
OWSI-Core doc Documentation
Release 1.0

Laurent Almeras

Oct 27, 2017

Release notes

1 Migrating to 0.11 1

2 Migrating to 0.12 11

3 Migrating to 0.13 17

4 Migrating to 0.14 21

5 Migrating to 0.15 25

6 Tools 27

7 Security 31

8 Backend 41

9 UI 51

10 Contributing to upstream 85

11 Assertion 87

12 Predicate (TODO) 89

13 Renderer (TODO) 91

14 Backend 93

15 UI 107

16 Infrastructure Apache 109

17 Infrastructure Tomcat (TODO) 111

18 Documentation 113

19 Project installation 115

20 Build, deploy and exploit the Maven archetype 117

i

21 Database Scripts (from 0.14) 119

22 Install an Oomph project 121

23 Use Oomph with an existing project 123

24 Use data upgrades with Flyway 125

25 Create, initialize and launch a project - Workflow 127

ii

CHAPTER 1

Migrating to 0.11

This guide aims at helping OWSI-Core users migrate an application based on OWSI-Core 0.9 to OWSI-Core 0.11.

OWSI-Core 0.10 was never released, so you should not have to migrate from this version, but if you did, then you
could use this guide. Some parts would be irrelevant, but nothing should be missing.

Tools

Maven

Use the latest version of maven (at least Maven 3.3.1).

Java

~~Use JDK8. Earlier versions won’t work.~~ Actually, use JDK7. A frequent VM crash was spotted when using Java
8 on a 32-bit OS and a bug report is currently pending review.

Bindings & code processors

You may have trouble with your bindings. Know that:

1. QueryDSL completely revamped its bindings; you’ll need to delete them completely and regenerate them.

2. QueryDSL bindings generation will now fail if your project does not compile. Worse, not having QueryDSL
bindings will add an enormous amount of build errors, which will make it much harder to spot actual errors
that you must fix. It might be easier to first override QueryDSL’s version and the processor used for QueryDSL
bindings generation in your project (while sticking with OWSI-Core 0.9), and only then attempt migrating to
OWSI-Core 0.11. The new processor is com.querydsl:querydsl-apt version 4.0.7. See below for
changes in the new version of QueryDSL (com.querydsl:querydsl-jpa v4.0.7)

3. This page might help if you encounter errors when generating bindings.

1

OWSI-Core doc Documentation, Release 1.0

A new feature was introduced in OWSI-Core 0.11 that allows the bindings to be completely wiped before generation,
so that you won’t need to manually delete them after a refactoring, for instance. In order to benefit from this feature,
you must change your eclipse/*.launch files so that the invoked goals are simply generate-sources, but
with the eclipse-processor profile enabled. On Linux, you may use the following command line from your
project root:

find eclipse -name '*.launch' -print0 | xargs -0 sed -r -i 's/org.bsc.maven:maven-
→˓processor-plugin:process(org.bsc.maven:maven-processor-plugin:process-test)?/
→˓generate-sources/;s,<stringAttribute key="M2_PROFILES" value=""/>,<stringAttribute
→˓key="M2_PROFILES" value="eclipse-processor"/>,'

External changes (libraries)

OpenCSV

• The maven artifact has changed. net.sf.opencsv:opencsv is now com.opencsv:opencsv.

• The main package changed, too. au.com.bytecode.opencsv is now com.opencsv.

FlyingSaucer (XHtmlRenderer)

• The renderer now supports border-radius. Please check that the rendering output in your project still suits you.

QueryDsl

• the root package has changed

• the general logic is now query.select(...).from(...).fetch()

• count() -> fetchCount()

• uniqueResult() -> fetchOne()

• singleResult() -> fetchFirst()

• fetch().fetchAll() -> fetchJoin().fetchAll()

• query.map(keyExpression, valueExpression) becomes query.transform(GroupBy.
groupBy(key).as(value))

• Be careful with mapExpression.containsKey. From QueryDSL 4 on (maybe before?), QueryDSL will
not create a subquery, but instead will try doing a join in the main query, with mixed results (especially consid-
ering that Hibernate is notoriously buggy when it comes to cross-joins mixed with left/right/inner joins). To be
safe, do not do this:

new JPAQuery<MyEntity>(getEntityManager())
.select(qMyEntity)
.from(qMyEntity)
.from(qMyOtherEntity)
.where(qMyOtherEntity.mapProperty.containsKey(qMyEntity))
.orderBy(qMyEntity.id.asc())
.fetch();

But instead do this:

2 Chapter 1. Migrating to 0.11

OWSI-Core doc Documentation, Release 1.0

new JPAQuery<MyEntity>(getEntityManager())
.select(qMyEntity)

.from(qMyEntity)

.where(
JPAExpressions.selectOne()
.from(qMyOtherEntity)
.where(qMyOtherEntity.mapProperty.containsKey(qMyEntity))
.exists()

)
.orderBy(qMyEntity.id.asc())
.fetch();

Hibernate

• When using javax.persistence.Index with Hibernate, now the column names in columnList are
really column names, not some mix-up of physical and logical names: if you had written myEmbed-
dable.myProperty_id, it becomes myEmbeddable_myProperty_id (or whatever name your column has)

• If you were using the deprecated datatype org.hibernate.type.StringClobType, then be sure
to switch to fr.openwide.core.jpa.hibernate.usertype.StringClobType (as the former
has been removed). Note that you may now use fr.openwide.core.jpa.hibernate.usertype.
StringClobType.TYPENAME instead of duplicating the same inline String constant each time you need
it.

• The naming strategy system changed in Hibernate 5. You must now add this to your
configuration-private.properties

hibernate.implicit_naming_strategy=fr.openwide.core.jpa.hibernate.model.naming.
→˓ImplicitNamingStrategyLegacyJpaComponentPathImpl
hibernate.physical_naming_strategy=fr.openwide.core.jpa.hibernate.model.naming.
→˓PostgreSQLPhysicalNamingStrategyImpl
hibernate.id.new_generator_mappings=false

Hibernate Search & Lucene

• SortField.STRING is now SortField.Type.STRING

• Dates are now stored as Long so you need to sort them using Sort.Type.LONG

• Lucene has been upgraded. You will have to wipe clean your indexes and reindex everything

• For any field on which you perform a sort, you should now use the @SortableField (or
@SortableFields) annotation. This is not mandatory, but will offer better performance and avoid annoying
logs.

– Note that, to sort GenericEntities by ID, you should now use the GenericEntity.ID_SORT field (or
you’ll get annoying warnings in your logs).

• The use of Lucene’s TokenStream is now more safeguarded; this may lead to exceptions where you were not
using it properly. Make sure that:

– You always instantiate them in a try-with-resource (try (TokenStream = /* ... */) { /* .
.. */ })

– You always call .reset() before use

– You always call .end() after use

1.2. External changes (libraries) 3

OWSI-Core doc Documentation, Release 1.0

WiQuery

The project has been moved to wicketstuff. Thus:

• The maven artifacts have changed:

• org.odlabs.wiquery:wiquery-core is now org.wicketstuff.wiquery:wiquery-core

• org.odlabs.wiquery:wiquery-jquery-ui is now org.wicketstuff.
wiquery:wiquery-jquery-ui

• The main package changed, too. org.odlabs.wiquery is now org.wicketstuff.wiquery. If
you’re running an Unix-like OS, you may fix this in your project automatically with this command (to be run
from the root of your project): find . -name '*.java' | xargs sed -i 's/^import org.
odlabs.wiquery/import org.wicketstuff.wiquery/'

Wicket

• You no longer need to depend on fr.openwide.core.components:000-owsi-core-component-wicket-override.
Plus, it will probably harm to do so. Just remove this dependency.

• StringResourceModel now has a fluid API: you should use setModel, setParameters and
setDefaultValue

• You need to look for Ajax links whose markup is an <a> the click event is not blocked by Wicket anymore,
which will result in a scroll to the top of the page each time the link is clicked. This is always true for Google
Chrome, but only if there is a href attribute for Firefox. To avoid any kind of trouble, just follow the guidelines
detailed here.

• There is now a high-level integration of JQPlot built in OWSI-Core. See the docs or the pull request for more
information.

Spring & Spring Security

• in security-http, use-expressions is now true by default. Thus, you have to use expressions like
hasRole('xxx') and permitAll or define it explicitely to false. Be careful that the error is triggered
only when you effectively access a secured page.

• change the -4.0.xsd schema to -4.2.xsd (Spring namespaces)

• change the -3.2.xsd schema to -4.0.xsd (Spring Security namespaces) - obviously, you need to follow
the order

• in every security:http (even those related to simple REST API calls), you need to add:

<security:headers disabled="true"/>
<security:csrf disabled="true"/>

Internal changes

Core

• @PermissionObject has been moved to package fr.openwide.core.commons.util.security.
Run the following command from the root of your project to update your imports: find . -type

4 Chapter 1. Migrating to 0.11

https://github.com/wicketstuff/wiquery
https://github.com/openwide-java/owsi-core-parent/wiki/UI-Charts-and-plots
https://github.com/openwide-java/owsi-core-parent/pull/21

OWSI-Core doc Documentation, Release 1.0

f -name '*.java' -print0 | xargs -0 sed -r -i 's/fr.openwide.core.jpa.
business.generic.annotation.PermissionObject/fr.openwide.core.commons.
util.security.PermissionObject/g'

• TransactionSynchronizationTaskManagerServiceImpl now executes afterRollback
on tasks implementing it in reverse order. See https://github.com/openwide-java/owsi-core-
parent/commit/b431545ce20c8c5a182617e7e93b9f044086d4b1

Webapp

• The JQPlot/WQPlot dependency has been moved to a separate module. If you were using JQPlot/WQPlot, add
this to your webapp’s dependencies:

<dependency>
<groupId>fr.openwide.core.components</groupId>
<artifactId>owsi-core-component-wicket-more-jqplot</artifactId>
<version>${owsi-core.version}</version>

</dependency>

• The FormErrorDecoratorListener has been pulled from various projects to OWSI-Core. Use OWSI-
Core’s version.

• The DataTableBuilder and related classes have moved. You may use the following sed script to convert
your source code. Just create a file, put the following snippet in there, then run find . -type f -name
'*.java' -print0 | xargs -0 sed -r -i -f ./thescriptfile. Here’s the content of this
file:

s/fr.openwide.core.wicket.more.markup.html.repeater.data.table.
→˓DecoratedCoreDataTablePanel/fr.openwide.core.wicket.more.markup.repeater.table.
→˓DecoratedCoreDataTablePanel/g
s/fr.openwide.core.wicket.more.markup.html.repeater.data.table.
→˓DecoratedCoreDataTablePanel.AddInPlacement/fr.openwide.core.wicket.more.markup.
→˓repeater.table.DecoratedCoreDataTablePanel.AddInPlacement/g
s/fr.openwide.core.wicket.more.markup.html.repeater.data.table.builder.
→˓DataTableBuilder/fr.openwide.core.wicket.more.markup.repeater.table.builder.
→˓DataTableBuilder/g
s/fr.openwide.core.wicket.more.markup.html.repeater.data.table.AbstractCoreColumn/
→˓fr.openwide.core.wicket.more.markup.repeater.table.column.AbstractCoreColumn/g
s/fr.openwide.core.wicket.more.markup.html.repeater.data.table.CoreDataTable/fr.
→˓openwide.core.wicket.more.markup.repeater.table.CoreDataTable/g
s/fr.openwide.core.wicket.more.markup.html.repeater.data.table.util.DataTableUtil/
→˓fr.openwide.core.wicket.more.markup.repeater.table.util.DataTableUtil/g
s/fr.openwide.core.wicket.more.markup.html.repeater.data.table.util.
→˓IDataTableFactory/fr.openwide.core.wicket.more.markup.repeater.table.builder.
→˓IDataTableFactory/g

• The DataTableBuilder and related classes are now based on the ISequenceProvider instead of
IDataProvider. You may still use IDataProvider as an input to the DataTableBuilder (it will
be wrapped).

• A new interface was introduced in order to address code execution in a wicket context:
IWicketContextExecutor. Here are the main consequences to existing applications:

– An object of type IWicketContextExecutor is now available in the Spring con-
text. You may @Autowire it in your own beans, or redefine it by overriding fr.
openwide.core.wicket.more.config.spring.AbstractWebappConfig.
wicketContextExecutor(WebApplication) in your own webapp configuration.

1.3. Internal changes 5

OWSI-Core doc Documentation, Release 1.0

– Classes extending AbstractWicketRendererServiceImpl, AbstractNotificationContentDescriptorFactory,
AbstractNotificationUrlBuilderServiceImpl, AbstractNotificationPanelRendererServiceImpl
must now provide a IWicketExecutor to their super constructor and must not override
getApplicationName() anymore.

– Classes extending AbstractBackgroundWicketThreadContextBuilder should instead rely
on a IWicketContextExecutor.

External link checker

The external link checker now has its own Maven module. See ExternalLinkChecker if you use it in your app.

Related to the new PropertyService: you also have to use JpaExternalLinkCheckerConfig (import) in
your app.

Properties

Both immutable and mutable properties are now handled by PropertyService. See PropertyService to use it in
your app.

• CoreConfigurer: getter methods are deprecated and redirect to propertyService. Utility methods are
also deprecated.

• AbstratParameterServiceImpl: getter and setter methods are deprecated and redirect to
propertyService. Utility methods are also deprecated.

Important notes

• Properties wrapping a date (or a date time) and registered in PropertyService must respect the
following format ‘yyyy-MM-dd’ (or ‘yyyy-MM-dd HH:mm(:ss)’). See StringDateConverter and
StringDateTimeConverter.

• ConfigurationLogger: As previously it uses propertyNamesForInfoLogLevel property but it is based
now on PropertyService. That’s why all the properties you want to display must be registered in the
PropertyService.

• To display a warning message in case of null value while retrieving a property, add the follow-
ing entry in your log4j file: log4j.logger.fr.openwide.core.spring.property.service.
PropertyServiceImpl=DEBUG.

1st option: keeping the old school properties management

This case is not tested yet and is not recommended. Please, as much as possible, migrate to the PropertyService.

Get the latest version of both CoreConfigurer and AbstractParameterServiceImpl (+
IAbstractParameterService) from the previous version of OWSI-Core and bring back all meth-
ods and attributes needed in your own YourAppConfigurer and ParameterServiceImpl (+
IParameterService).

Also, in YourAppCorePropertyConfig, make sure the mutablePropertyDao method returns a
IParameterDao and not simply a IMutablePropertyDao.

2nd (better) option: migrating to PropertyService

See PropertyService

6 Chapter 1. Migrating to 0.11

OWSI-Core doc Documentation, Release 1.0

• Create a YourAppCorePropertyIds and a YourAppApplicationPropertyConfig in your core
module.

• Create a YourAppWebappPropertyIds and a YourAppApplicationPropertyRegistryConfig
in your webapp module.

• Register your properties.

• Deprecate everything in YourAppConfigurer and ParameterServiceImpl

• Fix all deprecated warnings caused by the configurer and the parameter service. See Javadoc on deprecated
methods in OWSI-Core to make it easier.

• Remove ParameterServiceImpl and IParameterService.

• Remove everything from YourAppConfigurer.

Audit

The audit classes have been removed.

You should either:

• Copy the old Audit base classes in your own project

• Or (better) use the brand-new HistoryLog framework. See HistoryLog & Audit

PasswordEncoder

From now on, we use bcrypt method to encode new passwords. However, old passwords / hashes still use previous
encryption method.

SecurityPasswordRules

SecurityPasswordRules is now a builder and provide a Set<Rule>.

SecurityPasswordRules
.builder()
.minMaxLength(..., ...)
.forbiddenUsername()
.rule(YourCustomRule())
.build();

Also, replace SecurityPasswordRules.DEFAULT:

SecurityPasswordRules
.builder()
.minMaxLength(User.MIN_PASSWORD_LENGTH, User.MAX_PASSWORD_LENGTH)
.build();

Configuration

• Ensure to give a value to notification.mail.recipientsFiltered property (true or false). If true, mail’s recipients are
replaced by notification.test.emails property’s content

1.4. Configuration 7

OWSI-Core doc Documentation, Release 1.0

• Replace this : hibernate.search.analyzer=org.hibernate.search.util.impl.
PassThroughAnalyzer with this hibernate.search.analyzer=org.apache.lucene.
analysis.core.KeywordAnalyzer

• The content of configuration-private.properties should be:

hibernate.implicit_naming_strategy=fr.openwide.core.jpa.hibernate.model.naming.
→˓ImplicitNamingStrategyLegacyJpaComponentPathImpl
hibernate.physical_naming_strategy=fr.openwide.core.jpa.hibernate.model.naming.
→˓PostgreSQLPhysicalNamingStrategyImpl
hibernate.id.new_generator_mappings=false

Database

• You may have missing columns in the tables mapped to your GenericLocalizedGenericListItem
entities. Please check them out.

• The position in GenericLocalizedGenericListItems is not nullable anymore. Execute this for each
table:

update XXX set position=0 where position is null;

• The hash generated for foreign key constraints name has changed. Therefore, you will probably end up with
duplicate foreign keys. After checking that this is effectively the case, you can use the following query to
generate a cleanup script:

SELECT
'ALTER TABLE ' || pclsc.relname || ' DROP CONSTRAINT ' || pc.conname || ';'

FROM
(
SELECT

connamespace,conname, unnest(conkey) as "conkey", unnest(confkey)
as "confkey" , conrelid, confrelid, contype

FROM
pg_constraint

) pc
JOIN pg_namespace pn ON pc.connamespace = pn.oid
-- and pn.nspname = 'panmydesk4400'
JOIN pg_class pclsc ON pc.conrelid = pclsc.oid
JOIN pg_class pclsp ON pc.confrelid = pclsp.oid
JOIN pg_attribute pac ON pc.conkey = pac.attnum and pac.attrelid = pclsc.

→˓oid
JOIN pg_attribute pap ON pc.confkey = pap.attnum and pap.attrelid = pclsp.oid

WHERE pc.conname ilike 'fk_%' or pc.conname ilike '%_fkey'
ORDER BY pclsc.relname;

• The hash generated for unique constraints name has changed when using table level annotation
(uk_mykeyhash becomes ukmykeyhash). Therefore, you will probably end up with duplicate unique con-
straints. After checking that this is effectively the case, you will need to identify them and create a cleanup
script. To identify these constraints, you should search for @UniqueConstraint annotation references in
your project.

• If the application is old, you might even have a third naming scheme which you can detect with the following
query:

8 Chapter 1. Migrating to 0.11

OWSI-Core doc Documentation, Release 1.0

SELECT
'ALTER TABLE ' || pclsc.relname || ' DROP CONSTRAINT ' || pc.conname || ';'

FROM
(
SELECT

connamespace,conname, unnest(conkey) as "conkey", unnest(confkey)
as "confkey" , conrelid, confrelid, contype

FROM
pg_constraint

) pc
JOIN pg_namespace pn ON pc.connamespace = pn.oid
-- and pn.nspname = 'panmydesk4400'
JOIN pg_class pclsc ON pc.conrelid = pclsc.oid
JOIN pg_class pclsp ON pc.confrelid = pclsp.oid
JOIN pg_attribute pac ON pc.conkey = pac.attnum and pac.attrelid = pclsc.oid
JOIN pg_attribute pap ON pc.confkey = pap.attnum and pap.attrelid = pclsp.oid

WHERE char_length(pc.conname) = 18 and pc.conname ilike 'fk%'
ORDER BY pclsc.relname;

Wicket Resource Security

Until now security context was not set in Wicket Resource because we used this snippet:

<security:http pattern="/wicket/resource/**" security="none" />

However, since DropDownChoice may now use Wicket Resources to fetch data:

1. We need a security context for some of the resources (e.g. to retrieve current authenticated user, or to prevent
some users to access that resource)

2. We need to take care of which resources are publicly accessible

That’s why you should now use intercept-url to protect resources. Add something like this before your default
security:http:

<!-- An entry point to respond with a 403 error if Spring Security wants the user
→˓to log in.

Useful in situations where loging in is not an option, such as when serving
→˓CSS.

-->
<bean id="entryPoint403" class="org.springframework.security.web.authentication.

→˓Http403ForbiddenEntryPoint"/>

<security:http request-matcher="regex"
pattern="^/wicket/resource/.*"
create-session="never" entry-point-ref="entryPoint403" authentication-

→˓manager-ref="authenticationManager"
auto-config="false" use-expressions="true">

<security:headers disabled="true"/>
<security:csrf disabled="true"/>

<security:intercept-url pattern="^/wicket/resource/fr.openwide.core.basicapp.
→˓web.application.common.template.js.[^/]+.*" access="hasRole('ROLE_ANONYMOUS')" />

<security:intercept-url pattern="^/wicket/resource/fr.openwide.core.basicapp.
→˓web.application.common.template.styles.[^/]+.*" access="hasRole('ROLE_ANONYMOUS')" /
→˓>

1.6. Wicket Resource Security 9

OWSI-Core doc Documentation, Release 1.0

<security:intercept-url pattern="^/wicket/resource/fr.openwide.core.basicapp.
→˓web.application.common.template.images.[^/]+.*" access="hasRole('ROLE_ANONYMOUS')" /
→˓>

<security:intercept-url pattern="^/wicket/resource/fr.openwide.core.basicapp.
→˓web.application.[^/]+.*" access="hasRole('ROLE_AUTHENTICATED')" />

<security:intercept-url pattern="^/wicket/resource/.*" access="hasRole('ROLE_
→˓ANONYMOUS')" />

</security:http>

Please note that, if you have to make some other resources publicly available (for example on the login page), you
should change the above to suit your needs. As is, only JS files, CSS files, static image files and Resources defined in
packages other than those of your app (OWSI-Core, various dependencies like Select2) are made publicly available.

Ajax confirm link builder

• AjaxConfirmLink#build(String) and AjaxConfirmLink#build(String, IModel<O>) no
longer exist. Use AjaxConfirmLink#build() instead.

• AjaxConfirmLinkBuilder#create() no longer exists. Use AjaxConfirmLinkBuilder#create(String)
or AjaxConfirmLinkBuilder#create(String, IModel<O>).

• AjaxConfirmLinkBuilder#onClick(SerializableFunction<AjaxRequestTarget,
Void>) and AjaxConfirmLinkBuilder#onClick(AjaxResponseAction) no longer exist.
Use AjaxConfirmLinkBuilder#onClick(IOneParameterAjaxAction<IModel<O>>) or
AjaxConfirmLinkBuilder#onClick(IAjaxAction) (no parameters) instead. You can use
AbstractAjaxAction or AbstractOneParameterAjaxAction.

10 Chapter 1. Migrating to 0.11

CHAPTER 2

Migrating to 0.12

This guide aims at helping OWSI-Core users migrate an application based on OWSI-Core 0.11 to OWSI-Core 0.12.

In order to migrate from an older version of OWSI-Core, please refer to Migrating to 0.11 first.

Tools

Animal sniffer

JDK level validation using Animal sniffer is now enabled by default. This will probably force you to use JDK7 to
build your project.

