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CHAPTER 1

Open vSwitch Documentation

1.1 How the Documentation is Organised

The Open vSwitch documentation is organised into multiple sections:

• Installation guides guide you through installing Open vSwitch (OVS) on a variety of different platforms

• Tutorials take you through a series of steps to configure OVS in sandboxed environments

• Topic guides provide a high level overview of OVS internals and operation

• How-to guides are recipes or use-cases for OVS. They are more advanced than the tutorials.

• Frequently Asked Questions provide general insight into a variety of topics related to configuration and operation
of OVS.

1.2 First Steps

Getting started with Open vSwitch (OVS)? Start here.

• Overview: What Is Open vSwitch? | Why Open vSwitch?

• Install: Open vSwitch on Linux, FreeBSD and NetBSD | Open vSwitch without Kernel Support | Open vSwitch
on NetBSD | Open vSwitch on Windows | Open vSwitch on Citrix XenServer | Open vSwitch with DPDK | Open
vSwitch with AF_XDP | Installation FAQs

• Tutorials: OVS Faucet Tutorial | Open vSwitch Advanced Features | OVS Conntrack Tutorial | OVS IPsec
Tutorial |

1.3 Deeper Dive

• Architecture Design Decisions In Open vSwitch | OpenFlow Support in Open vSwitch | Integration Guide for
Centralized Control | Porting Open vSwitch to New Software or Hardware | Open vSwitch Extensions

1
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• DPDK Using Open vSwitch with DPDK | DPDK vHost User Ports

• Windows OVS-on-Hyper-V Design

• Integrations: Language Bindings

• Reference Guides: Reference Guide

• Testing Testing Fuzzing

• Packaging: Debian Packaging for Open vSwitch | RHEL 5.6, 6.x Packaging for Open vSwitch | Fedora, RHEL
7.x Packaging for Open vSwitch

1.4 The Open vSwitch Project

Learn more about the Open vSwitch project and about how you can contribute:

• Community: Open vSwitch Release Process | Authors | Mailing Lists | Patchwork | Reporting Bugs in Open
vSwitch | Open vSwitch’s Security Process

• Contributing: Submitting Patches | Backporting patches | Open vSwitch Coding Style | Open vSwitch Windows
Datapath Coding Style

• Maintaining: The Linux Foundation Open vSwitch Project Charter | Committers | Expectations for Developers
with Open vSwitch Repo Access | OVS Committer Grant/Revocation Policy | Emeritus Status for OVS Committers

• Documentation: Open vSwitch Documentation Style | Building Open vSwitch Documentation | How Open
vSwitch’s Documentation Works

1.5 Getting Help

• Seeing an issue of potential bug? Report problems to bugs@openvswitch.org

• Looking for specific information? Try the genindex, modindex or the detailed table of contents.

2 Chapter 1. Open vSwitch Documentation
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CHAPTER 2

Getting Started

How to get started with Open vSwitch.
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2.1 What Is Open vSwitch?

2.1.1 Overview

Open vSwitch is a multilayer software switch licensed under the open source Apache 2 license. Our goal is to im-
plement a production quality switch platform that supports standard management interfaces and opens the forwarding
functions to programmatic extension and control.

Open vSwitch is well suited to function as a virtual switch in VM environments. In addition to exposing standard
control and visibility interfaces to the virtual networking layer, it was designed to support distribution across multiple
physical servers. Open vSwitch supports multiple Linux-based virtualization technologies including Xen/XenServer,
KVM, and VirtualBox.

The bulk of the code is written in platform-independent C and is easily ported to other environments. The current
release of Open vSwitch supports the following features:

• Standard 802.1Q VLAN model with trunk and access ports

• NIC bonding with or without LACP on upstream switch
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• NetFlow, sFlow(R), and mirroring for increased visibility

• QoS (Quality of Service) configuration, plus policing

• Geneve, GRE, VXLAN, STT, and LISP tunneling

• 802.1ag connectivity fault management

• OpenFlow 1.0 plus numerous extensions

• Transactional configuration database with C and Python bindings

• High-performance forwarding using a Linux kernel module

The included Linux kernel module supports Linux 3.10 and up.

Open vSwitch can also operate entirely in userspace without assistance from a kernel module. This userspace imple-
mentation should be easier to port than the kernel-based switch. OVS in userspace can access Linux or DPDK devices.
Note Open vSwitch with userspace datapath and non DPDK devices is considered experimental and comes with a cost
in performance.

2.1.2 What’s here?

The main components of this distribution are:

• ovs-vswitchd, a daemon that implements the switch, along with a companion Linux kernel module for flow-
based switching.

• ovsdb-server, a lightweight database server that ovs-vswitchd queries to obtain its configuration.

• ovs-dpctl, a tool for configuring the switch kernel module.

• Scripts and specs for building RPMs for Citrix XenServer and Red Hat Enterprise Linux. The XenServer RPMs
allow Open vSwitch to be installed on a Citrix XenServer host as a drop-in replacement for its switch, with
additional functionality.

• ovs-vsctl, a utility for querying and updating the configuration of ovs-vswitchd.

• ovs-appctl, a utility that sends commands to running Open vSwitch daemons.

Open vSwitch also provides some tools:

• ovs-ofctl, a utility for querying and controlling OpenFlow switches and controllers.

• ovs-pki, a utility for creating and managing the public-key infrastructure for OpenFlow switches.

• ovs-testcontroller, a simple OpenFlow controller that may be useful for testing (though not for production).

• A patch to tcpdump that enables it to parse OpenFlow messages.

2.2 Why Open vSwitch?

Hypervisors need the ability to bridge traffic between VMs and with the outside world. On Linux-based hypervisors,
this used to mean using the built-in L2 switch (the Linux bridge), which is fast and reliable. So, it is reasonable to ask
why Open vSwitch is used.

The answer is that Open vSwitch is targeted at multi-server virtualization deployments, a landscape for which the
previous stack is not well suited. These environments are often characterized by highly dynamic end-points, the main-
tenance of logical abstractions, and (sometimes) integration with or offloading to special purpose switching hardware.

The following characteristics and design considerations help Open vSwitch cope with the above requirements.

2.2. Why Open vSwitch? 5
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2.2.1 The mobility of state

All network state associated with a network entity (say a virtual machine) should be easily identifiable and migratable
between different hosts. This may include traditional “soft state” (such as an entry in an L2 learning table), L3
forwarding state, policy routing state, ACLs, QoS policy, monitoring configuration (e.g. NetFlow, IPFIX, sFlow), etc.

Open vSwitch has support for both configuring and migrating both slow (configuration) and fast network state between
instances. For example, if a VM migrates between end-hosts, it is possible to not only migrate associated configuration
(SPAN rules, ACLs, QoS) but any live network state (including, for example, existing state which may be difficult to
reconstruct). Further, Open vSwitch state is typed and backed by a real data-model allowing for the development of
structured automation systems.

2.2.2 Responding to network dynamics

Virtual environments are often characterized by high-rates of change. VMs coming and going, VMs moving backwards
and forwards in time, changes to the logical network environments, and so forth.

Open vSwitch supports a number of features that allow a network control system to respond and adapt as the environ-
ment changes. This includes simple accounting and visibility support such as NetFlow, IPFIX, and sFlow. But perhaps
more useful, Open vSwitch supports a network state database (OVSDB) that supports remote triggers. Therefore, a
piece of orchestration software can “watch” various aspects of the network and respond if/when they change. This is
used heavily today, for example, to respond to and track VM migrations.

Open vSwitch also supports OpenFlow as a method of exporting remote access to control traffic. There are a number
of uses for this including global network discovery through inspection of discovery or link-state traffic (e.g. LLDP,
CDP, OSPF, etc.).

2.2.3 Maintenance of logical tags

Distributed virtual switches (such as VMware vDS and Cisco’s Nexus 1000V) often maintain logical context within
the network through appending or manipulating tags in network packets. This can be used to uniquely identify a VM
(in a manner resistant to hardware spoofing), or to hold some other context that is only relevant in the logical domain.
Much of the problem of building a distributed virtual switch is to efficiently and correctly manage these tags.

Open vSwitch includes multiple methods for specifying and maintaining tagging rules, all of which are accessible
to a remote process for orchestration. Further, in many cases these tagging rules are stored in an optimized form so
they don’t have to be coupled with a heavyweight network device. This allows, for example, thousands of tagging or
address remapping rules to be configured, changed, and migrated.

In a similar vein, Open vSwitch supports a GRE implementation that can handle thousands of simultaneous GRE
tunnels and supports remote configuration for tunnel creation, configuration, and tear-down. This, for example, can be
used to connect private VM networks in different data centers.

2.2.4 Hardware integration

Open vSwitch’s forwarding path (the in-kernel datapath) is designed to be amenable to “offloading” packet processing
to hardware chipsets, whether housed in a classic hardware switch chassis or in an end-host NIC. This allows for the
Open vSwitch control path to be able to both control a pure software implementation or a hardware switch.

There are many ongoing efforts to port Open vSwitch to hardware chipsets. These include multiple merchant silicon
chipsets (Broadcom and Marvell), as well as a number of vendor-specific platforms. The “Porting” section in the
documentation discusses how one would go about making such a port.
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The advantage of hardware integration is not only performance within virtualized environments. If physical switches
also expose the Open vSwitch control abstractions, both bare-metal and virtualized hosting environments can be
managed using the same mechanism for automated network control.

2.2.5 Summary

In many ways, Open vSwitch targets a different point in the design space than previous hypervisor networking stacks,
focusing on the need for automated and dynamic network control in large-scale Linux-based virtualization environ-
ments.

The goal with Open vSwitch is to keep the in-kernel code as small as possible (as is necessary for performance) and
to re-use existing subsystems when applicable (for example Open vSwitch uses the existing QoS stack). As of Linux
3.3, Open vSwitch is included as a part of the kernel and packaging for the userspace utilities are available on most
popular distributions.

2.3 Installing Open vSwitch

A collection of guides detailing how to install Open vSwitch in a variety of different environments and using different
configurations.

2.3.1 Installation from Source

Open vSwitch on Linux, FreeBSD and NetBSD

This document describes how to build and install Open vSwitch on a generic Linux, FreeBSD, or NetBSD host. For
specifics around installation on a specific platform, refer to one of the other installation guides listed in Installing Open
vSwitch.

Obtaining Open vSwitch Sources

The canonical location for Open vSwitch source code is its Git repository, which you can clone into a directory named
“ovs” with:

$ git clone https://github.com/openvswitch/ovs.git

Cloning the repository leaves the “master” branch initially checked out. This is the right branch for general devel-
opment. If, on the other hand, if you want to build a particular released version, you can check it out by running a
command such as the following from the “ovs” directory:

$ git checkout v2.7.0

The repository also has a branch for each release series. For example, to obtain the latest fixes in the Open vSwitch
2.7.x release series, which might include bug fixes that have not yet been in any released version, you can check it out
from the “ovs” directory with:

$ git checkout origin/branch-2.7

If you do not want to use Git, you can also obtain tarballs for Open vSwitch release versions via http://openvswitch.
org/download/, or download a ZIP file for any snapshot from the web interface at https://github.com/openvswitch/ovs.

2.3. Installing Open vSwitch 7
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Build Requirements

To compile the userspace programs in the Open vSwitch distribution, you will need the following software:

• GNU make

• A C compiler, such as:

– GCC 4.6 or later.

– Clang 3.4 or later.

– MSVC 2013. Refer to Open vSwitch on Windows for additional Windows build instructions.

While OVS may be compatible with other compilers, optimal support for atomic operations may be missing,
making OVS very slow (see lib/ovs-atomic.h).

• libssl, from OpenSSL, is optional but recommended if you plan to connect the Open vSwitch to an OpenFlow
controller. libssl is required to establish confidentiality and authenticity in the connections from an Open vSwitch
to an OpenFlow controller. If libssl is installed, then Open vSwitch will automatically build with support for it.

• libcap-ng, written by Steve Grubb, is optional but recommended. It is required to run OVS daemons as a non-
root user with dropped root privileges. If libcap-ng is installed, then Open vSwitch will automatically build with
support for it.

• Python 3.4 or later.

• Unbound library, from http://www.unbound.net, is optional but recommended if you want to enable ovs-
vswitchd and other utilities to use DNS names when specifying OpenFlow and OVSDB remotes. If unbound
library is already installed, then Open vSwitch will automatically build with support for it. The environment
variable OVS_RESOLV_CONF can be used to specify DNS server configuration file (the default file on Linux
is /etc/resolv.conf).

On Linux, you may choose to compile the kernel module that comes with the Open vSwitch distribution or to use the
kernel module built into the Linux kernel (version 3.3 or later). See the Open vSwitch FAQ question “What features
are not available in the Open vSwitch kernel datapath that ships as part of the upstream Linux kernel?” for more
information on this trade-off. You may also use the userspace-only implementation, at some cost in features and
performance. Refer to Open vSwitch without Kernel Support for details.

To compile the kernel module on Linux, you must also install the following:

• A supported Linux kernel version.

For optional support of ingress policing, you must enable kernel configuration options NET_CLS_BASIC,
NET_SCH_INGRESS, and NET_ACT_POLICE, either built-in or as modules. NET_CLS_POLICE is obsolete
and not needed.)

On kernels before 3.11, the ip_gre module, for GRE tunnels over IP (NET_IPGRE), must not be loaded or
compiled in.

To configure HTB or HFSC quality of service with Open vSwitch, you must enable the respective configuration
options.

To use Open vSwitch support for TAP devices, you must enable CONFIG_TUN.

• To build a kernel module, you need the same version of GCC that was used to build that kernel.

• A kernel build directory corresponding to the Linux kernel image the module is to run on. Under Debian and
Ubuntu, for example, each linux-image package containing a kernel binary has a corresponding linux-headers
package with the required build infrastructure.

If you are working from a Git tree or snapshot (instead of from a distribution tarball), or if you modify the Open
vSwitch build system or the database schema, you will also need the following software:
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• Autoconf version 2.63 or later.

• Automake version 1.10 or later.

• libtool version 2.4 or later. (Older versions might work too.)

The datapath tests for userspace and Linux datapaths also rely upon:

• pyftpdlib. Version 1.2.0 is known to work. Earlier versions should also work.

• GNU wget. Version 1.16 is known to work. Earlier versions should also work.

• netcat. Several common implementations are known to work.

• curl. Version 7.47.0 is known to work. Earlier versions should also work.

• tftpy. Version 0.6.2 is known to work. Earlier versions should also work.

• netstat. Available from various distro specific packages

The ovs-vswitchd.conf.db(5) manpage will include an E-R diagram, in formats other than plain text, only if you have
the following:

• dot from graphviz (http://www.graphviz.org/).

If you are going to extensively modify Open vSwitch, consider installing the following to obtain better warnings:

• “sparse” version 0.5.1 or later (https://git.kernel.org/pub/scm/devel/sparse/sparse.git/).

• GNU make.

• clang, version 3.4 or later

• flake8 along with the hacking flake8 plugin (for Python code). The automatic flake8 check that runs against
Python code has some warnings enabled that come from the “hacking” flake8 plugin. If it’s not installed, the
warnings just won’t occur until it’s run on a system with “hacking” installed.

You may find the ovs-dev script found in utilities/ovs-dev.py useful.

Installation Requirements

The machine you build Open vSwitch on may not be the one you run it on. To simply install and run Open vSwitch
you require the following software:

• Shared libraries compatible with those used for the build.

• On Linux, if you want to use the kernel-based datapath (which is the most common use case), then a kernel with
a compatible kernel module. This can be a kernel module built with Open vSwitch (e.g. in the previous step),
or the kernel module that accompanies Linux 3.3 and later. Open vSwitch features and performance can vary
based on the module and the kernel. Refer to Releases for more information.

• For optional support of ingress policing on Linux, the “tc” program from iproute2 (part of all major distributions
and available at https://wiki.linuxfoundation.org/networking/iproute2).

• Python 3.4 or later.

On Linux you should ensure that /dev/urandom exists. To support TAP devices, you must also ensure that /dev/
net/tun exists.

Bootstrapping

This step is not needed if you have downloaded a released tarball. If you pulled the sources directly from an Open
vSwitch Git tree or got a Git tree snapshot, then run boot.sh in the top source directory to build the “configure” script:

2.3. Installing Open vSwitch 9
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$ ./boot.sh

Configuring

Configure the package by running the configure script. You can usually invoke configure without any arguments. For
example:

$ ./configure

By default all files are installed under /usr/local. Open vSwitch also expects to find its database in /usr/
local/etc/openvswitch by default. If you want to install all files into, e.g., /usr and /var instead of /
usr/local and /usr/local/var and expect to use /etc/openvswitch as the default database directory,
add options as shown here:

$ ./configure --prefix=/usr --localstatedir=/var --sysconfdir=/etc

Note: Open vSwitch installed with packages like .rpm (e.g. via yum install or rpm -ivh) and .deb (e.g. via
apt-get install or dpkg -i) use the above configure options.

By default, static libraries are built and linked against. If you want to use shared libraries instead:

$ ./configure --enable-shared

To use a specific C compiler for compiling Open vSwitch user programs, also specify it on the configure command
line, like so:

$ ./configure CC=gcc-4.2

To use ‘clang’ compiler:

$ ./configure CC=clang

To supply special flags to the C compiler, specify them as CFLAGS on the configure command line. If you want the
default CFLAGS, which include -g to build debug symbols and -O2 to enable optimizations, you must include them
yourself. For example, to build with the default CFLAGS plus -mssse3, you might run configure as follows:

$ ./configure CFLAGS="-g -O2 -mssse3"

For efficient hash computation special flags can be passed to leverage built-in intrinsics. For example on X86_64 with
SSE4.2 instruction set support, CRC32 intrinsics can be used by passing -msse4.2:

$ ./configure CFLAGS="-g -O2 -msse4.2"`

Also builtin popcnt instruction can be used to speedup the counting of the bits set in an integer. For example on
X86_64 with POPCNT support, it can be enabled by passing -mpopcnt:

$ ./configure CFLAGS="-g -O2 -mpopcnt"`

If you are on a different processor and don’t know what flags to choose, it is recommended to use -march=native
settings:

$ ./configure CFLAGS="-g -O2 -march=native"
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With this, GCC will detect the processor and automatically set appropriate flags for it. This should not be used if you
are compiling OVS outside the target machine.

Note: CFLAGS are not applied when building the Linux kernel module. Custom CFLAGS for the kernel module are
supplied using the EXTRA_CFLAGS variable when running make. For example:

$ make EXTRA_CFLAGS="-Wno-error=date-time"

If you are a developer and want to enable Address Sanitizer for debugging purposes, at about a 2x runtime cost, you
can add -fsanitize=address -fno-omit-frame-pointer -fno-common to CFLAGS. For example:

$ ./configure CFLAGS="-g -O2 -fsanitize=address -fno-omit-frame-pointer -fno-common"

To build the Linux kernel module, so that you can run the kernel-based switch, pass the location of the kernel build
directory on --with-linux. For example, to build for a running instance of Linux:

$ ./configure --with-linux=/lib/modules/$(uname -r)/build

Note: If --with-linux requests building for an unsupported version of Linux, then configure will fail with
an error message. Refer to the Open vSwitch FAQ for advice in that case.

If you wish to build the kernel module for an architecture other than the architecture of the machine used for the build,
you may specify the kernel architecture string using the KARCH variable when invoking the configure script. For
example, to build for MIPS with Linux:

$ ./configure --with-linux=/path/to/linux KARCH=mips

If you plan to do much Open vSwitch development, you might want to add --enable-Werror, which adds the
-Werror option to the compiler command line, turning warnings into errors. That makes it impossible to miss
warnings generated by the build. For example:

$ ./configure --enable-Werror

If you’re building with GCC, then, for improved warnings, install sparse (see “Prerequisites”) and enable it for
the build by adding --enable-sparse. Use this with --enable-Werror to avoid missing both compiler and
sparse warnings, e.g.:

$ ./configure --enable-Werror --enable-sparse

To build with gcov code coverage support, add --enable-coverage:

$ ./configure --enable-coverage

The configure script accepts a number of other options and honors additional environment variables. For a full list,
invoke configure with the --help option:

$ ./configure --help

You can also run configure from a separate build directory. This is helpful if you want to build Open vSwitch in more
than one way from a single source directory, e.g. to try out both GCC and Clang builds, or to build kernel modules for
more than one Linux version. For example:

2.3. Installing Open vSwitch 11
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$ mkdir _gcc && (cd _gcc && ./configure CC=gcc)
$ mkdir _clang && (cd _clang && ./configure CC=clang)

Under certain loads the ovsdb-server and other components perform better when using the jemalloc memory allocator,
instead of the glibc memory allocator. If you wish to link with jemalloc add it to LIBS:

$ ./configure LIBS=-ljemalloc

Building

1. Run GNU make in the build directory, e.g.:

$ make

or if GNU make is installed as “gmake”:

$ gmake

If you used a separate build directory, run make or gmake from that directory, e.g.:

$ make -C _gcc
$ make -C _clang

Note: Some versions of Clang and ccache are not completely compatible. If you see unusual warnings when
you use both together, consider disabling ccache.

2. Consider running the testsuite. Refer to Testing for instructions.

3. Run make install to install the executables and manpages into the running system, by default under /usr/
local:

$ make install

5. If you built kernel modules, you may install them, e.g.:

$ make modules_install

It is possible that you already had a Open vSwitch kernel module installed on your machine that came from
upstream Linux (in a different directory). To make sure that you load the Open vSwitch kernel module you built
from this repository, you should create a depmod.d file that prefers your newly installed kernel modules over
the kernel modules from upstream Linux. The following snippet of code achieves the same:

$ config_file="/etc/depmod.d/openvswitch.conf"
$ for module in datapath/linux/*.ko; do
modname="$(basename ${module})"
echo "override ${modname%.ko} * extra" >> "$config_file"
echo "override ${modname%.ko} * weak-updates" >> "$config_file"
done

$ depmod -a

Finally, load the kernel modules that you need. e.g.:

$ /sbin/modprobe openvswitch
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To verify that the modules have been loaded, run /sbin/lsmod and check that openvswitch is listed:

$ /sbin/lsmod | grep openvswitch

Note: If the modprobe operation fails, look at the last few kernel log messages (e.g. with dmesg | tail).
Generally, issues like this occur when Open vSwitch is built for a kernel different from the one into which you
are trying to load it. Run modinfo on openvswitch.ko and on a module built for the running kernel, e.g.:

$ /sbin/modinfo openvswitch.ko
$ /sbin/modinfo /lib/modules/$(uname -r)/kernel/net/bridge/bridge.ko

Compare the “vermagic” lines output by the two commands. If they differ, then Open vSwitch was built for the
wrong kernel.

If you decide to report a bug or ask a question related to module loading, include the output from the dmesg
and modinfo commands mentioned above.

Starting

On Unix-alike systems, such as BSDs and Linux, starting the Open vSwitch suite of daemons is a simple process.
Open vSwitch includes a shell script, and helpers, called ovs-ctl which automates much of the tasks for starting and
stopping ovsdb-server, and ovs-vswitchd. After installation, the daemons can be started by using the ovs-ctl utility.
This will take care to setup initial conditions, and start the daemons in the correct order. The ovs-ctl utility is located
in ‘$(pkgdatadir)/scripts’, and defaults to ‘/usr/local/share/openvswitch/scripts’. An example after install might be:

$ export PATH=$PATH:/usr/local/share/openvswitch/scripts
$ ovs-ctl start

Additionally, the ovs-ctl script allows starting / stopping the daemons individually using specific options. To start just
the ovsdb-server:

$ export PATH=$PATH:/usr/local/share/openvswitch/scripts
$ ovs-ctl --no-ovs-vswitchd start

Likewise, to start just the ovs-vswitchd:

$ export PATH=$PATH:/usr/local/share/openvswitch/scripts
$ ovs-ctl --no-ovsdb-server start

Refer to ovs-ctl(8) for more information on ovs-ctl.

