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Abstract— We report progress in an ongoing effort to develop 

a versatile and portable software framework for computing muti-
dimensional spectral-like transforms at large scale. The design 
covers Fast Fourier Transforms and other algorithms that can be 
broken down into line operations. This class of algorithms covers 
a wide range of scientific applications and are notoriously 
challenging to scale on largest supercomputers. Another challenge 
addressed by this project is the fast pace of change in the field of 
High Performance Computing, with new systems and paradigms 
appearing every few years, demanding great adaptability and 
effort on behalf of software developers. To this end we have 
developed a flexible software framework as an open source 
package named P3DFFT++. It is written in C++ in a highly object-
oriented fashion, with interfaces for Fortran and C. The goal is to 
shield the user from details of low-level mechanisms of 
communication and computation by providing a portable high-
level API for commonly used algorithms. The framework will 
incorporate many modern HPC programming features, such as 
GPU implementation, overlapping communication with 
computation and GPU data transfer, as well as algorithm 
autotuning. We cover design choices of the package and early 
results. 

Keywords—Fast Fourier Transforms, Parallel Programming, 
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I. INTRODUCTION  
Fast Fourier Transforms (FFTs) is a ubiquitous algorithm in 

computational science and engineering, second only perhaps to 
linear algebra in terms of the universality of impact. Codes from 
a variety of disciplines rely on FFTs, often through the use of 
third-party libraries, to simulate a wide range of phenomena. 
This paper deals with a challenging case of multidimensional 
(3D and 4D) FFTs computed repeatedly during simulations 
running on the medium to high end of High Performance 
Computing (HPC) architectures, in terms of size and power.  
This is the typical way they are used for many applications, 
including (but not limited to) Direct Numerical Simulations of 
turbulence, simulations of the ocean and atmosphere, 
astrophysics, acoustics, seismic simulations, material science, 
medical imaging and molecular dynamics. 

The challenge of FFTs at large scale is well-studied and has 
to do with dependence on the system’s bisection bandwidth, 
as well as on-node memory bandwidth [1-3]. This is a known 
issue on high-end HPC systems today and, as we approach the 

Exascale, this limitation is only going to become worse and will 
become a significant bottleneck for many applications. A 
number of past-decade implementations of Multi-dimensional 
(M-D) FFT aim to optimize performance at large scale, utilizing 
strategies such as two-dimensional (2D) decomposition [4-11]. 
While this was a significant step forward compared to one-
dimensional (1D) decomposition, now there is a greater need 
than ever to work on evolving M-D FFT algorithms and 
software to keep pace with the system evolution and application 
requirements.  

Fourier Transforms come in many flavors. In addition, there 
are algorithms sufficiently similar to FFT. They can be placed 
in the same category, which we call spectral transforms. 
When creating a general use package, it makes sense to make it 
as general as possible, without losing performance. Many 
existing spectral transforms implementations have a rigid or 
specialized user interface, limiting their usability. Past 
packages (such as P3DFFT, the predecessor of P3DFT++ in 
terms of key ideas) have been created in response to the largest 
demand at the time, namely Direct Numerical Simulations of 
turbulence (DNST) field [12-26], where distinct applications 
typically have a fairly consistent set of data structures. These 
packages focused on achieving high performance, while staying 
within the narrow range of data structures and problems of a 
typical DNST application. The natural next step of evolution 
might encompass other possible use scenarios, including data 
structures, feature sets and opportunities for application-
specific optimizations. This is where we perceive the need for 
a universal approach that would allow a high degree of 
flexibility in terms of features and usage, at the same time 
maximizing scalable performance by incorporating lessons 
learned from earlier work on M-D FFT packages. This is 
precisely what the new framework P3DFFT++ aims to 
accomplish. It provides an adaptable, portable 
implementation of M-D FFT and related spectral-like 
algorithms as an open source package. This is reminiscent of 
the role FFTW [27] has played for spectral transforms in the 
past, and the way packages like BLAS and LAPACK have been 
the standards for interface and implementation in the field of 
linear algebra computations. 