If the default JDK version (1.7) does not suit you, you should:

• change the value of the jdk.version property (as usual)

• and change the value of the jdk.signature.artifactId property to match one of the artifacts found
here: http://search.maven.org/#search|ga|1|g%3A%22org.codehaus.mojo.signature%22

If this is somehow impossible and you want to disable these checks completely, you should disable the Animal Sniffer
execution with id “check-java-version”.

Bindings & code processors

There has been some changes regarding code processors. You will have to replace the goals of your *.launch files:
instead of generate-sources, use generate-sources generate-test-sources.

11

http://www.mojohaus.org/animal-sniffer/animal-sniffer-maven-plugin/
https://github.com/openwide-java/owsi-core-parent/commit/0fadc462b451d7eed883f0de0bcdf6bb47308eb1

OWSI-Core doc Documentation, Release 1.0

External changes (libraries)

Spring & Spring Security

• change the -4.0.xsd schema to -4.1.xsd (Spring Security namespaces)

Wicket

• It seems like Wicket changed the implementation of URL mapping. There isn’t many side effects, but one of
them is the following: if you have mounted your two-parameter page twice, once with a trailing “/${param1}/”
and once with a trailing “/${param1}/#{param2}”, then Wicket will fail miserably and perform infinite redirec-
tions.

– That’s why it is now recommended, for every page whose URL ends with a path parameter, to mount
the page with no trailing slash. Then the case mentioned above will work as a charm, and this will have
the added benefit of allowing clients to use both versions of the URL: with or without a trailing slash.

– Please note that if you skip the trailing slash for a page whose URL does not end with a path parameter,
then Wicket will not allow accessing this page with a trailing slash (which is probably a bug). So do not
do this for pages whose URL does not end with a path parameter.

Internal changes

Core

• Some classes’ attributes have been renamed:

• GenericEntityReference.getEntityId() became GenericEntityReference.getId()

• GenericEntityReference.getEntityClass() became GenericEntityReference.
getType()

• HistoryValue.getEntityReference() became HistoryValue.getReference()

• This could cause column name changes in your schema

• See https://github.com/openwide-java/owsi-core-parent/commit/33173617a905bdb110ee840acdad46fd20127b7f
for details

• There’s been some changes around notification descriptors in order to allow for applications
to define user-specific context (fr.openwide.core.spring.notification.model.
INotificationContentDescriptor.withContext(INotificationRecipient)). Thus:

• You’re encouraged to use NotificationContentDescriptors.explicit("defaultSubject",
"defaultTextBody", "defaultHtmlBody") as your default descriptor in your
EmptyNotificationContentDescriptorFactoryImpl.

• Your notification content descriptor factories should not have a generic return type anymore, they should
simply return INotificationContentDescriptor. Check out NotificationDemoPage and
ConsoleNotificationDemoIndexPage from the basic application and use similar code in your own
NotificationDemoPage and ConsoleNotificationDemoIndexPage in order to not depend on
IWicketNotificationDescriptor anymore.

• JPAModelGen support is dropped in IGenericEntityDao/GenericEntityDaoImpl (*ByField) ; queries should be
written with QueryDSL API, or compatibility layer may be extracted from GenericEntityDaoImpl 0.11.

12 Chapter 2. Migrating to 0.12

OWSI-Core doc Documentation, Release 1.0

Security

The unauthorized access mechanisms have been revamped, for more consistency:

• AccessDeniedPage is now accessed whenever a Wicket authorization error occurs.

• It is now clearer that AccessDeniedPage is not used when an anonymous user tries to access a protected
resource.

• OWSI-Core’s own redirection mechanism has been deprecated in favor of more standard ones (Wicket’s and
Spring Security’s). On this particular subject, see UI Redirecting.

In order for your application to continue to work properly:

• You will need to add both REQUEST and FORWARD dispatchers to your Wicket application’s filter mapping, so
that Spring Security may forward requests when an access is denied.

This:

<filter-mapping>
<filter-name>MyApplication</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

will have to become this:

<filter-mapping>
<filter-name>MyApplication</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>

</filter-mapping>

• If you overrode the default exception mapper, and you did not extend CoreDefaultExceptionMapper
you may want to add this at the very top of your map method, outside of any try block:

if (e instanceof AuthorizationException) {
throw new AccessDeniedException("Access denied by Wicket's security layer

→˓", e);
}

This will translate a wicket exception into something Spring Security can understand.

• If you overrode the default exception mapper, and you did extent CoreDefaultExceptionMapper,
beware that your call to super.map(e) may now throw an org.springframework.security.
access.AccessDeniedException which should not be caught. Ensure this call is made outside of a
try block.

Webapp

• Some more logs have been added to GenericEntityModel and
AbstractThreadSafeLoadableDetachableModel. See https://github.com/openwide-java/owsi-
core-parent/wiki/UI-Models#debugging for more information.

• DynamicImages, obtained through IImageResourceLinkGenerators, now have their anticache
parameter disabled by default. This may increase performance in Ajax refreshes where the same image appears
multiple times. But it also means you will have to add a sensible anticache parameter to your image resources,
such as ?t=<the last time your image was changed>. You may do this when building your link

2.4. Security 13

OWSI-Core doc Documentation, Release 1.0

descriptor, for instance with fr.openwide.core.wicket.more.link.descriptor.builder.
state.parameter.chosen.common.IOneChosenParameterState.renderInUrl(String,
AbstractBinding<? super TChosenParam1, ?>).

• IFormModelValidator now extends IDetachable. You should implement detach as necessary.

• ModelValidatingForm.addFormModelValidator(IFormModelValidator,
IFormModelValidator ...) has been renamed to simply add.

• ModelValidatingForm.addFormModelValidator(Collection) has been removed.

• GenericEntityCollectionView has been deprecated in favor of the more generic CollectionView.
See GenericEntityCollectionView‘s javadoc for information on migrating existing code.

• SerializedItemCollectionView has been deprecated in favor of the more generic
CollectionView. See SerializedItemCollectionView‘s javadoc for information on migrating
existing code.

• GenericEntity collection models (GenericEntityArrayListModel,
GenericEntityTreeSetModel, ...) have been deprecated in favor of the more generic
CollectionCopyModel. See each older model’s javadoc for information on migrating existing code.

• IWicketContextExecutor has been deprecated in favor of the more flexible
IWicketContextProvider. Here are the main consequences to existing applications:

– An object of type IWicketContextProvider is now available in the Spring con-
text. You may @Autowire it in your own beans, or redefine it by overriding fr.
openwide.core.wicket.more.config.spring.AbstractWebappConfig.
wicketContextProvider(WebApplication) in your own webapp configuration.

– The signature of fr.openwide.core.wicket.more.config.spring.
AbstractWebappConfig.wicketContextExecutor(WebApplication) has changed and
is now fr.openwide.core.wicket.more.config.spring.AbstractWebappConfig.
wicketContextExecutor(IWicketContextProvider). It cannot be overridden
anymore. Please override fr.openwide.core.wicket.more.config.spring.
AbstractWebappConfig.wicketContextProvider(WebApplication) instead.

– Classes extending AbstractWicketRendererServiceImpl, AbstractNotificationContentDescriptorFactory,
AbstractNotificationUrlBuilderServiceImpl, AbstractNotificationPanelRendererServiceImpl
must now provide a IWicketContextProvider to their super constructor instead of a
IWicketContextExecutor.

– Classes extending AbstractBackgroundWicketThreadContextBuilder should instead rely
on a IWicketContextProvider.

– Classes relying on a IWicketContextExecutor should instead rely on
aIWicketContextProvider. Here are a few examples of code refactoring:

String result = wicketExecutor.runWithContext(
new Callable<String>() {

public String call() throws Exception {
return doSomethingThatRequiresAWicketContext();

}
},
locale

);

becomes

String result;
try (ITearDownHandle handle = wicketContextProvider.context(locale).open()) {

14 Chapter 2. Migrating to 0.12

OWSI-Core doc Documentation, Release 1.0

result = doSomethingThatRequiresAWicketContext();
}

And if you really must use a `Callable`:

String result = wicketExecutor.runWithContext(someCallable, locale);

becomes

String result = wicketContextProvider.context(locale).run(someCallable);

• IOneParameterConditionFactory, IOneParameterModelFactory,
AbstractOneParameterConditionFactory and AbstractOneParameterModelFactory
have been deprecated and replaced by IDetachableFactory and AbstractDetachableFactory.
See their respective Javadoc for more information on migrating existing code.

• LinkDescriptorBuilder‘s syntax changed slightly.

Previously, the entry point to building a link descriptor was LinkDescriptorBuilder#LinkDescriptorBuilder(),
which was followed by a call to determine the type of the target, then various stuff around parameters, and finally a
call to the build() method.

Now, the entry point is LinkDescriptorBuilder#start(), followed by various stuff around parameters, and
finally a call to one of the build methods: page, resource, or imageResource.

The old syntax is still valid, but has been deprecated and will be removed in the future.

So something that we previously wrote this way:

public static final IOneParameterLinkDescriptorMapper<IPageLinkDescriptor, User>
→˓MAPPER =

new LinkDescriptorBuilder().page(MyPage.class)
.model(User.class).map("id").permission(READ)
.build();

... will now have to be written this way:

public static final IOneParameterLinkDescriptorMapper<IPageLinkDescriptor, User>
→˓MAPPER =

LinkDescriptorBuilder.start()
.model(User.class).map("id").permission(READ)
.page(MyPage.class);

For existing projects, this perl script may help. Execute it this way from your project root:

find . -name '*.java' | xargs -n 1 -I{} bash -c 'TMP="$(mktemp)" ; perl -- ../
→˓linkdescriptorbuilder_migrate.pl "{}" > $TMP ; diff -Zq "$TMP" {} >/dev/null || mv "
→˓$TMP" {}'

It will try its best to convert most uses of new LinkDescriptorBuilder to LinkDescriptorBuilder.
start(), converting early target definitions to late target definitions in the process. It should leave compilation errors
wherever the conversion was not easy enough, so you can detect the places where you should edit code manually.

• IPageLinkGenerator implementations enforce permission checking in getValidPageClass(), hence
in fullUrl() ; if you used fullUrl() to bypass permission checking (for example for email notifi-
cation sent to another user than the one connected), replace fullUrl() by bypassPermissions().
fullUrl(). NOTE: this backward compatibility is available only on former implementations,

2.4. Security 15

https://gist.github.com/fenrhil/6c84547f5374dac59aa93caa4ef7c670

OWSI-Core doc Documentation, Release 1.0

CorePageInstanceLinkGenerator and CorePageLinkDescriptorImpl; if you use newer im-
plementions, you already should conform to the new behavior.

• Ajax confirm link builder: Ajax confirm link builder is now « form submit » aware ; current AjaxSubmitLink
may be rewritten with AjaxConfirmLink.build().[...].submit(form). AjaxSubmitLink still
available.

• Confirm link builder: introduced ConfirmLink.build() builder. Unified syntax with ajax confirm link
and ajax confirm submit. Confirm submit not supported (it was already a missing functionnality).

• Confirm link: introduced custom styles for yes / no buttons. Default values constructors were added to enable
back-compatibility.

• Condition and behavior: EnclosureBehavior and PlaceholderBehavior are deprecated and replaced by behavior
generation’s methods on Condition object. This pattern allows to use more easily and consistently any
Condition to control component’s visibility or enabled property. More documentation on this pattern and the
way to rewrite your code UI Placeholder and Enclosure

16 Chapter 2. Migrating to 0.12

CHAPTER 3

Migrating to 0.13

This guide aims at helping OWSI-Core users migrate an application based on OWSI-Core 0.12 to OWSI-Core 0.13.

In order to migrate from an older version of OWSI-Core, please refer to Migrating to 0.12 first.

owsi-core version numbering policy

owsi-core version 0.12.5 is the last version published exclusively for jdk 7. From owsi-core 0.13, vanilla versions will
be built for java 1.8, and jdk 8 dependant starting owsi-core 0.14.

owsi-core 0.13.0 is planned to be a 0.12.5 isofunctionnal release, but published both for jdk 7 and 8.

Knowing this, you have two solutions for migrating from 0.12 to 0.13 : migrate to jdk 8 at the same time or keep a jdk
7 environment.

Solution 1: continue to use jdk 7

This solution allows you to upgrade project towards post or equals 0.13 release in a jdk 7 environment.

Please note that this version can be run in a java 8 environment.

Note: If your code base is already upgraded toward jdk7 version, you can switch directly to step 3 to upgrade your
Eclipse’s configuration.

Step 1 · udpate dependencies

Change project parent and owsi-core version to switch to jdk 7 dependency:

17

OWSI-Core doc Documentation, Release 1.0

<parent>
<groupId>fr.openwide.core.parents</groupId>
<artifactId>owsi-core-parent-core-project-jdk7</artifactId>
<version>0.13.jdk7-SNAPSHOT</version>

</parent>

[...]

<properties>
<owsi-core.version>0.13.jdk7-SNAPSHOT</owsi-core.version>

</properties>

Note: owsi-core 0.13 codebase and all its upgrades will continue to support the use of java 1.7. You just have to add
the .jdk7 modifier after the version. Therefore you’ll need to use 0.13.0.jdk7, 0.13.1.jdk7... owsi-core SNAPSHOT
version will be flagged 0.13.jdk7-SNAPSHOT.

Step 2 · clean your codebase

Perform a global maven clean so that generated source code is cleaned.

No more steps are needed to enable maven build.

Step 3 (for Eclipse IDE) · install m2e integration and reconfigure m2e-apt

Code generation, configured with maven-processor-plugin, is modified to facilitate m2e plugin integration. It is now
recommended to use jboss m2e maven-processor-plugin integration.

Plugin intallation’s instructions are available here: https://github.com/jbosstools/m2e-apt

It is easily installable via Eclipse Marketplace: m2e-apt (at least from Eclipse 4.5.2)

It is installed by default in Eclipse’s team bundles from version 4.6.0

In Windows → Preferences → Maven → Annotation Processing, choose Experimental: Delegate annotation process-
ing to maven plugins... (this option is known to work correctly for our use-cases)

If not done automatically, you need to reconfigure Maven projects (right-click on parent project, Maven → Update
project... → OK

Note: Nothing to do with jdk version, but you may need to pay attention to the following setting : Windows →
Preferences → Team → Git → Projects → Uncheck Automatically ignore derived resources by adding theme to
.gitignore ; this setting prevents Eclipse to alter .gitignore configurations

Step 4 · optimization

If source code generation is to heavy on your project, you can restrain regeneration on project reconfiguration by
adding the following m2e’s configuration in your parent pom.xml (dependencyManagement section)

<pluginsManagement>
<plugins>
<plugin>

18 Chapter 3. Migrating to 0.13

https://github.com/jbosstools/m2e-apt

OWSI-Core doc Documentation, Release 1.0

<groupId>org.eclipse.m2e</groupId>
<artifactId>lifecycle-mapping</artifactId>
<version>1.0.0</version>
<configuration>

<lifecycleMappingMetadata>
<pluginExecutions>
<pluginExecution>
<pluginExecutionFilter>
<groupId>org.bsc.maven</groupId>
<artifactId>maven-processor-plugin</artifactId>
<versionRange>[0,)</versionRange>
<goals>
<goal>process</goal>
<goal>process-test</goal>

</goals>
</pluginExecutionFilter>
<action>
<execute>
<runOnConfiguration>true</runOnConfiguration>
<runOnIncremental>false</runOnIncremental>

</execute>
</action>

</pluginExecution>
</pluginExecutions>

</lifecycleMappingMetadata>
</configuration>

</plugin>
</plugins>

</pluginManagement>

Solution 2 · switch to jdk 8 version

This version use the same code base than jdk 7 (for 0.13 versions), but use a jdk 8 runtime. As jdk 7 version is
compatible with jdk 8, this version is mainly provided to prepare your migration to jdk 8.

Step 1 · update dependencies

Simply make sure you use a post or equals 0.13 owsi-core version (without the .jdk7 modifier).

Step 2 to 4

Follow the same steps 2 to 4 than jdk 7 version.

3.3. Solution 2 · switch to jdk 8 version 19

OWSI-Core doc Documentation, Release 1.0

20 Chapter 3. Migrating to 0.13

CHAPTER 4

Migrating to 0.14

This guide aims at helping OWSI-Core users migrate an application based on OWSI-Core 0.13 to OWSI-Core 0.14.

In order to migrate from an older version of OWSI-Core, please refer to Migrating to 0.13 first.

Java

This version only supports Java 8.

External changes (libraries)

Poi

• HSSFColor.WHITE.index is now HSSFColorPredefined.WHITE.getIndex().

Spring & Spring Security

• isTrue(boolean) from the type Assert is now isTrue(boolean, String) with String = the excep-
tion message to use if the assertion fails.

• notNull(boolean) from the type Assert is now notNull(boolean, String) with String = the ex-
ception message to use if the assertion fails.

For the upgrade of Spring Security we had to update the schema from spring-security-4.1.xsd to
spring-security-4.2.xsd.

Guava

• CharMatcher.WHITESPACE is now CharMatcher.whitespace().

21

OWSI-Core doc Documentation, Release 1.0

Hibernate

• session.setFlushMode(FlushMode) is now session.setHibernateFlushMode(FlushMode).

• SessionImplementor class is replaced by SharedSessionContractImplementor class.

The AvailableSettings libray now is org.hibernate.cfg.AvailableSettings instead of org.
hibernate.jpa.AvailableSettings.

• AvailableSettings.SHARED_CACHE_MODE is now AvailableSettings.
JPA_SHARED_CACHE_MODE.

• AvailableSettings.VALIDATION_MODE is now AvailableSettings.
JPA_SHARED_CACHE_MODE.

The EmbeddableTypeImpl library is now org.hibernate.metamodel.internal.
EmbeddableTypeImpl instead of org.hibernate.jpa.internal.metamodel.
EmbeddableTypeImpl.

The upgrade of hibernate-core forced us to explicitly specify the default_schema for the database. Every tables are
created in this schema and it is no longer based on the search_path from PostgreSQL configuration.

By default, default_schema = db_user. If you need to change it, you have to add the variable hibernate.
defaultSchema in owsi-core-component-jpa.properties and its value will override the default value.

Class PostgresqlSequenceStyleGenerator is renamed PerTableSequenceStyleGenerator as it
is not postgresql-related; class content is unchanged. If you use it, just retarget the new class.

Hibernate Search

Hibernate Search & Lucene

We have upgraded Hibernate Search to the 5.7.0.Final which is not yet compatible with Lucene 6 but requires at least
Lucene 5.5.X so we have upgraded Lucene to the 5.5.4 version.

The utilization of setBoost(float) and getBoost() directly to a Query is now deprecated. Instead we use the
type BoostQuery to apply boost.

Configuration

• The ExplicitJpaConfigurationProvider class no longer exists, all the configuration is now exclu-
sively provided by the DefaultJpaConfigurationProvider class.

Behavior checking

Some structural changes are done so that old applications are not broken. Make sure that expected behavior is still
here:

• Hibernate: database’s sequence is now handled with the new-style hibernate configuration. Verify that the
sequence are style named table_pk_seq. Give a special attention to your specialized configurations:

– ensure that hibernate.id.new_generator_mappings=true (if you do not override this setting, it is fine)

– custom @GeneratedValue.strategy()

– custom @GeneratedValue.generator()

– custom @SequenceGenerator

22 Chapter 4. Migrating to 0.14

OWSI-Core doc Documentation, Release 1.0

– custom @GenericGenerator

Hibernate Search & ElasticSearch

You can now choose between Lucene and ElasticSearch for your Hibernate Search requests. In order to do use
ElasticSearch, you have first to install ElasticSearch 2.4.

Secondly, you have to specify 3 things in the file app-core/configuration.properties :

##
Hibernate search Elasticsearch
##
hibernate.search.elasticsearch.enabled=true
hibernate.search.default.elasticsearch.host=http://127.0.0.1:9310
hibernate.search.default.elasticsearch.index_schema_management_strategy=CREATE

You have to set the first line value to true to enable ElasticSearch. The second line is the address of your installed
ElasticSearch, and finally the third line is schema management strategy.

Lucene and ElasticSearch analyzers

Now that the analyzers are changing when you switch between Lucene and Elastic-
Search, they are no longer in the annotation form in the class Parameter.java. You
can find them respectively in CoreLuceneAnalyzersDefinitionProvider.java and
CoreElasticSearchAnalyzersDefinitionProvider.java.

Due the exportation of analyzers definitions in external separate classes, you can add your own analyzers definitions
by extending one of these two classes and override the function register. After that, you have to add a property
in the file hibernate-extra.properties (create this file if it doesn’t exists). If you want to use your own
ElasticSearch analyzers add this line :

hibernate.search.elasticsearch.analyzer_definition_provider=package.to.yourclass.
→˓ClassName

If you want to use your own Lucene analyzers add this line :

hibernate.search.lucene.analyzer_definition_provider=package.to.yourclass.ClassName

Note that when you choose to use ElasticSearch, Lucene’s analyzers definitions are still instanciated but only used
internally.

Date SortField and ElasticSearch

related commit

In ElasticSearch, Date SortField is of type STRING, but with Lucene, it is of type LONG. If you perform sort with
FullTextQuery.setSort(Sort sort) with a Date field configured for one of the backends, it’ll throw an
exception with the other backend.

• Solution 1: Use only one backend, and initialize correctly and statically needed SortFields

• Solution 2: Use QueryBuilder to build your Sort object. QueryBuilder use field metadata to determine the right
type to use.

– fr.openwide.core.jpa.search.util.SortFieldUtil provides examples on the ways to
obtain a Sort object or to perform a setSort(...) that use QueryBuilder and circumvent this issue.

4.2. External changes (libraries) 23

https://github.com/openwide-java/owsi-core-parent/commit/01cc888cb8f314554263d13bc76821c9f57a907d

OWSI-Core doc Documentation, Release 1.0

– replacing FullTextQuery.setSort(Sort sort) by SortFieldUtil.setSort(...) can be done quickly

– beware that this workaround use field metadata to determine the right type; not deterministic and silent
errors may become fatal errors with this workaround.

Wicket

ConsoleConfiguration.build()

ConsoleConfiguration.build() parameters are modified; you now need to provide a
IPropertyService. This method call is generally done in you <MyApplication>Application.java.
Just add IPropertyService as a @SpringBean field, and add it to the method call.

24 Chapter 4. Migrating to 0.14

CHAPTER 5

Migrating to 0.15

This guide aims at helping OWSI-Core users migrate an application based on OWSI-Core 0.14 to OWSI-Core 0.15.

In order to migrate from an older version of OWSI-Core, please refer to Migrating to 0.14 first.

Mail header

To migrate from 0.14 to 0.15, you don’t need to change a lot of things. In fact, the only issue you may have is if you
send mail to users in your application.

In this case, we have made some changes on the mail header.

You will only have to add a line in your configuration.properties which will inquire the sender :

notification.mail.sender=my.mail@mail.com

25

OWSI-Core doc Documentation, Release 1.0

26 Chapter 5. Migrating to 0.15

CHAPTER 6

Tools

Maven Archetype (TODO)

Code processors

About

Projects based on OWSI-Core, and OWSI-Core itself, use automatically generated code to manipulate data metamod-
els.

At the moment, there are two metamodels in an application:

• The bindgen metamodel, which allows us to manipulate objects representing bean properties, and use it to access
said properties in java code.