In addition to using the automated script to start Open vSwitch, you may wish to manually start the various daemons.
Before starting ovs-vswitchd itself, you need to start its configuration database, ovsdb-server. Each machine on which
Open vSwitch is installed should run its own copy of ovsdb-server. Before ovsdb-server itself can be started, configure
a database that it can use:

$ mkdir -p /usr/local/etc/openvswitch
$ ovsdb-tool create /usr/local/etc/openvswitch/conf.db \

vswitchd/vswitch.ovsschema

Configure ovsdb-server to use database created above, to listen on a Unix domain socket, to connect to any managers
specified in the database itself, and to use the SSL configuration in the database:
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$ mkdir -p /usr/local/var/run/openvswitch
$ ovsdb-server --remote=punix:/usr/local/var/run/openvswitch/db.sock \

--remote=db:Open_vSwitch,Open_vSwitch,manager_options \
--private-key=db:Open_vSwitch,SSL,private_key \
--certificate=db:Open_vSwitch,SSL,certificate \
--bootstrap-ca-cert=db:Open_vSwitch,SSL,ca_cert \
--pidfile --detach --log-file

Note: If you built Open vSwitch without SSL support, then omit --private-key, --certificate, and
--bootstrap-ca-cert.)

Initialize the database using ovs-vsctl. This is only necessary the first time after you create the database with ovsdb-
tool, though running it at any time is harmless:

$ ovs-vsctl --no-wait init

Start the main Open vSwitch daemon, telling it to connect to the same Unix domain socket:

$ ovs-vswitchd --pidfile --detach --log-file

Starting OVS in container

For ovs vswitchd, we need to load ovs kernel modules on host.

Hence, OVS containers kernel version needs to be same as that of host kernel.

Export following variables in .env and place it under project root:

$ OVS_BRANCH=<BRANCH>
$ OVS_VERSION=<VERSION>
$ DISTRO=<LINUX_DISTRO>
$ KERNEL_VERSION=<LINUX_KERNEL_VERSION>
$ GITHUB_SRC=<GITHUB_URL>
$ DOCKER_REPO=<REPO_TO_PUSH_IMAGE>

To build ovs modules:

$ cd utilities/docker
$ make build

Compiled Modules will be tagged with docker image

To Push ovs modules:

$ make push

OVS docker image will be pushed to specified docker repo.

Start ovsdb-server using below command:

$ docker run -itd --net=host --name=ovsdb-server \
<docker_repo>:<tag> ovsdb-server

Start ovs-vswitchd with priviledged mode as it needs to load kernel module in host using below command:
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$ docker run -itd --net=host --name=ovs-vswitchd \
--volumes-from=ovsdb-server -v /lib:/lib --privileged \
<docker_repo>:<tag> ovs-vswitchd

Note: The debian docker file uses ubuntu 16.04 as a base image for reference.

User can use any other base image for debian, e.g. u14.04, etc.

RHEL based docker build support needs to be added.

Validating

At this point you can use ovs-vsctl to set up bridges and other Open vSwitch features. For example, to create a bridge
named br0 and add ports eth0 and vif1.0 to it:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 eth0
$ ovs-vsctl add-port br0 vif1.0

Refer to ovs-vsctl(8) for more details. You may also wish to refer to Testing for information on more generic testing
of OVS.

When using ovs in container, exec to container to run above commands:

$ docker exec -it <ovsdb-server/ovs-vswitchd> /bin/bash

Upgrading

When you upgrade Open vSwitch from one version to another you should also upgrade the database schema:

Note: The following manual steps may also be accomplished by using ovs-ctl to stop and start the daemons after
upgrade. The ovs-ctl script will automatically upgrade the schema.

1. Stop the Open vSwitch daemons, e.g.:

$ kill `cd /usr/local/var/run/openvswitch && cat ovsdb-server.pid ovs-vswitchd.
→˓pid`

2. Install the new Open vSwitch release by using the same configure options as was used for installing the previous
version. If you do not use the same configure options, you can end up with two different versions of Open
vSwitch executables installed in different locations.

3. Upgrade the database, in one of the following two ways:

• If there is no important data in your database, then you may delete the database file and recreate it with
ovsdb-tool, following the instructions under “Building and Installing Open vSwitch for Linux, FreeBSD
or NetBSD”.

• If you want to preserve the contents of your database, back it up first, then use ovsdb-tool convert
to upgrade it, e.g.:
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$ ovsdb-tool convert /usr/local/etc/openvswitch/conf.db \
vswitchd/vswitch.ovsschema

4. Start the Open vSwitch daemons as described under Starting above.

Hot Upgrading

Upgrading Open vSwitch from one version to the next version with minimum disruption of traffic going through the
system that is using that Open vSwitch needs some considerations:

1. If the upgrade only involves upgrading the userspace utilities and daemons of Open vSwitch, make sure that the
new userspace version is compatible with the previously loaded kernel module.

2. An upgrade of userspace daemons means that they have to be restarted. Restarting the daemons means that the
OpenFlow flows in the ovs-vswitchd daemon will be lost. One way to restore the flows is to let the controller
re-populate it. Another way is to save the previous flows using a utility like ovs-ofctl and then re-add them after
the restart. Restoring the old flows is accurate only if the new Open vSwitch interfaces retain the old ‘ofport’
values.

3. When the new userspace daemons get restarted, they automatically flush the old flows setup in the kernel. This
can be expensive if there are hundreds of new flows that are entering the kernel but userspace daemons are busy
setting up new userspace flows from either the controller or an utility like ovs-ofctl. Open vSwitch database
provides an option to solve this problem through the other_config:flow-restore-wait column of
the Open_vSwitch table. Refer to the ovs-vswitchd.conf.db(5) manpage for details.

4. If the upgrade also involves upgrading the kernel module, the old kernel module needs to be unloaded and the
new kernel module should be loaded. This means that the kernel network devices belonging to Open vSwitch is
recreated and the kernel flows are lost. The downtime of the traffic can be reduced if the userspace daemons are
restarted immediately and the userspace flows are restored as soon as possible.

5. When upgrading ovs running in container on host that is managed by ovn, simply stop the docker container,
remove and re-run with new docker image that has newer ovs version.

6. When running ovs in container, if ovs is used in bridged mode where management interface is managed by ovs,
docker restart will result in loss of network connectivity. Hence, make sure to delete the bridge mapping of
physical interface from ovs, upgrade ovs via docker and then add back the interface to ovs bridge. This mapping
need not be deleted in case of multi nics if management interface is not managed by ovs.

The ovs-ctl utility’s restart function only restarts the userspace daemons, makes sure that the ‘ofport’ val-
ues remain consistent across restarts, restores userspace flows using the ovs-ofctl utility and also uses the
other_config:flow-restore-wait column to keep the traffic downtime to the minimum. The ovs-ctl util-
ity’s force-reload-kmod function does all of the above, but also replaces the old kernel module with the new
one. Open vSwitch startup scripts for Debian, XenServer and RHEL use ovs-ctl’s functions and it is recommended
that these functions be used for other software platforms too.

Reporting Bugs

Report problems to bugs@openvswitch.org.

Open vSwitch on NetBSD

On NetBSD, you might want to install requirements from pkgsrc. In that case, you need at least the following packages.

• automake
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• libtool-base

• gmake

• python37

Some components have additional requirements. Refer to Open vSwitch on Linux, FreeBSD and NetBSD for more
information.

Assuming you are running NetBSD/amd64 7.0.2, you can download and install pre-built binary packages as the fol-
lowing:

$ PKG_PATH=http://ftp.netbsd.org/pub/pkgsrc/packages/NetBSD/amd64/7.0.2/All/
$ export PKG_PATH
$ pkg_add automake libtool-base gmake python37 pkg_alternatives

Note: You might get some warnings about minor version mismatch. These can be safely ignored.

NetBSD’s /usr/bin/make is not GNU make. GNU make is installed as /usr/pkg/bin/gmake by the above
mentioned gmake package.

As all executables installed with pkgsrc are placed in /usr/pkg/bin/ directory, it might be a good idea to add it to
your PATH. Or install OVS by gmake and gmake install.

Open vSwitch on NetBSD is currently “userspace switch” implementation in the sense described in Open vSwitch
without Kernel Support and Porting Open vSwitch to New Software or Hardware.

Open vSwitch on Windows

Build Requirements

Open vSwitch on Linux uses autoconf and automake for generating Makefiles. It will be useful to maintain the same
build system while compiling on Windows too. One approach is to compile Open vSwitch in a MinGW environment
that contains autoconf and automake utilities and then use Visual C++ as a compiler and linker.

The following explains the steps in some detail.

• Mingw

Install Mingw on a Windows machine by following the instructions on mingw.org.

This should install mingw at C:\Mingw and msys at C:\Mingw\msys. Add C:\MinGW\bin and
C:\Mingw\msys\1.0\bin to PATH environment variable of Windows.

You can either use the MinGW installer or the command line utility mingw-get to install both the base
packages and additional packages like automake and autoconf(version 2.68).

Also make sure that /mingw mount point exists. If its not, please add/create the following entry in /etc/
fstab:

'C:/MinGW /mingw'.

• Python 3.4 or later.

Install the latest Python 3.x from python.org and verify that its path is part of Windows’ PATH environment
variable. We require that you have pypiwin32 library installed. The library can be installed via pip command:

$ pip install pypiwin32
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• Visual Studio

You will need at least Visual Studio 2013 (update 4) to compile userspace binaries. In addition to that, if you
want to compile the kernel module you will also need to install Windows Driver Kit (WDK) 8.1 Update.

It is important to get the Visual Studio related environment variables and to have the $PATH inside the bash
to point to the proper compiler and linker. One easy way to achieve this for VS2013 is to get into the
“VS2013 x86 Native Tools Command Prompt” (in a default installation of Visual Studio 2013 this can be
found under the following location: C:\Program Files (x86)\Microsoft Visual Studio 12.
0\Common7\Tools\Shortcuts) and through it enter into the bash shell available from msys by typing
bash --login.

There is support for generating 64 bit binaries too. To compile under x64, open the “VS2013 x64 Native Tools
Command Prompt” (if your current running OS is 64 bit) or “VS2013 x64 Cross Tools Command Prompt” (if
your current running OS is not 64 bit) instead of opening its x86 variant. This will point the compiler and the
linker to their 64 bit equivalent.

If after the above step, a which link inside MSYS’s bash says, /bin/link.exe, rename /bin/link.
exe to something else so that the Visual studio’s linker is used. You should also see a ‘which sort’ report
/bin/sort.exe.

• pthreads-win32

For pthread support, install the library, dll and includes of pthreads-win32 project from sourceware to a directory
(e.g.: C:/pthread). You should add the pthread-win32’s dll path (e.g.: C:\pthread\dll\x86) to the
Windows’ PATH environment variable.

• OpenSSL

To get SSL support for Open vSwitch on Windows, you will need to install OpenSSL for Windows

Note down the directory where OpenSSL is installed (e.g.: C:/OpenSSL-Win32) for later use.

Note: Commands prefixed by $ must be run in the Bash shell provided by MinGW. Open vSwitch commands, such
as ovs-dpctl are shown running under the DOS shell (cmd.exe), as indicated by the > prefix, but will also run
under Bash. The remainder, prefixed by >, are PowerShell commands and must be run in PowerShell.

Install Requirements

• Share network adaptors

We require that you don’t disable the “Allow management operating system to share this network adapter”
under ‘Virtual Switch Properties’ > ‘Connection type: External network’, in the Hyper-V virtual network switch
configuration.

• Checksum Offloads

While there is some support for checksum/segmentation offloads in software, this is still a work in progress. Till
the support is complete we recommend disabling TX/RX offloads for both the VM’s as well as the Hyper-V.

Bootstrapping

This step is not needed if you have downloaded a released tarball. If you pulled the sources directly from an Open
vSwitch Git tree or got a Git tree snapshot, then run boot.sh in the top source directory to build the “configure” script:

$ ./boot.sh
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Configuring

Configure the package by running the configure script. You should provide some configure options to choose the right
compiler, linker, libraries, Open vSwitch component installation directories, etc. For example:

$ ./configure CC=./build-aux/cccl LD="$(which link)" \
LIBS="-lws2_32 -lShlwapi -liphlpapi -lwbemuuid -lole32 -loleaut32" \
--prefix="C:/openvswitch/usr" \
--localstatedir="C:/openvswitch/var" \
--sysconfdir="C:/openvswitch/etc" \
--with-pthread="C:/pthread"

Note: By default, the above enables compiler optimization for fast code. For default compiler optimization, pass the
--with-debug configure option.

To configure with SSL support, add the requisite additional options:

$ ./configure CC=./build-aux/cccl LD="`which link`" \
LIBS="-lws2_32 -lShlwapi -liphlpapi -lwbemuuid -lole32 -loleaut32" \
--prefix="C:/openvswitch/usr" \
--localstatedir="C:/openvswitch/var"
--sysconfdir="C:/openvswitch/etc" \
--with-pthread="C:/pthread" \
--enable-ssl --with-openssl="C:/OpenSSL-Win32"

Finally, to the kernel module also:

$ ./configure CC=./build-aux/cccl LD="`which link`" \
LIBS="-lws2_32 -lShlwapi -liphlpapi -lwbemuuid -lole32 -loleaut32" \
--prefix="C:/openvswitch/usr" \
--localstatedir="C:/openvswitch/var" \
--sysconfdir="C:/openvswitch/etc" \
--with-pthread="C:/pthread" \
--enable-ssl --with-openssl="C:/OpenSSL-Win32" \
--with-vstudiotarget="<target type>" \
--with-vstudiotargetver="<target versions>"

Possible values for <target type> are: Debug and Release Possible values for <target versions> is a
comma separated list of target versions to compile among: Win8,Win8.1,Win10

Note: You can directly use the Visual Studio 2013 IDE to compile the kernel datapath. Open the ovsext.sln file in the
IDE and build the solution.

Refer to Open vSwitch on Linux, FreeBSD and NetBSD for information on additional configuration options.

Building

Once correctly configured, building Open vSwitch on Windows is similar to building on Linux, FreeBSD, or NetBSD.

1. Run make for the ported executables in the top source directory, e.g.:

$ make
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For faster compilation, you can pass the -j argument to make. For example, to run 4 jobs simultaneously, run
make -j4.

Note: MSYS 1.0.18 has a bug that causes parallel make to hang. You can overcome this by downgrading to
MSYS 1.0.17. A simple way to downgrade is to exit all MinGW sessions and then run the below command
from MSVC developers command prompt.:

> mingw-get upgrade msys-core-bin=1.0.17-1

2. To run all the unit tests in Open vSwitch, one at a time:

$ make check

To run all the unit tests in Open vSwitch, up to 8 in parallel:

$ make check TESTSUITEFLAGS="-j8"

3. To install all the compiled executables on the local machine, run:

$ make install

Note: This will install the Open vSwitch executables in C:/openvswitch. You can add
C:\openvswitch\usr\bin and C:\openvswitch\usr\sbin to Windows’ PATH environment
variable for easy access.

The Kernel Module

If you are building the kernel module, you will need to copy the below files to the target Hyper-V machine.

• ./datapath-windows/x64/Win8.1Debug/package/ovsext.inf

• ./datapath-windows/x64/Win8.1Debug/package/OVSExt.sys

• ./datapath-windows/x64/Win8.1Debug/package/ovsext.cat

• ./datapath-windows/misc/install.cmd

• ./datapath-windows/misc/uninstall.cmd

Note: The above path assumes that the kernel module has been built using Windows DDK 8.1 in Debug mode.
Change the path appropriately, if a different WDK has been used.

Now run ./uninstall.cmd to remove the old extension. Once complete, run ./install.cmd to insert the new
one. For this to work you will have to turn on TESTSIGNING boot option or ‘Disable Driver Signature Enforcement’
during boot. The following commands can be used:

> bcdedit /set LOADOPTIONS DISABLE_INTEGRITY_CHECKS
> bcdedit /set TESTSIGNING ON
> bcdedit /set nointegritychecks ON

Note: You may have to restart the machine for the settings to take effect.
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In the Virtual Switch Manager configuration you can enable the Open vSwitch Extension on an existing switch or
create a new switch. If you are using an existing switch, make sure to enable the “Allow Management OS” option for
VXLAN to work (covered later).

The command to create a new switch named ‘OVS-Extended-Switch’ using a physical NIC named ‘Ethernet 1’ is:

PS > New-VMSwitch "OVS-Extended-Switch" -NetAdapterName "Ethernet 1"

Note: You can obtain the list of physical NICs on the host using ‘Get-NetAdapter’ command.

In the properties of any switch, you should should now see “Open vSwitch Extension” under ‘Extensions’. Click the
check box to enable the extension. An alternative way to do the same is to run the following command:

PS > Enable-VMSwitchExtension "Open vSwitch Extension" OVS-Extended-Switch

Note: If you enabled the extension using the command line, a delay of a few seconds has been observed for the
change to be reflected in the UI. This is not a bug in Open vSwitch.

Starting

Important: The following steps assume that you have installed the Open vSwitch utilities in the local machine via
‘make install’.

Before starting ovs-vswitchd itself, you need to start its configuration database, ovsdb-server. Each machine on which
Open vSwitch is installed should run its own copy of ovsdb-server. Before ovsdb-server itself can be started, configure
a database that it can use:

> ovsdb-tool create C:\openvswitch\etc\openvswitch\conf.db \
C:\openvswitch\usr\share\openvswitch\vswitch.ovsschema

Configure ovsdb-server to use database created above and to listen on a Unix domain socket:

> ovsdb-server -vfile:info --remote=punix:db.sock --log-file \
--pidfile --detach

Note: The logfile is created at C:/openvswitch/var/log/openvswitch/

Initialize the database using ovs-vsctl. This is only necessary the first time after you create the database with ovsdb-
tool, though running it at any time is harmless:

> ovs-vsctl --no-wait init

Tip: If you would later like to terminate the started ovsdb-server, run:

> ovs-appctl -t ovsdb-server exit

Start the main Open vSwitch daemon, telling it to connect to the same Unix domain socket:
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> ovs-vswitchd -vfile:info --log-file --pidfile --detach

Tip: If you would like to terminate the started ovs-vswitchd, run:

> ovs-appctl exit

Note: The logfile is created at C:/openvswitch/var/log/openvswitch/

Validating

At this point you can use ovs-vsctl to set up bridges and other Open vSwitch features.

Add bridges

Let’s start by creating an integration bridge, br-int and a PIF bridge, br-pif:

> ovs-vsctl add-br br-int
> ovs-vsctl add-br br-pif

Note: There’s a known bug that running the ovs-vsctl command does not terminate. This is generally solved by
having ovs-vswitchd running. If you face the issue despite that, hit Ctrl-C to terminate ovs-vsctl and check the output
to see if your command succeeded.

Validate that ports are added by dumping from both ovs-dpctl and ovs-vsctl:

> ovs-dpctl show
system@ovs-system:

lookups: hit:0 missed:0 lost:0
flows: 0
port 2: br-pif (internal) <<< internal port on 'br-pif' bridge
port 1: br-int (internal) <<< internal port on 'br-int' bridge

> ovs-vsctl show
a56ec7b5-5b1f-49ec-a795-79f6eb63228b

Bridge br-pif
Port br-pif

Interface br-pif
type: internal

Bridge br-int
Port br-int

Interface br-int
type: internal

Note: There’s a known bug that the ports added to OVSDB via ovs-vsctl don’t get to the kernel datapath im-
mediately, ie. they don’t show up in the output of ovs-dpctl show even though they show up in output of
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ovs-vsctl show. In order to workaround this issue, restart ovs-vswitchd. (You can terminate ovs-vswitchd by
running ovs-appctl exit.)

Add physicals NICs (PIF)

Now, let’s add the physical NIC and the internal port to br-pif. In OVS for Hyper-V, we use the name of the adapter
on top of which the Hyper-V virtual switch was created, as a special name to refer to the physical NICs connected to
the Hyper-V switch, e.g. if we created the Hyper-V virtual switch on top of the adapter named Ethernet0, then in
OVS we use that name (Ethernet0) as a special name to refer to that adapter.

Note: We assume that the OVS extension is enabled Hyper-V switch.

Internal ports are the virtual adapters created on the Hyper-V switch using the ovs-vsctl add-br <bridge>
command. By default they are created under the following rule “<name of bridge>” and the adapters are disabled.
One needs to enable them and set the corresponding values to it to make them IP-able.

As a whole example, if we issue the following in a powershell console:

PS > Get-NetAdapter | select Name,InterfaceDescription
Name InterfaceDescription
---- --------------------
Ethernet1 Intel(R) PRO/1000 MT Network Connection
br-pif Hyper-V Virtual Ethernet Adapter #2
Ethernet0 Intel(R) PRO/1000 MT Network Connection #2
br-int Hyper-V Virtual Ethernet Adapter #3

PS > Get-VMSwitch
Name SwitchType NetAdapterInterfaceDescription
---- ---------- ------------------------------
external External Intel(R) PRO/1000 MT Network Connection #2

We can see that we have a switch(external) created upon adapter name ‘Ethernet0’ with the internal ports under name
‘br-pif’ and ‘br-int’. Thus resulting into the following ovs-vsctl commands:

> ovs-vsctl add-port br-pif Ethernet0

Dumping the ports should show the additional ports that were just added:

> ovs-dpctl show
system@ovs-system:

lookups: hit:0 missed:0 lost:0
flows: 0
port 2: br-pif (internal) <<< internal port

adapter on
Hyper-V switch

port 1: br-int (internal) <<< internal port
adapter on
Hyper-V switch

port 3: Ethernet0 <<< Physical NIC

> ovs-vsctl show
a56ec7b5-5b1f-49ec-a795-79f6eb63228b

Bridge br-pif
Port br-pif

(continues on next page)

2.3. Installing Open vSwitch 23



Open vSwitch, Release 2.12.90

(continued from previous page)

Interface br-pif
type: internal

Port "Ethernet0"
Interface "Ethernet0"

Bridge br-int
Port br-int

Interface br-int
type: internal

Add virtual interfaces (VIFs)

Adding VIFs to Open vSwitch is a two step procedure. The first step is to assign a ‘OVS port name’ which is a unique
name across all VIFs on this Hyper-V. The next step is to add the VIF to the ovsdb using its ‘OVS port name’ as key.

