
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Portable Framework for Multudimensional
Spectral-like Transforms At Scale

Dmitry Pekurovsky
San Diego Supercomputer Center

University of California at San Diego
La Jolla, California, USA
dpekurovsky@ucsd.edu

Abstract— We report progress in an ongoing effort to develop

a versatile and portable software framework for computing muti-
dimensional spectral-like transforms at large scale. The design
covers Fast Fourier Transforms and other algorithms that can be
broken down into line operations. This class of algorithms covers
a wide range of scientific applications and are notoriously
challenging to scale on largest supercomputers. Another challenge
addressed by this project is the fast pace of change in the field of
High Performance Computing, with new systems and paradigms
appearing every few years, demanding great adaptability and
effort on behalf of software developers. To this end we have
developed a flexible software framework as an open source
package named P3DFFT++. It is written in C++ in a highly object-
oriented fashion, with interfaces for Fortran and C. The goal is to
shield the user from details of low-level mechanisms of
communication and computation by providing a portable high-
level API for commonly used algorithms. The framework will
incorporate many modern HPC programming features, such as
GPU implementation, overlapping communication with
computation and GPU data transfer, as well as algorithm
autotuning. We cover design choices of the package and early
results.

Keywords—Fast Fourier Transforms, Parallel Programming,
Scientific Computation, Numerical Algorithms, Open Source
Software

I. INTRODUCTION
Fast Fourier Transforms (FFTs) is a ubiquitous algorithm in

computational science and engineering, second only perhaps to
linear algebra in terms of the universality of impact. Codes from
a variety of disciplines rely on FFTs, often through the use of
third-party libraries, to simulate a wide range of phenomena.
This paper deals with a challenging case of multidimensional
(3D and 4D) FFTs computed repeatedly during simulations
running on the medium to high end of High Performance
Computing (HPC) architectures, in terms of size and power.
This is the typical way they are used for many applications,
including (but not limited to) Direct Numerical Simulations of
turbulence, simulations of the ocean and atmosphere,
astrophysics, acoustics, seismic simulations, material science,
medical imaging and molecular dynamics.

The challenge of FFTs at large scale is well-studied and has
to do with dependence on the system’s bisection bandwidth,
as well as on-node memory bandwidth [1-3]. This is a known
issue on high-end HPC systems today and, as we approach the

Exascale, this limitation is only going to become worse and will
become a significant bottleneck for many applications. A
number of past-decade implementations of Multi-dimensional
(M-D) FFT aim to optimize performance at large scale, utilizing
strategies such as two-dimensional (2D) decomposition [4-11].
While this was a significant step forward compared to one-
dimensional (1D) decomposition, now there is a greater need
than ever to work on evolving M-D FFT algorithms and
software to keep pace with the system evolution and application
requirements.

Fourier Transforms come in many flavors. In addition, there
are algorithms sufficiently similar to FFT. They can be placed
in the same category, which we call spectral transforms.
When creating a general use package, it makes sense to make it
as general as possible, without losing performance. Many
existing spectral transforms implementations have a rigid or
specialized user interface, limiting their usability. Past
packages (such as P3DFFT, the predecessor of P3DFT++ in
terms of key ideas) have been created in response to the largest
demand at the time, namely Direct Numerical Simulations of
turbulence (DNST) field [12-26], where distinct applications
typically have a fairly consistent set of data structures. These
packages focused on achieving high performance, while staying
within the narrow range of data structures and problems of a
typical DNST application. The natural next step of evolution
might encompass other possible use scenarios, including data
structures, feature sets and opportunities for application-
specific optimizations. This is where we perceive the need for
a universal approach that would allow a high degree of
flexibility in terms of features and usage, at the same time
maximizing scalable performance by incorporating lessons
learned from earlier work on M-D FFT packages. This is
precisely what the new framework P3DFFT++ aims to
accomplish. It provides an adaptable, portable
implementation of M-D FFT and related spectral-like
algorithms as an open source package. This is reminiscent of
the role FFTW [27] has played for spectral transforms in the
past, and the way packages like BLAS and LAPACK have been
the standards for interface and implementation in the field of
linear algebra computations.

P3DFFT++ provides both a software package and a
universal API for using M-D FFT and related spectral-like
transforms. It allows for user’s choice of data layout in terms of

memory storage and processor space decomposition. It supplies
an abstraction level that hides optimization from the user, thus
making it easily adaptable to a number of architectures.
P3DFFT++ is built in a modular manner, providing
opportunities for expansion, for example by adding more
transform types in addition to FFTs (e.g. sine/cosine, wavelets,
high-order finite difference schemes etc). It also aims to
streamline calculations of constructs that rely on FFTs (such as
derivatives and convolutions), in order to improve performance
and maximize usability. In short, P3DFFT++ is designed to be
a universal toolbox for a broad range of uses of spectral
transforms, while maintaining competitive performance at
scale.

In this paper we start by defining the problem in the context
of previous work in the field. We proceed to describe design
elements of P3DFFT++, then to demonstrate its performance
and ease of use.