P3DFFT++ provides both a software package and a 
universal API for using M-D FFT and related spectral-like 
transforms. It allows for user’s choice of data layout in terms of 



memory storage and processor space decomposition. It supplies 
an abstraction level that hides optimization from the user, thus 
making it easily adaptable to a number of architectures. 
P3DFFT++ is built in a modular manner, providing 
opportunities for expansion, for example by adding more 
transform types in addition to FFTs (e.g. sine/cosine, wavelets, 
high-order finite difference schemes etc). It also aims to 
streamline calculations of constructs that rely on FFTs (such as 
derivatives and convolutions), in order to improve performance 
and maximize usability. In short, P3DFFT++ is designed to be 
a universal toolbox for a broad range of uses of spectral 
transforms, while maintaining competitive performance at 
scale.    

In this paper we start by defining the problem in the context 
of previous work in the field. We proceed to describe design 
elements of P3DFFT++, then to demonstrate its performance 
and ease of use.  

 

II. PREVIOUS WORK AND THE SCOPE OF THE PROJECT 
Throughout this paper we refer to spectral-like transforms 

when we mention any multi-dimensional transform algorithm 
on a structured grid that has the following properties: 

1. It can be reduced to a sequence of 1D transforms for an entire 
array, one for each dimension, independent of other dimensions.  

2. Each such 1D transform is compute and memory-bandwidth 
intensive. In terms of data decomposition, it is best to have all 
data in that dimension to reside locally in memory for each 
core/task. The reason for the above is avoidance of heavy 
communication that would be necessary to exchange data 
between the stages of the 1D algorithm if the data were not all 
local.  

Clearly, all flavors of 3D FFT and sine/cosine transforms fall 
under this category. In addition, high-order finite difference 
schemes and wavelets can also be considered spectral-like 
transforms and supported by P3DFFT++ without loss of 
generality.  

As mentioned in the introduction, P3DFFT package [4] has 
been an important cornerstone in the evolution of this software 
niche. P3DFFT was written in Fortran90 and MPI/OpenMP, 
encapsulating a well-performing formulation of spectral 
algorithms suitable for extreme scale computation. In particular, 
P3DFFT implements 2D decomposition in processor space, 
which allows in principle to scale a N3 problem up to N2 tasks.  
P3DFFT follows the most common sense and efficient path of 
computing 3D FFT (for details see [4] and Fig. 1): starting with 
data distributed as pencils local in X dimension, we do 1D FFT 
in X, Y and Z dimensions, in turn over the entire array, 
interspersed with two each of local and inter-processor 
transposes. The end result consists of data distributed as a Z-
pencil. It is assumed that after performing necessary operations 
in Fourier space (such as taking derivatives, convolution etc) a 
user might want to do an inverse transform from Z- to X- 
pencils.  

 
Figure 1. 3D FFT implementation with 2D decomposition typically involves a 
sequence of 1D transforms in X, Y and Z dimensions, interspersed with two sub-
communicator all-to-all exchanges. 

Thus only X-pencils are supported in physical space and Z 
pencils in the Fourier space, out of many other potentially useful 
configurations. In contrast, as we shall see below, P3DFFT++ 
envisions many other possible choices for data layout. In 
addition, the way 1D FFTs and the transposes are combined in 
P3DFFT is fixed and the user has no control in the process. 
Finally, P3DFFT provides only real-to-complex transforms, as 
well as a few related real-to-real transforms such as sine and 
cosine. The implementation of the algorithm is fixed and thus 
not adaptable to multiple architectures. 

While performance of a package like P3DFFT on a suitable 
problem and hardware may be impressive (see Fig. 2), even such 
solutions will not be sufficient as we step into Exascale 
computing, in view of both problem and architectures 
adaptability. Exascale computing is very much a moving target, 
in terms of both hardware and software paradigms. Therefore 
one hopes for a framework portable enough to avoid rewriting 
scientific software every 1-2 years. 

