Pachyderm Repos

cd into the newly extracted folder

$ cd ssd_mobilenet_v1_coco_11_06_2017

Add in inference graph

$ pachctl put-file training master -f frozen_inference_graph.pb

5. Build The Pachyderm Pipelines

cd ../

$ pachctl create-pipeline -f model.json
$ pachctl create-pipeline -f detect.json

Now we can check on the pipelines and make sure they’re running

$ pachctl list-pipeline
NAME INPUT OUTPUT CREATED STATE
detect (images:/* ⨯ model:/) detect/master 9 seconds ago running
model training:/ model/master 17 seconds ago running

You can also see the jobs that were created by our pipelines as well as their status.

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
ad132094bcba4f89a4effffee8f7bb1c detect/da0ac9ffcbdc4f2fabeb79222f628a8d 9 seconds ago 3 seconds 0 0 + 0 / 0 0B 0B success
a0c71b182c0d4a649689673d4eb0d9ee model/b2a87f54356f48e29486ea7777326d63 18 seconds ago 3 seconds 0 1 + 0 / 1 27.83MiB 0B success

Another thing you’ll notice is that these pipelines created two new repos (which we’ll use in the next step).

$ pachctl list-repo
NAME CREATED SIZE
detect 47 seconds ago 0B
model 56 seconds ago 27.83MiB
training About a minute ago 27.83MiB
images About a minute ago 0B

6. Commit Images Into The Images Repo And Get The Output Of The Object Detection API

$ cd images

Add the airplane.jpg into your images repo

$ pachctl put-file images master -f airplane.jpg

Once the image has been evaluated by Object Detection API you’ll be able to see the detection result in the detect repo. We can take a look at the result by running the following

on OSX
$ pachctl get-file detect master airplane.jpg | open -f -a /Applications/Preview.app

on Linux
$ pachctl get-file detect master airplane.jpg | display

[image: alt text]

7. Your Turn

There are few other images in the directory. Run through step 6 again but this time use one of the other images and see what the Object Detection API returns.

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/ml/neon/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

ML pipeline using Nervana Neon and Pachyderm

[image: alt tag]

This machine learning pipeline integrates Nervana Neon training and inference into a production scale pipeline using Pachyderm. In particular, this pipeline trains and utilizes a model that predicts the sentiment of movie reviews, based on data from IMDB.

Getting Started

		Clone this repo or download the files for the example.

		Download the training data here [https://s3-us-west-2.amazonaws.com/wokshop-example-data/labeledTrainData.tsv].

Deploying Pachyderm

See the Pachyderm docs [http://docs.pachyderm.io/en/latest/] for details. Note, this demo requires pachctl 1.4.0+.

Deploying training and inference

		Create the necessary data “repositories”:

$ pachctl create-repo training
$ pachctl create-repo reviews

		Create the pipeline:

$ pachctl create-pipeline -f train.json
$ pachctl create-pipeline -f infer.json

Running model training

Because we have already deployed the pipeline, the training portion of the pipeline will run as soon as data is committed to the training data repo. The training data in TSV format can be obtained here [https://s3-us-west-2.amazonaws.com/wokshop-example-data/labeledTrainData.tsv].

$ pachctl put-file training master labeledTrainData.tsv -c -f labeledTrainData.tsv

The training should take about 10-15 minutes depending on your environment.

Running model inference

Once the model is trained and a persisted version of the model is output to the model repo. Sentiment of movie reviews can be run by committing movie reviews to the reviews repository as text files. Example review files are included in test. These look like:

Naturally in a film who's main themes are of mortality, nostalgia, and loss of innocence it is perhaps not surprising that it is rated more highly by older viewers than younger ones. However there is a craftsmanship and completeness to the film which anyone can enjoy. The pace is steady and constant, the characters full and engaging, the relationships and interactions natural showing that you do not need floods of tears to show emotion, screams to show fear, shouting to show dispute or violence to show anger. Naturally Joyce's short story lends the film a ready made structure as perfect as a polished diamond, but the small changes Huston makes such as the inclusion of the poem fit in neatly. It is truly a masterpiece of tact, subtlety and overwhelming beauty.

Once this is committed to the reviews repo as 1.txt:

$ pachctl put-file reviews master 1.txt -c -f 1.txt

The inference stage of the pipeline will run and output results to the master branch of the inference repo.

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/ml/tensorflow/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

pix2pix with TensorFlow

Christopher Hesse’s image-to-image demos use a Tensorflow implementation of the Generative Adversarial Networks (or GANs) model presented in this article [https://arxiv.org/pdf/1611.07004v1.pdf]. Chris’s full Tensorflow implementation of this model can be found on Github [https://github.com/affinelayer/pix2pix-tensorflow] and includes documentation about how to perform training, testing, pre-processing of images, exporting of the models for serving, and more.

In this example we will utilize Chris’s code in that repo along with a Docker image based on an image he created to run the scripts (which you can also utilize in your experiments with pix2pix).

The pipeline

To deploy and manage the model discussed above, we will implement it’s training, export, preprocessing, and image generation in a reusable Pachyderm pipeline. This will allow us to:

		Keep a rigorous historical record of exactly what models were used on what data to produce which results.

		Automatically update online ML models when training data or parameterization changes.

		Easily revert to other versions of an ML model when a new model is not performing or when “bad data” is introduced into a training data set.

The general structure of our pipeline will look like this:

[image: Alt text]

The cylinders represent data “repositories” in which Pachyderm will version training, model, etc. data (think “git for data”). These data repositories are then input/output of the linked data processing stages (represented by the boxes in the figure).

Getting up and running with Pachyderm

You can experiment with this pipeline locally using a quick local installation of Pachyderm [http://docs.pachyderm.io/en/latest/getting_started/local_installation.html]. Alternatively, you can quickly spin up a real Pachyderm cluster in any one of the popular cloud providers. Check out the Pachyderm docs [http://docs.pachyderm.io/en/latest/deployment/deploy_intro.html] for more details on deployment.

Once deployed, you will be able to use the Pachyderm’s pachctl CLI tool to create data repositories and start our deep learning pipeline.

Preparing the training and model export stages

First, let’s prepare our training and model export stages. Chris Hesse’s pix2pix.py script includes:

		A “train” mode that we will use to train our model on a set of paired images (such as facades paired with labels or edges paired with cats). This training will output a “checkpoint” representing a persisted state of the trained model.

		An “export” mode that will then allow us to create an exported version of the checkpointed model to use in our image generation.

Thus, our “Model training and export” stage can be split into a training stage (called “checkpoint”) producing a model checkpoint and an export stage (called “model”) producing a persisted model used for image generation:

[image: Alt text]

We can deploy this part of the pipeline in two quick steps:

		Create the initial “training” data repository with pachctl create-repo training.

		Supply Pachyderm with a JSON specification, training_and_export.json, telling Pachyderm to: (i) run Chris’s pix2pix.py script in “train” mode on the data in the “training” repository outputting a checkpoint to the “checkpoint” repository, and (ii) run the pix2pix.py script in “export” mode on the data in the “checkpoint” repository outputting a persisted model to the “model” repository. This can be done by running pachctl create-pipeline -f training_and_export.json.

Note - Training could take 15+ minutes depending on how many images are supplied in the training set and the exact setting of the pix2pix.py script.

Note - If you have a GPU enable Pachyderm cluster [http://docs.pachyderm.io/en/latest/cookbook/gpus.html], you can use this pipeline specification to run the training stage of the pipeline on a GPU node.

Preparing the pre-processing and image generation stages

Next, let’s prepare our pre-processing and image generation stages. Our trained model will be expecting PNG image data with certain properties (256 x 256 in size, 8-bit/color RGB, non-interlaced). As such, we need to pre-process (specifically resize) our images as they are coming into our pipeline, and Chris has us covered with a process.py script to perform the resizing.

To actually perform our image-to-image translation, we need to use a process_local.py script. This script will take our pre-processed images and persisted model as input and output the generated, translated result:

[image: Alt text]

Again, we can deploy this part of the pipeline in two quick steps:

		Create the initial “input_images” data repository with pachctl create-repo input_images.

		Supply Pachyderm with another JSON specification, pre-processing_and_generation.json, telling Pachyderm to: (i) run the process.py script in on the data in the “input_images” repository outputting to the “preprocess_images” repository, and (ii) run the process_local.py with the model in the “model” repository and the images in the “preprocess_images” repository as input. This can be done by running pachctl create-pipeline -f pre-processing_and_generation.json.

Putting it all together, generating images

Now that we have created our input data repositories (“input_images” and “training”) and we have told Pachyderm about all of our processing stages, our production-ready deep learning pipeline will run automatically when we put data into “training” and “input_images.” It’s just works.

Chris has provides a nice guide for preparing training sets here [https://github.com/affinelayer/pix2pix-tensorflow#datasets-and-trained-models]. You can use cat images, dog images, building, or anything that might interest you. Be creative and show us what you come up with! When you have your training and input images ready, you can get them into Pachyderm using the pachctl CLI tool or one of the Pachyderm clients.

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/spark/pi/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Estimate Pi Using Spark

This example demonstrates integration of Spark with Pachyderm by launching
a Spark job on an existing cluster from within a Pachyderm Job. The job uses
configuration info that is versioned within Pachyderm, and stores it’s reduced
result back into a Pachyderm output repo, maintaining full provenance and
version history within Pachyderm, while taking advantage of Spark for
computation.

The example assumes that you have:

		A Pachyderm cluster running - see this guide [http://pachyderm.readthedocs.io/en/latest/getting_started/local_installation.html] to get up and running with a local Pachyderm cluster in just a few minutes.

		The pachctl CLI tool installed and connected to your Pachyderm cluster - see the relevant deploy docs [http://pachyderm.readthedocs.io/en/latest/deployment/deploy_intro.html] for instructions.

		The kubectl CLI tool installed (you will likely have installed this while setting up your local Pachyderm cluster [http://pachyderm.readthedocs.io/en/latest/getting_started/local_installation.html])

Note: if deploying on Minikube, you’ll need to increase the default memory
allocation to accomodate the deploy of a Spark cluster. When running minikube start, append --memory 4096.

Set up Spark Cluster

The simpelst way to run this example is by deploying a Spark cluster into the
same Kubernetes cluster on which Pachyderm is running. We’ll do so with Helm.
(Note: if you already have an external Spark cluster running, you can skip this
section. Be sure to read the note about connecting to an existing Spark
cluster)

Install Helm

If you don’t already have the Helm client installed, you can do so by following
the instructions
here [https://docs.helm.sh/using_helm/#installing-the-helm-client] (or, for the
bold, by running curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get | bash.)

Set up Helm/Tiller

In order to use Helm with your Kubernetes cluster, you’ll need to install
Tiller:

kubectl create serviceaccount --namespace kube-system tiller
kubectl create clusterrolebinding tiller-cluster-rule --clusterrole=cluster-admin --serviceaccount=kube-system:tiller
helm init --service-account tiller --upgrade

Tiller will take about a minute to initialize and enter Running status. You
can check it’s status by running: kubectl get pod -n kube-system -l name=tiller

Install Spark

Finally, once Tiller is Running, use Helm to install Spark:

helm install --name spark stable/spark

This will again take several minutes to pull the relevant Docker images and
start running. You can check the status with kubectl get pod -l release=spark

Deploy Pachyderm Pipeline

Once your Spark cluster is running, you’re ready to deploy the Pachyderm
pipeline:

create a repo to hold configuration data that acts as input to the pipeline
pachctl create-repo estimate_pi_config

create the actual processing pipeline
pachctl create-pipeline -f estimate_pi_pipeline.json

kick off a job with 1000 samples
echo 1000 | pachctl put-file estimate_pi_config master num_samples

check job status
pachctl list-job --pipeline estimate_pi

once job has completed, retrieve the results
pachctl get-file estimate_pi master pi_estimate

Connecting to an existing Spark cluster

By default, this example makes use of Kubernetes’ service discovery to connect
your Pachyderm pipeline code to your Spark cluster. If you wish to connect to
a different Spark cluster, you can do so by adding the --master flag to the
list of arguments provided to cmd in the pipeline spec: append "--master"
and "spark://$MYSPARK_MASTER_SERVICE_HOST:$MYSPARK_MASTER_SERVICE_PORT" to
the cmd array.

To test a manually-specified connection, deploy a Spark cluster into
a different name in Kubernetes:

helm install --name my-custom-spark stable/spark

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/gatk/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Variant Discovery with GATK

[image: alt tag]

This example illustrates the use of GATK in Pachyderm for Germline [https://en.wikipedia.org/wiki/Germline] variant calling and joint genotyping [https://en.wikipedia.org/wiki/Genotyping]. Each stage of this GATK best practice pipeline can be scaled individually and is automatically triggered as data flows into the top of the pipeline. The example follows this tutorial [https://drive.google.com/open?id=0BzI1CyccGsZiQ1BONUxfaGhZRGc] from GATK, which includes more details about the various stages.

Committing the reference genome

You can retrieve all the input data for this pipeline from the Broad Institute here [https://drive.google.com/open?id=0BzI1CyccGsZicE5HNkR6anpLTnM]. We will utilize a b37 human genome reference containing only a subset of chromosome 20, which we prepared specially for GATK tutorials in order to provide a reasonable size for download. It is accompanied by its index and sequence dictionary.

Download GATK_Germline.zip from the link above. Then:

$ unzip GATK_Germline.zip
Archive: GATK_Germline.zip
 creating: data/
 inflating: data/.DS_Store
 creating: __MACOSX/
 creating: __MACOSX/data/
 inflating: __MACOSX/data/._.DS_Store
 inflating: data/.Rhistory
 creating: data/bams/
 inflating: data/bams/.DS_Store
 etc...
$ cd data/ref
$ ls
Icon ref.dict ref.fasta ref.fasta.fai refSDF
$ pachctl create-repo reference
$ pachctl put-file reference master -r -f .
$ pachctl list-repo
NAME CREATED SIZE
reference 43 seconds ago 83.68MiB
$ pachctl list-file reference master
NAME TYPE SIZE
DS_Store file 8.004KiB
Icon file 0B
ref.dict file 164B
ref.fasta file 61.11MiB
ref.fasta.fai file 20B
refSDF dir 22.57MiB
$ cd ../../

Committing a sample

Create a repositories for input *.bam files:

$ pachctl create-repo samples

Add a *.bam file (along with it’s index file) corresponding to a first sample (mother). Here we will assume that the files corresponding to each sample are committed to separate directories (e.g., /mother):

$ cd data/bams/
$ pachctl start-commit samples master
$ for f in $(ls mother.*); do pachctl put-file samples 64f1d3456e184efa8f8c9ea7a2994edd mother/$f -f $f; done
$ pachctl finish-commit samples 64f1d3456e184efa8f8c9ea7a2994edd
$ cd ../../

You should then be able to see the versioned sample data in Pachyderm:

$ pachctl list-file samples master
NAME TYPE SIZE
mother dir 23.79MiB
$ pachctl list-file samples master mother
NAME TYPE SIZE
mother/mother.bai file 9.047KiB
mother/mother.bam file 23.79MiB

Variant calling

To call variants for the input sample, we will run the HaplotypeCaller using GATK. Details of the exact GATK command and related scripting are included in the likelihoods.json pipeline specification.

To create and run the variant calling pipeline to generate genotype likelihoods:

$ pachctl create-pipeline -f likelihoods.json

This will automatically trigger a job:

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
c61c71d1-6544-48ad-8361-b4ad155ba1a0 likelihoods/992393004c5a45c0a35995cf0179f1cb 43 minutes ago 18 seconds 0 1 + 0 / 1 107.5MiB 4.667MiB success

And you can view the output of the variant calling as follows:

$ pachctl list-file likelihoods master
NAME TYPE SIZE
mother.g.vcf file 4.667MiB
mother.g.vcf.idx file 758B

Joint genotyping

The last step is to joint call all your GVCF files using the GATK tool GenotypeGVCFs. Details of this GATK command and related scripting are included in the joint-call.json pipeline specification.

To run the joint genotyping:

$ pachctl create-pipeline -f joint_call.json

This will automatically trigger a job and produce our final output:

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
67135f10-4121-4f29-a30b-1eaf6ffe2194 joint_call/c4ebd6dd0c764a97a8d7f3a71f6bb9ce 38 minutes ago 5 seconds 0 1 + 0 / 1 88.35MiB 113.9KiB success
c61c71d1-6544-48ad-8361-b4ad155ba1a0 likelihoods/992393004c5a45c0a35995cf0179f1cb 43 minutes ago 18 seconds 0 1 + 0 / 1 107.5MiB 4.667MiB success
$ pachctl list-file joint_call master
NAME TYPE SIZE
joint.vcf file 103.7KiB
joint.vcf.idx file 10.21KiB

Adding more samples

Now that we have our pipelines running, out final results will be automatically updated any time we add new samples. To illustrate this, we can add the father and son samples as follows:

$ cd data/bams/
$ pachctl start-commit samples master
dc963cc9bdc2486798b92d20eead5058
$ for f in $(ls father.*); do pachctl put-file samples master father/$f -f $f; done
$ pachctl finish-commit samples master
$ pachctl start-commit samples master
84e6615de64f43d8815909fa978bd4bc
$ for f in $(ls son.*); do pachctl put-file samples master son/$f -f $f; done
$ pachctl finish-commit samples master
$ pachctl list-file samples master
NAME TYPE SIZE
father dir 9.662MiB
mother dir 23.79MiB
son dir 9.58MiB

This will trigger new jobs to process the new samples:

pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
73222c06-c444-4dff-b370-6c7dea83258d joint_call/32d3615a036e4c0eadd3ed49435ee7db About a minute ago 6 seconds 0 1 + 0 / 1 97.64MiB 188.6KiB success
47652b28-a1ba-454e-a74c-7b43740a72f0 likelihoods/a7e160f8418a4bd5a46233bd6b1d84ce 2 minutes ago 16 seconds 0 1 + 2 / 3 93.26MiB 4.729MiB success
55b17b8c-b305-4d4c-b822-f861578dadd8 joint_call/4eb7c19600134af5b9595bf5d9f71edc 2 minutes ago 5 seconds 0 1 + 0 / 1 92.92MiB 166.3KiB success
a350a349-5ddb-4e19-bdda-66d7edbf9447 likelihoods/e783989ca367428ea2df6406a23bea6c 2 minutes ago 19 seconds 0 1 + 1 / 2 93.35MiB 4.564MiB success
67135f10-4121-4f29-a30b-1eaf6ffe2194 joint_call/c4ebd6dd0c764a97a8d7f3a71f6bb9ce About an hour ago 5 seconds 0 1 + 0 / 1 88.35MiB 113.9KiB success
c61c71d1-6544-48ad-8361-b4ad155ba1a0 likelihoods/992393004c5a45c0a35995cf0179f1cb About an hour ago 18 seconds 0 1 + 0 / 1 107.5MiB 4.667MiB success

If you are using the Enterprise Edition [http://pachyderm.readthedocs.io/en/latest/enterprise/overview.html], you should be able to see the DAG and data as shown below:

[image: alt tag]

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/run/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Pipeline Makefile and Config template

An attempt to automate as much as possible of the work needed to test and setup

Introduction

This is an attempt to automate the following procedures required for the pipeline creation:

		Build, push and pull the Docker image

		Create secrets for Docker registry and the container

		Create pipeline configuration file and the actual pipeline

		Automate local tests and put them in an environment as close to production pipeline as possible

		Cleanup if something goes wrong during testing or deploy

What this doesn’t do:

		Create or remove data repositories (due to dependencies)

		Setup Kubernetes, Minikube, Docker Hub or any of the required infrastructure elements

		Commit data to repositories

		Write the core logic of your pipeline (that is still up to you)

Configuring the pipeline

The folder have the following structure:

		Congifuration files are stored in the config folder

		Source files for magic are stored in the src folder

		Makefile holds all the woodoo for putting thigs together

		Dockerfile tells docker how to build the container

All the configuration variables for the creation of the pipeline are stored in the pipeline.conf file.
This includes pipeline name, where the pipeline takes the input from etc. All the variables
are commented in the file so read on there for more details.

pipeline.json file holds the pachyderm specs for the pipeline, more here: specs [http://pachyderm.readthedocs.io/en/latest/reference/pipeline_spec.html].

Creating the pipeline

Run make, this will create a target folder with required configuration files. Then run make install to create a pipeline based on the created configuration.
After a while, run make verify to see if the job ran ok.

Required environmental variables at build and deploy time (self explanatory): $DOCKER_REGISTRY, $DOCKER_REGISTRY_USERNAME, $DOCKER_REGISTRY_PASSWORD and $DOCKER_REGISTRY_EMAIL
On top of that any env variables specified in secrets.yaml must also be present.

Cleanup

make clean removes any files created during the installation but does not remove the pipe. To explicitly remove the pipe, run make pipe.delete.

Testing

How to run local tests:

		By default, sample input data should be put in ./test/in and expected output shows up in ./test/out

		Any environmental variables needed for testing should be put in the docker.test.env file and present in env when test is run

Creating a new pipeline

In ~three~ nine easy steps:

		Copy an existing pipeline folder of your liking to a new folder: cp -R old_pipe new_pipe

		Change the input repository $PIPELINE_REPO variable in new_pipe/config/pipeline.conf to the appropriate new repo so your new
pipeline gets the right input

		Put your source code in new_pipe/src and update run.sh to reflect the changes

		Update Dockerfile to include all the dependencies needed for your code

		Update config/secrets.yaml with any variables that are needed for your source code to run

		Put sample data in test/in and update the config/docker.test.env variables to your test needs. run make test and check test/out if everything works

		Save everything and run make and then make install

		(magic)

		Observe data flowing ...

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/shuffle/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Creating a shuffle pipeline

This example demonstrates how shuffle pipelines i.e. a pipeline that shuffles, combines files without downloading/uploading can be created. For more information see [https://pachyderm.readthedocs.io/en/latest/managing_pachyderm/data_management.html]

Create fruits input repo

pachctl create-repo fruits
pachctl put-file fruits master -f mango.jpeg
pachctl put-file fruits master -f apple.jpeg

Create pricing input repo

pachctl create-repo pricing
pachctl put-file pricing master -f mango.json
pachctl put-file pricing master -f apple.json

Create shuffle pipeline

pachctl create-pipeline -f shuffle.json

Let’s take a closer look at that pipeline:

{
 "input": {
 "union": [
 {
 "atom": {
 "glob": "/*.jpeg",
 "repo": "fruits",
 "empty_files": true
 }
 },
 {
 "atom": {
 "glob": "/*.json",
 "repo": "pricing",
 "empty_files": true
 }
 }
]
 },
 "pipeline": {
 "name": "lazy_shuffle"
 },
 "transform": {
 "image": "ubuntu",
 "cmd": ["/bin/bash"],
 "stdin": [
 "echo 'process fruits if any'",
 "fn=$(find -L /pfs -not -path \"*/\\.*\" -type f \\(-path '*/fruits/*' \\))",
 "for f in $fn; do fruit_name=$(basename $f .jpeg); mkdir -p /pfs/out/$fruit_name/; ln -s $f /pfs/out/$fruit_name/img.jpeg; done",
 "echo 'process pricing if any'",
 "fn=$(find -L /pfs -not -path \"*/\\.*\" -type f \\(-path '*/pricing/*' \\))",
 "for f in $fn; do fruit_name=$(basename $f .json); mkdir -p /pfs/out/$fruit_name/; ln -s $f /pfs/out/$fruit_name/cost.json; done"
]
 }
}

Notice that both of our inputs have the "empty_files" field set to true,
this means that we’ll get files with the correct name but no content. If your
shuffle can be done looking only at the names of the files, without considering
content, specifying "empty_files" will massively improve its performance.