II. PREVIOUS WORK AND THE SCOPE OF THE PROJECT
Throughout this paper we refer to spectral-like transforms

when we mention any multi-dimensional transform algorithm
on a structured grid that has the following properties:

1. It can be reduced to a sequence of 1D transforms for an entire
array, one for each dimension, independent of other dimensions.

2. Each such 1D transform is compute and memory-bandwidth
intensive. In terms of data decomposition, it is best to have all
data in that dimension to reside locally in memory for each
core/task. The reason for the above is avoidance of heavy
communication that would be necessary to exchange data
between the stages of the 1D algorithm if the data were not all
local.

Clearly, all flavors of 3D FFT and sine/cosine transforms fall
under this category. In addition, high-order finite difference
schemes and wavelets can also be considered spectral-like
transforms and supported by P3DFFT++ without loss of
generality.

As mentioned in the introduction, P3DFFT package [4] has
been an important cornerstone in the evolution of this software
niche. P3DFFT was written in Fortran90 and MPI/OpenMP,
encapsulating a well-performing formulation of spectral
algorithms suitable for extreme scale computation. In particular,
P3DFFT implements 2D decomposition in processor space,
which allows in principle to scale a N3 problem up to N2 tasks.
P3DFFT follows the most common sense and efficient path of
computing 3D FFT (for details see [4] and Fig. 1): starting with
data distributed as pencils local in X dimension, we do 1D FFT
in X, Y and Z dimensions, in turn over the entire array,
interspersed with two each of local and inter-processor
transposes. The end result consists of data distributed as a Z-
pencil. It is assumed that after performing necessary operations
in Fourier space (such as taking derivatives, convolution etc) a
user might want to do an inverse transform from Z- to X-
pencils.

Figure 1. 3D FFT implementation with 2D decomposition typically involves a
sequence of 1D transforms in X, Y and Z dimensions, interspersed with two sub-
communicator all-to-all exchanges.

Thus only X-pencils are supported in physical space and Z
pencils in the Fourier space, out of many other potentially useful
configurations. In contrast, as we shall see below, P3DFFT++
envisions many other possible choices for data layout. In
addition, the way 1D FFTs and the transposes are combined in
P3DFFT is fixed and the user has no control in the process.
Finally, P3DFFT provides only real-to-complex transforms, as
well as a few related real-to-real transforms such as sine and
cosine. The implementation of the algorithm is fixed and thus
not adaptable to multiple architectures.

While performance of a package like P3DFFT on a suitable
problem and hardware may be impressive (see Fig. 2), even such
solutions will not be sufficient as we step into Exascale
computing, in view of both problem and architectures
adaptability. Exascale computing is very much a moving target,
in terms of both hardware and software paradigms. Therefore
one hopes for a framework portable enough to avoid rewriting
scientific software every 1-2 years.

A number of other 3D FFT solutions have been published,
both as open source third-party libraries [5-11] and as parts of
proprietary codes [28-34]. Although a thorough review of 3D
FFT packages is out of the scope of this paper, it is fair to say
that most existing solutions implement an approach similar to
P3DFFT, with some variations of features and specialization for
certain use cases and platforms. For example, some of these
packages may have features like autotuning, 3D decomposition,
GPU implementation, pruned transforms and overlap of
computation with communication, while no one package
provides all of them. None of the existing implementations, to
the author’s knowledge, provide flexible data layout options.
The abundance of packages may be daunting for a new user,
especially without a clear information contrasting them. It takes
substantial time and commitment to thoroughly evaluate ten or
so libraries and compare their performance to make an informed
choice. Once committed to a library, the user is unlikely to
switch.

Figure 2. Strong scaling of P3DFFT on Mira (IBM BlueGene/Q at Argonne National Lab).

Therefore, they may be missing useful features and/or
performance and in some cases may not even realize it.

P3DFFT++ aims to combine the best features mentioned
above under a “one roof” approach. In addition, it expands the
context of a spectral transform in modern computing by giving
more choice about what the user can do. Using C++ object-
oriented features, it encapsulates many options in a convenient
interface.

P3DFFT++ building blocks are 1D transforms, local
transposes and interprocessor transposes. By combining these
blocks in any desired way the user has a high degree of control
over the execution of higher-dimensional transform. The user
can do any combination of 1D transforms and transposes, going
all the way to 3D FFT. This framework is extremely flexible and
can be customized, for example, for cases such as de-aliasing in
computational fluid dynamics, where only parts of the 3D
spectrum are needed for the computation, and the rest can be
discarded, with resulting savings in compute time. P3DFFT++
can be thought of as a FFTW-like standard for multidimensional
spectral transforms on pre-Exascale and Exascale machines.

In designing P3DFFT++, special attention is paid to
minimizing expensive operations, such as inter-processor
communication, local memory transposes and other operations
leading to cache misses. Even though P3DFFT++ uses a higher-
level language and has a flexible interface, its performance is on
par with that of existing packages like P3DFFT, for cases that
both can handle. Continued work is aimed at achieving even
higher performance by utilizing modern optimizations with
potential to make a difference at Exascale level.

In addition to the low-level functions (“building blocks”
mentioned above), P3DFFT++ provides high level 3D (and, in
the future, higher dimensional) transform functions, both for
convenience and optimization. In particular, an autotuning
framework is going to be used for the planning stage, choosing
the best execution path for a given combination of platform and

problem. The framework also includes utilities for derivative
and convolution calculations.