A number of other 3D FFT solutions have been published, 
both as open source third-party libraries [5-11] and as parts of 
proprietary codes [28-34]. Although a thorough review of 3D 
FFT packages is out of the scope of this paper, it is fair to say 
that most existing solutions implement an approach similar to 
P3DFFT, with some variations of features and specialization for 
certain use cases and platforms. For example, some of these 
packages may have features like autotuning, 3D decomposition, 
GPU implementation, pruned transforms and overlap of 
computation with communication, while no one package 
provides all of them. None of the existing implementations, to 
the author’s knowledge, provide flexible data layout options.  
The abundance of packages may be daunting for a new user, 
especially without a clear information contrasting them. It takes 
substantial time and commitment to thoroughly evaluate ten or 
so libraries and compare their performance to make an informed 
choice.  Once committed to a library, the user is unlikely to 
switch.



Figure 2. Strong scaling of P3DFFT on Mira (IBM BlueGene/Q at Argonne National Lab). 

Therefore, they may be missing useful features and/or 
performance and in some cases may not even realize it.  

P3DFFT++ aims to combine the best features mentioned 
above under a “one roof” approach. In addition, it expands the 
context of a spectral transform in modern computing by giving 
more choice about what the user can do. Using C++ object-
oriented features, it encapsulates many options in a convenient 
interface.  

P3DFFT++ building blocks are 1D transforms, local 
transposes and interprocessor transposes. By combining these 
blocks in any desired way the user has a high degree of control 
over the execution of higher-dimensional transform. The user 
can do any combination of 1D transforms and transposes, going 
all the way to 3D FFT. This framework is extremely flexible and 
can be customized, for example, for cases such as de-aliasing in 
computational fluid dynamics, where only parts of the 3D 
spectrum are needed for the computation, and the rest can be 
discarded, with resulting savings in compute time. P3DFFT++ 
can be thought of as a FFTW-like standard for multidimensional 
spectral transforms on pre-Exascale and Exascale machines.  

In designing P3DFFT++, special attention is paid to 
minimizing expensive operations, such as inter-processor 
communication, local memory transposes and other operations 
leading to cache misses. Even though P3DFFT++ uses a higher-
level language and has a flexible interface, its performance is on 
par with that of existing packages like P3DFFT, for cases that 
both can handle. Continued work is aimed at achieving even 
higher performance by utilizing modern optimizations with 
potential to make a difference at Exascale level.  

In addition to the low-level functions (“building blocks” 
mentioned above), P3DFFT++ provides high level 3D (and, in 
the future, higher dimensional) transform functions, both for 
convenience and optimization. In particular, an autotuning 
framework is going to be used for the planning stage, choosing 
the best execution path for a given combination of platform and 

problem. The framework also includes utilities for derivative 
and convolution calculations.  

III. P3DFFT++ FRAMEWORK AND DESIGN 
P3DFFT++ is implemented in C++ and uses MPI for inter-

processor communication. 1D transforms are delegated to 
standard libraries such as MKL, FFTW, ESSL, CUFFT, or 
alternatively to a user-defined implementation. The package 
includes C++, C and Fortran interfaces, and documented 
through examples, tutorials and reference pages. The home page 
for this package is http://www.p3dfft.net. The package 
is released through github.com with an open source license.     

P3DFFT++ uses an object-oriented design to encapsulate 
various data structures and transforms into classes and class 
templates, providing a clear and concise interface for the user. It 
presently supports four datatypes: single-precision real and 
complex, and double-precision real and complex. Most classes 
are defined as C++ templates in terms of input and output 
datatype, for example: 
template <class Type_in,class Type_out> 

class transform3D;  

P3DFFT++ borrows the idea of transform planners from 
FFTW. Namely, each transform (be it 1D or 3D) has a planner 
function (usually contained in a C++ class constructor) that gets 
called once when the transform is initialized, and contains any 
setup arrangements for execution (as well as possibly trial 
execution runs within an autotuning framework). Once a 
transform has been “planned”, it can be executed multiple times 
in a fast call.  Using C++ classes is a convenient way to 
encapsulate all the information and functions referring to a 
transform.  