• The QueryDSL metamodel, which allows us to manipulate objects representing entity properties, and use it to
build JPA queries.

Troubleshooting

Bindgen’s bindings code won’t compile

In some cases, bindgen will generate code that won’t compile. You may ignore code generation for selected attributes
by adding skipAttribute.your.package.YourClass.yourAttribute to bindgen.properties.

There are known issues with bindgen code generation of some classes in OWSI-Core. You may use the following lines
to work around these issues. If those are not up-to-date, check out the basic application’s bindgen.properties

skipAttribute.fr.openwide.core.jpa.business.generic.model.GenericEntityReference.
→˓entityClass=true
skipAttribute.fr.openwide.core.commons.util.fieldpath.FieldPath.root=true

27

https://github.com/openwide-java/owsi-core-parent/blob/master/basic-application/basic-application-core/bindgen.properties

OWSI-Core doc Documentation, Release 1.0

“Cannot find symbol”

If you spot errors like this in your maven build:

[ERROR] diagnostic: /data/home/ANONYMIZED/Documents/ANONYMIZED/livraison/tmp/
→˓ANONYMIZED-core/src/main/java/com/ANONYMIZED/core/business/document/dao/FileDaoImpl.
→˓java:17: error: cannot find symbol
import com.ANONYMIZED.core.business.document.model.QDocument;

^
symbol: class QDocument
location: package com.ANONYMIZED.core.business.document.model

... then just ignore these errors. You are in one of these two situations:

• You generated the bindings for the very first time. In that case, the errors are false positives, and if no other error
occurred, the bindings should be generated anyhow.

• Another error occurred during the generation of bindings. In that case, you should check out the very last error,
which should be different and is the real cause of your generation failure.

Maven

JDK level validation

JDK level validation using Animal sniffer is enabled by default from OWSI-Core 0.12 on.

If the default JDK version (1.7 at the time of this writing) does not suit you, you should:

• change the value of the jdk.version property to whatever suits you

• and change the value of the jdk.signature.artifactId property to match one of the artifacts found
here: http://search.maven.org/#search|ga|1|g%3A%22org.codehaus.mojo.signature%22

If this is somehow impossible and you want to disable these checks completely, you should disable the Animal Sniffer
execution with id check-java-version.

Deploy to several servers using the maven-deploy-plugin

<build>
<plugins>

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>wagon-maven-plugin</artifactId>
<executions>

<execution>
<id>upload-war-to-front1</id>
<phase>deploy</phase>
<goals>

<goal>upload-single</goal>
</goals>
<configuration>

<fromFile>${project.build.directory}/${project.artifactId}-$
→˓{project.version}-${assembly.environment}.tar.gz</fromFile>

<url>${front1-deployment-url}</url>
</configuration>

</execution>

28 Chapter 6. Tools

http://www.mojohaus.org/animal-sniffer/animal-sniffer-maven-plugin/

OWSI-Core doc Documentation, Release 1.0

<execution>
<id>upload-war-to-front2</id>
<phase>deploy</phase>
<goals>

<goal>upload-single</goal>
</goals>
<configuration>

<fromFile>${project.build.directory}/${project.artifactId}-$
→˓{project.version}-${assembly.environment}.tar.gz</fromFile>

<url>${front2-deployment-url}</url>
</configuration>

</execution>
</executions>

</plugin>
</plugins>

</build>

6.3. Maven 29

OWSI-Core doc Documentation, Release 1.0

30 Chapter 6. Tools

CHAPTER 7

Security

Securing accesses

This page explains how to ensure that parts of your application (pages, buttons, resources, but also Spring services)
are only accessible to entitled users.

Principles

Here are some basic principles. These are not really formal security science, but are just intended to provide readers
with enough understanding of OWSI-Core’s security to get started.

Security model

Here are the concepts used in OWSI-Core’s security model :

• A user is a user of your application.

• A user group is a business-level category of users.

• An object, or resource, is the thing whose access is to be secured. It’s generally a business domain object (such
as a “customer”, or a “deal”, and so on).

• A role is a functional-level category of users. One or many roles may be attributed to a user or to a user group.

• A global permission is an approval of a mode of access to a class of objects, an authorization which is not tied
to a an object in particular (such as “write to customer contact details”). One or many global permissions may
be attributed to a role.

• An object permission is an approval of a mode of access to an object in particular, an authorization which is tied
to a an object in particular (such as “write to the contact details of customer Initech, Inc”). An object permission
is never attributed, it is computed in a fully qualified context: given a user, an object and an object permission,
the security system will compute the answer to the question “does the user have this permission on this object?”.

31

OWSI-Core doc Documentation, Release 1.0

You may notice that, depending on your point of view, some concepts seem to have the same purpose: either role and
global permission or role and user group. The developers are aware of this issue and it will be addressed in a future
version of OWSI-Core.

Architecture

OWSI-Core’s security layer is powered by Spring Security, and most concepts detailed here come directly from Spring
Security.

Here are the main components of a secured application based on OWSI-Core:

• The ISecurityService is an API, the main entry point for security-related queries (“does this user have
this permission on this object”) and operations (user authentication, authentication invalidation, ...).

• The PermissionEvaluator is a SPI, the way for the developer to programmatically define code
that will determine whether a user has a given permission on a given object. This code is not just
a mapping, as it may use business object’s properties in order to answer queries: for instance “is the
given user this customer’s account manager?”. Think of permissions evaluators as a way to ex-
tract business information for security purposes. The permission evaluator is generally implemented
through a subclass of AbstractCorePermissionEvaluator which delegates its calls to various
IGenericPermissionEvaluator, one for each type of object.

• The UserDetailsService is a SPI, the way for the developer to programmatically define code that
will determine whether a user has a given role or global permission. It’s generally a subclass of
CoreJpaUserDetailsServiceImpl. Think of the user details service as a way to extract user role
and permission attributions. This code consists, most of the time, in:

• extracting role and global permission attributions from the database

• expanding the results to extensive lists with the help of a role hierarchy and a permission hierarchy

• and optionally inferring hard-coded global permissions based on on attributed roles

Defining your own permissions

Defining role constants

Create a class named <YourApplication>AuthorityConstants, extending
CoreAuthorityConstants, and put it in <Your main package>.core.security.model. In
this class, add one string constant for each role, making sure that each constant has a unique value:

public final class MyApplicationAuthorityConstants extends CoreAuthorityConstants {

public static final String ROLE_INTRANET_USER = "ROLE_INTRANET_USER";
public static final String ROLE_EXTRANET_USER = "ROLE_EXTRANET_USER";

}

Defining permission constants

Create a class named <YourApplication>PermissionConstants, extending
CorePermissionConstants, and put it in <Your main package>.core.security.model. In
this class, add one string constant for each global permission or object permission, making sure that each constant has
a unique value:

32 Chapter 7. Security

http://projects.spring.io/spring-security/

OWSI-Core doc Documentation, Release 1.0

public final class MyApplicationPermissionConstants extends CorePermissionConstants {
public static final String CUSTOMER_WRITE_CONTACT_DETAILS = "CUSTOMER_WRITE_

→˓CONTACT_DETAILS";
}

Then, create another class named <YourApplication>Permission, extending NamedPermission, and with the
following implementation:

public final class MyApplicationPermission extends NamedPermission {

private static final long serialVersionUID = 8541973919257428300L;

public static final Collection<MyApplicationPermission> ALL;
static {

ImmutableSet.Builder<SIPermission> builder = ImmutableSet.builder();
Field[] fields = MyApplicationPermissionConstants.class.getFields();
for (Field field : fields) {

try {
Object fieldValue = field.get(null);
if (fieldValue instanceof String) {

builder.add(new MyApplicationPermission((String)fieldValue));
}

} catch (IllegalArgumentException|IllegalAccessException ignored) { //
→˓NOSONAR

}
}
ALL = builder.build();

}

private MyApplicationPermission(String name) {
super(name);

}

}

And finally, override permissionFactory in your security configuration class, which extends
AbstractJpaSecurityConfig. Here is an implementation example:

@Configuration
public class MyApplicationCoreSecurityConfig extends AbstractJpaSecuritySecuredConfig
→˓{

/** ... other stuff ... */

@Override
public PermissionFactory permissionFactory() {

return new NamedPermissionFactory(MyApplicationPermission.ALL);
}

/** ... other stuff ... */
}

Defining role and permission hierarchies

This is done by overriding roleHierarchyAsString and permissionHierarchyAsString in your secu-
rity configuration class, which extends AbstractJpaSecurityConfig. Here is an implementation example:

7.1. Securing accesses 33

OWSI-Core doc Documentation, Release 1.0

import static my.application.core.security.model.MyApplicationAuthorityConstants.*;
import static my.application.core.security.model.MyApplicationPermissionConstants.*;

@Configuration
public class MyApplicationCoreSecurityConfig extends AbstractJpaSecuritySecuredConfig
→˓{

/** ... other stuff ... */

@Override
public String roleHierarchyAsString() {

return defaultRoleHierarchyAsString() + hierarchyAsStringFromMap(
ImmutableMultimap.<String, String>builder()
.putAll(

ROLE_ADMIN,
ROLE_INTRANET_USER,
ROLE_TECHNICAL_ADMIN

)
.putAll(

ROLE_INTRANET_USER,
ROLE_AUTHENTICATED

)
.putAll(

ROLE_EXTRANET_USER,
ROLE_AUTHENTICATED

)
.putAll(

ROLE_SYSTEM,
ROLE_ADMIN,
ROLE_MAIN_USER,
ROLE_EXTRANET_USER

)
.build()

);
}

@Override
public String permissionHierarchyAsString() {

return defaultPermissionHierarchyAsString() + hierarchyAsStringFromMap(
ImmutableMultimap.<String, String>builder()
.put(CUSTOMER_WRITE, CUSTOMER_READ)
.build()

);
}

/** ... other stuff ... */
}

Defining permission evaluators

Then, go to your permission evaluator. You may find a reference to this class in your configuration class that extends
AbstractJpaSecurityConfig, in the permissionEvaluator method.

In this permission evaluator, you will have to dispatch security queries to various permission evaluators, one for each
object type. This will look like this:

34 Chapter 7. Security

OWSI-Core doc Documentation, Release 1.0

public class MyApplicationPermissionEvaluator extends AbstractCorePermissionEvaluator
→˓<User> {

@Autowired
private ICustomerPermissionEvaluator customerFormationPermissionEvaluator;

@Autowired
private IDealPermissionEvaluator dealPermissionEvaluator;

@Autowired
private IInvoicePermissionEvaluator invoicePermissionEvaluator;

public MyApplicationPermissionEvaluator() {
// nothing to do

}

@Override
protected boolean hasPermission(User user, Object targetDomainObject, Permission

→˓permission) {
if (targetDomainObject != null) {

targetDomainObject = HibernateUtils.unwrap(targetDomainObject); // NOSONAR
}

if (user != null) {
user = HibernateUtils.unwrap(user); // NOSONAR

}

if (targetDomainObject instanceof Customer) {
return customerPermissionEvaluator.hasPermission(user, (Customer)

→˓targetDomainObject, permission);
} else if (targetDomainObject instanceof Deal) {

return dealPermissionEvaluator.hasPermission(user, (Deal)
→˓targetDomainObject, permission);

} else if (targetDomainObject instanceof Invoice) {
return invoicePermissionEvaluator.hasPermission(user, (Invoice)

→˓targetDomainObject, permission);
}

return false;
}

}

For each type-bound permission evaluator, you will define an interface (which extends
IGenericPermissionEvaluator) and an implementation. Here is an example of implementation (you
are, of course, totally free of which permissions you will or will not handle):

@Service
public class CustomerPermissionEvaluatorImpl extends
→˓AbstractMyApplicationGenericPermissionEvaluator<Customer>

implements ICustomerPermissionEvaluator {

@Autowired
private IUserService userService;

@Autowired
private IParticipationPermissionEvaluator participationPermissionEvaluator;

7.1. Securing accesses 35

OWSI-Core doc Documentation, Release 1.0

@Override
public boolean hasPermission(User user, Customer customer, Permission permission)

→˓{
if (is(permission, READ)) {

return hasPermission(user, CUSTOMER_READ);
} else if (is(permission, CREATE)) {

return hasPermission(user, CUSTOMER_CREATE);
} else if (is(permission, WRITE)) {

return user.equals(customer.getAccountManager());
}
return false;

}
}

Restricting accesses

Service layer

General configuration

In order to enable security checks upon method calls, you will need to make sure that your security
configuration class does not extend AbstractJpaSecuritySecuredConfig directly, but its subclass,
AbstractJpaSecuritySecuredConfig.

Service access

You will need to add annotations on your services’ methods. For instance: s

public interface ICustomerService extends IGenericEntityService<Long, Customer> {

@Override
@PreAuthorize(value = MyAppSecurityExpressionConstants.CREATE)
void create(@PermissionObject Customer entity) throws ServiceException,

→˓SecurityServiceException;

}

@PreAuthorize will perform a security check before executing the method. Other, more exotic annotations exist
in package org.springframework.security.access.prepost.

It’s better to define your security expressions in a separate constants class, such as
MyAppSecurityExpressionConstants in this example. This class will look something like that:

import static fr.openwide.core.commons.util.security.PermissionObject.DEFAULT_
→˓PERMISSION_OBJECT_NAME;

public final class SISecurityExpressionConstants {

public static final String READ = "hasPermission(#" + DEFAULT_PERMISSION_OBJECT_
→˓NAME + ", '" + SIPermissionConstants.READ + "')";

public static final String CREATE = "hasPermission(#" + DEFAULT_PERMISSION_OBJECT_
→˓NAME + ", '" + SIPermissionConstants.CREATE + "')";

public static final String WRITE = "hasPermission(#" + DEFAULT_PERMISSION_OBJECT_
→˓NAME + ", '" + SIPermissionConstants.WRITE + "')";

36 Chapter 7. Security

OWSI-Core doc Documentation, Release 1.0

}

Note that annotating the method’s main parameter with @PermissionObject and using PermissionObject.
DEFAULT_PERMISSION_OBJECT_NAME in your security expressions will ensure that changing the name of this
parameter will not break your security expressions.

UI layer

General configuration

The general web application security configuration is generally located in a class named
<YourApp>WebappSecurityConfig.

This class generally refers to an XML file (security-web-context.xml) whose content defines:

• security-related beans

• required roles for each page (or set of pages, by using regular expressions)

• login workflow (login page, login failure page, login success page)

• denied access behavior

• session restrictions (such as a maximum number of simultaneous sessions)

The official documentation about the format of this file may be found there: http://docs.spring.io/spring-
security/site/docs/4.0.x/reference/html/ns-config.html

Page and resource access

Simple, coarse-grained configuration

You may define, for a given page or resource, which roles or global permissions are required in order to access it.

This is simply done by adding the @AuthorizeInstantiation (for roles) or
@AuthorizeInstantiationIfPermission (for global permissions) on the page’s class. For resources, you
must use @AuthorizeResource instead, and you may not rely on permissions (only roles).

Be aware that, while more annotations are available (@AuthorizeAction and
@AuthorizeActionIfPermission in particular), their use is discouraged because they add restrictions
which cannot be checked until the very last moment. This prevents in particular from disabling links to inaccessible
pages (because, when rendering the link, the page is not yet instantiated and thus we can’t check action permissions
on this page).

Advanced, fine-grained configuration

Most of the time, you will use link descriptors (see UI-Links) in order to provide access to pages or resources.

Link descriptors allow to define arbitrary access restrictions (based on model objects, or on anything you want), and
this includes in particular authorization restrictions.

For instance, this allows to make a link accessible only when the users has the “READ” permission on the parameter:

7.1. Securing accesses 37

OWSI-Core doc Documentation, Release 1.0

public static final IOneParameterLinkDescriptorMapper<IPageLinkDescriptor, MyObject>
→˓MAPPER =

new LinkDescriptorBuilder()
.page(MyObjectPage.class)
.model(MyObject.class)

.permission(CorePermissionConstants.READ)

.map(CommonParameters.ID).mandatory()
.build();

You may also enforce checks on global permissions, by calling the .permission method before defining any
parameter:

public static final IOneParameterLinkDescriptorMapper<IPageLinkDescriptor, MyObject>
→˓MAPPER =

new LinkDescriptorBuilder()
.page(MyObjectPage.class)
.permission(MyApplicationPermissionConstants.ACCESS_MY_OBJECT_PAGE)
.model(MyObject.class)

.map(CommonParameters.ID).mandatory()
.build();

Please note that all of this also applies to resource link descriptors.

With this configuration, checks will be performed upon link rendering and upon page/resource instantiation:

• when links are rendered, they will be automatically disabled or hidden if the user misses some roles or permis-
sions

• when the a page or resource is instantiated, it will use the link descriptor to extract parameters, which will trigger
an exception and abort the page instantiation if the user misses some roles or permissions.

Buttons/links access

When using links created from a link descriptor, if this link descriptor has been properly configured as explained
above, the link will automatically be disabled whenever the user hasn’t the required permissions.

For other links (external links for instance) or for buttons, ajax links, and so on, you may hide or disable these
components using enclosure behaviors:

final IModel<T> model = /*...*/;
add(

new AjaxLink("link", model) {
/* ... */

}
.add(

new EnclosureBehavior().condition(
Condition.permission(model,

→˓MyApplicationPermissionConstants.MY_PERMISSION)
)

)
);

This will trigger server-side hiding, which will prevent users to trigger the server-side code even if they can guess and
call the URL for each button: Wicket refuses to execute code on components that were hidden on the server side.

38 Chapter 7. Security

OWSI-Core doc Documentation, Release 1.0

Popups/modals access

For modals which require initialization before showing them, you should add an enclosure behavior on the opening
link:

MyModal editPopup = new MyModal("popup");
add(editPopup);

// The following code is potentially executed multiple times, for different models
final IModel<T> itemModel = /*...*/;
add(

new BlankLink("edit")
.add(

new AjaxModalOpenBehavior(editPopup, MouseEvent.CLICK) {
private static final long serialVersionUID = 1L;
@Override
protected void onShow(AjaxRequestTarget target) {

editPopup.init(itemModel.getObject());
}

}
)
.add(

new EnclosureBehavior().condition(
Condition.permission(model,

→˓MyApplicationPermissionConstants.MY_PERMISSION)
)

)
);

This ensures that the modal will be initially visible, but unusable (because it’s not initialized), and that it will be
“openable” if and only if at least one button is visible.

For modals whose content is fully determined by their main model, and which do not require initialization upon
showing them, it is recommended to apply an enclosure behavior on the modal itself:

IModel<T> model = /*...*/;
MyModal editPopup = new MyModal("popup", model);
add(

editPopup
.add(

new EnclosureBehavior().condition(
Condition.permission(model, SIPermissionConstants.

→˓WRITE)
)

)
new BlankLink("edit")

.add(new AjaxModalOpenBehavior(editPopup, MouseEvent.CLICK))
);

This ensures that when the use has no access to the modal, even if the client tries to execute a manually-crafted ajax
call to open the modal, the modal will be hidden on the server-side and wicket will thus trigger an error.

7.1. Securing accesses 39

OWSI-Core doc Documentation, Release 1.0

40 Chapter 7. Security

CHAPTER 8

Backend

Querying

This page explains how to query data using OWSI-Core.

How to expose queries to the web application

Through an ISearchQuery

Use case

ISearchQuery should be used when providing a search form to users. It makes it easy to define a search query with
numerous search criteria that are independent from each other, the ability to sort the result, and the ability to retrieve
the paginated result or the result count.

ISearchQuery is also commonly used to implement “autocomplete” queries, i.e. the queries behind Select2 select
boxes.

Description

ISearchQuery is an interface that provides read access to the data while hiding the implementation details, as does
a DAO. But on contrary of a DAO:

• Each interface extending ISearchQuery provides one method for each search criterion, which will be kept in
memory until data retrieval (list, count). Note that this “keeping in memory” might not be done explicitly
by implementors, but just by starting the query building with the query framework under the hood.

• For this reason, an ISearchQuery instance is stateful and can only be used for one query (i.e. search criteria
may be added, but not removed nor cleared).

• ISearchQuerys are expected to be used directly from the UI layer

41

OWSI-Core doc Documentation, Release 1.0

Here is an example of ISearchQuery-extending interface:

public interface IPersonSearchQuery extends ISearchQuery<Person, PersonSort> {

IPersonSearchQuery quickSearch(String filter);

IPersonSearchQuery lastName(String lastName);

IPersonSearchQuery firstName(String firstName);

IPersonSearchQuery company(Company company);
}

And here is an example of use (from inside a Wicket DataProvider):

return createSearchQuery(IPersonSearchQuery.class) // Some Spring magic (beanFactory.
→˓getBean(...))

.lastName(lastNameModel.getObject())

.firstName(firstNameModel.getObject())

.company(companyModel.getObject())

.sort(sortModel.getObject())

.list(offset, limit)

Through a service

Use case

Queries should be exposed to the web application through services (a simple method in a service) when:

• counting the results is not necessary (within a service, that would involve providing two service methods with
the same parameters and implementing them, which is a bit of a pain)

• and

• paging is not necessary

• or criteria are strongly interrelated (they can’t be implemented by separate criteria in the underlying query)

• or the query is really too simple to justify the overhead of creating an interface and an implementation class

Note that in any of these case, ISearchQuery could still be used. It’s just a matter of guessing whether using
ISearchQuery would help in implementing your query or not (spoiler: it probably does).

Also, know that in the case of complex queries (reporting for instance), a ISearchQuery is still (and maybe more)
relevant, since you may just store arguments passed to criteria methods in attributes and use those attributes later when
asked for the results. This brings the advantage of consistency with little implementation cost.

Exposing sort selection

Whatever the solution you choose among the two above, you may have to provide clients a way to tune the sorting of
retrieved data.

In OWSI-Core, this is generally done by adding a parameter to your query that is a Map<S, SortOrder> with S
extends ISort<F> and with F being implementation-dependent. ISort will allow the implementor to convert
the business-level sort definitions into an internal list of fields on which to sort.

ISorts are simple business wrappers. Each ISort instance by provides a list of sort “fields” (whose type is
implementation-dependent).