First, assign a unique ‘OVS port name’ to the VIF. The VIF needs to have been disconnected from the Hyper-V switch
before assigning a ‘OVS port name’ to it. In the example below, we assign a ‘OVS port name’ called ovs-port-a
to a VIF on a VM VM1. By using index 0 for $vnic, the first VIF of the VM is being addressed. After assigning
the name ovs-port-a, the VIF is connected back to the Hyper-V switch with name OVS-HV-Switch, which is
assumed to be the Hyper-V switch with OVS extension enabled.:

PS > import-module .\datapath-windows\misc\OVS.psm1
PS > $vnic = Get-VMNetworkAdapter <Name of the VM>
PS > Disconnect-VMNetworkAdapter -VMNetworkAdapter $vnic[0]
PS > $vnic[0] | Set-VMNetworkAdapterOVSPort -OVSPortName ovs-port-a
PS > Connect-VMNetworkAdapter -VMNetworkAdapter $vnic[0] \

-SwitchName OVS-Extended-Switch

Next, add the VIFs to br-int:

> ovs-vsctl add-port br-int ovs-port-a

Dumping the ports should show the additional ports that were just added:

> ovs-dpctl show
system@ovs-system:

lookups: hit:0 missed:0 lost:0
flows: 0
port 4: ovs-port-a
port 2: br-pif (internal)
port 1: br-int (internal
port 3: Ethernet0

> ovs-vsctl show
4cd86499-74df-48bd-a64d-8d115b12a9f2

Bridge br-pif
Port "vEthernet (external)"

Interface "vEthernet (external)"
Port "Ethernet0"

Interface "Ethernet0"
Port br-pif

Interface br-pif
type: internal

Bridge br-int
Port br-int

Interface br-int
(continues on next page)
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(continued from previous page)

type: internal
Port "ovs-port-a"

Interface "ovs-port-a"

Add multiple NICs to be managed by OVS

To leverage support of multiple NICs into OVS, we will be using the MSFT cmdlets for forwarding team extension.
More documentation about them can be found at technet.

For example, to set up a switch team combined from Ethernet0 2 and Ethernet1 2 named external:

PS > Get-NetAdapter
Name InterfaceDescription
---- --------------------
br-int Hyper-V Virtual Ethernet Adapter #3
br-pif Hyper-V Virtual Ethernet Adapter #2
Ethernet3 2 Intel(R) 82574L Gigabit Network Co...#3
Ethernet2 2 Intel(R) 82574L Gigabit Network Co...#4
Ethernet1 2 Intel(R) 82574L Gigabit Network Co...#2
Ethernet0 2 Intel(R) 82574L Gigabit Network Conn...

PS > New-NetSwitchTeam -Name external -TeamMembers "Ethernet0 2","Ethernet1 2"

PS > Get-NetSwitchTeam
Name : external
Members : {Ethernet1 2, Ethernet0 2}

This will result in a new adapter bound to the host called external:

PS > Get-NetAdapter
Name InterfaceDescription
---- --------------------
br-test Hyper-V Virtual Ethernet Adapter #4
br-pif Hyper-V Virtual Ethernet Adapter #2
external Microsoft Network Adapter Multiplexo...
Ethernet3 2 Intel(R) 82574L Gigabit Network Co...#3
Ethernet2 2 Intel(R) 82574L Gigabit Network Co...#4
Ethernet1 2 Intel(R) 82574L Gigabit Network Co...#2
Ethernet0 2 Intel(R) 82574L Gigabit Network Conn...

Next we will set up the Hyper-V VMSwitch on the new adapter external:

PS > New-VMSwitch -Name external -NetAdapterName external \
-AllowManagementOS $false

Under OVS the adapters under the team external, Ethernet0 2 and Ethernet1 2, can be added either under
a bond device or separately.

The following example shows how the bridges look with the NICs being separated:

> ovs-vsctl show
6cd9481b-c249-4ee3-8692-97b399dd29d8

Bridge br-test
Port br-test

Interface br-test

(continues on next page)
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type: internal
Port "Ethernet1 2"

Interface "Ethernet1 2"
Bridge br-pif

Port "Ethernet0 2"
Interface "Ethernet0 2"

Port br-pif
Interface br-pif

type: internal

Add patch ports and configure VLAN tagging

The Windows Open vSwitch implementation support VLAN tagging in the switch. Switch VLAN tagging along with
patch ports between br-int and br-pif is used to configure VLAN tagging functionality between two VMs on
different Hyper-Vs. To start, add a patch port from br-int to br-pif:

> ovs-vsctl add-port br-int patch-to-pif
> ovs-vsctl set interface patch-to-pif type=patch \

options:peer=patch-to-int

Add a patch port from br-pif to br-int:

> ovs-vsctl add-port br-pif patch-to-int
> ovs-vsctl set interface patch-to-int type=patch \

options:peer=patch-to-pif

Re-Add the VIF ports with the VLAN tag:

> ovs-vsctl add-port br-int ovs-port-a tag=900
> ovs-vsctl add-port br-int ovs-port-b tag=900

Add tunnels

The Windows Open vSwitch implementation support VXLAN and STT tunnels. To add tunnels. For example, first
add the tunnel port between 172.168.201.101 <-> 172.168.201.102:

> ovs-vsctl add-port br-int tun-1
> ovs-vsctl set Interface tun-1 type=<port-type>
> ovs-vsctl set Interface tun-1 options:local_ip=172.168.201.101
> ovs-vsctl set Interface tun-1 options:remote_ip=172.168.201.102
> ovs-vsctl set Interface tun-1 options:in_key=flow
> ovs-vsctl set Interface tun-1 options:out_key=flow

. . . and the tunnel port between 172.168.201.101 <-> 172.168.201.105:

> ovs-vsctl add-port br-int tun-2
> ovs-vsctl set Interface tun-2 type=<port-type>
> ovs-vsctl set Interface tun-2 options:local_ip=172.168.201.102
> ovs-vsctl set Interface tun-2 options:remote_ip=172.168.201.105
> ovs-vsctl set Interface tun-2 options:in_key=flow
> ovs-vsctl set Interface tun-2 options:out_key=flow

Where <port-type> is one of: stt or vxlan
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Note: Any patch ports created between br-int and br-pif MUST be be deleted prior to adding tunnels.

Windows Services

Open vSwitch daemons come with support to run as a Windows service. The instructions here assume that you have
installed the Open vSwitch utilities and daemons via make install.

To start, create the database:

> ovsdb-tool create C:/openvswitch/etc/openvswitch/conf.db \
"C:/openvswitch/usr/share/openvswitch/vswitch.ovsschema"

Create the ovsdb-server service and start it:

> sc create ovsdb-server \
binpath="C:/openvswitch/usr/sbin/ovsdb-server.exe \
C:/openvswitch/etc/openvswitch/conf.db \
-vfile:info --log-file --pidfile \
--remote=punix:db.sock --service --service-monitor"

> sc start ovsdb-server

Tip: One of the common issues with creating a Windows service is with mungled paths. You can make sure that the
correct path has been registered with the Windows services manager by running:

> sc qc ovsdb-server

Check that the service is healthy by running:

> sc query ovsdb-server

Initialize the database:

> ovs-vsctl --no-wait init

Create the ovs-vswitchd service and start it:

> sc create ovs-vswitchd \
binpath="C:/openvswitch/usr/sbin/ovs-vswitchd.exe \
--pidfile -vfile:info --log-file --service --service-monitor"

> sc start ovs-vswitchd

Check that the service is healthy by running:

> sc query ovs-vswitchd

To stop and delete the services, run:

> sc stop ovs-vswitchd
> sc stop ovsdb-server
> sc delete ovs-vswitchd
> sc delete ovsdb-server
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Windows CI Service

AppVeyor provides a free Windows autobuild service for open source projects. Open vSwitch has integration with
AppVeyor for continuous build. A developer can build test his changes for Windows by logging into appveyor.com
using a github account, creating a new project by linking it to his development repository in github and triggering a
new build.

TODO

• Investigate the working of sFlow on Windows and re-enable the unit tests.

• Investigate and add the feature to provide QoS.

• Sign the driver & create an MSI for installing the different Open vSwitch components on Windows.

Open vSwitch on Citrix XenServer

This document describes how to build and install Open vSwitch on a Citrix XenServer host. If you want to install
Open vSwitch on a generic Linux or BSD host, refer to Open vSwitch on Linux, FreeBSD and NetBSD instead.

Open vSwitch should work with XenServer 5.6.100 and later. However, Open vSwitch requires Python 3.4 or later, so
using Open vSwitch with XenServer 6.5 or earlier requires installing Python 3.x.

Building

You may build from an Open vSwitch distribution tarball or from an Open vSwitch Git tree. The recommended build
environment to build RPMs for Citrix XenServer is the DDK VM available from Citrix.

1. If you are building from an Open vSwitch Git tree, then you will need to first create a distribution tarball by
running:

$ ./boot.sh
$ ./configure
$ make dist

You cannot run this in the DDK VM, because it lacks tools that are necessary to bootstrap the Open vSwitch
distribution. Instead, you must run this on a machine that has the tools listed in Installation Requirements as
prerequisites for building from a Git tree.

2. Copy the distribution tarball into /usr/src/redhat/SOURCES inside the DDK VM.

3. In the DDK VM, unpack the distribution tarball into a temporary directory and “cd” into the root of the distri-
bution tarball.

4. To build Open vSwitch userspace, run:

$ rpmbuild -bb xenserver/openvswitch-xen.spec

This produces three RPMs in /usr/src/redhat/RPMS/i386:

• openvswitch

• openvswitch-modules-xen

• openvswitch-debuginfo

The above command automatically runs the Open vSwitch unit tests. To disable the unit tests, run:
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$ rpmbuild -bb --without check xenserver/openvswitch-xen.spec

Build Parameters

openvswitch-xen.spec needs to know a number of pieces of information about the XenServer kernel. Usually,
it can figure these out for itself, but if it does not do it correctly then you can specify them yourself as parameters to
the build. Thus, the final rpmbuild step above can be elaborated as:

$ VERSION=<Open vSwitch version>
$ KERNEL_NAME=<Xen Kernel name>
$ KERNEL_VERSION=<Xen Kernel version>
$ KERNEL_FLAVOR=<Xen Kernel flavor(suffix)>
$ rpmbuild \

-D "openvswitch_version $VERSION" \
-D "kernel_name $KERNEL_NAME" \
-D "kernel_version $KERNEL_VERSION" \
-D "kernel_flavor $KERNEL_FLAVOR" \
-bb xenserver/openvswitch-xen.spec

where:

<openvswitch version> is the version number that appears in the name of the Open vSwitch tarball, e.g.
0.90.0.

<Xen Kernel name> is the name of the XenServer kernel package, e.g. kernel-xen or kernel-NAME-xen,
without the kernel- prefix.

<Xen Kernel version> is the output of:

$ rpm -q --queryformat "%{Version}-%{Release}" <kernel-devel-package>,

e.g. 2.6.32.12-0.7.1.xs5.6.100.323.170596, where <kernel-devel-package> is the name
of the -devel package corresponding to <Xen Kernel name>.

<Xen Kernel flavor (suffix)> is either xen or kdump, where xen flavor is the main running kernel flavor
and the kdump flavor is the crashdump kernel flavor. Commonly, one would specify xen here.

For XenServer 6.5 or above, the kernel version naming no longer contains KERNEL_FLAVOR. In fact, only providing
the uname -r output is enough. So, the final rpmbuild step changes to:

$ KERNEL_UNAME=<`uname -r` output>
$ rpmbuild \

-D "kenel_uname $KERNEL_UNAME" \
-bb xenserver/openvswitch-xen.spec

Installing Open vSwitch for XenServer

To install Open vSwitch on a XenServer host, or to upgrade to a newer version, copy the openvswitch and
openvswitch-modules-xen RPMs to that host with scp, then install them with rpm -U, e.g.:

$ scp openvswitch-$VERSION-1.i386.rpm \
openvswitch-modules-xen-$XEN_KERNEL_VERSION-$VERSION-1.i386.rpm \
root@<host>:

# Enter <host>'s root password.
$ ssh root@<host>

(continues on next page)
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(continued from previous page)

# Enter <host>'s root password again.
$ rpm -U openvswitch-$VERSION-1.i386.rpm \

openvswitch-modules-xen-$XEN_KERNEL_VERSION-$VERSION-1.i386.rpm

To uninstall Open vSwitch from a XenServer host, remove the packages:

$ ssh root@<host>
# Enter <host>'s root password again.
$ rpm -e openvswitch openvswitch-modules-xen-$XEN_KERNEL_VERSION

After installing or uninstalling Open vSwitch, the XenServer should be rebooted as soon as possible.

Open vSwitch Boot Sequence on XenServer

When Open vSwitch is installed on XenServer, its startup script /etc/init.d/openvswitch runs early in boot.
It does roughly the following:

• Loads the OVS kernel module, openvswitch.

• Starts ovsdb-server, the OVS configuration database.

• XenServer expects there to be no bridges configured at startup, but the OVS configuration database likely still
has bridges configured from before reboot. To match XenServer expectations, the startup script deletes all
configured bridges from the database.

• Starts ovs-vswitchd, the OVS switching daemon.

At this point in the boot process, then, there are no Open vSwitch bridges, even though all of the Open vSwitch
daemons are running. Later on in boot, /etc/init.d/management-interface (part of XenServer, not
Open vSwitch) creates the bridge for the XAPI management interface by invoking /opt/xensource/libexec/
interface-reconfigure. Normally this program consults XAPI’s database to obtain information about how
to configure the bridge, but XAPI is not running yet(*) so it instead consults /var/xapi/network.dbcache,
which is a cached copy of the most recent network configuration.

(*) Even if XAPI were running, if this XenServer node is a pool slave then the query would have to consult the
master, which requires network access, which begs the question of how to configure the management inter-
face.

XAPI starts later on in the boot process. XAPI can then create other bridges on demand using /opt/xensource/
libexec/interface-reconfigure. Now that XAPI is running, that program consults XAPI directly instead
of reading the cache.

As part of its own startup, XAPI invokes the Open vSwitch XAPI plugin script /etc/xapi.d/
openvswitch-cfg-update passing the update command. The plugin script does roughly the following:

• Calls /opt/xensource/libexec/interface-reconfigure with the rewrite command, to en-
sure that the network cache is up-to-date.

• Queries the Open vSwitch manager setting (named vswitch_controller) from the XAPI database for the
XenServer pool.

• If XAPI and OVS are configured for different managers, or if OVS is configured for a manager but XAPI is
not, runs ovs-vsctl emer-reset to bring the Open vSwitch configuration to a known state. One effect of
emer-reset is to deconfigure any manager from the OVS database.

• If XAPI is configured for a manager, configures the OVS manager to match with ovs-vsctl
set-manager.
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Notes

• The Open vSwitch boot sequence only configures an OVS configuration database manager. There is no way to
directly configure an OpenFlow controller on XenServer and, as a consequence of the step above that deletes
all of the bridges at boot time, controller configuration only persists until XenServer reboot. The configuration
database manager can, however, configure controllers for bridges. See the BUGS section of ovs-testcontroller(8)
for more information on this topic.

• The Open vSwitch startup script automatically adds a firewall rule to allow GRE traffic. This rule is needed
for the XenServer feature called “Cross-Host Internal Networks” (CHIN) that uses GRE. If a user configures
tunnels other than GRE (ex: Geneve, VXLAN, LISP), they will have to either manually add a iptables firewall
rule to allow the tunnel traffic or add it through a startup script (Please refer to the “enable-protocol” command
in the ovs-ctl(8) manpage).

Reporting Bugs

Please report problems to bugs@openvswitch.org.

Open vSwitch without Kernel Support

Open vSwitch can operate, at a cost in performance, entirely in userspace, without assistance from a kernel module.
This file explains how to install Open vSwitch in such a mode.

This version of Open vSwitch should be built manually with configure and make. Debian packaging for Open
vSwitch is also included, but it has not been recently tested, and so Debian packages are not a recommended way to
use this version of Open vSwitch.

Warning: The userspace-only mode of Open vSwitch without DPDK is considered experimental. It has not been
thoroughly tested.

Building and Installing

The requirements and procedure for building, installing, and configuring Open vSwitch are the same as those given in
Open vSwitch on Linux, FreeBSD and NetBSD. You may omit configuring, building, and installing the kernel module,
and the related requirements.

On Linux, the userspace switch additionally requires the kernel TUN/TAP driver to be available, either built into the
kernel or loaded as a module. If you are not sure, check for a directory named /sys/class/misc/tun. If it does
not exist, then attempt to load the module with modprobe tun.

The tun device must also exist as /dev/net/tun. If it does not exist, then create /dev/net (if necessary) with
mkdir /dev/net, then create /dev/net/tun with mknod /dev/net/tun c 10 200.

On FreeBSD and NetBSD, the userspace switch additionally requires the kernel tap(4) driver to be available, either
built into the kernel or loaded as a module.

Using the Userspace Datapath with ovs-vswitchd

To use ovs-vswitchd in userspace mode, create a bridge with datapath_type=netdev in the configuration
database. For example:

2.3. Installing Open vSwitch 31

mailto:bugs@openvswitch.org


Open vSwitch, Release 2.12.90

$ ovs-vsctl add-br br0
$ ovs-vsctl set bridge br0 datapath_type=netdev
$ ovs-vsctl add-port br0 eth0
$ ovs-vsctl add-port br0 eth1
$ ovs-vsctl add-port br0 eth2

ovs-vswitchd will create a TAP device as the bridge’s local interface, named the same as the bridge, as well as for each
configured internal interface.

Currently, on FreeBSD, the functionality required for in-band control support is not implemented. To avoid related
errors, you can disable the in-band support with the following command:

$ ovs-vsctl set bridge br0 other_config:disable-in-band=true

Firewall Rules

On Linux, when a physical interface is in use by the userspace datapath, packets received on the interface still also
pass into the kernel TCP/IP stack. This can cause surprising and incorrect behavior. You can use “iptables” to avoid
this behavior, by using it to drop received packets. For example, to drop packets received on eth0:

$ iptables -A INPUT -i eth0 -j DROP
$ iptables -A FORWARD -i eth0 -j DROP

Other Settings

On NetBSD, depending on your network topology and applications, the following configuration might help. See
sysctl(7).:

$ sysctl -w net.inet.ip.checkinterface=1

Reporting Bugs

Report problems to bugs@openvswitch.org.

Open vSwitch with DPDK

This document describes how to build and install Open vSwitch using a DPDK datapath. Open vSwitch can use the
DPDK library to operate entirely in userspace.

Important: The releases FAQ lists support for the required versions of DPDK for each version of Open vSwitch. If
building OVS and DPDK outside of the master build tree users should consult this list first.

Build requirements

In addition to the requirements described in Open vSwitch on Linux, FreeBSD and NetBSD, building Open vSwitch
with DPDK will require the following:

• DPDK 19.11
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• A DPDK supported NIC

Only required when physical ports are in use

• A suitable kernel

On Linux Distros running kernel version >= 3.0, only IOMMU needs to enabled via the grub cmdline,
assuming you are using VFIO. For older kernels, ensure the kernel is built with UIO, HUGETLBFS,
PROC_PAGE_MONITOR, HPET, HPET_MMAP support. If these are not present, it will be necessary to up-
grade your kernel or build a custom kernel with these flags enabled.

Detailed system requirements can be found at DPDK requirements.

Installing

Install DPDK

1. Download the DPDK sources, extract the file and set DPDK_DIR:

$ cd /usr/src/
$ wget https://fast.dpdk.org/rel/dpdk-19.11.tar.xz
$ tar xf dpdk-19.11.tar.xz
$ export DPDK_DIR=/usr/src/dpdk-19.11
$ cd $DPDK_DIR

2. (Optional) Configure DPDK as a shared library

DPDK can be built as either a static library or a shared library. By default, it is configured for the for-
mer. If you wish to use the latter, set CONFIG_RTE_BUILD_SHARED_LIB=y in $DPDK_DIR/config/
common_base.

Note: Minor performance loss is expected when using OVS with a shared DPDK library compared to a static
DPDK library.

3. Configure and install DPDK

Build and install the DPDK library:

$ export DPDK_TARGET=x86_64-native-linuxapp-gcc
$ export DPDK_BUILD=$DPDK_DIR/$DPDK_TARGET
$ make install T=$DPDK_TARGET DESTDIR=install

4. (Optional) Export the DPDK shared library location

If DPDK was built as a shared library, export the path to this library for use when building OVS:

$ export LD_LIBRARY_PATH=$DPDK_DIR/x86_64-native-linuxapp-gcc/lib

Install OVS

OVS can be installed using different methods. For OVS to use DPDK, it has to be configured to build against the
DPDK library (--with-dpdk).
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Note: This section focuses on generic recipe that suits most cases. For distribution specific instructions, refer to one
of the more relevant guides.

1. Ensure the standard OVS requirements, described in Build Requirements, are installed

2. Bootstrap, if required, as described in Bootstrapping

3. Configure the package using the --with-dpdk flag:

$ ./configure --with-dpdk=$DPDK_BUILD

where DPDK_BUILD is the path to the built DPDK library. This can be skipped if DPDK library is installed in
its default location.

If no path is provided to --with-dpdk, but a pkg-config configuration for libdpdk is available the include
paths will be generated via an equivalent pkg-config --cflags libdpdk.

Note: While --with-dpdk is required, you can pass any other configuration option described in Configuring.

4. Build and install OVS, as described in Building

Additional information can be found in Open vSwitch on Linux, FreeBSD and NetBSD.

Note: If you are running using the Fedora or Red Hat package, the Open vSwitch daemon will run as a non-root user.
This implies that you must have a working IOMMU. Visit the RHEL README for additional information.

Setup

Setup Hugepages

Allocate a number of 2M Huge pages:

• For persistent allocation of huge pages, write to hugepages.conf file in /etc/sysctl.d:

$ echo 'vm.nr_hugepages=2048' > /etc/sysctl.d/hugepages.conf

• For run-time allocation of huge pages, use the sysctl utility:

$ sysctl -w vm.nr_hugepages=N # where N = No. of 2M huge pages

To verify hugepage configuration:

$ grep HugePages_ /proc/meminfo

Mount the hugepages, if not already mounted by default:

$ mount -t hugetlbfs none /dev/hugepages``

Note: The amount of hugepage memory required can be affected by various aspects of the datapath and device
configuration. Refer to DPDK Device Memory Models for more details.

34 Chapter 2. Getting Started

https://github.com/openvswitch/ovs/blob/master/rhel/README.RHEL.rst


Open vSwitch, Release 2.12.90

Setup DPDK devices using VFIO

VFIO is prefered to the UIO driver when using recent versions of DPDK. VFIO support required support from both
the kernel and BIOS. For the former, kernel version > 3.6 must be used. For the latter, you must enable VT-d in the
BIOS and ensure this is configured via grub. To ensure VT-d is enabled via the BIOS, run:

$ dmesg | grep -e DMAR -e IOMMU

If VT-d is not enabled in the BIOS, enable it now.

To ensure VT-d is enabled in the kernel, run:

$ cat /proc/cmdline | grep iommu=pt
$ cat /proc/cmdline | grep intel_iommu=on

If VT-d is not enabled in the kernel, enable it now.

Once VT-d is correctly configured, load the required modules and bind the NIC to the VFIO driver:

$ modprobe vfio-pci
$ /usr/bin/chmod a+x /dev/vfio
$ /usr/bin/chmod 0666 /dev/vfio/*
$ $DPDK_DIR/usertools/dpdk-devbind.py --bind=vfio-pci eth1
$ $DPDK_DIR/usertools/dpdk-devbind.py --status

Setup OVS

Open vSwitch should be started as described in Open vSwitch on Linux, FreeBSD and NetBSD with the exception of
ovs-vswitchd, which requires some special configuration to enable DPDK functionality. DPDK configuration argu-
ments can be passed to ovs-vswitchd via the other_config column of the Open_vSwitch table. At a minimum,
the dpdk-init option must be set to either true or try. For example:

$ export PATH=$PATH:/usr/local/share/openvswitch/scripts
$ export DB_SOCK=/usr/local/var/run/openvswitch/db.sock
$ ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true
$ ovs-ctl --no-ovsdb-server --db-sock="$DB_SOCK" start

There are many other configuration options, the most important of which are listed below. Defaults will be provided
for all values not explicitly set.

dpdk-init Specifies whether OVS should initialize and support DPDK ports. This field can either be true or
try. A value of true will cause the ovs-vswitchd process to abort on initialization failure. A value of try
will imply that the ovs-vswitchd process should continue running even if the EAL initialization fails.

dpdk-lcore-mask Specifies the CPU cores on which dpdk lcore threads should be spawned and expects hex string
(eg ‘0x123’).

dpdk-socket-mem Comma separated list of memory to pre-allocate from hugepages on specific sockets. If not
specified, 1024 MB will be set for each numa node by default.

dpdk-hugepage-dir Directory where hugetlbfs is mounted

vhost-sock-dir Option to set the path to the vhost-user unix socket files.