III. P3DFFT++ FRAMEWORK AND DESIGN
P3DFFT++ is implemented in C++ and uses MPI for inter-

processor communication. 1D transforms are delegated to
standard libraries such as MKL, FFTW, ESSL, CUFFT, or
alternatively to a user-defined implementation. The package
includes C++, C and Fortran interfaces, and documented
through examples, tutorials and reference pages. The home page
for this package is http://www.p3dfft.net. The package
is released through github.com with an open source license.

P3DFFT++ uses an object-oriented design to encapsulate
various data structures and transforms into classes and class
templates, providing a clear and concise interface for the user. It
presently supports four datatypes: single-precision real and
complex, and double-precision real and complex. Most classes
are defined as C++ templates in terms of input and output
datatype, for example:
template <class Type_in,class Type_out>

class transform3D;

P3DFFT++ borrows the idea of transform planners from
FFTW. Namely, each transform (be it 1D or 3D) has a planner
function (usually contained in a C++ class constructor) that gets
called once when the transform is initialized, and contains any
setup arrangements for execution (as well as possibly trial
execution runs within an autotuning framework). Once a
transform has been “planned”, it can be executed multiple times
in a fast call. Using C++ classes is a convenient way to
encapsulate all the information and functions referring to a
transform.

A. Data layout descriptors
As mentioned above, P3DFFT++ is intended to support very

general data layout, both in terms of grid decomposition and

0.016

0.031

0.063

0.125

0.250

0.500

1.000

2.000

4.000

8.000

2.6E+02 5.1E+02 1.0E+03 2.0E+03 4.1E+03 8.2E+03 1.6E+04 3.3E+04 6.6E+04 1.3E+05 2.6E+05 5.2E+05

Ti
m

e
(s

ec
)

N cores

2048^3 1024^3 4096^3 8192^3 Ideal

memory arrangement. We begin with discussion of 3D grids,
with generalization for 4D straightforward. A 3D data grid can
be mapped onto a 1D, 2D or 3D processor grid. (Most 3D FFT
implementations use 1D or 2D decomposition, which is well-
suited for the algorithm as it preserves at least one entirely local
dimension. However, some applications have inherent 3D
decomposition, and it is necessary for a package like P3DFFT++
to deal with such cases, so this layout choice will be included in
future versions). Let P1, P2 and P3 be dimensions of the
processor grid. (In case of 2D decomposition one of these will
be equal to 1, and in case of 1D decomposition two of these will
be equal to 1.) The processor grid is constructed via MPI
Cartesian communicators. If the dimensionality of the processor
grid is greater than 1, there are multiple ways the processor grid
can be constructed from the (linear) global MPI space of ranks
1 through Np. For example, P1 can be mapped onto the fastest-
changing index of the 3D processor grid, so the corresponding
communicator contains adjacent MPI ranks. Alternatively, it can
be mapped to next-fastest-changing index, so the stride in terms
of MPI ranks is P2. Finally, it can be mapped onto the slowest-
changing index, so the stride is P2P3. Such topological choices
may in some cases be embedded in the application calling
P3DFFT++. In other cases choosing a different topological
mapping may potentially make a performance difference.
Therefore, to adequately describe data decomposition among
MPI tasks, for each of the three array dimensions (rank i) the
following information is required:

1. Size of the global grid, Gi

2. Size of the MPI communicator subdividing this
dimension, Pi (with the value of 1 implying a local dimension).

3. Topological rank of the communicator among the three
dimensions (represented as an integer 0 through 2, with 0
corresponding to fastest-changing index/adjacent MPI ranks,
and 2 corresponding to slowest-changing index/largest stride).

The above description describes the size and location of each
local portion of the grid in the global grid, as well as assigns each
MPI task its own position in the multidimensional processor
grid. The local portion of the grid for each task has dimensions
easily computed as Li = Gi/Pi. Next consider how a three-
dimensional array is stored in memory. The simplest case would
be to store the array simply following the logical dimensions
ordering, namely first dimension (X) is stored with stride-1
access, followed by Y and Z (this is sometimes called Fortran,
or row-major, storage, although the name is misleading as it can
be used both in Fortran and C). However, more generally, each
logical dimension i (range 0 through 2) can be stored as rank Mi
in the mapping of the 3D local array onto the one-dimensional
RAM of the node. Each Mi can have values from 0 to 2, with 0
being the stride-1 access dimension and 2 being the largest-
stride dimension. The reason we include a generalized memory
ordering is that spectral 1D algorithms are fastest when the data
to be transformed is arranged in stride-1 pattern. Thus it is
necessary to transpose the data locally in memory (in addition to
transposing it in MPI space) when going from X to Y and then to
Z 1D transforms. In addition, the calling application may have
its own storage conventions, and P3DFFT++ attempts to
describe the most general case.

The above descriptions of data decomposition in MPI space
and local storage scheme are enough to avoid most ambiguities
in data layout representation. Every word in memory location
for every MPI rank is assigned its place in the global data and
processor grids, and vice versa. The original 3D array is
assumed to be contiguous, although in the future it is possible to
expand the description to include non-contiguous arrays, such as
subarrays embedded in larger arrays.