42 Chapter 8. Backend

OWSI-Core doc Documentation, Release 1.0

The implementations are generally an enum type:

public enum PersonSort implements ISort<SortField> {

SCORE {
@Override
public List<SortField> getSortFields(SortOrder sortOrder) {

return GenericEntitySort.SCORE.getSortFields(sortOrder);
}
@Override
public SortOrder getDefaultOrder() {

return GenericEntitySort.SCORE.getDefaultOrder();
}

},
ID {

@Override
public List<SortField> getSortFields(SortOrder sortOrder) {

return GenericEntitySort.ID.getSortFields(sortOrder);
}
@Override
public SortOrder getDefaultOrder() {

return GenericEntitySort.ID.getDefaultOrder();
}

},
LAST_NAME {

@Override
public List<SortField> getSortFields(SortOrder sortOrder) {

return ImmutableList.of(
SortUtils.luceneSortField(

this, sortOrder, SortField.Type.STRING,
Ressortissant.LAST_NAME_SORT

)
);

}
@Override
public SortOrder getDefaultOrder() {

return SortOrder.ASC;
}

},
FIRST_NAME {

@Override
public List<SortField> getSortFields(SortOrder sortOrder) {

return ImmutableList.of(
SortUtils.luceneSortField(

this, sortOrder, SortField.Type.STRING,
Ressortissant.FIRST_NAME_SORT

)
);

}
@Override
public SortOrder getDefaultOrder() {

return SortOrder.ASC;
}

},
FULL_NAME {

@Override
public List<SortField> getSortFields(SortOrder sortOrder) {

return ImmutableList.of(
SortUtils.luceneSortField(

8.1. Querying 43

OWSI-Core doc Documentation, Release 1.0

this, sortOrder, SortField.Type.STRING,
Ressortissant.LAST_NAME_SORT

),
SortUtils.luceneSortField(

this, sortOrder, SortField.Type.STRING,
Ressortissant.FIRST_NAME_SORT

)
);

}
@Override
public SortOrder getDefaultOrder() {

return SortOrder.ASC;
}

};

@Override
public abstract List<SortField> getSortFields(SortOrder sortOrder);

@Override
public abstract SortOrder getDefaultOrder();

}

Note that, on the UI side, an utility exists to easily manage a sort selection: CompositeSortModel. See UI-Models
for more information.

How to implement queries

Search queries (ISearchQuery)

You may always use your own implementation. But in most cases, extending one of the two provided abstract classes
is the way to go.

WARNING: always think to add @Scope("prototype") to your implementation, else you will experience very
disturbing concurrent modification issues.

AbstractHibernateSearchSearchQuery

AbstractHibernateSearchSearchQuery provides sensible protected methods that allow you to stack criteria
on each call of a criterion method. For convenience, most of those utility methods have no effect when given null
parameters. This allow clients to skip null-checks entirely and to call your criteria methods regardless of whether or
not the users provided a value for each parameter.

Some full implementations already exist in OWSI-Core (most notably for fr.openwide.core.jpa.more.
business.generic.query.ISimpleGenericListItemSearchQuery<T, S>).

The following assumes that Lucene field have already been defined on your entities. If not, see Hibernate Search &
Lucene.

Simple match

@Override
public IPersonSearchQuery company(Company company) {

44 Chapter 8. Backend

OWSI-Core doc Documentation, Release 1.0

must(matchIfGiven(Person.COMPANY /* Lucene field name for field "company" */,
→˓company));

return this;
}

Presence of a single item in a collection field

@Override
public IPersonSearchQuery company(Company company) {

must(beIncludedIfGiven(Person.COMPANIES /* Lucene field name for field
→˓"companies" */, company));

return this;
}

Presence of at least one item from a set in a collection field

@Override
public IPersonSearchQuery company(Set<Company> companies) {

must(matchOneIfGiven(Person.COMPANY /* Lucene field name for field "company"
→˓*/, companies));

return this;
}

Presence of all items from a set in a collection field

@Override
public IPersonSearchQuery companies(Set<Company> companies) {

must(matchAllIfGiven(Person.COMPANIES /* Lucene field name for field
→˓"companies" */, companies));

return this;
}

Range query

@Override
public IPersonSearchQuery modificationDate(Date dateMin, Date dateMax) {

must(matchRange(
Person.MODIFICATION_DATE,
dateMin,
dateMax

));

return this;
}

8.1. Querying 45

OWSI-Core doc Documentation, Release 1.0

“OR” operator

WARNING: If you’re ORing multiple criterion, the default mechanisms of not applying null criteria may not be
enough. You’d better wrap your code in a if checking for the presence of arguments.

@Override
public IPersonSearchQuery modificationDate(Date dateMin, Date dateMax) {

if (dateMin != null || dateMax != null) { // BEWARE!
must(

any(// = "OR"
matchRange(

Person.MODIFICATION_DATE,
dateMin,
dateMax

),
matchNull(Person.MODIFICATION_DATE)

)
);

}

return this;
}

“AND” operator

If you don’t have to nest the “AND” in another “OR”, you may simply leverage the fact that criteria are ANDed by
default:

@Override
public IPersonSearchQuery noDateInfo() {

// Implicit "AND"
must(matchNull(Person.MODIFICATION_DATE));
must(matchNull(Person.CREATION_DATE));

return this;
}

Otherwise:

@Override
public IPersonSearchQuery modificationDate(Date dateMin, Date dateMax) {

if (dateMin != null || dateMax != null) {
must(

any(// = "OR"
matchRange(

Person.MODIFICATION_DATE,
dateMin,
dateMax

),
all(// = "AND"

matchNull(Person.MODIFICATION_DATE),
matchNull(Person.CREATION_DATE),

)
)

);
}

46 Chapter 8. Backend

OWSI-Core doc Documentation, Release 1.0

return this;
}

Other criteria

Many more utility methods are provided in fr.openwide.core.jpa.more.business.search.query.
AbstractHibernateSearchSearchQuery<T, S>. If what you’re looking for wasn’t above, check out the
code.

Overriding utility methods or extending them

If you feel the need to extend this class with additional utility methods, or to override existing utility meth-
ods, know that you may do this simply by overriding fr.openwide.core.jpa.more.config.spring.
AbstractJpaMoreJpaConfig.hibernateSearchLuceneQueryFactory() to return your own query
factory.

@Override
public IMyHibernateSearchLuceneQueryFactory hibernateSearchLuceneQueryFactory() {

return new MyHibernateSearchLuceneQueryFactoryImpl();
}

Then in any search query implementation, the utility methods will be those defined in your own query factory. You
may access additional methods with this snippet of code:

@Override
protected IMyHibernateSearchLuceneQueryFactory getFactory() {

return (IMyHibernateSearchLuceneQueryFactory) super.getFactory();
}

@Override
public IMySearchQuery label(String label) throws SearchException {

must(getFactory().myAdditionalUtilityMethod(
/* ... */

));
return this;

}

AbstractJpaSearchQuery

TODO

Lower-level solutions (service and DAO methods)

JPA querying

TODO QueryDSL-JPA

8.1. Querying 47

OWSI-Core doc Documentation, Release 1.0

Native SQL querying

TODO QueryDSL-SQL, Hibernate native SQL

QueryDSL tips

Generating maps and tables

In order to generate a map, use this syntax:

return new JPAQuery<>(getEntityManager())
.from(QUser.user)
.groupBy(QUser.user.gender)
.orderBy(QUser.user.gender.asc())
.transform(GroupBy2.transformer(GroupBy.sortedMap(QUser.user.gender, QUser.

→˓user.count().intValue())));

If you need a com.google.common.collect.Table<R, C, V> instead of a Map, you may use GroupBy2.
table or GroupBy2.sortedTable instead of GroupBy.sortedMap.

If the keys in database are too precise, and you want to perform another aggregation on the Java side (for instance
turning day-precise dates into weeks), you may use the following syntax:

return new JPAQuery<>(getEntityManager())
.from(QUser.user)
.groupBy(QUser.user.gender, QUser.user.creationDate)
.orderBy(QUser.user.gender.asc(), QUser.user.creationDate.asc())
.transform(GroupBy2.transformer(GroupBy2.table(

QUser.user.gender,
new MappingProjection<Date>(Date.class, QUser.user.creationDate) {

private static final long serialVersionUID = 1L;
@Override
protected Date map(Tuple row) {

return DateDiscreteDomain.weeks().alignPrevious(row.get(0,
→˓Date.class));

}
},
/**

* We sum twice: once in the SQL query (for each date) and once in
→˓Java (for each week).

* We could have summed only in Java, but it would be sub-optimal if

* many user are created each day.

* The even better solution would have been to group by week in the
→˓SQL query,

* but unfortunately it's not easy to do with JPQL.

*/
GroupBy.sum(QUser.user.count().intValue())

)));

Lucene (Hibernate Search) querying

TODO Hibernate Search DSL

TODO QueryDSL-HibernateSearch?

48 Chapter 8. Backend

http://www.querydsl.com/static/querydsl/4.1.3/reference/html_single/#hibernate_search_integration

OWSI-Core doc Documentation, Release 1.0

Hibernate mappings (TODO)

TODO: some advice about when to use:

• Enums or GenericListItems

• @ElementCollection

• AbstractHibernateMapBugWorkaroundValueHolder

• AbstractMaterializedPrimitiveValue

• ...

Hibernate Interceptors

You can declare Spring managed Hibernate interceptors by adding an hibernateInterceptor() method in
YourAppCoreCommonJpaConfig:

@Bean
public Interceptor hibernateInterceptor() {

return new ChainedInterceptor()
.add(new YourInterceptor());

}

The ChainedInterceptor is a class we provide to be able to chain multiple Hibernate interceptors.

For an example of implementation, see:

• https://github.com/openwide-java/owsi-core-parent/blob/master/owsi-core/owsi-core-components/owsi-core-
component-jpa-externallinkchecker/src/main/java/fr/openwide/core/jpa/externallinkchecker/business/interceptor/ExternalLinkWrapperInterceptor.java

• https://github.com/openwide-java/owsi-core-parent/blob/master/owsi-core/owsi-core-components/owsi-core-
component-jpa-externallinkchecker/src/main/java/fr/openwide/core/jpa/externallinkchecker/business/model/ExternalLinkWrapper.java#L178

Hibernate Search & Lucene (TODO)

TODO:

• Base

• Explain how we should deal with @IndexedEmbedded/@ContainedIn

• Explain how we should deal with sorts

Sorting

Sorting behavior depends on the data type:

• to sort by id, you have to use the field GenericEntity.ID_SORT

• to sort by string, you should define an additional field with the TEXT_SORT analyzer:

8.2. Hibernate mappings (TODO) 49

OWSI-Core doc Documentation, Release 1.0

@Column
@Fields({

@Field(analyzer = @Analyzer(definition = HibernateSearchAnalyzer.TEXT_
→˓STEMMING)),

@Field(name = EN_SORT, analyzer = @Analyzer(definition =
→˓HibernateSearchAnalyzer.TEXT_SORT))

})
@SortableField(forField = EN_SORT)
private String en;

• to sort by date, you don’t need an additional field BUT you need to sort using SortField.Type.LONG
(starting from 0.11)

Note that, you need to add a @SortableField(forField = "fieldName") annotation for each field used
for sorting.

Cronjobs

Cronjobs tasks can be defined in the YourAppCoreSchedulingConfig class.

We use the @Scheduled annotation to define the cronjob expression: @Scheduled(cron = "...").

The syntax for the cron expression respects the following rules: https://docs.spring.io/spring/docs/current/javadoc-
api/org/springframework/scheduling/support/CronSequenceGenerator.html .

50 Chapter 8. Backend

CHAPTER 9

UI

UI Links

This page explains various ways of creating bookmarkable links to pages or resources using Wicket and OWSI-Core.

What is a bookmarkable link?

We’ll define bookmarkable links as any non-ajax link that points directly to a HTML page or to a user download (XLS
file, JPEG image, ...).

This excludes in particular the subclasses of org.apache.wicket.markup.html.link.AbstractLink
that implement event handlers (onClick or onSubmit methods): they may redirect to a HTML page or to a user
download, but they don’t point to it directly. We’ll name those action links.

The main differences between bookmarkable links and action links are that:

• on the user side, the action link will render as a URL tied to the page from where the link originates, whereas
bookmarkable links will renders as a URL tied to the target.

• on the server side, bookmarkable link are a bit lighter to execute than event handlers implementing a redirection
(since they require one request instead of two).

For more information on action links, see UI User Actions

Link descriptor

Link descriptors are an addition from OWSI-Core. They offer several advantages over traditional Wicket linking:

• They enforce type-safety: users provide business object models only, and they do not need to perform manual
conversion to strings each and every time they create a link.

• They enforce consistency: link generation and parameter extraction is done by the same object, which only has
to be defined once.

51

OWSI-Core doc Documentation, Release 1.0

• They provide dynamic link generation. When you add an AbstractLink generated by a link descriptor to
your page, you are guaranteed that if an underlying model has its value updated, the link will also be updated
the next time it is rendered.

Link descriptors are in fact two things: link generators and link parameter extractors.

As link generators, they allow to generate an URL, or even a Wicket AbstractLink tied to predefined models and
that will automatically render with an up-to-date URL with each page render.

As link parameters extractors, they allow to take the content of Wicket PageParameters, convert it to actual objects
(not just primitive types) and store it in predefined models.

Those “predefined models” are in fact models that were mapped to HTTP query parameters. See below for details
about link descriptor mappers.

Interfaces

The terms “link descriptor” refer to several interfaces:

• ILinkGenerator (see above)

• ILinkParameterExtractor (see above)

• ILinkDescriptor (an extension of both ILinkGenerator and ILinkParameterExtractor)

• IPageLinkGenerator, an extension of ILinkGenerator that provides some features relevant only to
pages

• IImageResourceLinkGenerator, an extension of ILinkGenerator that provides some features rel-
evant only to resources providing image files

• IPageLinkParametersExtractor, an extension of ILinkParameterExtractor that provides
some features relevant only to pages

Examples of use

The following examples are about using an already-created link descriptor. For information about creating a link
descriptor, see the section about link descriptor builders below.

URL generation

ILinkGenerator linkGenerator = /* ... */;
String relativeOrAbsoluteUrl = linkGenerator.url();
String absoluteUrl = linkGenerator.fullUrl();

Wicket link generation

Note: links generated using this method are automatically disabled (no href) when they render and their parameters
fail validation. You may hide them instead by calling hideIfInvalid as below.

// Inside a Wicket component's constructor
ILinkGenerator linkGenerator = /* ... */;
add(

linkGenerator.link("linkWicketId")
.hideIfInvalid()

52 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

.add(new TargetBlankBehavior())
);

Redirection

IPageLinkGenerator linkGenerator = /* ... */;
throw linkGenerator.newRestartResponseException();

 markup

// Inside a Wicket component's constructor
IImageResourceLinkGenerator linkGenerator = /* ... */;
add(

linkGenerator.image("linkWicketId")
.hideIfInvalid()
.add(new TargetBlankBehavior())

);
IPageLinkGenerator linkGenerator = /* ... */;

Validity check

Important note: validity check is normally unnecessary, as it will be performed automatically and an exception will
be thrown if the link is invalid. Generally, this is want you want, because an invalid link simply should not have been
used (Wicket links obtained through ILinkGenerator#link(String), for instance, are automatically disabled
when invalid, so the user cannot click them).

If invalid links are a possibility that you want to handle as part of your business code, though, you may use code
similar to the following snippet. This should be exceptional: if you’re doing this extensively in your code, you
probably missed something.

ILinkGenerator linkGenerator = /* ... */;
if (linkGenerator.isAccessible()) {

throw linkGenerator.newRestartResponseException();
} else {

// Fallback code
}

Link descriptor mappers

Link descriptor mappers are factories that take models as arguments and map them to previously incomplete link
definitions in order to create a link descriptor.

They are primarily useful to separate the definition of links (list of parameters types on the Java, mapping of those
Java parameters to HTTP query parameters, validations, ...) from the actual parameter definition. The link descriptor
mapper will then represent the incomplete link definition that only lacks parameter models in order to provide a full
link descriptor.

9.1. UI Links 53

OWSI-Core doc Documentation, Release 1.0

Examples of use

Note: the result of a link descriptor mappers’ map method is a link descriptor that may be used in each and every
way described above in the “Link descriptor” section. We only provide one such example here to avoid unnecessary
repetitions.

Wicket link generation

// Inside a Wicket component's constructor
IModel<User> userModel = /* ... */;
IOneParameterLinkDescriptorMapper<IPageLinkGenerator, User> mapper = /* ... */;
add(

mapper.map(userModel).link("linkWicketId")
.hideIfInvalid()
.add(new TargetBlankBehavior())

);

Data table link declaration

See UI-Displaying Collections for some context about DataTableBuilder.

IOneParameterLinkDescriptorMapper<IPageLinkGenerator, User> mapper = /* ... */;
CoreDataTablePanel<?, ?> results =

DataTableBuilder.start(dataProvider, dataProvider.getSortModel())
.addLabelColumn(new ResourceModel("business.customer.lastName"), Bindings.

→˓customer().lastName())
.withLink(mapper) // <= USE THE MAPPER HERE
.withSort(CustomerSort.LASTNAME, SortIconStyle.ALPHABET, CycleMode.

→˓NONE_DEFAULT_REVERSE)
.withClass("text text-sm")

/** Add some more columns... */
.build("results");

Link descriptor builder

The link descriptor builder allows to build link descriptors or link descriptor mappers. It provides methods to define the
mappable Java-side parameters, the mappings between those parameters and HTTP query parameters, the validations
around those parameters and the target of the link.

Examples of use

The following sections provide some examples of use. This is not an exhaustive reference, so if those examples do not
match exactly your need, you may start from the closest one and use the builder’s Javadoc to find what you’re looking
for.

Simple link descriptor

This is especially useful for pages with no parameters (home page, lists, ...).

54 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

@AuthorizeInstantiationIfPermission(permissions = {MyPermissionConstants.READ_
→˓CUSTOMER})
public class CustomerListPage extends MainTemplate {

public static final IPageLinkDescriptor linkDescriptor() {
return LinkDescriptorBuilder.start()

.page(CustomerListPage.class);
}

public CustomerListPage(PageParameters parameters) {
super(parameters);
/* ... */

}
}

Link descriptor mapper

public class CustomerDescriptionPage extends MainTemplate {

public static final IOneParameterLinkDescriptorMapper<IPageLinkDescriptor,
→˓Customer> MAPPER =

LinkDescriptorBuilder.start()
.model(Customer.class).map(CommonParameters.ID).mandatory()
.permission(MyPermissionConstants.READ)
.page(CustomerDescriptionPage.class);

public CustomerDescriptionPage(PageParameters parameters) {
super(parameters);

IModel<Customer> customerModel = new GenericEntityModel<Long, Customer>();

MAPPER.map(customerModel)
.extractSafely(

parameters,
CustomerListPage.linkDescriptor(),
getString("common.error.unexpected")

);

/* ... */
}

}

Link descriptor mapper with multiple parameters

public class CustomerDescriptionPage extends MainTemplate {

public static final ITwoParameterLinkDescriptorMapper<IPageLinkDescriptor,
→˓Customer, String> MAPPER_TAB =

LinkDescriptorBuilder.start()
.model(Customer.class)
.model(String.class)
.pickFirst().map(CommonParameters.ID).mandatory()
.pickSecond().map("tab").optional()
.pickFirst().permission(MyPermissionConstants.READ)

9.1. UI Links 55

OWSI-Core doc Documentation, Release 1.0

.page(CustomerDescriptionPage.class);

public static final IOneParameterLinkDescriptorMapper<IPageLinkDescriptor,
→˓Customer> MAPPER =

MAPPER_TAB.ignoreParameter2();

public CustomerDescriptionPage(PageParameters parameters) {
super(parameters);

IModel<Customer> customerModel = new GenericEntityModel<Long, Customer>();
IModel<String> selectedTabNameModel = new Model<>();

MAPPER_TAB.map(customerModel, selectedTabNameModel)
.extractSafely(

parameters,
CustomerListPage.linkDescriptor(),
getString("common.error.unexpected")

);

/* ... */
}

}

Link descriptor mapper with a collection parameter

public class MyPage extends MainTemplate {

public static final IOneParameterLinkDescriptorMapper<IPageLinkDescriptor, List
→˓<Customer>> MAPPER =

LinkDescriptorBuilder.start()
.<List<Customer>>model(List.class).mapCollection("list", Customer.class).

→˓mandatory()
.permission(MyPermissionConstants.READ)
.page(CustomerDescriptionPage.class);

public MyPage(PageParameters parameters) {
super(parameters);

IModel<Customer> customerListModel = CollectionCopyModel.custom(
Supplers2.<Customer>arrayListAsList(), GenericEntityModel.<Customer>

→˓factory()
);

MAPPER.map(customerListModel)
.extractSafely(

parameters,
CustomerListPage.linkDescriptor(),
getString("common.error.unexpected")

);

/* ... */
}

}

56 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

Link descriptor mapper with custom validation condition

public class CustomerDescriptionPage extends MainTemplate {

public static final IOneParameterLinkDescriptorMapper<IPageLinkDescriptor,
→˓Customer> MAPPER =

LinkDescriptorBuilder.start()
.model(Customer.class).map(CommonParameters.ID).mandatory()
.permission(MyPermissionConstants.READ)
.validator(DetachableFactories.forUnit(

new AbstractDetachableFactory<IModel<Customer>, Condition>() {
private static final long serialVersionUID = 1L;
@Override
public Condition create(IModel<Customer> parameter) {

return new MyCondition(parameter);
}

}
))
.page(CustomerDescriptionPage.class);

public CustomerDescriptionPage(PageParameters parameters) {
super(parameters);

IModel<Customer> customerModel = new GenericEntityModel<Long, Customer>();

MAPPER.map(customerModel)
.extractSafely(

parameters,
CustomerListPage.linkDescriptor(),
getString("common.error.unexpected")

);

/* ... */
}

}

Other examples

See OWSI-Core’s tests, in particular the test methods in fr.openwide.core.test.wicket.more.link.
descriptor.AbstractAnyTargetTestLinkDescriptor and fr.openwide.core.test.wicket.
more.link.descriptor.AbstractAnyTargetTestLinkDescriptorMapper.

Other links

EmailLink

EmailLinks is a mailto: link that automatically defines its body as the email it points to.

IModel<String> emailModel = /* ... */
add(new EmailLink("email", emailModel));

9.1. UI Links 57

OWSI-Core doc Documentation, Release 1.0

UI Redirecting

This page explains various methods for redirecting from one page to another in you web application.

Please note that we’re talking about redirection as part of a server-side process, such as a form that redirects to a
different page based on the user input. If you just want a link in your HTML page, please see UI-Links.

Redirecting as part of the authentication/authorization process

Basics

When some page is accessed, but the current user has no right to access it (either because the user is not authenticated
or he hasn’t got the proper authorization), OWSI-Core throws a org.springframework.security.access.
AccessDeniedException, which is caught by Spring Security’s servlet filter. Spring Security then handles this
exception with whatever behavior you configured; by default in OWSI-Core, it’s a redirection to “/access-denied/”, on
which the AccessDeniedPage is mapped.

AccessDeniedExceptions are thrown:

• When Spring Security detects an unauthenticated access (access to a page without authorization while being
unauthenticated).

• When a Wicket’s AuthorizationException is caught by the CoreDefaultExceptionMapper.

Customizing the general behavior

If you want to customize the behavior when an access is denied, you should either:

• change Spring Security’s configuration to customize the access denied handler

• map your own page to “/access/denied/”

Customizing the behavior for specific pages

If you want to customize the behavior for specific pages, you may do so:

• at the Wicket level, by declaring your own exception mapper by overriding org.apache.wicket.
Application.getExceptionMapperProvider() and defining a specific behavior when an
AuthorizationException is caught. Be aware that this will not cover cases when an access is denied
by Spring Security, though, only cases when an access is denied by Wicket itself (due to an annotation on a
page, for instance).

This can be done this way (for instance) in the map method of a class extending
CoreDefaultExceptionMapper :

try {
if (

Exceptions.findCause(e, AccessDeniedException.class) != null
|| Exceptions.findCause(e, AuthorizationException.class) != null

) {
IPageRequestHandler handler = PageRequestHandlerTracker.

