Oxwall Documentation
Release latest

Oxwall Foundation

November 24, 2016






Contents

9

Application Lifecycle
Main Application Service
Routing and Controllers
View and Components
Database and Models
Authorization

Cron (Task Scheduler)
Translation files

Widgets

10 Plugin Structure

11 Plugin Update

12 Getting developer and plugin keys

11

13

15

17

19

21

25

27







Oxwall Documentation, Release latest

Subject:

Contents 1



Oxwall Documentation, Release latest

2 Contents



CHAPTER 1

Application Lifecycle

in progress




Oxwall Documentation, Release latest

4 Chapter 1. Application Lifecycle



CHAPTER 2

Main Application Service

in progress




Oxwall Documentation, Release latest

6 Chapter 2. Main Application Service



CHAPTER 3

Routing and Controllers

in progress




Oxwall Documentation, Release latest

8 Chapter 3. Routing and Controllers



CHAPTER 4

View and Components

in progress




Oxwall Documentation, Release latest

10 Chapter 4. View and Components



CHAPTER 5

Database and Models

in progress

11



Oxwall Documentation, Release latest

12 Chapter 5. Database and Models



CHAPTER 6

Authorization

in progress

13



Oxwall Documentation, Release latest

14 Chapter 6. Authorization



CHAPTER 7

Cron (Task Scheduler)

in progress

15



Oxwall Documentation, Release latest

16 Chapter 7. Cron (Task Scheduler)



CHAPTER 8

Translation files

in progress

17



Oxwall Documentation, Release latest

18 Chapter 8. Translation files



CHAPTER 9

Widgets

in progress

19



Oxwall Documentation, Release latest

20 Chapter 9. Widgets



cHAPTER 10

Plugin Structure

Oxwall is one of the most simple platforms that uses MVC architectural pattern for implementing user interfaces. It
helps web developers to manage the complex tasks and understand the web frameworks written in PHP.

Oxwall plugins are developed basing on the MVC pattern which’s principle is to separate the application into 3 main
parts, known as the Model, the View, and the Controller - MVC (Model View Controller). Below you can find the
specific information about the MVC architectural pattern components and Oxwall plugin structure:

10.1 Model

The Model handles the direct interaction with database or other data sources. Model mainly consists of queries to
database and works on the data sending to database and retrieving it by converting it into a particular format. Oxwall
uses ORM programming technique. However, it also provides the possibility to write your own queries to database
omitting ORM.

10.2 View

The View is responsible for the presentation of the information in the appropriate format. It should mainly contain
presentational code, such as HTML, and simple PHP code and all business logic should be moved out, where feasible,
to Model, Controller or Component. That implies plain and simple templates for the data presentation. Oxwall’s
templates have .html extension.

Component - this is a part of encapsulated logic of View. i.e. the Component is some kind of the View helper. The
Component is used in case it’s required to indicate the business logic which is mostly should be represented as the part
of View than as the part of Controller. Also, Components are used during the View logic reusing. For example, the
form or menu representation. Components can have its own template file (.html), and can be called via Ajax. More
information about the Components can be found in the View and Components section.

10.3 Controller

Controller handles the data received from different ‘clients’ and outputs it using the View or Component files. It’s a
kind of glue that binds models, views and other components together into a runnable application.

More information about the Controllers can be found in the Routing and Controllers section.

21


https://en.wikipedia.org/wiki/Model-View-Controller
https://en.wikipedia.org/wiki/ORM

Oxwall Documentation, Release latest

10.4 The plugin directory structure:

/

--bol/
- - classes/

- - components/

- - controllers/

- - mobile/

- - - - classes/

- - - - components/
- - - - controllers/

- - - - views/

- - - - init.php

- - static/

----css/

----js/
- - - - images/

- - views/
- - - - components/

- - - - controllers/

- - update/

- - init.php

- - cron.php

- - activate.php

- - deactivate.php

- - install.php

- - uninstall.php

- - langs.zip

- - plugin.xml

. bol - contains the model files, which work with the database or any other data sources. Find more information

on how to work with the models here: Database and Models

. classes - contains various classes of the plugin, which are not related to the model and/or controller, such as

classes of the system events or downloaded libraries.

. controllers - contains controllers classes, which are directly deal with the end user requests by the registered

routes. Find more information about the routing and controllers here: Routing and Controllers.

. mobile - contains classes of controllers, models and components which are required for the mobile context

operations. i.e. it’s used to represent the mobile content when a user clicks the ‘Mobile version’ link or when
the system automatically detects if the content is requested from the mobile clients.

. static - contains .js, .css, and image files needed for the correct plugin functionality. It should be noted that this

directory is not accessible for the end users requests and all .js, .css or image files which are included in the
plugin controller - are copied automatically to the directory called /ow_static that’s available through http and
located in the root of the software.

