p6spy Documentation
Release 3.9.2-SNAPSHOT

p6spy team

Feb 21, 2022

Contents

P6Spy Installation 3
.1 Application SErvers: i i i e e e e e e e e e e e e e e e 3
1.2 JBoss/WildFly e e e e e e 4
1.3 Apache Tomcat and Apache TomEE 5
1.4 Glassfishand Payara 6
1.5 WeblogiC o e e e e e e e e e 8
1.6 Generic Instructions L L e e e e e e 9
Integrating P6Spy 11
2.1 Datasource Way e e e e e e e e e e e e e e e e 11
2.2 Connection URL way it e e 11
2.3 Spring Boot autoconfiguration oL L e e e e e e e e 11
24 Logfile oL e e e e e 12
Configuration and Usage 13
3.1 Propertiesexposal viaJMX oL e 14
3.2 Command Line Options o ot i i e e e e e e e e e 14
3.3 Common Property File Settings e 15
Release Notes 27
4.1 392 Unreleased) e e e e e e e e 27
4.2 3.9.1(2020-07-20) oo e e e 27
4.3 3.9.0(2020-04-04) e e 27
4.4 387 (2019-12-23) . . . o e 27
45 3.8.6(2019-00-24) e e 28
4.6 3.8.5(2019-08-07) . . . o o o i e e e 28
4.7 3.8.4(2019-08-04) o e 28
4.8 3.83(2019-07-21) o e 28
4.9 3.8.2(2019-04-07) o o e e e e 28
4.10 3.8.1(2018-12-14) o o e e e 29
411 3.8.0(2018-10-15) o o o e 29
412 3.7.0 (2018-04-03) o e 29
413 3.6.0 2017-11-12) . . . o o o e e e e 29
414 351 2017-11-02) . . . o o o e e e e e e e e 29
4.15 3.5.0Q2017-11-02) . . . o o e e e e e 30
416 3.4.0 (2017-10-13) o o o e e e e 30
417 3.3.0(2017-09-09) e e e 30

418 3.2.0(2017-09-01) o o 30
4.19 3.1.0(2017-08-22) e 31
420 3.0.0 (2016-10-26) 31
421 3.0.0-rc3 (2016-10-00) o L e e e e e e e 31
422 3.0.0-rc2 (2016-09-08) e e 31
423 3.0.0-rcl (2016-09-02) 32
4.24 3.0.0-alpha-1 (2016-07-26) e 32
425 23.1(2016-06-23) 32
426 23.0(2016-05-11) o 32
427 22.02016-03-23) e e e e e e 33
428 2.1.4 (2015-05-09)o 33
429 213 (2015-04-02) L 33
430 2.1.2(2014-10-14) . . . 33
431 2.1.1(2014-09-03) o 33
432 2.1.0 (2014-06-15) o e e e e e e 34
433 2.02(2014-04-04) e 34
434 2.0.1 (2014-03-15) . . . o o e 34
435 2.0.0(2014-03-04) 35
436 1.3 (2005-12-27) . . . o e e e 35
437 1.2 o e e 35
438 11 e e e 36
439 101 . e e 36
440 1.0ProductionRelease 36
441 1.0beta . . .o 36
442 1.0beta8 36
443 1.0Dbeta7 . . .o e e e e e e 36
444 1.0betado e e e 37
445 1.0betad . . 37
446 1.0betado 37
447 1.0betald . ..o 37
448 1.0betal &2 . . o e e e e e e 37
449 1.0alpha e 37
450 0.8 e 38
451 072 . 0 o e 38
452 071 . oo o 38
453 0.7 o e e 38
454 0.6 . e 39
Known Issues 41
5.1 Non-standard (driver specific) JDBC methods are not directly accessible 41
5.2 OUT parameters of a stored procedure are notlogged 42
Frequently Asked Questions 43
Development 45
Tl PrerequiSites o v o e e e e e e e e e e e e e e e e e e 45
7.2 Building the project e e e 45
7.3 License headers e e e e e e e e 45
7.4 Releasing the Version o e e e e 45
7.5 Running the tests o v v v i e e e e e e e e e e e e e e e e e e e 46
Thanks 49

p6spy Documentation, Release 3.9.2-SNAPSHOT

P6Spy is a framework that enables database activity to be seamlessly intercepted and logged with no code changes to
existing applications.

Contents:

Contents 1

p6spy Documentation, Release 3.9.2-SNAPSHOT

2 Contents

CHAPTER 1

P6Spy Installation

This section will document the steps to install P6Spy on various application servers. In additional, it contains Generic
Instructions for applications servers not listed as well as applications that do not use an application server. If you
create instructions for other application servers, send us a copy for possible publication in the documentation.

The instructions for all application servers make the following assumptions.

1. The operating system is *nix. For Windows installations, the steps are the same but the syntax will be a little
different (environment variables, path separators, etc).

2. MySQL is the database being used. If you are using a different database, just substitute the JDBC connection
URL and driver class appropriate for your database.

3. Database connections are being obtained from a JNDI DataSource configured on the application server. If the
application does not use a JNDI DataSource, the instructions for modifying the data source configuration will
be incorrect. You will need to use the instructions as guidelines for modifying the application specific database
configuration. The instructions for adding the p6spy jar file and spy.properties will still be correct.

4. You have already downloaded the P6Spy distribution and extracted the contents to a temporary directory.
Throughout the rest of the instructions, the files included in this temporary directory will be referenced by
name only.

5. Your application is running on Java 1.6 or later. For earlier versions of Java, you will need to use P6Spy 1.3

After you have completed the installation, a log file called spy.log will be created in the current working directory
when the application runs. This log file will contain a list of the various database statements executed. You can alter
the location of this log file as well as what gets logged by editing spy.properties. See Common Property File Settings
for the various configuration options available.

1.1 Application Servers:

* JBoss/WildFly
* Apache Tomcat and Apache TomEE

* Glassfish and Payara

http://p6spy.github.io/p6spy/mail-lists.html
https://github.com/p6spy/p6spy/wiki/Download
../1.3/install.html
configandusage.html#settings

p6spy Documentation, Release 3.9.2-SNAPSHOT

* Weblogic
e Generic Instructions
Limitations:

P6spy doesn’t support Websphere application server (for details, see: issue#186).

1.2 JBoss/WildFly

The following sections contain specific information on installing P6Spy on JBoss 4.2.x, 5.1.x, 6.1.x and JBoss 5.x EAP
and JBoss 7.1.x, WildFly 8.x

Please note XA Datasource proxying IS NOT supported for these.

1.2.1 JBoss 4.2.x, 5.1.x, 6.1.x and JBoss 5.x EAP

The following instructions were tested with JBoss 4.2.3.GA, 5.1.0.GA, 6.1.0.Final and JBoss 5.2.0 EAP. For these
instructions, P6Spy assumes that you are using the default server residing in $JBOSS_DIST\server\default,
where $JBOSS_DIST is the directory in which JBoss is installed.

1. Move the p6spy.jar file to the $JBOSS_DIST\server\default\1lib directory.
2. Move the spy.properties file to the SJBOSS_DIST\server\default\conf directory.

3. Update the connection URL and driver class for your data source in
$JBOSS_DIST\server\default\deploy. This file is normally called ?????-ds.xml. An
example of the pertinent portions (not the complete XML file) follows:

<jndi-name>MySqlDS</jndi-name>
<connection-url>jdbc:pb6spy:mysgl://<hostname>:<port>/<database></connection-url>
<driver-class>com.p6spy.engine.spy.P6SpyDriver</driver-class>

1.2.2 JBoss 7.1.x, WildFly 8.x, WildFly 10.x

The following instructions were tested with JBoss 7.1.0, WildFly 8.1.Final and WildFly 10.0.0.Final (works with p6spy
version 2.1.0 or higher). For these instructions, P6Spy assumes that you are using the standalone and $JBOSS_DIST
is the directory in which JBoss/WildFly is installed.

1. Deploy p6spy.jar as a module:

e viamovingittotothe SJBOSS_DIST\modules\system\layers\base\com\p6spy\main (for
Wildfly) or to $JBOSS_DIST\modules\com\p6spy\main (for JBoss 7.1) directory

¢ and via providing module . xml in the same directory with the contents:

<module xmlns="urn: jboss:module:1.0" name="com.pb6spy">
<resources>
<resource-root path="p6spy-2.0.3.jar"/>
</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api"/>
<!-- make sure to refer to module holding real driver -->
<module name="com.h2database.h2"/>

(continues on next page)

4 Chapter 1. P6Spy Installation

https://github.com/p6spy/p6spy/issues/186

p6spy Documentation, Release 3.9.2-SNAPSHOT

(continued from previous page)

</dependencies>
</module>

please note, that p6spy-2.0.3 version jar is used in the sample configuration. Moreover the reference to module
holding the real (proxied) jdbc driver has to be provided (in the sample case is h2 one used).

2. Move the spy.properties file to the $JBOSS_DIST\bin directory.

3. Update the connection URL and driver section in your <datasources> in
$JBOSS_DIST\standalone\configuration\standalone.xml. An example of the pertinent
portions (not the complete XML file) follows:

<datasources>
<datasource jndi-name="java:/jdbc/p6spy" enabled="true" use-java-context=
—"true" pool-name="pb6spyPool">
<connection-url>jdbc:p6spy:h2:tcp://<hostname>:<port>/<database>
—</connection-url>
<driver>p6spy</driver>

</datasource>

<drivers>
<driver name="p6spy" module="com.p6spy">
<driver-class>com.pbspy.engine.spy.P6SpyDriver</driver-class>

</driver>
<!-- make sure that you also include the real driver -->
<driver name="h2" module="com.h2database.h2">
<xa-datasource-class>org.h2. jdbcx.JdbcDataSource</xa-datasource-class>

</driver>

</drivers>

</datasources>

Please note that you have to include both drivers in the corresponding section, the real driver (here the H2 driver)
and the p6spy driver, although only the p6spy driver is referenced after the connection URL.

1.3 Apache Tomcat and Apache TomEE

The following sections contain specific information on installing P6Spy on Apache Tomcat and TomEE.

1.3.1 Apache Tomcat 6.x, 7.x, 8.x, 9.x and TomEE 1.6.x, 7.x, 8.x

The following instructions were tested with Apache Tomcat versions: 6.0.53, 7.0.107, 8.5.61 and 9.0.41 as well
as Apache TomEE 1.6.0.2 (Webprofile, Plus), 7.1.2 (Webprofile, Plus, Plum), 8.0.4 (Microprofile, Webprofile, Plus,
Plum). For these instructions, it is assumed that SCATALINA_HOME refers to the tomcat/tomee installation directory.
Please be aware that there are many ways to configure JNDI data sources on tomcat/tomee.

1. Move the pé6spy.jar file to the lib directory. =~ An example of the path to your lib directory is
SCATALINA_HOME\1lib\.

2. Move the spy.properties file to the lib directory. An example of the path to your lib directory is
SCATALINA_HOME\1ib\.