→˓getFirstHandler(RequestCycle.get());
Class<? extends IRequestablePage> pageClass = handler.getPageClass();
PageParameters pageParameters = handler.getPageParameters();
Component component = null;
if (handler instanceof IComponentRequestHandler &&

→˓((IComponentRequestHandler) handler).getComponent() instanceof Component) {

58 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

component = (Component) ((IComponentRequestHandler) handler).
→˓getComponent();

}
if (

IMyPageWhoseAccessMayBeDenied.class.
→˓isAssignableFrom(pageClass)

|| (component != null &&
→˓IMyPageWithAPopupWhoseAccessMayBeDenied.class.isAssignableFrom(pageClass))

) {
Session.get().error(rendererService.localize("access.denied.

→˓customMessage", Session.get().getLocale()));
PageParameter parameters = /* ... */;
return new RenderPageRequestHandler(new

→˓PageProvider(MyRedirectPage.class,));
}

} catch (RuntimeException e2) {
if (LOGGER.isDebugEnabled()) {

LOGGER.error("An error occurred while handling a previous error: " +
→˓e2.getMessage(), e2);

}

// We were already handling an exception! give up
LOGGER.error("unexpected exception when handling another exception: " +

→˓e.getMessage(), e);
return new ErrorCodeRequestHandler(500);

}

return super.map(e);

• or at the Spring Security level by defining your own access denied handler in Spring Security’s configuration

Redirecting to the current page

Full refresh (keeping the same page instance)

If you’re in a non-Ajax component, know that handling the request will automatically trigger a full-page refresh. No
need for you to do anything.

In the context of an Ajax component you may use this snippet in order to fully refresh the current page:

target.add(getPage());

Or if you want to completely abort your currently executing code, you may throw an exception:

throw new RestartResponseException(getPage());

Redirecting to another instance of the same page

In some cases, you will want to redirect to another instance of the same page with the same parameters. This is mostly
used when a fatal error occurs.

throw new RestartResponseException(getPage().getClass(), getPage().
→˓getPageParameters());

9.2. UI Redirecting 59

OWSI-Core doc Documentation, Release 1.0

For any other redirection (most cases)

Redirection is mainly done through exceptions. These come in various flavors, depending on your redirection target.

Please note that IPageLinkGenerators (see UI-Links) offer methods for easily generating the exception of your
choice. This is the recommended way of redirecting.

Here are the main exception types:

• RestartResponseException when you simply want to redirect to another page in your Wicket applica-
tion.

• RestartResponseAtInterceptPageExceptionwhen you want to redirect to another page which will
later trigger another redirection to the current page (mainly used for sign-in pages).

• RedirectToUrlException when you want to redirect to an external URL (outside of your Wicket appli-
cation).

You may also encounter the following patterns in Wicket components or pages. These should be avoided, as they only
throw an exception but they do not make it clear, neither to you nor to the compiler. Thus you may end up with dead
code after your redirect call.

// AVOID THIS
redirect(MyPage.class);

// AVOID THIS
redirectToInterceptPage(MyPage.class);

Adding an anchor

If you want to point to an anchor on the target page, then you must use a RedirectToUrlException. This feature
is built in the IPageLinkGenerator.

UI IE 8 Support

A reasonable, transparent IE8 support can be achieved in a Wicket application the following way.

Obviously, you’ll still run into slowdowns, bugs and limitations due to IE8 being IE8. But the most visible issues will
be gone.

1. Add IE8-specific CSS

Put these files beside your StylesLessCssResourceReference.java:

IE8AndLesserLessCssResourceReference.java:

public final class IE8AndLesserLessCssResourceReference extends
→˓LessCssResourceReference {

private static final long serialVersionUID = 4656765761895221782L;

private static final IE8AndLesserLessCssResourceReference INSTANCE = new
→˓IE8AndLesserLessCssResourceReference();

private IE8AndLesserLessCssResourceReference() {

60 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

super(IE8AndLesserLessCssResourceReference.class, "ie8-and-lesser.less");
}

public static IE8AndLesserLessCssResourceReference get() {
return INSTANCE;

}

}

ie8-and-lesser.less:

@import "@{scope-core-bs3}bootstrap/variables.less";
@import "@{scope-core-bs3}bootstrap/override/variables.less";
@import "variables.less";

.placeholder { // Added by the "placeholder" jquery polyfill plugin. See jquery.
→˓placeholder.js

color: @input-color-placeholder;
}

.btn-icon-only.btn-placeholder, .btn-placeholder {
visibility: hidden;

}

/* Put any IE8-specific CSS here */

2. Add global listeners

Add this in your Wicket Application’s init method:

IELegacySupport.init(this);

With IELegacySupport.java being:

public final class IELegacySupport {

private IELegacySupport() {
}

public static final String IE_LEGACY_CONDITION = "lte IE 8";

public static final String IE_UNSUPPORTED_CONDITION = "lt IE 8";

public static final String IE_8_CONDITION = "IE 8";

public static final int IE_LEGACY_VERSION = 8;

public static void init(WebApplication webApplication) {
webApplication.getComponentInstantiationListeners().add(new

→˓InstantiationListener());
webApplication.getAjaxRequestTargetListeners().add(new

→˓AjaxRequestTargetListener());
}

private static class IELegacyHeaderItemsContributorBehavior extends Behavior {

9.3. UI IE 8 Support 61

OWSI-Core doc Documentation, Release 1.0

private static final long serialVersionUID = -1441191136903604013L;

private final Iterable<HeaderItem> headerItems;

public IELegacyHeaderItemsContributorBehavior(HeaderItem ... headerItems) {
this(ImmutableList.copyOf(headerItems));

}

public IELegacyHeaderItemsContributorBehavior(Iterable<HeaderItem>
→˓headerItems) {

super();
this.headerItems = headerItems;

}

@Override
public void renderHead(Component component, IHeaderResponse response) {

WebClientInfo clientInfo = (WebClientInfo) Session.get().getClientInfo();
ClientProperties properties = clientInfo.getProperties();
if (properties.isBrowserInternetExplorer() && properties.

→˓getBrowserVersionMajor() <= IE_LEGACY_VERSION) {
for(HeaderItem headerItem : headerItems) {

response.render(headerItem);
}

}
}

}

private static class InstantiationListener implements
→˓IComponentInstantiationListener {

@Override
public void onInstantiation(Component component) {

if (component instanceof Page) {
Page page = (Page) component;

// Support for the placeholder text of input fields in IE8 and lesser
page.add(new PlaceholderPolyfillBehavior());

page.add(new IELegacyHeaderItemsContributorBehavior(
// Support for media queries in IE8 and lesser
JavaScriptHeaderItem.

→˓forReference(RespondJavaScriptResourceReference.get()),
// IE8 and lesser specific CSS
CssHeaderItem.

→˓forReference(IE8AndLesserLessCssResourceReference.get())
));

}
}

}

private static class AjaxRequestTargetListener extends AjaxRequestTarget.
→˓AbstractListener {

@Override
public void updateAjaxAttributes(AbstractDefaultAjaxBehavior behavior,

→˓AjaxRequestAttributes attributes) {
WebClientInfo clientInfo = (WebClientInfo) Session.get().getClientInfo();
ClientProperties properties = clientInfo.getProperties();
if (properties.isBrowserInternetExplorer() && properties.

→˓getBrowserVersionMajor() <= IE_LEGACY_VERSION) {

62 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

attributes.getAjaxCallListeners().add(
new AjaxCallListener().onBefore(

// Prevents placeholder text from being submitted
PlaceholderPolyfillBehavior.disable().render()

)
);

}
}

@Override
public void onBeforeRespond(Map<String, Component> map, AjaxRequestTarget

→˓target) {
// Refresh the placeholder text (for instance when rendering a popup)
target.appendJavaScript(PlaceholderPolyfillBehavior.statement().render());

}

@Override
public void onAfterRespond(Map<String, Component> map, IJavaScriptResponse

→˓response) {
// Nothing to do

}
}

}

UI Models (TODO)

This page explains the Wicket concept of models and details various types of models that you might use in your
applications.

What is an IModel?

TODO

Special cases

Collections

For details about how to display collections, and some tips about how to choose the correct interface for accessing you
collection data, see UI-Displaying Collections.

IDataProvider, ISequenceProvider

Both IDataProvider and ISequenceProvider are interfaces designed to provide access to large datasets,
with built-in paging.

They

They mainly differ in the way they wrap elements into models. IDataProvider exposes a Iterator<T>
iterator(long, long) method and a IModel<T> model(T) method that must be called by clients. This

9.4. UI Models (TODO) 63

OWSI-Core doc Documentation, Release 1.0

works, but causes trouble when IDataProvider implementor wants to always return the same model for the same
element (for example because the model carries more mutable information than just a reference to the element).

ISequenceProvider solves the issue by directly returning a Iterator<IModel<T>> iterator(long,
long). This gives more flexibility to implementors and changes next to nothing (save the interface) for clients.

Please note that in most cases, you should not have to implement an ISequenceProvider yourself: simply imple-
menting an IDataProvider should do the job. This interface is available for very specific features, such as those
implemented in CollectionCopyModel.

ICollectionModel, IMapModel

Those interfaces are implemented by models that:

• provide access to a collection or a map

• implement ISequenceProvider so as to always return the same model to wrap the same collection/map
element

• optionally, provide write operations (add/put, clear, ...)

Those implementations are noteworthy:

• CollectionCopyModel

• CollectionMapModel

• ReadOnlyCollectionModel

• ReadOnlyMapModel

See below on this page for details.

Main use cases

GenericEntityModel

TODO

BindingModel

TODO

IBindableModel et al.

The use case: inter-dependent form components

When designing complex forms, often we have to update some parts of the form whenever a given field changes, even
before the form was submitted. This may happen for instance:

• Because some field’s proposed values depend on another field’s value

• Because of some read-only panel must dynamically display detailed information about a selected value

64 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

In any case, you’ve got what we will call “source” form components (the ones whose value another component depends
on) and “target” components (the ones which depend on another form component’s value).

That kind of feature is generally achieved by adding an Ajax behavior on the source component that will update the
underlying model whenever a client-side change occurs, and refresh the target components.

Why caches are needed

Most of the time, the underlying model is a BindingModel, and its root model is a GenericEntityModel,
which means that the updated value may not be correctly saved for the next requests:

• If the root object (the one we extract the property value from) is an unpersisted entity, then the updated value
will be serialized with this unpersisted entity, which might not be a good idea (for instance if the value is itself
an entity).

• If the root object is a persisted entity, then on the next request, the root will be loaded from the database and will
thus have its properties reset.

In the particular case where each “target” component depends on only one “source” component, and no other Ajax
refreshes are performed, then it’s fine, because we won’t need the updated value again.

But let’s say one “target” component depends on multiple “source” components, say C depends on A and B. We’ve
got the following code:

// DON'T DO THIS, IT WON'T WORK AS EXPECTED

IModel<MyEntity> rootModel = /* ... */;
IModel<MyEntity2> propertyAModel = BindingModel.of(rootModel, Bindings.myEntity().
→˓propertyA());
IModel<MyEntity3> propertyBModel = BindingModel.of(rootModel, Bindings.myEntity().
→˓propertyB());

Form<?> form = new Form<>("form");
final MyDependingComponent depending = new MyDependingComponent("depending",
→˓propertyAModel, propertyBModel);
form.add(

new MyEntity2DropDownChoice("propertyA", propertyAModel)
.add(new AjaxFormComponentUpdatingBehavior() {

protected void onUpdate(AjaxRequestTarget target) {
// THIS MAY FAIL, because B's value may not be up-to-date
target.add(depending);

}
}),

new MyEntity3DropDownChoice("propertyB", propertyBModel, String.class),
.add(new AjaxFormComponentUpdatingBehavior() {

protected void onUpdate(AjaxRequestTarget target) {
// THIS MAY FAIL, because A's value may not be up-to-date
target.add(depending);

}
}),

depending
);

Then the following scenario may fail:

• A is modified by the user

• The Ajax behavior updates A‘s model and refreshes C, which will use A‘s updated value and B‘s initial value.
So far so good.

9.4. UI Models (TODO) 65

OWSI-Core doc Documentation, Release 1.0

• B is modified by the user

• The Ajax behavior updates B‘s model and refreshes C. C will use a wrong value for A:

– If A‘s model is a BindingModel for an entity property whose root model is a GenericEntityModel
holding an unpersisted entity, C will use a serialized entity for A‘s value, which may throw
LazyInitializationExceptions whenever we try to access its properties.

– If A‘s model is a BindingModel for an entity property whose root model is a GenericEntityModel
holding a persisted entity, C will use A‘s initial value.

How IBindableModels solve the problem

Enter IBindableModel. The idea is to wrap the root model in a IBindableModel, and then only use this
model’s methods to access property models, which will have their values cached transparently.

So instead of the snippet of code above, we will do this:

IModel<MyEntity> rootModel = /* ... */;
IBindableModel<MyEntity> bindableRootModel = BindableModel.of(rootModel);
IModel<MyEntity2> propertyAModel = bindableRootModel.bindWithCache(Bindings.
→˓myEntity().propertyA(), new GenericEntityModel<Long, MyEntity2>());
IModel<MyEntity3> propertyBModel = bindableRootModel.bindWithCache(Bindings.
→˓myEntity().propertyB(), new GenericEntityModel<Long, MyEntity2>());

Form<?> form = new CacheWritingForm<>("form", bindableRootModel); // Necessary so the
→˓caches are written to the object when submitting
final MyDependingComponent depending = new MyDependingComponent("depending",
→˓propertyAModel, propertyBModel);
form.add(

new MyEntity2DropDownChoice("propertyA", propertyAModel)
.add(new AjaxFormComponentUpdatingBehavior() {

protected void onUpdate(AjaxRequestTarget target) {
target.add(depending);

}
}),

new MyEntity3DropDownChoice("propertyB", propertyBModel, String.class),
.add(new AjaxFormComponentUpdatingBehavior() {

protected void onUpdate(AjaxRequestTarget target) {
target.add(depending);

}
}),

depending
);

That way, the values used by depending are those in propertyAModel and propertyBModel‘s caches, and
those are always clean and up-to-date.

If you must make MyDependingComponent use a MyEntity model instead of a MyEntity2 model and a
MyEntity3 model, and only use these properties indirectly (for instance because you must call a service wich accept
a MyEntity parameter), then you can make use of the IBindingModel#writeAll() method, which forces the
writing of caches to the underlying entity:

IModel<MyEntity> rootModel = /* ... */;
final IBindableModel<MyEntity> bindableRootModel = BindableModel.of(rootModel);
IModel<MyEntity2> propertyAModel = bindableRootModel.bindWithCache(Bindings.
→˓myEntity().propertyA(), new GenericEntityModel<Long, MyEntity2>());
IModel<MyEntity3> propertyBModel = bindableRootModel.bindWithCache(Bindings.
→˓myEntity().propertyB(), new GenericEntityModel<Long, MyEntity2>());

66 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

Form<?> form = new CacheWritingForm<>("form", bindableRootModel); // Necessary so the
→˓caches are written to the object when submitting

// MyDependingComponent depends on a IModel<MyEntity>, and only indirectly uses
→˓propertyA and propertyB
final MyDependingComponent depending = new MyDependingComponent("depending",
→˓bindableRootModel);
form.add(

new MyEntity2DropDownChoice("propertyA", propertyAModel)
.add(new AjaxFormComponentUpdatingBehavior() {

protected void onUpdate(AjaxRequestTarget target) {
bindableRootModel.writeAll();
target.add(depending);

}
}),

new MyEntity3DropDownChoice("propertyB", propertyBModel, String.class),
.add(new AjaxFormComponentUpdatingBehavior() {

protected void onUpdate(AjaxRequestTarget target) {
bindableRootModel.writeAll();
target.add(depending);

}
}),

depending
);

Do’s and don’ts

Declare your caches

Caches must be declared explicitly:

• call IBindableModel.bindCollectionWithCache() on any collection property whose elements
may have their properties written to.

• call IBindableModel.bindMapWithCache() on any map property whose keys or values may have their
properties written to.

• call IBindableModel#bindWithCache(<binding>, <cache model>) on any property which
both read from (by depending components) and written to (by a FormComponent for instance).

Don’t mix BindingModels with IBindableModels

Using a BindingModel with a IBindableModel as root model will result in bypassing the
IBindableModel‘s cache (if any). You may then witness some strange behaviors due to your BindableModel
returning a stale value.

Thus, if you use IBindableModel, stick with it. If you must pass a model to a child component, check that this
child component doesn’t use BindingModels.

If you really must use a component that uses BindingModels internally, you can, but only if it’s read-only (i.e. it
doesn’t wraps FormComponents). Keep in mind, though, that you must explicitly write the caches to your business
objects whenever you do an Ajax refresh.

9.4. UI Models (TODO) 67

OWSI-Core doc Documentation, Release 1.0

Write caches to your business objects before using them

Caches are not written magically to your business objects. Thus:

• When your form is being submitted and after it has written the submitted values to your models (to your caches,
actually), you must ensure that the caches are actually written to the actual properties so that the root object is
fully updated.

Luckily for you, CacheWritingForm does exactly that. Just use it as your root form and, if all of your
IBindableModels are children of your root model, then they will all be updated upon submit.

• Whenever you do handle events (Links, AjaxLinks, ajax behaviors, ...), if any treat-
ment bypasses the IBindableModel and reads directly from the business objects (e.g.
bindableRootModel.getObject().getPropertyA() instead of bindableRootModel.
bind(Bindings.myEntity().propertyA()).getObject()), then you should call
IBindableModel#writeAll() beforehand.

Read caches from your business objects when you modify objects directly

Caches are not updated magically when you bypass the IBindableModel and write to the prop-
erties directly (e.g. bindableRootModel.getObject().setPropertyA(<something>)
instead of bindableRootModel.bind(Bindings.myEntity().propertyA()).
setObject(<something>)).

If you have to do such things, make sure that you call IBindableModel#readAllUnder() afterwards.

CollectionCopyModel and MapCopyModel

CollectionCopyModel and MapCopyModel are simply put, models to store your collections or maps directly
in your page, with no persistence.

They provide two main features:

• they always copy the collection/map when setObject is called (hence the name). So even if some one calls
setObject with an immutable collection as a parameter, the collection returned by getObject will still be
mutable.

• upon detach, they do not reference the collection or its elements directly, but they wrap the elements in
models so that each element is detached correctly. This is especially useful when handling collections of
GenericEntity, that should never be serialized with the page.

Both models require two things when they’re created: a mean of instantiating a new empty collection/map (a
Supplier), and a mean of instantiating the model that will wrap an element (a Function<T, IModel<T>>).

Here are some examples:

ICollectionModel<?, Set<MyEntity>> myEntitySetModel =
CollectionCopyModel.custom(Suppliers2.<MyEntity>hashSetAsSet(),

→˓GenericEntityModel.<MyEntity>factory())

ICollectionModel<?, SortedSet<MyEnum>> myEnumSortedSetModel =
CollectionCopyModel.serializable(Suppliers2.

→˓treeSetAsSortedSet(MyEnumComparator.get()));

IMapModel<?, ?, Map<MyEntity, String>> myEntityToStringModel = MapCopyModel.custom(
Suppliers2.<MyEntity, String>hashMapAsMap(),

68 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

GenericEntityModel.<MyEntity>factory(),
Models.<String>serializableModelFactory()

);

AbstractReadOnlyModel

TODO

LoadableDetachableModel and LoadableDetachableDataProvider

LoadableDetachableModel and LoadableDetachableDataProvider are two abstract classes that pro-
vide a caching feature, so that the data they give access to is “loaded” on the first access, cached, and then returned as
it was retrieved on the first access on every subsequent call, until detach is called.

This avoids repeated calls to the database during a single request/response cycle.

Caching

As said above, LoadableDetachableDataProvider and LoadableDetachableModel will only execute
the underlying query once per HTTP request, even if their data-access methods (count, iterator, getObject)
are called multiple times. This is, in most cases, what you want.

However, in some very particular cases, you may have to first access the data source
(LoadableDetachableDataProvider or LoadableDetachableModel), then change the underly-
ing data (through a service call), then render the page. Be warned that in this case, the rendered data will be the data
loaded before your change. If it’s not what you want, then you should “refresh” the LoadableDetachableXXX
explicitly by calling detach().

Modifying data

As usual, modifying the entities retrieved from the LoadableDetachableDataProvider or
LoadableDetachableModel won’t alter the database: you need to make service calls in order for these
changes to be persisted.

Another thing that might be obvious: be aware that calls to LoadableDetachableModel.setObject() will,
by default, only change the model value for the current request/response cycle. This is normal, because only you know
what to do in order to persist this change.

If you want to persist your changes in database, then you should provide a method in your service layers that will do
the work.

If you just want a cache that spans multiple requests, then CollectionCopyModel or MapCopyModel might be
what you’re looking for. See further down this page for more information.

Utilities

CompositeSortModel

TODO

9.4. UI Models (TODO) 69

OWSI-Core doc Documentation, Release 1.0

StreamModel

StreamModel is made to manage Wicket models wrapping Iterable. A StreamModel is a read-only
IModel<Iterable<T>>.

Use StreamModel<T> mySteamModel = StreamModel.of(IModel<? extends Iterable<T>>
model) to get started. From there, you can :

• Use it as a classic Wicket model : mySteamModel.getObject().

• Concatenate multiple models : mySteamModel.concat(IModel<? extends Iterable<?
extends T>> firstModel, IModel<? extends Iterable<? extends T>>...
otherModels).

• Transform (map) elements of the collection : mySteamModel.map(Function<T, S> function).

• Get a IModel which provides the elements in a specific collection type: mySteamModel.
collect(Supplier<? extends C> supplier)

• Combine all of the above : mySteamModel.concat(IModel<? extends Iterable<? extends
T>> firstModel, IModel<? extends Iterable<? extends T>>... otherModels).
map(Function<T, S> function).collect(Supplier<? extends C> supplier)

WorkingCopyModel, CollectionWorkingCopyModel and MapWorkingCopyModel

These model wrap two other models: a reference model and a “copy” model. They delegate read and write access
to the copy model, while providing additional methods to write from the copy to the reference and read from the
reference to the copy.

These models should not be used directly as a more high-level feature is available with the BindableModel de-
scribed above.

Troubleshooting

Sometimes, you’ve got models that are not detached properly, but you simply don’t know which ones.
You just know that, on the next rendering of you page, everything explodes with a org.hibernate.
LazyInitializationException. In that case, you’ve got to dig up a bit, and this chapter aims at helping
you doing just that.

Built-in logs

GenericEntityModel and AbstractThreadSafeLoadableDetachableModel (plus its subclasses)
provide built-in logging when attached values are suspiciously serialized.

They show:

• The currently attached value at WARN level

• A stacktrace of the latest attach operation on this model at DEBUG level (don’t use this level in production
environment: it involves aggressive stacktrace recording)

Breakpoints

If the above logs are not enough (and they should), you may still use breakpoints.

