
OWASP Proactive Controls
Documentation

OWASP

Feb 06, 2019

Contents

1 About OWASP 3

2 FOREWORD 5

3 DOCUMENT STRUCTURE 7

4 INTRODUCTION 9

5 C1: Define Security Requirements 11

6 C2: Leverage Security Frameworks and Libraries 15

7 C3: Secure Database Access 17

8 C4: Encode and Escape Data 19

9 C5: Validate All Inputs 23

10 C6: Implement Digital Identity 27

11 C7: Enforce Access Controls 33

12 C8: Protect Data Everywhere 37

13 C9: Implement Security Logging and Monitoring 41

14 C10: Handle all Errors and Exceptions 43

15 Final word 45

i

ii

OWASP Proactive Controls Documentation

10 Critical Security Areas That Software Developers Must Be Aware Of

Contents 1

OWASP Proactive Controls Documentation

2 Contents

CHAPTER 1

About OWASP

The Open Web Application Security Project (OWASP) is a 501c3 non for profit educational charity dedicated to en-
abling organizations to design, develop, acquire, operate, and maintain secure software. All OWASP tools, documents,
forums, and chapters are free and open to anyone interested in improving application security. We can be found at
www.owasp.org.

OWASP is a new kind of organization. Our freedom from commercial pressures allows us to provide unbiased,
practical, cost effective information about application security.

OWASP is not affiliated with any technology company. Similar to many open source software projects, OWASP
produces many types of materials in a collaborative and open way. The OWASP Foundation is a not-for-profit entity
that ensures the project’s long-term success.

3

https://www.owasp.org

OWASP Proactive Controls Documentation

4 Chapter 1. About OWASP

CHAPTER 2

FOREWORD

Insecure software is undermining our financial, healthcare, defense, energy, and other critical infrastructure world-
wide. As our digital, global infrastructure gets increasingly complex and interconnected, the difficulty of achieving
application security increases exponentially. We can no longer afford to tolerate relatively simple security problems.

2.1 AIM & OBJECTIF

The goal of the OWASP Top 10 Proactive Controls project (OPC) is to raise awareness about application security by
describing the most important areas of concern that software developers must be aware of. We encourage you to use
the OWASP Proactive Controls to get your developers started with application security. Developers can learn from
the mistakes of other organizations. We hope that the OWASP Proactive Controls is useful to your efforts in building
secure software.

2.2 CALL TO ACTION

Please don’t hesitate to contact the OWASP Proactive Control project with your questions, comments, and ideas, either
publicly to our email list or privately to jim@owasp.org.

2.3 COPYRIGHT AND LICENSE

This document is released under the Creative Commons Attribution ShareAlike 3.0 license. For any reuse or distribu-
tion, you must make it clear to others the license terms of this work.

2.4 PROJECT LEADERS

• Katy Anton

5

mailto:jim@owasp.org

OWASP Proactive Controls Documentation

• Jim Bird

• Jim Manico

2.5 CONTRIBUTORS

• Chris Romeo

• Dan Anderson

• David Cybuck

• Dave Ferguson

• Josh Grossman

• Osama Elnaggar

• Colin Watson

• Rick Mitchell

• And many more. . .

6 Chapter 2. FOREWORD

CHAPTER 3

DOCUMENT STRUCTURE

This document is structured as a list of security controls. Each control is described as follows:

3.1 Cx: Control Name

3.1.1 Description

A detailed description of the control including some best practices to consider.

3.1.2 Implementation

Implementation best practices and examples to illustrate how to implement each control.

3.1.3 Vulnerabilities Prevented

List of prevented vulnerabilities or risks addressed (OWASP TOP 10 Risk, CWE, etc.)

3.1.4 References

List of references for further study (OWASP Cheat sheet, Security Hardening Guidelines, etc.)

3.1.5 Tools

Set of tools/projects to easily introduce/integrate security controls into your software.

7

OWASP Proactive Controls Documentation

8 Chapter 3. DOCUMENT STRUCTURE

CHAPTER 4

INTRODUCTION

The OWASP Top Ten Proactive Controls 2018 is a list of security techniques that should be considered for every
software development project. This document is written for developers to assist those new to secure development.

One of the main goals of this document is to provide concrete practical guidance that helps developers build secure
software. These techniques should be applied proactively at the early stages of software development to ensure maxi-
mum effectiveness.

4.1 The Top 10 Proactive Controls

The list is ordered by importance with list item number 1 being the most important:

• C1: Define Security Requirements

• C2: Leverage Security Frameworks and Libraries

• C3: Secure Database Access

• C4: Encode and Escape Data

• C5: Validate All Inputs

• C6: Implement Digital Identity

• C7: Enforce Access Controls

• C8: Protect Data Everywhere

• C9: Implement Security Logging and Monitoring

• C10: Handle All Errors and Exceptions

9

OWASP Proactive Controls Documentation

4.2 How this List Was Created

This list was originally created by the current project leads with contributions from several volunteers. The document
was then shared globally so even anonymous suggestions could be considered. Hundreds of changes were accepted
from this open community process.

4.3 Target Audience

This document is primarily written for developers. However, development managers, product owners, Q/A profes-
sionals, program managers, and anyone involved in building software can also benefit from this document.

4.4 How to Use this Document

This document is intended to provide initial awareness around building secure software. This document will also
provide a good foundation of topics to help drive introductory software security developer training. These controls
should be used consistently and thoroughly throughout all applications. However, this document should be seen as a
starting point rather than a comprehensive set of techniques and practices. A full secure development process should
include comprehensive requirements from a standard such as the OWASP ASVS in addition to including a range of
software development activities described in maturity models such as OWASP SAMM and BSIMM.

4.5 Link to the OWASP Top 10 Project

The OWASP Top 10 Proactive Controls is similar to the OWASP Top 10 but is focused on defensive techniques and
controls as opposed to risks. Each technique or control in this document will map to one or more items in the risk
based OWASP Top 10. This mapping information is included at the end of each control description.

10 Chapter 4. INTRODUCTION

https://www.owasp.org/index.php/OWASP_SAMM_Project
https://www.bsimm.com/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

CHAPTER 5

C1: Define Security Requirements

5.1 Description

A security requirement is a statement of needed security functionality that ensures one of many different security
properties of software is being satisfied. Security requirements are derived from industry standards, applicable laws,
and a history of past vulnerabilities. Security requirements define new features or additions to existing features to
solve a specific security problem or eliminate a potential vulnerability.

Security requirements provide a foundation of vetted security functionality for an application. Instead of creating
a custom approach to security for every application, standard security requirements allow developers to reuse the
definition of security controls and best practices. Those same vetted security requirements provide solutions for
security issues that have occurred in the past. Requirements exist to prevent the repeat of past security failures.

5.1.1 The OWASP ASVS

The OWASP Application Security Verification Standard (ASVS) is a catalog of available security requirements and
verification criteria. OWASP ASVS can be a source of detailed security requirements for development teams.