If allocating more than one GB hugepage, you can configure the amount of memory used from any given NUMA
nodes. For example, to use 1GB from NUMA node 0 and 0GB for all other NUMA nodes, run:
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$ ovs-vsctl --no-wait set Open_vSwitch . \
other_config:dpdk-socket-mem="1024,0"

or:

$ ovs-vsctl --no-wait set Open_vSwitch . \
other_config:dpdk-socket-mem="1024"

Note: Changing any of these options requires restarting the ovs-vswitchd application

See the section Performance Tuning for important DPDK customizations.

Validating

DPDK support can be confirmed by validating the dpdk_initialized boolean value from the ovsdb. A value of
true means that the DPDK EAL initialization succeeded:

$ ovs-vsctl get Open_vSwitch . dpdk_initialized
true

Additionally, the library version linked to ovs-vswitchd can be confirmed with either the ovs-vswitchd logs, or by
running either of the commands:

$ ovs-vswitchd --version
ovs-vswitchd (Open vSwitch) 2.9.0
DPDK 17.11.0
$ ovs-vsctl get Open_vSwitch . dpdk_version
"DPDK 17.11.0"

At this point you can use ovs-vsctl to set up bridges and other Open vSwitch features. Seeing as we’ve configured
DPDK support, we will use DPDK-type ports. For example, to create a userspace bridge named br0 and add two
dpdk ports to it, run:

$ ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev
$ ovs-vsctl add-port br0 myportnameone -- set Interface myportnameone \

type=dpdk options:dpdk-devargs=0000:06:00.0
$ ovs-vsctl add-port br0 myportnametwo -- set Interface myportnametwo \

type=dpdk options:dpdk-devargs=0000:06:00.1

DPDK devices will not be available for use until a valid dpdk-devargs is specified.

Refer to ovs-vsctl(8) and Using Open vSwitch with DPDK for more details.

Performance Tuning

To achieve optimal OVS performance, the system can be configured and that includes BIOS tweaks, Grub cmdline
additions, better understanding of NUMA nodes and apt selection of PCIe slots for NIC placement.

Note: This section is optional. Once installed as described above, OVS with DPDK will work out of the box.
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Recommended BIOS Settings

Table 1: Recommended BIOS Settings
Setting Value
C3 Power State Disabled
C6 Power State Disabled
MLC Streamer Enabled
MLC Spacial Prefetcher Enabled
DCU Data Prefetcher Enabled
DCA Enabled
CPU Power and Performance Performance
Memeory RAS and Performance Config -> NUMA optimized Enabled

PCIe Slot Selection

The fastpath performance can be affected by factors related to the placement of the NIC, such as channel speeds
between PCIe slot and CPU or the proximity of PCIe slot to the CPU cores running the DPDK application. Listed
below are the steps to identify right PCIe slot.

1. Retrieve host details using dmidecode. For example:

$ dmidecode -t baseboard | grep "Product Name"

2. Download the technical specification for product listed, e.g: S2600WT2

3. Check the Product Architecture Overview on the Riser slot placement, CPU sharing info and also PCIe channel
speeds

For example: On S2600WT, CPU1 and CPU2 share Riser Slot 1 with Channel speed between CPU1 and Riser
Slot1 at 32GB/s, CPU2 and Riser Slot1 at 16GB/s. Running DPDK app on CPU1 cores and NIC inserted in to
Riser card Slots will optimize OVS performance in this case.

4. Check the Riser Card #1 - Root Port mapping information, on the available slots and individual bus speeds. In
S2600WT slot 1, slot 2 has high bus speeds and are potential slots for NIC placement.

Advanced Hugepage Setup

Allocate and mount 1 GB hugepages.

• For persistent allocation of huge pages, add the following options to the kernel bootline:

default_hugepagesz=1GB hugepagesz=1G hugepages=N

For platforms supporting multiple huge page sizes, add multiple options:

default_hugepagesz=<size> hugepagesz=<size> hugepages=N

where:

N number of huge pages requested

size huge page size with an optional suffix [kKmMgG]

• For run-time allocation of huge pages:
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$ echo N > /sys/devices/system/node/nodeX/hugepages/hugepages-1048576kB/nr_
→˓hugepages

where:

N number of huge pages requested

X NUMA Node

Note: For run-time allocation of 1G huge pages, Contiguous Memory Allocator (CONFIG_CMA) has to be
supported by kernel, check your Linux distro.

Now mount the huge pages, if not already done so:

$ mount -t hugetlbfs -o pagesize=1G none /dev/hugepages

Isolate Cores

The isolcpus option can be used to isolate cores from the Linux scheduler. The isolated cores can then be used
to dedicatedly run HPC applications or threads. This helps in better application performance due to zero context
switching and minimal cache thrashing. To run platform logic on core 0 and isolate cores between 1 and 19 from
scheduler, add isolcpus=1-19 to GRUB cmdline.

Note: It has been verified that core isolation has minimal advantage due to mature Linux scheduler in some circum-
stances.

Compiler Optimizations

The default compiler optimization level is -O2. Changing this to more aggressive compiler optimization such
as -O3 -march=native with gcc (verified on 5.3.1) can produce performance gains though not significant.
-march=native will produce optimized code on local machine and should be used when software compilation
is done on Testbed.

Multiple Poll-Mode Driver Threads

With pmd multi-threading support, OVS creates one pmd thread for each NUMA node by default, if there is at least
one DPDK interface from that NUMA node added to OVS. However, in cases where there are multiple ports/rxq’s
producing traffic, performance can be improved by creating multiple pmd threads running on separate cores. These
pmd threads can share the workload by each being responsible for different ports/rxq’s. Assignment of ports/rxq’s to
pmd threads is done automatically.

A set bit in the mask means a pmd thread is created and pinned to the corresponding CPU core. For example, to run
pmd threads on core 1 and 2:

$ ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=0x6

When using dpdk and dpdkvhostuser ports in a bi-directional VM loopback as shown below, spreading the workload
over 2 or 4 pmd threads shows significant improvements as there will be more total CPU occupancy available:
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NIC port0 <-> OVS <-> VM <-> OVS <-> NIC port 1

Refer to ovs-vswitchd.conf.db(5) for additional information on configuration options.

Affinity

For superior performance, DPDK pmd threads and Qemu vCPU threads needs to be affinitized accordingly.

• PMD thread Affinity

A poll mode driver (pmd) thread handles the I/O of all DPDK interfaces assigned to it. A pmd thread shall poll
the ports for incoming packets, switch the packets and send to tx port. A pmd thread is CPU bound, and needs
to be affinitized to isolated cores for optimum performance. Even though a PMD thread may exist, the thread
only starts consuming CPU cycles if there is at least one receive queue assigned to the pmd.

Note: On NUMA systems, PCI devices are also local to a NUMA node. Unbound rx queues for a PCI device
will be assigned to a pmd on it’s local NUMA node if a non-isolated PMD exists on that NUMA node. If not, the
queue will be assigned to a non-isolated pmd on a remote NUMA node. This will result in reduced maximum
throughput on that device and possibly on other devices assigned to that pmd thread. If such a queue assignment
is made a warning message will be logged: “There’s no available (non-isolated) pmd thread on numa node N.
Queue Q on port P will be assigned to the pmd on core C (numa node N’). Expect reduced performance.”

Binding PMD threads to cores is described in the above section Multiple Poll-Mode Driver
Threads.

• QEMU vCPU thread Affinity

A VM performing simple packet forwarding or running complex packet pipelines has to ensure that the vCPU
threads performing the work has as much CPU occupancy as possible.

For example, on a multicore VM, multiple QEMU vCPU threads shall be spawned. When the DPDK testpmd
application that does packet forwarding is invoked, the taskset command should be used to affinitize the
vCPU threads to the dedicated isolated cores on the host system.

Enable HyperThreading

With HyperThreading, or SMT, enabled, a physical core appears as two logical cores. SMT can be utilized to spawn
worker threads on logical cores of the same physical core there by saving additional cores.

With DPDK, when pinning pmd threads to logical cores, care must be taken to set the correct bits of the
pmd-cpu-mask to ensure that the pmd threads are pinned to SMT siblings.

Take a sample system configuration, with 2 sockets, 2 * 10 core processors, HT enabled. This gives us a total of 40
logical cores. To identify the physical core shared by two logical cores, run:

$ cat /sys/devices/system/cpu/cpuN/topology/thread_siblings_list

where N is the logical core number.

In this example, it would show that cores 1 and 21 share the same physical core. Logical cores can be specified in
pmd-cpu-masks similarly to physical cores, as described in Multiple Poll-Mode Driver Threads.
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NUMA/Cluster-on-Die

Ideally inter-NUMA datapaths should be avoided where possible as packets will go across QPI and there may be a
slight performance penalty when compared with intra NUMA datapaths. On Intel Xeon Processor E5 v3, Cluster On
Die is introduced on models that have 10 cores or more. This makes it possible to logically split a socket into two
NUMA regions and again it is preferred where possible to keep critical datapaths within the one cluster.

It is good practice to ensure that threads that are in the datapath are pinned to cores in the same
NUMA area. e.g. pmd threads and QEMU vCPUs responsible for forwarding. If DPDK is built with
CONFIG_RTE_LIBRTE_VHOST_NUMA=y, vHost User ports automatically detect the NUMA socket of the QEMU
vCPUs and will be serviced by a PMD from the same node provided a core on this node is enabled in the
pmd-cpu-mask. libnuma packages are required for this feature.

Binding PMD threads is described in the above section Multiple Poll-Mode Driver Threads.

DPDK Physical Port Rx Queues

$ ovs-vsctl set Interface <DPDK interface> options:n_rxq=<integer>

The above command sets the number of rx queues for DPDK physical interface. The rx queues are assigned to pmd
threads on the same NUMA node in a round-robin fashion.

DPDK Physical Port Queue Sizes

$ ovs-vsctl set Interface dpdk0 options:n_rxq_desc=<integer>
$ ovs-vsctl set Interface dpdk0 options:n_txq_desc=<integer>

The above command sets the number of rx/tx descriptors that the NIC associated with dpdk0 will be initialised with.

Different n_rxq_desc and n_txq_desc configurations yield different benefits in terms of throughput and latency
for different scenarios. Generally, smaller queue sizes can have a positive impact for latency at the expense of through-
put. The opposite is often true for larger queue sizes. Note: increasing the number of rx descriptors eg. to 4096 may
have a negative impact on performance due to the fact that non-vectorised DPDK rx functions may be used. This is
dependent on the driver in use, but is true for the commonly used i40e and ixgbe DPDK drivers.

Exact Match Cache

Each pmd thread contains one Exact Match Cache (EMC). After initial flow setup in the datapath, the EMC con-
tains a single table and provides the lowest level (fastest) switching for DPDK ports. If there is a miss in the EMC
then the next level where switching will occur is the datapath classifier. Missing in the EMC and looking up in the
datapath classifier incurs a significant performance penalty. If lookup misses occur in the EMC because it is too
small to handle the number of flows, its size can be increased. The EMC size can be modified by editing the define
EM_FLOW_HASH_SHIFT in lib/dpif-netdev.c.

As mentioned above, an EMC is per pmd thread. An alternative way of increasing the aggregate amount of possible
flow entries in EMC and avoiding datapath classifier lookups is to have multiple pmd threads running.

Rx Mergeable Buffers

Rx mergeable buffers is a virtio feature that allows chaining of multiple virtio descriptors to handle large packet sizes.
Large packets are handled by reserving and chaining multiple free descriptors together. Mergeable buffer support is
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negotiated between the virtio driver and virtio device and is supported by the DPDK vhost library. This behavior is
supported and enabled by default, however in the case where the user knows that rx mergeable buffers are not needed
i.e. jumbo frames are not needed, it can be forced off by adding mrg_rxbuf=off to the QEMU command line
options. By not reserving multiple chains of descriptors it will make more individual virtio descriptors available for rx
to the guest using dpdkvhost ports and this can improve performance.

Output Packet Batching

To make advantage of batched transmit functions, OVS collects packets in intermediate queues before sending when
processing a batch of received packets. Even if packets are matched by different flows, OVS uses a single send
operation for all packets destined to the same output port.

Furthermore, OVS is able to buffer packets in these intermediate queues for a configurable amount of time to reduce
the frequency of send bursts at medium load levels when the packet receive rate is high, but the receive batch size still
very small. This is particularly beneficial for packets transmitted to VMs using an interrupt-driven virtio driver, where
the interrupt overhead is significant for the OVS PMD, the host operating system and the guest driver.

The tx-flush-interval parameter can be used to specify the time in microseconds OVS should wait between
two send bursts to a given port (default is 0). When the intermediate queue fills up before that time is over, the buffered
packet batch is sent immediately:

$ ovs-vsctl set Open_vSwitch . other_config:tx-flush-interval=50

This parameter influences both throughput and latency, depending on the traffic load on the port. In general lower
values decrease latency while higher values may be useful to achieve higher throughput.

Low traffic (packet rate < 1 / tx-flush-interval) should not experience any significant latency or
throughput increase as packets are forwarded immediately.

At intermediate load levels (1 / tx-flush-interval < packet rate < 32 /
tx-flush-interval) traffic should experience an average latency increase of up to 1 / 2 *
tx-flush-interval and a possible throughput improvement.

Very high traffic (packet rate >> 32 / tx-flush-interval) should experience the average latency in-
crease equal to 32 / (2 * packet rate). Most send batches in this case will contain the maximum number of
packets (32).

A tx-burst-interval value of 50 microseconds has shown to provide a good performance increase in a
PHY-VM-PHY scenario on x86 system for interrupt-driven guests while keeping the latency increase at a reason-
able level:

https://mail.openvswitch.org/pipermail/ovs-dev/2017-December/341628.html

Note: Throughput impact of this option significantly depends on the scenario and the traffic patterns. For example:
tx-burst-interval value of 50 microseconds shows performance degradation in PHY-VM-PHY with bonded
PHY scenario while testing with 256 - 1024 packet flows:

https://mail.openvswitch.org/pipermail/ovs-dev/2017-December/341700.html

The average number of packets per output batch can be checked in PMD stats:

$ ovs-appctl dpif-netdev/pmd-stats-show
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Limitations

• Network Interface Firmware requirements: Each release of DPDK is validated against a specific firmware ver-
sion for a supported Network Interface. New firmware versions introduce bug fixes, performance improvements
and new functionality that DPDK leverages. The validated firmware versions are available as part of the re-
lease notes for DPDK. It is recommended that users update Network Interface firmware to match what has been
validated for the DPDK release.

The latest list of validated firmware versions can be found in the DPDK release notes.

• Upper bound MTU: DPDK device drivers differ in how the L2 frame for a given MTU value is calculated e.g.
i40e driver includes 2 x vlan headers in MTU overhead, em driver includes 1 x vlan header, ixgbe driver does
not include a vlan header in overhead. Currently it is not possible for OVS DPDK to know what upper bound
MTU value is supported for a given device. As such OVS DPDK must provision for the case where the L2 frame
for a given MTU includes 2 x vlan headers. This reduces the upper bound MTU value for devices that do not
include vlan headers in their L2 frames by 8 bytes e.g. ixgbe devices upper bound MTU is reduced from 9710
to 9702. This work around is temporary and is expected to be removed once a method is provided by DPDK to
query the upper bound MTU value for a given device.

Reporting Bugs

Report problems to bugs@openvswitch.org.

Open vSwitch with AF_XDP

This document describes how to build and install Open vSwitch using AF_XDP netdev.

Warning: The AF_XDP support of Open vSwitch is considered ‘experimental’, and it is not compiled in by
default.

Introduction

AF_XDP, Address Family of the eXpress Data Path, is a new Linux socket type built upon the eBPF and XDP technol-
ogy. It is aims to have comparable performance to DPDK but cooperate better with existing kernel’s networking stack.
An AF_XDP socket receives and sends packets from an eBPF/XDP program attached to the netdev, by-passing a cou-
ple of Linux kernel’s subsystems. As a result, AF_XDP socket shows much better performance than AF_PACKET.
For more details about AF_XDP, please see linux kernel’s Documentation/networking/af_xdp.rst

AF_XDP Netdev

OVS has a couple of netdev types, i.e., system, tap, or dpdk. The AF_XDP feature adds a new netdev types called
“afxdp”, and implement its configuration, packet reception, and transmit functions. Since the AF_XDP socket,
called xsk, operates in userspace, once ovs-vswitchd receives packets from xsk, the afxdp netdev re-uses the exist-
ing userspace dpif-netdev datapath. As a result, most of the packet processing happens at the userspace instead of
linux kernel.

| +-------------------+
| | ovs-vswitchd |<-->ovsdb-server
| +-------------------+

(continues on next page)
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(continued from previous page)

| | ofproto |<-->OpenFlow controllers
| +--------+-+--------+
| | netdev | |ofproto-|

userspace | +--------+ | dpif |
| | afxdp | +--------+
| | netdev | | dpif |
| +---||---+ +--------+
| || | dpif- |
| || | netdev |
|_ || +--------+

||
_ +---||-----+--------+

| | AF_XDP prog + |
kernel | | xsk_map |

|_ +--------||---------+
||

physical
NIC

Build requirements

In addition to the requirements described in Open vSwitch on Linux, FreeBSD and NetBSD, building Open vSwitch
with AF_XDP will require the following:

• libbpf from kernel source tree (kernel 5.0.0 or later)

• Linux kernel XDP support, with the following options (required)

– CONFIG_BPF=y

– CONFIG_BPF_SYSCALL=y

– CONFIG_XDP_SOCKETS=y

• The following optional Kconfig options are also recommended, but not required:

– CONFIG_BPF_JIT=y (Performance)

– CONFIG_HAVE_BPF_JIT=y (Performance)

– CONFIG_XDP_SOCKETS_DIAG=y (Debugging)

• Once your AF_XDP-enabled kernel is ready, if possible, run ./xdpsock -r -N -z -i <your device> under
linux/samples/bpf. This is an OVS independent benchmark tools for AF_XDP. It makes sure your basic kernel
requirements are met for AF_XDP.

Installing

For OVS to use AF_XDP netdev, it has to be configured with LIBBPF support. First, clone a recent version of Linux
bpf-next tree:

git clone git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git

Second, go into the Linux source directory and build libbpf in the tools directory:
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cd bpf-next/
cd tools/lib/bpf/
make && make install
make install_headers

Note: Make sure xsk.h and bpf.h are installed in system’s library path, e.g. /usr/local/include/bpf/ or /usr/include/bpf/

Make sure the libbpf.so is installed correctly:

ldconfig
ldconfig -p | grep libbpf

Third, ensure the standard OVS requirements are installed and bootstrap/configure the package:

./boot.sh && ./configure --enable-afxdp

Finally, build and install OVS:

make && make install

To kick start end-to-end autotesting:

uname -a # make sure having 5.0+ kernel
make check-afxdp TESTSUITEFLAGS='1'

Note: Not all test cases pass at this time. Currenly all cvlan tests are skipped due to kernel issues.

If a test case fails, check the log at:

cat \
tests/system-afxdp-testsuite.dir/<test num>/system-afxdp-testsuite.log

Setup AF_XDP netdev

Before running OVS with AF_XDP, make sure the libbpf and libelf are set-up right:

ldd vswitchd/ovs-vswitchd

Open vSwitch should be started using userspace datapath as described in Open vSwitch on Linux, FreeBSD and
NetBSD:

ovs-vswitchd ...
ovs-vsctl -- add-br br0 -- set Bridge br0 datapath_type=netdev

Make sure your device driver support AF_XDP, netdev-afxdp supports the following additional options (see man
ovs-vswitchd.conf.db for more details):

• xdp-mode: best-effort, native-with-zerocopy, native or generic. Defaults to
best-effort, i.e. best of supported modes, so in most cases you don’t need to change it.

• use-need-wakeup: default true if libbpf supports it, otherwise false.
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For example, to use 1 PMD (on core 4) on 1 queue (queue 0) device, configure these options: pmd-cpu-mask,
pmd-rxq-affinity, and n_rxq:

ethtool -L enp2s0 combined 1
ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=0x10
ovs-vsctl add-port br0 enp2s0 -- set interface enp2s0 type="afxdp" \

other_config:pmd-rxq-affinity="0:4"

Or, use 4 pmds/cores and 4 queues by doing:

ethtool -L enp2s0 combined 4
ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=0x36
ovs-vsctl add-port br0 enp2s0 -- set interface enp2s0 type="afxdp" \

options:n_rxq=4 other_config:pmd-rxq-affinity="0:1,1:2,2:3,3:4"

Note: pmd-rxq-affinity is optional. If not specified, system will auto-assign. n_rxq equals 1 by default.

To validate that the bridge has successfully instantiated, you can use the:

ovs-vsctl show

Should show something like:

Port "ens802f0"
Interface "ens802f0"

type: afxdp
options: {n_rxq="1"}

Otherwise, enable debugging by:

ovs-appctl vlog/set netdev_afxdp::dbg

To check which XDP mode was chosen by best-effort, you can look for xdp-mode-in-use in the output of
ovs-appctl dpctl/show:

# ovs-appctl dpctl/show
netdev@ovs-netdev:
<...>
port 2: ens802f0 (afxdp: n_rxq=1, use-need-wakeup=true,

xdp-mode=best-effort,
xdp-mode-in-use=native-with-zerocopy)

References

Most of the design details are described in the paper presented at Linux Plumber 2018, “Bringing the Power of eBPF
to Open vSwitch”[1], section 4, and slides[2][4]. “The Path to DPDK Speeds for AF XDP”[3] gives a very good
introduction about AF_XDP current and future work.

[1] http://vger.kernel.org/lpc_net2018_talks/ovs-ebpf-afxdp.pdf

[2] http://vger.kernel.org/lpc_net2018_talks/ovs-ebpf-lpc18-presentation.pdf

[3] http://vger.kernel.org/lpc_net2018_talks/lpc18_paper_af_xdp_perf-v2.pdf

[4] https://ovsfall2018.sched.com/event/IO7p/fast-userspace-ovs-with-afxdp
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Performance Tuning

The name of the game is to keep your CPU running in userspace, allowing PMD to keep polling the AF_XDP queues
without any interferences from kernel.