3. Configure the class name of the real JDBC driver in spy.properties

1.3. Apache Tomcat and Apache TomEE 5

p6spy Documentation, Release 3.9.2-SNAPSHOT

driverlist=com.mysqgl. jdbc.Driver

4. Modify the JDBC connection URL and driver class for the data source. Please be aware that there are sev-
eral places where a JNDI data source may be defined. It is normally defined in a <Resource/> element
in SCATALINA_ BASE/conf/server.xml or in the application specific SCATALINA_ BASE/conf/
catalina/localhost/???7?.xml.See Tomcat 6 JNDI Resources/Tomcat 7 JNDI Resources/Tomcat 8
JNDI Resources for specifics of where a data source is configured. An example of the pertinent portions of the
resource definition are shown below.

<Resource name=""jdbc/mydb"
type="javax.sqgl.DataSource"

driverClassName="com.pbspy.engine.spy.P6SpyDriver"
url="jdbc:pb6spy:mysgl://<hostname>:<port>/<database>"

/>

1.4 Glassfish and Payara

The following section contains specific information on installing P6Spy on Glassfish 3.1.2.2, 4.0 and Payara 4.1.144
(works with p6spy version 2.1.0 or higher).

Please note XA Datasource proxying IS supported for these.

1.4.1 Glassfish 3.1.2.2, 4.0 and Payara 4.1.144

The provided instructions were tested with Glassfish OSE 3.1.2.2, Glassfish OSE 4.0 and Payara 4.1.144. In later
section is SGLASSFISH_HOME the directory where Glassfish/Payara is installed and $SDOMAIN_X is the domain
name used for deployment (for example, can be: domainl).

1. Move the p6spy.jar file to the SGLASSFISH_HOME/domains/$DOMAIN_X/1lib/ext directory.
2. Move the spy.properties file to the SGLASSFISH_HOME/domains/$DOMAIN_X/config directory.
3. Configure new datasource. Please note there are 3 configuration options available:

 updating JDBC Url if using java.sqgl.Driver

using command line:

create jdbc connection pool

asadmin create-jdbc-connection-pool --driverclassname=com.p6spy.engine.spy.
—P6SpyDriver —-restype=java.sql.Driver —-property=URL='jdbc:pb6spy:h2:tcp://
—<hostname>:<port>/<database>':User="'<username>':Password='<password>' p6spyPool

ping the pool to prove it works (optionally)
asadmin ping-connection-pool p6spyPool

create jdbc resource
asadmin —--user=<asadmin_user> —--passwordfile=<sample_passworfile.properties>
—create-jdbc-resource --connectionpoolid=p6spyPool jdbc/p6Spy

or directly by editing SGLASSFISH_HOME/domains/$DOMAIN_X/config/domain.xml (please note
the previous commands would lead to similar added to your config file):

6 Chapter 1. P6Spy Installation

http://tomcat.apache.org/tomcat-6.0-doc/jndi-resources-howto.html#JDBC_Data_Sources
http://tomcat.apache.org/tomcat-7.0-doc/jndi-resources-howto.html#JDBC_Data_Sources
http://tomcat.apache.org/tomcat-8.0-doc/jndi-datasource-examples-howto.html
http://tomcat.apache.org/tomcat-8.0-doc/jndi-datasource-examples-howto.html

p6spy Documentation, Release 3.9.2-SNAPSHOT

<jdbc-connection-pool driver-classname="com.pbspy.engine.spy.P6SpyDriver"
—res-type="7Jjava.sgl.Driver" name="pb6spyPool">
<property name="URL" value="jdbc:pb6spy:h2:tcp://<hostname>:<port>/
—<database>"></property>
<property name="Password" value=""></property>
<property name="User" value="sa"></property>
</jdbc-connection-pool>
<jdbc-resource pool-name="p6spyPool" Jndi-name="7jdbc/pbspy"></jdbc-resource>

* javax.sgl.ConnectionPoolDataSource proxying (via additional datasource)

using command line:

create jdbc connection pool

asadmin create-jdbc-connection-pool --datasourceclassname=com.p6spy.
—engine.spy.P6DataSource —-restype=javax.sqgl.ConnectionPoolDataSource ——
—property=realDataSource="'<realDSJndi>"':User="'<username>':Password="'<password>"'
—pbspyPool

ping the pool to prove it works (optionally)
asadmin ping-connection-pool pé6spyPool

create jdbc resource
asadmin —-user=<asadmin_user> --passwordfile=<sample_passworfile.
—properties> create-jdbc-resource --connectionpoolid=p6spyPool jdbc/p6Spy

or directly by editing SGLASSFISH_HOME/domains/$DOMAIN_X/config/domain.xml (please note
the previous commands would lead to similar added to your config file):

<jdbc-connection-pool datasource-classname="com.pbspy.engine.spy.
—P6DataSource" res-type="javax.sgl.ConnectionPoolDataSource" name="pé6spyPool">
<property name="realDataSource" value="jdbc/<realDSJIndi>"></property>
<property name="Password" value=""></property>
<property name="User" value="sa"></property>
</jdbc-connection-pool>
<jdbc-resource pool-name="pb6spyPool" jndi-name="7jdbc/pbspy"></jdbc—
—resource>

* javax.sql.XADataSource proxying (via additional datasource)

using command line:

create jdbc connection pool

asadmin create-jdbc-connection-pool —--datasourceclassname=com.p6spy.
—engine.spy.P6DataSource --restype=javax.sql.XADataSource —-—
—property=realDataSource="'<realDSJndi>"':User="'<username>':Password='<password>"
—p6spyPool

ping the pool to prove it works (optionally)
asadmin ping-connection-pool pé6spyPool

create jdbc resource
asadmin --user=<asadmin_user> --passwordfile=<sample_passworfile.
—properties> create-jdbc-resource —--connectionpoolid=p6spyPool jdbc/p6Spy

or directly by editing SGLASSFISH_HOME/domains/$DOMAIN_X/config/domain.xml (please note
the previous commands would lead to similar added to your config file):

1.4. Glassfish and Payara 7

p6spy Documentation, Release 3.9.2-SNAPSHOT

<jdbc—-connection-pool datasource-classname="com.pbspy.engine.spy.

—P6DataSource" res-type="javax.sql.XADataSource" name="p6spyPool">

<property name="realDataSource" value="7jdbc/<realDSJIndi>"></property>
<property name="Password" value=""></property>
<property name="User" value="sa"></property>
</jdbc—-connection-pool>
<jdbc-resource pool-name="p6spyPool" jndi-name="7jdbc/pbspy"></jdbc—

—resource>

Please note, you need to replace following:

<asadmin_user> - asadmin user name (by default asadmin)

<sample_passworfile.properties> - is a properties file, that should hold your asadmin pass-
word (by default should hold: AS_ADMIN_ADMINPASSWOD=adminadmin)

<username> - username to be used for the DB access
<password> - password to be used for DB access
<hostname> - DB server hostname

<port> - DB server port

<database> - DB server database

<realDSJndi> - jndi-name of the real datasource to be proxied

And the jndi name of the created jndi resource in the sample configurations is: jdbc/p6spy

1.5 Weblogic

The following section contains specific information on installing P6Spy on Weblogic 12.1.3 (works with p6spy version
2.1.0 or higher).

1.5.1 Weblogic 12.1.3

The provided instructions were tested with Weblogic 12.1.3 (for developers). In later section is $SWLS_HOME the
directory where Weblogic is installed and $SDOMAIN_X is the domain name used for deployment (for example, can
be: mydomain).

1. Move the p6spy.jar file to the SWLS_HOME /user_projects/domains/$DOMAIN_X/1ib directory.

2. Move the spy.properties file to the SWLS_HOME /user_projects/domains/$DOMAIN_X directory.

3. Update JDBC URL in the datasource to something like:

’ jdbc:p6spy:mysgl://<hostname>:<port>/<database>

4. Change driver in the datasource to:

’ com.p6spy.engine.spy.P6SpyDriver

Chapter 1. P6Spy Installation

p6spy Documentation, Release 3.9.2-SNAPSHOT

1.6 Generic Instructions

The following installation instructions are intended for use with other application servers and applications that do not
use application servers. To install P6Spy, complete the following steps:

1. Put the péspy.jar file in your classpath.

2. Put spy.properties into a directory which is on the classpath. Many application servers have a directory for
configuration files which are accessible via the classpath. Most applications which do not run an application
server will have one as well.

3. Configure the class name of the real JDBC driver in spy.properties

driverlist=com.mysqgl. jdbc.Driver

4. Configure the data source.

If the JNDI DataSource is configured using a driver class (implements javax.sql.Driver), then you should mod-
ify the JDBC connection URL to include ‘pbspy:” and update the driver class to com.p6spy.engine.
spy.P6SpyDriver. Example URL including pbspy: jdbc:p6spy:mysgl://<hostname>:<port>/
<database>.

If the JNDI DataSource is configured using a data source class (implements javax.sql.DataSource) then you will need
to create a ‘proxy’ data source using the following instructions.

1. Rename the JNDI name of the current data source to something else. For example, if the current name is
‘jdbc/myds’, then change it to ‘jdbc/myds-real’.

2. Create a new JNDI DataSource with the original name of the real data source. Continuing with the example
from above, the INDI name should be ‘jdbc/myds’.

3. Create one property for the data source called ‘RealDataSource’. The value of this property should be
‘jdbc/myds-real’

4. Set the class or implementation to com.p6spy.engine.spy.P6éDataSource.

5. If the application server requires a classpath for the datasource, it should include p6spy.jar and spy.properties.

1.6. Generic Instructions 9

p6spy Documentation, Release 3.9.2-SNAPSHOT

10 Chapter 1. P6Spy Installation

CHAPTER 2

Integrating P6Spy

A very typical use case for P6Spy is to enabled SQL logging to troubleshoot various database related issues during
development. Assuming that making code changes is acceptable, then the following instructions can be used. If
making code changes is not a viable option, then following the instructions for Installing P6Spy.

1. Add péspy.jar to the classpath. If your application uses Maven, Ivy, Gradle, etc just add a dependency on
pospy:pospy.
2. Wrap your DataSource with P6DataSource or modify your connection URL to add ‘p6spy:’.

2.1 Datasource way

If your application uses a DataSource, simply wrap your current DataSource object with P6DataSource. P6DataSource
has a constructor method that accepts the DataSource to wrap. This is by far the simplest method especially if you use
a dependency injection framework such as Spring or Guice.

2.2 Connection URL way

If your application obtains connections from DriverManager, simply modify your JDBC connection URL to include
‘pbspy:’. For example, if your URL is jdbc :mysqgl://host/db then just change it to jdbc:p6spy:mysqgl:/
/host/db. P6Spy implements the JDBC 4.0 API allowing automatic registration of our JDBC driver with Driver-
Manager. As long as your application obtains connections through DriverManager, you only need to modify your
database connection URL to activate P6Spy.