70 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

Just put your breakpoints inside the if in GenericEntityModel#writeObject or
AbstractThreadSafeLoadableDetachableModel#writeObject. In the stack will appear several
writeObject0 methods: inspect those and the arg0 parameter to determine the chain of objects that lead to
the incorrect serialization of your model. You will then probably have to fix one of this object by adding a missing
detach somewhere.

UI Displaying Collections

This page explains how to display collections using OWSI-Core. Several methods are provided, ordered from easiest
to the hardest: use the first that fits, so as to avoid unnecessary complexity.

Data sources

Choosing your implementation

There are several types of objects you may use to build an object that will make up the interface between your
service/data layers and your view.

When getting data from an entity

If you want to retrieve the data directly from an entity attribute (myEntity.getMyCollection()) you may use
a BindingModel. See UI-Models for more information.

When getting data from a service or IQuery

If you’re not familiar with data querying in OWSI-Core, you probably should read Querying before going on.

Special case: ISearchQuery

If your query is an ISearchQuery (AbstractHibernateSearchSearchQuery or
AbstractJpaSearchQuery), you may simply extend AbstractSearchQueryDataProvider. The
typical implementation will:

• define some IModel attributes and getters, for the search parameters. These models will be used in a form, so
that the user may alter them.

• implement getSearchQuery by:

– calling createSearchQuery() with the query interface type (IMyQuery.class) as a parameter ;

– and then calling methods on the resulting query in order to set the search parameters.

Other cases (service method call or non-search IQuery)

• If your query uses paging (with an offset and a limit), you’d better define a IDataProvider. A good place
to start is LoadableDetachableDataProvider, which you should try extending. Also, see UI-Models
for more information on LoadableDetachableDataProvider and its caveats.

9.5. UI Displaying Collections 71

OWSI-Core doc Documentation, Release 1.0

• If your query has no paging feature, you may simply define your own
IModel<WhateverCollectionType<T>>. A good place to start is LoadableDetachableModel,
which you should try extending. Also, see UI-Models for more information on
LoadableDetachableModel and its caveats.

Renderers

Renderers offer a way to build a non-HTML (plain text) string from a given Collection<T> or IModel<?
extends Collection<T>>.

When to use it

You should use renderers when:

• Your expected output has a very simple structure

• Your expected output does not require HTML (be warned that this excludes any kind of line break, since this
would require a
 or <p>)

• Requirements are very unlikely to change in the future to require HTML inside the output

If you need more complex output, go for the DataTableBuilder or RefreshingViews.

Examples

Building the renderer

Renderer<Iterable<? extends MyItem>> collectionRenderer = Renderer.fromJoiner(
Joiners.Functions.onComma(),
MyItemRenderer.get()

);

Using the renderer

In a label

IModel<Set<MyItem>> myModel = /* ... */;
add(new CoreLabel("id", collectionRenderer.asModel(myModel))); // Will display "item1,
→˓ item2, item3"

In a StringResourceModel

*.properties:

my.resource.key=List value: {0}

Java:

72 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

IModel<Set<MyItem>> myModel = /* ... */;
IModel<String> stringModel = new StringResourceModel("my.resource.key")

.setParameters(collectionRenderer.asModel(myModel));
add(new CoreLabel("id", stringModel))); // Will display "List value: item1, item2,
→˓item3"

In an error message

Just use Component.getString() as follows:

IModel<Set<MyItem>> myModel = /* ... */;
component.error(component.getString("my.resource.key", collectionRenderer.
→˓asModel(myModel)); // Will display "List value: item1, item2, item3"

And define your properties as follows:

my.resource.key=List value: ${}

DataTableBuilder

The DataTableBuilder offers the simplest way to build a HTML table, quick & clean.

When to use it?

In order to use DataTableBuilers, the component you want to build must meet the following requirements:

• The expected output must be a HTML table

• The data source must be some kind of collection of elements (a IDataProvider, a IModel<? extends
Collection<?>> or a ISequenceProvider)

• There must be one row in the table’s body for each element in the data model (paging aside)

• There must be a pre-defined, static maximum number of columns. Some columns may get hidden dynamically.
For instance, you can’t have one column for each element of an IModel<? extends Collection<?>>
if this model’s content may change between ajax refreshes.

If all of the above seems fine to you, then go ahead with the DataTableBuilder. Otherwise, you may still use
RefreshingViews.

Overview

The general pattern for building a data table is as follows:

• create a builder through one of the static start methods

• add a column though one of the .add*Column methods, defining in particular the data to be displayed (with
a binding or a Function)

• customize the column though the various methods allowing to add CSS classes on cells, to add a link for each
row, to add a sort-switching link in the header, and so on

• repeat the same operations for each column

9.5. UI Displaying Collections 73

OWSI-Core doc Documentation, Release 1.0

• optionally, call .decorate in order to create a table with an upper title and pagers, or .bootstrapPanel
to the the same in a Bootstrap panel

• call .build("wicketId") in order to retrieve the resulting component.

Here is a (simple) example of use of DataTableBuilder:

DecoratedCoreDataTablePanel<?, ?> results =
DataTableBuilder.start(dataProvider, dataProvider.getSortModel())
.addLabelColumn(new ResourceModel("business.customer.lastName"), Bindings.

→˓customer().lastName())
.withLink(CustomerDescriptionPage.MAPPER)
.showPlaceholder()
.withSort(CustomerSort.LASTNAME, SortIconStyle.ALPHABET, CycleMode.

→˓NONE_DEFAULT_REVERSE)
.withClass("text text-sm")

.addLabelColumn(new ResourceModel("business.customer.firstName"), Bindings.
→˓customer().firstName())

.withLink(CustomerDescriptionPage.MAPPER)

.showPlaceholder()

.withSort(CustomerSort.FIRSTNAME, SortIconStyle.ALPHABET, CycleMode.
→˓NONE_DEFAULT_REVERSE)

.withClass("text text-sm")
.addLabelColumn(new ResourceModel("business.customer.birthdate.short"),

→˓Bindings.customer().birthdate(), DatePattern.REALLY_SHORT_DATE)
.showPlaceholder()
.withSort(CustomerSort.BIRTHDATE, SortIconStyle.DEFAULT, CycleMode.

→˓NONE_DEFAULT_REVERSE)
.withClass("date date-xs")
.withClass(ResponsiveHidden.XS_AND_LESS)

.addBootstrapLabelColumn(new ResourceModel("business.customer.status"),
→˓Bindings.customer().status(), CustomerStatusRenderer.get())

.withClass("statut statut-md")

.withClass(ResponsiveHidden.XS_AND_LESS)
.addLabelColumn(new ResourceModel("business.customer.sector.short"), Bindings.

→˓customer().sector())
.showPlaceholder()
.withClass("code code-sm")
.withClass(ResponsiveHidden.XS_AND_LESS)

.decorate()
.count("customer.list.result.count")
.ajaxPagers()

.build("results");

Data source

You may provide either a ISequenceProvider or a IDataProvider to the start method as a data source.
The resulting data table will contain exactly one row for each element provided by your data source.

Supported column types

Here is a list of the built-in column types:

• Label columns (addLabelColumn), which display a simple textual label derived from the underlying value
(through the use of a Renderer). Optionally, the label may be wrapped in a link, or have a side link (a link on a
side button) appended.

74 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

• Bootstrap label columns (addBootstrapLabelColumn), which display a textual label with a background
color and prepended icon that all depend on the underlying value. Optionally, the label may be wrapped in a
link, or have a side link (a link on a side button) appended.

• Bootstrap badge columns (addBootstrapBadgeColumn), which display a badge with a background color
and an icon that depend on the underlying value. Optionally, the label may be wrapped in a link, or have a side
link (a link on a side button) appended.

• Action columns (addActionColumn), which display one or more buttons, each button being either:

• A link to a bookmarkable page

• An action link: a link which will trigger execution of arbitrary code (with or without a confirmation popup)

• An ajax action link (with or without a confirmation popup)

If none of the above suits your needs, keep in mind that you may simply use the fr.
openwide.core.wicket.more.markup.repeater.table.builder.DataTableBuilder.
addColumn(ICoreColumn<T, S>) method and pass your own column implementation as a parame-
ter. Most of the time, you will simply have to extend fr.openwide.core.wicket.more.markup.
repeater.table.column.AbstractCoreColumn<T, S extends ISort<?>> and implement
populateItem(Item<ICellPopulator<T>>, String, IModel<T>) so as to add a Fragment
defined in your own component.

Adding components around the table

Super headers

You may add arbitrary rows above or below the data table by calling addTopToolbar or addBottomToolbar
and then adding components, optionally attributing a colspan to each of them. This is great in particular if you want
to add headers that span multiple columns above your column headers.

Simple title and pager

You may create a “decorated” table, with a top title and pagers, by calling decorate after having defined your
columns. You may then define the title (optionally making it dependent on the result count, by calling count), add
top and/or bottom pagers (.pagers, .ajaxPagers, ...), or even add arbitrary add-ins (.addIn).

Bootstrap panel

You may create a “decorated” table as above, but with Bootstrap styling, wrapped in a Bootstrap panel. Just call
bootstrapPanel instead of decorate, and proceed the same as with decorate.

RefreshingViews

Compared to the DataTableBuilder, the RefreshingViews are a lower-level way of displaying collections.

When to use it?

Whenever you can’t use the DataTableBuilder:

• You don’t want a HTML table, but just some repeating divs or lis (or any other markup, really)

9.5. UI Displaying Collections 75

OWSI-Core doc Documentation, Release 1.0

• You want a HTML table, but it’s too complex and can’t be built using the DataTableBuilder. For example
you may need multiple <tr> for each element in your collection, or you may need to repeat columns instead of
rows.

Overview

RefreshingViews are generally used this way:

Panel’s HTML:

...

<div wicket:id="item">

<wicket:container wicket:id="content2" />

</div>
...

Panel’s Java:

add(new SubclassOfRefreshingView<MyItem>("item", dataProvider) {
@Override
public void populateItem(final Item<MyItem> item) {

item.add(new Label("content1", new ResourceModel("some.resource.key"));
item.add(new SomePanel("content2", item.getModel());

}
})

Which view to use?

It depends on you data source:

• for a IDataProvider, use a SequenceView (or wicket’s DataView, which for now should do the same
job, but may not gain as much features as SequenceView in the future).

• for a ISequenceProvider, use a fr.openwide.core.wicket.more.markup.repeater.
sequence.SequenceView

• for a ICollectionModel<T, ?>, use a fr.openwide.core.wicket.more.markup.
repeater.collection.CollectionView.

• for a IMapModel<K, V, ?>, use a fr.openwide.core.wicket.more.markup.repeater.
map.MapView.

• for a IModel<? extends Collection<T>>, use a fr.openwide.core.wicket.more.
markup.repeater.collection.CollectionView. You will need to provide a factory for the
collection item models. (see below).

• for a IModel<? extends Map<K, V>>, use a fr.openwide.core.wicket.more.markup.
repeater.map.MapView. You will need to provide a factory for the map key models (see below).

Please note that all of the above provide a paging mechanism, but it will only be efficient if your data source is a
properly implemented IDataProvider or ISequenceProvider. Otherwise, the whole data set will be loaded,
and then reduced to the current page’s data.

76 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

Item models

The RefreshingViews need to obtain a reference to the collection’s item model, in order to handle manipulations
of this item (for instance, a click on a button in a table row mapped to an item).

The way you will implement the “item model factory” will depend on your data source:

• With Wicket’s built-in IDataProvider, the IDataProvider itself will provide the item model through
its model(T) method. This method is the “item model factory”.

• With OWSI-Core’s ISequenceProvider the provided items are already wrapped in models:
the iterator(long, long) method returns an Iterator<? extends IModel<T>>. The
ISequenceProvider itself is the “item model factory”. This also applies to ICollectionModel and
IMapModel.

• With an IModel<? extends Collection<T>> (be it a LoadableDetachableModel, a
BindableModel, or anything else), nothing in the data source itself allows to build item models. That’s why
most views defined above require you to provide a Function<? super T, ? extends IModel<T>>
that will serve as an “item model factory”.

When a Function<? super T, ? extends IModel<T>> is required, you may:

• Use GenericEntityModel.factory() if your items are GenericEntitys

• Use Models.serializableModelFactory() if your items are serializable (Integer, String,
enums, ...)

• Define your own function if none of the above suits your needs. Take care to make the Function also imple-
ment Serializable, since it will be serialized with the page after the response.

For more advanced needs

Wicket also offers various types of built-in RepeatingViewss, but the above should encompass most common
needs. Only use these views as a fallback if the above clearly won’t do.

ListView and IndexedItemListView

The main advantage of ListView is that you don’t need to define a specific model for the collection items: they are
(by default) mapped by their index to the collection model.

Be warned, though, that with this mechanism, you may run into issues if you implement user operations on the
element’s models (like opening a modal, or removing an element) and if your underlying collection’s content changes
between the initial page rendering and the user request: the operation may end up being executed on the wrong item
(because the index may not point the the same collection element anymore).

ListView and IndexedItemListView should be used very rarely, and only if you really know what you’re
doing.

Adding or removing items using Ajax without refreshing the whole collection view

Wicket, by default, only allows to add or remove items using Ajax to a collection view by refreshing the whole view.

If, for some reason, you don’t want to refresh pre-existing, unremoved items,
you may use fr.openwide.core.wicket.more.ajax.AjaxListeners.
refreshNewAndRemovedItems(IRefreshableOnDemandRepeater):

9.5. UI Displaying Collections 77

OWSI-Core doc Documentation, Release 1.0

AjaxListeners.add(
target,
AjaxListeners.refreshNewAndRemovedItems(repeater)

);

There are some constraints, though:

• repeater must implement IRefreshableOnDemandRepeater (that’s the case for most view provided
in OWSI-Core)

• both the repeater’s parent and the repeater’s items must have setOutputMarkupId set to true

• newly added items will be added at the end of the repeater’s parent (the Wicket parent). If there is some
HTML between the repeater and the end of the parent, you’ll probably want to wrap your repeater in an
WebMarkupContainer.

• only some classes that implement IRefreshableOnDemandRepeater allow to detect removed elements,
so only these will see their removed items removed from the HTML. RepeatingView and its subclasses, in
particular, will not have their removed elements removed from the HTML.

~~AbstractGenericItemListPanel~~ and ~~GenericPortfolioPanel~~
(don’t use this)

These classes should not be used anymore. Anything you can do with a GenericPortfolioPanel, you can also
do it with a DataTableBuilder or (worst case) with RefreshingViews.

These classes are kept as-is in order to avoid major refactorings in older projects.

UI User Actions (TODO)

TODO:

• request type (Ajax/non ajax)

• button appearance (bootstrap button with or without label, non-bootstrap button, ...)

• button position (in a form, outside a form, in a table, ...)

• data (submits a form or not)

• redirections (or not)

HTML Markup

The following guidelines should be followed every time you add a button to a page:

• if a click on your button launches javascript code, then use <button type="button">. This goes even if
your button is outside of a form. This includes buttons triggering an ajax call (AjaxLink, AjaxSubmitLink,
AjaxButton) as well as buttons triggering your own javascript.

• if a click on your button submits a form without using ajax, then use <button type="submit">.

• if a click on your button simply redirects to a bookmarkable page, then it is an actual HTTP link and you should
use <a>.

78 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

The reason for these guidelines is that, while Wicket does support binding ajax calls to <a> (or even to arbitrary
markup), Wicket does not, however, prevent the default event handler for this markup to execute when a user clicks.
Unfortunately, that means that when a user click on a <a> with an ajax call bound to the click event, then first the
ajax call will be performed, then the default action... Which is, for most browser, a scroll to the top of the page. Which
probably isn’t what you want.

UI Forms (TODO)

TODO:

• IndependentNestedForm

• Available form components

• How to deal with collections:

• when only adding/removing is required (no element editing)

• when only element editing is required (no add/remove)

• when adding/removing is required and element editing is also required

• ...

UI Placeholder and Enclosure

This pages explains how to write Enclosure and Placeholder. Enclosure and Placeholder are component which are
displayed or hidden (at page-generation level) based on various input variables.

Conditions and component’s visibility

OWSI-Core provides Condition base class which provides easy-to-use transformation of a Condition (that resolves
to true or false result on an applies method’s call) as an enclosure or placeholder behavior.

Once your Condition created, you can generate the following behaviors :

• thenShow(): behavior that sets visibilityAllowed property equal to condition’s result (enclosure-like
behavior)

• thenHide(): behavior that sets visibilityAllowed property equal to negated condition’s result
(placeholder-like behavior)

• thenShowInternal(): behavior that sets visible property equal to condition’s result

• thenHideInternal(): behavior that sets visible property equal to negated condition’s result

By convention, visibilityAllowed setting (thenHide(), thenShow()) must be preferred for external impact on
component visibility (permission, inter-component dependencies driven by application behaviors).

On the contrary, visible setting is used for internal behaviors. For example, for a table + pager widget, to control
the pager’s visibility in relation to result’s page number, as this behavior is driven by an internal state of the component.

To circumvent visibility settings when visible and visibilityAllowed properties conflict, use of an interme-
diate component may be a solution.

9.7. UI Forms (TODO) 79

OWSI-Core doc Documentation, Release 1.0

Component’s enabled property

thenEnable() and thenDisable() methods are provided to allow enabled property control, based on the
same mechanism than visibility control.

Deprecated patterns

Before Condition, the following components and behaviors were provided:

• PlaceholderBehavior, EnclosureBehavior: sets visibilityAllowed property (by default) or
an alternate property when provided. This behavior can be replaced by a Condition method call:

– .add(new PlaceholderBehavior().component(component)): .add(Condition.
componentVisible(component).thenHide())

– .add(new EnclosureBehavior().component(component)): .add(Condition.
componentVisible(component).thenShow())

– .add(new PlaceholderBehavior(ComponentBooleanProperty.VISIBLE).
component(component)): .add(Condition.componentVisible(component).
thenHideInternal())

– .add(new EnclosureBehavior(ComponentBooleanProperty.VISIBLE).
component(component)): .add(Condition.componentVisible(component).
thenShowInternal())

When other method than component() is used on ...Behavior object, others Condition‘s methods or sub-
classes can be used to provides the right behavior (permission(), anyPermission(), role(), isTrue(), isFalse(), predi-
cate(), ...)

UI Charts and plots

This page explains how to generate data charts using OWSI-Core.

JQPlot

About

JQplot is “a versatile and expandable JQuery plotting plugin” (see the official site). OWSI-Core uses WQPlot in
order to ensure low-level integration of JQPlot into wicket, plus a specific maven module (fr.openwide.core.
components:owsi-core-component-wicket-more-jqplot) in order to provide easy-to-use, high-level
integration. Please note that WQPlot was originally a wicketstuff project, which seems no longer maintained.

High-level usage

Architecture

You will encounter four types of components when you’ll set up a chart:

• The data provider, which implements IJQPlotDataProvider. Its role is extracting data from your service
layer (or an IModel, or anything you want) and provide it in a standardized form.

80 Chapter 9. UI

http://www.jqplot.com/
https://github.com/openwide-java/wiquery-jqplot/
https://github.com/wicketstuff/wiquery-jqplot

OWSI-Core doc Documentation, Release 1.0

• The data adapter, which implements IJQPlotDataAdapter. Its role is to take data from a data provider and
transform it in the WQPlot types (BaseSeries, NumberSeries, and so on) that can be used by the panel.

• The panel itself, which extends JQPlotPanel. It’s a Wicket component that uses the data adapter and WQPlot
in order to generate the actual chart.

• The configurers, which implement IJQPlotConfigurer. Their role is to customize various JQPlot options.

Using it in your application

Setup global configuration

Add a dependency in your pom to fr.openwide.core.components:owsi-core-component-wicket-more-jqplot.

You will also need to import some Spring configuration: add an @Import annotation to your webapp in order to
import fr.openwide.core.wicket.more.jqplot.config.JQPlotJavaConfig.

You may optionally, instead of importing JQPlotJavaConfig directly, define you own configuration that extend
JQPlotJavaConfig. In this case, you will be able to override the default options passed to JQPlot’s plots.

Setup your chart

First, setup your data source. Generally it will be a service that returns:

• A java.util.Map<K,V> if there’s only one data series.

• A com.google.common.collect.Table<S,K,V> if there are multiple data series.

See Querying#generating-maps-and-tables for more information about how to easily generate a Map or Table from
a QueryDSL query in your DAO.

Then, pick your data provider:

• fr.openwide.core.wicket.more.jqplot.data.provider.JQPlotMapDataProvider<S,
K, V> if you’ve got a service that returns a Map. Then you will wrap the service call in a
LoadableDetachableModel, and pass the model as a constructor parameter to the data provider.

• fr.openwide.core.wicket.more.jqplot.data.provider.JQPlotTableDataProvider<S,
K, V> if you’ve got a service that returns a Table.

• Or, if for some reason the above won’t do, you may implement your own.

Then, pick your chart:

• For bar charts, use fr.openwide.core.wicket.more.jqplot.component.
JQPlotBarsPanel<S, K, V>

• For line charts, use fr.openwide.core.wicket.more.jqplot.component.
JQPlotLinesPanel<S, K, V>

• For pie charts, use fr.openwide.core.wicket.more.jqplot.component.
JQPlotPiePanel<K, V>

• For stacked bar charts, use fr.openwide.core.wicket.more.jqplot.component.
JQPlotStackedBarsPanel<S, K, V extends Number & Comparable<V>>

• For stacked lines charts, use fr.openwide.core.wicket.more.jqplot.component.
JQPlotStackedLinesPanel<S, K, V>

Then, pick your data adapter (it will be the bridge between your panel and your data provider):

9.9. UI Charts and plots 81

OWSI-Core doc Documentation, Release 1.0

• If your data references keys from a discrete domain (i.e. with a small, finite number of val-
ues in the observed range), usefr.openwide.core.wicket.more.jqplot.data.adapter.
JQPlotDiscreteKeysDataAdapter<S, K, V>. Please keep in mind that if you want your X axis
to have a linear scale, you should either ensure that all keys are represented in your data, or provide to the data
adapter a model containing all of the expected keys (so that the adapter can generate a linear axis).

• If, on the other hand, your data references keys from a continuous domain (i.e. with a high or infinite number of
values in the observed range), use one of these:

• fr.openwide.core.wicket.more.jqplot.data.adapter.JQPlotContinuousDateKeysDataAdapter<S,
K, V>

• fr.openwide.core.wicket.more.jqplot.data.adapter.JQPlotContinuousNumberKeysDataAdapter<S,
K extends Number, V extends Number>

• Or, if for some reason the above won’t do, you may implement your own.

Note: pie charts are a special case: you won’t need a data adapter, just a data provider.

And finally, put all of this together: you’ve got a basic chart. Some examples are provided in the “Statistics” page of
OWSI-Core’s wicket showcase (fr.openwide.core.showcase:wicket-showcase).

To go further:

• You may add one or several configurers to the chart in order to customize JQPlot options: either pick a con-
figurer from fr.openwide.core.wicket.more.jqplot.config.JQPlotConfigurers or use
your own implementations.

• You may wrap your data adapter in order to customize the data passed to JQPlot: see fr.openwide.core.
wicket.more.jqplot.data.adapter.JQPlotDataAdapters. You may for instance add a per-
centage in the tooltip shown when hovering over a stacked bar.