1. Make sure everything is in the same NUMA node (memory used by AF_XDP, pmd running cores, device plug-in
slot)

2. Isolate your CPU by doing isolcpu at grub configure.

3. IRQ should not set to pmd running core.

4. The Spectre and Meltdown fixes increase the overhead of system calls.

Debugging performance issue

While running the traffic, use linux perf tool to see where your cpu spends its cycle:

cd bpf-next/tools/perf
make
./perf record -p `pidof ovs-vswitchd` sleep 10
./perf report

Measure your system call rate by doing:

pstree -p `pidof ovs-vswitchd`
strace -c -p <your pmd's PID>

Or, use OVS pmd tool:

ovs-appctl dpif-netdev/pmd-stats-show

Example Script

Below is a script using namespaces and veth peer:

#!/bin/bash
ovs-vswitchd --no-chdir --pidfile -vvconn -vofproto_dpif -vunixctl \

--disable-system --detach \
ovs-vsctl -- add-br br0 -- set Bridge br0 \

protocols=OpenFlow10,OpenFlow11,OpenFlow12,OpenFlow13,OpenFlow14 \
fail-mode=secure datapath_type=netdev

ovs-vsctl -- add-br br0 -- set Bridge br0 datapath_type=netdev

ip netns add at_ns0
ovs-appctl vlog/set netdev_afxdp::dbg

ip link add p0 type veth peer name afxdp-p0
ip link set p0 netns at_ns0
ip link set dev afxdp-p0 up
ovs-vsctl add-port br0 afxdp-p0 -- \

set interface afxdp-p0 external-ids:iface-id="p0" type="afxdp"

ip netns exec at_ns0 sh << NS_EXEC_HEREDOC
ip addr add "10.1.1.1/24" dev p0

(continues on next page)
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(continued from previous page)

ip link set dev p0 up
NS_EXEC_HEREDOC

ip netns add at_ns1
ip link add p1 type veth peer name afxdp-p1
ip link set p1 netns at_ns1
ip link set dev afxdp-p1 up

ovs-vsctl add-port br0 afxdp-p1 -- \
set interface afxdp-p1 external-ids:iface-id="p1" type="afxdp"

ip netns exec at_ns1 sh << NS_EXEC_HEREDOC
ip addr add "10.1.1.2/24" dev p1
ip link set dev p1 up
NS_EXEC_HEREDOC

ip netns exec at_ns0 ping -i .2 10.1.1.2

Limitations/Known Issues

1. Device’s numa ID is always 0, need a way to find numa id from a netdev.

2. No QoS support because AF_XDP netdev by-pass the Linux TC layer. A possible work-around is to use Open-
Flow meter action.

3. Most of the tests are done using i40e single port. Multiple ports and also ixgbe driver also needs to be tested.

4. No latency test result (TODO items)

5. Due to limitations of current upstream kernel, various offloading (vlan, cvlan) is not working over virtual in-
terfaces (i.e. veth pair). Also, TCP is not working over virtual interfaces (veth) in generic XDP mode. Some
more information and possible workaround available here . For TAP interfaces generic mode seems to work fine
(TCP works) and even could provide better performance than native mode in some cases.

PVP using tap device

Assume you have enp2s0 as physical nic, and a tap device connected to VM. First, start OVS, then add physical port:

ethtool -L enp2s0 combined 1
ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=0x10
ovs-vsctl add-port br0 enp2s0 -- set interface enp2s0 type="afxdp" \

options:n_rxq=1 other_config:pmd-rxq-affinity="0:4"

Start a VM with virtio and tap device:

qemu-system-x86_64 -hda ubuntu1810.qcow \
-m 4096 \
-cpu host,+x2apic -enable-kvm \
-device virtio-net-pci,mac=00:02:00:00:00:01,netdev=net0,mq=on,\
vectors=10,mrg_rxbuf=on,rx_queue_size=1024 \

-netdev type=tap,id=net0,vhost=on,queues=8 \
-object memory-backend-file,id=mem,size=4096M,\
mem-path=/dev/hugepages,share=on \

-numa node,memdev=mem -mem-prealloc -smp 2

Create OpenFlow rules:
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ovs-vsctl add-port br0 tap0 -- set interface tap0
ovs-ofctl del-flows br0
ovs-ofctl add-flow br0 "in_port=enp2s0, actions=output:tap0"
ovs-ofctl add-flow br0 "in_port=tap0, actions=output:enp2s0"

Inside the VM, use xdp_rxq_info to bounce back the traffic:

./xdp_rxq_info --dev ens3 --action XDP_TX

PVP using vhostuser device

First, build OVS with DPDK and AFXDP:

./configure --enable-afxdp --with-dpdk=<dpdk path>
make -j4 && make install

Create a vhost-user port from OVS:

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true
ovs-vsctl -- add-br br0 -- set Bridge br0 datapath_type=netdev \

other_config:pmd-cpu-mask=0xfff
ovs-vsctl add-port br0 vhost-user-1 \

-- set Interface vhost-user-1 type=dpdkvhostuser

Start VM using vhost-user mode:

qemu-system-x86_64 -hda ubuntu1810.qcow \
-m 4096 \
-cpu host,+x2apic -enable-kvm \
-chardev socket,id=char1,path=/usr/local/var/run/openvswitch/vhost-user-1 \
-netdev type=vhost-user,id=mynet1,chardev=char1,vhostforce,queues=4 \
-device virtio-net-pci,mac=00:00:00:00:00:01,\

netdev=mynet1,mq=on,vectors=10 \
-object memory-backend-file,id=mem,size=4096M,\

mem-path=/dev/hugepages,share=on \
-numa node,memdev=mem -mem-prealloc -smp 2

Setup the OpenFlow ruls:

ovs-ofctl del-flows br0
ovs-ofctl add-flow br0 "in_port=enp2s0, actions=output:vhost-user-1"
ovs-ofctl add-flow br0 "in_port=vhost-user-1, actions=output:enp2s0"

Inside the VM, use xdp_rxq_info to drop or bounce back the traffic:

./xdp_rxq_info --dev ens3 --action XDP_DROP

./xdp_rxq_info --dev ens3 --action XDP_TX

PCP container using veth

Create namespace and veth peer devices:
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ip netns add at_ns0
ip link add p0 type veth peer name afxdp-p0
ip link set p0 netns at_ns0
ip link set dev afxdp-p0 up
ip netns exec at_ns0 ip link set dev p0 up

Attach the veth port to br0 (linux kernel mode):

ovs-vsctl add-port br0 afxdp-p0 -- set interface afxdp-p0

Or, use AF_XDP:

ovs-vsctl add-port br0 afxdp-p0 -- set interface afxdp-p0 type="afxdp"

Setup the OpenFlow rules:

ovs-ofctl del-flows br0
ovs-ofctl add-flow br0 "in_port=enp2s0, actions=output:afxdp-p0"
ovs-ofctl add-flow br0 "in_port=afxdp-p0, actions=output:enp2s0"

In the namespace, run drop or bounce back the packet:

ip netns exec at_ns0 ./xdp_rxq_info --dev p0 --action XDP_DROP
ip netns exec at_ns0 ./xdp_rxq_info --dev p0 --action XDP_TX

Bug Reporting

Please report problems to dev@openvswitch.org.

2.3.2 Installation from Packages

Open vSwitch is packaged on a variety of distributions. The tooling required to build these packages is included in the
Open vSwitch tree. The instructions are provided below.

Distributions packaging Open vSwitch

This document lists various popular distributions packaging Open vSwitch. Open vSwitch is packaged by various
distributions for multiple platforms and architectures.

Note: The packaged version available with distributions may not be latest Open vSwitch release.

Debian

You can use apt-get or aptitude to install the .deb packages and must be superuser.

1. Debian has openvswitch-switch and openvswitch-common .deb packages that includes the core
userspace components of the switch.

2. For kernel datapath, openvswitch-datapath-dkms can be installed to automatically build and install Open
vSwitch kernel module for your running kernel.
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3. For fast userspace switching, Open vSwitch with DPDK support is bundled in the package
openvswitch-switch-dpdk.

Fedora

Fedora provides openvswitch, openvswitch-devel, openvswitch-test and
openvswitch-debuginfo rpm packages. You can install openvswitch package in minimum installa-
tion. Use yum or dnf to install the rpm packages and must be superuser.

Red Hat

RHEL distributes openvswitch rpm package that supports kernel datapath. DPDK accelerated Open vSwitch can
be installed using openvswitch-dpdk package.

OpenSuSE

OpenSUSE provides openvswitch, openvswitch-switch rpm packages. Also openvswitch-dpdk and
openvswitch-dpdk-switch can be installed for Open vSwitch using DPDK accelerated datapath.

Debian Packaging for Open vSwitch

This document describes how to build Debian packages for Open vSwitch. To install Open vSwitch on Debian without
building Debian packages, refer to Open vSwitch on Linux, FreeBSD and NetBSD instead.

Note: These instructions should also work on Ubuntu and other Debian derivative distributions.

Before You Begin

Before you begin, consider whether you really need to build packages yourself. Debian “wheezy” and “sid”, as well
as recent versions of Ubuntu, contain pre-built Debian packages for Open vSwitch. It is easier to install these than to
build your own. To use packages from your distribution, skip ahead to “Installing .deb Packages”, below.

Building Open vSwitch Debian packages

You may build from an Open vSwitch distribution tarball or from an Open vSwitch Git tree with these instructions.

You do not need to be the superuser to build the Debian packages.

1. Install the “build-essential” and “fakeroot” packages. For example:

$ apt-get install build-essential fakeroot

2. Obtain and unpack an Open vSwitch source distribution and cd into its top level directory.

3. Install the build dependencies listed under “Build-Depends:” near the top of debian/control. You can
install these any way you like, e.g. with apt-get install.
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Check your work by running dpkg-checkbuilddeps in the top level of your OVS directory. If you’ve installed
all the dependencies properly, dpkg-checkbuilddeps will exit without printing anything. If you forgot to install
some dependencies, it will tell you which ones.

4. Build the package:

$ fakeroot debian/rules binary

This will do a serial build that runs the unit tests. This will take approximately 8 to 10 minutes. If you prefer,
you can run a faster parallel build:

$ DEB_BUILD_OPTIONS='parallel=8' fakeroot debian/rules binary

If you are in a big hurry, you can even skip the unit tests:

$ DEB_BUILD_OPTIONS='parallel=8 nocheck' fakeroot debian/rules binary

Note: There are a few pitfalls in the Debian packaging building system so that, occasionally, you may find that in a
tree that you have using for a while, the build command above exits immediately without actually building anything.
To fix the problem, run:

$ fakeroot debian/rules clean

or start over from a fresh copy of the source tree.

5. The generated .deb files will be in the parent directory of the Open vSwitch source distribution.

Installing .deb Packages

These instructions apply to installing from Debian packages that you built yourself, as described in the previous
section. In this case, use a command such as dpkg -i to install the .deb files that you build. You will have to
manually install any missing dependencies.

You can also use these instruction to install from packages provided by Debian or a Debian derivative distribution
such as Ubuntu. In this case, use a program such as apt-get or aptitude to download and install the provided
packages. These programs will also automatically download and install any missing dependencies.

Important: You must be superuser to install Debian packages.

1. Start by installing an Open vSwitch kernel module. See debian/openvswitch-switch.README.
Debian for the available options.

2. Install the openvswitch-switch and openvswitch-common packages. These packages include the
core userspace components of the switch.

Open vSwitch .deb packages not mentioned above are rarely useful. Refer to their individual package descriptions
to find out whether any of them are useful to you.

Reporting Bugs

Report problems to bugs@openvswitch.org.
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Fedora, RHEL 7.x Packaging for Open vSwitch

This document provides instructions for building and installing Open vSwitch RPM packages on a Fedora Linux host.
Instructions for the installation of Open vSwitch on a Fedora Linux host without using RPM packages can be found in
the Open vSwitch on Linux, FreeBSD and NetBSD.

These instructions have been tested with Fedora 23, and are also applicable for RHEL 7.x and its derivatives, including
CentOS 7.x and Scientific Linux 7.x.

Build Requirements

You will need to install all required packages to build the RPMs. Newer distributions use dnf but if it’s not available,
then use yum instructions.

The command below will install RPM tools and generic build dependencies. And (optionally) include these packages:
libcap-ng libcap-ng-devel dpdk-devel.

DNF:

$ dnf install @'Development Tools' rpm-build dnf-plugins-core

YUM:

$ yum install @'Development Tools' rpm-build yum-utils

Then it is necessary to install Open vSwitch specific build dependencies. The dependencies are listed in the SPEC file,
but first it is necessary to replace the VERSION tag to be a valid SPEC.

The command below will create a temporary SPEC file:

$ sed -e 's/@VERSION@/0.0.1/' rhel/openvswitch-fedora.spec.in \
> /tmp/ovs.spec

And to install specific dependencies, use the corresponding tool below. For some of the dependencies on RHEL you
may need to add two additional repositories to help yum-builddep, e.g.:

$ subscription-manager repos --enable=rhel-7-server-extras-rpms
$ subscription-manager repos --enable=rhel-7-server-optional-rpms

DNF:

$ dnf builddep /tmp/ovs.spec

YUM:

$ yum-builddep /tmp/ovs.spec

Once that is completed, remove the file /tmp/ovs.spec.

Bootstraping

Refer to Bootstrapping.
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Configuring

Refer to Configuring.

Building

User Space RPMs

To build Open vSwitch user-space RPMs, execute the following from the directory in which ./configure was executed:

$ make rpm-fedora

This will create the RPMs openvswitch, python3-openvswitch, openvswitch-test, openvswitch-devel and openvswitch-
debuginfo.

To enable DPDK support in the openvswitch package, the --with dpdk option can be added:

$ make rpm-fedora RPMBUILD_OPT="--with dpdk --without check"

You can also have the above commands automatically run the Open vSwitch unit tests. This can take several minutes.

$ make rpm-fedora RPMBUILD_OPT="--with check"

Kernel OVS Tree Datapath RPM

To build the Open vSwitch kernel module for the currently running kernel version, run:

$ make rpm-fedora-kmod

To build the Open vSwitch kernel module for another kernel version, the desired kernel version can be specified via
the kversion macro. For example:

$ make rpm-fedora-kmod \
RPMBUILD_OPT='-D "kversion 4.3.4-300.fc23.x86_64"'

Installing

RPM packages can be installed by using the command rpm -i. Package installation requires superuser privileges.

The openvswitch-kmod RPM should be installed first if the Linux OVS tree datapath module is to be used. The
openvswitch-kmod RPM should not be installed if only the in-tree Linux datapath or user-space datapath is needed.
Refer to the Open vSwitch FAQ for more information about the various Open vSwitch datapath options.

In most cases only the openvswitch RPM will need to be installed. The python3-openvswitch, openvswitch-test,
openvswitch-devel, and openvswitch-debuginfo RPMs are optional unless required for a specific purpose.

Refer to the RHEL README for additional usage and configuration information.

Reporting Bugs

Report problems to bugs@openvswitch.org.
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RHEL 5.6, 6.x Packaging for Open vSwitch

This document describes how to build and install Open vSwitch on a Red Hat Enterprise Linux (RHEL) host. If you
want to install Open vSwitch on a generic Linux host, refer to Open vSwitch on Linux, FreeBSD and NetBSD instead.

We have tested these instructions with RHEL 5.6 and RHEL 6.0.

For RHEL 7.x (or derivatives, such as CentOS 7.x), you should follow the instructions in the Fedora, RHEL 7.x
Packaging for Open vSwitch. The Fedora spec files are used for RHEL 7.x.

Prerequisites

You may build from an Open vSwitch distribution tarball or from an Open vSwitch Git tree.

The default RPM build directory, _topdir, has five directories in the top-level.

BUILD/ where the software is unpacked and built

RPMS/ where the newly created binary package files are written

SOURCES/ contains the original sources, patches, and icon files

SPECS/ contains the spec files for each package to be built

SRPMS/ where the newly created source package files are written

Before you begin, note the RPM sources directory on your version of RHEL. The command rpmbuild
--showrc will show the configuration for each of those directories. Alternatively, the command rpm --eval
'%{_topdir}' shows the current configuration for the top level directory and the command rpm --eval
'%{_sourcedir}' does the same for the sources directory. On RHEL 5, the default RPM _topdir is /usr/
src/redhat and the default RPM sources directory is /usr/src/redhat/SOURCES. On RHEL 6, the default
_topdir is $HOME/rpmbuild and the default RPM sources directory is $HOME/rpmbuild/SOURCES.

Build Requirements

You will need to install all required packages to build the RPMs. The command below will install RPM tools and
generic build dependencies:

$ yum install @'Development Tools' rpm-build yum-utils

Then it is necessary to install Open vSwitch specific build dependencies. The dependencies are listed in the SPEC file,
but first it is necessary to replace the VERSION tag to be a valid SPEC.

The command below will create a temporary SPEC file:

$ sed -e 's/@VERSION@/0.0.1/' rhel/openvswitch.spec.in > /tmp/ovs.spec

And to install specific dependencies, use yum-builddep tool:

$ yum-builddep /tmp/ovs.spec

Once that is completed, remove the file /tmp/ovs.spec.

If python3-sphinx package is not available in your version of RHEL, you can install it via pip with ‘pip install sphinx’.

Open vSwitch requires python 3.4 or newer which is not available in older distributions. In the case of RHEL 6.x and
its derivatives, one option is to install python34 from EPEL.
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Bootstrapping and Configuring

If you are building from a distribution tarball, skip to Building. If not, you must be building from an Open vSwitch Git
tree. Determine what version of Autoconf is installed (e.g. run autoconf --version). If it is not at least version
2.63, then you must upgrade or use another machine to build the packages.

Assuming all requirements have been met, build the tarball by running:

$ ./boot.sh
$ ./configure
$ make dist

You must run this on a machine that has the tools listed in Build Requirements as prerequisites for building from a Git
tree. Afterward, proceed with the rest of the instructions using the distribution tarball.

Now you have a distribution tarball, named something like openvswitch-x.y.z.tar.gz. Copy this file into the
RPM sources directory, e.g.:

$ cp openvswitch-x.y.z.tar.gz $HOME/rpmbuild/SOURCES

Broken build symlink

Some versions of the RHEL 6 kernel-devel package contain a broken build symlink. If you are using such a version,
you must fix the problem before continuing.

To find out whether you are affected, run:

$ cd /lib/modules/<version>
$ ls -l build/

where <version> is the version number of the RHEL 6 kernel.

Note: The trailing slash in the final command is important. Be sure to include it.

If the ls command produces a directory listing, your kernel-devel package is OK. If it produces a No such file
or directory error, your kernel-devel package is buggy.

If your kernel-devel package is buggy, then you can fix it with:

$ cd /lib/modules/<version>
$ rm build
$ ln -s /usr/src/kernels/<target> build

where <target> is the name of an existing directory under /usr/src/kernels, whose name should be similar
to <version> but may contain some extra parts. Once you have done this, verify the fix with the same procedure
you used above to check for the problem.

Building

You should have a distribution tarball named something like openvswitch-x.y.z.tar.gz. Copy this file into the RPM
sources directory:

$ cp openvswitch-x.y.z.tar.gz $HOME/rpmbuild/SOURCES
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Make another copy of the distribution tarball in a temporary directory. Then unpack the tarball and cd into its root:

$ tar xzf openvswitch-x.y.z.tar.gz
$ cd openvswitch-x.y.z

Userspace

To build Open vSwitch userspace, run:

$ rpmbuild -bb rhel/openvswitch.spec

This produces two RPMs: “openvswitch” and “openvswitch-debuginfo”.

The above command automatically runs the Open vSwitch unit tests. To disable the unit tests, run:

$ rpmbuild -bb --without check rhel/openvswitch.spec

Note: If the build fails with configure: error: source dir /lib/modules/2.6.32-279.el6.
x86_64/build doesn't exist or similar, then the kernel-devel package is missing or buggy.

Kernel Module

On RHEL 6, to build the Open vSwitch kernel module run:

$ rpmbuild -bb rhel/kmod-openvswitch-rhel6.spec

You might have to specify a kernel version and/or variants, e.g.:

$ rpmbuild -bb -D “kversion 2.6.32-131.6.1.el6.x86_64” -D “kflavors default debug kdump”
rhel/kmod-openvswitch-rhel6.spec

This produces an “kmod-openvswitch” RPM for each kernel variant, in this example: “kmod-openvswitch”, “kmod-
openvswitch-debug”, and “kmod-openvswitch-kdump”.

Red Hat Network Scripts Integration

A RHEL host has default firewall rules that prevent any Open vSwitch tunnel traffic from passing through. If a user
configures Open vSwitch tunnels like Geneve, GRE, VXLAN, LISP etc., they will either have to manually add iptables
firewall rules to allow the tunnel traffic or add it through a startup script Refer to the “enable-protocol” command in
the ovs-ctl(8) manpage for more information.

In addition, simple integration with Red Hat network scripts has been implemented. Refer to README.RHEL.rst in
the source tree or /usr/share/doc/openvswitch/README.RHEL.rst in the installed openvswitch package for details.

Reporting Bugs

Report problems to bugs@openvswitch.org.
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2.3.3 Others

Bash command-line completion scripts

There are two completion scripts available: ovs-appctl-bashcomp.bash and ovs-vsctl-bashcomp.
bash.

ovs-appctl-bashcomp

ovs-appctl-bashcomp.bash adds bash command-line completion support for ovs-appctl, ovs-dpctl,
ovs-ofctl and ovsdb-tool commands.

Features

• Display available completion or complete on unfinished user input (long option, subcommand, and argument).

• Subcommand hints

• Convert between keywords like bridge, port, interface, or dp and the available record in ovsdb.

Limitations

• Only supports a small set of important keywords (dp, datapath, bridge, switch, port, interface,
iface).

• Does not support parsing of nested options. For example:

$ ovsdb-tool create [db [schema]]

• Does not support expansion on repeated argument. For example:

$ ovs-dpctl show [dp...]).

• Only supports matching on long options, and only in the format --option [arg]. Do not use
--option=[arg].

ovs-vsctl-bashcomp

ovs-vsctl-bashcomp.bash adds Bash command-line completion support for ovs-vsctl command.

Features

• Display available completion and complete on user input for global/local options, command, and argument.

• Query database and expand keywords like table, record, column, or key, to available completions.

• Deal with argument relations like ‘one and more’, ‘zero or one’.

• Complete multiple ovs-vsctl commands cascaded via --.
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Limitations

Completion of very long ovs-vsctl commands can take up to several seconds.

Usage

The bashcomp scripts should be placed at /etc/bash_completion.d/ to be available for all bash sessions. Run-
ning make install will place the scripts to $(sysconfdir)/bash_completion.d/, thus, the user should
specify --sysconfdir=/etc at configuration. If OVS is installed from packages, the scripts will automatically be
placed inside /etc/bash_completion.d/.

If you just want to run the scripts in one bash, you can remove them from /etc/bash_completion.d/ and run
the scripts via . ovs-appctl-bashcomp.bash or . ovs-vsctl-bashcomp.bash.

Tests

Unit tests are added in tests/completion.at and integrated into autotest framework. To run the tests, just run
make check.

Open vSwitch Documentation

This document describes how to build the OVS documentation for use offline. A continuously updated, online version
can be found at docs.openvswitch.org.

Note: These instructions provide information on building the documentation locally. For information on writing
documentation, refer to Open vSwitch Documentation Style

Build Requirements

As described in the Open vSwitch Documentation Style, the Open vSwitch documentation is written in reStructured-
Text and built with Sphinx. A detailed guide on installing Sphinx in many environments is available on the Sphinx
website but, for most Linux distributions, you can install with your package manager. For example, on Debian/Ubuntu
run:

$ sudo apt-get install python3-sphinx

Similarly, on RHEL/Fedora run:

$ sudo dnf install python3-sphinx

A requirements.txt is also provided in the /Documentation, should you wish to install using pip:

$ virtualenv .venv
$ source .venv/bin/activate
$ pip install -r Documentation/requirements.txt
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Configuring

It’s unlikely that you’ll need to customize any aspect of the configuration. However, the Documentation/conf.
py is the go-to place for all configuration. This file is well documented and further information is available on the
Sphinx website.