Security requirements are categorized into different buckets based on a shared higher order security function. For
example, the ASVS contains categories such as authentication, access control, error handling / logging, and web
services. Each category contains a collection of requirements that represent the best practices for that category drafted
as verifiable statements.

5.1.2 Augmenting Requirements with User Stories and Misuse Cases

The ASVS requirements are basic verifiable statements which can be expanded upon with user stories and misuse
cases. The advantage of a user story or misuse case is that it ties the application to exactly what the user or attacker
does to the system, versus describing what the system offers to the user.

Here is an example of expanding on an ASVS 3.0.1 requirement. From the “Authentication Verification Requirements”
section of ASVS 3.0.1, requirement 2.19 focuses on default passwords.

11

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project

OWASP Proactive Controls Documentation

2.19 Verify there are no default passwords in use for the application framework or any components used
by the application (such as “admin/password”).

This requirement contains both an action to verify that no default passwords exist, and also carries with it the guidance
that no default passwords should be used within the application.

A user story focuses on the perspective of the user, administrator, or attacker of the system, and describes functionality
based on what a user wants the system to do for them. A user story takes the form of “As a user, I can do x, y, and z”.

As a user, I can enter my username and password to gain access to the application.

As a user, I can enter a long password that has a maximum of 1023 characters.

When the story is focused on the attacker and their actions, it is referred to as a misuse case.

As an attacker, I can enter in a default username and password to gain access.

This story contains the same message as the traditional requirement from ASVS, with additional user or attacker details
to help make the requirement more testable.

5.2 Implementation

Successful use of security requirements involves four steps. The process includes discovering / selecting, document-
ing, implementing, and then confirming correct implementation of new security features and functionality within an
application.

5.2.1 Discovery and Selection

The process begins with discovery and selection of security requirements. In this phase, the developer is understand-
ing security requirements from a standard source such as ASVS and choosing which requirements to include for a
given release of an application. The point of discovery and selection is to choose a manageable number of security
requirements for this release or sprint, and then continue to iterate for each sprint, adding more security functionality
over time.

5.2.2 Investigation and Documentation

During investigation and documentation, the developer reviews the existing application against the new set of security
requirements to determine whether the application currently meets the requirement or if some development is required.
This investigation culminates in the documentation of the results of the review.

5.2.3 Implementation and Test

After the need is determined for development, the developer must now modify the application in some way to add the
new functionality or eliminate an insecure option. In this phase the developer first determines the design required to
address the requirement, and then completes the code changes to meet the requirement. Test cases should be created
to confirm the existence of the new functionality or disprove the existence of a previously insecure option.

5.3 Vulnerabilities Prevented

Security requirements define the security functionality of an application. Better security built in from the beginning of
an applications life cycle results in the prevention of many types of vulnerabilities.

12 Chapter 5. C1: Define Security Requirements

OWASP Proactive Controls Documentation

5.4 References

• OWASP Application Security Verification Standard (ASVS)

• OWASP Mobile Application Security Verification Standard (MASVS)

• OWASP Top Ten

5.4. References 13

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://github.com/OWASP/owasp-masvs
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

OWASP Proactive Controls Documentation

14 Chapter 5. C1: Define Security Requirements

CHAPTER 6

C2: Leverage Security Frameworks and Libraries

6.1 Description

Secure coding libraries and software frameworks with embedded security help software developers guard against
security-related design and implementation flaws. A developer writing an application from scratch might not have
sufficient knowledge, time, or budget to properly implement or maintain security features. Leveraging security frame-
works helps accomplish security goals more efficiently and accurately.

6.2 Implementation Best Practices

When incorporating third party libraries or frameworks into your software, it is important to consider the following
best practices:

1. Use libraries and frameworks from trusted sources that are actively maintained and widely used by many appli-
cations.

2. Create and maintain an inventory catalog of all the third party libraries.

3. Proactively keep libraries and components up to date. Use a tool like OWASP Dependency Check and Retire.JS
to identify project dependencies and check if there are any known, publicly disclosed vulnerabilities for all third
party code.

4. Reduce the attack surface by encapsulating the library and expose only the required behaviour into your soft-
ware.

6.3 Vulnerabilities Prevented

Secure frameworks and libraries can help to prevent a wide range of web application vulnerabilities. It is critical to
keep these frameworks and libraries up to date as described in the using components with known vulnerabilities Top
Ten 2017 risk.

15

https://www.owasp.org/index.php/OWASP_Dependency_Check
https://retirejs.github.io/retire.js/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

OWASP Proactive Controls Documentation

6.4 Tools

• OWASP Dependency Check - identifies project dependencies and checks for publicly disclosed vulnerabilities

• Retire.JS scanner for JavaScript libraries

16 Chapter 6. C2: Leverage Security Frameworks and Libraries

https://www.owasp.org/index.php/OWASP_Dependency_Check
http://retirejs.github.io/retire.js/

CHAPTER 7

C3: Secure Database Access

7.1 Description

This section describes secure access to all data stores, including both relational databases and NoSQL databases. Some
areas to consider:

1. Secure queries

2. Secure configuration

3. Secure authentication

4. Secure communication

7.2 Secure Queries

SQL Injection occurs when untrusted user input is dynamically added to a SQL query in an insecure manner, often
via basic string concatenation. SQL Injection is one of the most dangerous application security risks. SQL Injection
is easy to exploit and could lead to the entire database being stolen, wiped, or modified. The application can even
be used to run dangerous commands against the operating system hosting your database, thereby giving an attacker a
foothold on your network.

In order to mitigate SQL injection, untrusted input should be prevented from being interpreted as part of a SQL
command. The best way to do this is with the programming technique known as ‘Query Parameterization’. This
defense should be applied to SQL, OQL, as well as stored procedure construction.

A good list of query parameterization examples in ASP, ColdFusion, C#, Delphi, .NET, Go, Java, Perl, PHP, PL/SQL,
PostgreSQL, Python, R, Ruby and Scheme can be found at http://bobby-tables.com and the OWASP Cheat Sheet on
Query Parameterization.

17

http://bobby-tables.com/
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet

OWASP Proactive Controls Documentation

7.2.1 Caution on Query Parameterization

Certain locations in a database query are not parameterizable. These locations are different for each database vendor.
Be certain to do very careful exact-match validation or manual escaping when confronting database query parameters
that cannot be bound to a parameterized query. Also, while the use of parameterized queries largely has a positive
impact on performance, certain parameterized queries in specific database implementations will affect performance
negatively. Be sure to test queries for performance; especially complex queries with extensive like clause or text
searching capabilities.

7.3 Secure Configuration

Unfortunately, database management systems do not always ship in a “secure by default” configuration. Care must be
taken to ensure that the security controls available from the Database Management System (DBMS) and hosting plat-
form are enabled and properly configured. There are standards, guides, and benchmarks available for most common
DBMS.

7.4 Secure Authentication

All access to the database should be properly authenticated. Authentication to the DBMS should be accomplished in
a secure manner. Authentication should take place only over a secure channel. Credentials must be properly secured
and available for use.

