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P3DFFT: A FRAMEWORK FOR PARALLEL COMPUTATIONS OF
FOURIER TRANSFORMS IN THREE DIMENSIONS*

DMITRY PEKUROVSKYT

Abstract. Fourier and related transforms are a family of algorithms widely employed in diverse
areas of computational science, notoriously difficult to scale on high-performance parallel computers
with a large number of processing elements (cores). This paper introduces a popular software package
called P3DFFT which implements fast Fourier transforms (FFTs) in three dimensions in a highly
efficient and scalable way. It overcomes a well-known scalability bottleneck of three-dimensional
(3D) FFT implementations by using two-dimensional domain decomposition. Designed for portable
performance, P3DFFT achieves excellent timings for a number of systems and problem sizes. On a
Cray XTS5 system P3DFFT attains 45% efficiency in weak scaling from 128 to 65,536 computational
cores. Library features include Fourier and Chebyshev transforms, Fortran and C interfaces, in- and
out-of-place transforms, uneven data grids, and single and double precision. P3DFFT is available
as open source at http://code.google.com/p/p3dfft/. This paper discusses P3DFFT implementation
and performance in a way that helps guide the user in making optimal choices for parameters of their
runs.
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1. Introduction. A large number of applications in computational sciences are
written to solve partial differential equations on three-dimensional (3D) grids. Com-
mon examples are pseudospectral solvers employing fast Fourier transforms (FFTSs),
as well as codes using Chebyshev transform and compact finite difference algorithms.
Most of these algorithms share the feature of needing local (with respect to a pro-
cessing element) access to all data in a given dimension of a 3D array at a certain
stage, and then the second and third dimensions at other stages. This paper presents
a software framework for such operations, and while we focus our discussion on FFT's
it is naturally extended to other algorithms in this class.

The FFT in one, two, or three dimensions is an efficient algorithm well known
for decades (see Cooley and Tukey (1965)) as well as a traditional component of any
serious numerical library. 3D FFT happens to be one of the most compute- and
communication-intensive components in applications from a range of fields (for exam-
ple, in turbulence, molecular dynamics, 3D tomography, and astrophysics), and for
this reason there are many excellent parallel implementations in existence today. Some
of the implementations are supplied by well-respected libraries and packages, whether
open-source or commercial (see FFTW, Frigo and Johnson (2005), and PESSL, NAG,
Agarwal, Gustavson, and Zubair (1994)). While these are typically highly optimized
and produce good performance at moderate scales, most of them were not designed

*Submitted to the journal’s Software and High Performance Computing section March 15, 2011;
accepted for publication (in revised form) April 19, 2012; published electronically August 15, 2012.
This work was sponsored by NSF grant OCI-085-684. The author acknowledges use of NSF computer
resources at NICS/ORNL, and the TACC/University of Texas Ranger system, under a Teragrid
startup allocation award, as well as Cray XT5 (Jaguar) system at NCCS/ORNL under a DOE
INCITE award “A Petascale Study of Turbulent Mixing in Non-Stratified and Stratified Flows.”

http://www.siam.org/journals/sisc/34-4/82748.html

TUC San Diego, San Diego Supercomputer Center, 9500 Gilman Drive, MC 0505, La Jolla, CA
92093 (dmitry@sdsc.edu).

C192



P3DFFT C193

to address one increasingly important consideration, namely, the limit of scalability.
Most of the parallel 3D FFT libraries to date use one-dimensional (1D), or slab,
domain decomposition (described in section 2), which allows scaling only up to the
linear grid size. At the age of petascale platforms more and more systems typically
have numbers of processing elements (PEs) far exceeding this limit for many applica-
tions. For example, cutting-edge turbulence simulations today (Donzis, Yeung, and
Pekurovsky (2008); Donzis and Yeung (2010)) use 40963 grids and so with 1D de-
composition would scale only to 4096 PEs at most. In order to handle the enormous
volume of data and compute operations such applications are run on some of the most
powerful supercomputers of today, involving O(10%-10%) PEs. The P3DFFT package
[P3DFFT, D. Pekurovsky] (the subject of this paper) overcomes this scalability barrier
by employing two-dimensional (2D), or pencils, domain decomposition.

While the idea of 2D decomposition applied in the 3D FFT algorithm is not
new, few general-purpose implementations are known to date. Wapperom, Bens,
and Straka (2006) investigated a 2D decomposition applied in an FFT/Chebyshev
transform and in a pseudospectral DNS turbulence code. Several interesting studies
of 2D decomposed 3D FFT on various modern supercomputer architectures have
been reported recently (Takahashi (2010), Jagode (2008), Hein et al. (2008), Kirker
(2009)); however, these codes are not available to the public. In terms of general-
purpose libraries, at this time there are only a small number of offerings. An effort
by an IBM team (Eleftheriou et al. (2005)) resulted in a library of 3D decomposed
parallel FFTs optimized for 3D torus architecture of an IBM BG/L supercomputer.
Unfortunately this software provides a very limited set of options in terms of input
sizes and datatypes and is available only as a precompiled binary for IBM BG/L. An
FFT package related to LAMMPS code (Plimpton) provides array remapping tools
for employing 2D decomposition and 3D FFT implementation; however, this package
implements only complex-to-complex transforms.