2.3 Spring Boot autoconfiguration

Spring Boot autoconfiguration is handled by the separate project: gavlyukovskiy/spring-boot-data-source-decorator,
please consult the respective documentation for usage.

11

install.html
https://github.com/gavlyukovskiy/spring-boot-data-source-decorator

p6spy Documentation, Release 3.9.2-SNAPSHOT

2.4 Log file

By default, a file called spy.log will be created in the current working directory. To customize the logging (including
using your application’s logging framework) you can provide alternate configuration in a file called spy.properties.
This file just needs to be at the root of the classpath. See Configuration and Usage for details.

12 Chapter 2. Integrating P6Spy

configandusage.html

CHAPTER 3

Configuration and Usage

Configuration follows layered approach, where each layer overrides the values set by the lower ones (leaving those
not provided unchanged):

» JMX set properties (please note, that these are reset on next reload)
» System properties

* Environment variables

* spy.properties

¢ defaults

For the full list of available options, see the section Common Property File Settings. Please note that providing any of
these via System properties/Environment variables is possible, using the particular property name following naming
rule: p6spy.config.<property name><property value>;

Please be aware of the restriction. In fact this also means you need to be aware of values set by the lower configuration
layers (including defaults) to properly override/modify those.

There are two cases one needs to distinguish when overriding:
 don’t override the property on the current level (can be achieved by specifying neither key nor value) and

¢ clear the property value (can be achieved by specifying the key empty string value, could be for specified in
spy.properties like this: excludecategories=)

The spy.properties configuration file can be located in various places. The following locations are searched to
locate the file.

1. The file name configured in the system property “spy.properties” (can include path)
2. The current working directory (for relative path) or any directory (for absolute path)

3. The classpath

13

p6spy Documentation, Release 3.9.2-SNAPSHOT

3.1 Properties exposal via JMX

Please note that all the properties are exposed via JMX. So you can use your tool of choice (e.g.,JConsole) to

view/change them. Moreover reload operation is exposed as well. To provide on-demand reload option.

In the JConsole p6spy related JMX attributes might look like this:

Connection Window Help
| plde 19638 org. apache. cat alina stanup. Bootsirap start g B
yervlew | Memory | Theeads | Classes | WM Summary | MBeans | L .
¢ = com. plapy. arepna. bpmng = | Attribate values
N PilogOptions Ham Waliin
9 ;Il:llhu.lf:. append true
F';’:"iﬁ#; ;:rﬁ;ﬁjﬂ | lappander Com. pliEy #Tgne. 5Py 3pparor Filtlogger
RRFCIat RIM st ofiush alte
SOLESErassien =
thudncﬂnqmlm DatahaselialectDatoFormat o -HHH -y

o [¢

Imhadelinh
EschidbLivt
Fikpr

o Operulions
T S cem. phisEy enging ey
& @ PESpylptiorm
1 Mtnbutes|

Appondar

Loghls

Drivearhiamag

[vl et

Sl kT raer arCliek &
LogHaysageformat
Apfind

Hodubeind

Crvretrhst

P - T o

RilzgdPr oporties
ApleadFropertiesinbenad
PDIC et Faerton

M onlet Prossd e r Rl
PO el CLisl o
Apalisl afoire
Rl it e Sezae il liad
Aealial aScorcefroperties
Coak b asaOriabo Dk of ormat
HoduleMames
SlaeckTrace

= Dpralions
S AN &b il

|4

I 3

MO onled Custom

JHCAC oond et Faei Gy
AT oond et P rossdar IRL
LogHessageFormat
Loghin

Hoduytelamer

Hodutelivt

Asall slaSoirce

Aealial atoircedlays
Reall alaSourceFroperties
RpleadFropert es
AplopFropert eeirk pnogd
SlackTrace

Sl kTracellany:

Lorg. ha Griver)
org N Driger

Codm. plspy #raEng . 3py. appearch, Binghe LimeF ormat

spritlag

[£omm. plapy, englne, ypy, PRSpyF st ory, com,plepy.engene. loggeng. PiLogFacdiory]
coim. plispy ancpne, ey PSS eaF ackony. ¢ om pepy. engirs, logging. PilLcoF actory

talze
0]
falsa

Belraxh

JConsole

3.2 Command Line Options

Every parameter specified in the property file can be set and overriden at the command line using the Java -D flag

(system property), adding the the prefix:

p6spy.config.

An example follows:

java -Dpb6spy.config.logfile=my.log -Dpb6spy.config.append=true

Moreover to set different file to be used as the properties file (as an example: another_spy.properties), it should be

specified using system property “‘spy.properties” as:

java -Dspy.properties=c:\jboss\lib\another_spy.properties

The encoding for loading the properties file can be set via -Dfile.encoding=<charset name> or via pbspy

specific System property: ~-Dspy .properties.charset=<charset name>.

14

Chapter 3. Configuration and Usage

p6spy Documentation, Release 3.9.2-SNAPSHOT

3.3 Common Property File Settings

An example spy.properties file follows (please note default values mentioned as these refer to defaults men-
tioned in section: Configuration and Usage):

iddaddsdssdssddssadasasasddasadastddatddaddsatddasdaddddiddsaidi

P6Spy Options File
See documentation for detailed instructions
http://p6spy.github.io/p6spy/2.0/configandusage.html

FHEAFFRAFFRAFFHAFFRAFFRAFFHAFFAAFHHAFFAAFFAAFHAAFHAAFRAAFHAAFEAASF

idddaddsdssdssddssadasadasddasadasddatddadddadddaddaddddiddsaidi

MODULES
#
Module list adapts the modular functionality of P6Spy.
Only modules listed are active.
(default is com.p6spy.engine.logging.P6LogFactory and
com.p6spy.engine.spy.P6SpyFactory)
Please note that the core module (P6SpyFactory) can't be
deactivated.
Unlike the other properties, activation of the changes on

this one requires reload.
[didazdddasddaasadaasasdasaasdadtaasatsadataadataadadaddadadaadaid
#modulelist=com.pb6spy.engine.spy.P6SpyFactory,com.péspy.engine.logging.P6LogFactory,
—com.pbspy.engine.outage.P60utageFactory

lddagdzaadasadssddssddasddatdsssdsatdsasdsadddadddadadddadddsddd
CORE (P6SPY) PROPERTIES
#HAFHRAAAAFFFFRAAAAAFFREAAAFFFFRAARAAFFFEAAAAFFHRRAAAAFFFRRAAAAS

A comma separated list of JDBC drivers to load and register.
(default is empty)

#
#
#
Note: This is normally only needed when using P6Spy in an

application server environment with a JNDI data source or when
using a JDBC driver that does not implement the JDBC 4.0 API

(specifically automatic registration).

#driverlist=

for flushing per statement
(default is false)
#autoflush=rfalse

sets the date format using Java's SimpleDateFormat routine.

In case property is not set, milliseconds since 1.1.1970 (unix time) is used,_
— (default is empty)

#dateformat=

prints a stack trace for every statement logged
#stacktrace=false

1if stacktrace=true, specifies the stack trace to print
#stacktraceclass=

determines 1if property file should be reloaded

Please note: reload means forgetting all the previously set
settings (even those set during runtime - via JMX)

and starting with the clean table

HH W R

(continues on next page)

3.3. Common Property File Settings 15

p6spy Documentation, Release 3.9.2-SNAPSHOT

(continued from previous page)

(default 1is false)
#reloadproperties=rfalse

determines how often should be reloaded in seconds
(default 1is 60)
#reloadpropertiesinterval=60

specifies the appender to use for logging

Please note: reload means forgetting all the previously set
settings (even those set during runtime - via JMX)

and starting with the clean table

(only the properties read from the configuration file)
(default is com.pé6spy.engine.spy.appender.FilelLogger)
#appender=com.pbspy.engine.spy.appender.S1f4JLogger
#appender=com.p6spy.engine. spy.appender.StdoutLogger
#appender=com.péspy.engine.spy.appender.FilelLogger

#
#
#
#
#
#

name of logfile to use, note Windows users should make sure to use forward slashes,,
—1in their pathname (e:/test/spy.log)

(used for com.pé6spy.engine.spy.appender.FileLogger only)

(default is spy.log)

#logfile=spy.log

append to the pé6spy log file. if this is set to false the
log file is truncated every time. (file logger only)

(default 1s true)

#append=true

class to use for formatting log messages (default is: com.p6spy.engine.spy.appender.
—SingleLineFormat)
#logMessageFormat=com.p6spy.engine. spy.appender.SingleLineFormat

Custom log message format used ONLY IF logMessageFormat 1is set to com.pé6spy.engine.
—Spy.appender.CustomLineFormat

default is % (currentTime) |% (executionTime) |% (category) |connection% (connectionId) |
—%(sglSingleLine)

Available placeholders are:

% (connectionlId) the id of the connection

% (currentTime) the current time expressing in milliseconds

% (executionTime) the time in milliseconds that the operation took to_,
—complete

% (category) the category of the operation

% (effectiveSql) the SQL statement as submitted to the driver

$(effectiveSglSingleLine) the SQL statement as submitted to the driver, with all_,
—new lines removed

% (sql) the SQL statement with all bind variables replaced_
—with actual values
% (sglSingleLine) the SQL statement with all bind variables replaced,

—with actual values, with all new lines removed
#customLogMessageFormat=% (currentTime) | % (executionTime) | % (category) |connection
—% (connectionId) |%(sqlSingleLine)

format that is used for logging of the java.util.Date implementations (has to be,
—compatible with java.text.SimpleDateFormat)

(default is yyyy-MM-dd'T'HH:mm:ss.SSSZ)
#databaseDialectDateFormat=yyyy-MM-dd'T'HH:mm:ss.SSSZ

(continues on next page)

16 Chapter 3. Configuration and Usage

p6spy Documentation, Release 3.9.2-SNAPSHOT

(continued from previous page)

format that is used for logging of the java.sqgl.Timestamp implementations (has to_,
—be compatible with java.text.SimpleDateFormat)

(default is yyyy-MM-dd'T'HH:mm:ss.SSSZ)
#databaseDialectTimestampFormat=yyyy-MM-dd'T'HH:mm:ss.SSSZ

format that is used for logging booleans, possible values: boolean, numeric
(default is boolean)
#databaseDialectBooleanFormat=boolean

Specifies the format for logging binary data. Not applicable if excludebinary is_,
—true.