B. Base classes
The grid class includes all information about data layout

for a given variable, as explained above. It includes the
following fields: global and local (per MPI task) grid dimensions
Gi and Li; MPI information (such as task ID, number of tasks
and MPI communicator); processor grid information (size of
communicator Pi and how it maps onto the global
communicator space); local storage layout information, namely
memory storage ordering Mi. In short, this class describes all
relevant aspects of data layout, and is used as metadata for array
variables. For example, when defining a 3D FFT, the grid
objects for input and output arrays may have the same global
grid dimensions but different local dimensions, distribution
among MPI tasks and local storage layout. The grid class is
oblivious to datatype of the data array, as that information is
encoded in the class templates for transform classes.

P3DFFT++ defines a number of the most common spectral
1D transform types, such as complex-to-complex FFT, real-to-
complex FFT, cosine transform etc. This list includes an empty
transform, implying simply a copy from input to output, as a
convenience feature. Each 1D transform type is defined as a
class containing basic information such as the size of the
transform N, number of transforms in a bunch m, data types for
input and output, a pointer to the planner for this transform (such
as fftw_plan_dft_many in FFTW), and a pointer to the
execution function (such as fftw_execute_dft).

A general multidimensional transform is defined as a
sequence of 1D transforms of suitable types as well as local and
interprocessor transposes. In P3DFFT++ this is expressed as a
linked list of classes of type stage. Each stage can be of the
following three varieties (programmed through derived classes
in C++):

1. The 1D transform class includes necessary information
to execute 1D transform for a 3D array, including the size of the
transform, number of elements needing to be transformed
independently, strides, and the transform type. The number of
elements m can control whether we transform just one line
(m=1), one plane (m=L2, dimension of local array in the plane
NL2) or the entire volume (m=L2L3). Notice that in contrast to
the transform type class, which only describes the type of
transform and is oblivious of the data, this class includes all
relevant information about the data, such as grid metadata
descriptors. The constructor for this class includes a call to
planning functions (for example if FFTW is used for 1D FFTs,
then a call to fftw_plan_dft_many or a similar planner is
included). An execution member function executes the 1D
transform that has been planned by the constructor and can be
called multiple times. This class also includes local memory

transposes, called independently or in conjunction with the
transform to optimize memory access.

2. The interprocessor transpose implements an exchange
equivalent to MPI_Alltoall in a Cartesian
subcommunicator, including all the needed packing and
unpacking, as well as local memory transposes. Its constructor
initializes fields such as the MPI communicator handle and
dimensions, and buffer sizes for the all-to-all exchange. The
exchange itself may be implemented via MPI_Alltoall, or
an alternative method such as pairwise exchange. Autotuning
mechanism is planned in future versions to help establish the
best performing option for a given platform and problem.

3. Another class combines interprocessor transpose with
1D transform, providing opportunities for optimization by
minimizing memory access.

These classes form the backbone of P3DFFT++. An
arbitrary sequence of these three types of stage classes defines
an execution path for a multidimensional transform (with the
limitation that exactly three 1D transforms are included, for
example, in the case of 3D transform). A user can arrange them
in any manner (as long as the data descriptors are consistent
between the consecutive stages).

C. Higher-level classes
P3DFFT++ also provides a higher-level class transform3D,

which combines individual stages needed for a given 3D
transform in an optimized fashion. This class takes as input the
metadata descriptors (grid objects) for input and output arrays,
as well as the three transform types to be used in X, Y and Z
dimensions. Constructor for this class includes planning of the
3D transform algorithm, including necessary calls to 1D
transform planners. Since there are multiple execution paths
possible for a given 3D transform, this class also includes an
autotuning framework to choose the best possible execution path
(this is described in more detail below). The execution member
function executes the path that the autotuner found to be the best.
In addition, a derivative execution function is provided, in order
to combine the spectral transform with derivative calculation in
the Fourier space (such as multiplication by the suitable
wavenumber).

Future work will include more higher-order classes, for
example a 4D transform, more derivative options (e.g.
Laplacian, divergence, curl) and convolutions.

IV. PERFORMANCE CONSIDERATIONS
While some might expect a loss in performance of

P3DFFT++ due to the use of C++, as well as expanded feature
set, this loss turns out to be negligible. According to its desan
ign, the overhead from higher-level C++ features is small
compared to the bulk of the computation, which is done either
by specialized libraries such as FFTW, or a C-style code in
critical portions of the software. In addition, ongoing work
includes a GPU interface.

A. Interprocessor communication
Interprocessor communication is the main bottleneck for

performance of spectral algorithms at large scale. It involves all-
to-all exchanges, done repeatedly, either within the global

communicator, or within Cartesian sub-communicators. In
either case, this is an expensive operation with high data volume,
that tends to stress the system interconnect’s bisection
bandwidth. As the size of high-end HPC architectures grows,
bisection bandwidth is typically not growing at the same rate, so
performance of all-to-all communication is likely to become an
even bigger bottleneck as time goes on.