P3DFFT fills the niche by providing an open source, easy to use implementation
(available from http://code.google.com/p/p3dfft) employing 2D decomposition. By
design it is portable to a large number of platforms, adaptable for diverse applications,
and at the same time is built for maximum performance. P3DFFT is currently built
on top of Message Passing Interface (MPI), which provides portable performance and
ease of use. Its framework has been successfully applied in applications ranging from
direct numerical simulations of turbulence to oceanography, astrophysics, material
science, and chemistry (Donzis and Yeung (2010), Homann et al. (2009) and (2010),
Chandy and Frankel (2009), Schumacher and Putz (2007), Schumaker (2009), Peters
et al. (2010), Bodart (2009), Gratke (2008), Weidauer et al. (2010), Laizet et al.
(2010), Schaeffer et al. (2010)). Its performance has been rigorously studied on a torus
interconnect architecture of the IBM BG/L supercomputer (Chan et al. (2008)).

The paper is structured as follows: In section 2 we introduce the parallel 3D FFT
algorithm implemented in P3DFFT as well as the two most relevant decomposition
schemes. In section 3 we delve into details about P3DFFT implementation. In sec-
tion 4 we present results of some benchmark tests and analyze performance of the
library, comparing it with an asymptotic model. Section 5 contains a summary and
our conclusion.

2. Parallel implementation of Fourier transforms. There are many pub-
lications devoted to parallel implementation of FFTs (see, for example, Foster and
Worley (1997), Swarztrauber (1987), and Sweet et al. (1991)). Let us begin by consid-
ering how the grid is decomposed among parallel tasks. The simplest way to distribute
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Fi1c. 1. 1D and 2D domain decomposition. The number of data points assigned to a processing
element Py through Py is essentially the same, but they represent different geometrical shapes.

the data is by assigning each task one or more 2D planes (a slab) of the array (see
Figure 1). This is known as 1D domain decomposition because the grid is divided
along one dimension. As already mentioned, this approach works well only as long as
the task count P does not exceed the linear grid size N. If taken beyond this point,
1D decomposition results in a sudden loss of scalability due to load imbalance, as
some tasks are without work. 2D, or pencils, decomposition, used in P3DFFT, is the
next logical step. Instead of slabs, each processor/task is responsible for a rectangular
column (pencil) of the data array. The tasks are arranged in a 2D virtual grid with
dimensions M7 x M and this controls the dimensions of each pencil. There is some
freedom in choosing the grid dimensions, as long as the product of M; and M equals
P, the total number of tasks. With 2D decomposition the algorithm theoretically
scales up to N? tasks, and while it is somewhat more cumbersome to implement,
as noted in the introduction, a number of applications running on subpetascale and
petascale platforms critically depend upon it.

Regardless of decomposition, a Fourier transform in three dimensions is com-
prised of three 1D FFTs in the three dimensions (X, Y, and Z) in turn. When all
of the data in a given dimension of the grid resides entirely in a processor’s memory
(i.e., it is local) the transform cousists of a 1D FFT done over multiple grid lines by
every processor, which can be accomplished by a serial algorithm provided by many
well-known FFT libraries and is usually a fairly fast operation. The transforms pro-
ceed independently on each processor with regard to its own assigned portion of the
array. When the data are divided across processor boundaries (i.e., nonlocal), several
approaches are possible. One approach could be to use a parallel implementation of
1D FFT that exchanges the data elements as they are needed on other processors.
Such method (distributed transform in the terminology of Foster and Worley (1997))
involves multiple data exchanges. An alternative is the transpose transform, where
the array is reorganized by a single step of global transposition so that the dimension
to be transformed becomes local, and then serial 1D FFT can be applied. As shown
in Foster and Worley (1997) (see Table 1 therein), the data volume exchanged in
the transpose method is approximately log(M1)/2 or log(M2)/2 times less than that
involved in the distributed approach. As will be seen below, data volume has almost
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Fic. 2. Three computation and two transpose stages of 3D FFT algorithm 2D parallel decom-
position. In this example there are 16 tasks arranged in a 4 X 4 processor grid. Each rectangular
column of boxes of the same color represents data contained locally in a processor’s memory. (Going
from left to right) 1D FFT in X dimension for all X lines performed independently by each task is
followed by an exchange/transpose among processors belonging to the same subgroup (a Tow in pro-
cessor space). This is followed by a 1D FFT in Y followed by the second transpose among different
rows, followed by the final 1D FFT in Z dimension.

linear relation to the total execution time since communication, which comprises most
of the elapsed time in many cases of interest, is dominated by the time to push the
data volume through network links with limited bandwidth. Therefore, the transpose
approach is used in P3DFFT and throughout this paper.