Building

Once Sphinx is installed, the documentation can be built using the provided Makefile targets:

$ make docs-check

Important: The docs-check target will fail if there are any syntax errors. However, it won’t catch more succint
issues such as style or grammar issues. As a result, you should always inspect changes visually to ensure the result is
as intended.

Once built, documentation is available in the /Documentation/_build folder. Open the root index.html to
browse the documentation.
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CHAPTER 3

Tutorials

Getting started with Open vSwitch (OVS).

3.1 OVS Faucet Tutorial

This tutorial demonstrates how Open vSwitch works with a general-purpose OpenFlow controller, using the Faucet
controller as a simple way to get started. It was tested with the “master” branch of Open vSwitch and version 1.6.15
of Faucet. It does not use advanced or recently added features in OVS or Faucet, so other versions of both pieces of
software are likely to work equally well.

The goal of the tutorial is to demonstrate Open vSwitch and Faucet in an end-to-end way, that is, to show how it works
from the Faucet controller configuration at the top, through the OpenFlow flow table, to the datapath processing. Along
the way, in addition to helping to understand the architecture at each level, we discuss performance and troubleshooting
issues. We hope that this demonstration makes it easier for users and potential users to understand how Open vSwitch
works and how to debug and troubleshoot it.

We provide enough details in the tutorial that you should be able to fully follow along by following the instructions.

3.1.1 Setting Up OVS

This section explains how to set up Open vSwitch for the purpose of using it with Faucet for the tutorial.

You might already have Open vSwitch installed on one or more computers or VMs, perhaps set up to control a set
of VMs or a physical network. This is admirable, but we will be using Open vSwitch in a different way to set up a
simulation environment called the OVS “sandbox”. The sandbox does not use virtual machines or containers, which
makes it more limited, but on the other hand it is (in this writer’s opinion) easier to set up.

There are two ways to start a sandbox: one that uses the Open vSwitch that is already installed on a system, and
another that uses a copy of Open vSwitch that has been built but not yet installed. The latter is more often used and
thus better tested, but both should work. The instructions below explain both approaches:

1. Get a copy of the Open vSwitch source repository using Git, then cd into the new directory:
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$ git clone https://github.com/openvswitch/ovs.git
$ cd ovs

The default checkout is the master branch. You can check out a tag (such as v2.8.0) or a branch (such as
origin/branch-2.8), if you prefer.

2. If you do not already have an installed copy of Open vSwitch on your system, or if you do not want to use it for
the sandbox (the sandbox will not disturb the functionality of any existing switches), then proceed to step 3. If
you do have an installed copy and you want to use it for the sandbox, try to start the sandbox by running:

$ tutorial/ovs-sandbox

If it is successful, you will find yourself in a subshell environment, which is the sandbox (you can exit with
exit or Control+D). If so, you’re finished and do not need to complete the rest of the steps. If it fails, you can
proceed to step 3 to build Open vSwitch anyway.

3. Before you build, you might want to check that your system meets the build requirements. Read Open vSwitch
on Linux, FreeBSD and NetBSD to find out. For this tutorial, there is no need to compile the Linux kernel
module, or to use any of the optional libraries such as OpenSSL, DPDK, or libcap-ng.

4. Configure and build Open vSwitch:

$ ./boot.sh
$ ./configure
$ make -j4

5. Try out the sandbox by running:

$ make sandbox

You can exit the sandbox with exit or Control+D.

3.1.2 Setting up Faucet

This section explains how to get a copy of Faucet and set it up appropriately for the tutorial. There are many other
ways to install Faucet, but this simple approach worked well for me. It has the advantage that it does not require
modifying any system-level files or directories on your machine. It does, on the other hand, require Docker, so make
sure you have it installed and working.

It will be a little easier to go through the rest of the tutorial if you run these instructions in a separate terminal from the
one that you’re using for Open vSwitch, because it’s often necessary to switch between one and the other.

1. Get a copy of the Faucet source repository using Git, then cd into the new directory:

$ git clone https://github.com/faucetsdn/faucet.git
$ cd faucet

At this point I checked out the latest tag:

$ latest_tag=$(git describe --tags $(git rev-list --tags --max-count=1))
$ git checkout $latest_tag

2. Build a docker container image:

$ docker build -t faucet/faucet .

This will take a few minutes.
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3. Create an installation directory under the faucet directory for the docker image to use:

$ mkdir inst

The Faucet configuration will go in inst/faucet.yaml and its main log will appear in inst/faucet.
log. (The official Faucet installation instructions call to put these in /etc/ryu/faucet and /var/log/
ryu/faucet, respectively, but we avoid modifying these system directories.)

4. Create a container and start Faucet:

$ docker run -d --name faucet --restart=always -v $(pwd)/inst/:/etc/faucet/ -v
→˓$(pwd)/inst/:/var/log/faucet/ -p 6653:6653 -p 9302:9302 faucet/faucet

5. Look in inst/faucet.log to verify that Faucet started. It will probably start with an exception and trace-
back because we have not yet created inst/faucet.yaml.

6. Later on, to make a new or updated Faucet configuration take effect quickly, you can run:

$ docker exec faucet pkill -HUP -f faucet.faucet

Another way is to stop and start the Faucet container:

$ docker restart faucet

You can also stop and delete the container; after this, to start it again, you need to rerun the docker run
command:

$ docker stop faucet
$ docker rm faucet

3.1.3 Overview

Now that Open vSwitch and Faucet are ready, here’s an overview of what we’re going to do for the remainder of the
tutorial:

1. Switching: Set up an L2 network with Faucet.

2. Routing: Route between multiple L3 networks with Faucet.

3. ACLs: Add and modify access control rules.

At each step, we will take a look at how the features in question work from Faucet at the top to the data plane layer at
the bottom. From the highest to lowest level, these layers and the software components that connect them are:

Faucet. As the top level in the system, this is the authoritative source of the network configuration.

Faucet connects to a variety of monitoring and performance tools, but we won’t use them in this tutorial. Our
main insights into the system will be through faucet.yaml for configuration and faucet.log to observe
state, such as MAC learning and ARP resolution, and to tell when we’ve screwed up configuration syntax or
semantics.

The OpenFlow subsystem in Open vSwitch. OpenFlow is the protocol, standardized by the Open Networking
Foundation, that controllers like Faucet use to control how Open vSwitch and other switches treat packets in the
network.

We will use ovs-ofctl, a utility that comes with Open vSwitch, to observe and occasionally modify
Open vSwitch’s OpenFlow behavior. We will also use ovs-appctl, a utility for communicating with
ovs-vswitchd and other Open vSwitch daemons, to ask “what-if?” type questions.
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In addition, the OVS sandbox by default raises the Open vSwitch logging level for OpenFlow high enough that
we can learn a great deal about OpenFlow behavior simply by reading its log file.

Open vSwitch datapath. This is essentially a cache designed to accelerate packet processing. Open vSwitch includes
a few different datapaths, such as one based on the Linux kernel and a userspace-only datapath (sometimes called
the “DPDK” datapath). The OVS sandbox uses the latter, but the principles behind it apply equally well to other
datapaths.

At each step, we discuss how the design of each layer influences performance. We demonstrate how Open vSwitch
features can be used to debug, troubleshoot, and understand the system as a whole.

3.1.4 Switching

Layer-2 (L2) switching is the basis of modern networking. It’s also very simple and a good place to start, so let’s
set up a switch with some VLANs in Faucet and see how it works at each layer. Begin by putting the following into
inst/faucet.yaml:

dps:
switch-1:

dp_id: 0x1
timeout: 3600
arp_neighbor_timeout: 3600
interfaces:

1:
native_vlan: 100

2:
native_vlan: 100

3:
native_vlan: 100

4:
native_vlan: 200

5:
native_vlan: 200

vlans:
100:
200:

This configuration file defines a single switch (“datapath” or “dp”) named switch-1. The switch has five ports,
numbered 1 through 5. Ports 1, 2, and 3 are in VLAN 100, and ports 4 and 5 are in VLAN 2. Faucet can identify the
switch from its datapath ID, which is defined to be 0x1.

Note: This also sets high MAC learning and ARP timeouts. The defaults are 5 minutes and about 8 minutes, which
are fine in production but sometimes too fast for manual experimentation. (Don’t use a timeout bigger than about
65000 seconds because it will crash Faucet.)

Now restart Faucet so that the configuration takes effect, e.g.:

$ docker restart faucet

Assuming that the configuration update is successful, you should now see a new line at the end of inst/faucet.
log:

Jan 06 15:14:35 faucet INFO Add new datapath DPID 1 (0x1)

Faucet is now waiting for a switch with datapath ID 0x1 to connect to it over OpenFlow, so our next step is to create
a switch with OVS and make it connect to Faucet. To do that, switch to the terminal where you checked out OVS and
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start a sandbox with make sandbox or tutorial/ovs-sandbox (as explained earlier under Setting Up OVS).
You should see something like this toward the end of the output:

----------------------------------------------------------------------
You are running in a dummy Open vSwitch environment. You can use
ovs-vsctl, ovs-ofctl, ovs-appctl, and other tools to work with the
dummy switch.

Log files, pidfiles, and the configuration database are in the
"sandbox" subdirectory.

Exit the shell to kill the running daemons.
blp@sigabrt:~/nicira/ovs/tutorial(0)$

Inside the sandbox, create a switch (“bridge”) named br0, set its datapath ID to 0x1, add simulated ports to it named
p1 through p5, and tell it to connect to the Faucet controller. To make it easier to understand, we request for port
p1 to be assigned OpenFlow port 1, p2 port 2, and so on. As a final touch, configure the controller to be “out-of-
band” (this is mainly to avoid some annoying messages in the ovs-vswitchd logs; for more information, run man
ovs-vswitchd.conf.db and search for connection_mode):

$ ovs-vsctl add-br br0 \
-- set bridge br0 other-config:datapath-id=0000000000000001 \
-- add-port br0 p1 -- set interface p1 ofport_request=1 \
-- add-port br0 p2 -- set interface p2 ofport_request=2 \
-- add-port br0 p3 -- set interface p3 ofport_request=3 \
-- add-port br0 p4 -- set interface p4 ofport_request=4 \
-- add-port br0 p5 -- set interface p5 ofport_request=5 \
-- set-controller br0 tcp:127.0.0.1:6653 \
-- set controller br0 connection-mode=out-of-band

Note: You don’t have to run all of these as a single ovs-vsctl invocation. It is a little more efficient, though, and
since it updates the OVS configuration in a single database transaction it means that, for example, there is never a time
when the controller is set but it has not yet been configured as out-of-band.

Now, if you look at inst/faucet.log again, you should see that Faucet recognized and configured the new switch
and its ports:

Jan 06 15:17:10 faucet INFO DPID 1 (0x1) connected
Jan 06 15:17:10 faucet.valve INFO DPID 1 (0x1) Cold start configuring DP
Jan 06 15:17:10 faucet.valve INFO DPID 1 (0x1) Configuring VLAN 100 vid:100
→˓ports:Port 1,Port 2,Port 3
Jan 06 15:17:10 faucet.valve INFO DPID 1 (0x1) Configuring VLAN 200 vid:200
→˓ports:Port 4,Port 5
Jan 06 15:17:10 faucet.valve INFO DPID 1 (0x1) Port 1 up, configuring
Jan 06 15:17:10 faucet.valve INFO DPID 1 (0x1) Port 2 up, configuring
Jan 06 15:17:10 faucet.valve INFO DPID 1 (0x1) Port 3 up, configuring
Jan 06 15:17:10 faucet.valve INFO DPID 1 (0x1) Port 4 up, configuring
Jan 06 15:17:10 faucet.valve INFO DPID 1 (0x1) Port 5 up, configuring

Over on the Open vSwitch side, you can see a lot of related activity if you take a look in sandbox/ovs-vswitchd.
log. For example, here is the basic OpenFlow session setup and Faucet’s probe of the switch’s ports and capabilities:

rconn|INFO|br0<->tcp:127.0.0.1:6653: connecting...
vconn|DBG|tcp:127.0.0.1:6653: sent (Success): OFPT_HELLO (OF1.4) (xid=0x1):
version bitmap: 0x01, 0x02, 0x03, 0x04, 0x05

(continues on next page)
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vconn|DBG|tcp:127.0.0.1:6653: received: OFPT_HELLO (OF1.3) (xid=0x2f24810a):
version bitmap: 0x01, 0x02, 0x03, 0x04

vconn|DBG|tcp:127.0.0.1:6653: negotiated OpenFlow version 0x04 (we support version
→˓0x05 and earlier, peer supports version 0x04 and earlier)
rconn|INFO|br0<->tcp:127.0.0.1:6653: connected
vconn|DBG|tcp:127.0.0.1:6653: received: OFPT_ECHO_REQUEST (OF1.3) (xid=0x2f24810b): 0
→˓bytes of payload
vconn|DBG|tcp:127.0.0.1:6653: sent (Success): OFPT_ECHO_REPLY (OF1.3)
→˓(xid=0x2f24810b): 0 bytes of payload
vconn|DBG|tcp:127.0.0.1:6653: received: OFPT_FEATURES_REQUEST (OF1.3)
→˓(xid=0x2f24810c):
vconn|DBG|tcp:127.0.0.1:6653: sent (Success): OFPT_FEATURES_REPLY (OF1.3)
→˓(xid=0x2f24810c): dpid:0000000000000001
n_tables:254, n_buffers:0
capabilities: FLOW_STATS TABLE_STATS PORT_STATS GROUP_STATS QUEUE_STATS

vconn|DBG|tcp:127.0.0.1:6653: received: OFPST_PORT_DESC request (OF1.3)
→˓(xid=0x2f24810d): port=ANY
vconn|DBG|tcp:127.0.0.1:6653: sent (Success): OFPST_PORT_DESC reply (OF1.3)
→˓(xid=0x2f24810d):
1(p1): addr:aa:55:aa:55:00:14

config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps max

2(p2): addr:aa:55:aa:55:00:15
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps max

3(p3): addr:aa:55:aa:55:00:16
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps max

4(p4): addr:aa:55:aa:55:00:17
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps max

5(p5): addr:aa:55:aa:55:00:18
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps max

LOCAL(br0): addr:c6:64:ff:59:48:41
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps max

After that, you can see Faucet delete all existing flows and then start adding new ones:

vconn|DBG|tcp:127.0.0.1:6653: received: OFPT_FLOW_MOD (OF1.3) (xid=0x2f24810e): DEL
→˓table:255 priority=0 actions=drop
vconn|DBG|tcp:127.0.0.1:6653: received: OFPT_BARRIER_REQUEST (OF1.3) (xid=0x2f24810f):
vconn|DBG|tcp:127.0.0.1:6653: sent (Success): OFPT_BARRIER_REPLY (OF1.3)
→˓(xid=0x2f24810f):
vconn|DBG|tcp:127.0.0.1:6653: received: OFPT_FLOW_MOD (OF1.3) (xid=0x2f248110): ADD
→˓priority=0 cookie:0x5adc15c0 out_port:0 actions=drop
vconn|DBG|tcp:127.0.0.1:6653: received: OFPT_FLOW_MOD (OF1.3) (xid=0x2f248111): ADD
→˓table:1 priority=0 cookie:0x5adc15c0 out_port:0 actions=drop
...
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OpenFlow Layer

Let’s take a look at the OpenFlow tables that Faucet set up. Before we do that, it’s helpful to take a look at docs/
architecture.rst in the Faucet documentation to learn how Faucet structures its flow tables. In summary, this
document says:

Table 0 Port-based ACLs

Table 1 Ingress VLAN processing

Table 2 VLAN-based ACLs

Table 3 Ingress L2 processing, MAC learning

Table 4 L3 forwarding for IPv4

Table 5 L3 forwarding for IPv6

Table 6 Virtual IP processing, e.g. for router IP addresses implemented by Faucet

Table 7 Egress L2 processing

Table 8 Flooding

With that in mind, let’s dump the flow tables. The simplest way is to just run plain ovs-ofctl dump-flows:

$ ovs-ofctl dump-flows br0

If you run that bare command, it produces a lot of extra junk that makes the output harder to read, like statistics
and “cookie” values that are all the same. In addition, for historical reasons ovs-ofctl always defaults to using
OpenFlow 1.0 even though Faucet and most modern controllers use OpenFlow 1.3, so it’s best to force it to use
OpenFlow 1.3. We could throw in a lot of options to fix these, but we’ll want to do this more than once, so let’s start
by defining a shell function for ourselves:

$ dump-flows () {
ovs-ofctl -OOpenFlow13 --names --no-stat dump-flows "$@" \
| sed 's/cookie=0x5adc15c0, //'

}

Let’s also define save-flows and diff-flows functions for later use:

$ save-flows () {
ovs-ofctl -OOpenFlow13 --no-names --sort dump-flows "$@"

}
$ diff-flows () {

ovs-ofctl -OOpenFlow13 diff-flows "$@" | sed 's/cookie=0x5adc15c0 //'
}

Now let’s take a look at the flows we’ve got and what they mean, like this:

$ dump-flows br0

First, table 0 has a flow that just jumps to table 1 for each configured port, and drops other unrecognized packets.
Presumably it will do more if we configured port-based ACLs:

priority=9099,in_port=p1 actions=goto_table:1
priority=9099,in_port=p2 actions=goto_table:1
priority=9099,in_port=p3 actions=goto_table:1
priority=9099,in_port=p4 actions=goto_table:1
priority=9099,in_port=p5 actions=goto_table:1
priority=0 actions=drop
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Table 1, for ingress VLAN processing, has a bunch of flows that drop inappropriate packets, such as LLDP and STP:

table=1, priority=9099,dl_dst=01:80:c2:00:00:00 actions=drop
table=1, priority=9099,dl_dst=01:00:0c:cc:cc:cd actions=drop
table=1, priority=9099,dl_type=0x88cc actions=drop

Table 1 also has some more interesting flows that recognize packets without a VLAN header on each of our ports
(vlan_tci=0x0000/0x1fff), push on the VLAN configured for the port, and proceed to table 3. Presumably
these skip table 2 because we did not configure any VLAN-based ACLs. There is also a fallback flow to drop other
packets, which in practice means that if any received packet already has a VLAN header then it will be dropped:

table=1, priority=9000,in_port=p1,vlan_tci=0x0000/0x1fff actions=push_vlan:0x8100,set_
→˓field:4196->vlan_vid,goto_table:3
table=1, priority=9000,in_port=p2,vlan_tci=0x0000/0x1fff actions=push_vlan:0x8100,set_
→˓field:4196->vlan_vid,goto_table:3
table=1, priority=9000,in_port=p3,vlan_tci=0x0000/0x1fff actions=push_vlan:0x8100,set_
→˓field:4196->vlan_vid,goto_table:3
table=1, priority=9000,in_port=p4,vlan_tci=0x0000/0x1fff actions=push_vlan:0x8100,set_
→˓field:4296->vlan_vid,goto_table:3
table=1, priority=9000,in_port=p5,vlan_tci=0x0000/0x1fff actions=push_vlan:0x8100,set_
→˓field:4296->vlan_vid,goto_table:3
table=1, priority=0 actions=drop

Note: The syntax set_field:4196->vlan_vid is curious and somewhat misleading. OpenFlow 1.3 defines
the vlan_vid field as a 13-bit field where bit 12 is set to 1 if the VLAN header is present. Thus, since 4196 is
0x1064, this action sets VLAN value 0x64, which in decimal is 100.

Table 2 isn’t used because there are no VLAN-based ACLs. It just has a drop flow:

table=2, priority=0 actions=drop

Table 3 is used for MAC learning but the controller hasn’t learned any MAC yet. It also drops some inappropriate
packets such as those that claim to be from a broadcast source address (why not from all multicast source addresses,
though?). We’ll come back here later:

table=3, priority=9099,dl_src=ff:ff:ff:ff:ff:ff actions=drop
table=3, priority=9001,dl_src=0e:00:00:00:00:01 actions=drop
table=3, priority=0 actions=drop
table=3, priority=9000 actions=CONTROLLER:96,goto_table:7

Tables 4, 5, and 6 aren’t used because we haven’t configured any routing:

table=4, priority=0 actions=drop
table=5, priority=0 actions=drop
table=6, priority=0 actions=drop

Table 7 is used to direct packets to learned MACs but Faucet hasn’t learned any MACs yet, so it just sends all the
packets along to table 8:

table=7, priority=0 actions=drop
table=7, priority=9000 actions=goto_table:8

Table 8 implements flooding, broadcast, and multicast. The flows for broadcast and flood are easy to understand: if
the packet came in on a given port and needs to be flooded or broadcast, output it to all the other ports in the same
VLAN:
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table=8, priority=9008,in_port=p1,dl_vlan=100,dl_dst=ff:ff:ff:ff:ff:ff actions=pop_
→˓vlan,output:p2,output:p3
table=8, priority=9008,in_port=p2,dl_vlan=100,dl_dst=ff:ff:ff:ff:ff:ff actions=pop_
→˓vlan,output:p1,output:p3
table=8, priority=9008,in_port=p3,dl_vlan=100,dl_dst=ff:ff:ff:ff:ff:ff actions=pop_
→˓vlan,output:p1,output:p2
table=8, priority=9008,in_port=p4,dl_vlan=200,dl_dst=ff:ff:ff:ff:ff:ff actions=pop_
→˓vlan,output:p5
table=8, priority=9008,in_port=p5,dl_vlan=200,dl_dst=ff:ff:ff:ff:ff:ff actions=pop_
→˓vlan,output:p4
table=8, priority=9000,in_port=p1,dl_vlan=100 actions=pop_vlan,output:p2,output:p3
table=8, priority=9000,in_port=p2,dl_vlan=100 actions=pop_vlan,output:p1,output:p3
table=8, priority=9000,in_port=p3,dl_vlan=100 actions=pop_vlan,output:p1,output:p2
table=8, priority=9000,in_port=p4,dl_vlan=200 actions=pop_vlan,output:p5
table=8, priority=9000,in_port=p5,dl_vlan=200 actions=pop_vlan,output:p4

Note: These flows could apparently be simpler because OpenFlow says that output:<port> is ignored if <port>
is the input port. That means that the first three flows above could apparently be collapsed into just:

table=8, priority=9008,dl_vlan=100,dl_dst=ff:ff:ff:ff:ff:ff actions=pop_vlan,
→˓output:p1,output:p2,output:p3

There might be some reason why this won’t work or isn’t practical, but that isn’t obvious from looking at the flow
table.