(default is com.p6spy.engine.logging.format.HexEncodedBinaryFormat)
#databaseDialectBinaryFormat=com.p6spy.engine.logging. format.PostgreSQLBinaryFormat
#databaseDialectBinaryFormat=com.p6spy.engine.logging.format.MySQLBinaryFormat
#databaseDialectBinaryFormat=com.p6spy.engine.logging. format.HexEncodedBinaryFormat

whether to expose options via JMX or not
(default 1is true)
#Jjmx=true

1f exposing options via jmx (see option: jmx), what should be the prefix used?

jmx naming pattern constructed is: com.p6spy(.<jmxPrefix>) ?:name=<optionsClassName>
please note, if there is already such a name in use it would be unregistered first_,
— (the last registered wins)

(default is none)

#jmxPrefix=

1f set to true, the execution time will be measured in nanoseconds as opposed to,,
—milliseconds

(default 1is false)

#useNanoTime=false

FEAHAFHAFAFEAFAFEAFAFEAFAFEAFAFHAFAFHAFAF AR A AR AR F AR A RS
DataSource replacement

#
#
Replace the real DataSource class in your application server
configuration with the name com.p6spy.engine.spy.P6DataSource
(that provides also connection pooling and xa support).
then add the JNDI name and class name of the real
DataSource here
#
#
#
#

#

#

Values set in this item cannot be reloaded using the
reloadproperties variable. Once it is loaded, it remains
in memory until the application is restarted.
#
#HE#AF A HAF AR AR RAF A ERF A EAF A AR F AR A AR A AR A AR F A HAFA
#realdatasource=/RealMySqlDS
#realdatasourceclass=com.mysql. jdbc. jdbc2.optional.MysglDataSource

FHEAFFHAFFRAFFHAFFRAFFRAFFHAFFRAFFAAFFHAFFAAFHAAFHAAFRAAFRAAFEAASF

DataSource properties

#

#

If you are using the DataSource support to intercept calls

to a DataSource that requires properties for proper setup,

define those properties here. Use name value pairs, separate
the name and value with a semicolon, and separate the

pairs with commas.

HHoH H R I W W

(continues on next page)

3.3. Common Property File Settings 17

p6spy Documentation, Release 3.9.2-SNAPSHOT

(continued from previous page)

#
The example shown here is for mysqgl
#

[didazdddasddaasaiaasasdasasasdataasatsadatsadataadadaddadadaadaid
#realdatasourceproperties=port; 3306, serverName; myhost, databaseName; jbossdb, foo;bar

diaddadzdagadasdsasdaastdsaddsatasatdsatdsatdsatdsasdasddaaddadisd
JNDI DataSource lookup

If you are using the DataSource support outside of an app
server, you will probably need to define the JNDI Context
environment.

If the P6Spy code will be executing inside an app server then
do not use these properties, and the DataSource lookup will
use the naming context defined by the app server.

additional elements, use the jndicontextcustom property.
You can define multiple properties in jndicontextcustom,
in name value pairs. Separate the name and value with a
semicolon, and separate the pairs with commas.

The example shown here is for a standalone program running on
a machine that is also running JBoss, so the JNDI context

#
#
#
#
#
#
#
#
#
#
The two standard elements of the naming environment are
#
#
#
#
#
#
#
#
is configured for JBoss (3.0.4).

#

#
#
#
#
#
#
#
#
#
#
#
jndicontextfactory and jndicontextproviderurl. If you need #
#
#
#
#
#
#
#
#
#
#
#

(by default all these are empty)
FHARFAAAAFAHARAAAAFARAAA AR R A AFA R A RA AR AR A AHA A A AHA RS
#jndicontextfactory=org. jnp.interfaces.NamingContextFactory
#jndicontextproviderurl=localhost:1099
#jndicontextcustom=java.naming.factory.url.pkgs;org. jboss.naming:org. jnp.interfaces

#jndicontextfactory=com. ibm.websphere.naming.WsnInitialContextFactory
#jndicontextproviderurl=iiop://localhost:900

FHEAFFRAFFRARFHAFFRAFHAAFFAAFHAAFEAAFEAAFRAFFEAAFRAFFRAAF R SRS
P6 LOGGING SPECIFIC PROPERTIES
#HEFHRAAAAAFFARAAAAAAFRAAAAAFFARAARAAFFFEAAAAFFFREAA A FFFRAAAAAF

filter what is logged

please note this 1is a precondition for usage of: include/exclude/sglexpression
(default is false)

#filter=false

comma separated list of strings to include

please note that special characters escaping (used in java) has to be done for the_
—provided regular expression

(default is empty)

#include=

comma separated 1list of strings to exclude

(default is empty)

#exclude=

sql expression to evaluate if using regex
please note that special characters escaping (used in java) has to be done for the_

—provided regular expression (continues on next page)

18 Chapter 3. Configuration and Usage

p6spy Documentation, Release 3.9.2-SNAPSHOT

(continued from previous page)

(default is empty)
#sqglexpression=

#1list of categories to exclude: error, info, batch, debug, statement,
#commit, rollback, result and resultset are valid values

(default is info,debug,result, resultset,batch)
#excludecategories=info, debug, result, resultset, batch

#whether the binary values (passed to DB or retrieved ones) should be logged with,,
—placeholder: [binary] or not.

(default is false)

#excludebinary=rfalse

Execution threshold applies to the standard logging of P6Spy.
While the standard logging logs out every statement

regardless of its execution time, this feature puts a time
condition on that logging. Only statements that have taken
longer than the time specified (in milliseconds) will be

logged. This way it is possible to see only statements that
have exceeded some high water mark.

This time is reloadable.

#

#

#

executionThreshold=integer time (milliseconds)
(default 1is 0)
#executionThreshold=

AAFHAAFHAFFHAFFRAFFHAFFAAFFRAFFAAFFAAFHAAFHAA AR A HAAFEAAF RS A
P6 OUTAGE SPECIFIC PROPERTIES
FHEAFFRAFFRARFHAFFRAFHAAFFAAFHAAFEAAFEAAFRAFFEAAFRAFFRAAFHAAF RS

Outage Detection

=

This feature detects long-running statements that may be indicative of

a database outage problem. If this feature is turned on, it will log any
statement that surpasses the configurable time boundary during its execution.
When this feature is enabled, no other statements are logged except the long
running statements. The interval property is the boundary time set in seconds.
For example, 1f this is set to 2, then any statement requiring at least 2
seconds will be logged. Note that the same statement will continue to be logged
for as long as it executes. So if the interval is set to 2, and the query takes
11 seconds, it will be logged 5 times (at the 2, 4, 6, 8, 10 second intervals).

outagedetection=true/false
outagedetectioninterval=integer time (seconds)

S o H R R H HR R HH HR W R R

(default is false)
#outagedetection=false

(default is 60)
#outagedetectioninterval=30

3.3.1 modulelist

modulelist holds the list of p6spy modules activated. A module contains a group of functionality. If none are specified
only core pbspy framework will be activated (no logging,...). Still once reload of the properties happen, or these are
set by JMX, modules would be dynamically loaded/unloaded.

The following modules come with the p6spy by default:

3.3. Common Property File Settings 19

p6spy Documentation, Release 3.9.2-SNAPSHOT

modulelist=com.pbspy.engine.logging.P6LogFactory, com.pb6spy.engine.outage.
—P60OutageFactory

Where these are required:
* com.pbspy.engine.logging. P6LogFactory - for the logging functionality and
* com.p6spy.engine.outage.P60utageFactory - for outage functionality.

Please note to implement custom module have a look at the implementation of the any of the existing ones.

3.3.2 driverlist
This is a comma separated list of JDBC driver classes to load and register with DriverManager. You should list the
classname(s) of the JDBC driver(s) that you want to proxy with P6Spy if any of the following conditions are met.

1. The JDBC driver does not implement the JDBC 4.0 API

2. You are using a JNDI Data Source - Some application servers will prevent the automatic registration feature
from working.

3.3.3 autoflush

For standard development, set the autoflush value to true. When set to true, every time a statement is intercepted, it is
immediately written to the log file. In some cases, however, instant feedback on every statement is not a requirement.
In those cases, the system performs slightly faster with autoflush set to false.

An example follows:

autoflush=true

3.3.4 dateformat

Setting a value for dateformat changes the date format value printed in the log file. No value prints the current time
in milliseconds (unix time), a useful feature for parsing the log. The date format engine is Java’s SimpleDateFormat
class. Refer to the SimpleDateFormat class in the JavaDocs for information on setting this value. An example follows:

dateformat=MM-dd-yy HH:mm:ss:SS

3.3.5 stacktrace

If stacktrace is set, the log prints out the stack trace for each SQL statement logged.

3.3.6 stacktraceclass

Limits the stack traces printed to those that contain the value set in stacktraceclass. For example, specifying stack-
traceclass=com.mycompany.myclass limits the printing of stack traces to the specified class value. The stack trace is
converted to a String and string.indexOf(stacktraceclass) is performed.

20 Chapter 3. Configuration and Usage

p6spy Documentation, Release 3.9.2-SNAPSHOT

3.3.7 reloadproperties and reloadpropertiesinterval

If reloadproperties is set to true, the property file is reloaded every n seconds, where n is defined by the value set by
reloadpropertiesinterval. For example, if reloadproperties=true and reloadpropertiesinterval=10, the system checks the
File.lastModified() property of the property file every 10 seconds, and if the file has been modified, it will be reloaded.

If you set append=true, the log will be suddenly truncated when you change your properties. This is because using
reloadproperties is intended to be the equivalent of restarting your application server. Restarting your application
server truncates your log file.

reloadproperties will not reload any driver information (such as realdriver, realdriver2, and realdriver3) and will not
change the modules that are in memory.

3.3.8 appender

Appenders allow you to specify where and how log information is output. Appenders are a flexible architecture
allowing anyone to write their own output class for P6Spy. To use an appender, specify the classname of the appender
to use. The current release comes with three options which are slf4j, stdout, and logging to a file (default). Please
note, that all of these output in the CSV format (where separator is: “I”’).

* Using the File output: Uncomment the FileLogger appender and specify a logfile and whether or not
to append to the file or to clear the file each time:

#appender=com.p6spy.engine.spy.appender.S1f4JLogger
#appender=com.p6spy.engine.spy.appender.StdoutLogger
appender=com.p6spy.engine.spy.appender.FileLogger

name of logfile to use, note Windows users should make sure to use forward,,
—slashes in their pathname (e:/test/spy.log)

(used for com.pb6spy.engine.spy.appender.FileLogger only)

(default is spy.log)

#logfile=spy.log

append to the péspy log file. if this is set to false the
log file is truncated every time. (file logger only)
append=true

Using StdOut: Uncomment the Stdout Logger as follows:

#appender=com.p6spy.engine.spy.appender.S1f4JLogger
appender=com.pb6spy.engine.spy.appender.StdoutLogger
#appender=com.pbspy.engine.spy.appender.FileLogger

* Using SLF4J: Uncomment the S1f4JLogger as follows:

appender=com.p6spy.engine.spy.appender.Slf4JLogger
#appender=com.p6spy.engine.spy.appender.Stdout Logger
#appender=com.p6spy.engine. spy.appender.FilelLogger

In general you need to slf4j-api and the appropriate bridge to the actual logging implementation as well as the
logging implementation itself on your classpath. To simplify setup for those not having any of the additional
dependencies already on classpath following x—nodep . jar bundles are provided as part of p6spy distribution:

— p6spy-<version>-log4j-nodep. jar - having log4j included,
— pbspy-<version>-log4j2-nodep. jar - having log4j2 included and

— pébspy-<version>-logback-nodep. jar - having logback included.