Results

List-job

pachctl list-job indicates no data download or upload was performed

ID	OUTPUT COMMIT	STARTED	DURATION	RESTART	PROGRESS	DL	UL	STATE
———————————-	——————————————	—————-	———–	———	———–	—-	—-	———
60617fd06155451d8358cc714bf9b670	shuffle/f56e97fa9e234eb6ad902640d4fba2ac	10 seconds ago	4 seconds	0	4 + 0 / 4	0B	0B	success

Output files:

pachctl list-file shuffle master "*" will show shuffled file:

NAME	TYPE	SIZE
——————	——	———-
/mango/cost.json	file	22B
/mango/img.jpeg	file	7.029KiB
/apple/cost.json	file	23B
/apple/img.jpeg	file	4.978KiB

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/redshift/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

 Note: This is a Pachyderm pre version 1.4 tutorial. It needs to be updated for the latest versions of Pachyderm.

Exporting Pachyderm Data with SQL

This tutorial is incomplete

I’ve started committing the files used by this tuturial before the full
tutorial is ready so that users can see an outline of how to use command-line
utilities to interact with external systems from pachyderm (this tutorial uses
the psql tool to write data to Amazon Redshift). However, the tutorial isn’t
finished, many of the pieces haven’t been tested, and this particular example
will soon be obsolete, as pachyderm will soon provide native support for
writing output to SQL databases from pipelines.

That said, some very basic notes on writing data to Redshift from Pachyderm:

		Amazon Redshift speaks the PostgreSQL wire protocol, so any postgres client
can be used to get data into Redshift. This example uses psql

		Since figuring out how to get psql into a container seemed hard, I used
postgres:9.6.1-alpine as the base container for my pipeline. In addition to
the entire implementation of PostgreSQL, this container has a copy of the
psql client

		Also, since psql can only execute SQL queries, I wrote a little go script
(in json_to_sql) that consumes arbitrary json records and outputs SQL
commands. Since go binaries are statically linked, it’s possible to just add
the compiled binary to the pipeline container image (see Dockerfile) and
run it in the pipeline command (see transform.stdin in pipeline.json)

		If you actually want to do this, you’ll need to build the docker container
described by Dockerfile. That will look something like:

$ DOCKER_IMAGE_NAME=msteffenpachyderm/to_sql
$ cd json_to_sql && go build to_sql.go && cd .. && docker build ./ -t "${DOCKER_IMAGE_NAME}"
$ docker push "${DOCKER_IMAGE_NAME}"

		Then, set the transform.image field in pipeline.json to the docker
image you just pushed

		For psql to connect to Redshift, you need to give it your Redshift
credentials. Fortunately, Pachyderm makes it easy to access Kubernetes
secrets [https://kubernetes.io/docs/user-guide/secrets/] from inside pipeline
containers. You can use this to authenticate with Redshift by:

		creating a pgpass
file [https://www.postgresql.org/docs/9.4/static/libpq-pgpass.html] with
your Redshift credentials

		creating a Kubernetes secret containing that file, and then

		setting the PGPASSFILE environment variable in the pipeline to point to
the Kubernetes secret (see pipeline.json for an outline of how that
looks. The chmod command at the beginning is necessary because psql
won’t use a pgpass file that’s too accessible).

		The redshift pipeline also needs information about your Redshift cluster to
find it. See the REDSHIFT_* environment variables defined in
pipeline.json

		Finally, make sure you set up your network ingress/egress rules
appropriately. EC2 nodes and Redshift clusters can’t talk to each other by
default

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/db/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Periodic ingress from MongoDB

This example pipeline executes a query periodically against a MongoDB database outside of Pachyderm. The results of the query are stored in a corresponding output repository. This repository could be used to drive additional pipeline stages periodically based on the results of the query.

The example assumes that you have:

		A Pachyderm cluster running - see this guide [http://pachyderm.readthedocs.io/en/latest/getting_started/local_installation.html] to get up and running with a local Pachyderm cluster in just a few minutes.

		The pachctl CLI tool installed and connected to your Pachyderm cluster - see any of our deploy docs [http://pachyderm.readthedocs.io/en/latest/deployment/deploy_intro.html] for instructions.

Setup MongoDB

The easiest way to demonstrate this example is with a free hosted MongoDB cluster, such as the free tier of MongoDB Atlas [https://www.mongodb.com/cloud/atlas] or MLab [https://mlab.com/] (although you could certainly do this with any MongoDB). Assuming that you are using MongoDB Atlas:

		Deploy a new Cluster0 MongoDB cluster with MongoDB Atlas (remmeber the admin username and password as you will need these shortly). Once deployed you should be able to see this cluster in the MongoDB Atlas dashboard:

[image: alt text]

		Click on the “connect” button for your cluster and make sure that all IPs are whitelisted (or at least the k8s master IP where you have Pachyderm deployed):

[image: alt text]

		Then click on “Connect with the MongoDB shell” to find the URI, DB name (test if you are using MongoDB Atlas Cluster0), username, and authentication DB for connecting to your cluster. You will need these to query MongoDB.

		Make sure you have the MongoDB tools installed locally. You can follow this guide [https://docs.mongodb.com/manual/administration/install-community/] to install themk.

Import example data

We are going to run this example with an example set of data about restaurants. This dataset comes directly from MongoDB and is used in many of their examples as well.

		Download the dataset from here [https://raw.githubusercontent.com/mongodb/docs-assets/primer-dataset/primer-dataset.json]. It is named primer-dataset.json. Each of the records in this dataset look like the following:

{
 "address": {
 "building": "1007",
 "coord": [-73.856077, 40.848447],
 "street": "Morris Park Ave",
 "zipcode": "10462"
 },
 "borough": "Bronx",
 "cuisine": "Bakery",
 "grades": [
 { "date": { "$date": 1393804800000 }, "grade": "A", "score": 2 },
 { "date": { "$date": 1378857600000 }, "grade": "A", "score": 6 },
 { "date": { "$date": 1358985600000 }, "grade": "A", "score": 10 },
 { "date": { "$date": 1322006400000 }, "grade": "A", "score": 9 },
 { "date": { "$date": 1299715200000 }, "grade": "B", "score": 14 }
],
 "name": "Morris Park Bake Shop",
 "restaurant_id": "30075445"
}

		Import the dataset to the restaurants collection in MongoDB (in the test DB if you are using MongoDB Atlas) using the mongoimport command. You will need to specify the Mongo hosts, username, password, etc. from your MongoDB cluster. For example:

$ mongoimport --host Cluster0-shard-0/cluster0-shard-00-00-cwehf.mongodb.net:27017,cluster0-shard-00-01-cwehf.mongodb.net:27017,cluster0-shard-00-02-cwehf.mongodb.net:27017 --ssl -u admin -p '<my password>' --authenticationDatabase admin --db test --collection restaurants --drop --file primer-dataset.json
2017-08-28T13:40:38.983-0400 connected to: Cluster0-shard-0/cluster0-shard-00-00-cwehf.mongodb.net:27017,cluster0-shard-00-01-cwehf.mongodb.net:27017,cluster0-shard-00-02-cwehf.mongodb.net:27017
2017-08-28T13:40:39.048-0400 dropping: test.restaurants
2017-08-28T13:40:41.310-0400 [#.......................] test.restaurants 540KB/11.3MB (4.7%)
2017-08-28T13:40:44.310-0400 [##......................] test.restaurants 1.04MB/11.3MB (9.2%)
2017-08-28T13:40:47.310-0400 [##......................] test.restaurants 1.04MB/11.3MB (9.2%)
2017-08-28T13:40:50.310-0400 [###.....................] test.restaurants 1.55MB/11.3MB (13.7%)
2017-08-28T13:40:53.310-0400 [####....................] test.restaurants 2.07MB/11.3MB (18.2%)
2017-08-28T13:40:56.310-0400 [#####...................] test.restaurants 2.58MB/11.3MB (22.8%)
2017-08-28T13:40:59.310-0400 [######..................] test.restaurants 3.10MB/11.3MB (27.4%)
2017-08-28T13:41:02.310-0400 [######..................] test.restaurants 3.10MB/11.3MB (27.4%)
2017-08-28T13:41:05.310-0400 [#######.................] test.restaurants 3.61MB/11.3MB (31.9%)
2017-08-28T13:41:08.310-0400 [########................] test.restaurants 4.12MB/11.3MB (36.4%)
2017-08-28T13:41:11.310-0400 [#########...............] test.restaurants 4.64MB/11.3MB (41.0%)
2017-08-28T13:41:14.310-0400 [#########...............] test.restaurants 4.64MB/11.3MB (41.0%)
2017-08-28T13:41:17.310-0400 [##########..............] test.restaurants 5.15MB/11.3MB (45.5%)
2017-08-28T13:41:20.310-0400 [############............] test.restaurants 5.67MB/11.3MB (50.0%)
2017-08-28T13:41:23.310-0400 [#############...........] test.restaurants 6.19MB/11.3MB (54.6%)
2017-08-28T13:41:26.310-0400 [#############...........] test.restaurants 6.19MB/11.3MB (54.6%)
2017-08-28T13:41:29.310-0400 [##############..........] test.restaurants 6.70MB/11.3MB (59.2%)
2017-08-28T13:41:32.310-0400 [###############.........] test.restaurants 7.21MB/11.3MB (63.7%)
2017-08-28T13:41:35.310-0400 [################........] test.restaurants 7.71MB/11.3MB (68.1%)
2017-08-28T13:41:38.310-0400 [################........] test.restaurants 7.71MB/11.3MB (68.1%)
2017-08-28T13:41:41.310-0400 [#################.......] test.restaurants 8.18MB/11.3MB (72.3%)
2017-08-28T13:41:44.310-0400 [##################......] test.restaurants 8.62MB/11.3MB (76.1%)
2017-08-28T13:41:47.310-0400 [###################.....] test.restaurants 9.03MB/11.3MB (79.7%)
2017-08-28T13:41:50.310-0400 [###################.....] test.restaurants 9.41MB/11.3MB (83.1%)
2017-08-28T13:41:53.310-0400 [####################....] test.restaurants 9.77MB/11.3MB (86.3%)
2017-08-28T13:41:56.310-0400 [#####################...] test.restaurants 10.1MB/11.3MB (89.2%)
2017-08-28T13:41:59.310-0400 [######################..] test.restaurants 10.4MB/11.3MB (91.9%)
2017-08-28T13:42:02.310-0400 [######################..] test.restaurants 10.7MB/11.3MB (94.5%)
2017-08-28T13:42:05.310-0400 [#######################.] test.restaurants 11.0MB/11.3MB (97.0%)
2017-08-28T13:42:08.310-0400 [########################] test.restaurants 11.3MB/11.3MB (100.0%)
2017-08-28T13:42:08.449-0400 [########################] test.restaurants 11.3MB/11.3MB (100.0%)
2017-08-28T13:42:08.449-0400 imported 25359 documents

Create a Kubernetes secret with your Mongo creds

In order for your Pachyderm pipeline to talk with MongoDB, we need to tell Pachyderm about the MongoDB URI, username, password, etc. We will do this via a Kuberntes secret [https://kubernetes.io/docs/concepts/configuration/secret/].

		Copy mongodb_template.yaml to a local file mongodb.yaml.

		Encode your URI, username, password, database name, and collection name to base64. This is required by Kubernetes.

$ echo -n "mongodb://cluster0-shard-00-00-cwehf.mongodb.net:27017,cluster0-shard-00-01-cwehf.mongodb.net:27017,cluster0-shard-00-02-cwehf.mongodb.net:27017/test?replicaSet=Cluster0-shard-0" | base64
bW9uZ29kYjovL2NsdXN0ZXIwLXNoYXJkLTAwLTAwLWN3ZWhmLm1vbmdvZGIubmV0OjI3MDE3LGNs
dXN0ZXIwLXNoYXJkLTAwLTAxLWN3ZWhmLm1vbmdvZGIubmV0OjI3MDE3LGNsdXN0ZXIwLXNoYXJk
LTAwLTAyLWN3ZWhmLm1vbmdvZGIubmV0OjI3MDE3L3Rlc3Q/cmVwbGljYVNldD1DbHVzdGVyMC1z
aGFyZC0w
$ echo -n "admin" | base64
YWRtaW4=
$ echo -n <my password> | base64
<my encoded password>
$ echo -n "test" | base64
dGVzdA==
$ echo -n "restaurants" | base64
cmVzdGF1cmFudHM=

		Replace the placeholders in the mongodb.yaml file with the encoded versions of your URI, username, etc.

$ cat mongodb.yaml
apiVersion: v1
kind: Secret
metadata:
 name: mongosecret
type: Opaque
data:
 uri: bW9uZ29kYjovL2NsdXN0ZXIwLXNoYXJkLTAwLTAwLWN3ZWhmLm1vbmdvZGIubmV0OjI3MDE3LGNsdXN0ZXIwLXNoYXJkLTAwLTAxLWN3ZWhmLm1vbmdvZGIubmV0OjI3MDE3LGNsdXN0ZXIwLXNoYXJkLTAwLTAyLWN3ZWhmLm1vbmdvZGIubmV0OjI3MDE3L3Rlc3Q/cmVwbGljYVNldD1DbHVzdGVyMC1zaGFyZC0w
 username: YWRtaW4=
 password: <replaced, encoded password>
 db: dGVzdA==
 collection: cmVzdGF1cmFudHM=

		Create the secret with kubectl.

$ kubectl create -f ./mongodb.yaml
secret "mongosecret" created

Create the pipeline, view the results

In our pipeline spec, we will do the following:

		Grab the Kubernetes secret that we defined above.

		Define a cron input that will cause the pipeline to be triggered every 10 seconds.

		Using the official mongo Docker image, query for a random document from the restaurants collection and output that to /pfs/out.

{
 "pipeline": {
 "name": "query"
 },
 "transform": {
 "image": "mongo",
 "cmd": ["/bin/bash"],
 "stdin": [
 "export uri=$(cat /tmp/mongosecret/uri)",
 "export db=$(cat /tmp/mongosecret/db)",
 "export collection=$(cat /tmp/mongosecret/collection)",
 "export username=$(cat /tmp/mongosecret/username)",
 "export password=$(cat /tmp/mongosecret/password)",
 "mongo \"$uri\" --authenticationDatabase admin --ssl --username $username --password $password --quiet --eval 'db.restaurants.aggregate({ $sample: { size: 1 } });' | tail -n1 | egrep -v \"^>|^bye\" > /pfs/out/output.json"
],
 "secrets": [
 {
 "name": "mongosecret",
 "mount_path": "/tmp/mongosecret"
 }
]
 },
 "input": {
 "cron": {
 "name": "tick",
 "spec": "@every 10s"
 }
 }
}

This will allow us to view the head of the output over time to see a bunch of random documents being queried out of MongoDB.

		Create the pipeline.

$ pachctl create-pipeline -f query.json

		After the work pod spins up (check kubectl get all to observe this), you should see jobs start to be triggered every 10 seconds.

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
842e4e6c-4920-42c0-9c81-e5299b67e4a0 query/- 1 second ago - 0 0 + 0 / 1 0B 0B running
$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
5938a0d0-9512-455f-a390-14adc3669e5f query/0f8a2ba1150a463299ee71961427bdcb 3 seconds ago 3 seconds 0 1 + 0 / 1 26B 617B success
952427a6-c92d-4c98-a781-87616988d528 query/33776e4df3b24ab68d70b5185eb37661 13 seconds ago 1 second 0 1 + 0 / 1 26B 613B success
1bc5f608-85fd-44eb-833e-562d15629706 query/6dd2a4da566f4d30ad9c66fc60244bab 23 seconds ago 1 second 0 1 + 0 / 1 26B 721B success
efa677a4-7f83-424b-879d-70a0c5690bb2 query/f56b1f314030455c8bdf8a10b68ebd16 33 seconds ago 1 second 0 1 + 0 / 1 26B 529B success
842e4e6c-4920-42c0-9c81-e5299b67e4a0 query/2a11bfc3e6d74af0a8d254d3ecf6f6af 43 seconds ago 1 second 0 1 + 0 / 1 26B 535B success
$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
7ab2b1cf-bd13-4aa7-bf7b-b06f2c29242a query/- 1 second ago - 0 0 + 0 / 1 0B 0B running
bc71d40b-5b1c-474d-a24d-f7487e037cee query/997587e3bd794e2ea48890e6022434f4 11 seconds ago 2 seconds 0 1 + 0 / 1 26B 836B success
41d499ad-7ba2-4ba6-82b0-68a8d5e3e67a query/b8eae461132a49819e59b62c39e6b6eb 21 seconds ago 1 second 0 1 + 0 / 1 26B 669B success
5938a0d0-9512-455f-a390-14adc3669e5f query/0f8a2ba1150a463299ee71961427bdcb 31 seconds ago 3 seconds 0 1 + 0 / 1 26B 617B success
952427a6-c92d-4c98-a781-87616988d528 query/33776e4df3b24ab68d70b5185eb37661 41 seconds ago 1 second 0 1 + 0 / 1 26B 613B success
1bc5f608-85fd-44eb-833e-562d15629706 query/6dd2a4da566f4d30ad9c66fc60244bab 51 seconds ago 1 second 0 1 + 0 / 1 26B 721B success
efa677a4-7f83-424b-879d-70a0c5690bb2 query/f56b1f314030455c8bdf8a10b68ebd16 About a minute ago 1 second 0 1 + 0 / 1 26B 529B success
842e4e6c-4920-42c0-9c81-e5299b67e4a0 query/2a11bfc3e6d74af0a8d254d3ecf6f6af About a minute ago 1 second 0 1 + 0 / 1 26B 535B success

		You can then see the output changing over time. You can watch it change with each query by executing:

$ watch pachctl get-file query master output.json

Or you can look at individual results over time via the commit IDs:

$ pachctl get-file query master output.json
{ "_id" : ObjectId("59a455af69a077c0dc028410"), "address" : { "building" : "119", "coord" : [-73.9784962, 40.6788476], "street" : "5 Avenue", "zipcode" : "11217" }, "borough" : "Brooklyn", "cuisine" : "Mexican", "grades" : [{ "date" : ISODate("2014-07-29T00:00:00Z"), "grade" : "B", "score" : 27 }, { "date" : ISODate("2014-03-10T00:00:00Z"), "grade" : "B", "score" : 15 }, { "date" : ISODate("2014-02-12T00:00:00Z"), "grade" : "P", "score" : 3 }, { "date" : ISODate("2013-09-05T00:00:00Z"), "grade" : "C", "score" : 35 }, { "date" : ISODate("2013-03-06T00:00:00Z"), "grade" : "A", "score" : 12 }, { "date" : ISODate("2012-09-12T00:00:00Z"), "grade" : "A", "score" : 13 }, { "date" : ISODate("2012-04-17T00:00:00Z"), "grade" : "A", "score" : 12 }], "name" : "El Pollito Mexicano", "restaurant_id" : "41051406" }
$ pachctl get-file query 64ac2bd721d04212a3a0b90833f751e5 output.json
{ "_id" : ObjectId("59a455f069a077c0dc02e16e"), "address" : { "building" : "1650", "coord" : [-73.928079, 40.856481], "street" : "Saint Nicholas Ave", "zipcode" : "10040" }, "borough" : "Manhattan", "cuisine" : "Spanish", "grades" : [{ "date" : ISODate("2015-01-20T00:00:00Z"), "grade" : "Not Yet Graded", "score" : 2 }], "name" : "Angebienvendia", "restaurant_id" : "50018661" }
$ pachctl get-file query 74a6cf68de2047fe94ac7982065df03d output.json
{ "_id" : ObjectId("59a455b669a077c0dc02904d"), "address" : { "building" : "14", "coord" : [-73.990382, 40.741571], "street" : "West 23 Street", "zipcode" : "10010" }, "borough" : "Manhattan", "cuisine" : "Café/Coffee/Tea", "grades" : [{ "date" : ISODate("2014-05-02T00:00:00Z"), "grade" : "A", "score" : 11 }, { "date" : ISODate("2013-11-22T00:00:00Z"), "grade" : "A", "score" : 8 }, { "date" : ISODate("2012-11-20T00:00:00Z"), "grade" : "A", "score" : 9 }, { "date" : ISODate("2011-11-18T00:00:00Z"), "grade" : "A", "score" : 6 }], "name" : "Starbucks Coffee (Store #13539)", "restaurant_id" : "41290548" }

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/ml/iris/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

ML pipeline for Iris Classification - R, Python, or Julia

[image: alt tag]

This machine learning pipeline implements a “hello world” ML pipeline that trains a model to predict the species of Iris flowers (based on measurements of those flowers) and then utilizes that trained model to perform predictions. The pipeline can be deployed with R-based components, Python-based components, or Julia-based components. In fact, you can even deploy an R-based pipeline, for example, and then switch out the R pipeline stages with Julia or Python pipeline stages. This illustrates the language agnostic nature of Pachyderm’s containerized pipelines.

		Make sure Pachyderm is running

		Create the input “data repositories”

		Commit the training data set into Pachyderm

		Create the training pipeline

		Commit input attributes

		Create the inference pipeline

		Examine the results

Bonus:

		Parallelize the inference

		Update the model training

		Update the training data set

		Examine pipeline provenance

Finally, we provide some Resources for you for further exploration.

Getting Started

		Clone this repo.

		Install/deploy Pachyderm (See the Pachyderm docs [http://docs.pachyderm.io/en/latest/] for details. In particular, the local installation [http://docs.pachyderm.io/en/latest/getting_started/local_installation.html] is a super easy way to experiment with Pachyderm).

1. Make sure Pachyderm is running

You should be able to connect to your Pachyderm cluster via the pachctl CLI. To verify that everything is running correctly on your machine, you should be able to run the following with similar output:

$ pachctl version
COMPONENT VERSION
pachctl 1.7.0
pachd 1.7.0

2. Create the input data repositories

On the Pachyderm cluster running in your remote machine, we will need to create the two input data repositories (for our training data and input iris attributes). To do this run:

$ pachctl create-repo training
$ pachctl create-repo attributes

As a sanity check, we can list out the current repos, and you should see the two repos you just created:

$ pachctl list-repo
NAME CREATED SIZE
attributes 5 seconds ago 0 B
training 8 seconds ago 0 B

3. Commit the training data set into pachyderm

We have our training data repository, but we haven’t put our training data set into this repository yet. The training data set, iris.csv, is included here in the data directory.

To get this data into Pachyderm, navigate to this directory and run:

$ cd data
$ pachctl put-file training master -f iris.csv

Then, you should be able to see the following:

$ pachctl list-repo
NAME CREATED SIZE
training 3 minutes ago 4.444 KiB
attributes 3 minutes ago 0 B
$ pachctl list-file training master
NAME TYPE SIZE
iris.csv file 4.444 KiB

4. Create the training pipeline

Next, we can create the model pipeline stage to process the data in the training repository. To do this, we just need to provide Pachyderm with a JSON pipeline specification that tells Pachyderm how to process the data. This model pipeline can be specified to train a model with R, Python, or Julia and with a variety of types of models. The following Docker images are available for the training:

		pachyderm/iris-train:python-svm - Python-based SVM implemented in python/iris-train-python-svm/pytrain.py

		pachyderm/iris-train:python-lda - Python-based LDA implemented in python/iris-train-python-lda/pytrain.py

		pachyderm/iris-train:rstats-svm - R-based SVM implemented in rstats/iris-train-r-svm/train.R

		pachyderm/iris-train:rstats-lda - R-based LDA implemented in rstats/iris-train-r-lda/train.R

		pachyderm/iris-train:julia-tree - Julia-based decision tree implemented in julia/iris-train-julia-tree/train.jl

		pachyderm/iris-train:julia-forest - Julia-based random forest implemented in julia/iris-train-julia-forest/train.jl

You can utilize any one of these images in your model training by using specification corresponding to the language of interest, <julia, python, rstats>_train.json, and making sure that the particular image is specified in the image field. For example, if we wanted to train a random forest model with Julia, we would use julia_train.json and make sure that the image field read as follows:

 "transform": {
 "image": "pachyderm/iris-train:julia-forest",
 ...