7.5 Secure Communication

Most DBMS support a variety of communications methods (services, APIs, etc) - secure (authenticated, encrypted)
and insecure (unauthenticated or unencrypted). It is a good practice to only use the secure communications options
per the Protect Data Everywhere control.

7.6 Vulnerabilities Prevented

• OWASP Top 10 2017- A1: Injection

• OWASP Mobile Top 10 2014-M1 Weak Server Side Controls

7.7 References

• OWASP Cheat Sheet: Query Parameterization

• Bobby Tables: A guide to preventing SQL injection

• CIS Database Hardening Standards

18 Chapter 7. C3: Secure Database Access

https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://www.owasp.org/index.php/Mobile_Top_10_2014-M1
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
http://bobby-tables.com/
https://www.cisecurity.org/cis-benchmarks/

CHAPTER 8

C4: Encode and Escape Data

8.1 Description

Encoding and escaping are defensive techniques meant to stop injection attacks. Encoding (commonly called “Output
Encoding”) involves translating special characters into some different but equivalent form that is no longer dangerous
in the target interpreter, for example translating the < character into the < string when writing to an HTML page.
Escaping involves adding a special character before the character/string to avoid it being misinterpreted, for example,
adding a \ character before a " (double quote) character so that it is interpreted as text and not as closing a string.

Output encoding is best applied just before the content is passed to the target interpreter. If this defense is performed
too early in the processing of a request then the encoding or escaping may interfere with the use of the content in other
parts of the program. For example if you HTML escape content before storing that data in the database and the UI
automatically escapes that data a second time then the content will not display properly due to being double escaped.

8.2 Contextual Output Encoding

Contextual output encoding is a crucial security programming technique needed to stop XSS. This defense is per-
formed on output, when you’re building a user interface, at the last moment before untrusted data is dynamically
added to HTML. The type of encoding will depend on the location (or context) in the document where data is being
displayed or stored. The different types of encoding that would be used for building secure user interfaces includes
HTML Entity Encoding, HTML Attribute Encoding, JavaScript Encoding, and URL Encoding.

8.2.1 Java Encoding Examples

For examples of the OWASP Java Encoder providing contextual output encoding see: OWASP Java Encoder Project
Examples.

19

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project#tab=Use_the_Java_Encoder_Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project#tab=Use_the_Java_Encoder_Project

OWASP Proactive Controls Documentation

8.2.2 .NET Encoding Examples

Starting with .NET 4.5 , the Anti-Cross Site Scripting library is part of the framework, but not enabled by default.
You can specify to use AntiXssEncoder from this library as the default encoder for your entire application using the
web.conf settings. When applied is important to contextual encode your output - that means to use the right function
from the AntiXSSEncoder library for the appropriate location of data in document.

8.2.3 PHP Encoding Examples

Zend Framework 2

In Zend Framework 2 (ZF2), Zend\Escaper can be used for encoding the output. For contextual encoding examples
see Context-specific escaping with zend-escaper.

8.3 Other Types of Encoding and Injection Defense

Encoding/Escaping can be used to neutralize content against other forms of injection. For example, it’s possible to
neutralize certain special meta-characters when adding input to an operating system command. This is called “OS
command escaping”, “shell escaping”, or similar. This defense can be used to stop “Command Injection” vulnerabili-
ties.

There are other forms of escaping that can be used to stop injection such as XML attribute escaping stopping various
forms of XML and XML path injection, as well as LDAP distinguished name escaping that can be used to stop various
forms of LDAP injection.

8.3.1 Character Encoding and Canonicalization

Unicode Encoding is a method for storing characters with multiple bytes. Wherever input data is allowed, data can be
entered using Unicode to disguise malicious code and permit a variety of attacks. RFC 2279 references many ways
that text can be encoded.

Canonicalization is a method in which systems convert data into a simple or standard form. Web applications com-
monly use character canonicalization to ensure all content is of the same character type when stored or displayed.

To be secure against canonicalization related attacks means an application should be safe when malformed Unicode
and other malformed character representations are entered.

8.4 Vulnerabilities Prevented

• OWASP Top 10 2017 - A1: Injection

• OWASP Top 10 2017 - A7: Cross Site Scripting (XSS)

• OWASP Mobile_Top_10_2014-M7 Client Side Injection

8.5 References

• XSS - General information

• OWASP Cheat Sheet: XSS Prevention - Stopping XSS in your web application

20 Chapter 8. C4: Encode and Escape Data

https://framework.zend.com/blog/2017-05-16-zend-escaper.html
https://www.owasp.org/index.php/Unicode_Encoding
https://tools.ietf.org/html/rfc2279
https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://www.owasp.org/index.php/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Mobile_Top_10_2014-M7
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

OWASP Proactive Controls Documentation

• OWASP Cheat Sheet: DOM based XSS Prevention

• OWASP Cheat Sheet: Injection Prevention

8.6 Tools

• OWASP Java Encoder Project

• AntiXSSEncoder

• ZendEscaper - examples of contextual encodingx

8.6. Tools 21

https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://docs.microsoft.com/en-us/dotnet/api/system.web.security.antixss.antixssencoder?redirectedfrom=MSDN&view=netframework-4.7.2
https://framework.zend.com/blog/2017-05-16-zend-escaper.html

OWASP Proactive Controls Documentation

22 Chapter 8. C4: Encode and Escape Data

CHAPTER 9

C5: Validate All Inputs

9.1 Description

Input validation is a programming technique that ensures only properly formatted data may enter a software system
component.

9.2 Syntax and Semantic Validity

An application should check that data is both syntactically and semantically valid (in that order) before using it in any
way (including displaying it back to the user).

Syntax validity means that the data is in the form that is expected. For example, an application may allow a user to
select a four-digit “account ID” to perform some kind of operation. The application should assume the user is entering
a SQL injection payload, and should check that the data entered by the user is exactly four digits in length, and consists
only of numbers (in addition to utilizing proper query parameterization).

Semantic validity includes only accepting input that is within an acceptable range for the given application functionality
and context. For example, a start date must be before an end date when choosing date ranges.

9.3 Whitelisting vs Blacklisting

There are two general approaches to performing input syntax validation, commonly known as blacklisting and
whitelisting:

• Blacklisting or blacklist validation attempts to check that given data does not contain “known bad” content. For
example, a web application may block input that contains the exact text <SCRIPT> in order to help prevent
XSS. However, this defense could be evaded with a lower case script tag or a script tag of mixed case.

• Whitelisting or whitelist validation attempts to check that a given data matches a set of “known good” rules. For
example a whitelist validation rule for a US state would be a 2-letter code that is only one of the valid US states.

23

OWASP Proactive Controls Documentation

When building secure software, whitelisting is the recommended minimal approach. Blacklisting is prone to error
and can be bypassed with various evasion techniques and can be dangerous when depended on by itself. Even though
blacklisting can often be evaded it can often useful to help detect obvious attacks. So while whitelisting helps limit the
attack surface by ensuring data is of the right syntactic and semantic validity, blacklisting helps detect and potentially
stop obvious attacks.