Low-level usage

If fr.openwide.core.components:owsi-core-component-wicket-more-jqplot is not flexible
enough for your needs, you may still use raw wqplot. Some examples are provided in the “Statistics” page of OWSI-
Core’s wicket showcase (fr.openwide.core.showcase:wicket-showcase).

Keep in mind that you’ll need to explicitly update jqplot options whenever the data changes (the X axis ticks, for
instance, if you declared them explicitly).

Troubleshooting

The plots are not drawn

Please be aware that the supporting markup of your plots must be initially visible (i.e. not display: none) if you
want the plots to be drawn automatically. If, for instance, your plots are located in an initially inactive (hidden) tab,
then they will not be drawn automatically.

To address the specific case of plots in an initially inactive Bootstrap tab, you may use the following snippet:

tabContainer.add(new JQPlotReplotBehavior("shown.bs.tab"));

This will ensure that plots are “replotted” each time the user switches tabs.

82 Chapter 9. UI

OWSI-Core doc Documentation, Release 1.0

Other plotting libraries

No other plotting library is integrated into OWSI-Core at the moment.

9.9. UI Charts and plots 83

OWSI-Core doc Documentation, Release 1.0

84 Chapter 9. UI

CHAPTER 10

Contributing to upstream

Hibernate

Our cloned repo: https://github.com/openwide-java/hibernate-orm

Resources

• Full contribution procedure (also here, but it seems to be almost the same)

• How to develop using Eclipse (see below for more concrete explanations)

Developing

Hibernate uses Gradle. This means some pain if you haven’t had to work with it in Eclipse, ever.

In order to build using gradle:

• Check that your default JRE is recent enough (tested with JRE8 on Hibernate 5.0, it should work)

• Generate the Eclipse .project files: ./gradlew clean eclipse --refresh-dependencies

• Install the Gradle Eclipse plugin from this update site: http://dist.springsource.com/release/
TOOLS/gradle

• Import the projects as standard Eclipse projects (Gradle import seems to mess things up, at least with Eclipse
4.3)

• Pray that everything builds right. I personally couldn’t make every project compile, but what I had to work on
did, so...

85

https://github.com/openwide-java/hibernate-orm
https://github.com/hibernate/hibernate-orm/wiki/Contributing-Code
https://github.com/openwide-java/hibernate-orm/blob/master/CONTRIBUTING.md
https://developer.jboss.org/wiki/ContributingToHibernateUsingEclipse

OWSI-Core doc Documentation, Release 1.0

Testing

Running tests locally

Launch your test this way (example for a test in hibernate-core):

./gradlew :hibernate-core:test --tests 'MyTestClassName'

Running tests locally, with database vendor dependency

If your test relies on a specific database vendor, you’ll need to do the following in order to run it locally (examples for
PostgreSQL):

• Specify the Dialect to use with the following option -Dhibernate.dialect=org.hibernate.
dialect.PostgreSQL9Dialect

• Specify JDBC information: -Dhibernate.connection.url=..., -Dhibernate.connection.
username=..., -Dhibernate.connection.password=..., -Dhibernate.connection.
driver_class=...

• Provide the vendor-specific driver jar. I couldn’t find a way to do it other than changing the
hibernate-core/hibernate-core.gradle file and adding this line in the dependencies block:
testCompile('org.postgresql:postgresql:9.4-1200-jdbc41')

You’ll end up launching your test this way (example for a test in hibernate-core):

./gradlew -Dhibernate.dialect=org.hibernate.dialect.PostgreSQL9Dialect -Dhibernate.
→˓connection.url=jdbc:postgresql://localhost:5432/hibernate_test -Dhibernate.
→˓connection.username=hibernate -Dhibernate.connection.password=hibernate -Dhibernate.
→˓connection.driver_class=org.postgresql.Driver :hibernate-core:test --tests
→˓'MyTestClassName'

Hibernate Search

Our cloned repo: https://github.com/openwide-java/hibernate-search

Resources

• Full contribution procedure

86 Chapter 10. Contributing to upstream

https://github.com/openwide-java/hibernate-search
https://developer.jboss.org/wiki/ContributingtoHibernateSearch

CHAPTER 11

Assertion

Check non null

It is recommended to use Objects.requireNonNull (with Objects being the one of Java 8):

Objects.requireNonNull(executionResult, "executionResult must not be null");

More advanced conditions

As for more advanced conditions, it is recommended to use Guava’s Preconditions.

In Wicket code

In Wicket code, you can use Args.notNull, Args.notEmpty, Args.isTrue, Args.isFalse. Be careful
to use the Args class from Wicket.

87

OWSI-Core doc Documentation, Release 1.0

88 Chapter 11. Assertion

CHAPTER 12

Predicate (TODO)

89

OWSI-Core doc Documentation, Release 1.0

90 Chapter 12. Predicate (TODO)

CHAPTER 13

Renderer (TODO)

91

OWSI-Core doc Documentation, Release 1.0

92 Chapter 13. Renderer (TODO)

CHAPTER 14

Backend

PropertyService

About

The PropertyService gets and sets the values for your application’s properties in a typesafe manner. These might be
stored in *.properties files (being “immutable” properties) or in database (“mutable” properties).

Architecture

Properties are referenced to using their id, which may have one of two types:

• ImmutablePropertyId for immutable properties that are linked to configuration.properties.

• MutablePropertyId for mutable properties that are stored in database in table Parameter as String. Beware
that the other columns of this table are deprecated.

Here are the basic principles:

• Properties are first registered using their ID during the application initialization. The registration involves telling
to the PropertyService how to convert the property value to and from its string representation, which is
done by providing a Converter (a Guava type), or (for immutable properties that don’t need to be converter
back to string) a Function.

• During the execution of the application, the property values may be retrived using the service’s get method, or
altered using the set method.

Using it in your application

Declare the IDs

You must first declare constants for your property ids. You’d better have two sets of property ids: one for you core
(non-UI) project and the other for you webapp (UI) project.

93

OWSI-Core doc Documentation, Release 1.0

The keys passed as parameters to AbstractPropertyIds‘s methods are the one used to retrieve the values, either
in the configuration.properties file or in database.

public final class YourAppCorePropertyIds extends AbstractPropertyIds {

public static final ImmutablePropertyId<Integer> CORE_IMMUTABLE_INTEGER_PROPERTY
→˓= immutable("core.immutable.integer.property");

public static final ImmutablePropertyId<MyType> CORE_IMMUTABLE_MYTYPE_PROPERTY =
→˓immutable("core.immutable.mytype.property");

public static final MutablePropertyId<String> CORE_MUTABLE_STRING_PROPERTY =
→˓mutable("core.mutable.string.property");

}

public final class YourAppWebappPropertyIds {

public static final ImmutablePropertyId<Long> WEBAPP_IMMUTABLE_LONG_PROPERTY =
→˓immutable("webapp.immutable.long.property");

public static final ImmutablePropertyId<MyType> WEBAPP_IMMUTABLE_MYTYPE_PROPERTY
→˓= immutable("webapp.immutable.mytype.property");

public static final MutablePropertyId<String> WEBAPP_MUTABLE_STRING_PROPERTY =
→˓mutable("webapp.mutable.string.property");

}

Register the properties

In your core module set up a JavaConfig as follows.

Beware that AbstractApplicationPropertyConfig also declares the property service, which is a sin-
gleton. Thus it must only be used once (in your core module).

@Configuration
public class YourAppCoreApplicationPropertyConfig extends
→˓AbstractApplicationPropertyConfig {

@Override
public IMutablePropertyDao mutablePropertyDao() {

return new ParameterDaoImpl();
}

@Override
public void register(IPropertyRegistry registry) {

// register core properties here
}

}

In your webapp module set up a JavaConfig as follows:

@Configuration
public class YourAppWebappApplicationPropertyRegisterConfig extends
→˓AbstractApplicationPropertyRegistryConfig {

@Override

94 Chapter 14. Backend

OWSI-Core doc Documentation, Release 1.0

public void register(IPropertyRegistry registry) {
// register webapp properties here

}

}

IPropertyRegistry provides a bunch of methods to register properties. See details below.

Access the properties

Anywhere an IPropertyService is available (it can be injected), do the following:

@Autowired
private IPropertyService propertyService;

// Get a value
propertyService.get(YourAppCorePropertyIds.CORE_IMMUTABLE_MYTYPE_PROPERTY);

// Set a value (only for mutable properties)
propertyService.set(YourAppCorePropertyIds.CORE_MUTABLE_STRING_PROPERTY, "NewValue");

Details about registration

Important note

It is strongly recommended to define a default value for collection properties in order to always get a collection even
if the value is null.

Examples

Basic immutable property

public static final ImmutablePropertyId<String> MAINTENANCE_URL = immutable(
→˓"maintenance.url");

propertyService.registerString(MAINTENANCE_URL);

Immutable property with custom converter/function

public static final ImmutablePropertyId<Date> DATE_PICKER_RANGE_MAX_DATE = immutable(
→˓"datePicker.range.max.yearsFromNow");

propertyService.registerImmutable(DATE_PICKER_RANGE_MAX_DATE, new Function<String,
→˓Date>() {

@Override
public Date apply(String input) {

Integer years = Ints.stringConverter().convert(input);
if (years == null) {

return null;
}
return DateUtils.truncate(

DateUtils.addYears(new Date(), years),
Calendar.DAY_OF_MONTH

14.1. PropertyService 95

OWSI-Core doc Documentation, Release 1.0

);
}

});

Mutable property with dynamic key with default value

public static final MutablePropertyIdTemplate<Boolean> DATA_UPGRADE_DONE_TEMPLATE =
→˓mutableTemplate("dataUpgrade.%1s");
public static final MutablePropertyId<Boolean> dataUpgrade(IDataUpgrade dataUpgrade) {

return DATA_UPGRADE_DONE_TEMPLATE.create(dataUpgrade.getName());
}

propertyService.registerBoolean(DATA_UPGRADE_DONE_TEMPLATE, false);

Property - enum

public static final ImmutablePropertyId<Environment> ENVIRONMENT = immutable(
→˓"environment");

propertyService.registerEnum(ENVIRONMENT, Environment.class, Environment.production);

Property - collection

public static final ImmutablePropertyId<List<MediaType>> FICHIER_PIECE_JOINTE_MEDIA_
→˓TYPES = immutable("fichier.pieceJointe.mediaTypes");

propertyService.register(FICHIER_PIECE_JOINTE_MEDIA_TYPES, new
→˓StringCollectionConverter<>(Enums.stringConverter(MediaType.class), Suppliers2.
→˓<MediaType>arrayList()));

E-mail notifications (TODO)

HistoryLog & Audit

Principles

The history log machinery is designed to track the action performed on our business entities.

It can also be used to track the differences but this feature should be used with caution as it can be quite time consuming
to configure and has a negative impact on performance.

Logs are performed upon commit (just before the commit), in order to:

• Remove duplicate logs

• Ensure that all edits on the entities are over, so that a diff can safely be computed

Warning: Please note that when performing a batch processing, you should take care of calling
ITransactionSynchronizationTaskManagerService.beforeClear() before flushing the indexes
and clearing the Hibernate session, so that the logs can be safely flushed too.

96 Chapter 14. Backend

OWSI-Core doc Documentation, Release 1.0

Using it in your application

Setting up

The basic application provide a basic (but functional) template for setting up the HistoryLog. See package fr.
openwide.core.basicapp.core.business.history for more information.

The minimal set of classes to define includes:

• The concrete enum representing HistoryEvents (create, update, sign-in, ...)

• The concrete class for your HistoryLogs, with (optionally) custom fields.

• Your HistoryLogDao and HistoryLogService, which may simply extend the provided abstract classes

• Your own implementation of the bean that will store additional informations about log objects:
HistoryLogAdditionalInformationBean. This bean serves as a way to pass additional parame-
ters to the HistoryLogService: secondary objects (for actions performed on more than one object),
contextual information (to enable later search on logs with filters on objects linked to the main object at
the time of the action), ... It’s typically not recommended to randomly use the object1...4 fields (see
AbstractHistoryLogAdditionalInformationBean for more information).

You may also want to define a HistoryLogSearchQuery for querying you history. An example is provided in
the basic application.

Recording simple logs

historyLogService.log(HistoryEventType.SIGN_IN, user,
→˓HistoryLogAdditionalInformationBean.of(user));

Recording diff-enabled logs

Linking a full diff of the main object to the log:

historyLogService.logWithDifferences(HistoryEventType.UPDATE, person,
→˓HistoryLogAdditionalInformationBean.of(person), userDifferenceService);

The code above will add to the log every change on every relevant fields of the given entity. This is typically what we
do upon updates.

Sometimes, though, you only want to record changes on a subset of the entity fields. This is typically what’s required
upon create/delete (where we know that almost all fields will change), but it may be done upon updates, too.

Here’s how to link a minimal diff of the main object to the log:

historyLogService.logWithDifferences(HistoryEventType.UPDATE, person,
HistoryLogAdditionalInformationBean.of(person),
userDifferenceService.getMinimalDifferenceGenerator(),
userDifferenceService);

Optionnally, you may pass to those methods one or several IDifferenceHandler<T>, which are ways for you to
inspect a diff, and do something based on that information. This is typically used to update a date on the entity when
some field changed.

For more information about setting up a difference service, see DifferenceService.

14.3. HistoryLog & Audit 97

OWSI-Core doc Documentation, Release 1.0

Displaying the logs on the user interface

Basic stuff

The basic application contains everything needed to display the audit. See UserHistoryLogPanel.

Renderers/Converters

The history log machinery uses the renderers/converters infrastructure so you need to define either converters
(in your YourAppApplication.newConverterLocator() or renderers (in YourAppWebappConfig.
rendererService()).

Resource keys for difference display

When the label of a field needs to be displayed, several resource keys are tried, in this order:

• history.difference<entity resource key>.<property.path>

• business<entity resource key>.<property path>

• history.difference.common.<property.path>

• business.<property path>

The first key that actually exists in you properties is used. This behavior is defined in the basic application class
HistoryDifferencePathRenderer.

The resource key for each entity is defined in AbstractHistoryRenderer.

Difference Service (TODO)

Principles

OWSI-Core provides a way for applications to compute a diff between two objects, i.e. of recursively computing
field-by-field differences between a “working” version and a “reference” version of an object.

The diff infrastructure is powered by Java-object-diff. OWSI-Core itself provides:

• basic setup of java-object-diff

• abstract bases for your diff services, with clearly identified points of configuration

• interfaces to integrate your diff services to other parts of your application (mainly HistoryLog & Audit)

• a way for you to perform a diff between an object in your Hibernate session and the version currently in your
database

Using it in your application

Setting up

TODO: this part is still evolving. See https://trello.com/c/gUTpyoMr in particular.

98 Chapter 14. Backend

https://github.com/SQiShER/java-object-diff

OWSI-Core doc Documentation, Release 1.0

Performing a diff between two objects

// Obtain your IDifferenceGenerator
// You may also use differenceService.getMinimalDifferenceGenerator(), depending on
→˓your use case
IDifferenceGenerator generator = differenceService.getMainDifferenceGenerator();
// Perform the diff
Difference<T> diff = generator.diff(workingObject, referenceObject);

Performing a diff between your (modified) object and the version in your DB

// Obtain your IDifferenceGenerator
// You may also use differenceService.getMinimalDifferenceGenerator(), depending on
→˓your use case
IDifferenceFromReferenceGenerator generator = differenceService.
→˓getMainDifferenceGenerator();
// Perform the diff
Difference<T> diff = generator.diffFromReference(workingObject);

Using it in the history log machinery

See HistoryLog & Audit.

Task Executor

About

OWSI-Core comes with a task service allowing to persist and execute background tasks.

Configuration

The task service can manage multiple queues (typically, a queue for short tasks and a queue for long tasks).

@Configuration
public class YourAppTaskManagementConfig extends AbstractTaskManagementConfig {

@Override
@Bean
public Collection<? extends IQueueId> queueIds() {

return EnumUtils.getEnumList(YourAppTaskQueueId.class);
}

}

The task manager can be configured with the following properties:

• task.startMode: auto or manual: define if the task manager is started automatically at application startup

• task.queues.config.<queueId>.threads: number of execution threads for the given queue (by
default 1)

• task.stop.timeout: timeout of a task: the task is stopped if its execution lasts longer than the timeout

14.5. Task Executor 99

OWSI-Core doc Documentation, Release 1.0

Queueing a task

A task extends AbstractTask. It’s going to be serialized as JSON (using Jackson) in order to be persisted.

A task has a name (for identification by a human beand a type.

You can define the queue used by implementing the selectQueue() method. It allows you to choose a different
queue depending on the parameters passed (e.g. selecting a different queue based on the task type, or based on how
many items you have to export).

It’s quite easy to submit a new task:

YourTask task = new YourTask(user, parameters...);
queuedTaskHolderService.submit(task);

Inside a task

TODO GSM

Console

The administration console contains an administration UI for the task manager.

External Link Checker

About

OWSI-Core has a service called the external link checker. It’s used to check that external links stays valid.

It’s currently used in production to validate several 100k links.

It is based on the HTTPClient library. It first tries a HEAD request to limit the bandwidth usage, it tries a GET request
if the HEAD request fails.

If a link is unreachable, it is marked as OFFLINE. After several checks being offline (to avoid transient errors), the
link is marked as DEAD_LINK.

Model

The link must be wrapped in an ExternalLinkWrapper:

@OneToOne(fetch = FetchType.LAZY, cascade = { CascadeType.ALL }, orphanRemoval = true)
private ExternalLinkWrapper externalLinkWrapper;

The status of the link is available in the ExternalLinkWrapper. A link is considered invalid if it’s in the
DEAD_LINK status.

100 Chapter 14. Backend

OWSI-Core doc Documentation, Release 1.0

Usage

Maven

Starting with OWSI-Core 0.11, ExternalLinkChecker has its own Maven module:

<dependency>
<groupId>fr.openwide.core.components</groupId>
<artifactId>owsi-core-component-jpa-externallinkchecker</artifactId>
<version>${project.version}</version>

</dependency>

Configuration

The configuration is as follows:

externalLinkChecker.timeout=30000
externalLinkChecker.userAgent=Your user agent
externalLinkChecker.batchSize=400
externalLinkChecker.retryAttemptsNumber=4
externalLinkChecker.maxRedirects=5
externalLinkChecker.cronExpression=0 0/15 3-6,18-23 * * ?

The cron expression must be used to configure a scheduled task which launches
externalLinkCheckerService.checkBatch().

You can ignore links by adding regexps using the externalLinkCheckerService.
addIgnorePattern(pattern) method.

In YourAppCoreCommonConfig, you have to:

• add JpaExternalLinkCheckerBusinessPackage to the basePackageClasses of
@ComponentScan

In YourAppCoreCommonJpaConfig, you have to:

• add JpaExternalLinkCheckerBusinessPackage to the package scanned for entities in
applicationJpaPackageScanProvider()

• declare an Hibernate interceptor:

@Bean
public Interceptor hibernateInterceptor() {

return new ChainedInterceptor()
.add(new ExternalLinkWrapperInterceptor());

}

Table import

About

OWSI-Core comes with an optional feature that allows you to import data from table structured documents. Today, it
means that you can import data from documents under either CSV or Excel format.

A classical case which can be treated with this feature is the following:

14.7. Table import 101

OWSI-Core doc Documentation, Release 1.0

1. Iterate over rows in a sheet.

2. For each row, get data from some columns and check its consistency.

3. Save each row as an element of a table in your database (or in a collection, etc.).

4. At the end of the treatment, commit the transaction if no error occurs or rollback all changes if so.

The main benefit of it is to trace all errors / warnings in a unique run. It avoids a boring couple of “run - error on line
84 - run again - error on line 123 - etc.”.

Include sub-module

To be able to use the classes we will mention later in this documentation, you need to include the Maven sub-module
containing them.

<dependency>
<groupId>fr.openwide.core.components</groupId>
<artifactId>owsi-core-component-imports</artifactId>
<version>${owsi-core.version}</version>

</dependency>

Interfaces and implementation

The fr.openwide.core.imports.table.common module is currently divided in 3 parts:

• common: all interfaces and abstract class common to all implementation ;

• apache.poi: implementation to read Excel format using the Apache POI API ;

• opencsv: implementation to read CSV format using Opencsv.

Using it in your application

Notes about the sample coming:

1. We will use the apache.poi implementation. However, it should be really close of it to deal with a CSV file.

2. We will have a main class CarDataUpgrade containing all other classes. If you project architecture needs to
do something different, you are obviously free to make separate classes.

Declare you columns

First of all, you need to declare how your data file is structured. Each column defines :

• its position (0 based) ;

• its type.

private static final class CarSheetColumnSet extends ApachePoiImportColumnSet {
private final Column<Long> id = withIndex(0).asLong().build();
private final Column<String> brand = withIndex(3).asString().build();
private final Column<String> referenceName = withIndex(4).asString().build();
private final Column<Date> firstSellingDate = withIndex(5).asDate().build();

}

102 Chapter 14. Backend

https://poi.apache.org/
http://opencsv.sourceforge.net/

OWSI-Core doc Documentation, Release 1.0

In the definition above, we can see that columns at positions 1, 2 and 3 are ignored. They may contains informative
data, or whatever else, and don’t concern the data import. We just ignore them in our structure declaration.

Iterate over sheets

After that, you will need to use an IExcelImportFileScanner to iterate over sheets in the Excel file. Our
sample contains only one sheet, but you could have a more complex workbook and you could deal with it making
different cases inside the visitSheet() method.

@Autowired
private ITransactionScopeIndependantRunnerService
→˓transactionScopeIndependantRunnerService;

[...]

private final class CarExcelFileImporter {
private final ApachePoiImportFileScanner scanner = new

→˓ApachePoiImportFileScanner();

private final CarSheetColumnSet carSheetColumnSet = new CarSheetColumnSet();

public void doImportExcelFile(InputStream stream, String fileName) throws
→˓TableImportException {

scanner.scan(stream, fileName, SheetSelection.ALL, new IExcelImportFileVisitor
→˓<Workbook, Sheet, Row, Cell, CellReference>() {

@Override
public void visitSheet(final ITableImportNavigator<Sheet, Row, Cell,

→˓CellReference> navigator, Workbook workbook, final Sheet sheet)
throws TableImportException {

transactionScopeIndependantRunnerService.run(false, new Callable<Void>
→˓() {

@Override
public Void call() throws Exception {

ITableImportEventHandler eventHandler = new
→˓LoggerTableImportEventHandler(LOGGER);

importCarSheet(navigator, sheet, eventHandler);
eventHandler.checkNoErrorOccurred();
return null;

}
});

}
});

}

[...]
}

Transaction

Please note that we use an ITransactionScopeIndependantRunnerService to be sure that all database
actions are performed in a unique transaction. It allows us to log all potential errors and rollback all changes only at
the end of the Excel sheet.

Event handler

The ITableImportEventHandler allow the import process we build to log some messages about the treated
data. We can initialize it with a TableImportNonFatalErrorHandling mode:

• THROW_ON_CHECK (default) will throw an exception when the checkNoErrorOccurred() is called ;

14.7. Table import 103

OWSI-Core doc Documentation, Release 1.0

• THROW_IMMEDIATELY will throw an exception when the event is handle ; following rows are not treated.