Once you have specified your choice of modeling in the pipeline spec (the below output was generated with the Julia images, but you would see similar output with the Python/R equivalents), create the training pipeline:

$ cd ..
$ pachctl create-pipeline -f <julia, python, rstats>_train.json

Immediately you will notice that Pachyderm has kicked off a job to perform the model training:

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
1a8225537992422f87c8468a16d0718b model/6e7cf823910b4ae68c8d337614654564 41 seconds ago - 0 0 + 0 / 1 0B 0B running

This job should run for about a minute (it will actually run much faster after this, but we have to pull the Docker image on the first run). After your model has successfully been trained, you should see:

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
1a8225537992422f87c8468a16d0718b model/6e7cf823910b4ae68c8d337614654564 2 minutes ago About a minute 0 1 + 0 / 1 4.444KiB 49.86KiB success
$ pachctl list-repo
NAME CREATED SIZE
model 2 minutes ago 43.67 KiB
training 8 minutes ago 4.444 KiB
attributes 7 minutes ago 0 B
$ pachctl list-file model master
NAME TYPE SIZE
model.jld file 43.67 KiB

(This is the output for the Julia code. Python and R will have similar output, but the file types will be different.)

5. Commit input attributes

Great! We now have a trained model that will infer the species of iris flowers. Let’s commit some iris attributes into Pachyderm that we would like to run through the inference. We have a couple examples under test. Feel free to use these, find your own, or even create your own. To commit our samples (assuming you have cloned this repo on the remote machine), you can run:

$ cd data/test/
$ pachctl put-file attributes master -r -f .

You should then see:

$ pachctl list-file attributes master
NAME TYPE SIZE
1.csv file 16 B
2.csv file 96 B

6. Create the inference pipeline

We have another JSON blob, <julia, python, rstats>_infer.json, that will tell Pachyderm how to perform the processing for the inference stage. This is similar to our last JSON specification except, in this case, we have two input repositories (the attributes and the model) and we are using a different Docker image. Similar to the training pipeline stage, this can be created in R, Python, or Julia. However, you should create it in the language that was used for training (because the model output formats aren’t standardized across the languages). The available docker images are as follows:

		pachyderm/iris-infer:python - Python-based inference implemented in python/iris-infer-python/infer.py

		pachyderm/iris-infer:rstats - R-based inferenced implemented in rstats/iris-infer-rstats/infer.R

		pachyderm/iris-infer:julia - Julia-based inference implemented in julia/iris-infer-julia/infer.jl

Then, to create the inference stage, we simply run:

$ cd ../../
$ pachctl create-pipeline -f <julia, python, rstats>_infer.json

where <julia, python, rstats> is replaced by the language you are using. This will immediately kick off an inference job, because we have committed unprocessed reviews into the reviews repo. The results will then be versioned in a corresponding inference data repository:

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
a139434b1b554443aceaf1424f119242 inference/15ef7bfe8e7d4df18a77f35b0019e119 8 seconds ago - 0 0 + 0 / 2 0B 0B running
1a8225537992422f87c8468a16d0718b model/6e7cf823910b4ae68c8d337614654564 6 minutes ago About a minute 0 1 + 0 / 1 4.444KiB 49.86KiB success
$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
a139434b1b554443aceaf1424f119242 inference/15ef7bfe8e7d4df18a77f35b0019e119 2 minutes ago 2 minutes 0 2 + 0 / 2 99.83KiB 100B success
1a8225537992422f87c8468a16d0718b model/6e7cf823910b4ae68c8d337614654564 9 minutes ago About a minute 0 1 + 0 / 1 4.444KiB 49.86KiB success
$ pachctl list-repo
NAME CREATED SIZE
inference About a minute ago 100 B
attributes 13 minutes ago 112 B
model 8 minutes ago 43.67 KiB
training 13 minutes ago 4.444 KiB

7. Examine the results

We have created results from the inference, but how do we examine those results? There are multiple ways, but an easy way is to just “get” the specific files out of Pachyderm’s data versioning:

$ pachctl list-file inference master
NAME TYPE SIZE
1 file 15 B
2 file 85 B
$ pachctl get-file inference master 1
Iris-virginica
$ pachctl get-file inference master 2
Iris-versicolor
Iris-virginica
Iris-virginica
Iris-virginica
Iris-setosa
Iris-setosa

Here we can see that each result file contains a predicted iris flower species corresponding to each set of input attributes.

Bonus exercises

8. Parallelize the inference

You may have noticed that our pipeline specs included a parallelism_spec field. This tells Pachyderm how to parallelize a particular pipeline stage. Let’s say that in production we start receiving a huge number of attribute files, and we need to keep up with our inference. In particular, let’s say we want to spin up 10 inference workers to perform inference in parallel.

This actually doesn’t require any change to our code. We can simply change our parallelism_spec in <julia, python, rstats>_infer.json to:

 "parallelism_spec": {
 "constant": "5"
 },

Pachyderm will then spin up 5 inference workers, each running our same script, to perform inference in parallel. This can be confirmed by updating our pipeline and then examining the cluster:

$ vim infer.json
$ pachctl update-pipeline -f <python, julia, rstats>_infer.json
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
etcd-7dbb489f44-pcdww 1/1 Running 0 3h
pachd-6c878bbc4c-ggxs7 1/1 Running 0 3h
pipeline-inference-v3-2qxgf 0/2 PodInitializing 0 6s
pipeline-inference-v3-7pc9n 0/2 Init:0/1 0 6s
pipeline-inference-v3-dhzjg 0/2 PodInitializing 0 6s
pipeline-inference-v3-gvb7z 0/2 Init:0/1 0 6s
pipeline-inference-v3-k5xbj 0/2 Init:0/1 0 6s
pipeline-model-v1-bck99 2/2 Running 0 12m
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
etcd-7dbb489f44-pcdww 1/1 Running 0 3h
pachd-6c878bbc4c-ggxs7 1/1 Running 0 3h
pipeline-inference-v3-2qxgf 2/2 Running 0 1m
pipeline-inference-v3-7pc9n 2/2 Running 0 1m
pipeline-inference-v3-dhzjg 2/2 Running 0 1m
pipeline-inference-v3-gvb7z 2/2 Running 0 1m
pipeline-inference-v3-k5xbj 2/2 Running 0 1m
pipeline-model-v1-bck99 2/2 Running 0 13m

9. Update the model training

Let’s now imagine that we want to update our model from random forest to decision tree, SVM to LDA, etc. To do this, modify the image tag in train.json. For example, to run a Julia-based decision tree instead of a random forest:

"image": "pachyderm/iris-train:julia-tree",

Once you modify the spec, you can update the pipeline by running pachctl update-pipeline By default, Pachyderm will then utilize this updated model on any new versions of our training data. However, let’s say that we want to update the model and reprocess the training data that is already in the training repo. To do this we will run the update with the --reprocess flag:

$ pachctl update-pipeline -f <julia, python, rstats>_train.json --reprocess

Pachyderm will then automatically kick off new jobs to retrain our model with the new model code and update our inferences:

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
95ffe60f94914522bccfff52e9f8d064 inference/be361c6b2c294aaea72ed18cbcfda644 6 seconds ago - 0 0 + 0 / 0 0B 0B starting
81cd82538e584c3d9edb901ab62e8f60 model/adb293f8a4604ed7b081c1ff030c0480 6 seconds ago - 0 0 + 0 / 1 0B 0B running
aee1e950a22547d8bfaea397fc6bd60a inference/2e9d4707aadc4a9f82ef688ec11505c4 6 seconds ago Less than a second 0 0 + 2 / 2 0B 0B success
cffd4d2cbd494662814edf4c80eb1524 inference/ef0904d302ae4116aa8e44e73fa2b541 4 minutes ago 17 seconds 0 0 + 2 / 2 0B 0B success
5f672837be1844f58900b9cb5b984af8 inference/5bbf6da576694d2480add9bede69a0af 4 minutes ago 17 seconds 0 0 + 2 / 2 0B 0B success
a139434b1b554443aceaf1424f119242 inference/15ef7bfe8e7d4df18a77f35b0019e119 9 minutes ago 2 minutes 0 2 + 0 / 2 99.83KiB 100B success
1a8225537992422f87c8468a16d0718b model/6e7cf823910b4ae68c8d337614654564 16 minutes ago About a minute 0 1 + 0 / 1 4.444KiB 49.86KiB success

10. Update the training data set

Let’s say that one or more observations in our training data set were corrupt or unwanted. Thus, we want to update our training data set. To simulate this, go ahead and open up iris.csv (e.g., with vim) and remove a couple of the rows (non-header rows). Then, let’s replace our training set (-o tells Pachyderm to overwrite the file):

$ pachctl put-file training master -o -f ./data/iris.csv

Immediately, Pachyderm “knows” that the data has been updated, and it starts new jobs to update the model and inferences.

11. Examine pipeline provenance

Let’s say that we have updated our model or training set in one of the above scenarios (step 11 or 12). Now we have multiple inferences that were made with different models and/or training data sets. How can we know which results came from which specific models and/or training data sets? This is called “provenance,” and Pachyderm gives it to you out of the box.

Suppose we have run the following jobs:

$ pachctl list-job
95ffe60f94914522bccfff52e9f8d064 inference/be361c6b2c294aaea72ed18cbcfda644 3 minutes ago 3 minutes 0 2 + 0 / 2 72.61KiB 100B success
81cd82538e584c3d9edb901ab62e8f60 model/adb293f8a4604ed7b081c1ff030c0480 3 minutes ago About a minute 0 1 + 0 / 1 4.444KiB 36.25KiB success
aee1e950a22547d8bfaea397fc6bd60a inference/2e9d4707aadc4a9f82ef688ec11505c4 3 minutes ago Less than a second 0 0 + 2 / 2 0B 0B success
cffd4d2cbd494662814edf4c80eb1524 inference/ef0904d302ae4116aa8e44e73fa2b541 7 minutes ago 17 seconds 0 0 + 2 / 2 0B 0B success
5f672837be1844f58900b9cb5b984af8 inference/5bbf6da576694d2480add9bede69a0af 7 minutes ago 17 seconds 0 0 + 2 / 2 0B 0B success
a139434b1b554443aceaf1424f119242 inference/15ef7bfe8e7d4df18a77f35b0019e119 12 minutes ago 2 minutes 0 2 + 0 / 2 99.83KiB 100B success
1a8225537992422f87c8468a16d0718b model/6e7cf823910b4ae68c8d337614654564 19 minutes ago About a minute 0 1 + 0 / 1 4.444KiB 49.86KiB success

If we want to know which model and training data set was used for the latest inference, commit id be361c6b2c294aaea72ed18cbcfda644, we just need to inspect the particular commit:

$ pachctl inspect-commit inference be361c6b2c294aaea72ed18cbcfda644
Commit: inference/be361c6b2c294aaea72ed18cbcfda644
Parent: 2e9d4707aadc4a9f82ef688ec11505c4
Started: 3 minutes ago
Finished: 39 seconds ago
Size: 100B
Provenance: attributes/2757a902762e456a89852821069a33aa model/adb293f8a4604ed7b081c1ff030c0480 spec/d64feabfc97d41db849a50e8613816b5 spec/91e0832aec7141a4b20e832553afdffb training/76e4250d5e584f1f9c2505ffd763e64a

The Provenance tells us exactly which model and training set was used (along with which commit to attributes triggered the inference). For example, if we wanted to see the exact model used, we would just need to reference commit adb293f8a4604ed7b081c1ff030c0480 to the model repo:

$ pachctl list-file model adb293f8a4604ed7b081c1ff030c0480
NAME TYPE SIZE
model.pkl file 3.448KiB
model.txt file 226B

We could get this model to examine it, rerun it, revert to a different model, etc.

Resources

		Join the Pachyderm Slack team [http://slack.pachyderm.io/] to ask questions, get help, and talk about production deploys.

		Follow Pachyderm on Twitter [https://twitter.com/pachydermIO],

		Find Pachyderm on GitHub [https://github.com/pachyderm/pachyderm], and

		Spin up Pachyderm [http://docs.pachyderm.io/en/latest/getting_started/getting_started.html] in just a few commands to try this and other examples [http://docs.pachyderm.io/en/latest/examples/readme.html] locally.

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/ml/hyperparameter/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Distributed hyperparameter tuning

This example demonstrates how you can evaluate a model or function in a distributed manner on multiple sets of parameters. In this particular case, we will evaluate many machine learning models, each configured uses different sets of parameters (aka hyperparameters), and we will output only the best performing model or models.

The models trained and evaluated in the example will attempt to predict the species of iris flowers using the iris data set, which is often used to demonstrate ML methods. The different sets of parameters used in the example are the C and Gamma parameters of an SVM machine learning model. If you aren’t familiar with that model or those parameters, don’t worry about them too much. The point here is that C and Gamma are parameters of this model, and we want to search over many combinations of C and Gamma to determine which combination best predicts iris flower species.

The example assumes that you have:

		A Pachyderm cluster running - see this guide [http://pachyderm.readthedocs.io/en/latest/getting_started/local_installation.html] to get up and running with a local Pachyderm cluster in just a few minutes.

		The pachctl CLI tool installed and connected to your Pachyderm cluster - see any of our deploy docs [http://pachyderm.readthedocs.io/en/latest/deployment/deploy_intro.html] for instructions.

The pipelines

The example uses 4 pipeline stages to accomplish this distributed hyperparameter tuning/search. First we will split our iris data set into a training and test data set. The training set will be used to train or fit our model with the various sets of parameters and the test set will be used later to evaluate each trained model.

[image: alt text]

Next, we will train a model for each combination of C and Gamma parameters in a parameters repo. The trained models will be serialized and output to the model repo.

[image: alt text]

In a test stage we will pair each trained/fit model in model with our test data set. Using the test data set we will generate an evaluation metric, or score, for each of the train models.

[image: alt text]

Finally, in a select stage we will determine which of the evaluate metrics in test is the best, select out the models corresponding to those metrics, and output them to the select repo.

[image: alt text]

Preparing the input data

The two input data repositories for this example are raw-data containing the raw iris data set and parameters containing all of our C and Gamma parameters. First let’s create these repositories:

$ pachctl create-repo raw_data
$ pachctl create-repo parameters
$ pachctl list-repo
NAME CREATED SIZE
parameters 47 seconds ago 0B
raw-data 52 seconds ago 0B

Then, we can put our iris data set into raw-data. We are going to use a version of the iris data set that includes a little bit of noise to make the classification problem more difficult. This data set is included under data/noisy_iris.csv. To commit this data set into Pachyderm:

$ cd data
$ pachctl put-file raw_data master iris.csv -f noisy_iris.csv
$ pachctl list-file raw_data master
NAME TYPE SIZE
iris.csv file 10.29KiB

The C and Gamma parameters that we will be searching over are included in data/parameters under two respective files. In order to process each combination of these parameters in parallel, we are going to use Pachyderm’s built in splitting capability to split each parameter value into a separate file:

$ cd parameters
$ pachctl put-file parameters master -f c_parameters.txt --split line --target-file-datums 1
$ pachctl put-file parameters master -f gamma_parameters.txt --split line --target-file-datums 1
$ pachctl list-file parameters master
NAME TYPE SIZE
c_parameters.txt dir 81B
gamma_parameters.txt dir 42B
$ pachctl list-file parameters master c_parameters.txt
NAME TYPE SIZE
c_parameters.txt/0000000000000000 file 6B
c_parameters.txt/0000000000000001 file 6B
c_parameters.txt/0000000000000002 file 6B
c_parameters.txt/0000000000000003 file 6B
c_parameters.txt/0000000000000004 file 6B
c_parameters.txt/0000000000000005 file 7B
c_parameters.txt/0000000000000006 file 8B
c_parameters.txt/0000000000000007 file 8B
c_parameters.txt/0000000000000008 file 9B
c_parameters.txt/0000000000000009 file 9B
c_parameters.txt/000000000000000a file 10B
$ pachctl list-file parameters master gamma_parameters.txt
NAME TYPE SIZE
gamma_parameters.txt/0000000000000000 file 6B
gamma_parameters.txt/0000000000000001 file 6B
gamma_parameters.txt/0000000000000002 file 6B
gamma_parameters.txt/0000000000000003 file 6B
gamma_parameters.txt/0000000000000004 file 6B
gamma_parameters.txt/0000000000000005 file 6B
gamma_parameters.txt/0000000000000006 file 6B

As you can see, each of the parameter files has been split into a file per line, and thus a file per parameter. This can be seen by looking at the file contents:

$ pachctl get-file parameters master c_parameters.txt/0000000000000000
0.031
$ pachctl get-file parameters master c_parameters.txt/0000000000000001
0.125
$ pachctl get-file parameters master c_parameters.txt/0000000000000002
0.500

For more information on splitting data files, see our splitting data for distributed processing [http://pachyderm.readthedocs.io/en/latest/cookbook/splitting.html] cookbook recipe.

Creating the pipelines

To create the four pipelines mentioned and illustrated above:

$ cd ../../
$ pachctl create-pipeline -f split.json
$ pachctl create-pipeline -f model.json
$ pachctl create-pipeline -f test.json
$ pachctl create-pipeline -f select.json

Once the pipelines are up an running you should be able to see their corresponding workers in kubernetes:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
etcd-2142892294-nzb39 1/1 Running 0 1h
pachd-776177201-ww198 1/1 Running 0 1h
pipeline-model-v1-htphr 2/2 Running 0 7m
pipeline-select-v1-240bt 2/2 Running 0 7m
pipeline-split-v1-9lwkn 2/2 Running 0 7m
pipeline-test-v1-h47lw 2/2 Running 0 7m

And, after waiting a few minutes, you should see the successful jobs that did our distributed hyperparameter tuning:

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
e2b75a61-13e2-4067-88b7-adec4d32f830 select/f38eae7cea574fc6a90adda706d4714e 18 seconds ago Less than a second 0 1 + 0 / 1 243.2KiB 82.3KiB success
4116af2b-efa5-405e-ba04-f850a656e25d test/1e379911118c4492932a2dd9eb198e9a About a minute ago About a minute 0 77 + 0 / 77 400.3KiB 924B success
f628028e-2c88-439e-8738-823fe0441e1b model/6a877b93e3e2445e92a11af8bde6dddf 3 minutes ago About a minute 0 77 + 0 / 77 635.1KiB 242.3KiB success
a2ba2024-db12-4a78-9383-82adba5a4c3d split/04955ad7fda64a66820db5578478c1d6 5 minutes ago Less than a second 0 1 + 0 / 1 10.29KiB 10.29KiB success

Looking at the results

If we look at the models that were trained based on our training data, we will see one model for each of the combinations of C and Gamma parameters:

$ pachctl list-file model master
NAME TYPE SIZE
model_C0.031_G0.001.pkl file 6.908KiB
model_C0.031_G0.004.pkl file 6.908KiB
model_C0.031_G0.016.pkl file 6.908KiB
model_C0.031_G0.063.pkl file 6.908KiB
model_C0.031_G0.25.pkl file 6.908KiB
model_C0.031_G1.0.pkl file 6.908KiB
model_C0.031_G4.0.pkl file 6.908KiB
model_C0.125_G0.001.pkl file 4.85KiB
model_C0.125_G0.004.pkl file 4.85KiB
model_C0.125_G0.016.pkl file 4.85KiB
model_C0.125_G0.063.pkl file 4.85KiB
model_C0.125_G0.25.pkl file 4.85KiB
model_C0.125_G1.0.pkl file 4.85KiB
etc...

There should be 77 of these models:

$ pachctl list-file model master | wc -l
78

But not all of these models are ideal for making our predictions. Our select pipeline stage automatically selected out the best of these models (based on the evaluation metrics generated by the test stage). We can see which of the models are ideal for our predictions as follows:

$ pachctl list-file select master | wc -l
36
$ pachctl list-file select master
NAME TYPE SIZE
model_C0.031_G0.001.pkl file 5.713KiB
model_C0.031_G0.004.pkl file 5.713KiB
model_C0.031_G0.016.pkl file 5.713KiB
model_C0.031_G0.063.pkl file 5.713KiB
model_C0.031_G0.25.pkl file 5.713KiB
model_C0.031_G1.0.pkl file 5.713KiB
model_C0.031_G4.0.pkl file 5.713KiB
etc...

Note - Here, 36 of the 77 models were selected as ideal. Due to the fact that we are randomly shuffling our training/test data, your results may vary slightly.

Note - The pipeline we’ve built here is very easy to generalize for any sort of parameter space exploration. As long as you break up your parameters into individual files (as shown above), you can test the whole parameter space in a massively distributed way and simply pick out the best results.

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_auth_get.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth get

Get the ACL for ‘repo’ or the access that ‘username’ has to ‘repo’

Synopsis

Get the ACL for ‘repo’ or the access that ‘username’ has to ‘repo’. For example, ‘pachctl auth get github-alice private-data’ prints “reader”, “writer”, “owner”, or “none”, depending on the privileges that “github-alice” has in “repo”. Currently all Pachyderm authentication uses GitHub OAuth, so ‘username’ must be a GitHub username

./pachctl auth get [username] repo

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl auth - Auth commands manage access to data in a Pachyderm cluster

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_inspect-cluster.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl inspect-cluster

Returns info about the pachyderm cluster

Synopsis

Returns info about the pachyderm cluster

./pachctl inspect-cluster

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_enterprise.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl enterprise

Enterprise commands enable Pachyderm Enterprise features

Synopsis

Enterprise commands enable Pachyderm Enterprise features

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

		./pachctl enterprise activate - Activate the enterprise features of Pachyderm with an activation code

		./pachctl enterprise get-state - Check whether the Pachyderm cluster has enterprise features activated

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_inspect-pipeline.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl inspect-pipeline

Return info about a pipeline.

Synopsis

Return info about a pipeline.

./pachctl inspect-pipeline pipeline-name

Options

 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/scraper/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

 Note: This is a Pachyderm pre version 1.4 tutorial. It needs to be updated for the latest versions of Pachyderm.

Quick Start Guide: Web Scraper

In this guide you’re going to create a Pachyderm pipeline to scrape web pages.
We’ll use a standard unix tool, wget, to do our scraping.

Setup

This guide assumes that you already have a Pachyderm cluster running and have configured pachctl to talk to the cluster. Installation instructions can be found here [http://pachyderm.readthedocs.io/en/stable/getting_started/local_installation.html].

Create a Repo

A Repo is the highest level primitive in pfs. Like all primitives in pfs, they share
their name with a primitive in Git and are designed to behave analogously.
Generally, a repo should be dedicated to a single source of data such as log
messages from a particular service. Repos are dirt cheap so don’t be shy about
making them very specific.

For this demo we’ll simply create a repo called
“urls” to hold a list of urls that we want to scrape.

$ pachctl create-repo urls
$ pachctl list-repo
urls

Start a Commit

Now that we’ve created a repo we’ve got a place to add data.
If you try writing to the repo right away though, it will fail because you can’t write directly to a
Repo. In Pachyderm, you write data to an explicit commit. Commits are
immutable snapshots of your data which give Pachyderm its version control for
data properties. Unlike Git though, commits in Pachyderm must be explicitly
started and finished.