A. Data layout descriptors 
As mentioned above, P3DFFT++ is intended to support very 

general data layout, both in terms of grid decomposition and 
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memory arrangement. We begin with discussion of 3D grids, 
with generalization for 4D straightforward. A 3D data grid can 
be mapped onto a 1D, 2D or 3D processor grid. (Most 3D FFT 
implementations use 1D or 2D decomposition, which is well-
suited for the algorithm as it preserves at least one entirely local 
dimension. However, some applications have inherent 3D 
decomposition, and it is necessary for a package like P3DFFT++ 
to deal with such cases, so this layout choice will be included in 
future versions). Let P1, P2 and P3 be dimensions of the 
processor grid. (In case of 2D decomposition one of these will 
be equal to 1, and in case of 1D decomposition two of these will 
be equal to 1.) The processor grid is constructed via MPI 
Cartesian communicators. If the dimensionality of the processor 
grid is greater than 1, there are multiple ways the processor grid 
can be constructed from the (linear) global MPI space of ranks 
1 through Np. For example, P1 can be mapped onto the fastest-
changing index of the 3D processor grid, so the corresponding 
communicator contains adjacent MPI ranks. Alternatively, it can 
be mapped to next-fastest-changing index, so the stride in terms 
of MPI ranks is P2. Finally, it can be mapped onto the slowest-
changing index, so the stride is P2P3. Such topological choices 
may in some cases be embedded in the application calling 
P3DFFT++. In other cases choosing a different topological 
mapping may potentially make a performance difference. 
Therefore, to adequately describe data decomposition among 
MPI tasks, for each of the three array dimensions (rank i) the 
following information is required: 

1. Size of the global grid, Gi 

2. Size of the MPI communicator subdividing this 
dimension, Pi (with the value of 1 implying a local dimension).   

3. Topological rank of the communicator among the three 
dimensions (represented as an integer 0 through 2, with 0 
corresponding to fastest-changing index/adjacent MPI ranks, 
and 2 corresponding to slowest-changing index/largest stride). 

The above description describes the size and location of each 
local portion of the grid in the global grid, as well as assigns each 
MPI task its own position in the multidimensional processor 
grid. The local portion of the grid for each task has dimensions 
easily computed as Li = Gi/Pi. Next consider how a three-
dimensional array is stored in memory. The simplest case would 
be to store the array simply following the logical dimensions 
ordering, namely first dimension (X) is stored with stride-1 
access, followed by Y and Z (this is sometimes called Fortran, 
or row-major, storage, although the name is misleading as it can 
be used both in Fortran and C). However, more generally, each 
logical dimension i (range 0 through 2) can be stored as rank Mi 
in the mapping of the 3D local array onto the one-dimensional 
RAM of the node. Each Mi can have values from 0 to 2, with 0 
being the stride-1 access dimension and 2 being the largest-
stride dimension. The reason we include a generalized memory 
ordering is that spectral 1D algorithms are fastest when the data 
to be transformed is arranged in stride-1 pattern. Thus it is 
necessary to transpose the data locally in memory (in addition to 
transposing it in MPI space) when going from X to Y and then to 
Z 1D transforms. In addition, the calling application may have 
its own storage conventions, and P3DFFT++ attempts to 
describe the most general case.      

The above descriptions of data decomposition in MPI space 
and local storage scheme are enough to avoid most ambiguities 
in data layout representation. Every word in memory location 
for every MPI rank is assigned its place in the global data and 
processor grids, and vice versa.  The original 3D array is 
assumed to be contiguous, although in the future it is possible to 
expand the description to include non-contiguous arrays, such as 
subarrays embedded in larger arrays.   