3.3. Common Property File Settings 21

http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/2.x/
http://logback.qos.ch/

p6spy Documentation, Release 3.9.2-SNAPSHOT

Mapping to SLF4J levels is provided in the following way:

Internally is S1f4j Logger is retrieved for the: p6spy, keep this in mind when configuring your logging im-
plementation. So for example for the 1og4 j following could be used to restrict the p6spy logging (if using
xml-based configuration) to INFO level only:

<category name="pb6spy">
<priority wvalue="INFO" />
</category>

For further instructions on configuring SLF4]J, see the SLF4J documentation.

3.3.9 logMessageFormat

The log message format is selected by specifying the class to use to format the log messages. The following classes
are available with P6Spy.

com.p6spy.engine.spy.appender.SingleLineFormat which results in log messages in format:

current time|execution time|category|connection id|statement SQL String|effective,
—SQL string

com.pb6spy.engine.spy.appender.CustomLineFormat, which allows log messages to be full cus-
tomized, in a separate property called customLogMessageFormat. See below for details.

com.pb6spy.engine.spy.appender.MultiLineFormat, which results in log messages in format:

current time|execution time|category|connection id|statement SQL String
effective SQL string

Where:

current time - the current time is obtained through System.getCurrentTimeMillis() and represents the num-
ber of milliseconds that have passed since January 1, 1970 00:00:00.000 GMT. (Refer to the J2SE documenta-
tion for further details on System.getCurrentTimeMillis().) To change the format, use the dateformat property
described in Common Property File Settings.

execution time - the time it takes in milliseconds for a particular method to execute. (This is not the total
cost for the SQL statement.) For example, a statement SELECT » FROM MYTABLE WHERE THISCOL =
? might be executed as a prepared statement, in which the .execute() function will be measured. This is recorded
as the statement category. Further, as you call .next() on the ResultSet, each .next() call is recorded in the result
category.

category - You can manage your log by including and excluding categories, which is described in Common
Property File Settings.

connection id - Indicates the connection on which the activity was logged. The connection id is a sequen-
tially generated identifier.

statement SQL string - This is the SQL string passed to the statement object. If it is a prepared state-
ment, it is the prepared statement that existed prior to the parameters being set. To see the complete statement,
refer to effective SQL string.

effective SQL string - If you are not using a prepared statement, this contains no value. Otherwise,
it fills in the values of the Prepared Statement so you can see the effective SQL statement that is passed to the
database. Of course, the database still sees the prepared statement, but this string is a convenient way to see the
actual values being sent to the database.

22

Chapter 3. Configuration and Usage

http://www.slf4j.org/manual.html

p6spy Documentation, Release 3.9.2-SNAPSHOT

The com.p6spy.engine.spy.appender.MultiLineFormat might be better from a readability perspec-
tive. Because it will place the effective SQL statement on a separate line. However, the SingleLineFormat might
be better if you have a need to parse the log messages. The default is com.p6spy.engine.spy.appender.
SingleLineFormat for backward compatibility.

You can also supply your own log message formatter to customize the format. Simply create a class which imple-
ments the com.p6spy.engine.spy.appender.MessageFormattingStrategy interface and place it on
the classpath.

3.3.10 customLogMessageFormat
The custom log message format to use when °‘logMessageFormat’ is set to com.p6spy.engine.spy.
appender.CustomLineFormat

The message is build out of the format string, with the all the Java special characters supported (\n, \t etc) and the
following placeholders being resolved to the appropriate values:

e % (connectionId) the id of the connection

o°

(currentTime) the current time expressing in milliseconds

* % (executionTime) the time in milliseconds that the operation took to complete

* % (category) the category of the operation

e % (effectiveSqgl) the SQL statement as submitted to the driver

e % (effectiveSglSingleLine) the SQL statement as submitted to the driver, with all new lines removed
* % (sgl) the SQL statement with all bind variables replaced with actual values

* $(sglSingleLine) the SQL statement with all bind variables replaced with actual values, with all new lines
removed

3.3.11 databaseDialectDateFormat

The way of formatting java.util.Date values. The date format engine is Java’s SimpleDateFormat class. Refer
to the SimpleDateFormat class in the JavaDocs for information on setting this value. An example follows:

databaseDialectDateFormat=MM-dd-yy HH:mm:ss:SS

3.3.12 databaseDialectTimestampFormat

The way of formatting java.sqgl.Timestamp values. The date format engine is Java’s SimpleDateFormat class.
Refer to the SimpleDateFormat class in the JavaDocs for information on setting this value. An example follows:

databaseDialectTimestampFormat=MM-dd-yy HH:mm:ss:SS

3.3.13 filter, include, exclude

P6Spy allows you to filter SQL queries by specific strings to be present (includes property value) or not present
(excludes property value). As a precondition, setting £i1ter=true has to be provided. P6Spy will perform string
matching on each statement to determine if it should be written to the log file. include accepts a comma-delimited
list of expressions which is required to appear in a statement before it can appear in the log. exclude accepts a

3.3. Common Property File Settings 23

p6spy Documentation, Release 3.9.2-SNAPSHOT

comma-delimited list to exclude. Exclusion overrides inclusion, so that a statement matching both an include string
and an exclude string is excluded.

Please note that matching mode used in the underlying regex is (achieved via prefix (?mis)):
¢ multiline,
* dotall and
* case insensitive.

An example showing capture of all statements having select, except those having order follow:

filter=true

comma separated list of strings to include
include=select

comma separated list of strings to exclude
exclude=order

Please note, that internally following regex would be used for particular expression matching: (?mis) ™ (?!.
x (order) .x) (.* (select) .x)$

An example showing only capture statements having any of: order_details, price, and price_history follows:

filter=true

comma separated list of strings to include
include=order,order_details,price,price_history
comma separated list of strings to exclude
exclude=

Please note, that internally following regex would be used for particular expression matching: (?mis) "™ (.
* (order |order_details|price|price_history) .x)$

An example showing the capture of all statements, except statements order string in them follows:

filter=false

comma separated list of strings to include
include=

comma separated list of strings to exclude
exclude=order

Please note, that internally following regex would be used for particular expression matching: (?mis)”~ (?2!.
* (order) .*) (.*)$S

As you can use full regex syntax, capture of statements having: pri[cz]e follows:

filter=true

comma separated list of strings to include
include=prifczle

comma separated list of strings to exclude
exclude=

Please note, that internally following regex would be used for particular expression matching: (?mis) " (.
* (prifczle) .*)$

Moreover, please note, that special characters escaping (used in java) has to be done for the provided regular expres-
sion. As an example, matching for:

from\scustomers

would mean, that following should be specified (please note doubled backslash):

24 Chapter 3. Configuration and Usage

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#MULTILINE
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#DOTALL
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#CASE_INSENSITIVE

p6spy Documentation, Release 3.9.2-SNAPSHOT

filter=true
include=from\\scustomers

3.3.14 filter, sqglexpression

If you need more control over regular expression for matching, SQL string property sqlexpression is to be used
as an alternative to exclude and include. An example follows:

filter=true
sglexpression=your expression

If your expression matches the SQL string, it is logged. If the expression does not match, it is not logged. Please note
you can use sqlexpression together with include/exclude, where both would be evaluated.

Moreover, please note, that special characters escaping (used in java) has to be done for the provided regular expres-
sion. As an example, matching for:

~(.* (from\scustomers) .x)$

would mean, that following should be specified (please note doubled backslash)::

filter=true
sglexpression=" (.* (from\\scustomers) .x)$

3.3.15 excludecategories
The log includes category information that describes the type of statement. This property excludes the listed categories.
Valid options include the following:
* error includes P6Spy errors. (It is recommended that you include this category.)
e info includes driver startup information and property file information.
* debug is only intended for use when you cannot get your driver to work properly, because it writes everything.
* statement includes Statements, PreparedStatements, and CallableStatements.
¢ batch includes calls made to the addBatch() JDBC API.
e commit includes calls made to the commit() JDBC API.
* rollback includes calls made to the rollback() JDBC API.
* outage includes outage related information.
e result includes statements generated by ResultSet.
* resultset includes values retrieve from the ResultSet.

Enter a comma-delimited list of categories to exclude from your log file. See filter, include, exclude for more details
on how this process works.

3.3.16 excludebinary

whether the binary values (passed to DB or retrieved ones) should be logged with placeholder: [binary] or not.

3.3. Common Property File Settings 25

p6spy Documentation, Release 3.9.2-SNAPSHOT

3.3.17 outagedetection
This feature detects long-running statements that may be indicative of a database outage problem. When enabled, it

logs any statement that surpasses the configurable time boundary during its execution. No other statements are logged
except the long-running statements.

3.3.18 outagedetectioninterval
The interval property is the boundary time set in seconds. For example, if set to 2, any statement requiring at least 2

seconds is logged. The same statement will continue to be logged for as long as it executes. So, if the interval is set to
2 and a query takes 11 seconds, it is logged 5 times (at the 2, 4, 6, 8, 10-second intervals).

3.3.19 jmxPrefix

If set to true, the execution time will be measured in nanoseconds as opposed to milliseconds.

26 Chapter 3. Configuration and Usage

CHAPTER 4

Release Notes

4.1 3.9.2 (Unreleased)

Improvements:

Defects resolved:

4.2 3.9.1 (2020-07-26)

Improvements:
¢ issue 501 Database dialect dependent binary data representation.
¢ issue 493 Added ResultSetInformation.getResultMap ().
* issue 505 Run Sonar on JDK 11

Defects resolved:

4.3 3.9.0 (2020-04-04)

Improvements:
e issue 497 Added Statement into StatementInformation.

Defects resolved:

4.4 3.8.7 (2019-12-23)

Improvements:

27

https://github.com/p6spy/p6spy/issues/501
https://github.com/p6spy/p6spy/issues/493
https://github.com/p6spy/p6spy/issues/505
https://github.com/p6spy/p6spy/pull/497

p6spy Documentation, Release 3.9.2-SNAPSHOT

e issue #492 The file.encoding system property is used by default to read the configuration file, can be
overriden using —-Dspy .properties.charset.

e issue #488 Added ConnectionInformation.getTimeToCloseConnectionNs ().

Defects resolved:

4.5 3.8.6 (2019-09-24)

Improvements:
Defects resolved:

* issue #488 fix NPE for binary/varbinary/blob when P6LogFactory not registered.

4.6 3.8.5 (2019-08-07)

Improvements:
Defects resolved:

* issue #482 Fixed NullPointerException for Thread.currentThread () .
getContextClassLoader ().

4.7 3.8.4 (2019-08-04)

Improvements:
Defects resolved:
* issue #481 Re-throwing exception when failed to create Print St ream.

e issue #480 Added Automat ic-Module—Name to manifest file.

4.8 3.8.3 (2019-07-21)

Improvements:
e issue #474 Add events for Connection.setAutoCommit.
* issue #473 Simplify usage of varargs in P6DataSource.