. views - contains files of all plugin controllers and components representation. Take into account that the files

of the representation will be called automatically for all controller or component methods until you force the

22

Chapter 10. Plugin Structure



Oxwall Documentation, Release latest

10.

11.

12.

13.

14.

method to stop execution (for instance, it’s required for the ajax requests which can be executed without repre-
sentation files).

. update - contains the files of the plugin updates. Find more information about the plugin update here: Plugin

Update.

init.php - this file contains the script that runs initially. This script is called all the time during the plugin
initialization. The main task of this file is registering the plugin routes (more information can be found here:
Routing and Controllers). Also, it handles additional functionality, such as collects event subscribers or other
system events.

cron.php - this file runs background tasks by the time-based job scheduler called CRON. Find more information
about the CRON here: Cron (Task Scheduler). This file should be created only in case the plugin has some time-
based functionality. For example, send automatic letters. If this file exists in the plugin - it will be automatically
included and used by the system.

activate.php - this file contains the plugin logic that should be executed when the administrator activates plugin
in the Admin Panel. For example, the methods which add plugin widgets (more information can be found here:
Widgets) or menu items onto the certain positions. This file is optional, i.e. if there is no specific functionality
that should be run on the plugin activation, this file can be omitted. If this file exists in the plugin - it will be
automatically included and used by the system.

deactivate.php - this file contains the plugin logic that should be executed when the administrator deactivates
plugin in the Admin Panel. For example, the methods which remove plugin widgets (more information can
be found here: Widgets) or menu items from their positions. This file is optional, i.e. if there is no specific
functionality that should be run on the plugin deactivation, this file can be omitted. If this file exists in the plugin
- it will be automatically included and used by the system.

install.php - this file runs only during the plugin installation. It can be used to run SQL queries which, for exam-
ple, create tables in the database, import language file (more information can be found here: Translation files),
register new plugin settings or authorization groups/actions (more information can be found here: Authoriza-
tion). This file is optional, i.e. if there is no specific functionality that should be run on the plugin installation,
this file can be omitted. If this file exists in the plugin - it will be automatically included and used by the system.

uninstall.php - this file runs only during the plugin uninstallation. It can be used to run SQL queries which, for
example, remove tables which were created during the installation. There is no need to include methods which
will remove the plugin settings, authorization groups/actions or language translation because such entries are
removed automatically by the system. This file is optional, i.e. if there is no specific functionality that should be
run on the plugin uninstallation, this file can be omitted. If this file exists in the plugin - it will be automatically
included and used by the system.

plugin.xml - this file contains all the necessary service information about the plugin. Below you can find the
file structure.

10.5 plugin.xml file structure:

<?xml version="1.0" encoding="utf-8"?>
<plugin>

<name>My Super Plugin</name>

<key>superplugin</key>

<description>My super plugin.</description>
<author>Me</author>
<authorEmail>me@oxwall.org</authorEmail>
<authorUrl>http://www.me.com</authorUrl>
<developerKey>MY DEV_KEY</developerKey>

<build>1</build>

<copyright>(C) 2015 My. All rights reserved.</copyright>

10.5. plugin.xml file structure: 23




Oxwall Documentation, Release latest

<license>0SCL</license>
<licenseUrl>http://www.oxwall.org/store/oscl</licenseUrl>

</plugin>

10.

1.
2.

S

name - plugin name.

key - plugin name. It’s required to use lower case and latin letters only [a-z]. Before choosing the name, you
should make sure that there is no plugin with this name. To do so, please go to the Developer Tools page at
Oxwall.org: http://www.oxwall.org/store/dev-tools.

description - short description of the plugin functionality.
author - the name of the plugin developer.
authorEmail - the plugin developer email.

developerKey - the plugin developer key. It’s needed for the further plugin updates. This key can be found on
the Developer Tools page at Oxwall.org: http://www.oxwall.org/store/dev-tools. Find the detailed instructions
on how to get the key and sell your plugins in Oxwall Store here: Getting developer and plugin keys.

7. build - number of the plugin build. It’s needed for the further plugin updates.

copyright - the information about the plugin copyright.
license - the type of the license thats used for the plugin.

licenseUrl - URL of the page with detailed description of the chosen license.

24

Chapter 10. Plugin Structure



http://www.oxwall.org/store/dev-tools
http://www.oxwall.org/store/dev-tools

CHAPTER 11

Plugin Update

in progress

25



Oxwall Documentation, Release latest

26 Chapter 11. Plugin Update



CHAPTER 12

Getting developer and plugin keys

in progress

27



	Application Lifecycle
	Main Application Service
	Routing and Controllers
	View and Components
	Database and Models
	Authorization
	Cron (Task Scheduler)
	Translation files
	Widgets
	Plugin Structure
	Plugin Update
	Getting developer and plugin keys