P3DFFT++ employs several strategies to minimize the
impact of this problem. Firstly, an autotuner can select the best
path of execution, as explained below, minimizing the cost of
such all-to-all exchanges. In addition, an overlap of
communication with computation will be implemented for
certain types of transforms. Earlier results [10, 35-38] suggest
this can partially hide the cost of the expensive all-to-all
exchanges. Finally, providing the pruned transforms option
(where only a part of the Fourier spectrum is kept) helps reduce
the volume of data in such exchanges, with proportionate
decrease in cost.

B. Memory access
In addition to bisection bandwidth, spectral algorithms

typically stress local memory bandwidth on each compute node.
In fact, some authors predict this bottleneck may even
overshadow the bisection bandwidth limits in future systems
[1,2]. In particular, this arises in three types of situations:

1. Executing local 1D transforms, such as FFT.

2. Transposing the data locally in memory between 1D
transforms.

3. Packing/unpacking send/receive buffers for an
interprocessor exchange.

P3DFFT++ design is concerned with minimizing the
number of memory reads and writes. Especially concerning are
non-stride-1 reads and writes. Such patterns of access are a
known source of inefficiency, due to a high number of cache
misses involved. Unfortunately, such operations are an integral
part of spectral algorithms. P3DFFT++ follows the design
choice common to most MD FFT implementations, namely
calling an established 1D transforms via established library such
as FFTW. Since these transforms are cache-intensive, for best
performance these calls are done for data arranged in stride-1
pattern. P3DFFT++’s task, therefore, is to rearrange the data in
stride-1 pattern before calling each of the 1D transforms. This is
done by reorder functions implementing the loop blocking
method to minimize the price for cache misses. Since no
assumptions are made about the input and output data layouts,
such reordering may be needed in the beginning and in the end
of the run as well.

P3DFFT++ takes advantage of opportunities for
optimization in transition between the three main situations
listed above, by combining two of them in a way maximizing
cache reuse. Below is an example (in pseudocode) of a
combined call to 1D transform with memory transpose. The
code in this example transposes memory ordering from (0,1,2)
to (1,0,2), meaning that only the first two indices are
interchanged. A temporary array for each k value is used first to
transpose the input array, then to do a transform (in the
dimension of the first index j, for all i), writing results into the

k’s space of the output array. The transposition inherently is not
cache-friendly (and could be further optimized by loop blocking,
as in other parts of the code), however compared to the separate
transpose and transform operations, we save one read+write
equivalent of the entire array.

for all k:

 for all j and i:

 temp(j,i)=In(i,j,k)

 transform1D(Temp,Out(1,1,k))

C. GPU capability
Most modern pre-exascale computers include GPUs as part

of system design, and therefore it is important for competitive
software packages to make use of this capability. Since GPU
technology changes rapidly and different vendors often have
incompatible interfaces, it is imperative for any long-term
package to include an interface that is portable and general
enough.

Work on GPU interface in P3DFFT++ is ongoing. Currently
a trial version using CUDA implementation for NVIDIA GPUs
is in place for evaluation. It uses CUFFT and CUTENSOR
libraries from NVIDIA for 1D FFTs and memory transposes,
respectively. Ongoing work includes asynchronous transfers,
which will partially overlap compute and communication time
with the time of data transfer to/from the GPU. In addition, it
will include wrapper functions that are blind to the underlying
GPU programming semantics. A good candidate for this is HIP
interface from AMD, which bridges AMD and NVIDIA GPU
syntaxes.

D. Autotuning 3D transforms
Consider the case of 3D transform with 2D decomposition.

Input and output arrays are defined according to grid object
descriptors, as explained above. This includes both
decomposition in processor space and a mapping to memory
storage. The algorithm must go through three stages of 1D
transform, with two or more inter-processor transposes and two
or more local memory transposes. The course of the algorithm
consists of an assembled sequence of basic P3DFFT++ building
blocks (see above, namely 1D transforms combined with
reordering, inter-processor transpose combined with reordering,
and inter-processor transpose combined with 1D transform and
reordering). These blocks have to be assembled in a way
respecting the consistency of data layout between them, i.e. the
output of one stage must be the same as the input for the next
one.

In general, there is more than one combination of such
assembly paths yielding the needed output (as was observed in
[39]). Although some heuristics may be used to determine more
optimal paths, in practice this has turned out to be unreliable and
not sufficient, considering the variety of problems and
architectures. Therefore P3DFFT++ will adopt an autotuning
framework for measuring each of the best candidate assembly
paths. Each path consists of a linked list of stages, and these
paths are stored in a vector list. The autotuner goes through each
path, measuring its execution time for a given number of
repetitions. This is done in the planning call (constructor) of 3D

transform class. The best-performing path is saved and used in
the execution step.

E. Performance experiment
Here we compare performance of the latest CPU version of

P3DFFT++ with P3DFFT v. 2.7.9. We used Stampede2
platform at TACC (using Intel’s Knights Landing Nodes with
68 cores per node, of which 64 were used, and 100 Gb/sec Intel
Omni-Path network with a fat tree topology employing six core
switches). We have used a pair of real-to-complex and complex-
to-real 3D FFT, which is relevant to many applications. We
tested grid sizes 10243 and 20483, with 2D processor
decomposition. Reported numbers in Fig. 3 are the timing for
the forward/inverse transform pair, with the optimal processor
grid dimensions for each case. We see comparable performance
of P3DFFT++ and P3DFFT, with P3DFFT++ slightly winning
in most cases. Note that these results were obtained with a
version of the code without the autotuner, which can be expected
to further improve performance. Also we note that performance
on other platforms is quite similar in nature to these results.