Let’s start a new commit in the “urls” repo:

$ pachctl start-commit urls master
master/0

This returns a brand new commit id. Yours should be different from mine.
Now if we take a look inside our repo, we’ve created a directory for the new commit:

$ pachctl list-commit urls
master/0

A new directory has been created for our commit and now we can start adding
data. Data for this example is just a single file with a list of urls. We’ve provided a sample file for you with just 3 urls, Google, Reddit, and Imgur.
We’re going to write that data as a file called “urls” in pfs.

Write sample data into pfs
$ cat examples/scraper/urls | pachctl put-file urls master/0 urls

Finish a Commit

Pachyderm won’t let you read data from a commit until the commit is finished.
This prevents reads from racing with writes. Furthermore, every write
to pfs is atomic. Now let’s finish the commit:

$ pachctl finish-commit urls master/0

Now we can view the file:

$ pachctl get-file urls master/0 urls
www.google.com
www.reddit.com
www.imgur.com

However, we’ve lost the ability to write to this commit since finished
commits are immutable. In Pachyderm, a commit is always either write-only
when it’s been started and files are being added, or read-only after it’s
finished.

Create a Pipeline

Now that we’ve got some data in our repo it’s time to do something with it.
Pipelines are the core primitive for Pachyderm’s processing system (pps) and
they’re specified with a JSON encoding. We’re going to create a pipeline that simply scrapes each of the web pages in “urls.”

+----------+ +---------------+
|input data| --> |scrape pipeline|
+----------+ +---------------+

The pipeline we’re creating can be found at scraper.json. The full content is also below.

{
 "pipeline": {
 "name": "scraper”
 },
 "transform": {
 "cmd": ["wget",
 "--recursive",
 "--level", "1",
 "--accept", "jpg,jpeg,png,gif,bmp",
 "--page-requisites",
 "--adjust-extension",
 "--span-hosts",
 "--no-check-certificate",
 "--timestamping",
 "--directory-prefix",
 "/pfs/out",
 "--input-file", "/pfs/urls/urls"
],
 "acceptReturnCode": [4,5,6,7,8]
 },
 "parallelism": "1",
 "input": {
 "atom": {
 "repo": "urls"
 }
 }
}

In this pipeline, we’re just using wget to scrape the content of our input web pages. “level” indicates how many recursive links wget will retrieve. We currently have it set to 1, which will only scrape the home page, but you can crank it up later if you want.

Another important section to notice is that we read data
from /pfs/urls/urls (/pfs/[input_repo_name]) and write data to /pfs/out/. We create a directory for each url in “urls” with all of the relevant scrapes as files.

Now let’s create the pipeline in Pachyderm:

$ pachctl create-pipeline -f doc/examples/scraper/scraper.json

What Happens When You Create a Pipeline

Creating a pipeline tells Pachyderm to run your code on every finished
commit in a repo as well as all future commits that happen after the pipeline is
created. Our repo already had a commit with the file “urls” in it so Pachyderm will automatically
launch a job to scrape those webpages.

You can view the job with:

$ pachctl list-job
ID OUTPUT STATE
09a7eb68995c43979cba2b0d29432073 scraper/2b43def9b52b4fdfadd95a70215e90c9 JOB_STATE_RUNNING

Depending on how quickly you do the above, you may see running or
success.

Pachyderm jobs are implemented as Kubernetes jobs, so you can also see your job with:

$ kubectl get job
JOB CONTAINER(S) IMAGE(S) SELECTOR SUCCESSFUL
09a7eb68995c43979cba2b0d29432073 user ubuntu:14.04 app in (09a7eb68995c43979cba2b0d29432073),suite in (pachyderm) 1

Every pipeline creates a corresponding repo with the same
name where it stores its output results. In our example, the pipeline was named “scraper” so it created a repo called “scraper” which contains the final output.

Reading the Output

There are a couple of different ways to retrieve the output. We can read a single output file from the “scraper” repo in the same fashion that we read the input data:

$ pachctl list-file scraper 2b43def9b52b4fdfadd95a70215e90c9 urls
$ pachctl get-file scraper 2b43def9b52b4fdfadd95a70215e90c9 urls/www.imgur.com/index.html

Using get-file is good if you know exactly what file you’re looking for, but for this example we want to just see all the scraped pages. One great way to do this is to mount the distributed file system locally and then just poke around.

Mount the Filesystem

First create the mount point:

$ mkdir ~/pfs

And then mount it:

We background this process because it blocks.
$ pachctl mount ~/pfs &

This will mount pfs on ~/pfs you can inspect the filesystem like you would any
other local filesystem. Try:

$ ls ~/pfs
urls
scraper

You should see the urls repo that we created.

Now you can simply ls and cd around the file system. Try pointing your browser at the scraped output files!

Processing More Data

Pipelines can be triggered manually, but also will automatically process the data from new commits as they are
created. Think of pipelines as being subscribed to any new commits that are
finished on their input repo(s).

If we want to re-scrape some of our urls to see if the sites of have changed, we can use the run-pipeline command:

$ pachctl run-pipeline scraper
fab8c59c786842ccaf20589e15606604

Next, let’s add additional urls to our input data . We’re going to append more urls from “urls2” to the file “urls.”

We first need to start a new commit to add more data. Similar to Git, commits have a parental
structure that track how files change over time. Specifying a parent is
optional when creating a commit (notice we didn’t specify a parent when we
created the first commit), but in this case we’re going to be adding
more data to the same file “urls.”

Let’s create a new commit with our previous commit as the parent:

$ pachctl start-commit urls master
master/1

Append more data to our urls file in the new commit:

$ cat examples/scraper/urls2 | pachctl put-file urls master/1 urls

Finally, we’ll want to finish our second commit. After it’s finished, we can
read “scraper” from the latest commit to see all the scrapes.

$ pachctl finish-commit urls master1

Finishing this commit will also automatically trigger the pipeline to run on
the new data we’ve added. We’ll see a corresponding commit to the output
“scraper” repo with data from our newly added sites.

$ pachctl list-commit scraper

Next Steps

You’ve now got a working Pachyderm cluster with data and a pipelines! Here are a few ideas for next steps that you can expand on your working setup.

		Add a bunch more urls and crank up the “level” in the pipeline. You’ll have to delete the old pipeline and re-create or give your pipeline and new name.

		Add a new pipeline than does something interesting with the scraper output. Image or text processing could be fun. Just create a pipeline with the scraper repo as an input.

We’d love to help and see what you come up with so submit any issues/questions you come across or email at info@pachyderm.io if you want to show off anything nifty you’ve created!

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/word_count/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Pachyderm Word Count

In this guide, we will write a classic word count [https://portal.futuresystems.org/manual/hadoop-wordcount] application on Pachyderm. This is a somewhat advanced guide; to learn the basic usage of Pachyderm, start with the beginner tutorial [http://pachyderm.readthedocs.io/en/stable/getting_started/beginner_tutorial.html].

Setup

This guide assumes that you already have a Pachyderm cluster running and have configured pachctl to talk to the cluster. Installation instructions can be found here [http://pachyderm.readthedocs.io/en/stable/getting_started/local_installation.html].

Pipelines

In this example, we will have three processing stages defined by three pipeline stages:

[image: alt text]

Our first pipeline, scraper, is a web scraper that just pulls content from the internet. Our second pipeline, map, tokenizes the words from the scraped pages in parallel over all pages and appends counts of words to files corresponding to those words. Our final pipeline, reduce, aggregates the total counts for each word.

All three pipelines, including reduce, can be run in a distributed fashion to maximize performance.

Input

Our input data is a set of files. Each file is named for the site we want to scrape with the content being the URL or URLs for that site.

Let’s create the input repo and add one URL, Wikipedia:

$ pachctl create-repo urls

We assume you're running this from the root of this example (pachyderm/doc/examples/word_count/):
$ pachctl put-file urls master -f Wikipedia

Then to actually scrape this site and save the data, we create the first pipeline based on the scraper.json pipeline specification:

$ pachctl create-pipeline -f scraper.json

This first pipeline, scraper, uses wget to download web pages from Wikipedia which will be used as the input for the next pipeline. It’ll take a minute or two because it needs to apt-get a few dependencies (this can be avoided by creating a custom Docker container with the dependencies already downloaded).

When you create the scraper pipeline, you should be able to see a job running and a new repo called scraper that contains the output of our scrape:

$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS STATE
44190a81-a87b-4a6b-8f25-8e5d3504566a scraper/- 3 seconds ago - 0 0 / 1 running
$ pachctl list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS STATE
44190a81-a87b-4a6b-8f25-8e5d3504566a scraper/da0786abd4254ff6b2297aeaf10204e4 About a minute ago 42 seconds 0 1 / 1 success
$ pachctl list-repo
NAME CREATED SIZE
scraper About a minute ago 71.34 KiB
urls 3 minutes ago 39 B
$ pachctl list-file scraper master
NAME TYPE SIZE
Wikipedia dir 71.34 KiB
$ pachctl list-file scraper master Wikipedia
NAME TYPE SIZE
Wikipedia/Main_Page.html file 71.34 KiB

Map

The map pipeline counts the number of occurrences of each word it encounters for each of the scraped webpages. While this task can very well be accomplished in bash, we will demonstrate how to use custom code in Pachyderm by using a Go program.

In this case, you don’t have to build a custom Docker image yourself with this compiled program. We have pushed a public image to Docker Hub, pachyderm/wordcount-map, which is referenced in the map.json pipeline specification.

Let’s create the map pipeline:

$ pachctl create-pipeline -f map.json

As soon as you create this pipeline, it will start processing data from the scraper data repository. For each web page the map.go code processes, it writes a file for each encountered word. In our case, the filename for each word is the name of the word itself. To see what I mean, lets run a pachctl list-file on the map repo:

$ pachctl list-file map master
NAME TYPE SIZE
a file 4B
ability file 2B
about file 3B
aboutsite file 2B
absolute file 3B
accesskey file 3B
account file 2B
acnh file 2B
action file 3B
actions file 2B
activities file 2B
actor file 2B
...

As you can see, for every word on that page there is a seperate file. Inside that file is the numeric value for how many times that word appeared. You can do a get-file on say the “about” file to see how many times that word shows up in our scrape:

$ pachctl get-file map master about
13

By default, Pachyderm will spin up the same number of workers as the number of nodes in your cluster. This can of course be customized or changed (see here [http://docs.pachyderm.io/en/latest/fundamentals/distributed_computing.html#controlling-the-number-of-workers-parallelism] for more info on controlling the number of workers).

Reduce

The final pipeline, reduce goes through every file and adds up the numbers in each file, thus obtaining a total count per word. For this pipeline we can use a simple bash script:

find /pfs/map -name '*' | while read count; do cat $count | awk '{ sum+=$1} END {print sum}' >/tmp/count; mv /tmp/count /pfs/out/`basename $count`; done

We have baked this into reduce.json. Again, creating the pipeline is as simple as:

$ pachctl create-pipeline -f reduce.json

The output should look like:

$ pachctl list-repo
NAME CREATED SIZE
reduce 43 minutes ago 4.216 KiB
map 46 minutes ago 2.867 KiB
scraper 50 minutes ago 71.34 KiB
urls 53 minutes ago 39 B
$ pachctl get-file reduce master wikipedia
241

To get a complete list of the words counted:

$ pachctl list-file reduce master
NAME TYPE SIZE
a file 4 B
abdul file 2 B
about file 3 B
aboutsite file 2 B
absolute file 2 B
accesskey file 3 B
accidentally file 2 B
account file 2 B
across file 2 B
action file 2 B
activities file 2 B
additional file 2 B

etc...

Expand on the example

Now that we’ve got a full end-to-end scraper and wordcount use case set up, lets add more to it. First, let’s add more data. Go ahead and add a few more sites to scrape.

Instead of using the -c shorthand flag, let's do this the long way by starting a commit, adding files, and then finishing the commit.
$ pachctl start-commit urls master

Reminder: files added should be named for the website and have the URL as the content. You'll have to create these files.
$ pachctl put-file urls master -f HackerNews
$ pachctl put-file urls master -f Reddit
$ pachctl put-file urls master -f GitHub

$ pachctl finish-commit urls master

Your scraper should automatically get started pulling these new sites (it won’t rescrape Wikipedia). That will then automatically trigger the map and reduce pipelines to process the new data and update the word counts for all the sites combined.

If you add a bunch more data and your pipeline starts to run slowly, you can crank up the parallelism. By default, pipelines spin up one worker for each node in your cluster, but you can set that manually with the parallelism spec [http://docs.pachyderm.io/en/latest/fundamentals/distributed_computing.html#controlling-the-number-of-workers-parallelism] field in the pipeline specification. Further, the pipelines are already configured to spread computation across the various workers with "glob": "/*". Check out our spreading data across workers docs [http://docs.pachyderm.io/en/latest/fundamentals/distributed_computing.html#spreading-data-across-workers-glob-patterns] to learn more about that.

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/ml/rnn/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

 Note: This example has been tested on Pachyderm version 1.5.2. It needs to be updated for the latest versions of Pachyderm.

Game of Thrones / Tensor Flow Example

Adapted from the tensor flow LSTM example here [https://www.tensorflow.org/versions/r0.8/tutorials/recurrent/index.html#recurrent-neural-networks]

Overview

In this example, you’ll generate a new Game of Thrones script based on a bunch of previous GoT scripts.

To do so, we’ll be adapting this LSTM Neural Net example [https://www.tensorflow.org/versions/r0.8/tutorials/recurrent/index.html#recurrent-neural-networks] from Tensor Flow. We won’t cover any LSTM or Neural Net theory in this example. For background we recommend reading that example and the resources they link to.

This guide assumes you already have a working pachyderm setup [http://pachyderm.readthedocs.io/en/stable/getting_started/local_installation.html], and you have a basic grasp of Pachyderm repos and pipelines. If you don’t, you may want to start with the opencv [http://pachyderm.readthedocs.io/en/stable/getting_started/beginner_tutorial.html] example or our cloud deployment guide [http://pachyderm.readthedocs.io/en/stable/deployment/deploying_on_the_cloud.html].

How

Getting this neural net running on Pachyderm will require a few steps:

		Creating the data repo, and initializing it with some GoT scripts

		Creating the Docker image that includes the Tensor Flow library and our code

		Creating the Pachyderm Pipeline that trains the neural net, and generates the new script

Initializing the Data

Loading the data

Since this data set isn’t tiny, we’ve included some helpers to create the repos we need and input the data. To initialize the data set, just run:

make input-data

This task does 2 things:

		It grabs the data set in the form of a tarball from a URL, and extracts the data

		It inputs this data into Pachyderm by:
		creating a new repo GoT_scripts

		starting a commit

		mounting the Pachyderm File System (PFS) [http://pachyderm.io/pfs.html] at ./mnt

		copying the data over to the ./mnt/GoT_scripts/{commitID}/ path

		finishing the commit

The result is a new repo with all the data we need stored inside. To confirm the setup, you can do:

$ pachctl list-repo
NAME CREATED SIZE
GoT_scripts 15 seconds ago 2.625 MiB
4
$ pachctl list-commit GoT_scripts
BRANCH REPO/ID PARENT STARTED FINISHED SIZE
 master/0 <none> 24 seconds ago 24 seconds ago 2.625 MiB

Understanding the Data

For our neural net, we collected a bunch of Game of Thrones scripts and
pre-processed them to normalize them. If you take a look at one of the files:

$ cat data/all.txt | head -n 10
 <open-exp> First scene opens with three Rangers riding through a tunnel , leaving the Wall , and going into the woods <eos> (Eerie music in background) One Ranger splits off and finds a campsite full of mutilated bodies , including a child hanging from a tree branch <eos> A birds-eye view shows the bodies arranged in a shield-like pattern <eos> The Ranger rides back to the other two <eos> <close-exp>
 <boname> WAYMAR_ROYCE <eoname> What d 'you expect <question> They 're savages <eos> One lot steals a goat from another lot and before you know it , they 're ripping each other to pieces <eos>
 <boname> WILL <eoname> I 've never seen wildlings do a thing like this <eos> I 've never seen a thing like this , not ever in my life <eos>
 <boname> WAYMAR_ROYCE <eoname> How close did you get <question>
 <boname> WILL <eoname> Close as any man would <eos>
 <boname> GARED <eoname> We should head back to the wall <eos>
 <boname> ROYCE <eoname> Do the dead frighten you <question>
 <boname> GARED <eoname> Our orders were to track the wildlings <eos> We tracked them <eos> They won 't trouble us no more <eos>
 <boname> ROYCE <eoname> You don 't think he 'll ask us how they died <question> Get back on your horse <eos>
 <open-exp> GARED grumbles <eos> <close-exp>

You’ll notice a bunch of funny tokens. Since the raw scripts had different ways
of denoting structure (some used capitalization and colons to denote who was
speaking .. others didn’t), we normalized them so the the punctuation and
structure was consistently represented. You’ll also noticed open/closing tokens
for non speaking ‘exposition’ lines. Don’t worry too much about these tokens
right now. Once you see the output, you’ll appreciate how the neural net has learned some
of this structure.

Creating the Transformation Image

Using Tensor Flow with Pachyderm is easy! Since Pachyderm Pipeline System (PPS) [http://pachyderm.io/pps.html] allows you to use any Docker image, getting the code in place is straightforward. In fact, since Tensor Flow provides a docker image to work with, they’ve done most of the work for us!

To construct the image, we need to:

		Make sure we use an image with the Tensor Flow library installed

		Make sure the image includes our code

		Build the image

If you take a look at the Dockerfile in this directory, you’ll notice a couple things.

		The top line specifies that we’re basing our image off of Tensor Flow’s image:

FROM tensorflow/tensorflow

		On line 5 we’re including the code found locally in the Docker image:

ADD code /code

		Build the image

Again, we have a helper. If you run:

make docker-build

It will compile the Docker image above and name it tensor_flow_rnn_got

A few things to note:

This represents one of two ways to construct a custom image to run on Pachyderm Pipeline System (PPS) [http://pachyderm.io/pps.html]. In this example, we use the FROM directive to base our image off of a 3rd party image of our choosing. This works well - we just need to add the dependencies that Pachyderm Pipeline System (PPS) [http://pachyderm.io/pps.html] needs to run. This is the more common use case when constructing custom images with complicated dependencies – in this case you probably have an image in mind that has the dependencies you need. Here is the canonical Dockerfile that will always list the dependencies you need to add [https://github.com/pachyderm/pachyderm/blob/master/etc/user-job/Dockerfile])

The alternative is using the FROM directive to base the image off of Pachyderm’s standard image. You can see an example here. This usage pattern is more helpful for simple dependencies, or if you don’t already have a Docker image you need to use.

If you’re familiar with Dockerfiles, one thing that seems noticeably absent is an ENTRYPOINT command to tell the image what to run. In Pachyderm Pipeline System (PPS) [http://pachyderm.io/pps.html] you specify this when creating a pipeline, as we’ll see in a moment.

Creating the Pipeline

Now that we have the data and the image ready, we can specify how we want to process the data. To do that, we use a pipeline manifest. Take a look at pipeline.json in this directory.

Training:

We’ve specified two pipelines here. The first is GoT_train, which represents the processing needed to train the neural net on the input data. You can see that it takes GoT_scripts as its input.

Note that we’ve specified the tensor_flow_rnn_got image, and we specify an entry point by providing a command and its stdin:

cd /code && python ptb_word_lm.py --data_path=/data --model=small --model_path_prefix=/data

This line tells Pachyderm Pipeline System (PPS) [http://pachyderm.io/pps.html] how to run the job. Here you can see we specify how to run the code with the arguments we want.

The outputs are dictated by the script. In this case its really two types of files – the script outputs the training model weights into a Tensor Flow checkpoint file, and also outputs two .json files containing a map of ID -> word and vice versa. These files will be output to the repo matching the pipeline name: GoT_train. We’ll use these files in the next pipeline.

Generating:

This pipeline uses the model from the training stage to generate new text. It needs to consume the trained model as input, as well as the ID -> word and word -> ID json maps to output human readable text. To enable this, we specify the GoT_train repo as our input.

Notice that we specify the same image as above, just a different entrypoint via the transform property of the manifest. In this step, we’re outputting the results to a file called new_script.txt

Running:

Now that we have all of the pieces in place, we can run the pipeline. Do so by running:

make run

This creates a pipeline from pipeline.json, and since a commit exists on the very first input repo GoT_scripts, the pipeline runs automatically. To see what’s happening, you can run:

$ pachctl list-job
ID OUTPUT STARTED DURATION STATE
8225e745ef8e3d0c4dcf550c895634e3 GoT_train/dd2c024a5da041cb89e12e7984c81359 9 seconds ago - running

and once the jobs have completed you’ll see the output commit on the GoT_generate repo:

$ pachctl list-job
ID OUTPUT STARTED DURATION STATE
8f137e20299c85d1f0326be6e8c1bca6 GoT_generate/dcc8ba9984d442ababc75ddff42a055b 4 minutes ago 16 seconds success
8225e745ef8e3d0c4dcf550c895634e3 GoT_train/dd2c024a5da041cb89e12e7984c81359 6 minutes ago 2 minutes success

$ pachctl list-commit GoT_generate
BRANCH ID PARENT STARTED FINISHED SIZE
 dcc8ba9984d442ababc75ddff42a055b <none> 5 minutes ago 5 minutes ago 4.354 KiB

Results:

By default, we’ve set the size of the model to train to test. You can see this on each of the entrypoints specified in the pipeline.json file. For this size model, the training pipeline should run for a couple minutes, and the generate step much quicker than that. Let’s take a look at the output.

Once pachctl list-commit GoT_generate shows a single commit, we can take a look at the output. To do so, you can run:

pachctl get-file GoT_generate {the commit id from the above command} new_script.txt

And you should see some text!

Keep in mind, the model we just trained was very simplistic. Doing the ‘test’ model suffices as a proof of concept that we can train and use a neural net using Tensor Flow on Pachyderm. That said, the test model is dumb, and the output won’t be that readable.

Actually, you can see how ‘dumb’ the model is. If you read through the Tensor Flow example [https://www.tensorflow.org/versions/r0.8/tutorials/recurrent/index.html#run-the-code] they describe how ‘perplexity’ is used to measure how good this model will perform. Let’s look at the perplexity of your model.

$pachctl list-job
$pachctl get-logs {job ID from GoT_train job}
0 | Epoch: 1 Learning rate: 1.000
0 | 0.002 perplexity: 8526.820 speed: 1558 wps
0 | 0.102 perplexity: 880.494 speed: 1598 wps
0 | 0.202 perplexity: 674.214 speed: 1604 wps
0 | 0.302 perplexity: 597.037 speed: 1604 wps
0 | 0.402 perplexity: 561.110 speed: 1604 wps
0 | 0.501 perplexity: 535.682 speed: 1599 wps
0 | 0.601 perplexity: 518.105 speed: 1601 wps
0 | 0.701 perplexity: 504.523 speed: 1600 wps
0 | 0.801 perplexity: 498.718 speed: 1601 wps
0 | 0.901 perplexity: 491.138 speed: 1604 wps
0 | Epoch: 1 Train Perplexity: 486.294
0 | Epoch: 1 Valid Perplexity: 458.257
0 | Test Perplexity: 433.468
...

(You can ignore any FUSE errors in the logs. Most of these are innocuous)

Remember, this file is the stdout from the python script while its training the model. It outputs the ‘perplexity’ at standard intervals on the training set, as well as outputs the ‘perplexity’ for the validation and test sets. You should see a perplexity of about 600 or less.

That’s not great. As a next step, you can improve that measure, and the readability of the output script!