B. Base classes 
The grid class includes all information about data layout 

for a given variable, as explained above. It includes the 
following fields: global and local (per MPI task) grid dimensions 
Gi and Li; MPI information (such as task ID, number of tasks 
and MPI communicator); processor grid information (size of 
communicator Pi and how it maps onto the global 
communicator space); local storage layout information, namely 
memory storage ordering Mi. In short, this class describes all 
relevant aspects of data layout, and is used as metadata for array 
variables. For example, when defining a 3D FFT, the grid 
objects for input and output arrays may have the same global 
grid dimensions but different local dimensions, distribution 
among MPI tasks and local storage layout.  The grid class is 
oblivious to datatype of the data array, as that information is 
encoded in the class templates for transform classes.  

P3DFFT++ defines a number of the most common spectral 
1D transform types, such as complex-to-complex FFT, real-to-
complex FFT, cosine transform etc. This list includes an empty 
transform, implying simply a copy from input to output, as a 
convenience feature. Each 1D transform type is defined as a 
class containing basic information such as the size of the 
transform N, number of transforms in a bunch m, data types for 
input and output, a pointer to the planner for this transform (such 
as fftw_plan_dft_many in FFTW), and a pointer to the 
execution function (such as fftw_execute_dft).     

A general multidimensional transform is defined as a 
sequence of 1D transforms of suitable types as well as local and 
interprocessor transposes. In P3DFFT++ this is expressed as a 
linked list of classes of type stage. Each stage can be of the 
following three varieties (programmed through derived classes 
in C++):  

1. The 1D transform class includes necessary information 
to execute 1D transform for a 3D array, including the size of the 
transform, number of elements needing to be transformed 
independently, strides, and the transform type. The number of 
elements m can control whether we transform just one line 
(m=1), one plane (m=L2, dimension of local array in the plane 
NL2) or the entire volume (m=L2L3). Notice that in contrast to 
the transform type class, which only describes the type of 
transform and is oblivious of the data, this class includes all 
relevant information about the data, such as grid metadata 
descriptors. The constructor for this class includes a call to 
planning functions (for example if FFTW is used for 1D FFTs, 
then a call to fftw_plan_dft_many or a similar planner is 
included). An execution member function executes the 1D 
transform that has been planned by the constructor and can be 
called multiple times. This class also includes local memory 



transposes, called independently or in conjunction with the 
transform to optimize memory access.  

2. The interprocessor transpose implements an exchange 
equivalent to MPI_Alltoall in a Cartesian 
subcommunicator, including all the needed packing and 
unpacking, as well as local memory transposes. Its constructor 
initializes fields such as the MPI communicator handle and 
dimensions, and buffer sizes for the all-to-all exchange. The 
exchange itself may be implemented via MPI_Alltoall, or 
an alternative method such as pairwise exchange. Autotuning 
mechanism is planned in future versions to help establish the 
best performing option for a given platform and problem.  

3. Another class combines interprocessor transpose with 
1D transform, providing opportunities for optimization by 
minimizing memory access. 

These classes form the backbone of P3DFFT++. An 
arbitrary sequence of these three types of stage classes defines 
an execution path for a multidimensional transform (with the 
limitation that exactly three 1D transforms are included, for 
example, in the case of 3D transform). A user can arrange them 
in any manner (as long as the data descriptors are consistent 
between the consecutive stages).  

C. Higher-level classes 
P3DFFT++ also provides a higher-level class transform3D, 

which combines individual stages needed for a given 3D 
transform in an optimized fashion. This class takes as input the 
metadata descriptors (grid objects) for input and output arrays, 
as well as the three transform types to be used in X, Y and Z 
dimensions. Constructor for this class includes planning of the 
3D transform algorithm, including necessary calls to 1D 
transform planners. Since there are multiple execution paths 
possible for a given 3D transform, this class also includes an 
autotuning framework to choose the best possible execution path 
(this is described in more detail below). The execution member 
function executes the path that the autotuner found to be the best. 
In addition, a derivative execution function is provided, in order 
to combine the spectral transform with derivative calculation in 
the Fourier space (such as multiplication by the suitable 
wavenumber).  