Thus the parallel algorithm employed in P3DFFT (Figure 2) has three compute
stages corresponding to 1D FFT transforms in X, Y, and Z dimensions over the entire
volume of the data grid, interspersed with two parallel transposes in order to first
rearrange data from X- to Y-oriented pencils, and then from Y- to Z-oriented pencils.
Corresponding to the idea of the transpose approach, the 1D FFT compute stages
always proceed on pencils oriented in the direction of the transform, which means the
transform is local. Each transpose involves an all-to-all exchange within subgroups of
tasks comprising either a row or column of the virtual 2D processor grid.

Many applications study physical problems with one dimension of nonhomo-
geneity—for example, a wall-bounded turbulent flow where two dimensions have pe-
riodic boundary conditions while the third dimension has rigid walls on both ends.
For such situations it is common to use transforms other than Fourier in the third
dimension—for example, Chebyshev transforms, compact schemes, etc. The set-up
for these problems is essentially identical to the FFT scenario, with substitution of
the appropriate third transform in place of the FFT.

3. P3DFFT design and use.

3.1. Library overview. P3DFFT is available as an open-source library pack-
age with an easy-to-use interface, providing implementation of 3D FFT with strong
performance and scalability on a variety of platforms. Since it implements 2D decom-
position, it can scale up to N? cores as discussed above. 1D decomposition is also
included as a special case of 2D decomposition as an option for running on moder-
ate core counts. Both Fortran and C interfaces are supported, and comprehensive
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TABLE 1
Local array dimensions (L1,L2,L3) and logical memory storage order (Fortran convention) for
3D local arrays comprising X-, Y-, and Z-pencils. R2C transform takes X-pencils as input and
Z-pencils as output. In C2R the input/output is reversed. XYZ in this format means that the index
spanning the X dimension runs fastest, followed by the Y and Z indices. M1 and Mz are dimensions
of the processor grid (M1 x Mz = P), and Nz, Ny, N, are dimensions of the 3D data grid.

| | X-pencil | Y-pencil | Z-pencil |
STRIDE1 | Ly Ng XYZ Ny YXZ Nz, ZYX
defined Lo Ny/Ml (Nz+2)/(2M1) Ny/Mg
Lz | N./M> N. /M (Nz+2)/(2M;)
STRIDE1 | Ly Nz XYZ | (Nz4+2)/(2M1) | XYZ | (No+2)/(2M1) | XYZ
undefined | Lz | N, /My N, N, /M2
LS NZ/M2 NZ/M2 Nz

documentation is available. Also supplied in the distribution are sample programs in
both Fortran and C, illustrating several usage scenarios. P3DFFT supports both in-
place and out-of-place transforms in both single and double precision. It can handle
any grid dimensions (i.e., not a power of two) as long as the underlying FFT library
(ESSL or FFTW) supports them. P3DFFT is capable of handling problems with
uneven decomposition among processors—for example, a 2563 grid on 24 MPI tasks.
Although P3DFFT works for grids of any size, it is designed to be most effective
for large datasets. The present version 2.5 of P3DFFT implements real-to-complex
(R2C forward) and complex-to-real (C2R backward) Fourier transforms, sine/cosine
(Chebyshev) transforms, and an empty transform which allows the user to substitute
a custom transform of their own choice. P3DFFT has been tested and benchmarked
on many parallel machines.

3.2. User interface. An X-pencil is defined as a local array shape such that the
X dimension is entirely local within a given task’s memory. The Y dimension is spread
over the tasks in the rows of the virtual processor grid, while the Z dimension is spread
over columns. Similar definitions apply for Y-pencils and Z-pencils (see Table 1).
P3DFFT accepts the input data array for R2C shaped as X-pencils, while the output
array is defined as Z-pencils. Conversely, the C2R transform expects the input array
in Z-pencils, while its output comes as X-pencils. Significant resources are saved by
avoiding transpose back to the original distribution shape. This method is suited for
a great many applications (such as convolution and differentiation algorithms) that
require forward and backward transforms in sequence.

While pencil type fixes the shape of local arrays, memory storage order within the
arrays can vary, depending on the pencil shape and the optional user flag STRIDEL.
Memory storage dimensions are summarized in Table 1.

P3DFFT is written in Fortran 90 and uses MPI for communication. While the li-
brary can be called from C as well, we follow the Fortran convention, and when talking
about XYZ storage order we mean that the X dimension is the first in the order of stor-
age; i.e., elements with different X for given Y and Z indices are stored contiguously.

In an R2C 3D transform the first transform (in X) is a real-to-complex 1D
FFT, while the following Y and Z 1D FFTs are complex-to-complex. The real-to-
complex transforms are known to have complex conjugate symmetry, namely, F'(z) =
F*(N —x), which means half of the output modes are redundant due to the conjugate
symmetry. In particular, in an R2C transform of size N, modes N/2 + 2 through N
can be reconstructed from those numbered 1 through N/2. Modes 1 (the average)
and N, /2 + 1 (the Nyquist frequency) have zero imaginary components. In practice
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this means that the output (reflected in Table 1) is represented by complex numbers
in an array of dimensions ((N; +2)/2, Ny, N.) distributed among the processors in a
suitable way.