9.4 Client side and Server side Validation

Input validation must always be done on the server-side for security. While client side validation can be useful for
both functional and some security purposes it can often be easily bypassed. This makes server-side validation even
more fundamental to security. For example, JavaScript validation may alert the user that a particular field must consist
of numbers but the server side application must validate that the submitted data only consists of numbers in the
appropriate numerical range for that feature.

9.5 Regular Expressions

Regular expressions offer a way to check whether data matches a specific pattern. Let’s start with a basic example.

The following regular expression is used to define a whitelist rule to validate usernames.

^[a-z0-9_]{3,16}$

This regular expression allows only lowercase letters, numbers and the underscore character. The username is also
restricted to a length of 3 and 16 characters.

9.5.1 Caution: Potential for Denial of Service

Care should be exercised when creating regular expressions. Poorly designed expressions may result in potential
denial of service conditions (aka ReDoS). Various tools can test to verify that regular expressions are not vulnerable
to ReDoS.

9.5.2 Caution: Complexity

Regular expressions are just one way to accomplish validation. Regular expressions can be difficult to maintain or
understand for some developers. Other validation alternatives involve writing validation methods programmatically
which can be easier to maintain for some developers.

9.6 Limits of Input Validation

Input validation does not always make data “safe” since certain forms of complex input may be “valid” but still
dangerous. For example a valid email address may contain a SQL injection attack or a valid URL may contain
a Cross Site Scripting attack. Additional defenses besides input validation should always be applied to data such as
query parameterization or escaping.

24 Chapter 9. C5: Validate All Inputs

https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS

OWASP Proactive Controls Documentation

9.7 Challenges of Validating Serialized Data

Some forms of input are so complex that validation can only minimally protect the application. For example, it’s
dangerous to deserialize untrusted data or data that can be manipulated by an attacker. The only safe architectural
pattern is to not accept serialized objects from untrusted sources or to only deserialize in limited capacity for only
simple data types. You should avoid processing serialized data formats and use easier to defend formats such as JSON
when possible.

If that is not possible then consider a series of validation defenses when processing serialized data.

• Implement integrity checks or encryption of the serialized objects to prevent hostile object creation or data
tampering.

• Enforce strict type constraints during deserialization before object creation; typically code is expecting a defin-
able set of classes. Bypasses to this technique have been demonstrated.

• Isolate code that deserializes, such that it runs in very low privilege environments, such as temporary containers.

• Log security deserialization exceptions and failures, such as where the incoming type is not the expected type,
or the deserialization throws exceptions.

• Restrict or monitor incoming and outgoing network connectivity from containers or servers that deserialize.

• Monitor deserialization, alerting if a user deserializes constantly.

9.8 Unexpected User Input (Mass Assignment)

Some frameworks support automatic binding of HTTP requests parameters to server-side objects used by the applica-
tion. This auto-binding feature can allow an attacker to update server-side objects that were not meant to be modified.
The attacker can possibly modify their access control level or circumvent the intended business logic of the application
with this feature.

This attack has a number of names including: mass assignment, autobinding and object injection.

As a simple example, if the user object has a field privilege which specifies the user’s privilege level in the application,
a malicious user can look for pages where user data is modified and add privilege=admin to the HTTP parameters
sent. If auto-binding is enabled in an insecure fashion, the server-side object representing the user will be modified
accordingly.

Two approaches can be used to handle this:

• Avoid binding input directly and use Data Transfer Objects (DTOs) instead.

• Enable auto-binding but set up whitelist rules for each page or feature to define which fields are allowed to be
auto-bound.

More examples are available in the OWASP Mass Assignment Cheat Sheet.

9.9 Validating and Sanitizing HTML

Consider an application that needs to accept HTML from users (via a WYSIWYG editor that represents content as
HTML or features that directly accept HTML in input). In this situation validation or escaping will not help.

• Regular expressions are not expressive enough to understand the complexity of HTML5.

• Encoding or escaping HTML will not help since it will cause the HTML to not render properly.

9.7. Challenges of Validating Serialized Data 25

https://www.owasp.org/index.php/Mass_Assignment_Cheat_Sheet

OWASP Proactive Controls Documentation

Therefore, you need a library that can parse and clean HTML formatted text. Please see the XSS Prevention Cheat
Sheet on HTML Sanitization for more information on HTML Sanitization.

9.10 Validation Functionality in Libraries and Frameworks

All languages and most frameworks provide validation libraries or functions which should be leveraged to validate
data. Validation libraries typically cover common data types, length requirements, integer ranges, “is null” checks and
more. Many validation libraries and frameworks allow you to define your own regular expression or logic for custom
validation in a way that allows the programmer to leverage that functionality throughout your application. Examples
of validation functionality include PHP’s filter functions or the Hibernate Validator for Java. Examples of HTML
Sanitizers include Ruby on Rails sanitize method, OWASP Java HTML Sanitizer or DOMPurify.

9.11 Vulnerabilities Prevented

• Input validation reduces the attack surface of applications and can sometimes make attacks more difficult against
an application.

• Input validation is a technique that provides security to certain forms of data, specific to certain attacks and
cannot be reliably applied as a general security rule.

• Input validation should not be used as the primary method of preventing XSS, SQL Injection and other attacks.

9.12 References

• OWASP Cheat Sheet: Input Validation

• OWASP Cheat Sheet: iOS - Security Decisions via Untrusted Inputs

• OWASP Testing Guide: Testing for Input Validation

9.13 Tools

• OWASP Java HTML Sanitizer Project

• Java JSR-303/JSR-349 Bean Validation

• Java Hibernate Validator

• JEP-290 Filter Incoming Serialization Data

• Apache Commons Validator

• PHP’s filter functions

26 Chapter 9. C5: Validate All Inputs

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#RULE_.236_-_Sanitize_HTML_Markup_with_a_Library_Designed_for_the_Job
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#RULE_.236_-_Sanitize_HTML_Markup_with_a_Library_Designed_for_the_Job
https://secure.php.net/manual/en/filter.examples.validation.php
http://hibernate.org/validator/
http://edgeapi.rubyonrails.org/classes/ActionView/Helpers/SanitizeHelper.html
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://github.com/cure53/DOMPurify
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.owasp.org/index.php/IOS_Developer_Cheat_Sheet#Security_Decisions_via_Untrusted_Inputs_.28M7.29
https://www.owasp.org/index.php/Testing_for_Input_Validation
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer
http://beanvalidation.org/
http://hibernate.org/validator/
http://openjdk.java.net/jeps/290
https://commons.apache.org/proper/commons-validator/
https://secure.php.net/manual/en/book.filter.php

CHAPTER 10

C6: Implement Digital Identity

10.1 Description

Digital Identity is the unique representation of a user (or other subject) as they engage in an online transaction. Au-
thentication is the process of verifying that an individual or entity is who they claim to be. Session management is
a process by which a server maintains the state of the users authentication so that the user may continue to use the
system without re-authenticating. The NIST Special Publication 800-63B: Digital Identity Guidelines (Authentica-
tion and Lifecycle Management provides solid guidance on implementing digital identity, authentication and session
management controls.