There are also some flows for handling some standard forms of multicast, and a fallback drop flow:

table=8, priority=9006,in_port=p1,dl_vlan=100,dl_dst=33:33:00:00:00:00/
→˓ff:ff:00:00:00:00 actions=pop_vlan,output:p2,output:p3
table=8, priority=9006,in_port=p2,dl_vlan=100,dl_dst=33:33:00:00:00:00/
→˓ff:ff:00:00:00:00 actions=pop_vlan,output:p1,output:p3
table=8, priority=9006,in_port=p3,dl_vlan=100,dl_dst=33:33:00:00:00:00/
→˓ff:ff:00:00:00:00 actions=pop_vlan,output:p1,output:p2
table=8, priority=9006,in_port=p4,dl_vlan=200,dl_dst=33:33:00:00:00:00/
→˓ff:ff:00:00:00:00 actions=pop_vlan,output:p5
table=8, priority=9006,in_port=p5,dl_vlan=200,dl_dst=33:33:00:00:00:00/
→˓ff:ff:00:00:00:00 actions=pop_vlan,output:p4
table=8, priority=9002,in_port=p1,dl_vlan=100,dl_dst=01:80:c2:00:00:00/
→˓ff:ff:ff:00:00:00 actions=pop_vlan,output:p2,output:p3
table=8, priority=9002,in_port=p2,dl_vlan=100,dl_dst=01:80:c2:00:00:00/
→˓ff:ff:ff:00:00:00 actions=pop_vlan,output:p1,output:p3
table=8, priority=9002,in_port=p3,dl_vlan=100,dl_dst=01:80:c2:00:00:00/
→˓ff:ff:ff:00:00:00 actions=pop_vlan,output:p1,output:p2
table=8, priority=9004,in_port=p1,dl_vlan=100,dl_dst=01:00:5e:00:00:00/
→˓ff:ff:ff:00:00:00 actions=pop_vlan,output:p2,output:p3
table=8, priority=9004,in_port=p2,dl_vlan=100,dl_dst=01:00:5e:00:00:00/
→˓ff:ff:ff:00:00:00 actions=pop_vlan,output:p1,output:p3
table=8, priority=9004,in_port=p3,dl_vlan=100,dl_dst=01:00:5e:00:00:00/
→˓ff:ff:ff:00:00:00 actions=pop_vlan,output:p1,output:p2
table=8, priority=9002,in_port=p4,dl_vlan=200,dl_dst=01:80:c2:00:00:00/
→˓ff:ff:ff:00:00:00 actions=pop_vlan,output:p5
table=8, priority=9002,in_port=p5,dl_vlan=200,dl_dst=01:80:c2:00:00:00/
→˓ff:ff:ff:00:00:00 actions=pop_vlan,output:p4
table=8, priority=9004,in_port=p4,dl_vlan=200,dl_dst=01:00:5e:00:00:00/
→˓ff:ff:ff:00:00:00 actions=pop_vlan,output:p5

(continues on next page)
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table=8, priority=9004,in_port=p5,dl_vlan=200,dl_dst=01:00:5e:00:00:00/
→˓ff:ff:ff:00:00:00 actions=pop_vlan,output:p4
table=8, priority=0 actions=drop

Tracing

Let’s go a level deeper. So far, everything we’ve done has been fairly general. We can also look at something more
specific: the path that a particular packet would take through Open vSwitch. We can use the ofproto/trace
command to play “what-if?” games. This command is one that we send directly to ovs-vswitchd, using the
ovs-appctl utility.

Note: ovs-appctl is actually a very simple-minded JSON-RPC client, so you could also use some other utility
that speaks JSON-RPC, or access it from a program as an API.

The ovs-vswitchd(8) manpage has a lot of detail on how to use ofproto/trace, but let’s just start by building
up from a simple example. You can start with a command that just specifies the datapath (e.g. br0), an input port,
and nothing else; unspecified fields default to all-zeros. Let’s look at the full output for this trivial example:

$ ovs-appctl ofproto/trace br0 in_port=p1
Flow: in_port=1,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,dl_dst=00:00:00:00:00:00,dl_
→˓type=0x0000

bridge("br0")
-------------
0. in_port=1, priority 9099, cookie 0x5adc15c0

goto_table:1
1. in_port=1,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adc15c0

push_vlan:0x8100
set_field:4196->vlan_vid
goto_table:3

3. priority 9000, cookie 0x5adc15c0
CONTROLLER:96
goto_table:7

7. priority 9000, cookie 0x5adc15c0
goto_table:8

8. in_port=1,dl_vlan=100, priority 9000, cookie 0x5adc15c0
pop_vlan
output:2
output:3

Final flow: unchanged
Megaflow: recirc_id=0,eth,in_port=1,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,dl_
→˓dst=00:00:00:00:00:00,dl_type=0x0000
Datapath actions: push_vlan(vid=100,pcp=0),userspace(pid=0,controller(reason=1,
→˓flags=1,recirc_id=1,rule_cookie=0x5adc15c0,controller_id=0,max_len=96)),pop_vlan,2,3

The first line of output, beginning with Flow:, just repeats our request in a more verbose form, including the L2 fields
that were zeroed.

Each of the numbered items under bridge("br0") shows what would happen to our hypothetical packet in the
table with the given number. For example, we see in table 1 that the packet matches a flow that push on a VLAN
header, set the VLAN ID to 100, and goes on to further processing in table 3. In table 3, the packet gets sent to the
controller to allow MAC learning to take place, and then table 8 floods the packet to the other ports in the same VLAN.
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Summary information follows the numbered tables. The packet hasn’t been changed (overall, even though a VLAN
was pushed and then popped back off) since ingress, hence Final flow: unchanged. We’ll look at the
Megaflow information later. The Datapath actions summarize what would actually happen to such a packet.

Triggering MAC Learning

We just saw how a packet gets sent to the controller to trigger MAC learning. Let’s actually send the packet and see
what happens. But before we do that, let’s save a copy of the current flow tables for later comparison:

$ save-flows br0 > flows1

Now use ofproto/trace, as before, with a few new twists: we specify the source and destination Ethernet ad-
dresses and append the -generate option so that side effects like sending a packet to the controller actually happen:

$ ovs-appctl ofproto/trace br0 in_port=p1,dl_src=00:11:11:00:00:00,dl_
→˓dst=00:22:22:00:00:00 -generate

The output is almost identical to that before, so it is not repeated here. But, take a look at inst/faucet.log now.
It should now include a line at the end that says that it learned about our MAC 00:11:11:00:00:00, like this:

Jan 06 15:56:02 faucet.valve INFO DPID 1 (0x1) L2 learned 00:11:11:00:00:00 (L2
→˓type 0x0000, L3 src None) on Port 1 on VLAN 100 (1 hosts total

Now compare the flow tables that we saved to the current ones:

diff-flows flows1 br0

The result should look like this, showing new flows for the learned MACs:

+table=3 priority=9098,in_port=1,dl_vlan=100,dl_src=00:11:11:00:00:00 hard_
→˓timeout=3601 actions=goto_table:7
+table=7 priority=9099,dl_vlan=100,dl_dst=00:11:11:00:00:00 idle_timeout=3601
→˓actions=pop_vlan,output:1

To demonstrate the usefulness of the learned MAC, try tracing (with side effects) a packet arriving on p2 (or p3) and
destined to the address learned on p1, like this:

$ ovs-appctl ofproto/trace br0 in_port=p2,dl_src=00:22:22:00:00:00,dl_
→˓dst=00:11:11:00:00:00 -generate

The first time you run this command, you will notice that it sends the packet to the controller, to learn p2’s
00:22:22:00:00:00 source address:

bridge("br0")
-------------
0. in_port=2, priority 9099, cookie 0x5adc15c0

goto_table:1
1. in_port=2,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adc15c0

push_vlan:0x8100
set_field:4196->vlan_vid
goto_table:3

3. priority 9000, cookie 0x5adc15c0
CONTROLLER:96
goto_table:7

7. dl_vlan=100,dl_dst=00:11:11:00:00:00, priority 9099, cookie 0x5adc15c0
pop_vlan
output:1
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If you check inst/faucet.log, you can see that p2’s MAC has been learned too:

Jan 06 15:58:09 faucet.valve INFO DPID 1 (0x1) L2 learned 00:22:22:00:00:00 (L2
→˓type 0x0000, L3 src None) on Port 2 on VLAN 100 (2 hosts total)

Similarly for diff-flows:

$ diff-flows flows1 br0
+table=3 priority=9098,in_port=1,dl_vlan=100,dl_src=00:11:11:00:00:00 hard_
→˓timeout=3601 actions=goto_table:7
+table=3 priority=9098,in_port=2,dl_vlan=100,dl_src=00:22:22:00:00:00 hard_
→˓timeout=3604 actions=goto_table:7
+table=7 priority=9099,dl_vlan=100,dl_dst=00:11:11:00:00:00 idle_timeout=3601
→˓actions=pop_vlan,output:1
+table=7 priority=9099,dl_vlan=100,dl_dst=00:22:22:00:00:00 idle_timeout=3604
→˓actions=pop_vlan,output:2

Then, if you re-run either of the ofproto/trace commands (with or without -generate), you can see that the
packets go back and forth without any further MAC learning, e.g.:

$ ovs-appctl ofproto/trace br0 in_port=p2,dl_src=00:22:22:00:00:00,dl_
→˓dst=00:11:11:00:00:00 -generate
Flow: in_port=2,vlan_tci=0x0000,dl_src=00:22:22:00:00:00,dl_dst=00:11:11:00:00:00,dl_
→˓type=0x0000

bridge("br0")
-------------
0. in_port=2, priority 9099, cookie 0x5adc15c0

goto_table:1
1. in_port=2,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adc15c0

push_vlan:0x8100
set_field:4196->vlan_vid
goto_table:3

3. in_port=2,dl_vlan=100,dl_src=00:22:22:00:00:00, priority 9098, cookie 0x5adc15c0
goto_table:7

7. dl_vlan=100,dl_dst=00:11:11:00:00:00, priority 9099, cookie 0x5adc15c0
pop_vlan
output:1

Final flow: unchanged
Megaflow: recirc_id=0,eth,in_port=2,vlan_tci=0x0000/0x1fff,dl_src=00:22:22:00:00:00,
→˓dl_dst=00:11:11:00:00:00,dl_type=0x0000
Datapath actions: 1

Performance

Open vSwitch has a concept of a “fast path” and a “slow path”; ideally all packets stay in the fast path. This distinction
between slow path and fast path is the key to making sure that Open vSwitch performs as fast as possible.

Some factors can force a flow or a packet to take the slow path. As one example, all CFM, BFD, LACP, STP, and
LLDP processing takes place in the slow path, in the cases where Open vSwitch processes these protocols itself instead
of delegating to controller-written flows. As a second example, any flow that modifies ARP fields is processed in the
slow path. These are corner cases that are unlikely to cause performance problems in practice because these protocols
send packets at a relatively slow rate, and users and controller authors do not normally need to be concerned about
them.
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To understand what cases users and controller authors should consider, we need to talk about how Open vSwitch opti-
mizes for performance. The Open vSwitch code is divided into two major components which, as already mentioned,
are called the “slow path” and “fast path” (aka “datapath”). The slow path is embedded in the ovs-vswitchd
userspace program. It is the part of the Open vSwitch packet processing logic that understands OpenFlow. Its job is to
take a packet and run it through the OpenFlow tables to determine what should happen to it. It outputs a list of actions
in a form similar to OpenFlow actions but simpler, called “ODP actions” or “datapath actions”. It then passes the ODP
actions to the datapath, which applies them to the packet.

Note: Open vSwitch contains a single slow path and multiple fast paths. The difference between using Open vSwitch
with the Linux kernel versus with DPDK is the datapath.

If every packet passed through the slow path and the fast path in this way, performance would be terrible. The key to
getting high performance from this architecture is caching. Open vSwitch includes a multi-level cache. It works like
this:

1. A packet initially arrives at the datapath. Some datapaths (such as DPDK and the in-tree version of the OVS
kernel module) have a first-level cache called the “microflow cache”. The microflow cache is the key to perfor-
mance for relatively long-lived, high packet rate flows. If the datapath has a microflow cache, then it consults it
and, if there is a cache hit, the datapath executes the associated actions. Otherwise, it proceeds to step 2.

2. The datapath consults its second-level cache, called the “megaflow cache”. The megaflow cache is the key to
performance for shorter or low packet rate flows. If there is a megaflow cache hit, the datapath executes the
associated actions. Otherwise, it proceeds to step 3.

3. The datapath passes the packet to the slow path, which runs it through the OpenFlow table to yield ODP actions,
a process that is often called “flow translation”. It then passes the packet back to the datapath to execute
the actions and to, if possible, install a megaflow cache entry so that subsequent similar packets can be handled
directly by the fast path. (We already described above most of the cases where a cache entry cannot be installed.)

The megaflow cache is the key cache to consider for performance tuning. Open vSwitch provides tools for under-
standing and optimizing its behavior. The ofproto/trace command that we have already been using is the most
common tool for this use. Let’s take another look at the most recent ofproto/trace output:

$ ovs-appctl ofproto/trace br0 in_port=p2,dl_src=00:22:22:00:00:00,dl_
→˓dst=00:11:11:00:00:00 -generate
Flow: in_port=2,vlan_tci=0x0000,dl_src=00:22:22:00:00:00,dl_dst=00:11:11:00:00:00,dl_
→˓type=0x0000

bridge("br0")
-------------
0. in_port=2, priority 9099, cookie 0x5adc15c0

goto_table:1
1. in_port=2,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adc15c0

push_vlan:0x8100
set_field:4196->vlan_vid
goto_table:3

3. in_port=2,dl_vlan=100,dl_src=00:22:22:00:00:00, priority 9098, cookie 0x5adc15c0
goto_table:7

7. dl_vlan=100,dl_dst=00:11:11:00:00:00, priority 9099, cookie 0x5adc15c0
pop_vlan
output:1

Final flow: unchanged
Megaflow: recirc_id=0,eth,in_port=2,vlan_tci=0x0000/0x1fff,dl_src=00:22:22:00:00:00,
→˓dl_dst=00:11:11:00:00:00,dl_type=0x0000
Datapath actions: 1
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This time, it’s the last line that we’re interested in. This line shows the entry that Open vSwitch would insert into the
megaflow cache given the particular packet with the current flow tables. The megaflow entry includes:

• recirc_id. This is an implementation detail that users don’t normally need to understand.

• eth. This just indicates that the cache entry matches only Ethernet packets; Open vSwitch also supports other
types of packets, such as IP packets not encapsulated in Ethernet.

• All of the fields matched by any of the flows that the packet visited:

in_port In tables 0, 1, and 3.

vlan_tci In tables 1, 3, and 7 (vlan_tci includes the VLAN ID and PCP fields and‘‘dl_vlan‘‘ is just the
VLAN ID).

dl_src In table 3

dl_dst In table 7.

• All of the fields matched by flows that had to be ruled out to ensure that the ones that actually matched were the
highest priority matching rules.

The last one is important. Notice how the megaflow matches on dl_type=0x0000, even though none of the tables
matched on dl_type (the Ethernet type). One reason is because of this flow in OpenFlow table 1 (which shows up
in dump-flows output):

table=1, priority=9099,dl_type=0x88cc actions=drop

This flow has higher priority than the flow in table 1 that actually matched. This means that, to put it in the megaflow
cache, ovs-vswitchd has to add a match on dl_type to ensure that the cache entry doesn’t match LLDP packets
(with Ethertype 0x88cc).

Note: In fact, in some cases ovs-vswitchd matches on fields that aren’t strictly required according to this de-
scription. dl_type is actually one of those, so deleting the LLDP flow probably would not have any effect on the
megaflow. But the principle here is sound.

So why does any of this matter? It’s because, the more specific a megaflow is, that is, the more fields or bits within
fields that a megaflow matches, the less valuable it is from a caching viewpoint. A very specific megaflow might match
on L2 and L3 addresses and L4 port numbers. When that happens, only packets in one (half-)connection match the
megaflow. If that connection has only a few packets, as many connections do, then the high cost of the slow path
translation is amortized over only a few packets, so the average cost of forwarding those packets is high. On the other
hand, if a megaflow only matches a relatively small number of L2 and L3 packets, then the cache entry can potentially
be used by many individual connections, and the average cost is low.

For more information on how Open vSwitch constructs megaflows, including about ways that it can make megaflow
entries less specific than one would infer from the discussion here, please refer to the 2015 NSDI paper, “The Design
and Implementation of Open vSwitch”, which focuses on this algorithm.

3.1.5 Routing

We’ve looked at how Faucet implements switching in OpenFlow, and how Open vSwitch implements OpenFlow
through its datapath architecture. Now let’s start over, adding L3 routing into the picture.

It’s remarkably easy to enable routing. We just change our vlans section in inst/faucet.yaml to specify a
router IP address for each VLAN and define a router between them. The dps section is unchanged:
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dps:
switch-1:

dp_id: 0x1
timeout: 3600
arp_neighbor_timeout: 3600
interfaces:

1:
native_vlan: 100

2:
native_vlan: 100

3:
native_vlan: 100

4:
native_vlan: 200

5:
native_vlan: 200

vlans:
100:

faucet_vips: ["10.100.0.254/24"]
200:

faucet_vips: ["10.200.0.254/24"]
routers:

router-1:
vlans: [100, 200]

Then we restart Faucet:

$ docker restart faucet

Note: One should be able to tell Faucet to re-read its configuration file without restarting it. I sometimes saw
anomalous behavior when I did this, although I didn’t characterize it well enough to make a quality bug report. I found
restarting the container to be reliable.

OpenFlow Layer

Back in the OVS sandbox, let’s see how the flow table has changed, with:

$ diff-flows flows1 br0

First, table 3 has new flows to direct ARP packets to table 6 (the virtual IP processing table), presumably to handle
ARP for the router IPs. New flows also send IP packets destined to a particular Ethernet address to table 4 (the L3
forwarding table); we can make the educated guess that the Ethernet address is the one used by the Faucet router:

+table=3 priority=9131,arp,dl_vlan=100 actions=goto_table:6
+table=3 priority=9131,arp,dl_vlan=200 actions=goto_table:6
+table=3 priority=9099,ip,dl_vlan=100,dl_dst=0e:00:00:00:00:01 actions=goto_table:4
+table=3 priority=9099,ip,dl_vlan=200,dl_dst=0e:00:00:00:00:01 actions=goto_table:4

The new flows in table 4 appear to be verifying that the packets are indeed addressed to a network or IP address that
Faucet knows how to route:

+table=4 priority=9131,ip,dl_vlan=100,nw_dst=10.100.0.254 actions=goto_table:6
+table=4 priority=9131,ip,dl_vlan=200,nw_dst=10.200.0.254 actions=goto_table:6

(continues on next page)
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+table=4 priority=9123,ip,dl_vlan=100,nw_dst=10.100.0.0/24 actions=goto_table:6
+table=4 priority=9123,ip,dl_vlan=200,nw_dst=10.100.0.0/24 actions=goto_table:6
+table=4 priority=9123,ip,dl_vlan=100,nw_dst=10.200.0.0/24 actions=goto_table:6
+table=4 priority=9123,ip,dl_vlan=200,nw_dst=10.200.0.0/24 actions=goto_table:6

Table 6 has a few different things going on. It sends ARP requests for the router IPs to the controller; presumably the
controller will generate replies and send them back to the requester. It switches other ARP packets, either broadcasting
them if they have a broadcast destination or attempting to unicast them otherwise. It sends all other IP packets to the
controller:

+table=6 priority=9133,arp,arp_tpa=10.100.0.254 actions=CONTROLLER:128
+table=6 priority=9133,arp,arp_tpa=10.200.0.254 actions=CONTROLLER:128
+table=6 priority=9132,arp,dl_dst=ff:ff:ff:ff:ff:ff actions=goto_table:8
+table=6 priority=9131,arp actions=goto_table:7
+table=6 priority=9130,ip actions=CONTROLLER:128

Performance is clearly going to be poor if every packet that needs to be routed has to go to the controller, but it’s
unlikely that’s the full story. In the next section, we’ll take a closer look.

Tracing

As in our switching example, we can play some “what-if?” games to figure out how this works. Let’s suppose that
a machine with IP 10.100.0.1, on port p1, wants to send a IP packet to a machine with IP 10.200.0.1 on port p4.
Assuming that these hosts have not been in communication recently, the steps to accomplish this are normally the
following:

1. Host 10.100.0.1 sends an ARP request to router 10.100.0.254.

2. The router sends an ARP reply to the host.

3. Host 10.100.0.1 sends an IP packet to 10.200.0.1, via the router’s Ethernet address.

4. The router broadcasts an ARP request to p4 and p5, the ports that carry the 10.200.0.<x> network.

5. Host 10.200.0.1 sends an ARP reply to the router.

6. Either the router sends the IP packet (which it buffered) to 10.200.0.1, or eventually 10.100.0.1 times out and
resends it.

Let’s use ofproto/trace to see whether Faucet and OVS follow this procedure.

Before we start, save a new snapshot of the flow tables for later comparison:

$ save-flows br0 > flows2

Step 1: Host ARP for Router

Let’s simulate the ARP from 10.100.0.1 to its gateway router 10.100.0.254. This requires more detail than any of the
packets we’ve simulated previously:

$ ovs-appctl ofproto/trace br0 in_port=p1,dl_src=00:01:02:03:04:05,dl_
→˓dst=ff:ff:ff:ff:ff:ff,dl_type=0x806,arp_spa=10.100.0.1,arp_tpa=10.100.0.254,arp_
→˓sha=00:01:02:03:04:05,arp_tha=ff:ff:ff:ff:ff:ff,arp_op=1 -generate

The important part of the output is where it shows that the packet was recognized as an ARP request destined to the
router gateway and therefore sent to the controller:
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6. arp,arp_tpa=10.100.0.254, priority 9133, cookie 0x5adc15c0
CONTROLLER:128

The Faucet log shows that Faucet learned the host’s MAC address, its MAC-to-IP mapping, and responded to the ARP
request:

Jan 06 16:12:23 faucet.valve INFO DPID 1 (0x1) Adding new route 10.100.0.1/32 via
→˓10.100.0.1 (00:01:02:03:04:05) on VLAN 100
Jan 06 16:12:23 faucet.valve INFO DPID 1 (0x1) Responded to ARP request for 10.
→˓100.0.254 from 10.100.0.1 (00:01:02:03:04:05) on VLAN 100
Jan 06 16:12:23 faucet.valve INFO DPID 1 (0x1) L2 learned 00:01:02:03:04:05 (L2
→˓type 0x0806, L3 src 10.100.0.1) on Port 1 on VLAN 100 (1 hosts total)

We can also look at the changes to the flow tables:

$ diff-flows flows2 br0
+table=3 priority=9098,in_port=1,dl_vlan=100,dl_src=00:01:02:03:04:05 hard_
→˓timeout=3600 actions=goto_table:7
+table=4 priority=9131,ip,dl_vlan=100,nw_dst=10.100.0.1 actions=set_field:4196->vlan_
→˓vid,set_field:0e:00:00:00:00:01->eth_src,set_field:00:01:02:03:04:05->eth_dst,dec_
→˓ttl,goto_table:7
+table=4 priority=9131,ip,dl_vlan=200,nw_dst=10.100.0.1 actions=set_field:4196->vlan_
→˓vid,set_field:0e:00:00:00:00:01->eth_src,set_field:00:01:02:03:04:05->eth_dst,dec_
→˓ttl,goto_table:7
+table=7 priority=9099,dl_vlan=100,dl_dst=00:01:02:03:04:05 idle_timeout=3600
→˓actions=pop_vlan,output:1

The new flows include one in table 3 and one in table 7 for the learned MAC, which have the same forms we saw
before. The new flows in table 4 are different. They matches packets directed to 10.100.0.1 (in two VLANs) and
forward them to the host by updating the Ethernet source and destination addresses appropriately, decrementing the
TTL, and skipping ahead to unicast output in table 7. This means that packets sent to 10.100.0.1 should now get to
their destination.