Defects resolved:

4.9 3.8.2 (2019-04-07)

Improvements:
Defects resolved:

¢ issue #470 Commits/rollbacks are not logged when using include/exclude.

28 Chapter 4. Release Notes

https://github.com/p6spy/p6spy/pull/492
https://github.com/p6spy/p6spy/pull/488
https://github.com/p6spy/p6spy/pull/488
https://github.com/p6spy/p6spy/pull/482
https://github.com/p6spy/p6spy/pull/481
https://github.com/p6spy/p6spy/pull/480
https://github.com/p6spy/p6spy/pull/474
https://github.com/p6spy/p6spy/pull/473
https://github.com/p6spy/p6spy/pull/470

p6spy Documentation, Release 3.9.2-SNAPSHOT

4.10 3.8.1 (2018-12-14)

Improvements:
Defects resolved:
* issue #451 Fixed low level sonarqube reported issues.

e issue #458 Property renamed (to reflect the docs) databaseDialectTimezoneFormat to
databaseDialectTimestampFormat.

e issue #459 Iterate over Map .entrySet () instead of Map.keySet.

4.11 3.8.0 (2018-10-15)

Improvements:

e issue #445 Introduced property:databaseDialectTimestampFormat for java.sgl.Timestamp
logging format customizations.

e issue #434 Changed default value of propety:databaseDialectDateFormat.

¢ issue #440 Connection URL stored in ConnectionInformation.

e issue #446 Added url logging to loggers (#446)

* issue #450 com.p6spy.engine.common. Value::toHexString using exact size for StringBuilder
Defects resolved:

* issue #447 Fixed misc sonarqube reported issues.

4.12 3.7.0 (2018-04-03)

Improvements:

* issue #437 Add ability to register custom JdbcEventListenerFactory

4.13 3.6.0 (2017-11-12)

Improvements:

* issue #426 The format for boolean parameters made configurable

4.14 3.5.1 (2017-11-02)

Defects resolved:

e issue #423: 3.5.0 version never made it to bintray/maven central (due broken .travis.yml)

4.10. 3.8.1 (2018-12-14) 29

https://github.com/p6spy/p6spy/pull/451
https://github.com/p6spy/p6spy/issues/458
https://github.com/p6spy/p6spy/pull/459
https://github.com/p6spy/p6spy/issues/445
https://github.com/p6spy/p6spy/issues/434
https://github.com/p6spy/p6spy/issues/440
https://github.com/p6spy/p6spy/issues/446
https://github.com/p6spy/p6spy/pull/450
https://github.com/p6spy/p6spy/issues/447
https://github.com/p6spy/p6spy/pull/437
https://github.com/p6spy/p6spy/issues/426
https://github.com/p6spy/p6spy/pull/423

p6spy Documentation, Release 3.9.2-SNAPSHOT

4.15 3.5.0 (2017-11-02)

Defects resolved:

e issue #417: Fixed I1legalArgumentException for CustomLineFormat with specific chars in state-
ment

* issue #363: Fixed NullPointerException for OutageJdbcEventListener.onAfterCommit via
refactoring the P60utageDetector to enum

Known issues:

e issue #423: 3.5.0 version never made it to bintray/maven central (due broken .travis.yml)

4.16 3.4.0 (2017-10-13)

Improvements:

* issue #405: Reintroduced p6spy compatibility with java 6

* issue #412: Introduced event onBeforeGetConnection
Defects resolved:

* issue #406: Fixed API breaking changes comming with 3.3.0 via reintroduced ConnectionWrapper.
wrap ()

4.17 3.3.0 (2017-09-09)

Improvements:
e issue #384: Introduced event onAfterConnectionGet

e issue #400: Introduced JdbcEventListenerFactory (enabling programatic JdbcEventListener
implementation)

e issue #400: Deprecated P6Core favoring ConnectionWrapper and JdbcEventListenerFactory
Defects resolved:
* issue #404: Reintroduced zip + tar distribution packaging (was missing since 3.1.0 version)

e issue #401: Fixed AOP Error: No visible constructors in class com.p6spy.engine.wrapper.
ConnectionWrapper

4.18 3.2.0 (2017-09-01)

Improvements:
e issue #391: Introduced support for specifying log message format from configuration file
Defects resolved:

e issue #397: Fixed % (connectionId) not replaced in custom format

30 Chapter 4. Release Notes

https://github.com/p6spy/p6spy/pull/417
https://github.com/p6spy/p6spy/issue/363
https://github.com/p6spy/p6spy/pull/423
https://github.com/p6spy/p6spy/pull/405
https://github.com/p6spy/p6spy/pull/412
https://github.com/p6spy/p6spy/pull/406
https://github.com/p6spy/p6spy/pull/384
https://github.com/p6spy/p6spy/pull/400
https://github.com/p6spy/p6spy/pull/400
https://github.com/p6spy/p6spy/pull/404
https://github.com/p6spy/p6spy/issues/401
https://github.com/p6spy/p6spy/pull/391
https://github.com/p6spy/p6spy/pull/397

p6spy Documentation, Release 3.9.2-SNAPSHOT

4.19 3.1.0 (2017-08-22)

Improvements:

e issue #369: Introduced excludebinary=true|false flag (causing [binary] instead of binary data
logged)

e issue #373: Introduced Loggable.getConnectionInformation () while removed Loggable.
getConnectionId()

e issue #367: StatementInformation.getSglWithValues () returns getSqgl () rather than *’
Defects resolved:

e issue #369: Fixed excludecategories docs

* issue #387: Fixed StatementInformation.getSqgl () null for connection-pool validation queries
Other:

* issue #292: migrated from maven to gradle for build

* issue #372: integrated release process with travis-ci

* issue #377: release notes synced to github releases

e issue #377: local dev env moved from vagrant to docker

Known issues:

* issue #372: 3.1.0 version never made it to maven central (due to incomplete pom . xm1), only available in bintray

4.20 3.0.0 (2016-10-26)

Identical to 3.0.0-rc3

4.21 3.0.0-rc3 (2016-10-06)

Improvements:

e issue #359: Add getConnectionInformation to StatementInformation

* issue #358: Add JdbcEventListener.onConnectionWrapped method

* issue #356: Store the creator of a connection and the connection itself in ConnectionInformation
Defects resolved:

* issue #348: tomcat 6x-8x integration

4.22 3.0.0-rc2 (2016-09-08)

Defects resolved:
* issue #347: The real exception is never thrown

¢ issue #346: Fixes NPE on static initializer order

4.19. 3.1.0 (2017-08-22) 31

https://github.com/p6spy/p6spy/pull/373
https://github.com/p6spy/p6spy/pull/373
https://github.com/p6spy/p6spy/pull/367
https://github.com/p6spy/p6spy/pull/373
https://github.com/p6spy/p6spy/pull/387
https://github.com/p6spy/p6spy/pull/292
https://github.com/p6spy/p6spy/pull/372
https://github.com/p6spy/p6spy/pull/377
https://github.com/p6spy/p6spy/pull/377
https://github.com/p6spy/p6spy/pull/372
https://github.com/p6spy/p6spy/pull/359
https://github.com/p6spy/p6spy/pull/358
https://github.com/p6spy/p6spy/pull/356
https://github.com/p6spy/p6spy/issues/348
https://github.com/p6spy/p6spy/pull/347
https://github.com/p6spy/p6spy/pull/346

p6spy Documentation, Release 3.9.2-SNAPSHOT

4.23 3.0.0-rc1 (2016-09-02)

Improvements:
e issue #332: Add event listeners via service loader mechanism
e issue #323: log row count and SQLException

e issue #297: Allow for lazy initialization of P6Spy

4.24 3.0.0-alpha-1 (2016-07-26)

Improvements:
* issue #319: Add support for events
* issue #298: Provide access to ResultSetInformation
* issue #299: Support of reacting differently on SQL-Errors within datasource-proxy
* issue #327: Remove CGLIB
Other:
* issue #333: Remove org.objectweb.util. monolog.wrapper.p6spy.P6SpyLogger

4.25 2.3.1 (2016-06-23)

Defects resolved:
* issue #325: CGLIB lock contention/deadlock
Other:
e issue #326: Upgraded to CGLIB 3.2.3
* issue #329: Use default naming policy for CGLIB generated proxies

4.26 2.3.0 (2016-05-11)

Improvements:

* issue #295: Add option to report execution time in nanoseconds or milliseconds

e issue #313: Remove throws SQLException declaration on P6Core.wrapConnection
Defects resolved:

e issue #320: Calls to getResultSet() not instrumented on Statement and PreparedStatement

* issue #318: Remove unused Cache abstraction and make cache thread safe

* issue #317: Make connectionld thread safe

e issue #314: ClassNotFoundException loading MySQL Statement interface using OSGi
Other:

e issue #304: Build failures using openjdk7

32 Chapter 4

. Release Notes

https://github.com/p6spy/p6spy/issues/332
https://github.com/p6spy/p6spy/issues/323
https://github.com/p6spy/p6spy/issues/297
https://github.com/p6spy/p6spy/issues/319
https://github.com/p6spy/p6spy/issues/298
https://github.com/p6spy/p6spy/issues/299
https://github.com/p6spy/p6spy/issues/327
https://github.com/p6spy/p6spy/issues/333
https://github.com/p6spy/p6spy/pull/325
https://github.com/p6spy/p6spy/issues/326
https://github.com/p6spy/p6spy/issues/329
https://github.com/p6spy/p6spy/issues/295
https://github.com/p6spy/p6spy/issues/313
https://github.com/p6spy/p6spy/pull/320
https://github.com/p6spy/p6spy/pull/318
https://github.com/p6spy/p6spy/pull/317
https://github.com/p6spy/p6spy/pull/314
https://github.com/p6spy/p6spy/issues/304

p6spy Documentation, Release 3.9.2-SNAPSHOT

* issue #300: Maven warning about missing dependency

4.27 2.2.0 (2016-03-23)

Improvements:
e issue #290: Lazy initialization for FileLogger
Defects resolved:

* issue #330: Unsafe iteration over System.getProperties()

4.28 2.1.4 (2015-05-09)

Defects resolved:
* issue #286: P6Spy proxy creation fails when JDBC object is wrapped by JBoss 7+

* issue #282: No resultset logged when executing a stored procedure

4.29 2.1.3 (2015-04-02)

Defects resolved:

e issue #275: ArraylndexOutOfBoundsException when calling PreparedStatement.setMaxRows(int) with outage
module enabled

4.30 2.1.2 (2014-10-14)

Defects resolved:

* [issue #268] (https://github.com/p6spy/p6spy/issues/268): SingleLineFormat updated to remove CR and LF
characters from the log file

e [issue #267] (https://github.com/p6spy/pbspy/issues/267): The equals(Object) method on all proxied objects
now unwraps the argument passed in (if it is a pbspy proxy) before invoking the method on the proxied object.
This fixes a problem with c¢3p0 and statement caching.