Next Iteration

As referenced in the Tensor Flow example [https://www.tensorflow.org/versions/r0.8/tutorials/recurrent/index.html#run-the-code], a ‘perplexity’ of less than 100 starts to get pretty good / readable. Running the ‘small’ model on the GoT data set should produce a perplexity lower than 100.

To do this, you’ll need to tear down this pipeline and re-create it. Specifically:

		Delete the existing data / pipeline by running:

pachctl delete-all

		Change the entrypoint commands in pipeline.json under the transformation property to use the small model not the test model. Save your changes.

		Re-initialize the data / compile the image / create the pipeline

Now you can do this in one step:

make all

The small model runs in about an hour. Once its complete, you can look at the output again. This time, the perplexity should be south of 100 and the output script should be semi-readable.

Example Output

Here’s an example script generated by the small model:

[OLENNA]: Then where would she serve that Grand Maester and nine are men ? And soon , we need to rule that to a man who wore on the walls . .
[CERSEI]: The world doesn 't make there . .
[CERSEI]: Home . Oh . .
{{ MAESTER UNELLA takes the leaves , merchants pushes againt }} .
[SAM]: Doesn 't make me wake 't asking a woman was better prison . .
{{ Something moving with Bronn and scans to another side , where Jon grabs his sword and is added on the actor 's main performance of life . Inside , as a number of moments cuts like that we 're thrown to Daenerys , who seems to stop . }} .
[LADY_CRANE]: impression Ser later . Let him teach him . All I always have to banners south of my life , Meryn . .
{{ Stannis runs away and Melisandre walks through the lift door , no smiles) . }} .
[TYRION]: I wanted him to be a spoiled Greyjoy again , that 's your niece . And you 're a terrible man . My little Give me A_VOICE . .
{{ The HIGH SPARROW sits down on the bucket , DORAN sentences to have waiting to the shoulder , wearing this building . She wargs off the woods and approaches The sound of the riders . BLACK WALDER reaches over his horse beside MARGAERY . }} .
[EDMURE]: We 're among The Khaleesi . .
[JORAH]: For far soon . .
{{ But let 's worry to my children ? }} .
[SANSA_STARK]: He 's travelling a true vow to command until his father 's death . .
{{ The man cheer . JAIME walks up the stairs and looks to JON SNOW . }} .
[JON]: People 're wrong enough of game for it . .
{{ Arya and Gilly reach YOUNG HODOR , then a bottle to meet the stones . punch out the basket of horse wrestles . After a moment , he walks away from it . Missandei looks up to see Ramsay turns his back to around Jon . }} .
{{ EXT . BRAAVOS - GATE }} .
{{ present by Maester Aemon , Myranda , , some having sex , and a few piece of commoners . A group of wights louder on the roof of the throne . Tyene is kneeling on a giant , and Tyrion . He catches her blade and looks at Ellaria shoots something else . DAVOS is seen walking aside . Viserys punches the out of a Harpy . The septa brings into their weapons , snapping to a man in the Yunkai and the Freys of Sand Motte . BRAN gasps on the marketplace and Bronn directly over a prop hill while parts of a carriage . BALON goes behind her }} .
[CATELYN]: Who good one behind mammoths on those words ? .
[TYRION]: I read you . .
[PYCELLE]: And what are you in ? .
[JORY_CASSEL]: Seven band . (Walking soup , Ser Hugh kneels . .
{{ Grey Worm still fired up . Animals goes off the hill . }} .
{{ INT . HOUSE OF BLACK AND WHITE }} .
{{ Sansa is a statue and Bronn examining a lady and tapping it . }} .
[JEOR_MORMONT]: united the pace , Janos . .
{{ ARYA retrieves a couple of water . }} .
[ARYA]: What you 're , I 've had a trap meeting , I lost . wolf puts you out . The greatest way work , for one of me , though . And if he never Speaking again . .
[ARYA]: We were so happy . .
[QYBURN]: I heard what he 'll turn . It was dark and "My 'ghar .
[ARYA]: They did nothing for the old time . .
{{ LOTHAR turns to BRIENNE . }} .
[LITTLEFINGER]: That your father is coming through Winterfell . For all of them were on the old city . He knows that 's someone what they came to us . .
[DAARIO]: If I have fight in the North , the Targaryens , and beg it for your cock , falsely men is small . Cersei will last coming . .
[BRIENNE]: Shouldn 't I be when she saw you ? .
[SANSA]: Go on , no unrepentant . .
{{ The white guard . jumps down the corner and looks at BERIC . OLENNA and BRYNDEN shakes the horses in the courtyard . MARGAERY 's eyes rolls under them . }} .
[DAVOS]: I don 't mind , Your Grace . I got to build your place and see rolled women in all of their fanatics And so I getting another conversation , watcher ships in the matters of the dead as gods of Westeros . I saw her serve once . I like easy , I can feel just if they 're out there . I 'd hurt a first hooded Dothraki chance , try to conquer . .
[DAENERYS]: run ! .
[TORMUND]: In the past what else was full of girls . .
[ROBERT_BARATHEON]: Oh , perhaps . Who are you asking me ? .
[JAIME]: I 'm not asking you to look to your father . .
{{ EXT . CASTLE BLACK }} .
{{ Jon walks through the Kingsroad , but BLACK LADY CRANE follows her on the table , while parts beside her . She finds another , WILDERNESS eye , and happens to him . He leaves . As Theon shoots out her grip , he turns to

Some interesting things to note

This neural net didn’t know english, much less grammar, but it did pick up on some pieces of structure:

		it learned that each line is either a spoken line, or an exposition line

		it learned that spoken lines begin with a name
		it learned which words were names

		it learned how to open/close the brackets around a name)

		it learned the types of words (present tense verbs, I/you nouns) are used in spoken lines

		it learned how to open / close the brackets for exposition lines
		it learned what type of words (3rd person) are used

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/jupyter_notebook/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

 Note: This is a Pachyderm pre version 1.4 tutorial. It needs to be updated for the latest versions of Pachyderm.

Jupyter Notebook using versioned Pachyderm Data

In the following example, we will attach a Jupyter server to Pachyderm such that we can manipulate versioned data sets interactively. Specifically, we will attach our Jupyter server to three different repositories used in an example Pachyderm pipeline:

		trips - This repo is populated with a daily file that records the number of bicycle trips recorded by NYC’s citibike bike sharing company on that particular day (data from here [https://www.citibikenyc.com/system-data]).

		sales - This repo includes a single CSV file called sales.csv. sales.csv is updated daily by a pipeline that processes each file in trips to calculate sales for the day. Note, here we are using a fictional multiplier, $5/trip, to calculate daily “sales” (i.e., these are not actually the sales figures for citibike).

		weather - This repo is populated daily with a JSON file representing the weather forecast for that day from forecast.io [https://darksky.net/forecast/40.7127,-74.0059/us12/en].

We attach to the trips and weather repos at commit number 30, which corresponds to the data versioned on 7/31/2016. We did this, because on 7/30/2016 and 7/31/2016 we saw a sharp drop in our sales, and we want to try and understand, interactively, why we might have seen this drop in sales.

[image: alt tag]

By attaching to these separate points in our DAG (trips, weather, and sales) we can bring our data together at a particular commit (i.e., a particular point in history), without explicitly planning a pipeline stage that takes these repos as input.

[image: alt tag]

Here is the process:

		Create the data we are going to access with Jupyter:

make prep

		Determine the output commit we are going to access with Jupyter:

pachctl flush-commit trips/master/30

and replace the <output-commitid> in jupyter.json with the sales repo commitid shown.

		Deploy a Jupyter Notebook using a Pachyderm “service”:

Note the jupyter.json file in this directory. We use a standard jupyter docker image (jupyter/scipy-notebook), and run the Jupyter notebook webserver as part of the Pachyderm transform. However, you could attach any libraries, application, etc. by specifying an image you are already using.

Just like a normal Pachyderm Job, a container is created with a specific version of any data sets loaded into the container’s filesystem. In this case we’ll see data under /pfs/trips, /pfs/weather, and /pfs/sales at the commits specified in the job specification.

To deploy the service:

pachctl create-job -f jupyter.json

		Access Jupyter at http://localhost:8888 in a browser. You will see that you have access to the three repos mentioned above plus /pfs/out:

[image: alt tag]

You can explore these in the Jupyter file browser and any notebooks created will have access to the data in these repos.

In some cases (e.g., when using minikube or when you want to connect directly to a node vis an IP address), you might need to perform addition port forwarding with, for example, kubectl port-forward.

		Open the /pfs/out location in the Jupyter file browser, then select Python 2 under New in the upper right hand corner of Jupyter to create a new Jupyter notebook. You can then explore, manipulate, and visualize PFS data to your heart’s content. See our example notebook for some inspiration.

[image: alt tag]

Specifically, to “debug” why we are seeing the poor sales on 7/30 and 7/31, you can do the following (the details of which can be found in our example notebook):

		Import the sales data from /pfs/sales/sales.csv into a pandas dataframe.

		Merge this sales data with the trips data in /pfs/trips/. From this merged dataframe we can see that both sales and the count of trips were low on 7/31 and 7/30.

		Import the weather data from /pfs/weather/. Try to match up the daily precipitation percentages in the weather data files with the daily sales numbers. You can create another dataframe that will hold the precipitation percentages, and this new dataframe can be merged with your previously created sales dataframe.

		Now that all the data is merged together, create a plot of daily sales and overlay the precipitation percentages. This will confirm that, on the days in questions, there was a 70%+ chance of rain, and this is likely the reason for poor bike sharing sales. Mystery solved! Here is the graph that we created:

[image: alt tag]

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

deployment/amazon_web_services/existing_vpc.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Deploy Into an Existing VPC

Prereqs

		Terraform

		An existing AWS VPC deployed

How to generate terraform k8s cluster deployment manifest

This how to is based off of this guide [https://ryaneschinger.com/blog/kubernetes-aws-vpc-kops-terraform/]

		Collect the following info / set the following env vars

VPC_ID=vpc-2345
ZONE_ID=34l5kj34l5kj
ZONES=us-east-1a,us-east-1b,us-east-1c
the cluster name will also be its domain
and needs to be a valid subdomain on the hosted zone
NAME=prod.sourceai.io

Collect your list of subnets, which should look like this:

 subnets:
 - egress: nat-sdfgsdfgsdfgsdfg
 id: subnet-2345bc2345b
 name: us-east-1a
 type: Private
 zone: us-east-1a
 - egress: nat-sdfgsdfgsdfgsdfg
 id: subnet-57b3575b375b
 name: us-east-1b
 type: Private
 zone: us-east-1b
 - egress: nat-sdfgsdfgsdfgsdfg
 id: subnet-0879ef078ef087
 name: us-east-1c
 type: Private
 zone: us-east-1c
 - id: subnet-2263be6e26be62
 name: Public Subnet 1
 type: Utility
 zone: us-east-1a
 - id: subnet-3444b5425b5
 name: Public Subnet 2
 type: Utility
 zone: us-east-1b
 - id: subnet-2314c334c43
 name: Public Subnet 3
 type: Utility
 zone: us-east-1c

Note: For some silly reason, the private subnet names need to match the zone.
This seems to be a requirement for the change to be accepted by kops.

		Create a kops state store bucket

We need to do this because we’re going to use kops to stage the changes, then
emit them as a terraform manifest. To do that kops needs a state store.

You can use TF to generate an s3 bucket. For example [https://github.com/ryane/kubernetes-aws-vpc-kops-terraform/blob/master/main.tf#L44]. Otherwise, here’s one
way to do it w some basic error handling:

create_s3_bucket() {
 if [["$#" -lt 1]]; then
 echo "Error: create_s3_bucket needs a bucket name"
 return 1
 fi
 BUCKET="${1#s3://}"

 # For some weird reason, s3 emits an error if you pass a location constraint when location is "us-east-1"
 if [["${AWS_REGION}" == "us-east-1"]]; then
 aws s3api create-bucket --bucket ${BUCKET} --region ${AWS_REGION}
 else
 aws s3api create-bucket --bucket ${BUCKET} --region ${AWS_REGION} --create-bucket-configuration LocationConstraint=${AWS_REGION}
 fi
}

export AWS_REGION="us-east-1"

create_s3_bucket some_bucket_name

		Create the kops cluster

kops create cluster \
 --master-zones $ZONES \
 --zones $ZONES \
 --topology private \
 --dns-zone $ZONE_ID \
 --networking calico \
 --vpc $VPC_ID \
 --target=terraform \
 --out=. \
 ${NAME}

		Update the kops cluster

First edit the deployment to specify your VPC, CIDR, and subnets:

kops edit cluster $NAME

You can find the CIDR listed on the AWS console.

Then update the cluster:

kops update cluster \
 --out=. \
 --target=terraform \
 ${NAME}

Which applies the changes to the kops state store and stages them there.

		Deploy using terraform

terraform plan
terraform apply

		Tear down

To tear down, do:

terraform destroy
kops delete cluster $NAME

How to generate k8s Pachyderm cluster manifest

This guide is a good reference [http://docs.pachyderm.io/en/latest/deployment/amazon_web_services.html]

But it boils down to this.

		Create an s3 bucket for the data store

		Set the BUCKET_NAME, STORAGE_SIZE, AWS_REGION, and AWS credentials env
vars

		Run the pachctl deploy amazon ... command w the --dry-run flag to emit
the yaml k8s manifest

		Store that manifest in the infra repo

		Deploy via kubectl create -f pachyderm.yaml

Next Steps

Connect to your Pachyderm Cluster

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/auth.png
€ C | @ secure | https//pachydermio

Please copy and paste the following token into your Pachyderm login session:

141 cddf5715 S

_images/sales.png
150000

100000
216

“——— Poor sales on
7/30 and 7/31

_images/dashboard3.png
O >

B i

PACH DASH

Home

Recent Changes

Repos

Pipelines

Jobs

Settings

Search Pachyderm

X

= montage > O/ >

montage.png

1.28 MB * modified a few seconds ago

From commit: 88220e0457574425a2d4818606d7265d

B montagepng

1345398B a few seconds ago

B montage.png ¢ 1.28 MB e Download

Q

_images/cron1.png
4

y

pipeline_tick

timestamp

~—

|
|
|
|
| =

pipeline

Input: cron (tick)

> pipeline

>

output data

N~

= timestamp = = = timestamp = = = timestamp = = = =

_images/opencv-liberty-montage.png
“images” “edges”
Data repository

Data repository

“edges’
pipeline
$ pachctl put-file ...
images
edges

Running edges.py

“montage”
Data repository

“montage”
pipeline

_images/pipeline4.png
parameters

Iparam1
Iparam2

- model select

split model
raw-data input 1: split
input: raw-data

lob: / Itrain
/data g Jtest

select
- input 1: split

glob: /train Imodel1 glob: /train /model2
/model2 /model5

Input 2: parameters
glob: /*

Input 2: parameters
glob: /*

test

input 1: split test
- Pachyderm Data Repository glob: /test
Imetrics1

input 2: model Imetrics2

|:| - Pachyderm Pipeline glob: /*

_images/mongo2.png
Connect to ClusterO

@ Check the IP Whitelist

You will only be able to connex Sllowing list of IP addresses

50.102.16.121/32 (includes your current IP address ® Active

0.0.0.0/0 (includes your current IP address) ® Active

+ ADD ENTRY

@ Choose a connection method:

Connect with the Mongo Shell
ongo Shell with TLS/SSL support is required

Connect Your Application
string and view drive ction examy

Connect with MongoDB Compass
Download Compass to explore, visualize, and manipulate your data

_images/dash_data3.png
]

[=]

&

PACH DASH Search Pachyderm
X

Home

Recent Changes

Repos

Pipelines

Jobs

Settings

test_repo

K<)
k=)

_images/token.png
Do you
Have an activation code?

This dashboard is part of Pachyderm Enterprise Edition
Register with your email to try it Free

Click here to enter it >
Email you@example.com
REGISTER

_images/saml_log_in.png
& & C |® localhost

©) Pachyderm % Pachyderm chyderm|Re: [) Kubernet k Channels B

Pachyderm
Login

Connect to Pachyderm using your GitHub account: you'll
need to paste the token provided into the box below

Token

examples/opencv/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Distributed Image Processing with OpenCV and Pachyderm

A detailed walkthrough of this example is included in our docs here [http://pachyderm.readthedocs.io/en/latest/getting_started/beginner_tutorial.html]. Please follow that guide to deploy this pipeline.

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

examples/opencv/demo-script.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Setup

		Run ./setup-demo.sh

		You’ll want to do that, and run through this script before any demo (to cache the opencv image)

		Then do a pachctl delete-all and re-create the images repo

Demo

Exposition:

Local setup
- minikube
- local VM running k8s

kubectl get all
- running all on my machine
- from a VM
pachctl list-repo
- see images repo
- version control data
- all terms from git

Step 1 – Add a file

pachctl put-file images master -c -i doc/examples/opencv/images.txt

- show them the mount
- locally view the data
- can see repo images
- now there is an image in it
- because everything is snapshotted (commit 0)
- statue of liberty

Step 2 – Add new images

pachctl put-file images master -c -i doc/examples/opencv/images2.txt

- refresh
- new commit -- master/1
- overlays data based on diffs / analgous to git diffs
- first one is there
- two more on top of it

Step 3 – Run a pipeline

pachctl create-pipeline -f edges.json
pachctl list-job

- the pipeline uses openCV
- show powerpoint from dropbox:
 - show them the pipeline code (or show in vim)
 - take intput / output repo
 - multiple inputs
 - subscribe to new data coming in on data repo
 - describe w json manifest
- dont know opencv
 - just pull in a library as a processing step
 - plug and play different approaches / steps of analysis
- NOTE!!! create pipeline will take 5 min now if you haven't cached the opencv image
 - so do it once before, then do delete-all
- see output of pipeline
- output commits correspond to input structure

Step 4 – add more data

pachctl put-file images master -c -i doc/examples/opencv/images3.txt

- kicks off the pipeline
- see new commit in the edges repo

Common questions

		provenance
		look at input commits for one of the outputs

		no reprocessing!
		only processed the new images per commit

		if you delete minikube has to pull container again
		you can just kill pachyderm, thats ok

Gotchas

VM network req
broken putfile / do delete all to recover

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/cron2.png
y

pipeline ipeli
pipeline_tick > : > Pl
| Input: cron (tick) output 1
t!mestamp 1 Incremental: true output 2
timestamp 2 .

— —

|
|
|
|
| =

- timestamp3 = = timestamp4 = = = timestamp5 = =

examples/fruit_stand/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

 Note: This is a Pachyderm pre version 1.4 tutorial. It needs to be updated for the latest versions of Pachyderm.

Beginner Tutorial: Fruit Stand

In this guide you’re going to create a Pachyderm pipeline to process transaction logs from a fruit stand. We’ll use standard unix tools bash, grep and awk to do our processing. Thanks to Pachyderm’s processing system we’ll be able to run the pipeline in a distributed, streaming fashion. As new data is added, the pipeline will automatically process it and materialize the results.

If you hit any errors not covered in this guide, check our troubleshooting [http://docs.pachyderm.io/en/v1.7.3/managing_pachyderm/general_troubleshooting.html] docs for common errors, submit an issue on GitHub [https://github.com/pachyderm/pachyderm], join our users channel on Slack [http://pachyderm-users.slack.com], or email us at support@pachyderm.io and we can help you right away.

Prerequisites

This guide assumes that you already have Pachyderm running locally. Check out our local installation [http://docs.pachyderm.io/en/v1.7.3/getting_started/local_installation.html] instructions if haven’t done that yet and then come back here to continue.

Create a Repo

A repo is the highest level primitive in the Pachyderm file system (pfs). Like all primitives in pfs, it shares its name with a primitive in Git and is designed to behave somewhat analogously. Generally, repos should be dedicated to a single source of data such as log messages from a particular service, a users table, or training data for an ML model. Repos are dirt cheap so don’t be shy about making tons of them.

For this demo, we’ll simply create a repo called
“data” to hold the data we want to process:

$ pachctl create-repo data

See the repo we just created
$ pc list-repo
NAME CREATED SIZE
data 8 seconds ago 0B

Adding Data to Pachyderm

Now that we’ve created a repo it’s time to add some data. In Pachyderm, you write data to a commit (again, similar to Git). Commits are immutable snapshots of your data which give Pachyderm its version control properties. Files can be added, removed, or updated in a given commit and then you can view a diff of those changes compared to a previous commit.

Let’s start by just adding a file to a new commit. We’ve provided a sample data file for you to use in our GitHub repo – it’s a list of purchases from a fruit stand.

We’ll use the put-file command along with a flag, -f. -f can take either a local file or a URL, and in our case, we’ll pass the sample data on GitHub.

We also specificy the repo name data, the branch name master, and the path /sales to which the data will be written (under the hood, put-file creates a new commit in whatever branch it’s passed).

$ pachctl put-file data master /sales -f https://raw.githubusercontent.com/pachyderm/pachyderm/v1.7.3/doc/examples/fruit_stand/set1.txt

Finally, we can see the data we just added to Pachyderm.

If we list the repos, we can see that there is now data
$ pc list-repo
NAME CREATED SIZE
data 31 seconds ago 874B

We can view the commit we just created
$ pc list-commit data
REPO ID PARENT STARTED DURATION SIZE
data b60d583b2d2747b6ae912c1e7fe1fb06 <none> 24 seconds ago Less than a second 874B

We can also view the contents of the file that we just added
$ pachctl get-file data master /sales | head -n5
orange 4
banana 2
banana 9
orange 9
apple 6

Create a Pipeline

Now that we’ve got some data in our repo, it’s time to do something with it. Pipelines are the core primitive for Pachyderm’s processing system (pps) and they’re specified with a JSON encoding. For this example, we’ve already created two pipelines for you, which can be found at examples/fruit_stand/pipeline.json on Github [https://github.com/pachyderm/pachyderm/blob/v1.7.3/doc/examples/fruit_stand/pipeline.json]. Please open a new tab to view the pipeline while we talk through it.

When you want to create your own pipelines later, you can refer to the full pipeline spec [http://docs.pachyderm.io/en/v1.7.3/reference/pipeline_spec.html] to use more advanced options. This includes building your own code into a container instead of just using simple shell commands as we’re doing here.

For now, we’re going to create two pipelines to process this hypothetical sales data. The first filters the sales logs into separate records for apples, oranges and bananas. The second step sums these sales numbers into a final sales count.

 +----------+ +--------------+ +------------+
 |input data| --> |filter pipline| --> |sum pipeline|
 +----------+ +--------------+ +------------+

In the first step of this pipeline, we are grepping for the terms “apple”, “orange”, and “banana” and writing that line to the corresponding file. Notice we read data from /pfs/data (in general, /pfs/[input_repo_name]) and write data to /pfs/out/. These are special local directories that Pachyderm creates within the container for you. All the input data will be found in /pfs/[input_repo_name] and output data should always go in /pfs/out.

The second step of this pipeline takes each file, removes the fruit name, and sums up the purchases. The output of our complete pipeline is three files, one for each type of fruit with a single number showing the total quantity sold.

Now let’s create the pipeline in Pachyderm:

$ pachctl create-pipeline -f https://raw.githubusercontent.com/pachyderm/pachyderm/v1.7.3/doc/examples/fruit_stand/pipeline.json

What Happens When You Create a Pipeline

Creating a pipeline tells Pachyderm to run your code on the most recent input commit as all future commits that happen after the pipeline is created. Our repo already had a commit, so Pachyderm automatically launched a job to process that data.