The library is called from a user’s code via module interface. Internal library
variables are hidden from the user while special routines are used to set or get relevant
parameters such as the grid size and dimensions of pencil arrays (details of usage
are described in [P3DFFT manual]). The package is easily installed using configure
command.

3.3. Implementation strategy. As already mentioned, the design of P3DFFT
followed the principle of portable performance. This implies that sometimes a choice
needed to be made between achieving performance on a given platform and porta-
bility. A number of intermediate kernels have been created, incorporating various
ideas mentioned below, which were then tested on several platforms. Some options
have been found to underperform universally across the platforms, in which case the
decision was clearly against them. In other cases there was no clear winner, or dif-
ferent variants showed up better or worse depending on the platform and/or usage
scenario. In such cases we attempted to implement all of the available options and
delegate the selection to the user. Thus the user has the ability to take an active
part in performance, tuning on their platform of choice. On the other hand, a set
of reasonable defaults guarantees ease of use for those not inclined for performance
timing experiments. Some of the flexibility has to do with data layout, and in this
case considerations other than performance may be in place, i.e., ease of incorporating
with the rest of the user’s application.

As mentioned in the previous section, the compute stages of the parallel 3D FFT
algorithm consist of 1D FFT on local data. P3DFFT uses an established FFT library
of the user’s choice (currently FEFTW or ESSL) for this task. Each of the three FFTs
is done as a single call, combining transforms of multiple sets of data. For transforms
in the second and third dimensions it is necessary to operate on data sets that are not
contiguous in memory (though always local in the memory of a core/task). This can
be handled in several ways. Typically FFT libraries allow both stride-1 and non—unit-
stride data access patterns. Thus one approach is to let the FFT library handle the
non—unit strides. Another approach is to transpose the data first to arrange them in a
stride-1 format before calling the FFT library. Both of these approaches are available
in P3DFFT; the second is triggered by setting the STRIDE1 flag. Loop blocking
is used with the memory transpose to optimize cache use. Relative performance
advantages of these approaches are discussed in the next section. A third alternative
can also be conceived, wherein FFT sublibraries are called with input, but not the
output, having unit stride (or vice versa). For example, if the input is in the form
(v,2,x), where y is the fastest changing index, a call to an FFT library could transpose
the input, calculate the FFT in Z, and then write the output in the form (z,y,x), which
is the optimal form for backward transform that follows. This approach was explored
and, at least with FFTW, found to lead to inferior performance. The reasons for
this are not clear at this time and may be specific to FFTW implementation. This
approach is not used in P3DFFT.

As already mentioned, transposing data between pencils of different orientation
between the three stages requires an all-to-all exchange within subgroups of proces-
sors. We define MPI cartesian subcommunicators ROW and COLUMN based on
each task’s placement in the virtual 2D processor grid. In order to transpose from X-
to Y-pencils, an all-to-all exchange is needed among tasks on the same rows of the
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processor grid. Similarly, to transpose from Y- to Z-pencils, an all-to-all exchange
within columns is needed. These exchanges are implemented by a call to MPI_Alltoall
or MPI_Alltoallv with ROW (COLUMN) used as the communicator argument. This
relies on an optimized implementation of MPI_Alltoall(v) as part of the MPI library
on a given system. In most cases MPI Alltoall(v) can be expected to work faster
than an equivalent collection of point-to-point send/receive calls. This was confirmed
in numerical experiments on several platforms. (The above is valid for blocking op-
erations. Using nonblocking point-to-point sends/receives, or PGAS languages such
as Co-Array Fortran, allows overlapping communication and computation. This is
an interesting alternative; however, it is not always a portable choice. Studies are
ongoing, and future releases of the package may include a PGAS or overlap option.)

The parallel transposes involve packing/unpacking data into/out of send/receive
buffers. Essentially this procedure involves a memory copy. In addition, when the
STRIDE]1 option is defined the packing/unpacking may involve a local memory trans-
pose; i.e., the copy operation does not follow a stride-1 pattern. We use loop blocking
to minimize cache misses. While the MPI standard provides a mechanism for such
pack/unpack operations through MPI datatypes, performance is dependent on the
particular MPI implementation. In experiments to date no measurable gain in per-
formance was found for a version implemented with MPI Datatypes. Therefore, we
chose to perform the packing/unpacking explicitly.