Below are some recommendations for secure implementation.

10.2 Authentication Levels

NIST 800-63b describes three levels of a authentication assurance called a authentication assurance level (AAL).
AAL level 1 is reserved for lower-risk applications that do not contain PII or other private data. At AAL level 1 only
single-factor authentication is required, typically through the use of a password.

10.2.1 Level 1 : Passwords

Passwords are really really important. We need policy, we need to store them securely, we need to sometimes allow
users to reset them.

Password Requirements

Passwords should comply with the following requirements at the very least:

• be at least 8 characters in length if multi-factor authentication (MFA) and other controls are also used. If MFA
is not possible, this should be increased to at least 10 characters

• all printing ASCII characters as well as the space character should be acceptable in memorized secrets

27

https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html

OWASP Proactive Controls Documentation

• encourage the use of long passwords and passphrases

• remove complexity requirements as these have been found to be of limited effectiveness. Instead, the adoption
of MFA or longer password lengths is recommended

• ensure that passwords used are not commonly used passwords that have been already been leaked in a previ-
ous compromise. You may choose to block the top 1000 or 10000 most common passwords which meet the
above length requirements and are found in compromised password lists. The following link contains the most
commonly found passwords: https://github.com/danielmiessler/SecLists/tree/master/Passwords

Implement Secure Password Recovery Mechanism

It is common for an application to have a mechanism for a user to gain access to their account in the event they
forget their password. A good design workflow for a password recovery feature will use multi-factor authentication
elements. For example, it may ask a security question - something they know, and then send a generated token to a
device - something they own.

Please see the Forgot_Password_Cheat_Sheet and Choosing_and_Using_Security_Questions_Cheat_Sheet for further
details.

Implement Secure Password Storage

In order to provide strong authentication controls, an application must securely store user credentials. Furthermore,
cryptographic controls should be in place such that if a credential (e.g., a password) is compromised, the attacker does
not immediately have access to this information.

PHP Example for Password Storage

Below is an example for secure password hashing in PHP using password_hash() function (available since 5.5.0)
which defaults to using the bcrypt algorithm. The example uses a work factor of 15.

<?php
$cost = 15;
$password_hash = password_hash("secret_password", PASSWORD_DEFAULT, ["cost" => $cost]
→˓);
?>

Please see the OWASP Password Storage Cheat Sheet for further details.

10.2.2 Level 2 : Multi-Factor Authentication

NIST 800-63b AAL level 2 is reserved for higher-risk applications that contain “self-asserted PII or other personal
information made available online.” At AAL level 2 multi-factor authentication is required including OTP or other
forms of multi-factor implementation.

Multi-factor authentication (MFA) ensures that users are who they claim to be by requiring them to identify themselves
with a combination of:

• Something you know – password or PIN

• Something you own – token or phone

• Something you are – biometrics, such as a fingerprint

28 Chapter 10. C6: Implement Digital Identity

https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

OWASP Proactive Controls Documentation

Using passwords as a sole factor provides weak security. Multi-factor solutions provide a more robust solution by
requiring an attacker to acquire more than one element to authenticate with the service.

It is worth noting that biometrics, when employed as a single factor of authentication, are not considered acceptable
secrets for digital authentication. They can be obtained online or by taking a picture of someone with a camera phone
(e.g., facial images) with or without their knowledge, lifted from objects someone touches (e.g., latent fingerprints),
or captured with high resolution images (e.g., iris patterns). Biometrics must be used only as part of multi-factor
authentication with a physical authenticator (something you own). For example, accessing a multi-factor one-time
password (OTP) device that will generate a one-time password that the user manually enters for the verifier.

10.2.3 Level 3 : Cryptographic Based Authentication

NIST 800-63b Authentication Assurance Level 3 (AAL3) is required when the impact of compromised systems could
lead to personal harm, significant financial loss, harm the public interest or involve civil or criminal violations. AAL3
requires authentication that is “based on proof of possession of a key through a cryptographic protocol.” This type
of authentication is used to achieve the strongest level of authentication assurance. This is typically done though
hardware cryptographic modules.

10.3 Session Management

Once the initial successful user authentication has taken place, an application may choose to track and maintain this
authentication state for a limited amount of time. This will allow the user to continue using the application without
having to keep re-authentication with each request. Tracking of this user state is called Session Management.

10.3.1 Session Generation and Expiration

User state is tracked in a session. This session is typically stored on the server for traditional web based session
management. A session identifier is then given to the user so the user can identify which server-side session contains
the correct user data. The client only needs to maintain this session identifier, which also keeps sensitive server-side
session data off of the client.

Here are a few controls to consider when building or implementing session management solutions:

• Ensure that the session id is long, unique and random.

• The application should generate a new session or at least rotate the session id during authentication and re-
authentication.

• The application should implement an idle timeout after a period of inactivity and an absolute maximum life-
time for each session, after which users must re-authenticate. The length of the timeouts should be inversely
proportional with the value of the data protected.

Please see the Session Management Cheat Sheet further details. ASVS Section 3 covers additional session manage-
ment requirements.

10.3.2 Browser Cookies

Browser cookies are a common method for web application to store session identifiers for web applications imple-
menting standard session management techniques. Here are some defenses to consider when using browser cookies.

• When browser cookies are used as the mechanism for tracking the session of an authenticated user, these should
be accessible to a minimum set of domains and paths and should be tagged to expire at, or soon after, the
session’s validity period.

10.3. Session Management 29

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

OWASP Proactive Controls Documentation

• The ‘secure’ flag should be set to ensure the transfer is done via secure channel only (TLS).

• HttpOnly flag should be set to prevent the cookie from being accessed via JavaScript.

• Adding “samesite” attributes to cookies prevents some modern browsers from sending cookies with cross-site
requests and provides protection against cross-site request forgery and information leakage attacks.

10.3.3 Tokens

Server-side sessions can be limiting for some forms of authentication. “Stateless services” allow for client side man-
agement of session data for performance purposes so they server has less of a burden to store and verify user session.
These “stateless” applications generate a short-lived access token which can be used to authenticate a client request
without sending the user’s credentials after the initial authentication.

10.3.4 JWT (JSON Web Tokens)

JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and self-contained way for securely
transmitting information between parties as a JSON object. This information can be verified and trusted because it is
digitally signed. A JWT token is created during authentication and is verified by the server (or servers) before any
processing.

However, JWT’s are often not saved by the server after initial creation. JWT’s are typically created and then handed
to a client without being saved by the server in any way. The integrity of the token is maintained through the use of
digital signatures so a server can later verify that the JWT is still valid and was not tampered with since its creation.

This approach is both stateless and portable in the way that client and server technologies can be different yet still
interact.