You can view the job with:

 $ pc list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
f8596ec0628a4ed6846489971b5c75e3 sum/0069dd5ed4644a7d87c7092204e7d3cf 21 seconds ago 5 seconds 0 3 + 0 / 3 200B 12B success
b26a1c64aece4d00a66ec3892735e474 filter/e1482b25ed574005919f325b67e3fc8d 21 seconds ago 5 seconds 0 1 + 0 / 1 874B 200B success

Every pipeline creates a corresponding output repo with the same name as the pipeline itself, where it stores its results. In our example, the “filter” transformation created a repo called “filter” which was the input to the “sum” transformation. The “sum” repo contains the final output files.

$ pc list-repo
NAME CREATED SIZE
sum About a minute ago 12B
filter About a minute ago 200B
data 3 minutes ago 874B

Reading the Output

We can read the output data from the “sum” repo in the same fashion that we read the input data:

$ pachctl get-file sum master /apple
133

Processing More Data

Pipelines will also automatically process the data from new commits as they are created (think of pipelines as being subscribed to any new commits that are finished on their input branches). Also similar to Git, commits have a parental structure that track how files change over time.

In this case, we’re going to be adding more data to the file “sales”. Our fruit stand business might append to this file every every hour with all the new purchases that happened in that window.

Let’s create a new commit with our previous commit as the parent and add more sample data (set2.txt) to “sales”:

$ pachctl put-file data master sales -f https://raw.githubusercontent.com/pachyderm/pachyderm/v1.7.3/doc/examples/fruit_stand/set2.txt

Adding a new commit of data will automatically trigger the pipeline to run on the new data we’ve added. We’ll see a corresponding commit to the output “sum” repo with files “apple”, “orange” and “banana” each containing the cumulative total of purchases. Let’s read the “apples” file again and see the new total number of apples sold.

$ pc list-commit data
REPO ID PARENT STARTED DURATION SIZE
data 2fbfec34ab534f869c343654a8c1977b b60d583b2d2747b6ae912c1e7fe1fb06 1 minute ago Less than a second 1.696KiB
data b60d583b2d2747b6ae912c1e7fe1fb06 <none> 1 minute ago Less than a second 874B

$ pc list-job
ID OUTPUT COMMIT STARTED DURATION RESTART PROGRESS DL UL STATE
8d1c660acaed42c58c37e9c538f943cc sum/79490b7548ed4dd881e3d4096e4fe553 54 seconds ago Less than a second 0 3 + 0 / 3 400B 12B success
4f281923c38549aeaf88f68707510368 filter/ce9a565a63e94b618fc6f8c78d148779 54 seconds ago Less than a second 0 1 + 0 / 1 1.696KiB 400B success
f8596ec0628a4ed6846489971b5c75e3 sum/0069dd5ed4644a7d87c7092204e7d3cf 8 minutes ago 5 seconds 0 3 + 0 / 3 200B 12B success
b26a1c64aece4d00a66ec3892735e474 filter/e1482b25ed574005919f325b67e3fc8d 8 minutes ago 5 seconds 0 1 + 0 / 1 874B 200B success

$ pachctl get-file sum master /apple
324

Next Steps

You’ve now got Pachyderm running locally with data and a pipeline! If you want to keep playing with Pachyderm locally, here are some ideas to expand on your working setup.

		Write a script to stream more data into Pachyderm. We already have one in Golang for you on GitHub [https://github.com/pachyderm/pachyderm/tree/v1.7.3/doc/examples/fruit_stand/generate] if you want to use it.

		Add a new pipeline that does something interesting with the “sum” repo as an input.

		Add your own data set and grep for different terms. This example can be generalized to generic word count.

You can also start learning some of the more advanced topics to develop analysis in Pachyderm:

		Deploying on the cloud [http://docs.pachyderm.io/en/v1.7.3/deployment/deploy_intro.html]

		Input data from other sources [http://docs.pachyderm.io/en/v1.7.3/fundamentals/getting_data_into_pachyderm.html]

		Create pipelines using your own code [http://docs.pachyderm.io/en/v1.7.3/fundamentals/creating_analysis_pipelines.html]

We’d love to help and see what you come up with so submit any issues/questions you come across on GitHub [https://github.com/pachyderm/pachyderm] , Slack [http://pachyderm-users.slack.com] or email at dev at pachyderm.io if you want to show off anything nifty you’ve created!

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/dash_data4.png
o >

&

PACH DASH

Home

Recent Changes

Repos.
Pipelines

Jobs

Settings

Search Pachyderm

X

test_repo
Manually Ingested Repo
No commits yet!

B Odatafiles

BB Odirectories

Q o8

Created a few seconds ago

0 commits
0 branches

0 commit trees

Latest content
Commit finished a few seconds ago

Nothing here yet!

Danger Zone

DELETE THIS REPO

test_repo

(=7

_images/dashboard1.png
Do you
Have an activation code?

This dashboard is part of Pachyderm Enterprise Edition
Register with your email to try it Free

Email you@example.com
REGISTER

_images/dash.png
& & C | ® 138.197.98.237:30080/app/repos/likelinoods s}‘ ~ |

earch Pachyderm “w X -
PACH DASH

— G 1 W

likelihoods ® o

Computed Output Repo
A Home \ mmit: a fe
Fo) Recent Changes Holds output of

a likelihoods
_ () acte ipeine
= Repos \ Updated 11 minutes ago
0 active jobs * 2 Inputs * 3 output commits

T epeines ! ! ! samples reference
@ Jobs

B cdatafies € 3commits

B odirectories ®* 1branch
& settings Q 1396Mm8 @ 1 committree

Input to

likelihoods

=
joint-call See all detalls...
ictie Ppeline
Updated 11 minutes ago
1 active jobs * 2 inputs
Latest content joint—call
Commit finished a few seconds ago
B fathergucf 47849048 a few seconds ago
B fatherguchidx 7588 a few seconds ago
B rother.gcf 48933238 a few seconds ago
B rother.gchidx 7588 a few seconds ago
B songvf 49581818 a few seconds ago

_images/detected_airplane.jpg

_images/pipeline1.png
raw-data

split

input: raw-data
/data glob: /

Ej - Pachyderm Data Repository
|:| - Pachyderm Pipeline

_images/pachyderm_word_count.png
“urls” data
repository

urls

Wikipedia
Another_website

A‘Hotherﬁwebsite

“scraper” data
“scraper” data repository
pipeline

scraper
/Wikipedia
Main_Page.html

/Ar;;ther_website
Index.html
About.html

“map” data
repository

“map” data

pipeline

a
abdul
about
aboutsite
absolute
accesskey
across
action

“reduce” data
repository

“reduce” data
pipeline

m\

awk { sum+=$1
action
72

map

a
abdul
about
aboutsite
absolute
accesskey
across
action

.

examples/redshift/json_to_sql/README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

JSON to SQL

This directory contains a small go script that consumes single-layer .json files from stdin and outputs them as SQL INSERT statements. Each field in each record of the input is converted to a column name, and the value of that field is written to that column.

The binary takes a single argument: the name of the table that the data should be written to. For example:

$ go build to_sql.go && cat test.json | ./to_sql cars
INSERT INTO cars (year, make, model) VALUES (2005, Toyota, Corolla);
INSERT INTO cars (model, year, make) VALUES (Civic, 1998, Honda);
INSERT INTO cars (make, model, year) VALUES (Tesla, Roadster, 2008);
INSERT INTO cars (make, model, year) VALUES (Bugatti, Chiron, 2016);
INSERT INTO cars (make, model, year) VALUES (Dodge, Viper, 2015);

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_flush-commit.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl flush-commit

Wait for all commits caused by the specified commits to finish and return them.

Synopsis

Wait for all commits caused by the specified commits to finish and return them.

Examples:

return commits caused by foo/XXX and bar/YYY
$ pachctl flush-commit foo/XXX bar/YYY

return commits caused by foo/XXX leading to repos bar and baz
$ pachctl flush-commit foo/XXX -r bar -r baz

./pachctl flush-commit commit [commit ...]

Options

 --raw disable pretty printing, print raw json
 -r, --repos []string Wait only for commits leading to a specific set of repos (default [])

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_delete-commit.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl delete-commit

Delete an input commit.

Synopsis

Delete an input commit. An input is a commit which is not the output of a pipeline.

./pachctl delete-commit repo-name commit-id

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_garbage-collect.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl garbage-collect

Garbage collect unused data.

Synopsis

Garbage collect unused data.

When a file/commit/repo is deleted, the data is not immediately removed from
the underlying storage system (e.g. S3) for performance and architectural
reasons. This is similar to how when you delete a file on your computer, the
file is not necessarily wiped from disk immediately.

To actually remove the data, you will need to manually invoke garbage
collection with “pachctl garbage-collect”.

Currently “pachctl garbage-collect” can only be started when there are no
pipelines running. You also need to ensure that there’s no ongoing “put-file”.
Garbage collection puts the cluster into a readonly mode where no new jobs can
be created and no data can be added.

Pachyderm’s garbage collection uses bloom filters to index live objects. This
means that some dead objects may erronously not be deleted during garbage
collection. The probability of this happening depends on how many objects you
have; at around 10M objects it starts to become likely with the default values.
To lower Pachyderm’s error rate and make garbage-collection more comprehensive,
you can increase the amount of memory used for the bloom filters with the
–memory flag. The default value is 10MB.

./pachctl garbage-collect

Options

 -m, --memory string The amount of memory to use during garbage collection. Default is 10MB. (default "0")

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_list-repo.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl list-repo

Return all repos.

Synopsis

Return all repos.

./pachctl list-repo

Options

 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_update-repo.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl update-repo

Update a repo.

Synopsis

Update a repo.

./pachctl update-repo repo-name

Options

 -d, --description string A description of the repo.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_deploy_amazon.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl deploy amazon

Deploy a Pachyderm cluster running on AWS.

Synopsis

Deploy a Pachyderm cluster running on AWS. Arguments are:
: An S3 bucket where Pachyderm will store PFS data.

: The aws region where pachyderm is being deployed (e.g. us-west-1)
: Size of EBS volumes, in GB (assumed to all be the same).

./pachctl deploy amazon <S3 bucket> <region> <size of volumes (in GB)>

Options

 --cloudfront-distribution string Deploying on AWS with cloudfront is currently an alpha feature. No security restrictions have beenapplied to cloudfront, making all data public (obscured but not secured)
 --credentials string Use the format "<id>,<secret>[,<token>]". You can get a token by running "aws sts get-session-token".
 --iam-role string Use the given IAM role for authorization, as opposed to using static credentials. The given role will be applied as the annotation iam.amazonaws.com/role, this used with a Kubernetes IAM role management system such as kube2iam allows you to give pachd credentials in a more secure way.
 --vault string Use the format "<address/hostport>,<role>,<token>".

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to. (default "default")
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-metrics Don't report user metrics for this command
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output formmat. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl deploy - Deploy a Pachyderm cluster.

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_get-tag.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl get-tag

Return the contents of a tag

Synopsis

Return the contents of a tag

./pachctl get-tag tag

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_debug-dump.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl debug-dump

Return a dump of running goroutines.

Synopsis

Return a dump of running goroutines.

./pachctl debug-dump

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_delete-branch.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl delete-branch

Delete a branch

Synopsis

Delete a branch, while leaving the commits intact

./pachctl delete-branch repo-name branch-name

Options

 -f, --force remove the branch regardless of errors; use with care

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/jupyter2.png
@® localhost:

> Ju pyte I' investigate-unexpected-sales Last Checkpoint: 10 minutes ago (autosaved)

File Edit View Inset Cell Kemel Widgets Help

+ /%< A B A v M M C wMakiown v B | Celloolbar

In [11]: dataDF = dataDF.join(precipDF)

In [12]: dataDF.head()
Out[12]:

Sales |Trips |Precipitation Intensity

Date

2016-07-01 198325 | 39665 |0.83

2016-07-02 | 179175 | 35835 |0.00

2016-07-03 | 176735 | 35347 0.00

2016-07-04 | 174295 | 34859 | 0.59

2016-07-05| 218680 43736 |0.89

Visualize the sales in the context of weather

Finally, we confirm our suspicions by visualizing the precipitation probabilties with the sales data:

In [13]: ax = dataDF.plot(secondary y=['Precipitation Probability'], figsize=(10, 8))
ax.set_ylabel('Sales (dollars), # Trips')
ax.right ax.set_ylabel('Precipitation probability')

Out[13]: <matplotlib.text.Text at ©x7f7da46abc9e>

300000
—— Sales

— Trips
—— Precipitation Intensity (right)
250000 A/ /\ J

_images/saml_display_otp.png
PACH DASH

msteffen@pachyderm.io

Log out

Search Pachyderm

GEN

One-Time Password

The authenticate your pachctl dlient, run the following

Note: the provided code can only be used once, and will expire if not used immediately.

_static/up.png

_images/jupyter_service.png
Daily Daily JSON
Citibike Trip Weather
Counts Forecasts

weather repo

Date, Trips
711116, 41523
-

{
7/1/16 weather

l

Sales Pipeline

l

sales repo

sales.csv

Pachyderm

_images/stats2.png
@ localhost:30080/app/jobs/777b12d4-fab1-4f6F-b1d2-aa408b4d 1a8e

PACH DASH Search Pachyderm
edges/777b12d4

Home

Recent Changes

Created by Pipeline

Repos edges
(| actve pipeine

Updated 2 hours ago
Pipelines 0 active jobs * 1 Inputs * 4 output commits
Jobs
@ 41 datums total O 368
datums processed) 0Binput data downloaded
P P!
Pl 39 datums skipped Q) 0Boutput data uploaded

Transform Details

Image

pachydern/opencv

_images/final_graph.png
g
£
#*
5

300000

— sales
—— Trips
250000
200000
—
150000
100000
50000
o
04
Jul
2016

S

Date

—— Precipitation Probability

25

10

0.8

0.6

0.4

02

0.0

Precipitation probability

_images/dash_data1.png
®

PACH DASH Search Pachyderm

Home

Recent Changes

Repos

Pipelines

Jobs

Settings

Welcome to PachDash!

Your Pachyderm cluster is empty. Check out the beginner tutorial

Create Repo | ()

Create Pipeline from Spec | (@)

Create Pipeline via form | ("

_images/saml_dag_images_readable.png
< C @ localhost:30080/app e

Apps €) Pachyderm % Pachyderm [l pachyderm|Re: [} Kubernetes API MW Slack Channels B8 Authentication @ AWSsignin B Docker B Github

PACH DASH Search Pachyderm Q%

msteffen@pachyderm.io

Log out
A Home .
4) RecentChanges images

= Repos '

13'_ Pipelines
W@ Jobs

. !

montage

edges

pachctl/pachctl_job.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl job

Docs for jobs.

Synopsis

Jobs are the basic unit of computation in Pachyderm.

Jobs run a containerized workload over a set of finished input commits.
Creating a job will also create a new repo and a commit in that repo which
contains the output of the job. Unless the job is created with another job as a
parent. If the job is created with a parent it will use the same repo as its
parent job and the commit it creates will use the parent job’s commit as a
parent.
If the job fails the commit it creates will not be finished.
The increase the throughput of a job increase the Shard paremeter.

./pachctl job

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_start-pipeline.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl start-pipeline

Restart a stopped pipeline.

Synopsis

Restart a stopped pipeline.

./pachctl start-pipeline pipeline-name

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_delete-all.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl delete-all

Delete everything.

Synopsis

Delete all repos, commits, files, pipelines and jobs.
This resets the cluster to its initial state.

./pachctl delete-all

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_auth_whoami.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth whoami

Print your Pachyderm identity

Synopsis

Print your Pachyderm identity.

./pachctl auth whoami

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl auth - Auth commands manage access to data in a Pachyderm cluster

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_auth_set-config.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth set-config

Set Pachyderm’s current auth configuration

Synopsis

Set Pachyderm’s current auth configuration

./pachctl auth set-config

Options

 -f, --file string input file (to use as the new config (default "-")

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl auth - Auth commands manage access to data in a Pachyderm cluster

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_auth_logout.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth logout

Log out of Pachyderm by deleting your local credential

Synopsis

Log out of Pachyderm by deleting your local credential. Note that it’s not necessary to log out before logging in with another account (simply run ‘pachctl auth login’ twice) but ‘logout’ can be useful on shared workstations.

./pachctl auth logout

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl auth - Auth commands manage access to data in a Pachyderm cluster

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_restart-datum.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl restart-datum

Restart a datum.

Synopsis

Restart a datum.

./pachctl restart-datum job-id datum-path1,datum-path2

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_list-file.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl list-file

Return the files in a directory.

Synopsis

Return the files in a directory.

Examples:

list top-level files on branch "master" in repo "foo"
$ pachctl list-file foo master

list files under path XXX on branch "master" in repo "foo"
$ pachctl list-file foo master XXX

list top-level files in the parent commit of the current head of "master"
in repo "foo"
$ pachctl list-file foo master^

list top-level files in the grandparent of the current head of "master"
in repo "foo"
$ pachctl list-file foo master^2

./pachctl list-file repo-name commit-id path/to/dir

Options

 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_undeploy.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl undeploy

Tear down a deployed Pachyderm cluster.

Synopsis

Tear down a deployed Pachyderm cluster.

./pachctl undeploy

Options

 -a, --all
 Delete everything, including the persistent volumes where metadata
 is stored. If your persistent volumes were dynamically provisioned (i.e. if
 you used the "--dynamic-etcd-nodes" flag), the underlying volumes will be
 removed, making metadata such repos, commits, pipelines, and jobs
 unrecoverable. If your persistent volume was manually provisioned (i.e. if
 you used the "--static-etcd-volume" flag), the underlying volume will not be
 removed.
 --namespace string Kubernetes namespace to undeploy Pachyderm from. (default "default")

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_mount.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl mount

Mount pfs locally. This command blocks.

Synopsis

Mount pfs locally. This command blocks.

./pachctl mount path/to/mount/point

Options

 -c, --commits []string Commits to mount for repos, arguments should be of the form "repo:commit" (default [])
 -d, --debug Turn on debug messages.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

search.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_get-logs.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl get-logs

Return logs from a job.

Synopsis

Return logs from a job.

Examples:

$ pachctl get-logs --pipeline=filter

return logs emitted by the job aedfa12aedf
$ pachctl get-logs --job=aedfa12aedf

return logs emitted by the pipeline \"filter\" while processing /apple.txt and a file with the hash 123aef
$ pachctl get-logs --pipeline=filter --inputs=/apple.txt,123aef

./pachctl get-logs [--pipeline=<pipeline>|--job=<job id>] [--datum=<datum id>]

Options

 --datum string Filter for log lines for this datum (accepts datum ID)
 -f, --follow Follow logs as more are created.
 --inputs string Filter for log lines generated while processing these files (accepts PFS paths or file hashes)
 --job string Filter for log lines from this job (accepts job ID)
 --master Return log messages from the master process (pipeline must be set).
 -p, --pipeline string Filter the log for lines from this pipeline (accepts pipeline name)
 --raw Return log messages verbatim from server.
 -t, --tail int Lines of recent logs to display.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

release_instructions.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Release procedure

Types of Releases

ReleaseType	Example Version	Built off master	Can build off any branch	Updates docs	Can host multiple install versions
—	—	—	—	—	—
Point Release	v1.7.2	Y	N	Y	N
Release Candidate	v1.8.0rc1	Y	N	Y	N
Custom Release	v1.8.1-aeeff234982735987affee	N	Y	N	Y

Requirements:

NOTE! At the moment, we require the release script to be run on an ubuntu machine.

This is because of a dependency on CGO via this bug [https://github.com/opencontainers/runc/issues/841]

(We don’t want to enable CGO in part because it doesn’t play nice w OSX for us)

You’ll need the following credentials / tools:

		A GitHub Personal Access Token with repo access
		You can get your personal oauth token here: https://github.com/settings/tokens

		goxc (go get github.com/laher/goxc)

		goxc configured ...
		run: make GITHUB_OAUTH_TOKEN=<persional access token from #1> goxc-generate-local

		sha256sum (if you’re on mac ... brew install coreutils)

		access to homebrew-tap and www repositories

		S3 credentials

		A dockerhub account, with write access to https://hub.docker.com/u/pachyderm/ (run docker login)

If you’re doing a custom release (off a branch that isn’t master), skip to the section at the bottom

Releasing:

		Make sure the HEAD commit (that you’re about to release) has a passing build on travis.

		Make sure that you have no uncommitted files in the current branch. Note that make doc (next step) will fail if there are any uncommited changes in the current branch

		Update src/client/version/client.go and doc/conf.py version values, build a new local version of pachctl, and commit the change (locally—you’ll push it to GitHub in the next step, but this allows make doc to run):

> make VERSION_ADDITIONAL= install
> git add src/client/version/client.go doc/conf.py
> git commit -m"Increment version for $(pachctl version --client-only) point release"

		Run make doc or make VERSION_ADDITIONAL=<rc/version suffix> doc-custom with the new version values.

Note in particular:

		VERSION_ADDITIONAL must be of the form rc<N> to comply with PEP 440 [https://www.python.org/dev/peps/pep-0440], which is needed to make ReadTheDocs create a new docs version for the release[1] [http://docs.readthedocs.io/en/latest/versions.html]. If you’re building a custom release for a client, you don’t need follow this form, but if you’re building a release candidate, you do.

		You can also run just make release-custom to use the commit hash as the version suffix. Note that this is not PEP 440-compliant, but may be useful for custom releases (see below)

		Make sure you add any newly created (untracked) doc files, in addition to docs that have been updated (git commit -a might not get everything)

		At this point, all of our auto-generated documentation should be updated. Push a new commit (to master) with:

> git add doc
> git commit -m"Run make doc for $(pachctl version --client-only) (point release|release candidate|etc)"
> git push origin master

		Run docker login (as the release script pushes new versions of the pachd and job-shim binaries to dockerhub)

		Run make GITHUB_OAUTH_TOKEN=<persional access token from #1> goxc-generate-local if you have not yet (or the next step will fail)

		Run make point-release or make VERSION_ADDITIONAL=rc1 release-candidate

		Commit the changes (the dash compatibility file will have been newly created), e.g.:

> git status
On branch master
....
Untracked files:
 (use "git add <file>..." to include in what will be committed)

 etc/compatibility/1.6.4

nothing added to commit but untracked files present (use "git add" to track)
> git add etc/compatibility/$(pachctl version --client-only)
> git commit -m "Update dash compatibility for pachctl $(pachctl version --client-only)"
> git push origin master

If the release failed

You’ll need to do two things: remove the relevant tags in GitHub, and re-build the docs in ReadTheDocs

		Removing the tag in GitHub

You’ll need to delete the release and the release tag in github. Navigate to
https://www.github.com/pachyderm/pachyderm and click on the Releases tab.
Click on the big, blue version number corresponding to the release you want to
delete, and you should be redirected to a page with just that release, and red
“Delete” button on the top right. Click the delete button

From here, go back to the list of Pachyderm releases, and click “tags”. Click
on the tag for the release you want to delete, and then click “delete” again to
delete the tag.

At this point, you can re-run the release process when you’re ready.

		Updating ReadTheDocs

		Repeat the release process until you’re happy with the tagged release in GitHub.

		Navigate to the Builds [https://readthedocs.org/projects/pachyderm/builds/] page in ReadTheDocs, select the version corresponding to this release next to the “Build Version” button, and then click “Build Version”.

		Check the updated ReadTheDocs page for the release, and make the docs (particularly the download link under “Local Installation”) are correct.

Rolling back a release

If a release has a problem and needs to be withdrawn, the steps in rolling back a release are similar to the steps under “If the release failed”. In general, you’ll need to:

		Delete the tag and GitHub Release for both the bad release and the most recent good release

		Re-release the previous version (to update homebrew)

All of these can be accomplished by:

		Following the steps under “If the release failed” for deleting the tag and GitHub release for both the bad release

		Checking out the git commit associated with the most recent good release (git checkout tags/v<good release>). Save this commit SHA (git rev-list tags/v<good> --max-count=1), in case you need it later, as we’ll be deleting the tag.