3.4. Load balancing. The algorithm lends itself to a symmetric work distri-
bution, and P3DFFT attempts to divide the work evenly among the tasks (this also
includes communication). In cases of uneven dimensions for local grid (for example
when using 128 x 128 x 128 data grid on 6 CPUs) load imbalance is naturally present.
In practice there is a small load imbalance even in the case when the processor grid
evenly divides the data grid due to the nature of R2C and C2R transforms, since as
mentioned earlier the dimensions of the output array is ((IV; + 2)/2, Ny, N;). This
leads to a slight load imbalance, even if the initial problem is evenly decomposed by
the processor grid. Since the number of elements exchanged among tasks may not be
the same, the MPI_Alltoallv call is used for exchanges as it allows for more flexibil-
ity in defining data than MPI_Alltoall. The mentioned load imbalance is quite small
for a reasonably large data grid volume, and in practice does not cause performance
problems. This implementation is therefore well suited for evenly as well as unevenly
distributed data grids.

While MPI_Alltoallv is the simplest solution, it is not necessarily the best one
in some cases. In particular, it has been reported [Schulz] that implementation of
MPI_Alltoallv on Cray XT platforms is inferior in performance to MPI_Alltoall for
comparable (evenly divided) buffers. For this reason P3DFFT provides an option
(USEEVEN) for reverting to MPI_Alltoall by simply padding send buffers with a few
extra elements in order to make the exchanges even. When load imbalance is small
these extra elements do not substantially add to the volume of data exchanged and
the end result is better that using MPI_Alltoallv on these systems, as shown below in
the results section.

4. Results and discussion.

4.1. Benchmark tests description. In this section we describe benchmark
results obtained by using one of the sample programs (test_sine) supplied with the
P3DFFT package. This program initializes a 3D array of specified dimensions, per-
forms a forward and backward 3D FFT, and then checks to make sure the data is the
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same (apart from a scale factor) as the initial array. The forward and backward FFT
can be repeated in a timed loop for a specified number of iterations. The program
reports time results averaged over the iterations’ count.

P3DFFT has been tested on many platforms, and in this paper we discuss re-
sults obtained on Cray XT5 partition of Jaguar at NCCS/ORNL, Kraken at
NICS/University of Tennessee, and the Ranger system at TACC/University of Texas
at Austin. Jaguar is a Cray XT5 computer with 2.6 GHZ AMD Opteron processors,
12 cores per node (2 sockets with 6 cores per socket), 16 GB of memory per node,
and Cray SeaStar2 3D torus interconnect [Jaguar], with a total of 224,256 compute
cores. GNU compilers were used in these tests. Kraken is a similar but somewhat
smaller system at NICS/UT [Kraken]. Ranger is a Sun/AMD platform with 2.3GHz
AMD Opteron processors, 16 cores per node (4 quad-core), 32 GB of memory per
node, and a Closs interconnect (InfiniBand switch), with a total of 62,976 compute
cores [Ranger]. PGI compilers were used in our tests on Ranger.

4.2. Achieving optimal performance with P3DFFT. As mentioned earlier,
P3DFFT was designed with reasonable defaults for portable performance, as well as
several user-controlled settings that can be adjusted for maximum performance. These
settings include the STRIDE1 option, the USEEVEN option, and a suitable choice of
the aspect ratio of the virtual processor grid. We are going to discuss these in turn.

1. STRIDEL1 option. Recall that STRIDE1 option controls whether the local
memory transpose is performed in P3DFFT or delegated to the FFT sublibrary.
There are pros and cons for each choice. On the one hand, delegating the transpose
to the FFT library allows it to optimize cache flow in combination with the FFT itself.
On the other hand, in this case the non—stride-1 access is needed both on input and
output of the FFT. If the data is transposed and written to a temporary buffer, as in
P3DFFT, separately from the FFT, the out-of-cache access pattern is needed in only
one of either input or output. The cost of this is an extra memory write/read, which
is done in small chunks, guaranteeing that the data reside in cache. In general there
is no clear winner between these two approaches, as many factors (such as the size
of transforms, the cache architecture of a given machine, and the sophistication of a
given FFT implementation’s handling of non-stride-1 data) contribute. In many tests
performance of the two approaches has been found to be quite close. In practice this
choice is often tied up with how the data structures are set up in the application that
uses P3DFFT (Fourier space arrays are ordered ZYX as opposed to XYZ by default,
per Table 1).

2. USEEVEN option. In the previous section we mentioned a potential advantage
of using the MPI_Alltoall call to transpose arrays even if the buffers are of different
sizes for all the tasks, by padding the buffers. P3DFFT provides the USEEVEN
option to use this implementation, whereas the default is MPI_Alltoallv. The effect
of using this option is quite noticeable on Cray XT5 (see Figure 4 below), due to an
abnormal difference between MPI_Alltoall and MPI_Alltoallv performance mentioned
earlier [Schulz]. The USEEVEN option is therefore strongly recommended on Cray
XTs but is not necessary on other platforms.

3. Processor grid dimensions and task placement. Below we consider the main
performance bottleneck for P3DFFT, namely, the two transposes involving all-to-all
communication.