Future work will include more higher-order classes, for 
example a 4D transform, more derivative options (e.g. 
Laplacian, divergence, curl) and convolutions. 

IV. PERFORMANCE CONSIDERATIONS 
While some might expect a loss in performance of 

P3DFFT++ due to the use of C++, as well as expanded feature 
set, this loss turns out to be negligible. According to its desan 
ign, the overhead from higher-level C++ features is small 
compared to the bulk of the computation, which is done either 
by specialized libraries such as FFTW, or a C-style code in 
critical portions of the software. In addition, ongoing work 
includes a GPU interface.  

A. Interprocessor communication 
Interprocessor communication is the main bottleneck for 

performance of spectral algorithms at large scale. It involves all-
to-all exchanges, done repeatedly, either within the global 

communicator, or within Cartesian sub-communicators. In 
either case, this is an expensive operation with high data volume, 
that tends to stress the system interconnect’s bisection 
bandwidth. As the size of high-end HPC architectures grows, 
bisection bandwidth is typically not growing at the same rate, so 
performance of all-to-all communication is likely to become an 
even bigger bottleneck as time goes on.   

P3DFFT++ employs several strategies to minimize the 
impact of this problem. Firstly, an autotuner can select the best 
path of execution, as explained below, minimizing the cost of 
such all-to-all exchanges. In addition, an overlap of 
communication with computation will be implemented for 
certain types of transforms. Earlier results [10, 35-38] suggest 
this can partially hide the cost of the expensive all-to-all 
exchanges. Finally, providing the pruned transforms option 
(where only a part of the Fourier spectrum is kept) helps reduce 
the volume of data in such exchanges, with proportionate 
decrease in cost.   

B. Memory access 
In addition to bisection bandwidth, spectral algorithms 

typically stress local memory bandwidth on each compute node. 
In fact, some authors predict this bottleneck may even 
overshadow the bisection bandwidth limits in future systems 
[1,2]. In particular, this arises in three types of situations: 

1. Executing local 1D transforms, such as FFT.  

2. Transposing the data locally in memory between 1D 
transforms. 

3. Packing/unpacking send/receive buffers for an 
interprocessor exchange. 

P3DFFT++ design is concerned with minimizing the 
number of memory reads and writes. Especially concerning are 
non-stride-1 reads and writes. Such patterns of access are a 
known source of inefficiency, due to a high number of cache 
misses involved. Unfortunately, such operations are an integral 
part of spectral algorithms. P3DFFT++ follows the design 
choice common to most MD FFT implementations, namely 
calling an established 1D transforms via established library such 
as FFTW. Since these transforms are cache-intensive, for best 
performance these calls are done for data arranged in stride-1 
pattern. P3DFFT++’s task, therefore, is to rearrange the data in 
stride-1 pattern before calling each of the 1D transforms. This is 
done by reorder functions implementing the loop blocking 
method to minimize the price for cache misses. Since no 
assumptions are made about the input and output data layouts, 
such reordering may be needed in the beginning and in the end 
of the run as well.      

P3DFFT++ takes advantage of opportunities for 
optimization in transition between the three main situations 
listed above, by combining two of them in a way maximizing 
cache reuse. Below is an example (in pseudocode) of a 
combined call to 1D transform with memory transpose. The 
code in this example transposes memory ordering from (0,1,2) 
to (1,0,2), meaning that only the first two indices are 
interchanged. A temporary array for each k value is used first to 
transpose the input array, then to do a transform (in the 
dimension of the first index j, for all i), writing results into the 



k’s space of the output array. The transposition inherently is not 
cache-friendly (and could be further optimized by loop blocking, 
as in other parts of the code), however compared to the separate 
transpose and transform operations, we save one read+write 
equivalent of the entire array.  

for all k:  

  for all j and i:  

    temp(j,i)=In(i,j,k) 

   transform1D(Temp,Out(1,1,k))  

C. GPU capability 
Most modern pre-exascale computers include GPUs as part 

of system design, and therefore it is important for competitive 
software packages to make use of this capability. Since GPU 
technology changes rapidly and different vendors often have 
incompatible interfaces, it is imperative for any long-term 
package to include an interface that is portable and general 
enough.  