10.4 Caution

Digital identity, authentication and session management are very big topics. We’re scratching the surface of the topic
of Digital Identity here. Ensure that your most capable engineering talent is responsible for maintaining the complexity
involved with most Identity solutions.

10.5 Vulnerabilities Prevented

• OWASP Top 10 2017 A2- Broken Authentication and Session Management

• OWASP Mobile Top 10 2014-M5- Poor Authorization and Authentication

10.6 References

• OWASP Cheat Sheet: Authentication

• OWASP Cheat Sheet: Password Storage

• OWASP Cheat Sheet: Forgot Password

• OWASP Cheat Sheet: Choosing and Using Security Questions

• OWASP Cheat Sheet: Session Management

30 Chapter 10. C6: Implement Digital Identity

https://www.owasp.org/index.php/SameSite
https://caniuse.com/#search=samesite
https://tools.ietf.org/html/rfc7519
https://www.owasp.org/index.php/Top_10-2017_A2-Broken_Authentication
https://www.owasp.org/index.php/Mobile_Top_10_2014-M5
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

OWASP Proactive Controls Documentation

• OWASP Cheat Sheet: IOS Developer

• OWASP Testing Guide: Testing for Authentication

• NIST Special Publication 800-63 Revision 3 - Digital Identity Guidelines

10.7 Tools

• Daniel Miessler: Most commonly found passwords

10.7. Tools 31

https://www.owasp.org/index.php/IOS_Developer_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_authentication
https://pages.nist.gov/800-63-3/sp800-63-3.html
https://github.com/danielmiessler/SecLists/tree/master/Passwords

OWASP Proactive Controls Documentation

32 Chapter 10. C6: Implement Digital Identity

CHAPTER 11

C7: Enforce Access Controls

11.1 Description

Access Control (or Authorization) is the process of granting or denying specific requests from a user, program, or
process. Access control also involves the act of granting and revoking those privileges.

It should be noted that authorization (verifying access to specific features or resources) is not equivalent to authenti-
cation (verifying identity).

Access Control functionality often spans many areas of software depending on the complexity of the access control
system. For example, managing access control metadata or building caching for scalability purposes are often addi-
tional components in an access control system that need to be built or managed. There are several different types of
access control design that should be considered.

• Discretionary Access Control (DAC) is a means of restricting access to objects (e.g., files, data entities) based
on the identity and need-to-know of subjects (e.g., users, processes) and/or groups to which the object belongs.

• Mandatory Access Control (MAC) is a means of restricting access to system resources based on the sensitivity
(as represented by a label) of the information contained in the system resource and the formal authorization (i.e.,
clearance) of users to access information of such sensitivity.

• Role Based Access Control (RBAC) is a model for controlling access to resources where permitted actions on
resources are identified with roles rather than with individual subject identities.

• Attribute Based Access Control (ABAC) will grant or deny user requests based on arbitrary attributes of the
user and arbitrary attributes of the object, and environment conditions that may be globally recognized and
more relevant to the policies at hand.

11.2 Access Control Design Principles

The following “positive” access control design requirements should be considered at the initial stages of application
development.

33

OWASP Proactive Controls Documentation

11.2.1 1) Design Access Control Thoroughly Up Front

Once you have chosen a specific access control design pattern, it is often difficult and time consuming to re-engineer
access control in your application with a new pattern. Access Control is one of the main areas of application security
design that must be thoroughly designed up front, especially when addressing requirements like multi-tenancy and
horizontal (data dependent) access control.

Access Control design may start simple but can often grow into a complex and feature-heavy security control. When
evaluating access control capability of software frameworks, ensure that your access control functionality will allow
for customization for your specific access control feature need.

11.2.2 2) Force All Requests to Go Through Access Control Checks

Ensure that all request go through some kind of access control verification layer. Technologies like Java filters or other
automatic request processing mechanisms are ideal programming artifacts that will help ensure that all requests go
through some kind of access control check.

11.2.3 3) Deny by Default

Deny by default is the principle that if a request is not specifically allowed, it is denied. There are many ways that this
rule will manifest in application code. Some examples of these are:

1. Application code may throw an error or exception while processing access control requests. In these cases
access control should always be denied.

2. When an administrator creates a new user or a user registers for a new account, that account should have minimal
or no access by default until that access is configured.

3. When a new feature is added to an application all users should be denied to use that feature until it’s properly
configured.

11.2.4 4) Principle of Least Privilege

Ensure that all users, programs, or processes are only given as least or as little necessary access as possible. Be wary
of systems that do not provide granular access control configuration capabilities.

11.2.5 5) Don’t Hardcode Roles

Many application frameworks default to access control that is role based. It is common to find application code that is
filled with checks of this nature.

if (user.hasRole("ADMIN")) || (user.hasRole("MANAGER")) {
deleteAccount();

}

Be careful about this type of role-based programming in code. It has the following limitations or dangers.

• Role based programming of this nature is fragile. It is easy to create incorrect or missing role checks in code.

• Role based programming does not allow for multi-tenancy. Extreme measures like forking the code or added
checks for each customer will be required to allow role based systems to have different rules for different
customers.

• Role based programming does not allow for data-specific or horizontal access control rules.

34 Chapter 11. C7: Enforce Access Controls

OWASP Proactive Controls Documentation

• Large codebases with many access control checks can be difficult to audit or verify the overall application access
control policy.

Instead, please consider the following access control programming methodology:

if (user.hasAccess("DELETE_ACCOUNT")) {
deleteAccount();

}

Attribute or feature-based access control checks of this nature are the starting point to building well-designed and
feature-rich access control systems. This type of programming also allows for greater access control customization
capability over time.

11.2.6 6) Log All Access Control Events

All access control failures should be logged as these may be indicative of a malicious user probing the application for
vulnerabilities.

11.3 Vulnerabilities Prevented

• OWASP Top 10 2017-A5-Broken Access Control

• OWASP Mobile Top 10 2014-M5 Poor Authorization and Authentication

11.4 References

• OWASP Cheat Sheet: Access Control

• OWASP Cheat Sheet: iOS Developer - Poor Authorization and Authentication

• OWASP Testing Guide: Testing for Authorization

11.5 Tools

• OWASP ZAP with the optional Access Control Testing add-on

11.3. Vulnerabilities Prevented 35

https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control
https://www.owasp.org/index.php/Mobile_Top_10_2014-M5
https://www.owasp.org/index.php/Access_Control_Cheat_Sheet
https://www.owasp.org/index.php/IOS_Developer_Cheat_Sheet#Remediations_5
https://www.owasp.org/index.php/Testing_for_Authorization
https://www.owasp.org/index.php/ZAP
https://github.com/zaproxy/zap-extensions/wiki/HelpAddonsAccessControlConcepts

OWASP Proactive Controls Documentation

36 Chapter 11. C7: Enforce Access Controls

CHAPTER 12

C8: Protect Data Everywhere

12.1 Description

Sensitive data such as passwords, credit card numbers, health records, personal information and business secrets
require extra protection, particularly if that data falls under privacy laws (EU’s General Data Protection Regulation
GDPR), financial data protection rules such as PCI Data Security Standard (PCI DSS) or other regulations

Attackers can steal data from web and webservice applications in a number of ways. For example, if sensitive informa-
tion in sent over the internet without communications security, then an attacker on a shared wireless connection could
see and steal another user’s data. Also, an attacker could use SQL Injection to steal passwords and other credentials
from an applications database and expose that information to the public.