Let us assume that the messages are large enough so that the bandwidth of the
network is the main bottleneck for interprocessor communication, rather than the
latency. The all-to-all communication pattern in 3D FFT depends mainly on two
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factors: bisection bandwidth of the network and the degree of contention between
different messages in utilization of the network links. The latter contention is a
function of a given network topology, as well as the efficiency of the all-to-all algorithm
and its implementation in the system. Since current generation of P3DFFT uses
MPI_Alltoall(v) (in order to be portable yet use each system’s optimized all-to-all),
in this paper we do not attempt to model network contention and related effects but
focus on network throughput defined by the bisection bandwidth as a rough upper
limit estimate. Some in-depth modeling work for the 3D torus architecture of the
IBM BG/L network, taking into account contention effects, can be found in Chan et
al. (2008), Kumar et al. (2008), and Pekurovsky et al. (2006).

First consider a 3D grid decomposed in one dimension. In the 3D FFT problem
the number of floating point operations in the computation phases is O(N3log(N)),
while the data volume for all-to-all communication is O(N?). As the number of tasks
(or cores) P is increased, the computation time scales as O(1/P) since the work is
nearly evenly distributed over P tasks. An all-to-all exchange involves each task
sending and receiving P — 1 messages of size N3/P2, so the total volume of data is
approximately m * N3 (here m is the size of each array element in bytes, and N3 can
be substituted for the product of N, % N, * N, for noncubic grids). By definition,
in the all-to-all exchange every second message will cross the network bisection, and
therefore the time for such a transfer is approximated by

(1) Thetwork = mCNB/(ZUbi(P))v

where oy;(P) is the bisection bandwidth of the network portion containing P tasks,
and c is a constant containing the network contention and other effects.

As already mentioned, in a 2D decomposition there are two all-to-all exchanges
involved, each performed within a ROW or COLUMN subcommunicator. Although
they exchange the same volume of data, they have rather different properties due
to the patterns of topological placement of tasks on the network. The ROW sub-
communicators normally consist of tasks on adjacent nodes (or even within a single
node). These nodes are going to end up somewhere close in their location on the
network graph. However, each COLUMN subcommunicator will span tasks on nodes
that are spread out across the network. Since performance characteristics of all-to-all
exchanges substantially depend on how far the nodes are from each other on the net-
work graph, typically the row and column exchanges have very different properties,
so there is an asymmetry in their parameters. For this reason, when choosing the
processor grid dimensions, a square grid is often not optimal, even if this may seem
counterintuitive. The optimal choice depends on specifics of the architecture of a
given platform. The dimensions should satisfy

(2) My x My = P, M, <= (Nw/Q,Ny), and M, <= (Ny,NZ)

Assuming there is no problem with injecting many messages into the network, often
the best dimensions are such that the ROW exchange is done entirely within the node,
or among a few neighboring nodes. (This means that M; < Ms.) In such a scenario,
the ROW exchange will be defined by memory bandwidth on the node and quite
cheap in comparison with the COLUMN exchange. In contrast, in the case where M,
and My are of the same order, both ROW and COLUMN exchanges involve network
traffic across nodes, resulting in a higher total cost.

Therefore choosing My such that the ROW transpose occurs within one node, if
feasible, appears to be a good strategy.
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Fi1a. 3. Performance dependence on processor grid aspect ratio M1 X Ms. FEach bar’s height
shows the time to complete one forward and one backward 3D FFT on a 2048 grid using 1024 cores
on Cray XT5 (Kraken) and Sun/AMD (Ranger).

In Figure 3 we study the dependence of performance on processor grid dimensions.
Data shown confirm the benefit of choosing M; such that the ROW transpose occurs
within a node. We see that the performance of P3DFFT can depend noticeably on
the choice of processor grid aspect ratio. In this example (a 20483 grid on 1024 cores)
the time to solution rises as M; crosses the threshold equally to the number of cores
per node (in this case, 12 for Kraken and 16 for Ranger). Note that the square grid
32 x 32, which may seem intuitively to be the best one, does not yield the optimal
performance. The reason for the reduced performance on Ranger with low M; is not
clear at this time but is possibly related to more messages leaving each node in the
COLUMN exchange when M is low.

It is interesting to note that in our tests on Cray XT5 (Kraken) at high core
counts (see Figure 4) the situation is somewhat different, and performance favors more
square-shaped processor grids. One hypothesis explaining this is a limitation on the
number of messages that the Cray’s SeaStar interconnect can handle at a given time.

We conclude that the choice of optimal processor grid dimensions appears to be
architecture- and problem-specific. The value of M; being close to the number of
cores on the node is a good starting point in many cases; however, the user is advised
to carry out a few test runs with higher and lower values for each case.