V. USING P3DFFT++
In this section we demonstrate the use of P3DFFT++ for

calculation of complex-to-complex 3D FFT. In this case, 2D
decomposition is used. The input is in X-pencils, with the most
basic memory ordering, while the output is in Z-pencil, with
memory ordering such that Z dimension is stored with stride 1.
We will use C++ code for this demonstration, but C and Fortran
interfaces are also available, and example programs are provided
in the distribution.

First, call P3DFFT++ initialization function setup once
before any use, remembering to use p3dfft namespace:

using namespace p3dfft;

setup();

Next, set up input and output grid objects. For this we will
need global grid dimensions, processor grid information and
memory ordering map.
gdims[] = {nx,ny,nz};

mem_order1[] = {0,1,2};

pgrid1[] = {1, p1, p2};

proc_order[] = {0,1,2};

Construct the input grid object:
grid grid1(gdims,-1,

pgrid1,proc_order,mem_order1,MPI_COMM_WORLD);

Now define and construct the output grid object:
mem_order2[] = {2,1,0};

pgrid2[] = {p1,p2,1};

grid grid2(gdims, -1,pgrid2,proc_order,

mem_order2,MPI_COMM_WORLD);

Now define which type of 3D transform we want. In this
case, all three dimensions will have complex-to-complex
forward FFT in double precision:

Figure 3. Performance comparison of P3DFFT++ and P3DFFT v. 2.7.9 on Stampede2 at TACC. Reported on the vertical axis is timing for a forward-inverse pair
of real-to-complex/complex-to-real 3D FFT in seconds.

int type_ids[3] = {CFFT_FORWARD_D,

CFFT_FORWARD_D,CFFT_FORWARD_D};

trans_type3D type_cft_forward(type_ids);

Now find local dimensions of the input array and allocate
space for it (note that mem_order mapping is used to translate
from logical to physical storage indices):
int sdims1[3];

for(i=0;i<3;i++)

 sdims1[mem_order1[i]] = grid1.ldims[i];

int size1 = sdims1[0]*sdims1[1]*sdims1[2];

complex_double *IN=new

complex_double[size1];

Now do the same for output array:
int sdims2[3];

for(i=0;i<3;i++)

 sdims2[mem_order2[i]] = grid2.ldims[i];

int size2 = sdims2[0]*sdims2[1]*sdims2[2];

complex_double *OUT=new

complex_double[size2];

Next we construct the 3D transform, including planning and
finding the best execution path through autotuning, as described
above.
transform3D<complex_double,complex_double>

trans_f(grid1,grid2,&type_cft_forward);

Now the input can be initialized. Then we are ready to
execute the transform, as many times as necessary.
for(i=0;i < nRep;i++) {

… trans_f.exec(IN,OUT); … }

After P3DFFT++ is done, call cleanup() to deallocate
temporary variables P3DFFT++ uses:
cleanup();

Using the same testing framework, many other kinds of
transforms could have been defined, such as real-to-complex,
cosine, sine, or a user-defined transform, in any reasonable
combination for three dimensions. Also various alternative data
layout options are possible simply by changing pgrid,
proc_ordering and mem_order. More details can be found in the
user guide and tutorial at http://www.p3dfft.net.

VI. CONCLUSIONS AND FUTURE WORK
We have provided a motivation for a new adaptable software

framework for multidimensional FFTs and other spectral
transforms. We have listed the desirable characteristics of such
framework, such as adaptability in terms of problem scope and
architecture features, extending far beyond the existing
multidimensional FFT libraries. This list formed the basis for
creation of an open source P3DFFT++ library package. We have
provided an overview of its design choices, discussed
performance features and demonstrated using the package for a
common 3D FFT case. P3DFFT++ (available at
http://www.p3dfft.net) is written in C++ with interfaces for C
and Fortran. It has been documented and tested on a variety of
problems. At present, the functionality of P3DFFT++ includes
most features present in P3DFFT and other comparable libraries,
while far surpassing them in terms of the data options. Certain
advanced features are still being developed and tested.

Performance considerations are of primary importance in
this discussion. At this time P3DFFT++ performance is
comparable to that of P3DFFT for the cases we have tested.
Ongoing work includes integrating more performance-
improvement features, such as asynchronous GPU operations,
pruned transforms and overlap of communication with
computation, in order to make the package practical for Exascale
platforms. 4D transforms and 3D decomposition are features of
interest to the community and will also be incorporated into the
package.

1.56E-02

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

1.00E+00

2.00E+00

4.00E+00

256 512 1024 2048 4096 8192 16384

Ti
m

e
(s

ec
)

N cores

P3DFFT++ 2048^3 P3DFFT 2048^3 P3DFFT++ 1024^3 P3DFFT 1024^3

ACKNOWLEDGMENT
This work used the Extreme Science and Engineering

Discovery Environment (XSEDE), which is supported by
National Science Foundation grant number ACI-1548562. In
particular, it has used Comet platform at San Diego
Supercomputer Center/UCSD, and Stampede2 platform at
TACC/U. Texas at Austin.