Work on GPU interface in P3DFFT++ is ongoing. Currently 
a trial version using CUDA implementation for NVIDIA GPUs 
is in place for evaluation. It uses CUFFT and CUTENSOR 
libraries from NVIDIA for 1D FFTs and memory transposes, 
respectively. Ongoing work includes asynchronous transfers, 
which will partially overlap compute and communication time 
with the time of data transfer to/from the GPU. In addition, it 
will include wrapper functions that are blind to the underlying 
GPU programming semantics. A good candidate for this is HIP 
interface from AMD, which bridges AMD and NVIDIA GPU 
syntaxes. 

D. Autotuning 3D transforms 
Consider the case of 3D transform with 2D decomposition. 

Input and output arrays are defined according to grid object 
descriptors, as explained above. This includes both 
decomposition in processor space and a mapping to memory 
storage. The algorithm must go through three stages of 1D 
transform, with two or more inter-processor transposes and two 
or more local memory transposes. The course of the algorithm 
consists of an assembled sequence of basic P3DFFT++ building 
blocks (see above, namely 1D transforms combined with 
reordering, inter-processor transpose combined with reordering, 
and inter-processor transpose combined with 1D transform and 
reordering). These blocks have to be assembled in a way 
respecting the consistency of data layout between them, i.e. the 
output of one stage must be the same as the input for the next 
one.  

In general, there is more than one combination of such 
assembly paths yielding the needed output (as was observed in 
[39]). Although some heuristics may be used to determine more 
optimal paths, in practice this has turned out to be unreliable and 
not sufficient, considering the variety of problems and 
architectures.  Therefore P3DFFT++ will adopt an autotuning 
framework for measuring each of the best candidate assembly 
paths. Each path consists of a linked list of stages, and these 
paths are stored in a vector list. The autotuner goes through each 
path, measuring its execution time for a given number of 
repetitions. This is done in the planning call (constructor) of 3D 

transform class. The best-performing path is saved and used in 
the execution step.  

E. Performance experiment 
Here we compare performance of the latest CPU version of 

P3DFFT++ with P3DFFT v. 2.7.9. We used Stampede2 
platform at TACC (using Intel’s Knights Landing Nodes with 
68 cores per node, of which 64 were used, and 100 Gb/sec Intel 
Omni-Path network with a fat tree topology employing six core 
switches). We have used a pair of real-to-complex and complex-
to-real 3D FFT, which is relevant to many applications. We 
tested grid sizes 10243 and 20483, with 2D processor 
decomposition. Reported numbers in Fig. 3 are the timing for 
the forward/inverse transform pair, with the optimal processor 
grid dimensions for each case. We see comparable performance 
of P3DFFT++ and P3DFFT, with P3DFFT++ slightly winning 
in most cases. Note that these results were obtained with a 
version of the code without the autotuner, which can be expected 
to further improve performance. Also we note that performance 
on other platforms is quite similar in nature to these results. 

V. USING P3DFFT++ 
In this section we demonstrate the use of P3DFFT++ for 

calculation of complex-to-complex 3D FFT. In this case, 2D 
decomposition is used. The input is in X-pencils, with the most 
basic memory ordering, while the output is in Z-pencil, with 
memory ordering such that Z dimension is stored with stride 1. 
We will use C++ code for this demonstration, but C and Fortran 
interfaces are also available, and example programs are provided 
in the distribution. 