* [issue #264] (https://github.com/p6spy/p6spy/issues/264): Fixed a defect causing the last row read of a result
set to not be logged unless all rows were read.

4.31 2.1.1 (2014-09-03)

Defects resolved:

* [issue #256] (https://github.com/p6spy/p6spy/issues/256): jmx exposing becomes optional (enabled/disabled
via flag) + jmx prefix introduced (see)

o [issue #254] (https://github.com/p6spy/pbspy/issues/254): resultset logging filtering fixed

4.27. 2.2.0 (2016-03-23) 33

https://github.com/p6spy/p6spy/issues/300
https://github.com/p6spy/p6spy/issues/290
https://github.com/p6spy/p6spy/issues/330
https://github.com/p6spy/p6spy/issues/286
https://github.com/p6spy/p6spy/issues/282
https://github.com/p6spy/p6spy/issues/275

p6spy Documentation, Release 3.9.2-SNAPSHOT

4.32 2.1.0 (2014-06-15)

Improvements:
¢ P6ConnectionPoolDataSource merged to P6DataSource (to simplify datasource config)
* excludecategories using class Category rather than just plain strings (affects P6Logger API)

e issue #131: providing additional distribution artifacts - wrapping (slf4j bridged) logging implementations for
log4j, log4j2 and logback p6spy—<version>-*-nodep. jar

e issue #231: include/exclude behavior enabling any substring in SQL string matching
* considering Wrapper for DataSource proxies (bringing support for Glassfish XADataSources)

e unSet* API provided for properties (in com.p6spy.engine.spy.P6SpyOptions and com.p6spy.
engine.logging.P6LogOptions)to enable reverting to null (default value)

e issue #247: — prefixed syntax for list-like properties deprecated, in favor of full overriding
Defects resolved:

* [issue #221] (https://github.com/p6spy/pbspy/issues/221): Bind variables set by name on a CallableStatement
are now logged

e issue #226: setAppender () considered in logging properly

[issue #227] (https://github.com/p6spy/p6spy/issues/227): fixed disabling modules on reload
* issue #242: character ' escaping in the logged SQL query fixed

* issue #246: NullPointerException fixed for empty batch execution

4.33 2.0.2 (2014-04-04)

Improvements:

o [issue #84] (https://github.com/p6spy/p6spy/issues/84): significant performance improvements for huge data
selects

Defects resolved:

e [issue #214] (https://github.com/p6spy/p6spy/issues/214): fixed PostgreSQL issue: operator is not
unique: date + unknown

* issue #219: fixed defect causing ClassCastException when setting bind variables by name on CallableStatement

e issue #217: fixed defect in P6Leak module causing closed connections not to be recorded properly

4.34 2.0.1 (2014-03-15)

Defects resolved:
e [issue #200] (https://github.com/p6spy/p6spy/issues/200): fixed usage with signed jdbc jars
e [issue #201] (https://github.com/p6spy/p6spy/issues/201): internal logs not printed out any more

34 Chapter 4. Release Notes

https://github.com/p6spy/p6spy/issues/131
https://github.com/p6spy/p6spy/issues/231
https://github.com/p6spy/p6spy/issues/247
https://github.com/p6spy/p6spy/issues/226
https://github.com/p6spy/p6spy/issues/242
https://github.com/p6spy/p6spy/issues/246
https://github.com/p6spy/p6spy/issues/219
https://github.com/p6spy/p6spy/issues/217

p6spy Documentation, Release 3.9.2-SNAPSHOT

4.35 2.0.0 (2014-03-04)

Improvements:
* project hosting was moved from sourceforge to github
* major part of the legacy code was refactored
* Java 6/7 JDBC API support introduced,

* proxying via modified JDBC URLs only was implemented, so for for MySQL original url would be (without a
need for any further configuration):

’jdbc:mysql://<hostname>:<port>/<database>

the one proxied via p6spy would one:

’jdbc:p6spy:mysql://<hostname>:<port>/<database>

* XA Datasource support has been introduced
* configuration via:
— system/environment properties and
— JMX properties
— as an alternative to file configuration only
— or even zero config use case supported
* slf4j support (more flexible as previously used log4j)
* junit tests were migrated to junit 4
» Continuous integration using Travis was setup providing testing on popular:

— DB systems (namely: Oracle, DB2, PostgreSQL, MySQL, H2, HSQLDB, SQLite, Firebird, and Derby),
see build status on: travis-ci as well as

— application servers (namely: Wildfly 8, JBoss 4.2, 5.1, 6.1, 7.1, Glassfish 3.1, 4.0, Jetty 7.6, 8.1, 9.1,
Tomcat 6, 7, 8, Resin 4, Jonas 5.3 and Geronimo 2.1, 2.2), see build status on: travis-ci.

4.36 1.3 (2005-12-27)

* release notes not provided

4.37 1.2

* Driver initialization bug fix and package import cleanup contributed by Joe Fisher (Joe Fisher)
* Further changes to better support JDK 1.2

¢ Changed a DataSource class name to avoid conflict with an Oracle class of the same name (Alan Arvesen of
IronGrid)

e Allow unlimited SQL parameters (Bradley Johnson of IronGrid)

4.35. 2.0.0 (2014-03-04) 35

http://sourceforge.net/projects/p6spy/
https://github.com/p6spy/p6spy
https://travis-ci.org/p6spy/p6spy
https://travis-ci.org/p6spy/p6spy-it

p6spy Documentation, Release 3.9.2-SNAPSHOT

4.38 1.1

* Added a highly requested feature contributed by Jeff Wolfe that only logs queries taking longer than a specified
threshold. (Jeff Wolfe)

* Added a bug fix that prevented modified property files from being persisted in Java environments prior to 1.4.
(Jeff Wolfe)

* Added JBoss 2.x JMX support, submitted by Ralph Harnden (Ralph Harnden)

¢ Alan Arvesen of I[ronGrid added a driver patch that deregisters realdrivers using the same name as the P6 driver
to avoid driver order registration problems (Alan Arvesen)

4.39 1.0.1

* Added a bug fix to prevent a NullPointerException from being thrown when there is a space before or after the
name of the realdriver. (Paolo De Carlo)

4.40 1.0 Production Release

* In beta for over 6 months, P6Spy version 1.0 is a major rewrite of the P6Spy code. This release includes
numerous new features, such as support for JDK 1.4, Datasources, log4j, JBoss 3.x, and WebSphere, as well as
an overhauled, optimized architecture.

4.41 1.0 beta 9

¢ Added full support for DataSources and created installation instructions for WebSphere 4.0. (Dennis Parker,
IronGrid)

4.42 1.0 beta 8

» Refactored options to support easier creation of new option files and clearer separation of file management from
management of the actual properties.

* Reduced deployment JAR file size by 25%.

* P6Spy Documentation was overhauled. (Suzanne Patton)

4.43 1.0 beta 7

* Created code to enable more robust property file loading, including the ability to use the ClassLoader to load
the property file. (Scott Howlett)

* Fixed a problem dealing with the log file being ignored.

36 Chapter 4. Release Notes

p6spy Documentation, Release 3.9.2-SNAPSHOT

4.44 1.0 beta 6

* Debugged and fixed a problem in which applications calling newInstance(), instead of using DriverManager,
were causing the driver to load improperly.

4.45 1.0 beta 5

* Refactored the driver loading to first attempt the new classloader mechanism (implemented in 1 beta 2) and,
upon failure, attempt the previously-used Name loading call. (Alan Arvesen, IronGrid)

* P6SpyDriver now throws an exception immediately when realdriver fails to load, making diagnostics easier.

4.46 1.0 beta 4

* Added error category and pushed error logging through the standard logging process instead of stderr. This
should make it easier to diagnose problems when installation does not proceed as expected.

4.47 1.0 beta 3

¢ Added a call to each P6 class called getJDBC() that returns the native driver. This enables a workaround for
using non-standard JDBC calls included with some JDBC drivers. See Known Issues for more information.
Thanks to Ralph Harnden for the suggestion. (Alan Arvesen, IronGrid)

* Added an appender architecture which supports customizable logging. (Alan Arvesen, IronGrid)
* Changed the reloading code to work as a separate thread, making it more efficient. (Alan Arvesen, IronGrid)

* Enhanced module support, making it easier to create a new module. Now, the only required files for a new
module are the factory, the driver, and the classes that are changing. If you want to intercept the Statement class
only, that is the only class you need to create. In the past, you had to create an instance of every class, even if
you did not want to override that class. The code to support driver loading has also been simplified.

¢ Added JDK 1.4 support. (Matthew Wakeling)

4.48 1.0beta1 &2

* Added log4j support, which is one of the most requested feature enhancements. (Rafael Alvarez)

* Due to problems reported with driver loading in the alpha version, driver loading has been rewritten. It is now
more efficient.

4.49 1.0 alpha

* Restructured code to inherit from a single core wrapper driver.

¢ Introduced concepts of modules and stackable drivers that dynamically load the necessary code into memory at
runtime.

* Broke code into logical modules: P6Log and P60utage.

4.44. 1.0 beta 6 37

p6spy Documentation, Release 3.9.2-SNAPSHOT

 Refactored large amount of code.

* Rewrote JUnit tests and added more rigorous tests.

4.50 0.8

* Created an Outage Detection module that reports database outages when database statements do not respond
within a given period of time. (Peter Laird)

* Created a JSP application that gives a visual control to P6Spy. The first version can be used to view configuration
information about P6Spy and to create a demarcation in the log file. (Peter Laird)

* Added support for multiple simultaneous databases, a highly requested feature. Currently, support is limited to
three databases, but can easily be expanded. (Viktor Szathmary)

¢ Added the logging of a connection ID, and enabled URLs to be prefixed with p6spy: to aid in debugging. A
common mistake people make when installing is to have the real driver registered elsewhere; this feature avoids
that problem. The default does not require this value, but in the future it may be mandatory to ease the install
process.

* Rewrote P6SpyOptions to allow new options to be added quickly and easily.
* Additional JUnit tests added.

4.51 0.72

* Added the ability to dynamically reload the property file after a specified period of time. (Philip Ogren)

* Added logging to commit and rollback statements.

4.52 0.71

Added installation instructions for BEA WebLogic Portal and Server. (Philip Ogren)

Added Jakarta RegExp support. (Philip Ogren)

* Ability to print stack trace of logged statements. This is useful in understanding where a logged query is being
executed in the application. (Philip Ogren)

» Simplified table monitoring property file option. (Philip Ogren)

Updated the RegExp documentation.

4.53 0.7

* Added timing information to the log files, in order to better visualize bottleneck queries. (Simon Sadedin)
* Added RegExp support for table filtering, allowing sophisticated custom filtering. (Simon Sadedin)

* Added installation instructions for Sun iPlanet. (Michael Sgroi)

¢ Added installation instructions for BEA WebLogic. (Richard Delbert)

* Added support for callable statements.

38 Chapter 4. Release Notes

p6spy Documentation, Release 3.9.2-SNAPSHOT

* Added support for batch statements.