Assuming the above is the case, (1) is still a good approximation for total com-
munication time, since now the COLUMN exchange follows the same pattern as the
all-to-all exchange in 1D decomposition. Therefore, total execution time for the 3D
FFT can be approximated by the following:

(3) Trrr = N3[2.5109(N)/(PF) 4 bm/(Pomem) + cm/ (204 (P))).
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FI1G. 4. Strong scaling of P3DFF Tbenchmark for a 4096 grid in double precision on Cray XT5.
This log-log plot compares performance of versions implemented with MPI_Alltoall (USEEVEN op-
tion, red diamonds) and MPI_Alltoallv (default, green triangles) for parallel transposes. Both ver-
sions use the STRIDEL option; however, results without STRIDEL are very close to these numbers.
Also shown is the communication time corresponding to the MPI_Alltoall version (blue squares) and
a calculated fit to this data of the function a/P +b/(P%/3) (magenta crosses). Numbers next to each
data point show the processor grid dimensions used in obtaining the timing, corresponding to best re-
sult among several geometries explored for each case. Time in both seconds (for a forward/backward
transform pair) and TeraFlops (achieved number of floating point operations per second, in 1012) is
plotted. (TeraFlop numbers are based on best results with all-to-all).

Here the parameter b contains the number of memory accesses per data element, both
in FFT operations and in all the local and nonlocal transposition steps, while oem
is memory bandwidth per task on a node. Parameter F' reflects the floating point
operations per second in FFT. The values of coefficients F,b, and ¢ vary depending
on the system hardware, as well as implementation of MPI and the FFT library. The
above is a model that will be used in the following sections to fit the measured timing
data. For cases when M is larger than the number of cores on the nodes, both ROW
and COLUMN exchanges involve network traffic, but even in the worst case both of
them are limited by bisection bandwidth, and therefore (3) should still hold.

In our studies to date, the default placement of tasks on the physical network
(i.e., cores on a node are populated with contiguous task IDs) has proven to be
optimal, compared with several other task mapping algorithms, when performing 3D
FFT on cubic grids. Essentially this is due to the fact that all-to-all operations are
asymmetric and not sensitive to task placement. However, for noncubic grids the
situation is different. An interesting study was reported by an ANL group (Chan et
al. (2008)) where up to 48% improvement in performance was found due to optimized
task placement based on the network topology when using P3DFFT with noncubic
domains on an IBM BG/L. While further work here is needed, in this paper we focus
on results obtained when using simple contiguous task placement and study cubic
grids only.
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4.3. Benchmark results and discussion. Figures 4 and 5 show strong scal-
ing of the P3DFFT forward-and-backward 3D FFT test of size 4096 using double
precision on Cray XT5 (Kraken). Since we have seen that the processor grid aspect
ratio has some effect on performance, only the best M; x Ms combination is taken as
a data point for each core count. It is clear from these figures that communication
time is a substantial part of the total execution time.

Recall that this platform has 3D torus interconnect, and therefore bisection band-
width scales asymptotically as O(P?/3). Therefore (3) becomes

(4) Trpr = a/P + d/P?3,

A least-squares fit to the data to a curve defined by (4) produces an excellent match.
Taking the value of coefficient of the P2/3 term obtained from the fit, assuming that
half of all messages will need to pass through the network bisection, and considering
that there are two transposes, we obtain a value of 212 GB/s for effective bandwidth
for the network portion containing 65,536 cores (or 5,462 nodes). It is not easy to
contrast this with a predicted value since the placement of tasks on the torus is
unknown. If we assume a 15 x 16 x 24 partition with wraparound torus links in
the second and third dimensions, and a peak bandwidth of 9.6 GB/s per link, the
expected bisection bandwidth is 16*24*9.6 GB/s = 3,686 GB/s, which implies about
6% efficiency. This number parameterizes network contention and any other loss of
efficiency in the network. This is a rough estimate and should be taken with caution
due to many unknowns, such as how the nodes were grouped together, and whether
other users’ traffic affected the network throughput. However, the results of this
analysis are in agreement with the assumption that communication time scaling is
inversely proportional to bisection bandwidth.
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FIG. 7. Performance of PSDFFT on a 10243 transform, running on Cray XT5. Both time in
seconds (for a forward/backward transform pair) and number of floating points per second (in 102,
or TeraFlops) are plotted, and both linear and log-log plots are presented.

P3DFFT performs and scales reasonably well not only for large transforms but
also for medium grid sizes. Figures 68 present benchmark results for tests with linear
grid sizes 2048, 1024, and 512.

A weak scaling study is presented in Figure 9. We compare timings for five
cases, involving 16, 128, 1024, 8,192, and 65,536 compute cores, with corresponding
grid sizes 5123, 10243, 20483, 40963, and 81923. Computational intensity of the 3D
FFT is O(N3log(N)). Therefore, the weak scaling can be approximately defined by
increasing the core count eight times with each two-fold increase in grid size, and
including a factor of log(N) in the efficiency. With this definition P3DFFT achieves
parallel efficiency of 45% over the range of core counts from 128 to 65,536.