12.2 Data Classification

It’s critical to classify data in your system and determine which level of sensitivity each piece of data belongs to.
Each data category can then be mapped to protection rules necessary for each level of sensitivity. For example, public
marketing information that is not sensitive may be categorized as public data which is ok to place on the public website.
Credit card numbers may be classified as private user data which may need to be encrypted while stored or in transit.

12.3 Encrypting Data in Transit

When transmitting sensitive data over any network, end-to-end communications security (or encryption-in-transit) of
some kind should be considered. TLS is by far the most common and widely supported cryptographic protocol for
communications security. It is used by many types of applications (web, webservice, mobile) to communicate over a
network in a secure fashion. TLS must be properly configured in a variety of ways in order to properly defend secure
communications.

The primary benefit of transport layer security is the protection of web application data from unauthorized disclosure
and modification when it is transmitted between clients (web browsers) and the web application server, and between
the web application server and back end and other non-browser based enterprise components.

37

OWASP Proactive Controls Documentation

12.4 Encrypting Data at Rest

The first rule of sensitive data management is to avoid storing sensitive data when at all possible. If you must store
sensitive data then make sure it’s cryptographically protected in some way to avoid unauthorized disclosure and mod-
ification.

Cryptography (or crypto) is one of the more advanced topics of information security, and one whose understanding
requires the most schooling and experience. It is difficult to get right because there are many approaches to encryp-
tion, each with advantages and disadvantages that need to be thoroughly understood by web solution architects and
developers. In addition, serious cryptography research is typically based in advanced mathematics and number theory,
providing a serious barrier to entry.

Instead of building cryptographic capability from scratch, it is strongly recommended that peer reviewed and open
solutions be used, such as the Google Tink project, Libsodium, and secure storage capability built into many software
frameworks and cloud services.

12.4.1 Mobile Application: Secure Local Storage

Mobile applications are at particular risk of data leakage because mobile devices are regularly lost or stolen yet contain
sensitive data.

As a general rule, only the minimum data required should be stored on the mobile device. But if you must store
sensitive data on a mobile device, then sensitive data should be stored within each mobile operating systems specific
data storage directory. On Android this will be the Android keystore and on iOS this will be the iOS keychain.

12.4.2 Key Lifecycle

Secret keys are used in applications number of sensitive functions. For example, secret keys can be used to to sign
JWTs, protect credit cards, provide various forms of authentication as well as facilitation other sensitive security
features. In managing keys, a number of rules should be followed including:

• Ensure that any secret key is protected from unauthorized access

• Store keys in a proper secrets vault as described below

• Use independent keys when multiple keys are required

• Build support for changing algorithms and keys when needed

• Build application features to handle a key rotation

12.4.3 Application Secrets Management

Applications contain numerous “secrets” that are needed for security operations. These include certificates, SQL
connection passwords, third party service account credentials, passwords, SSH keys, encryption keys and more. The
unauthorized disclosure or modification of these secrets could lead to complete system compromise. In managing
application secrets, consider the following.

• Don’t store secrets in code, config files or pass them through environment variables. Use tools like GitRob or
TruffleHog to scan code repos for secrets.

• Keep keys and your other application-level secrets in a secrets vault like KeyWhiz or Hashicorp’s Vault project
or Amazon KMS to provide secure storage and access to application-level secrets at run-time.

38 Chapter 12. C8: Protect Data Everywhere

https://github.com/google/tink
https://www.libsodium.org
https://github.com/michenriksen/gitrob
https://github.com/dxa4481/truffleHog
https://github.com/square/keywhiz
https://www.vaultproject.io/
https://aws.amazon.com/kms/

OWASP Proactive Controls Documentation

12.5 Vulnerabilities Prevented

• OWASP Top 10 2017 - A3: Sensitive Data Exposure

• OWASP Mobile Top 10 2014-M2 Insecure Data Storage

12.6 References

• OWASP Cheat Sheet: Transport Layer Protection

• Ivan Ristic: SSL/TLS Deployment Best Practices

• OWASP Cheat Sheet: HSTS

• OWASP Cheat Sheet: Cryptographic Storage

• OWASP Cheat Sheet: Password Storage

• OWASP Cheat Sheet: IOS Developer - Insecure Data Storage

• OWASP Testing Guide: Testing for TLS

12.7 Tools

• SSLyze - SSL configuration scanning library and CLI tool

• SSLLabs - Free service for scanning and checking TLS/SSL configuration

• OWASP O-Saft TLS Tool - TLS connection testing tool

• GitRob - Command line tool to find sensitive information in publicly available files on GitHub

• TruffleHog - Searches for secrets accidentally committed

• KeyWhiz - Secrets manager

• Hashicorp Vault - Secrets manager

• Amazon KMS - Manage keys on Amazon AWS

12.5. Vulnerabilities Prevented 39

https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Mobile_Top_10_2014-M2
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.ssllabs.com/projects/best-practices/index.html
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/IOS_Developer_Cheat_Sheet#Insecure_Data_Storage_.28M1.29
https://www.owasp.org/index.php/Testing_for_Weak_SSL/TLS_Ciphers,_Insufficient_Transport_Layer_Protection_(OTG-CRYPST-001)
https://github.com/nabla-c0d3/sslyze
https://www.ssllabs.com/ssltest/
https://www.owasp.org/index.php/O-Saft
https://github.com/michenriksen/gitrob
https://github.com/dxa4481/truffleHog
https://github.com/square/keywhiz
https://www.vaultproject.io/
https://aws.amazon.com/kms/

OWASP Proactive Controls Documentation

40 Chapter 12. C8: Protect Data Everywhere

CHAPTER 13

C9: Implement Security Logging and Monitoring

13.1 Description

Logging is a concept that most developers already use for debugging and diagnostic purposes. Security logging is an
equally basic concept: to log security information during the runtime operation of an application. Monitoring is the
live review of application and security logs using various forms of automation. The same tools and patterns can be
used for operations, debugging and security purposes.

13.2 Benefits of Security Logging

Security logging can be used for:

1. Feeding intrusion detection systems

2. Forensic analysis and investigations

3. Satisfying regulatory compliance requirements

13.3 Security Logging Implementation

The following is a list of security logging implementation best practices.

• Follow a common logging format and approach within the system and across systems of an organization. An
example of a common logging framework is the Apache Logging Services which helps provide logging consis-
tency between Java, PHP, .NET, and C++ applications.

• Do not log too much or too little. For example, make sure to always log the timestamp and identifying informa-
tion including the source IP and user-id, but be careful not to log private or confidential data.

• Pay close attention to time syncing across nodes to ensure that timestamps are consistent.