		Delete the tag and GitHub release for the last good release (the one you just checked out)

		Syncing your local Git tags with the set of tags on Github (either re-clone the Pachyderm repo, or run git tag -l | xargs git tag -d; git fetch origin master --tags). This prevents the release process from failing with tag already exists.

		Run make point-release (or follow the release process for custom releases)

Custom Release

Occasionally we have a need for a custom release off a non master branch. This is usually because some features we need to supply to users that are incompatible w features on master, but the features on master we need to keep longer term.

Often times we can simply cut custom pachd/worker images for a customer. To do that, just run make custom-images. Otherwise, if the user needs a custom version of pachctl, do the following:

		Run docker login (as the release script pushes new versions of the pachd and job-shim binaries to dockerhub)

		Run make custom-release

Which will create a release like v1.2.3-2342345aefda9879e87ad

Which can be installed like:

$ curl -o /tmp/pachctl.deb -L https://github.com/pachyderm/pachyderm/releases/download/v1.8.0/pachctl_1.8.0_amd64.deb && sudo dpkg -i /tmp/pachctl.deb

Or for mac/brew:

Where 1.7 is the major.minor version of the release you just did,
and you use the right commit SHA as well in the URL
$ brew install https://raw.githubusercontent.com/pachyderm/homebrew-tap/1.7.0-5a590ad9d8e9a09d4029f0f7379462620cf589ee/pachctl@1.7.rb

Then after a successful release:

		The tag created by goxc will point to master, and this is wrong. Opened an issue for this: https://github.com/laher/goxc/issues/112

		But the binaries built are correct (they’re built off of your local code, on the branch you’ve checked out)

		So we’ll delete the tag and re-create it to make it point to the correct commit

		Delete the tag

		You can see a list of tags here [https://github.com/pachyderm/pachyderm/tags] or here’s an example release tag [https://github.com/pachyderm/pachyderm/releases/tag/v1.2.5]

		Manually tag your branch

git tag -d v1.2.6 # You may need to delete it locally
git tag v1.2.6
git push origin --tags

This will fail if you didn’t delete the tag on Github in the previous step

		Manually update the release with the tag and publish

		Check the docs

Note that ReadTheDocs builds docs from our GitHub master branch. If the docs changes you made aren’t checked into the Pachyderm master branch, they won’t show up.

If you have checked in your docs changes, but they’re not showing up as the latest version of the docs, tag your version as ‘active’ on the readthedocs dashboard: https://readthedocs.org/projects/pachyderm/versions/

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_list-commit.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl list-commit

Return all commits on a set of repos.

Synopsis

Return all commits on a set of repos.

Examples:

return commits in repo "foo"
$ pachctl list-commit foo

return commits in repo "foo" on branch "master"
$ pachctl list-commit foo master

return the last 20 commits in repo "foo" on branch "master"
$ pachctl list-commit foo master -n 20

return commits that are the ancestors of XXX
$ pachctl list-commit foo XXX

return commits in repo "foo" since commit XXX
$ pachctl list-commit foo master --from XXX

./pachctl list-commit repo-name

Options

 -f, --from string list all commits since this commit
 -n, --number int list only this many commits; if set to zero, list all commits
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

README.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Docs

These docs are rendered and searchable on our Developer Documentation Portal [http://pachyderm.readthedocs.io/en/stable]. Here are a few section links for quick access.

		Getting started with Pachyderm [http://pachyderm.readthedocs.io/en/stable/getting_started/getting_started.html] including installation and a beginner tutorial

		Analyzing your own data [http://pachyderm.readthedocs.io/en/stable/deployment/analyze_your_data.html] and creating custom pipelines

		Advanced features [http://pachyderm.readthedocs.io/en/stable/advanced/advanced.html] of Pachyderm such as provenance and using diffs of data for processing.

		Pachctl API Documentation [http://pachyderm.readthedocs.io/en/stable/pachctl/pachctl.html]

		FAQ [http://pachyderm.readthedocs.io/en/stable/FAQ.html]

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_auth_get-auth-token.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth get-auth-token

Get an auth token that authenticates the holder as “username”

Synopsis

Get an auth token that authenticates the holder as “username”; this can only be called by cluster admins

./pachctl auth get-auth-token username

Options

 -q, --quiet if set, only print the resulting token (if successful). This is useful for scripting, as the output can be piped to use-auth-token

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl auth - Auth commands manage access to data in a Pachyderm cluster

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_port-forward.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl port-forward

Forward a port on the local machine to pachd. This command blocks.

Synopsis

Forward a port on the local machine to pachd. This command blocks.

./pachctl port-forward

Options

 -k, --kubectlflags string Any kubectl flags to proxy, e.g. --kubectlflags='--kubeconfig /some/path/kubeconfig'
 --namespace string Kubernetes namespace Pachyderm is deployed in. (default "default")
 -p, --port int The local port to bind pachd to. (default 30650)
 -x, --proxy-port int The local port to bind Pachyderm's dash proxy service to. (default 30081)
 --saml-port int The local port to bind pachd's SAML ACS to. (default 30654)
 -u, --ui-port int The local port to bind Pachyderm's dash service to. (default 30080)

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/time_windows.png
01-01-17_to_01_03_17

window

window

01-03-17_to_01_05_17

iow e |
window
~

_images/ml_workflow.png
Training data
updates

Streaming or
batch input

;b Training

! data

--—>

_images/IdPMetadata_highlight.png
© 7| Pachyderm

G Sgon on Asigmens

Settngs o

© JEETIISrE——

[[viw s s

@ et 14 ppcatn s i s,

CREDENTIALS DETALS

fundamentals/creating_services.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Creating Services

Services are special kinds of pipelines, rather than processing data, they
serve it to the outside world. For example you might use a service to expose a
Jupyter notebook that’s always got the most up-to-date version of your data
exposed to it. Creating a service is much like creating a pipeline, the only
difference is that your pipeline spec should contain a "Service" field. This
is an example of Jupyter service:

{
 "input": {
 "atom": {
 "glob": "/",
 "repo": "input"
 }
 },
 "service": {
 "external_port": 30888,
 "internal_port": 8888
 },
 "transform": {
 "cmd": [
 "start-notebook.sh"
],
 "image": "jupyter/datascience-notebook"
 }
}

Accessing Services

The service section specifies 2 ports, "internal_port" and "external_port".
"internal_port" is the port that the code running inside the container (in
this case Jupyter) binds to. "external_port" is the port that will be
exposed outside the container, this value must be in the range 30000-32767.
Once the service is created you should be able to access it by going to
http://<kubernetes-host>:<external_port> on any of the kubernetes nodes.

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/opencv.jpg
“images” “edges”
Data repository Data repository

“edges’
Data pipeline

$ pachctl put-file ...

edges

Running edges.py

_images/saml_okta_with_app.png
< C | @ secure | httpsy/dev-667923.oktapreview.com/app/UserHome

Apps €) Pachyderm % Pachyderm [E] pachyderm|Re: [} Kubernetes AP

okta

Work +

©

Pachyderm

_images/stats4.png
©e

o . "

0 PR °)

rosries View the input files
<~ corresponding to

[—— the datum

Aspartofob

[—

Logs
e ol st - et o, TR0 i Tl il

Inout 1o e processe, dontondog ats corresponding
ot e st 1o 8 e to the failure
©

_images/2.jpg
batch image
input

model

training

generate output

Training - .
data g - e (mnr}mg
updates 1 1 c i pl)Qplx.py — odel
| in “export”
| mode)
I
1
1
I
1 P
I
1
1
2 Results
Streamingor ! InREtimates Pre-process input
1 image and
I
I
I
I
1
I

_images/stats.png
41 Datums

12cf5c14
Folled Datum
Updated a few seconds ago

519ms total time + 6ms downloading 513ms processing + 0ms uploading * 0 B uploaded * 0 B downloaded

70e4991
Folled Datum
Updated a few seconds ago

409ms total time + 15ms downloading * 394ms processing * Oms uploading * 0 B uploaded + 0 B downloaded

002f991a
Skipped Datum
Updated a few seconds ago

total time + downloading * processing * uploading * 0 8 uploaded * 0 B downloaded

09094615
Skipped Datum
Updated a few seconds ago

total time + downloading * processing * uploading * 0 8 uploaded * 0 B downloaded

0d7aec1b

Skipped Datum
Updated a few seconds ago

total time + downloading * processing uploading + 0 B uploaded * 0 B downloaded

_images/incrementality1.png
mypipeline result1

input: R o
glob: /* mypipeline
result1

_images/dash_data5.png
Home test_repo

Manually Ingested Repo

Recent Changes No commits yet!

B Odatafiles ®
W Odirectories 5
Pipelines O o8 °

Jobs
Latest content

Commit finished a few seconds ago

Settings
Nothing here yet!

Danger Zone

test_repo

(@) (&)

_images/stats1.png
€ 5 € [locahomtso0mppipiinesiesses

edges
o Sendsouputo
s @
. s)
. o
¥ en

voss 2 job failures
1jOb SUCCESS mecencions

images

edges

pachctl/pachctl_auth_modify-admins.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth modify-admins

Modify the current cluster admins

Synopsis

Modify the current cluster admins. –add accepts a comma-separated list of users to grant admin status, and –remove accepts a comma-separated list of users to revoke admin status

./pachctl auth modify-admins

Options

 --add strings Comma-separated list of users to grant admin status
 --remove strings Comma-separated list of users revoke admin status

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl auth - Auth commands manage access to data in a Pachyderm cluster

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_deploy_custom.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl deploy custom

(in progress) Deploy a custom Pachyderm cluster configuration

Synopsis

(in progress) Deploy a custom Pachyderm cluster configuration.
If is “s3”, then the arguments are:
 <size of volumes (in GB)>

./pachctl deploy custom --persistent-disk <persistent disk backend> --object-store <object store backend> <persistent disk args> <object store args>

Options

 --isS3V2 Enable S3V2 client
 --object-store string (required) Backend providing an object-storage API to pachyderm. One of: s3, gcs, or azure-blob. (default "s3")
 --persistent-disk string (required) Backend providing persistent local volumes to stateful pods. One of: aws, google, or azure. (default "aws")
 -s, --secure Enable secure access to a Minio server.

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to. (default "default")
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-metrics Don't report user metrics for this command
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output formmat. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl deploy - Deploy a Pachyderm cluster.

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_inspect-repo.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl inspect-repo

Return info about a repo.

Synopsis

Return info about a repo.

./pachctl inspect-repo repo-name

Options

 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_put-file.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl put-file

Put a file into the filesystem.

Synopsis

Put-file supports a number of ways to insert data into pfs:

Put data from stdin as repo/branch/path:
$ echo "data" | pachctl put-file repo branch path

Put data from stdin as repo/branch/path and start / finish a new commit on the branch.
$ echo "data" | pachctl put-file -c repo branch path

Put a file from the local filesystem as repo/branch/path:
$ pachctl put-file repo branch path -f file

Put a file from the local filesystem as repo/branch/file:
$ pachctl put-file repo branch -f file

Put the contents of a directory as repo/branch/path/dir/file:
$ pachctl put-file -r repo branch path -f dir

Put the contents of a directory as repo/branch/dir/file:
$ pachctl put-file -r repo branch -f dir

Put the contents of a directory as repo/branch/file, i.e. put files at the top level:
$ pachctl put-file -r repo branch / -f dir

Put the data from a URL as repo/branch/path:
$ pachctl put-file repo branch path -f http://host/path

Put the data from a URL as repo/branch/path:
$ pachctl put-file repo branch -f http://host/path

Put the data from an S3 bucket as repo/branch/s3_object:
$ pachctl put-file repo branch -r -f s3://my_bucket

Put several files or URLs that are listed in file.
Files and URLs should be newline delimited.
$ pachctl put-file repo branch -i file

Put several files or URLs that are listed at URL.
NOTE this URL can reference local files, so it could cause you to put sensitive
files into your Pachyderm cluster.
$ pachctl put-file repo branch -i http://host/path

NOTE there’s a small performance overhead for using a branch name as opposed
to a commit ID in put-file. In most cases the performance overhead is
negligible, but if you are putting a large number of small files, you might
want to consider using commit IDs directly.

./pachctl put-file repo-name branch [path/to/file/in/pfs]

Options

 -c, --commit DEPRECATED: Put file(s) in a new commit.
 --description string A description of this commit's contents (synonym for --message)
 -f, --file strings The file to be put, it can be a local file or a URL. (default [-])
 --header-records uint the number of records that will be converted to a PFS 'header', and prepended to future retrievals of any subset of data from PFS; needs to be used with --split=(json|line|csv)
 -i, --input-file string Read filepaths or URLs from a file. If - is used, paths are read from the standard input.
 -m, --message string A description of this commit's contents (only allowed with -c)
 -o, --overwrite Overwrite the existing content of the file, either from previous commits or previous calls to put-file within this commit.
 -p, --parallelism int The maximum number of files that can be uploaded in parallel. (default 10)
 -r, --recursive Recursively put the files in a directory.
 --split json Split the input file into smaller files, subject to the constraints of --target-file-datums and --target-file-bytes. Permissible values are json and `line`.
 --target-file-bytes uint The target upper bound of the number of bytes that each file contains; needs to be used with --split.
 --target-file-datums uint The upper bound of the number of datums that each file contains, the last file will contain fewer if the datums don't divide evenly; needs to be used with --split.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_create-pipeline.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl create-pipeline

Create a new pipeline.

Synopsis

Create a new pipeline from a Pipeline Specification

./pachctl create-pipeline -f pipeline.json

Options

 -f, --file string The file containing the pipeline, it can be a url or local file. - reads from stdin. (default "-")
 --password string Your password for the registry being pushed to.
 -p, --push-images If true, push local docker images into the cluster registry.
 -r, --registry string The registry to push images to. (default "docker.io")
 -u, --username string The username to push images as, defaults to your OS username.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_edit-pipeline.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl edit-pipeline

Edit the manifest for a pipeline in your text editor.

Synopsis

Edit the manifest for a pipeline in your text editor.

./pachctl edit-pipeline pipeline-name

Options

 --editor string Editor to use for modifying the manifest.
 --reprocess If true, reprocess datums that were already processed by previous version of the pipeline.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_update-pipeline.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl update-pipeline

Update an existing Pachyderm pipeline.

Synopsis

Update a Pachyderm pipeline with a new Pipeline Specification

./pachctl update-pipeline -f pipeline.json

Options

 -f, --file string The file containing the pipeline, it can be a url or local file. - reads from stdin. (default "-")
 --password string Your password for the registry being pushed to.
 -p, --push-images If true, push local docker images into the cluster registry.
 -r, --registry string The registry to push images to. (default "docker.io")
 --reprocess If true, reprocess datums that were already processed by previous version of the pipeline.
 -u, --username string The username to push images as, defaults to your OS username.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_extract.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl extract

Extract Pachyderm state to stdout or an object store bucket.

Synopsis

Extract Pachyderm state to stdout or an object store bucket.

Extract into a local file:
pachctl extract >backup

Extract to s3:
pachctl extract -u s3://bucket/backup

./pachctl extract

Options

 --no-objects don't extract from object storage, only extract data from etcd
 -u, --url string An object storage url (i.e. s3://...) to extract to.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_inspect-file.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl inspect-file

Return info about a file.

Synopsis

Return info about a file.

./pachctl inspect-file repo-name commit-id path/to/file

Options

 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

deployment/amazon_web_services/connecting_to_your_cluster.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

Connecting to your Pachyderm Cluster

Port Forwarding

Port forwarding is the easiest way to poke around and verify your cluster is working. However, we don’t recommend using it for production workloads. First, it’s flaky, and it doesn’t reconnect robustly. Second, it is rate limited to about 1MB/s, and so is very unsuitable for any sort of uploading.

But, it is easy to use.

$ pachctl port-forward &

From there, you’ll be able to access the Pachyderm Dashboard at localhost:30080 and pachctl will be able to connect to the cluster just fine.

Directly Via ADDRESS

This is recommended if you’re using the Pachyderm Dashboard for any real amount of time, if you’re doing big uploads, or if you’re using a Pachyderm client to connect to the cluster.

Pachd

To expose the pachd service, you need to change the k8s service:

$ kubectl edit svc/pachd

Then mark the type as LoadBalancer

If you’ve gone to the trouble of deploying within an existing VPC, you probably want to limit access to the cluster to IPs originating from this VPC.

In this case, you want an internal load balancer. To expose the pachd service (for pachctl access), you’ll need to also add the annotation:

service.beta.kubernetes.io/aws-load-balancer-internal: '0.0.0.0/0'

Once the load balancer is provisioned, you’ll see the address that was provisioned via kubectl get svc/pachd -o yaml

E.g. internal-afsdfasdlkfjh34lkjh-3485763487.us-west-1.elb.amazonaws.com:650

You can test that it’s working by doing:

$ ADDRESS=internal-afsdfasdlkfjh34lkjh-3485763487.us-west-1.elb.amazonaws.com:650 pachctl version
COMPONENT VERSION
pachctl 1.7.3
pachd 1.7.3

You’ll want to set this environment variable so that pachctl (or your own client) will use it by default. You’ll probably want to add it to your bash profile.

Dash

Similar to exposing the pachd service above, you’ll want to make the same modifications to the dash service:

$ kubectl edit svc/dash

The one additional configuration you’ll need to add is the following annotation:

service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: "3600"

(This is to allow the long lived websockets that the dash uses to stay alive through the load balancer)

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_set-branch.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl set-branch

DEPRECATED Set a commit and its ancestors to a branch

Synopsis

DEPRECATED Set a commit and its ancestors to a branch.

Examples:

Set commit XXX and its ancestors as branch master in repo foo.
$ pachctl set-branch foo XXX master

Set the head of branch test as branch master in repo foo.
After running this command, "test" and "master" both point to the
same commit.
$ pachctl set-branch foo test master

./pachctl set-branch repo-name commit-id/branch-name new-branch-name

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_list-job.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl list-job

Return info about jobs.

Synopsis

Return info about jobs.

Examples:

$ pachctl list-job

return all jobs in pipeline foo
$ pachctl list-job -p foo

return all jobs whose input commits include foo/XXX and bar/YYY
$ pachctl list-job foo/XXX bar/YYY

return all jobs in pipeline foo and whose input commits include bar/YYY
$ pachctl list-job -p foo bar/YYY

./pachctl list-job [commits]

Options

 -i, --input strings List jobs with a specific set of input commits.
 -o, --output string List jobs with a specific output commit.
 -p, --pipeline string Limit to jobs made by pipeline.
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_subscribe-commit.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl subscribe-commit

Print commits as they are created (finished).

Synopsis

Print commits as they are created in the specified repo and
branch. By default, all existing commits on the specified branch are
returned first. A commit is only considered “created” when it’s been
finished.

Examples:

subscribe to commits in repo "test" on branch "master"
$ pachctl subscribe-commit test master

subscribe to commits in repo "test" on branch "master", but only since commit XXX.
$ pachctl subscribe-commit test master --from XXX

subscribe to commits in repo "test" on branch "master", but only for new
commits created from now on.
$ pachctl subscribe-commit test master --new

./pachctl subscribe-commit repo branch

Options

 --from string subscribe to all commits since this commit
 --new subscribe to only new commits created from now on
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_delete-pipeline.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl delete-pipeline

Delete a pipeline.

Synopsis

Delete a pipeline.

./pachctl delete-pipeline pipeline-name

Options

 --all delete all pipelines
 -f, --force delete the pipeline regardless of errors; use with care

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_diff-file.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl diff-file

Return a diff of two file trees.

Synopsis

Return a diff of two file trees.

Examples:

Return the diff between foo master path and its parent.
$ pachctl diff-file foo master path

Return the diff between foo master path1 and bar master path2.
$ pachctl diff-file foo master path1 bar master path2

./pachctl diff-file new-repo-name new-commit-id new-path [old-repo-name old-commit-id old-path]

Options

 -s, --shallow Specifies whether or not to diff subdirectories

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_repo.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl repo

Docs for repos.

Synopsis

Repos, short for repository, are the top level data object in Pachyderm.

Repos are created with create-repo.

./pachctl repo

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_enterprise_get-state.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl enterprise get-state

Check whether the Pachyderm cluster has enterprise features activated

Synopsis

Check whether the Pachyderm cluster has enterprise features activated

./pachctl enterprise get-state

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl enterprise - Enterprise commands enable Pachyderm Enterprise features

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_deploy_microsoft.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl deploy microsoft

Deploy a Pachyderm cluster running on Microsoft Azure.

Synopsis

Deploy a Pachyderm cluster running on Microsoft Azure. Arguments are:
: An Azure container where Pachyderm will store PFS data.
: Size of persistent volumes, in GB (assumed to all be the same).

./pachctl deploy microsoft <container> <storage account name> <storage account key> <size of volumes (in GB)>

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to. (default "default")
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-metrics Don't report user metrics for this command
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output formmat. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl deploy - Deploy a Pachyderm cluster.

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_restore.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl restore

Restore Pachyderm state from stdin or an object store.

Synopsis

Restore Pachyderm state from stdin or an object store..

Restore from a local file:
pachctl restore <backup

Restore from s3:
pachctl restore -u s3://bucket/backup

./pachctl restore

Options

 -u, --url string An object storage url (i.e. s3://...) to restore from.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_static/up-pressed.png

_static/down.png

_static/comment-bright.png

_static/down-pressed.png

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

_static/file.png

_static/comment.png

_static/comment-close.png

pachctl/pachctl_file.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl file

Docs for files.

Synopsis

Files are the lowest level data object in Pachyderm.

Files can be written to started (but not finished) commits with put-file.
Files can be read from finished commits with get-file.

./pachctl file

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_delete-repo.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl delete-repo

Delete a repo.

Synopsis

Delete a repo.

./pachctl delete-repo repo-name

Options

 --all remove all repos
 -f, --force remove the repo regardless of errors; use with care

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_auth_check.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth check

Check whether you have reader/writer/etc-level access to ‘repo’

Synopsis

Check whether you have reader/writer/etc-level access to ‘repo’. For example, ‘pachctl auth check reader private-data’ prints “true” if the you have at least “reader” access to the repo “private-data” (you could be a reader, writer, or owner). Unlike pachctl get-acl, you do not need to have access to ‘repo’ to discover your own acess level.

./pachctl auth check (none|reader|writer|owner) repo

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl auth - Auth commands manage access to data in a Pachyderm cluster

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_pipeline.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl pipeline

Docs for pipelines.

Synopsis

Pipelines are a powerful abstraction for automating jobs.

Pipelines take a set of repos as inputs, rather than the set of commits that
jobs take. Pipelines then subscribe to commits on those repos and launches a job
to process each incoming commit.
Creating a pipeline will also create a repo of the same name.
All jobs created by a pipeline will create commits in the pipeline’s repo.

./pachctl pipeline

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_auth_get-config.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth get-config

Retrieve Pachyderm’s current auth configuration

Synopsis

Retrieve Pachyderm’s current auth configuration

./pachctl auth get-config

Options

 -o, --output-format string output format ("json" or "yaml") (default "json")

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl auth - Auth commands manage access to data in a Pachyderm cluster

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_auth_set.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth set

Set the scope of access that ‘username’ has to ‘repo’

Synopsis

Set the scope of access that ‘username’ has to ‘repo’. For example, ‘pachctl auth set github-alice none private-data’ prevents “github-alice” from interacting with the “private-data” repo in any way (the default). Similarly, ‘pachctl auth set github-alice reader private-data’ would let “github-alice” read from “private-data” but not create commits (writer) or modify the repo’s access permissions (owner). Currently all Pachyderm authentication uses GitHub OAuth, so ‘username’ must be a GitHub username

./pachctl auth set username (none|reader|writer|owner) repo

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl auth - Auth commands manage access to data in a Pachyderm cluster

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_inspect-job.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl inspect-job

Return info about a job.