Iterates overs rows

Now that we are in a sheet, we can iterate over its rows. We can do it simply like shown below.

private void importCarSheet(ITableImportNavigator<Sheet, Row, Cell, CellReference>
→˓navigator,

Sheet sheet, ITableImportEventHandler eventHandler) throws
→˓TableImportContentException, TableImportMappingException {

CarSheetColumnSet.TableContext sheetContext = carSheetColumnSet.map(sheet,
→˓navigator, eventHandler);

for (CarSheetColumnSet.RowContext rowContext : Iterables.skip(sheetContext, 1)) {
CarSheetColumnSet.CellContext<Long> idCell = rowContext.

→˓cell(carSheetColumnSet.id);
CarSheetColumnSet.CellContext<String> brandCell = rowContext.

→˓cell(carSheetColumnSet.brand);
CarSheetColumnSet.CellContext<String> referenceNameCell = rowContext.

→˓cell(carSheetColumnSet.referenceName);
CarSheetColumnSet.CellContext<Date> firstSellingDateCell = rowContext.

→˓cell(carSheetColumnSet.firstSellingDate);

Long idFromXls = idCell.getMandatory("Car id is mandatory.");
String brandFromXls = brandCell.getMandatory("Brand is mandatory");
String referenceNameFromXls = referenceNameCell.get();
Date firstSellingDateFromXls = firstSellingDateCell.get();

Car car = carService.getById();
if (car != null) {

// The id cannot be found, the car will not be updated
idCell.error("Car {} not found.", idFromXls);
continue;

}

if (firstSellingDateFromXls != null && firstSellingDateFromXls.after(new
→˓Date())) {

// The first selling date should be wrong, but it's a secondary
→˓information,

// the car will be updated with this information
firstSellingDateCell.warn("Car {} - The first selling date ({}) is in the

→˓future.", firstSellingDateFromXls);
}

car.setBrand(brandFromXls);
car.setReferenceName(brandFromXls);
car.setFirstSellingDate(firstSellingDateFromXls);

try {
carService.update(car);

} catch (ServiceException | SecurityServiceException e) {
LOGGER.error("An error occured while updating a car.", e);
rowContext.error("An error occured while updating a car.");

}
}

}

Getting values

104 Chapter 14. Backend

OWSI-Core doc Documentation, Release 1.0

You can handle some basic behavior while getting values:

• treat result with some functions at column description like withDefault(), extract() or
capitalize()

• raise an error in case of missing value with getMandatory() instead of a simple get()

Error location

Please note that using cell or row context to record logs will produce messages with precise location details (i.e.:

(at TableImportLocation[fileName=my-pretty-cars.xlsx,tableName=cars,rowIndex (1-
→˓based)=123,cellAddress=F123])

Eating the data file

Obviously, we need to give the file to our data import mechanic. Here we get this file from the project’s resources, but
we also could get it from the file system, from a user input, etc.

public class CarDataUpgrade implements IDataUpgrade {

private static final Logger LOGGER = LoggerFactory.getLogger(CarDataUpgrade.
→˓class);

private static final String FILE_PATH = "/dataupgrade/my-pretty-cars.xlsx";

[...]

public void perform() throws TableImportException {
InputStream inputStream = null;
try {

LOGGER.info("Car import...");
inputStream = CarDataUpgrade.class.getResourceAsStream(FILE_PATH);
new CarExcelFileImporter().doImportExcelFile(inputStream, FilenameUtils.

→˓getName(FILE_PATH));
LOGGER.info("Car import completed.");

} finally {
IOUtils.closeQuietly(inputStream);

}
}

}

14.7. Table import 105

OWSI-Core doc Documentation, Release 1.0

106 Chapter 14. Backend

CHAPTER 15

UI

UI Bootstrap

We use Bootstrap 3 as our main source for UI components.

Core

Application

Stylesheets

The basic application comes with 2 stylesheets:

• styles.less: the stylesheet for most of the UI

• service.less: the stylesheet used for all the login process (sign in, forgot password...)

Variables

You can set the value of the variables by editing the file <yourapp>/web/common/template/styles/
variables.less.

UI Font Awesome

We use Font Awesome as our main source for icons.

Icon reference: http://fortawesome.github.io/Font-Awesome/icons/

Examples: http://fortawesome.github.io/Font-Awesome/examples/

Please be especially aware of the existence of fa-fw to align properly the icons in lists.

107

http://fortawesome.github.io/Font-Awesome/icons/
http://fortawesome.github.io/Font-Awesome/examples/

OWSI-Core doc Documentation, Release 1.0

UI Plugins (JS, CSS) (TODO)

TODO list plugins and explain (briefly) why and when to use them.

108 Chapter 15. UI

CHAPTER 16

Infrastructure Apache

Default configuration for an Apache Vhost

<VirtualHost *:443>
ServerName www.siteurl.com
ServerAlias technical.alias.net

DocumentRoot /data/services/web/<sitename>/site

ProxyErrorOverride On
ProxyPass /static-content/ !
ProxyPass /errors/ !
ProxyPass /server-status !
ProxyPass / ajp://localhost:8009/ keepalive=on timeout=3000 ttl=300
ProxyPassReverse / ajp://localhost:8009/

ErrorDocument 403 /errors/403.html
ErrorDocument 404 /errors/404.html
ErrorDocument 500 /errors/500.html
ErrorDocument 503 /errors/503.html

AddOutputFilterByType DEFLATE application/x-javascript text/html text/xml
→˓text/css text/javascript

AddDefaultCharset UTF-8
AddCharset UTF-8 .js .css

<Directory /data/services/web/<sitename>/site>
Require all granted

</Directory>

SSLEngine on

SSLProtocol all -SSLv2 -SSLv3

109

OWSI-Core doc Documentation, Release 1.0

SSLCipherSuite ALL:!ADH:!EXPORT:!SSLv2:RC4+RSA:+HIGH:+MEDIUM:+LOW

SSLCertificateFile /etc/httpd/ssl/<sitename>.crt
SSLCertificateKeyFile /etc/httpd/ssl/<sitename>.key.unsecure
SSLCACertificateFile /etc/httpd/ssl/ca-thawte.crt

CustomLog /data/log/web/<sitename>-access_log combined
ErrorLog /data/log/web/<sitename>-error_log

</VirtualHost>

110 Chapter 16. Infrastructure Apache

CHAPTER 17

Infrastructure Tomcat (TODO)

111

OWSI-Core doc Documentation, Release 1.0

112 Chapter 17. Infrastructure Tomcat (TODO)

CHAPTER 18

Documentation

Miscelleaneous

The documentation is located at http://owsi-core-doc.readthedocs.io/en/latest/index.html

Contributing to the doc

Install the documentation

To install the documentation on your computer, follow these steps :

First clone the git repository owsi-core-doc

git@github.com:openwide-java/owsi-core-doc.git

When the clone is over, execute the installation script :

cd ~/git/owsi-core-doc
./bootstrap.sh

When the script ends, the documentation installation is finished.

Build the documentation locally

A few commands to interact with the documentation locally :

invoke docs

The command ‘docs’ builds the documentation and generates the html files.

113

http://owsi-core-doc.readthedocs.io/en/latest/index.html

OWSI-Core doc Documentation, Release 1.0

invoke docs-live

The command ‘docs-live’ builds the documentation and opens it in a new tab of your browser, allowing you to see
your modifications as soon as you save them.

invoke docs-clean

The command ‘docs-clean’ cleans all the build directory and files.

Build the documentation on ReadTheDocs

To modify the online documentation, you just have to push your modifications on the owsi-core-doc git repository. A
webhook is set and will automatically rebuild the documentation everytime you push something.

114 Chapter 18. Documentation

CHAPTER 19

Project installation

Prerequisite

To run the basic-application or any project that use the basic-application as an outline, you need to initialize a database.
To do so, you need to create a user first, and then create a database with the user you have created as its owner.

createuser -U postgres -P basic_application
createdb -U postgres -O basic_application basic_application
psql -U postgres hello_world
#Here you are connected to the database as the user postgres
DROP SCHEMA public;
\q
psql -U hello_world hello_world
#Here you are connected to the database as the user hello_world
CREATE SCHEMA hello_world;

After that, you can populate your database with some date by running the class BasicApplicationInitFromExcel-
Main.java as a java application. This class is located in basic-application-init.

115

OWSI-Core doc Documentation, Release 1.0

116 Chapter 19. Project installation

CHAPTER 20

Build, deploy and exploit the Maven archetype

To initialize a new project based on the basic-application, you have to follow several steps. Each steps are detailed one
by one in the following sections.

Build the archetype

Place yourself in the folder owsi-core-parent/basic-application.

• to install the archetype locally:

./build-and-push-archetype.sh ../basic-application/ local

• to install the archetype on our repository:

./build-and-push-archetype.sh ../basic-application/ snapshot

Generate a new project

Place yourself in a new folder or somewhere like /tmp/. This command will generate a new folder where you are
containing your new project.

using your local repository:

mvn archetype:generate -DarchetypeVersion=X.X -DarchetypeCatalog=local -
→˓DartifactId=your-artifact-id -DgroupId=your.group.id -Dversion=0.1-SNAPSHOT -
→˓Dpackage=com.your.package -DarchetypeApplicationNamePrefix="YourApplication" -
→˓DarchetypeSpringAnnotationValuePrefix="yourApplication" -
→˓DarchetypeFullApplicationName="Customer - Your application" -
→˓DarchetypeDatabasePrefix=c_database_prefix -DarchetypeDataDirectory=your-data-
→˓directory

117

OWSI-Core doc Documentation, Release 1.0

using the snapshot repository:

mvn archetype:generate -DarchetypeCatalog=https://openwide:openwide@projects.openwide.
→˓fr/services/nexus/content/repositories/owsi-core-snapshots/ -DartifactId=your-
→˓artifact-id -DgroupId=your.group.id -Dversion=0.1-SNAPSHOT -Dpackage=com.your.
→˓package -DarchetypeApplicationNamePrefix="YourApplication" -
→˓DarchetypeSpringAnnotationValuePrefix="yourApplication" -
→˓DarchetypeFullApplicationName="Customer - Your application" -
→˓DarchetypeDatabasePrefix=c_database_prefix -DarchetypeDataDirectory=your-data-
→˓directory

using the release repository:

mvn archetype:generate -DarchetypeCatalog=https://openwide:openwide@projects.openwide.
→˓fr/services/nexus/content/repositories/owsi-core/ -DartifactId=your-artifact-id -
→˓DgroupId=your.group.id -Dversion=0.1-SNAPSHOT -Dpackage=com.your.package -
→˓DarchetypeApplicationNamePrefix="YourApplication" -
→˓DarchetypeSpringAnnotationValuePrefix="yourApplication" -
→˓DarchetypeFullApplicationName="Customer - Your application" -
→˓DarchetypeDatabasePrefix=c_database_prefix -DarchetypeDataDirectory=your-data-
→˓directory

Push the new project

Go in the newly generate folder containing your project and push it on gitlab :

/bin/bash init-gitlab.sh <unix name of the Wombat project>
git push --set-upstream origin master

/!\ After having push your project, delete the project folder and initialize a new one directly from gitlab before starting
your work.

118 Chapter 20. Build, deploy and exploit the Maven archetype

CHAPTER 21

Database Scripts (from 0.14)

Model - Database comparisons

Note: *SqlUpdateScriptMain is named at project generation’s time: for example ProjectSqlUpdateScriptMain.

The script <Project>SqlUpdateScriptMain.java can generates the differences between your java model and your
database and write the result as an update sql script (update of your database). It can also generate an sql script
for the creation of your whole database.

To launch this script, make sure you are in the basic-application/basic-application-init directory, then execute

mvn exec:java -Dexec.mainClass="fr.openwide.core.basicapp.init.
→˓BasicApplicationSqlUpdateScriptMain" -Dexec.args="arg0 arg1"

You have to provide two arguments :

• arg0 is the mode of the script, you have the choice between create for generating your database’s creation
script, and update for generating the update of your database.

• arg1 is the file which will contain the result script.

BasicApplicationSqlUpdateScriptMain not available

If you project does not supply *SqlUpdateScriptMain, you can copy and rename the file BasicApplication-
SqlUpdateScriptMain.java in you project. Inside this file, you just have to replace BasicApplication by the name of
your project in the line :

context = new AnnotationConfigApplicationContext(BasicApplicationInitConfig.class);

119

OWSI-Core doc Documentation, Release 1.0

120 Chapter 21. Database Scripts (from 0.14)

CHAPTER 22

Install an Oomph project

In the git folder, clone the owsi-tools-oomph repository

git clone git@github.com:openwide-java/owsi-oomph-project.git

Open Eclipse, use a new workspace. Select File->Import->Oomph->Projects into workspace. Click on the “+” button
:

• Choose the catalog Eclipse Projects

• Browse file : choose the file git/owsi-oomph-project/fr.openwide.core.eclipse.project.setup (choose the other
file if your project is not in the github group openwide-java or in the openwide gitlab)

• Check the box corresponding to the file you just add, and click next

In the window with required variables :

• Nom du clone git : the name of the file which will contain the git clone on your computer

• Nom du projet gitlab : the name of the project as it appears in gitlab or github (correspond to <project> in the
url git.projects.openwide.fr:open-wide/<project>.git)

• Branche : the branch which will be checkout

• Répertoire du tomcat : the path to your tomcat folder on your computer

• Nom du projet maven : the artifactId in your pom.xml

• Nom de la webapp : the name of the webapp which will be generated

• Choix du dépôt : if your application is host in github choose Dépot Github, otherwise if your application is host
on gitlab choose Dépôt Gitlab. The default value is the gitlab repository.

• If you use the other file you will have an other variable to fill named “Nom du groupe/compte. Enter here the
name of the github group or account which host the repository.”

Click next, then finish. The installation may take a few minutes, and Eclipse might have to restart. In this case, the
installation will go back to where it stopped automatically. It will clone the application, install and set a Tomcat server.

121

OWSI-Core doc Documentation, Release 1.0

Warning: If you perform some modifications that you have to push on the repository, don’t push the file
eclipse/tomcat7.launch if you didn’t modify it manually.

122 Chapter 22. Install an Oomph project

CHAPTER 23

Use Oomph with an existing project

Files required by Oomph are already in the basic-application repository :

The file /eclipse/tomcat7.launch contains default arguments that will be passed to your Tomcat server. You will have
to modify these arguments/add new arguments here to make your Tomcat server suit your project.

<stringAttribute key="org.eclipse.jdt.launching.VM_ARGUMENTS" value="-Xmx1g -
→˓XX:MaxPermSize=256m "/>

The folder /eclipse/tomcat-main contains files that are necessary to Tomcat’s installation and proper working. For a
new project, you have to do a modification : in one of the last lines of the file /eclipse/tomcat-main/server.xml you
need to put the name of your webapp instead of the two mentions to “basicapplication-webapp”.

<Context docBase="basicapplication-webapp" path="/" reloadable="false" source="org.
→˓eclipse.jst.jee.server:basicapplication-webapp"/></Host>

123

OWSI-Core doc Documentation, Release 1.0

124 Chapter 23. Use Oomph with an existing project

CHAPTER 24

Use data upgrades with Flyway

OWSI-Core and the basic application are programmed to be able to use Flyway for handling your data upgrades, here’s
how you can do it.

Activate Flyway’s Spring profile

First of all, you need to activate Flyway’s Spring profile. To do so, just modify this line to add flyway in the file
development.properties :

maven.spring.profiles.active=flyway

With this simple modification, you have enabled the creation of the Flyway bean in the application and you can now
start to use it.

Note: If you want to disable flyway from your application, just remove the word flyway from the line
maven.spring.profiles.active in the file development.properties.

Create a Flyway data upgrade

The first thing to do is to is to add flyway’s variables in the file development.properties :

maven.flyway.locations=fr.openwide.core.basicapp.core.config.migration.common,db/
→˓migration/
maven.flyway.table=flyway_schema_version

You can write your data upgrades either in SQL or Java. Here we have chosen to put our
upgrades .sql in the folder src/main/resources/db/migration/ and our upgrades .java in the package
fr.openwide.core.basicapp.core.config.migration.common. If you want to specify multiple locations, you have to sep-
arate them with a single comma.

125

OWSI-Core doc Documentation, Release 1.0

Now you can create the data upgrades which will be applied by Flyway. If you want to be able to relaunch manually
the upgrade in case it fails, you have to use the Java formatted upgrades.

Note: Flyway works with a database versioning system. The versions are based on the names of the data upgrades so
be careful how you name them. The name must respect the pattern Vversion_you_want__NameOfDataUpgrade. For
example V1_0__ImportTable.sql is a valid name. SQL and Java upgrades follow the same naming pattern.

Create an SQL formatted data upgrade

If you want to write a data upgrade in SQL, just write your script and place your SQL file in the folder or package you
have specified earlier.

Create a Java formatted data upgrade

If you want to write a date upgrade in Java, you have to follow a particular workflow. In fact, it is not the Flyway
upgrade which will contain the operations on your data/database, you will have to create an OWSI-Core data upgrade
after the Flyway one.

Your Flyway data upgrade will only declare that the data upgrade exists and that the application needs to launch it. To
do so, copy the existing Flyway data upgrade V1_2__ImportExcel.java, give it the name you want and change in the
class the value of the DATA_UPGRADE_NAME variable :

private String DATA_UPGRADE_NAME = "ImportExcel";

Create an OWSI-Core data upgrade

If you have wrote Java formatted data upgrades, you need to create an OWSI-Core data upgrade for each one of these
which is named after the DATA_UPGRADE_NAME value you specified earlier. For example, if the value entered in
the Flyway Java data upgrade is ImportTable, you have to name your OWSI-Core data upgrade ImportTable.java.

An OWSI-Core data upgrade is a java class which implements IDataUpgrade and override its methods. Write all your
operations in the function perform().

126 Chapter 24. Use data upgrades with Flyway

CHAPTER 25

Create, initialize and launch a project - Workflow

In this page, we will follow the complete workflow to properly create a project, starting from nothing to finally be able
to run the project on a server. In the following steps, we will call the project hello-world.

Clone the owsi-core-parent repository

First of all, clone the owsi-core-parent project :

git clone git@github.com:openwide-java/owsi-core-parent.git

Generate the new project and push it on gitlab

You can find a more detailed documentation of this part here.

In order to generate the project, we need to build the archetype :

cd ~/git/owsi-core-parent/basic-application
./build-and-push-archetype.sh ../basic-application/ local

After that, we place ourselves in /tmp and we generate the project :

cd /tmp
mvn archetype:generate -DarchetypeVersion=X.X -DarchetypeCatalog=local -
→˓DartifactId=hello-world -DgroupId=fr.hello.world -Dversion=0.1-SNAPSHOT -
→˓Dpackage=fr.hello.world -DarchetypeApplicationNamePrefix="HelloWorld" -
→˓DarchetypeSpringAnnotationValuePrefix="helloWorld" -DarchetypeFullApplicationName=
→˓"Customer - Hello World" -DarchetypeDatabasePrefix=hello_world -
→˓DarchetypeDataDirectory=hello-world

The script asks what archetype we want to use, we choose the number corresponding to local, and validate the different
values we entered previously.

127

OWSI-Core doc Documentation, Release 1.0

We go to the newly generated project folder and make an adjustment : we add a line with the version of the owsi-core
in the file hello-world/pom.xml between the markers properties, just under the line for the tomcat-jdbc.version :

<properties>
<!-- il est préférable de bien surcharger la version du pool jdbc

→˓Tomcat au niveau du projet en fonction de la version de Tomcat -->
<tomcat-jdbc.version>${owsi-core.tomcat-jdbc.version}</tomcat-jdbc.

→˓version>
<owsi-core.version>0.14-SNAPSHOT</owsi-core.version>

</properties>

Note: Note that here the version is the 0.14-SNAPSHOT because it is the latest version at the time.

After that, we push the project on gitlab by executing the script located in the project folder :

/bin/bash init-gitlab.sh hello-world
git push --set-upstream origin master

After pushing the project on gitlab, we have to delete the created folder and start working with a fresh one.

cd ..
rm -rf hello-world/*

We will make a new clone of the project using Oomph in the next step.

Create a fresh clone and a properly configured workspace with
Oomph

You can find a more detailed documentation of this part in the dedicated Oomph page.

Open an Eclipse Neon and select a new and clean workspace. After that, we follow the Oomph page documentation
until we come to the window with multiple variables to fill. We fill the window as follow :

• Nom du clone git : hello-world

• Choix du dépôt : Dépôt Gitlab

• Branche : master

• Répertoire du tomcat : ${user.home}/Documents/apps/apache-tomcat-7.0.53

• Nom du projet maven : ${gitlab.project.name}

• Nom de la webapp : ${gitlab.project.name}-webapp

• Nom du projet gitlab : hello-world

From here, we have a new project successfully created and pushed online, and a properly configure workspace. The
only thing left is the database.

Create and initialize the database

You can find a more detailed documentation of this part in the prerequisite part of the Project installation page.

128 Chapter 25. Create, initialize and launch a project - Workflow

OWSI-Core doc Documentation, Release 1.0

In this part, we will create the database with the proper user and schema, and we will fill it with a script. Before
performing the following commands, make sure you have PostgreSQL installed.

To create the database, we execute some commands directly in a terminal:

createuser -U postgres -P hello_world
createdb -U postgres -O hello_world hello_world
psql -U postgres hello_world
#Here you are connected to the database as the user postgres
DROP SCHEMA public;
\q
psql -U hello_world hello_world
#Here you are connected to the database as the user hello_world
CREATE SCHEMA hello_world;

Note: Use the name of the project for the password (here: hello_world)

After that we have to enable an option which will allow our the project to create new entities in the
database. To do so, in the file hello-world-core/src/main/filters/development.properties we have to switch the line
maven.hibernate.hbm2ddl.auto=none to :

maven.hibernate.hbm2ddl.auto=update

To make sure the new property is taken into account, we refresh the project (in Eclipse : menu Project -> Clean...).

Finally, we fill our database with the script HelloWorldInitFromExcelMain.java especially written for this. We just
right click on it in Eclipse and Run as Java Application.

Launch the project

Now we have all the tools properly configurated and ready to run our project. To do that, we just start the server
tomcat7 in Eclipse (if you don’t have the server view : Window -> Show view -> Other -> Server/Servers). To access
to our project, we can go to http://localhost:8080/ . To access the console, the address is http://localhost:8080/console/
.

Note: Until you change it, the login/password for the project and the project’s console is admin/admin.

25.5. Launch the project 129

http://localhost:8080/
http://localhost:8080/console/

	Migrating to 0.11
	Migrating to 0.12
	Migrating to 0.13
	Migrating to 0.14
	Migrating to 0.15
	Tools
	Security
	Backend
	UI
	Contributing to upstream
	Assertion
	Predicate (TODO)
	Renderer (TODO)
	Backend
	UI
	Infrastructure Apache
	Infrastructure Tomcat (TODO)
	Documentation
	Project installation
	Build, deploy and exploit the Maven archetype
	Database Scripts (from 0.14)
	Install an Oomph project
	Use Oomph with an existing project
	Use data upgrades with Flyway
	Create, initialize and launch a project - Workflow