41

OWASP Proactive Controls Documentation

13.3.1 Logging for Intrusion Detection and Response

Use logging to identify activity that indicates that a user is behaving maliciously. Potentially malicious activity to log
includes:

• Submitted data that is outside of an expected numeric range.

• Submitted data that involves changes to data that should not be modifiable (select list, checkbox or other limited
entry component).

• Requests that violate server-side access control rules.

• A more comprehensive list of possible detection points is available here.

When your application encounters such activity, your application should at the very least log the activity and mark it
as a high severity issue. Ideally, your application should also respond to a possible identified attack, by for example
invalidating the user’s session and locking the user’s account. The response mechanisms allows the software to react
in realtime to possible identified attacks.

13.4 Secure Logging Design

Logging solutions must be built and managed in a secure way. Secure Logging design may include the following:

• Encode and validate any dangerous characters before logging to prevent log injection or log forging attacks.

• Do not log sensitive information. For example, do not log password, session ID, credit cards, or social security
numbers.

• Protect log integrity. An attacker may attempt to tamper with the logs. Therefore, the permission of log files
and log changes audit should be considered.

• Forward logs from distributed systems to a central, secure logging service. This will sure log data cannot be lost
if one node is compromised. This also allows for centralized monitoring.

13.5 References

• OWASP AppSensor Detection Points - Detection points used to identify a malicious user probing for vulnera-
bilities or weaknesses in application.

• OWASP Log injection

• OWASP Log forging

• OWASP Cheat Sheet: Logging How to properly implement logging in an application

• OWASP Development Guide: Logging

• OWASP Code Review Guide: Reviewing Code for Logging Issues

13.6 Tools

• OWASP Security Logging Project

• Apache Logging Services

42 Chapter 13. C9: Implement Security Logging and Monitoring

https://www.owasp.org/index.php/AppSensor_DetectionPoints
https://www.owasp.org/index.php/Log_Injection
https://www.owasp.org/index.php/Log_Forging
https://www.owasp.org/index.php/AppSensor_DetectionPoints
https://www.owasp.org/index.php/Log_Injection
https://www.owasp.org/index.php/Log_Forging
https://www.owasp.org/index.php/Logging_Cheat_Sheet
https://www.owasp.org/index.php/Error_Handling,_Auditing_and_Logging#Logging
https://www.owasp.org/index.php/Reviewing_Code_for_Logging_Issues
https://www.owasp.org/index.php/OWASP_Security_Logging_Project
https://logging.apache.org/

CHAPTER 14

C10: Handle all Errors and Exceptions

14.1 Description

Exception handling is a programming concept that allows an application to respond to different error states (like
network down, or database connection failed, etc) in various ways. Handling exceptions and errors correctly is critical
to making your code reliable and secure.

Error and exception handling occurs in all areas of an application including critical business logic as well as security
features and framework code.

Error handling is also important from an intrusion detection perspective. Certain attacks against your application may
trigger errors which can help detect attacks in progress.

14.2 Error Handling Mistakes

Researchers at the University of Toronto have found that even small mistakes in error handling or forgetting to handle
errors can lead to catastrophic failures in distributed systems.

Mistakes in error handling can lead to different kinds of security vulnerabilities.

• Information leakage: Leaking sensitive information in error messages can unintentionally help attackers. For
example, an error that returns a stack trace or other internal error details can provide an attacker with information
about your environment. Even small differences in handling different error conditions (e.g., returning “invalid
user” or “invalid password” on authentication errors) can provide valuable clues to attackers. As described
above, be sure to log error details for forensics and debugging purposes, but don’t expose this information,
especially to an external client.

• TLS bypass: The Apple goto “fail bug” was a control-flow error in error handling code that lead to a complete
compromise of TLS connections on apple systems.

• DOS: A lack of basic error handling can lead to system shutdown. This is usually a fairly easy vulnerability for
attackers to exploit. Other error handling problems could lead to increased usage of CPU or disk in ways that
could degrade the system.

43

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf
https://www.dwheeler.com/essays/apple-goto-fail.html

OWASP Proactive Controls Documentation

14.3 Positive Advice

• Manage exceptions in a centralized manner to avoid duplicated try/catch blocks in the code. Ensure that all
unexpected behavior is correctly handled inside the application.

• Ensure that error messages displayed to users do not leak critical data, but are still verbose enough to enable the
proper user response.

• Ensure that exceptions are logged in a way that gives enough information for support, QA, forensics or incident
response teams to understand the problem.

• Carefully test and verify error handling code.

14.4 References

• OWASP Code Review Guide: Error Handling

• OWASP Testing Guide: Testing for Error Handling

• OWASP Improper Error Handling

• CWE 209: Information Exposure Through an Error Message

• CWE 391: Unchecked Error Condition

14.5 Tools

• Error Prone - A static analysis tool from Google to catch common mistakes in error handling for Java developers

• One of the most famous automated tools for finding errors at runtime is Netflix’s Chaos Monkey, which inten-
tionally disables system instances to ensure that the overall service will recover correctly.

44 Chapter 14. C10: Handle all Errors and Exceptions

https://www.owasp.org/index.php/Error_Handling#Centralised_exception_handling_.28Struts_Example.29
https://www.owasp.org/index.php/Error_Handling
https://www.owasp.org/index.php/Testing_for_Error_Handling
https://www.owasp.org/index.php/Improper_Error_Handling
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/391.html
http://errorprone.info/
https://github.com/Netflix/SimianArmy

CHAPTER 15

Final word

This document should be seen as a starting point rather than a comprehensive set of techniques and practices. We want
to again emphasize that this document is intended to provide initial awareness around building secure software.

Good next steps to help build an application security program include:

1. To understand some of the risks in web application security please review the OWASP Top Ten and the OWASP
Mobile Top Ten.

2. Per Proactive Control #1, a secure development program should include a comprehensive list of security require-
ments based on a standard such as the OWASP (Web) ASVS and the OWASP (Mobile) MASVS.

3. To understand the core building blocks of a secure software program from a more macro point of view please
review the OWASP OpenSAMM project.

If you have any questions for the project leadership team please sign up for our mailing list at https://lists.owasp.org/
mailman/listinfo/owasp_proactive_controls.

45

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://github.com/OWASP/owasp-masvs
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://lists.owasp.org/mailman/listinfo/owasp_proactive_controls
https://lists.owasp.org/mailman/listinfo/owasp_proactive_controls

OWASP Proactive Controls Documentation

46 Chapter 15. Final word

	About OWASP
	FOREWORD
	DOCUMENT STRUCTURE
	INTRODUCTION
	C1: Define Security Requirements
	C2: Leverage Security Frameworks and Libraries
	C3: Secure Database Access
	C4: Encode and Escape Data
	C5: Validate All Inputs
	C6: Implement Digital Identity
	C7: Enforce Access Controls
	C8: Protect Data Everywhere
	C9: Implement Security Logging and Monitoring
	C10: Handle all Errors and Exceptions
	Final word