Finally, we touch on advantages and disadvantages of using 2D decomposition
versus 1D decomposition in 3D FFT at large and moderate scales. Both 1D and 2D
decompositions are implemented by P3DFFT (the 1D version is simply a special case
of the 2D version with virtual processor grid geometry 1 x P). While the 2D version
is free from the scaling limitation of slabs distribution, at moderate scales (namely,
P <= N) the 1D decomposition may be better, and our study in Figure 10 confirms
this. The main reason for the difference is that in the 1D case there is only one
transpose instead of two. The difference gets smaller as the core count P is increased,



P3DFFT C205

16
5123 1024 L == 5123
14
b 0512 \\
12 by 0.256 \
1 0.128
=&=Time (s) ==Time (s)
~==TFlops 0.064
038 ——Time (s) 0.032 TFlops
*
0.6 0.016
04 0.008 4././
0.004 -
02 0.002
0 —— —— ; — 0.001 § § i :
0 5000 10000 15000 20000 25000 30000 8 64 512 4096 32768

Fic. 8. Performance of PSDFFT on a 5123 transform, running on Cray XT5. Both time in
seconds (for a forward/backward transform pair) and number of floating points per second (in 1012,
or TeraFlops) are plotted, and both linear and log-log plots are presented.

Weak scaling

14
12
10
s 8
£ 6
£
4
2
0
512 1024 2048 4096 8192
N

Fic. 9. Weak scaling of PSDFFT test on Cray XT5. The horizontal axis shows linear data
grid size. The numbers next to data points indicate the core count. This is a log-linear plot.

becoming negligible at P = N. As P goes beyond N, it is clear that the 1D version
cannot scale; however, the 2D version continues to scale. Therefore, the main reason
for using the 2D approach is maintaining scalability beyond the P = N point.

5. Conclusion and related work. In this paper we have presented P3DFFT,
a software package for 3D FFTs and related algorithms on parallel computers. The
algorithm is implemented using 2D decomposition, which significantly increases the
range of scaling compared with 1D decomposition used in many other implementa-
tions. The design of P3DFFT followed the goal of portability and performance and
is based on a thorough set of experiments.

The main factors affecting performance were analyzed in this paper in a way that
helps guide the user in choosing optimal parameters for their run. The paper also
contains some benchmark data which agree well with an asymptotic model based on
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the network bisection bandwidth for the studied architectures. The reader is given a
realistic level of expected performance achievable with P3DFFT at high scales.

On a Cray XT5 system P3DFFT achieves a weak scaling efficiency of 45% when
scaling from 128 to 65,536 compute cores. Loss of efficiency is attributed to the
difficulty of maintaining scalable sustained bisection bandwidth on systems with core
counts reaching into tens and hundreds of thousands. While this tendency is likely
to be exacerbated in the future, at present this is a reasonable level of scalability to
enable many critical computations at large core counts. P3DFFT has already found
application in many scientific projects (Donzis, Yeung, and Pekurovsky (2008), Donzis
and Yeung (2010), Homann et al. (2009), Homann et al. (2010), Chandy and Frankel
(2009), Schumacher and Putz (2007), Schumacher (2009), Peters et al. (2010), Bodart
(2009), Grafke (2008), Weidauer et al. (2010), Laizet et al. (2010), and Schaeffer et
al. (2010)).

Studies involving Unified Parallel C (UPC) implementation of 3D FFT have been
reported in a number of papers including Bell et al. (2006) and Nishtala et al. (2009).
The authors report seeing an advantage in performance with UPC over MPI (using
MPI isend and MPILirecv) at medium scales, which they attribute to overlap of com-
munication with computation. By using communication protocols such as GASNET
that are closer to the low-level network fabric than MPI, a higher efficiency of overlap
is achieved. Another work with communication overlap in 3D FFT has been reported
in Kandalla et al. (2011), where a gain in performance is shown due to overlap of com-
munication and computation using MPI_Put calls. In general the ability to achieve
overlap is highly dependent on the capabilities of the hardware and software of a given
system. It may be also noted that while this avenue deserves careful attention and
study, measurements on production of high-end systems (for example, Cray XT) show
that on the order of 80% of the total time is spent in communication at high core
counts with 3D FFT, which unfortunately limits the gains achievable with overlap of
communication and computation in this case.
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Several teams have studied hybrid MPI/OpenMP implementation of pseudospec-
tral CFD codes employing 3D FFTs [Mininni, Gorobets, Takahashi 2006, Itakura).
Using hybrid code may potentially help performance somewhat by aggregating mes-
sages in all-to-all exchanges, although it is not likely to relieve the fundamental prob-
lem of limited bisection bandwidth. The downside is possible performance loss due to
OpenMP overhead and false sharing, as well as increased level of programming diffi-
culty. While questions remain about whether the hybrid approach provides a decisive
advantage over pure MPI, it is being investigated and may be implemented in later
versions of P3DFFT package.

As mentioned earlier, P3DFFT implements several transform types in the third
dimension, including Chebyshev and empty transform, for those cases where the third
dimension requires special treatment with respect to the first two. Future evolution
of the package will follow the need of its users, and may include increased flexibility
of array layout, as well as a versatile collection of isolated array transpose calls. This
will broaden the range of applicability of PBDFFT in scientific computing.

Acknowledgments. The author would like to thank P. K. Yeung, D. Donzis,
R. Schulz, and G. Brethouwer for helpful discussions.
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