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-
00OR22725.

This work was supported by U.S. NSF grant OAC-1835885.

REFERENCES
[1] K. Czechowski, C. Battaglino, C. McClanahan, K. Iyer, P.K. Yeung and

R. Vuduc, “On the communication complexity of 3D FFTs and its
implications for exascale”, Proceedings of the 26th ACM international
conference on Supercomputing, pp. 205-214, June 2012.

[2] C. McClanahan, K. Czechowski, C. Battaglino, K. Iyer, P.K. Yeung and
R. Vuduc, “Prospects for scalable 3D FFTs on heterogeneous exascale
systems”, ACMIEEE conference on supercomputing, SC. 2011

[3] H. Gahvari, and W. Gropp, “An introductory exascale feasibility study for
FFTs and multigrid”, IEEE International Symposium on Parallel &
Distributed Processing (IPDPS), pp.1-9, April 2010.

[4] D. Pekurovsky, “P3DFFT: A framework for parallel computations of
Fourier transforms in three dimensions”, SIAM Journal on Scientific
Computing, 34(4), pp.C192-C209, 2012.

[5] N. Li, and S. Laizet, “2decomp & fft-a highly scalable 2d decomposition
library and fft interface”, Cray User Group 2010 conference, pp. 1-13,
May 2010.

[6] D. Takahashi, ”An implementation of parallel 3-D FFT with 2-D
decomposition on a massively parallel cluster of multi-core processors”,
International Conference on Parallel Processing and Applied
Mathematics, pp. 606-614, Springer, Berlin, Heidelberg, September
2009.

[7] A. Gholami, J. Hill, D. Malhotra and G. Biros, “AccFFT: A library for
distributed-memory FFT on CPU and GPU architectures”, arXiv preprint
arXiv:1506.07933, 2015, unpublished.

[8] T.V.T. Duy and T. Ozaki, “Hybrid and 4-D FFT implementations of an
open-source parallel FFT package OpenFFT”, The Journal of
Supercomputing, 72(2), pp.391-416, 2016.

[9] M. Pippig, “An efficient and flexible parallel FFT implementation based
on FFTW”, Competence in High Performance Computing, pp. 125-134,
Springer, Berlin, Heidelberg, 2011.

[10] J.H. Göbbert, H. Iliev, C. Ansorge and H. Pitsch, H., “Overlapping of
Communication and Computation in nb3dfft for 3D Fast Fourier
Transformations”, In Jülich Aachen Research Alliance (JARA) High-
Performance Computing Symposium, pp. 151-159, Springer, Cham.,
September 2016

[11] S. Plimpton, R. Pollock and M. Stevens, “Particle-Mesh Ewald and
rRESPA for Parallel Molecular Dynamics Simulations”, PPSC, March
1997.

[12] D. Donzis, P.K. Yeung and K.R. Sreenivasan, “Dissipation and enstrophy
in isotropic turbulence: resolution effects and scaling in direct numerical
simulations”, Physics of Fluids, 20(4), p.045108, 2008.

[13] H. Homann, O. Kamps, R. Friedrich and R. Grauer, “Bridging from
Eulerian to Lagrangian statistics in 3D hydro-and magnetohydrodynamic
turbulent flows”, New Journal of Physics, 11(7), p.073020, 2009.

[14] S. Laizet, E. Lamballais and J.C. Vassilicos, “A numerical strategy to
combine high-order schemes, complex geometry and parallel computing
for high resolution DNS of fractal generated turbulence”, Computers &
Fluids, 39(3), pp.471-484, 2010.

[15] L. Thais, A.E. Tejada-Martínez, T.B. Gatski, G. Mompean and H. Naji,
“Direct and Large Eddy Numerical Simulations of Turbulent Viscoelastic
Drag Reduction”, Wall Turbulence: Understanding and Modeling, pp.
421-428, Springer, Dordrecht, 2011.

[16] P.K. Yeung and C.A. Moseley, “A message-passing, distributed memory
parallel algorithm for direct numerical simulation of turbulence with
particle tracking”, Parallel Computational Fluid Dynamics 1995 (pp. 473-
480), 1996.

[17] T. Engels, D. Kolomenskiy, K. Schneider, F.O. Lehmann and J.
Sesterhenn, “Bumblebee flight in heavy turbulence”, Physical review
letters, 116(2), p.028103, 2016.

[18] A. Beresnyak, “Spectra of strong magnetohydrodynamic turbulence from
high resolution simulations”, The Astrophysical Journal Letters, 784(2),
p.L20, 2014.

[19] S. Lange and F. Spanier, “Evolution of plasma turbulence excited with
particle beams”, Astronomy & Astrophysics, 546, p.A51, 2012.

[20] L. Arnold, C. Beetz, J. Dreher, H. Homann, C. Schwarz and R. Grauer,
“Massively Parallel Simulations of Solar Flares and Plasma Turbulence”,
Parallel Computing: Architectures, Algorithms and Applications, Bd, 15,
pp.467-474, 2008.