Synopsis

Return info about a job.

./pachctl inspect-job job-id

Options

 -b, --block block until the job has either succeeded or failed
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_stop-pipeline.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl stop-pipeline

Stop a running pipeline.

Synopsis

Stop a running pipeline.

./pachctl stop-pipeline pipeline-name

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_update-dash.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl update-dash

Update and redeploy the Pachyderm Dashboard at the latest compatible version.

Synopsis

Update and redeploy the Pachyderm Dashboard at the latest compatible version.

./pachctl update-dash

Options

 --dry-run Don't actually deploy Pachyderm Dash to Kubernetes, instead just print the manifest.
 -o, --output string Output formmat. One of: json|yaml (default "json")

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_deploy_import-images.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl deploy import-images

Import a tarball (from stdin) containing all of the images in a deployment and push them to a private registry.

Synopsis

Import a tarball (from stdin) containing all of the images in a deployment and push them to a private registry.

./pachctl deploy import-images input-file

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to. (default "default")
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-metrics Don't report user metrics for this command
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output formmat. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl deploy - Deploy a Pachyderm cluster.

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_start-commit.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl start-commit

Start a new commit.

Synopsis

Start a new commit with parent-commit as the parent, or start a commit on the given branch; if the branch does not exist, it will be created.

Examples:

Start a new commit in repo "test" that's not on any branch
$ pachctl start-commit test

Start a commit in repo "test" on branch "master"
$ pachctl start-commit test master

Start a commit with "master" as the parent in repo "test", on a new branch "patch"; essentially a fork.
$ pachctl start-commit test patch -p master

Start a commit with XXX as the parent in repo "test", not on any branch
$ pachctl start-commit test -p XXX

./pachctl start-commit repo-name [branch]

Options

 --description string A description of this commit's contents (synonym for --message)
 -m, --message string A description of this commit's contents
 -p, --parent string The parent of the new commit, unneeded if branch is specified and you want to use the previous head of the branch as the parent.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_create-repo.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl create-repo

Create a new repo.

Synopsis

Create a new repo.

./pachctl create-repo repo-name

Options

 -d, --description string A description of the repo.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_get-file.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl get-file

Return the contents of a file.

Synopsis

Return the contents of a file.

get file "XXX" on branch "master" in repo "foo"
$ pachctl get-file foo master XXX

get file "XXX" in the parent of the current head of branch "master"
in repo "foo"
$ pachctl get-file foo master^ XXX

get file "XXX" in the grandparent of the current head of branch "master"
in repo "foo"
$ pachctl get-file foo master^2 XXX

./pachctl get-file repo-name commit-id path/to/file

Options

 -o, --output string The path where data will be downloaded.
 -p, --parallelism int The maximum number of files that can be downloaded in parallel (default 10)
 -r, --recursive Recursively download a directory.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_copy-file.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl copy-file

Copy files between pfs paths.

Synopsis

Copy files between pfs paths.

./pachctl copy-file src-repo src-commit src-path dst-repo dst-commit dst-path

Options

 -o, --overwrite Overwrite the existing content of the file, either from previous commits or previous calls to put-file within this commit.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_enterprise_activate.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl enterprise activate

Activate the enterprise features of Pachyderm with an activation code

Synopsis

Activate the enterprise features of Pachyderm with an activation code

./pachctl enterprise activate activation-code

Options

 --expires string A timestamp indicating when the token provided above should expire (formatted as an RFC 3339/ISO 8601 datetime). This is only applied if it's earlier than the signed expiration time encoded in 'activation-code', and therefore is only useful for testing.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl enterprise - Enterprise commands enable Pachyderm Enterprise features

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_auth_use-auth-token.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth use-auth-token

Read a Pachyderm auth token from stdin, and write it to the current user’s Pachyderm config file

Synopsis

Read a Pachyderm auth token from stdin, and write it to the current user’s Pachyderm config file

./pachctl auth use-auth-token

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl auth - Auth commands manage access to data in a Pachyderm cluster

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_unmount.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl unmount

Unmount pfs.

Synopsis

Unmount pfs.

./pachctl unmount path/to/mount/point

Options

 -a, --all unmount all pfs mounts

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_flush-job.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl flush-job

Wait for all jobs caused by the specified commits to finish and return them.

Synopsis

Wait for all jobs caused by the specified commits to finish and return them.

Examples:

$ pachctl flush-job foo/XXX bar/YYY

return jobs caused by foo/XXX leading to pipelines bar and baz
$ pachctl flush-job foo/XXX -p bar -p baz

./pachctl flush-job commit [commit ...]

Options

 -p, --pipeline []string Wait only for jobs leading to a specific set of pipelines (default [])
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_auth_deactivate.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth deactivate

Delete all ACLs, tokens, and admins, and deactivate Pachyderm auth

Synopsis

Deactivate Pachyderm’s auth system, which will delete ALL auth tokens, ACLs and admins, and expose all data in the cluster to any user with cluster access. Use with caution.

./pachctl auth deactivate

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl auth - Auth commands manage access to data in a Pachyderm cluster

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_auth_list-admins.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth list-admins

List the current cluster admins

Synopsis

List the current cluster admins

./pachctl auth list-admins

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl auth - Auth commands manage access to data in a Pachyderm cluster

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_glob-file.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl glob-file

Return files that match a glob pattern in a commit.

Synopsis

Return files that match a glob pattern in a commit (that is, match a glob pattern
in a repo at the state represented by a commit). Glob patterns are
documented here [https://golang.org/pkg/path/filepath/#Match].

Examples:

Return files in repo "foo" on branch "master" that start
with the character "A". Note how the double quotation marks around "A*" are
necessary because otherwise your shell might interpret the "*".
$ pachctl glob-file foo master "A*"

Return files in repo "foo" on branch "master" under directory "data".
$ pachctl glob-file foo master "data/*"

./pachctl glob-file repo-name commit-id pattern

Options

 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_deploy_export-images.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl deploy export-images

Export a tarball (to stdout) containing all of the images in a deployment.

Synopsis

Export a tarball (to stdout) containing all of the images in a deployment.

./pachctl deploy export-images output-file

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to. (default "default")
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-metrics Don't report user metrics for this command
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output formmat. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl deploy - Deploy a Pachyderm cluster.

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_deploy_google.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl deploy google

Deploy a Pachyderm cluster running on GCP.

Synopsis

Deploy a Pachyderm cluster running on GCP.
Arguments are:
: A GCS bucket where Pachyderm will store PFS data.
: A comma-separated list of GCE persistent disks, one per etcd node (see –etcd-nodes).
: Size of GCE persistent disks in GB (assumed to all be the same).
: a file contain a private key for a service account (downloaded from GCE).

./pachctl deploy google <GCS bucket> <size of disk(s) (in GB)> [<service account creds file>]

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to. (default "default")
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-metrics Don't report user metrics for this command
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output formmat. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl deploy - Deploy a Pachyderm cluster.

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_delete-job.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl delete-job

Delete a job.

Synopsis

Delete a job.

./pachctl delete-job job-id

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_list-branch.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl list-branch

Return all branches on a repo.

Synopsis

Return all branches on a repo.

./pachctl list-branch repo-name

Options

 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_version.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl version

Return version information.

Synopsis

Return version information.

./pachctl version

Options

 --client-only If set, only print pachctl's version, but don't make any RPCs to pachd. Useful if pachd is unavailable
 --raw disable pretty printing, print raw json
 --timeout string If set, pachctl version will timeout after the given duration (formatted as a golang time duration--a number followed by ns, us, ms, s, m, or h). If --client-only is set, this flag is ignored. If unset, pachctl will use a default timeout; if set to 0s, the call will never time out. (default "default")

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_deploy_local.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl deploy local

Deploy a single-node Pachyderm cluster with local metadata storage.

Synopsis

Deploy a single-node Pachyderm cluster with local metadata storage.

./pachctl deploy local

Options

 -d, --dev Deploy pachd with local version tags, disable metrics, expose Pachyderm's object/block API, and use an insecure authentication mechanism (do not set on any cluster with sensitive data)
 --host-path string Location on the host machine where PFS metadata will be stored. (default "/var/pachyderm")

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to. (default "default")
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-metrics Don't report user metrics for this command
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output formmat. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl deploy - Deploy a Pachyderm cluster.

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_deploy_list-images.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl deploy list-images

Output the list of images in a deployment.

Synopsis

Output the list of images in a deployment.

./pachctl deploy list-images

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to. (default "default")
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-metrics Don't report user metrics for this command
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output formmat. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl deploy - Deploy a Pachyderm cluster.

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_finish-commit.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl finish-commit

Finish a started commit.

Synopsis

Finish a started commit. Commit-id must be a writeable commit.

./pachctl finish-commit repo-name commit-id

Options

 --description string A description of this commit's contents (synonym for --message)
 -m, --message string A description of this commit's contents (overwrites any existing commit description)

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_deploy.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl deploy

Deploy a Pachyderm cluster.

Synopsis

Deploy a Pachyderm cluster.

Options

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to. (default "default")
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output formmat. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

		./pachctl deploy amazon - Deploy a Pachyderm cluster running on AWS.

		./pachctl deploy custom - (in progress) Deploy a custom Pachyderm cluster configuration

		./pachctl deploy export-images - Export a tarball (to stdout) containing all of the images in a deployment.

		./pachctl deploy google - Deploy a Pachyderm cluster running on GCP.

		./pachctl deploy import-images - Import a tarball (from stdin) containing all of the images in a deployment and push them to a private registry.

		./pachctl deploy list-images - Output the list of images in a deployment.

		./pachctl deploy local - Deploy a single-node Pachyderm cluster with local metadata storage.

		./pachctl deploy microsoft - Deploy a Pachyderm cluster running on Microsoft Azure.

		./pachctl deploy storage - Deploy credentials for a particular storage provider.

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_extract-pipeline.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl extract-pipeline

Return the manifest used to create a pipeline.

Synopsis

Return the manifest used to create a pipeline.

./pachctl extract-pipeline pipeline-name

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_auth_activate.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth activate

Activate Pachyderm’s auth system

Synopsis

Activate Pachyderm’s auth system, and restrict access to existing data to the
user running the command (or the argument to –initial-admin), who will be the
first cluster admin

./pachctl auth activate

Options

 --initial-admin string The subject (robot user or github user) who
 will be the first cluster admin; the user running 'activate' will identify as
 this user once auth is active. If you set 'initial-admin' to a robot
 user, pachctl will print that robot user's Pachyderm token; this token is
 effectively a root token, and if it's lost you will be locked out of your
 cluster

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl auth - Auth commands manage access to data in a Pachyderm cluster

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_commit.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl commit

Docs for commits.

Synopsis

Commits are atomic transactions on the content of a repo.

Creating a commit is a multistep process:

		start a new commit with start-commit

		write files to it through fuse or with put-file

		finish the new commit with finish-commit

Commits that have been started but not finished are NOT durable storage.
Commits become reliable (and immutable) when they are finished.

Commits can be created with another commit as a parent.
This layers the data in the commit over the data in the parent.

./pachctl commit

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/enterprise.png
Interactive
Pipeline Configuration

Pachyderm
Open Source
Core

Administr
Control

Access Controls

Pachyderm
Enterprise
Edition

_images/pipeline3.png
parameters

Iparam1
Iparam2

) model select
split model
raw-data input 1: split input 1: split
input: raw-data glob: /train /model1 glob: /train /model2
Idata glob:/ /model2 Imodel5
Input 2: parameters
glob: /*

select

Input 2: parameters
glob: /*

test

input 1: split test
- Pachyderm Data Repository glob: /test
Imetrics1

input 2: model Imetrics2

|:| - Pachyderm Pipeline glob: /*

_images/dashboard.png
& > C [localhost:38080/app/pipelines/inference IR

PACH DASH ‘Search Pachyder { 0
o - inference
ome
£ RecentChanges
/ \
Sends output to SN
— training ~~

= Repos

inference
1 Pipelines W7 Updated a few seconds ago
312files * 0 dirs * 763820 B * 314 commits

@ s ' '
@ 1activejobs € 314 output commits . v “

attributes model r-test-model julia-test-model

€ 2inputs N 1version
Q7934 KB generated 1 278msavg runtime

Takes input from

)) infers
9 @ N inference

attributes model see all detalls...
Monuoly Ingested Repo Computed Output Repo
Updoted 3 minutes ag0 Updoted 16 minutes g0
Ofiles 81448 Ofiles 53228 l l
Recent Jobs post-processing

d25ba857 80ba12e9 ab01998f 7e
Finished Job Fiished Job Fiished Job Fini
Updated a few seconds ago Updated a few seconds ago Updated a few seconds ago Upe

311 0f 311 datums 310 0f 310 datums 309 of 309 datums

_images/montage-screenshot.png
ImageMagick: -

© ImageMagick: -

_images/saml_editing_acl.png
< C' | @ localhost:30080/app/repos/edges/access-control *

Apps €) Pachyderm % Pachyderm [pachyderm|Re: [) Kubernetes APl B Slack Channels B Authentication @ AWSsignin B Docker Bm Github B Kubernetes

You can read, modify, and edit access controls on this repo.

PACH DASH
Other owners
; msteffen@pachyderm.io Can also read, modify, and edit access controls on this repo
Log out Everyone x
i admin ™
+8 Enter username to add
A Home .
£) RecentChanges Writers images
Can read and modify this repo
= Repos edges x
+8 Enter username to add
=) Pipelines
edges
o obs Readers
Can read this repo
& setings 2% montage x
+2 msteffen@pachyderm.iq montage
Admins

Can read, modify, and edit access controls on any repo

admin

_images/jupyter1.png
| ® localhostssss/rree

Z Jupyter

Files

Select items to perform actions on them.

a

(SRR o R o)

Running ~ Clusters

BE
0 out
03 sales
0 trips

0 weather

Upload || New +

_images/incrementality4.png
mypipeline

input: R
glob: /*

/D1
result
mypipeline

/D1
result

_images/incrementality5.png
F1 == —=1| mypipeline mypipeline
F2 input: R /D1

glob: /* /D1 result

result

mypipeline

input: R mypipeline
glob: /* /D1
result*

_images/pipeline.jpg
Q- o~
AT e
£2 g

Pachyderm

r

_images/join1.png
group e

Input Type: n 3
union A and B Ajson Ajson
Bjson Bijson

_images/incrementality3.png
L result1*
mypipeline

input: R mypipeline
glob: /* result1*
result2

pachctl/pachctl_auth_login.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth login

Log in to Pachyderm

Synopsis

Login to Pachyderm. Any resources that have been restricted to the account you have with your ID provider (e.g. GitHub, Okta) account will subsequently be accessible.

./pachctl auth login

Options

 -o, --one-time-password If set, authenticate with a Dash-provided One-Time Password, rather than via GitHub

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl auth - Auth commands manage access to data in a Pachyderm cluster

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_list-datum.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl list-datum

Return the datums in a job.

Synopsis

Return the datums in a job.

./pachctl list-datum job-id

Options

 --page int Specify the page of results to send
 --pageSize int Specify the number of results sent back in a single page
 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_auth.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl auth

Auth commands manage access to data in a Pachyderm cluster

Synopsis

Auth commands manage access to data in a Pachyderm cluster

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

		./pachctl auth activate - Activate Pachyderm’s auth system

		./pachctl auth check - Check whether you have reader/writer/etc-level access to ‘repo’

		./pachctl auth deactivate - Delete all ACLs, tokens, and admins, and deactivate Pachyderm auth

		./pachctl auth get - Get the ACL for ‘repo’ or the access that ‘username’ has to ‘repo’

		./pachctl auth get-auth-token - Get an auth token that authenticates the holder as “username”

		./pachctl auth get-config - Retrieve Pachyderm’s current auth configuration

		./pachctl auth list-admins - List the current cluster admins

		./pachctl auth login - Log in to Pachyderm

		./pachctl auth logout - Log out of Pachyderm by deleting your local credential

		./pachctl auth modify-admins - Modify the current cluster admins

		./pachctl auth set - Set the scope of access that ‘username’ has to ‘repo’

		./pachctl auth set-config - Set Pachyderm’s current auth configuration

		./pachctl auth use-auth-token - Read a Pachyderm auth token from stdin, and write it to the current user’s Pachyderm config file

		./pachctl auth whoami - Print your Pachyderm identity

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_inspect-commit.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl inspect-commit

Return info about a commit.

Synopsis

Return info about a commit.

./pachctl inspect-commit repo-name commit-id

Options

 --raw disable pretty printing, print raw json

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_stop-job.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl stop-job

Stop a job.

Synopsis

Stop a job. The job will be stopped immediately.

./pachctl stop-job job-id

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_deploy_storage.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl deploy storage

Deploy credentials for a particular storage provider.

Synopsis

Deploy credentials for a particular storage provider, so that Pachyderm can
ingress data from and egress data to it. Currently three backends are
supported: aws, google, and azure. To see the required arguments for a
particular backend, run “pachctl deploy storage “

./pachctl deploy storage <backend> ...

Options inherited from parent commands

 --block-cache-size string Size of pachd's in-memory cache for PFS files. Size is specified in bytes, with allowed SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --dash-image string Image URL for pachyderm dashboard
 --dashboard-only Only deploy the Pachyderm UI (experimental), without the rest of pachyderm. This is for launching the UI adjacent to an existing Pachyderm cluster. After deployment, run "pachctl port-forward" to connect
 --dry-run Don't actually deploy pachyderm to Kubernetes, instead just print the manifest.
 --dynamic-etcd-nodes int Deploy etcd as a StatefulSet with the given number of pods. The persistent volumes used by these pods are provisioned dynamically. Note that StatefulSet is currently a beta kubernetes feature, which might be unavailable in older versions of kubernetes.
 --etcd-cpu-request string (rarely set) The size of etcd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --etcd-memory-request string (rarely set) The size of etcd's memory request. Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --etcd-storage-class string If set, the name of an existing StorageClass to use for etcd storage. Ignored if --static-etcd-volume is set.
 --expose-object-api If set, instruct pachd to serve its object/block API on its public port (not safe with auth enabled, do not set in production).
 --image-pull-secret string A secret in Kubernetes that's needed to pull from your private registry.
 --local-roles Use namespace-local roles instead of cluster roles. Ignored if --no-rbac is set.
 --log-level string The level of log messages to print options are, from least to most verbose: "error", "info", "debug". (default "info")
 --namespace string Kubernetes namespace to deploy Pachyderm to. (default "default")
 --no-dashboard Don't deploy the Pachyderm UI alongside Pachyderm (experimental).
 --no-expose-docker-socket Don't expose the Docker socket to worker containers. This limits the privileges of workers which prevents them from automatically setting the container's working dir and user.
 --no-guaranteed Don't use guaranteed QoS for etcd and pachd deployments. Turning this on (turning guaranteed QoS off) can lead to more stable local clusters (such as a on Minikube), it should normally be used for production clusters.
 --no-metrics Don't report user metrics for this command
 --no-rbac Don't deploy RBAC roles for Pachyderm. (for k8s versions prior to 1.8)
 -o, --output string Output formmat. One of: json|yaml (default "json")
 --pachd-cpu-request string (rarely set) The size of Pachd's CPU request, which we give to Kubernetes. Size is in cores (with partial cores allowed and encouraged).
 --pachd-memory-request string (rarely set) The size of PachD's memory request in addition to its block cache (set via --block-cache-size). Size is in bytes, with SI suffixes (M, K, G, Mi, Ki, Gi, etc).
 --registry string The registry to pull images from.
 --shards int (rarely set) The maximum number of pachd nodes allowed in the cluster; increasing this number blindly can result in degraded performance. (default 16)
 --static-etcd-volume string Deploy etcd as a ReplicationController with one pod. The pod uses the given persistent volume.
 --tls string string of the form "<cert path>,<key path>" of the signed TLS certificate and private key that Pachd should use for TLS authentication (enables TLS-encrypted communication with Pachd)
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl deploy - Deploy a Pachyderm cluster.

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_create-branch.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl create-branch

Create a new branch, or update an existing branch, on a repo.

Synopsis

Create a new branch, or update an existing branch, on a repo, starting a commit on the branch will also create it, so there’s often no need to call this.

./pachctl create-branch <repo-name> <branch-name> [flags]

Options

 --head string The head of the newly created branch.
 -p, --provenance []string The provenance for the branch. (default [])

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_get-object.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl get-object

Return the contents of an object

Synopsis

Return the contents of an object

./pachctl get-object hash

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_list-pipeline.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl list-pipeline

Return info about all pipelines.

Synopsis

Return info about all pipelines.

./pachctl list-pipeline

Options

 --raw disable pretty printing, print raw json
 -s, --spec Output create-pipeline compatibility specs.

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

pachctl/pachctl_delete-file.html

 Navigation

 		
 index

 		Pachyderm 1.8.0 documentation »

./pachctl delete-file

Delete a file.

Synopsis

Delete a file.

./pachctl delete-file repo-name commit-id path/to/file

Options inherited from parent commands

 --no-metrics Don't report user metrics for this command
 -v, --verbose Output verbose logs

SEE ALSO

		./pachctl -

Auto generated by spf13/cobra on 3-Dec-2018

 © Copyright 2018, Pachyderm Inc..
 Created using Sphinx 1.4.4.

_images/okta_form.png
1 Create SAML Integration

@ s @ o

@ s

cenERAL
Siglesnon URL @ [——
s i for RecipntURL and Dt URL
(00 o s ap o et thor S50 UL
Atoncs U 5P ity D) © e ——

ErTa—

Koo D forrt © e .
Arocaton s @ [ry— 5

ATIREUTE STATEMENTS (0PTIONAL) Leamivore.
Heme Nome ormat (o) Vlue
Unected+ =) =

GROUP ATTRAUTE STATEMENTS (OPTIONAL)

Neme Nome format oo Fter
memeecor Unoeoted+ | saswn « x
g nomer

© Frosewve s ssrion g fom e iomtonsbvs

P

e s e ssrton- s 10 vy h ko yu atred v

_images/pipeline.png
Analysis-Ready Var. Calling
Reads HC in ERC mode

¥
Genotype Likelihoods

<
4
Raw Variants

_images/auth_dash4.png
€& C | @ localhost:30080/app/repos/test

PACH DASH ‘Search Pachyderm
test
dwhitena anually Ingested Repo
No comm
Log out
B odatafies € 0commits
B Odirectories %* 0branches
Home
L Q os ® ocommittrees
9D Recent Changes
Latest content
Nothing here yet!
= Repos

i Pipelines Access Control te St

You can read, modify, and edit access controls on this repo (You are an owner).

Jobs.
Modify access controls

Settings Danger Zone

&

DELETE THIS REPO

_images/auth_dash5.png
¢ > C [® localhost:30080/app/repos/test/accesscontrol

PACH DASH ‘Search Pachyderm

Access Controls for "test"

dwhitena
You are an admin
, Logout
You can read, modify, and edit access controls on this repo.
~ Home Other owners
Can also read, modify, and edit access controls on this repo
9D Recent Changes
44 Enter GitHub username to add +
= Repos N
Writers

rs

Pipelines. Can read and modify this repo t e st
Jobs * Jdoliner x
S +

Enter GitHub username to add +

&

Settings
Readers

Can read this repo

e‘ Joeyzwicker x
. msteffen x
+

Enter GitHub username to add +

Admins

Can read