* Added a debug category that provides detailed debug information. By default, this is disabled. Refer to the
Troubleshooting section for more information.

¢ Changed the default log format to include more information.
* Added a test target to Ant that works with JUnit to perform some basic tests, using Oracle as the test database.

* Added ResultSet logging and timing information. By default, this is disabled. Refer to the Log File Format
documentation for more information.

 Fixed a number of bugs, in particular a bug that was causing an empty spy.log file to be created and never
populated.

4.54 0.6

* Fixed a bug in which null connections were not returning null, but rather empty connections. This was a problem
for some applications that were expecting a null connection.

* Added an option to allow the truncation/non-truncation of the log file, which can be specified within spy.options.

4.54. 0.6 39

p6spy Documentation, Release 3.9.2-SNAPSHOT

40 Chapter 4. Release Notes

CHAPTER B

Known Issues

5.1 Non-standard (driver specific) JDBC methods are not directly ac-
cessible

Many drivers provide methods that expose driver-specific, non-standard functionality. Most developers do not use
these features, but in the event that an application does use these features they are not natively supported by P6Spy.
For example, the MySQL JDBC drivers allow you to call the auto-increment function as follows:

((com.mysqgl. jdbc.PreparedStatement) stmt) .getLastInsertId();

This fails when P6Spy is active since the prepared statement is actually a proxy generated by P6Spy. Since the proxy
is not a subclass of com.mysql.jdbc.PreparedStatement, the cast fails. The only workaround available requires code
changes to the application.

All proxies generated by P6Spy implement the java.sql.Wrapper interface. This interface is part of the JDBC 4.0
API (Java 6 and later). This provides a standard way to unwrap the proxied object to obtain access to driver specific
methods.

// assuming MySQL JDBC driver
PreparedStatement stmt = connection.prepareStatement ("....");
if(stmt.isWrapperFor (com.mysqgl. jdbc.PreparedStatement.class) {
com.mysqgl. jdbc.PreparedStatement mySglStmt = stmt.unwrap (com.mysqgl. jdbc.
—PreparedStatement.class);
mySglStmt.getLastInsertId();
}

Please be aware that any P6Spy will not be able to log any actions performed against the unwrapped object. This
is perfectly fine as long as you are only using the non-standard functionality. However, if you use the unwrapped
PreparedStatement in the example above to execute a SQL statement, it would not be logged.

41

http://docs.oracle.com/javase/6/docs/api/java/sql/Wrapper.html

p6spy Documentation, Release 3.9.2-SNAPSHOT

5.2 OUT parameters of a stored procedure are not logged

The reason is that log message is written once the statement is executed. However the OUT parameters are not accessed
until after the statement is executed.

42 Chapter 5. Known Issues

CHAPTER O

Frequently Asked Questions

* Can I use log4j?
Yes. See the Log File Format documentation for more information.
* Can I use regular expressions to determine what is logged?
Yes. See the Common Property File Settings documentation and refer to the stringmatcher section.
* Once the application is running, can I change the properties and enable the system to use the new properties?

Yes. See the Common Property File Settings documentation and refer to the reloadproperties section.

43

p6spy Documentation, Release 3.9.2-SNAPSHOT

44 Chapter 6. Frequently Asked Questions

CHAPTER /

Development

7.1 Prerequisites

1. Make sure to have Java 1.7 or later installed.

7.2 Building the project

The following are useful Gradle commands:

to build binaries:

’ ./gradlew assemble

to run the JUnit tests Refer to the Running the tests section

7.3 License headers

There is a license check done for the source file headers (as part of the CI build), invoked as part of the:

Jgradlew check

Once new files is introduced, make sure to run (and push the updated files):

Jgradlew licenseFormat

7.4 Releasing the version

The project follows semantic versioning concept. To release the version follow these steps:

e change: versionin gradle.properties to desired one (non-snapshot, to be released one),

45

http://semver.org/

p6spy Documentation, Release 3.9.2-SNAPSHOT

update: docs/releasenotes.md to reflect next version, it’s release date and release notes,
change: version as well as release in docs/conf . py to desired version to be released,
push the changes to master branch of the p6spy repo,

wait for the green build (in Travis CI), fix problems if necessary,

perform release (via github pages releases ->Draft new release), fortag version, use prefix p6spy—
the version should be named without the prefix,

after green build performed by Travis CI on tag update the version in gradle.properties to next
snapshot one,

change: version in docs/conf. py to next snapshot one and

push the changes to master branch of the p6spy repo.

Released artifacts should be afterwards present in the bintray and with a delay of approximatelly 24 hours also in the:
maven central.

7.5

Running the tests

To run the JUnit tests against specific database(s):

1.

2.

Please note, that PostgreSQL, MySQL, Firebird and Oracle specific tests require to have the detabase servers
running with the specific databases, users and permissions setup (see: Integration tests-like environment with
Docker Compose section).

Moreover as the Oracle jdbc drivers are not publicly available in maven repositories, however can be copied
from running docker container used for Oracle DB testing.

By default, tests run against H2 database. To enable other databases, make sure to setup environment variable DB to
one of the:

PostgreSQL
MySQL

H2
HSQLDB
SQLite
Firebird
Derby
Oracle

or comma separated list of these

7.5.1 Running the tests in the command line

use the following maven command:

./gradlew test -DDB=<DB_NAMES>

where <DB_NAMES> would hold the value of DB environment variable described before.

46

Chapter 7. Development

https://bintray.com/p6spy/maven/p6spy%3Ap6spy
https://mvnrepository.com/artifact/p6spy/p6spy

p6spy Documentation, Release 3.9.2-SNAPSHOT

7.5.2 Running the tests in Eclipse

1. Make sure to have buildship plugin installed
2. Import the p6spy project to eclipse (as Gradle project)
3. Right click the Class holding the test to run and choose: Run As -> JUnit Test

The DB environment variable can be set using Arguments tab -> VM Argument of the JUnit Run Configuration.

7.5.3 Integration tests-like environment with Docker compose

It might be tricky to run full batery of tests on developer machine (especially due to need of DB servers setup). To make
things easier, Docker with Docker compose is used to create environment close to the one running on our integration
test servers ([travis-ci] (https://travis-ci.org/)).

To have tests running please follow these steps:
1. Install [Docker] (https://docs.docker.com/engine/installation/)
2. Install [Docker compose] (https://docs.docker.com/compose/install/) (version proved to be working is: 1.13.0).

3. To run integration tests on your local machine run following:

get pé6spy sources

git clone https://github.com/p6spy/p6spy

cd pb6spy

start databases in dockerized environment, please note SQLite installation_,
—would still have to be done on the machine manually

docker—-compose up

once oracle container is started, run:

mkdir -p ./build/repo && docker cp pé6spy_oracle_1:/ull/app/oracle/product/11.2.0/
—xe/jdbc/lib/ojdbc6. jar ./build/repo

run tests

./gradlew test -P travis

To debug the tests remotely, use the following command:

./gradlew test -P travis --debug-jvm

1. Afterwards use your favorite java IDE to remotely debug (using port 5005) the tests run.

7.5. Running the tests 47

https://github.com/eclipse/buildship
https://www.docker.com/
https://docs.docker.com/compose/

p6spy Documentation, Release 3.9.2-SNAPSHOT

48 Chapter 7. Development

CHAPTER 8

Thanks

We’d like to thank everyone supporting the project in a various ways, namely:

contributors, users, testers - without your contribution the project could not exist
GitHub, Inc - for enabling the collaborative development

Travis CI GmbH - for donated Continuous Integration resources via travis-ci.org
SonarSource S.A, Switzerland for donated SonarQube hosting via nemo.sonarqube.org

Yourkit LL.C - for kindly supporting pbspy open source project with its full-featured Java Profiler. YourKit,
LLC is the creator of innovative and intelligent tools for profilingJava and .NET applications. Take a look at
YourKit’s leading software products: YourKit Java Profiler and YourKit .NET Profiler.

and many other companies and individuals which would be too many to list here

moreover we’d like to thank you, for showing interest in our project!

49

https://github.com/p6spy/p6spy/graphs/contributors
https://github.com/
https://travis-ci.com/
https://travis-ci.org/p6spy/p6spy
http://www.sonarsource.com/
http://nemo.sonarqube.org/dashboard/index/p6spy:p6spy-parent
http://www.yourkit.com/
http://www.yourkit.com/java/profiler/index.jsp
http://www.yourkit.com/.net/profiler/index.jsp

	P6Spy Installation
	Application Servers:
	JBoss/WildFly
	Apache Tomcat and Apache TomEE
	Glassfish and Payara
	Weblogic
	Generic Instructions

	Integrating P6Spy
	Datasource way
	Connection URL way
	Spring Boot autoconfiguration
	Log file

	Configuration and Usage
	Properties exposal via JMX
	Command Line Options
	Common Property File Settings

	Release Notes
	3.9.2 (Unreleased)
	3.9.1 (2020-07-26)
	3.9.0 (2020-04-04)
	3.8.7 (2019-12-23)
	3.8.6 (2019-09-24)
	3.8.5 (2019-08-07)
	3.8.4 (2019-08-04)
	3.8.3 (2019-07-21)
	3.8.2 (2019-04-07)
	3.8.1 (2018-12-14)
	3.8.0 (2018-10-15)
	3.7.0 (2018-04-03)
	3.6.0 (2017-11-12)
	3.5.1 (2017-11-02)
	3.5.0 (2017-11-02)
	3.4.0 (2017-10-13)
	3.3.0 (2017-09-09)
	3.2.0 (2017-09-01)
	3.1.0 (2017-08-22)
	3.0.0 (2016-10-26)
	3.0.0-rc3 (2016-10-06)
	3.0.0-rc2 (2016-09-08)
	3.0.0-rc1 (2016-09-02)
	3.0.0-alpha-1 (2016-07-26)
	2.3.1 (2016-06-23)
	2.3.0 (2016-05-11)
	2.2.0 (2016-03-23)
	2.1.4 (2015-05-09)
	2.1.3 (2015-04-02)
	2.1.2 (2014-10-14)
	2.1.1 (2014-09-03)
	2.1.0 (2014-06-15)
	2.0.2 (2014-04-04)
	2.0.1 (2014-03-15)
	2.0.0 (2014-03-04)
	1.3 (2005-12-27)
	1.2
	1.1
	1.0.1
	1.0 Production Release
	1.0 beta 9
	1.0 beta 8
	1.0 beta 7
	1.0 beta 6
	1.0 beta 5
	1.0 beta 4
	1.0 beta 3
	1.0 beta 1 & 2
	1.0 alpha
	0.8
	0.72
	0.71
	0.7
	0.6

	Known Issues
	Non-standard (driver specific) JDBC methods are not directly accessible
	OUT parameters of a stored procedure are not logged

	Frequently Asked Questions
	Development
	Prerequisites
	Building the project
	License headers
	Releasing the version
	Running the tests

	Thanks