[21] N. Peters, L. Wang, J.P. Mellado, J.H. Gobbert, M. Gauding, P. Schafer
and M. Gampert, “Geometrical properties of small scale turbulence”,
Proceedings of the John von Neumann Institute for Computing NIC
Symposium, Juelich, Germany (pp. 365-371), February 2010.

[22] J. Schumache and M. Pütz, “Turbulence in Laterally Extended Systems”,
PARCO, pp. 585-592, 2007.

[23] P.J. Ireland, T. Vaithianathan, P.S. Sukheswalla, B. Ray, and L.R. Collins,
“Highly parallel particle-laden flow solver for turbulence research”,
Computers & Fluids, 76, pp.170-177, 2013.

[24] P. Fede and O. Simonin, “Numerical study of the subgrid fluid turbulence
effects on the statistics of heavy colliding particles”, Physics of Fluids,
18(4), p.045103, 2006.

[25] S. Banerjee, A.G. Kritsuk, “Energy transfer in compressible
magnetohydrodynamic turbulence for isothermal self-gravitating fluids”,
Phys. Rev. E, v.97, no. 2, p. 023107, 2018.

[26] J. Bodart, L. Joly and J.B. Cazalbou, “Large scale simulation of
turbulence using a hybrid spectral/finite difference solver”, Parallel
Computational Fluid Dynamics: Recent Advances and Future Directions,
pp.473-482, 2009.

[27] M. Frigo and S.G. Johnson, “The design and implementation of FFTW3”,
Proceedings of the IEEE, 93(2), pp.216-231, 2005.

[28] E.J. Bylaska et al, “Transitioning NWChem to the Next Generation of
Manycore Machines”, Exascale Scientific Applications: Scalability and
Performance Portability, ch. 8., 2017.

[29] A. Canning, J. Shalf, N. J. Wright, S. Anderson and M. Gajbe, "A hybrid
MPI/OpenMP 3d FFT for plane wave first-principles materials science
codes", Proceedings of the International Conference on Scientific
Computing (CSC), p. 1. The Steering Committee of The World Congress
in Computer Science, Computer Engineering and Applied Computing
(WorldComp), 2012.

[30] M. Gajbe, A. Canning, L.W. Wang, J. Shalf, H. Wasserman and R.
Vuduc, “Auto-tuning distributed-memory 3-dimensional fast Fourier
transforms on the Cray XT4”, Proc. Cray User's Group (CUG)
Meeting,May 2009.

[31] M. Lee, N. Malaya and R.D. Moser, “Petascale direct numerical
simulation of turbulent channel flow on up to 786k cores”, Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, p. 61, September 2013.

[32] S. Song and J.K. Hollingsworth, J.K., “Computation–communication
overlap and parameter auto-tuning for scalable parallel 3-D FFT”, Journal
of Computational Science, 14, pp.38-50, 2016.

[33] J. Jung, C. Kobayashi, T. Imamura and Y. Sugita, “Parallel
implementation of 3D FFT with volumetric decomposition schemes for
efficient molecular dynamics simulations”, Computer Physics
Communications, 200, pp.57-65, 2016.

[34] A.G. Chatterjee, M.K. Verma, A. Kumar, R. Samtaney, B. Hadri, B. and
R. Khurram, “Scaling of a Fast Fourier Transform and a pseudo-spectral

fluid solver up to 196608 cores”, Journal of Parallel and Distributed
Computing, 113, pp.77-91, 2018.

[35] K. Kandalla, H. Subramoni, K. Tomko, D. Pekurovsky, S. Sur and D.K.
Panda, “High-performance and scalable non-blocking all-to-all with
collective offload on InfiniBand clusters: a study with parallel 3D FFT.
Computer Science-Research and Development, 26(3-4), p.237, 2011.

[36] [35] K. Kandalla, H. Subramoni, K. Tomko, D. Pekurovsky and D.K.
Panda, “A Novel functional partitioning approach to design high-
performance MPI-3 non-blocking alltoallv collective on multi-core
systems”, Parallel Processing (ICPP), 2013 42nd International
Conference on (pp. 611-620). IEEE, October 2013.

[37] H. Subramoni, A.A. Awan, K. Hamidouche, D. Pekurovsky, A.
Venkatesh, S. Chakraborty, K. Tomko and D.K. Panda, “Designing non-

blocking personalized collectives with near perfect overlap for RDMA-
enabled clusters”, International Conference on High Performance
Computing (pp. 434-453). Springer, Cham, July 2015.

[38] D. Pekurovsky, A. Venkatesh, S. Chakraborty, K. Tomko and D.K.
Panda, “Designing Non-blocking Personalized Collectives with Near
Perfect Overlap for RDMA-Enabled Clusters”, High Performance
Computing: 30th International Conference, ISC High Performance,
Frankfurt, Germany, Proceedings, Vol. 9137, p. 434, Springer, July 2015.

[39] T.V.T. Duy and T. Ozaki, “A decomposition method with minimum
communication amount for parallelization of multi-dimensional FFTs”,
Computer Physics Communications, 185(1), pp.153-164, 2014.