First, call P3DFFT++ initialization function setup once 
before any use, remembering to use p3dfft namespace: 

using namespace p3dfft; 

setup(); 

Next, set up input and output grid objects. For this we will 
need global grid dimensions, processor grid information and 
memory ordering map.  
gdims[] = {nx,ny,nz}; 

mem_order1[] = {0,1,2};  

pgrid1[] = {1, p1, p2}; 

proc_order[] = {0,1,2};   

Construct the input grid object: 
grid grid1(gdims,-1, 

pgrid1,proc_order,mem_order1,MPI_COMM_WORLD);   

Now define and construct the output grid object: 
mem_order2[] = {2,1,0}; 

pgrid2[] = {p1,p2,1}; 

grid grid2(gdims, -1,pgrid2,proc_order, 

mem_order2,MPI_COMM_WORLD);   

Now define which type of 3D transform we want. In this 
case, all three dimensions will have complex-to-complex 
forward FFT in double precision: 



Figure 3. Performance comparison of P3DFFT++ and P3DFFT v. 2.7.9 on Stampede2 at TACC. Reported on the vertical axis is timing for a forward-inverse pair 
of real-to-complex/complex-to-real 3D FFT in seconds.    

 

int type_ids[3] = {CFFT_FORWARD_D, 

CFFT_FORWARD_D,CFFT_FORWARD_D}; 

trans_type3D type_cft_forward(type_ids);  

Now find local dimensions of the input array and allocate 
space for it (note that mem_order mapping is used to translate 
from logical to physical storage indices): 
int sdims1[3]; 

for(i=0;i<3;i++)   

   sdims1[mem_order1[i]] = grid1.ldims[i]; 

int size1 = sdims1[0]*sdims1[1]*sdims1[2]; 

complex_double *IN=new 

complex_double[size1]; 

Now do the same for output array: 
int sdims2[3]; 

for(i=0;i<3;i++)   

   sdims2[mem_order2[i]] = grid2.ldims[i]; 

int size2 = sdims2[0]*sdims2[1]*sdims2[2]; 

complex_double *OUT=new 

complex_double[size2]; 

Next we construct the 3D transform, including planning and 
finding the best execution path through autotuning, as described 
above.  
transform3D<complex_double,complex_double> 

trans_f(grid1,grid2,&type_cft_forward); 

Now the input can be initialized. Then we are ready to 
execute the transform, as many times as necessary.  
for(i=0;i < nRep;i++) { 

…   trans_f.exec(IN,OUT);   …   } 

After P3DFFT++ is done, call cleanup() to deallocate 
temporary variables P3DFFT++ uses: 
cleanup();  

Using the same testing framework, many other kinds of 
transforms could have been defined, such as real-to-complex, 
cosine, sine, or a user-defined transform, in any reasonable 
combination for three dimensions. Also various alternative data 
layout options are possible simply by changing pgrid, 
proc_ordering and mem_order. More details can be found in the 
user guide and tutorial at http://www.p3dfft.net.  

VI. CONCLUSIONS AND FUTURE WORK 
We have provided a motivation for a new adaptable software 

framework for multidimensional FFTs and other spectral 
transforms. We have listed the desirable characteristics of such 
framework, such as adaptability in terms of problem scope and 
architecture features, extending far beyond the existing 
multidimensional FFT libraries. This list formed the basis for 
creation of an open source P3DFFT++ library package. We have 
provided an overview of its design choices, discussed 
performance features and demonstrated using the package for a 
common 3D FFT case. P3DFFT++ (available at 
http://www.p3dfft.net) is written in C++ with interfaces for C 
and Fortran. It has been documented and tested on a variety of 
problems. At present, the functionality of P3DFFT++ includes 
most features present in P3DFFT and other comparable libraries, 
while far surpassing them in terms of the data options. Certain 
advanced features are still being developed and tested.   

Performance considerations are of primary importance in 
this discussion. At this time P3DFFT++ performance is 
comparable to that of P3DFFT for the cases we have tested.  
Ongoing work includes integrating more performance-
improvement features, such as asynchronous GPU operations, 
pruned transforms and overlap of communication with 
computation, in order to make the package practical for Exascale 
platforms. 4D transforms and 3D decomposition are features of 
interest to the community and will also be incorporated into the 
package. 
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