Step 2: Router Sends ARP Reply

inst/faucet.log said that the router sent an ARP reply. How can we see it? Simulated packets just get dropped
by default. One way is to configure the dummy ports to write the packets they receive to a file. Let’s try that. First
configure the port:

$ ovs-vsctl set interface p1 options:pcap=p1.pcap

Then re-run the “trace” command:

$ ovs-appctl ofproto/trace br0 in_port=p1,dl_src=00:01:02:03:04:05,dl_
→˓dst=ff:ff:ff:ff:ff:ff,dl_type=0x806,arp_spa=10.100.0.1,arp_tpa=10.100.0.254,arp_
→˓sha=00:01:02:03:04:05,arp_tha=ff:ff:ff:ff:ff:ff,arp_op=1 -generate

And dump the reply packet:

$ /usr/sbin/tcpdump -evvvr sandbox/p1.pcap
reading from file sandbox/p1.pcap, link-type EN10MB (Ethernet)
16:14:47.670727 0e:00:00:00:00:01 (oui Unknown) > 00:01:02:03:04:05 (oui Unknown),
→˓ethertype ARP (0x0806), length 60: Ethernet (len 6), IPv4 (len 4), Reply 10.100.0.
→˓254 is-at 0e:00:00:00:00:01 (oui Unknown), length 46
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We clearly see the ARP reply, which tells us that the Faucet router’s Ethernet address is 0e:00:00:00:00:01 (as we
guessed before from the flow table.

Let’s configure the rest of our ports to log their packets, too:

$ for i in 2 3 4 5; do ovs-vsctl set interface p$i options:pcap=p$i.pcap; done

Step 3: Host Sends IP Packet

Now that host 10.100.0.1 has the MAC address for its router, it can send an IP packet to 10.200.0.1 via the router’s
MAC address, like this:

$ ovs-appctl ofproto/trace br0 in_port=p1,dl_src=00:01:02:03:04:05,dl_
→˓dst=0e:00:00:00:00:01,udp,nw_src=10.100.0.1,nw_dst=10.200.0.1,nw_ttl=64 -generate
Flow: udp,in_port=1,vlan_tci=0x0000,dl_src=00:01:02:03:04:05,dl_dst=0e:00:00:00:00:01,
→˓nw_src=10.100.0.1,nw_dst=10.200.0.1,nw_tos=0,nw_ecn=0,nw_ttl=64,tp_src=0,tp_dst=0

bridge("br0")
-------------
0. in_port=1, priority 9099, cookie 0x5adc15c0

goto_table:1
1. in_port=1,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adc15c0

push_vlan:0x8100
set_field:4196->vlan_vid
goto_table:3

3. ip,dl_vlan=100,dl_dst=0e:00:00:00:00:01, priority 9099, cookie 0x5adc15c0
goto_table:4

4. ip,dl_vlan=100,nw_dst=10.200.0.0/24, priority 9123, cookie 0x5adc15c0
goto_table:6

6. ip, priority 9130, cookie 0x5adc15c0
CONTROLLER:128

Final flow: udp,in_port=1,dl_vlan=100,dl_vlan_pcp=0,vlan_tci1=0x0000,dl_
→˓src=00:01:02:03:04:05,dl_dst=0e:00:00:00:00:01,nw_src=10.100.0.1,nw_dst=10.200.0.1,
→˓nw_tos=0,nw_ecn=0,nw_ttl=64,tp_src=0,tp_dst=0
Megaflow: recirc_id=0,eth,ip,in_port=1,vlan_tci=0x0000/0x1fff,dl_
→˓src=00:01:02:03:04:05,dl_dst=0e:00:00:00:00:01,nw_dst=10.200.0.0/25,nw_frag=no
Datapath actions: push_vlan(vid=100,pcp=0),userspace(pid=0,controller(reason=1,
→˓flags=0,recirc_id=6,rule_cookie=0x5adc15c0,controller_id=0,max_len=128))

Observe that the packet gets recognized as destined to the router, in table 3, and then as properly destined to the
10.200.0.0/24 network, in table 4. In table 6, however, it gets sent to the controller. Presumably, this is because Faucet
has not yet resolved an Ethernet address for the destination host 10.200.0.1. It probably sent out an ARP request. Let’s
take a look in the next step.

Step 4: Router Broadcasts ARP Request

The router needs to know the Ethernet address of 10.200.0.1. It knows that, if this machine exists, it’s on port p4 or
p5, since we configured those ports as VLAN 200.

Let’s make sure:

$ /usr/sbin/tcpdump -evvvr sandbox/p4.pcap
reading from file sandbox/p4.pcap, link-type EN10MB (Ethernet)
16:17:43.174006 0e:00:00:00:00:01 (oui Unknown) > Broadcast, ethertype ARP (0x0806),
→˓length 60: Ethernet (len 6), IPv4 (len 4), Request who-has 10.200.0.1 tell 10.200.0.
→˓254, length 46

(continues on next page)
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and:

$ /usr/sbin/tcpdump -evvvr sandbox/p5.pcap
reading from file sandbox/p5.pcap, link-type EN10MB (Ethernet)
16:17:43.174268 0e:00:00:00:00:01 (oui Unknown) > Broadcast, ethertype ARP (0x0806),
→˓length 60: Ethernet (len 6), IPv4 (len 4), Request who-has 10.200.0.1 tell 10.200.0.
→˓254, length 46

For good measure, let’s make sure that it wasn’t sent to p3:

$ /usr/sbin/tcpdump -evvvr sandbox/p3.pcap
reading from file sandbox/p3.pcap, link-type EN10MB (Ethernet)

Step 5: Host 2 Sends ARP Reply

The Faucet controller sent an ARP request, so we can send an ARP reply:

$ ovs-appctl ofproto/trace br0 in_port=p4,dl_src=00:10:20:30:40:50,dl_
→˓dst=0e:00:00:00:00:01,dl_type=0x806,arp_spa=10.200.0.1,arp_tpa=10.200.0.254,arp_
→˓sha=00:10:20:30:40:50,arp_tha=0e:00:00:00:00:01,arp_op=2 -generate
Flow: arp,in_port=4,vlan_tci=0x0000,dl_src=00:10:20:30:40:50,dl_dst=0e:00:00:00:00:01,
→˓arp_spa=10.200.0.1,arp_tpa=10.200.0.254,arp_op=2,arp_sha=00:10:20:30:40:50,arp_
→˓tha=0e:00:00:00:00:01

bridge("br0")
-------------
0. in_port=4, priority 9099, cookie 0x5adc15c0

goto_table:1
1. in_port=4,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adc15c0

push_vlan:0x8100
set_field:4296->vlan_vid
goto_table:3

3. arp,dl_vlan=200, priority 9131, cookie 0x5adc15c0
goto_table:6

6. arp,arp_tpa=10.200.0.254, priority 9133, cookie 0x5adc15c0
CONTROLLER:128

Final flow: arp,in_port=4,dl_vlan=200,dl_vlan_pcp=0,vlan_tci1=0x0000,dl_
→˓src=00:10:20:30:40:50,dl_dst=0e:00:00:00:00:01,arp_spa=10.200.0.1,arp_tpa=10.200.0.
→˓254,arp_op=2,arp_sha=00:10:20:30:40:50,arp_tha=0e:00:00:00:00:01
Megaflow: recirc_id=0,eth,arp,in_port=4,vlan_tci=0x0000/0x1fff,dl_
→˓dst=0e:00:00:00:00:01,arp_tpa=10.200.0.254
Datapath actions: push_vlan(vid=200,pcp=0),userspace(pid=0,controller(reason=1,
→˓flags=0,recirc_id=7,rule_cookie=0x5adc15c0,controller_id=0,max_len=128))

It shows up in inst/faucet.log:

Jan 06 03:20:11 faucet.valve INFO DPID 1 (0x1) Adding new route 10.200.0.1/32 via
→˓10.200.0.1 (00:10:20:30:40:50) on VLAN 200
Jan 06 03:20:11 faucet.valve INFO DPID 1 (0x1) ARP response 10.200.0.1
→˓(00:10:20:30:40:50) on VLAN 200
Jan 06 03:20:11 faucet.valve INFO DPID 1 (0x1) L2 learned 00:10:20:30:40:50 (L2
→˓type 0x0806, L3 src 10.200.0.1) on Port 4 on VLAN 200 (1 hosts total)
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and in the OVS flow tables:

$ diff-flows flows2 br0
+table=3 priority=9098,in_port=4,dl_vlan=200,dl_src=00:10:20:30:40:50 hard_
→˓timeout=3601 actions=goto_table:7
...
+table=4 priority=9131,ip,dl_vlan=200,nw_dst=10.200.0.1 actions=set_field:4296->vlan_
→˓vid,set_field:0e:00:00:00:00:01->eth_src,set_field:00:10:20:30:40:50->eth_dst,dec_
→˓ttl,goto_table:7
+table=4 priority=9131,ip,dl_vlan=100,nw_dst=10.200.0.1 actions=set_field:4296->vlan_
→˓vid,set_field:0e:00:00:00:00:01->eth_src,set_field:00:10:20:30:40:50->eth_dst,dec_
→˓ttl,goto_table:7
...
+table=4 priority=9123,ip,dl_vlan=100,nw_dst=10.200.0.0/24 actions=goto_table:6
+table=7 priority=9099,dl_vlan=200,dl_dst=00:10:20:30:40:50 idle_timeout=3601
→˓actions=pop_vlan,output:4

Step 6: IP Packet Delivery

Now both the host and the router have everything they need to deliver the packet. There are two ways it might happen.
If Faucet’s router is smart enough to buffer the packet that trigger ARP resolution, then it might have delivered it
already. If so, then it should show up in p4.pcap. Let’s take a look:

$ /usr/sbin/tcpdump -evvvr sandbox/p4.pcap ip
reading from file sandbox/p4.pcap, link-type EN10MB (Ethernet)

Nope. That leaves the other possibility, which is that Faucet waits for the original sending host to re-send the packet.
We can do that by re-running the trace:

$ ovs-appctl ofproto/trace br0 in_port=p1,dl_src=00:01:02:03:04:05,dl_
→˓dst=0e:00:00:00:00:01,udp,nw_src=10.100.0.1,nw_dst=10.200.0.1,nw_ttl=64 -generate
Flow: udp,in_port=1,vlan_tci=0x0000,dl_src=00:01:02:03:04:05,dl_dst=0e:00:00:00:00:01,
→˓nw_src=10.100.0.1,nw_dst=10.200.0.1,nw_tos=0,nw_ecn=0,nw_ttl=64,tp_src=0,tp_dst=0

bridge("br0")
-------------
0. in_port=1, priority 9099, cookie 0x5adc15c0

goto_table:1
1. in_port=1,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adc15c0

push_vlan:0x8100
set_field:4196->vlan_vid
goto_table:3

3. ip,dl_vlan=100,dl_dst=0e:00:00:00:00:01, priority 9099, cookie 0x5adc15c0
goto_table:4

4. ip,dl_vlan=100,nw_dst=10.200.0.1, priority 9131, cookie 0x5adc15c0
set_field:4296->vlan_vid
set_field:0e:00:00:00:00:01->eth_src
set_field:00:10:20:30:40:50->eth_dst
dec_ttl
goto_table:7

7. dl_vlan=200,dl_dst=00:10:20:30:40:50, priority 9099, cookie 0x5adc15c0
pop_vlan
output:4

Final flow: udp,in_port=1,vlan_tci=0x0000,dl_src=0e:00:00:00:00:01,dl_
→˓dst=00:10:20:30:40:50,nw_src=10.100.0.1,nw_dst=10.200.0.1,nw_tos=0,nw_ecn=0,nw_
→˓ttl=63,tp_src=0,tp_dst=0 (continues on next page)
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Megaflow: recirc_id=0,eth,ip,in_port=1,vlan_tci=0x0000/0x1fff,dl_
→˓src=00:01:02:03:04:05,dl_dst=0e:00:00:00:00:01,nw_dst=10.200.0.1,nw_ttl=64,nw_
→˓frag=no
Datapath actions: set(eth(src=0e:00:00:00:00:01,dst=00:10:20:30:40:50)),
→˓set(ipv4(dst=10.200.0.1,ttl=63)),4

Finally, we have working IP packet forwarding!

Performance

Take another look at the megaflow line above:

Megaflow: recirc_id=0,eth,ip,in_port=1,vlan_tci=0x0000/0x1fff,dl_
→˓src=00:01:02:03:04:05,dl_dst=0e:00:00:00:00:01,nw_dst=10.200.0.1,nw_ttl=64,nw_
→˓frag=no

This means that (almost) any packet between these Ethernet source and destination hosts, destined to the given IP host,
will be handled by this single megaflow cache entry. So regardless of the number of UDP packets or TCP connections
that these hosts exchange, Open vSwitch packet processing won’t need to fall back to the slow path. It is quite efficient.

Note: The exceptions are packets with a TTL other than 64, and fragmented packets. Most hosts use a constant TTL
for outgoing packets, and fragments are rare. If either of those did change, then that would simply result in a new
megaflow cache entry.

The datapath actions might also be worth a look:

Datapath actions: set(eth(src=0e:00:00:00:00:01,dst=00:10:20:30:40:50)),
→˓set(ipv4(dst=10.200.0.1,ttl=63)),4

This just means that, to process these packets, the datapath changes the Ethernet source and destination addresses and
the IP TTL, and then transmits the packet to port p4 (also numbered 4). Notice in particular that, despite the OpenFlow
actions that pushed, modified, and popped back off a VLAN, there is nothing in the datapath actions about VLANs.
This is because the OVS flow translation code “optimizes out” redundant or unneeded actions, which saves time when
the cache entry is executed later.

Note: It’s not clear why the actions also re-set the IP destination address to its original value. Perhaps this is a minor
performance bug.

3.1.6 ACLs

Let’s try out some ACLs, since they do a good job illustrating some of the ways that OVS tries to optimize megaflows.
Update inst/faucet.yaml to the following:

dps:
switch-1:

dp_id: 0x1
timeout: 3600
arp_neighbor_timeout: 3600
interfaces:

1:

(continues on next page)
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native_vlan: 100
acl_in: 1

2:
native_vlan: 100

3:
native_vlan: 100

4:
native_vlan: 200

5:
native_vlan: 200

vlans:
100:

faucet_vips: ["10.100.0.254/24"]
200:

faucet_vips: ["10.200.0.254/24"]
routers:

router-1:
vlans: [100, 200]

acls:
1:

- rule:
dl_type: 0x800
nw_proto: 6
tcp_dst: 8080
actions:

allow: 0
- rule:

actions:
allow: 1

Then restart Faucet:

$ docker restart faucet

On port 1, this new configuration blocks all traffic to TCP port 8080 and allows all other traffic. The resulting change
in the flow table shows this clearly too:

$ diff-flows flows2 br0
-priority=9099,in_port=1 actions=goto_table:1
+priority=9098,in_port=1 actions=goto_table:1
+priority=9099,tcp,in_port=1,tp_dst=8080 actions=drop

The most interesting question here is performance. If you recall the earlier discussion, when a packet through the flow
table encounters a match on a given field, the resulting megaflow has to match on that field, even if the flow didn’t
actually match. This is expensive.

In particular, here you can see that any TCP packet is going to encounter the ACL flow, even if it is directed to a port
other than 8080. If that means that every megaflow for a TCP packet is going to have to match on the TCP destination,
that’s going to be bad for caching performance because there will be a need for a separate megaflow for every TCP
destination port that actually appears in traffic, which means a lot more megaflows than otherwise. (Really, in practice,
if such a simple ACL blew up performance, OVS wouldn’t be a very good switch!)

Let’s see what happens, by sending a packet to port 80 (instead of 8080):

$ ovs-appctl ofproto/trace br0 in_port=p1,dl_src=00:01:02:03:04:05,dl_
→˓dst=0e:00:00:00:00:01,tcp,nw_src=10.100.0.1,nw_dst=10.200.0.1,nw_ttl=64,tp_dst=80 -
→˓generate

(continues on next page)
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Flow: tcp,in_port=1,vlan_tci=0x0000,dl_src=00:01:02:03:04:05,dl_dst=0e:00:00:00:00:01,
→˓nw_src=10.100.0.1,nw_dst=10.200.0.1,nw_tos=0,nw_ecn=0,nw_ttl=64,tp_src=0,tp_dst=80,
→˓tcp_flags=0

bridge("br0")
-------------
0. in_port=1, priority 9098, cookie 0x5adc15c0

goto_table:1
1. in_port=1,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adc15c0

push_vlan:0x8100
set_field:4196->vlan_vid
goto_table:3

3. ip,dl_vlan=100,dl_dst=0e:00:00:00:00:01, priority 9099, cookie 0x5adc15c0
goto_table:4

4. ip,dl_vlan=100,nw_dst=10.200.0.0/24, priority 9123, cookie 0x5adc15c0
goto_table:6

6. ip, priority 9130, cookie 0x5adc15c0
CONTROLLER:128

Final flow: tcp,in_port=1,dl_vlan=100,dl_vlan_pcp=0,vlan_tci1=0x0000,dl_
→˓src=00:01:02:03:04:05,dl_dst=0e:00:00:00:00:01,nw_src=10.100.0.1,nw_dst=10.200.0.1,
→˓nw_tos=0,nw_ecn=0,nw_ttl=64,tp_src=0,tp_dst=80,tcp_flags=0
Megaflow: recirc_id=0,eth,tcp,in_port=1,vlan_tci=0x0000/0x1fff,dl_
→˓src=00:01:02:03:04:05,dl_dst=0e:00:00:00:00:01,nw_dst=10.200.0.1,nw_frag=no,tp_
→˓dst=0x0/0xf000
Datapath actions: push_vlan(vid=100,pcp=0)

Take a look at the Megaflow line and in particular the match on tp_dst, which says tp_dst=0x0/0xf000. What
this means is that the megaflow matches on only the top 4 bits of the TCP destination port. That works because:

80 (base 10) == 0000,0000,0101,0000 (base 2)
8080 (base 10) == 0001,1111,1001,0000 (base 2)

and so by matching on only the top 4 bits, rather than all 16, the OVS fast path can distinguish port 80 from port 8080.
This allows this megaflow to match one-sixteenth of the TCP destination port address space, rather than just 1/65536th
of it.

Note: The algorithm OVS uses for this purpose isn’t perfect. In this case, a single-bit match would work (e.g.
tp_dst=0x0/0x1000), and would be superior since it would only match half the port address space instead of one-
sixteenth.

For details of this algorithm, please refer to lib/classifier.c in the Open vSwitch source tree, or our 2015
NSDI paper “The Design and Implementation of Open vSwitch”.

3.1.7 Finishing Up

When you’re done, you probably want to exit the sandbox session, with Control+D or exit, and stop the Faucet
controller with docker stop faucet; docker rm faucet.

3.1.8 Further Directions

We’ve looked a fair bit at how Faucet interacts with Open vSwitch. If you still have some interest, you might want to
explore some of these directions:
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• Adding more than one switch. Faucet can control multiple switches but we’ve only been simulating one of them.
It’s easy enough to make a single OVS instance act as multiple switches (just ovs-vsctl add-br another
bridge), or you could use genuinely separate OVS instances.

• Additional features. Faucet has more features than we’ve demonstrated, such as IPv6 routing and port mirroring.
These should also interact gracefully with Open vSwitch.

• Real performance testing. We’ve looked at how flows and traces should demonstrate good performance, but
of course there’s no proof until it actually works in practice. We’ve also only tested with trivial configurations.
Open vSwitch can scale to millions of OpenFlow flows, but the scaling in practice depends on the particular
flow tables and traffic patterns, so it’s valuable to test with large configurations, either in the way we’ve done it
or with real traffic.

3.2 OVS IPsec Tutorial

This document provides a step-by-step guide for running IPsec tunnel in Open vSwitch. A more detailed description
on OVS IPsec tunnel and its configuration modes can be found in Encrypt Open vSwitch Tunnels with IPsec.

3.2.1 Requirements

OVS IPsec tunnel requires Linux kernel (>= v3.10.0) and OVS out-of-tree kernel module. The compatible IKE dae-
mons are LibreSwan (>= v3.23) and StrongSwan (>= v5.3.5).

3.2.2 Installing OVS and IPsec Packages

OVS IPsec has .deb and .rpm packages. You should use the right package based on your Linux distribution. This
tutorial uses Ubuntu 16.04 and Fedora 27 as examples.

Ubuntu

1. Follow Debian Packaging for Open vSwitch to build debian packages.

Note: If you have already installed OVS, then you only need to install openvswitch-pki_*.deb and openvswitch-
ipsec_*.deb in the following step. If your kernel version is below v4.13.0, update your kernel to v4.13.0 or
above.

2. Install the related packages:

$ apt-get install dkms strongswan
$ dpkg -i libopenvswitch_*.deb openvswitch-common_*.deb \

openvswitch-switch_*.deb openvswitch-datapath-dkms_*.deb \
python-openvswitch_*.deb openvswitch-pki_*.deb \
openvswitch-ipsec_*.deb

If the installation is successful, you should be able to see the ovs-monitor-ipsec daemon is running in your
system.
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Fedora

1. Follow Fedora, RHEL 7.x Packaging for Open vSwitch to build RPM packages.

2. Install the related packages:

$ dnf install python2-openvswitch libreswan \
"kernel-devel-uname-r == $(uname -r)"

$ rpm -i openvswitch-*.rpm openvswitch-kmod-*.rpm \
openvswitch-openvswitch-ipsec-*.rpm

3. Install firewall rules to allow ESP and IKE traffic:

$ iptables -A IN_FedoraServer_allow -p esp -j ACCEPT
$ iptables -A IN_FedoraServer_allow -p udp --dport 500 -j ACCEPT

4. Run the openvswitch-ipsec service:

$ systemctl start openvswitch-ipsec.service

Note: The SELinux policies might prevent openvswitch-ipsec.service to access certain resources. You can
configure SELinux to remove such restrictions.

3.2.3 Configuring IPsec tunnel

Suppose you want to build IPsec tunnel between two hosts. Assume host_1’s external IP is 1.1.1.1, and host_2’s
external IP is 2.2.2.2. Make sure host_1 and host_2 can ping each other via these external IPs.

0. Set up some variables to make life easier. On both hosts, set ip_1 and ip_2 variables, e.g.:

$ ip_1=1.1.1.1
$ ip_2=2.2.2.2

1. Set up OVS bridges in both hosts.

In host_1:

$ ovs-vsctl add-br br-ipsec
$ ip addr add 192.0.0.1/24 dev br-ipsec
$ ip link set br-ipsec up

In host_2:

$ ovs-vsctl add-br br-ipsec
$ ip addr add 192.0.0.2/24 dev br-ipsec
$ ip link set br-ipsec up

2. Set up IPsec tunnel.

There are three authentication methods. You can choose one to set up your IPsec tunnel.

a) Using pre-shared key:

In host_1:
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$ ovs-vsctl add-port br-ipsec tun -- \
set interface tun type=gre \

options:remote_ip=$ip_2 \
options:psk=swordfish

In host_2:

$ ovs-vsctl add-port br-ipsec tun -- \
set interface tun type=gre \

options:remote_ip=$ip_1 \
options:psk=swordfish

Note: Pre-shared key (PSK) based authentication is easy to set up but less secure compared with other
authentication methods. You should use it cautiously in production systems.

b) Using self-signed certificate:

Generate self-signed certificate in both host_1 and host_2. Then copy the certificate of host_1 to host_2
and the certificate of host_2 to host_1.

In host_1:

$ ovs-pki req -u host_1
$ ovs-pki self-sign host_1
$ scp host_1-cert.pem $ip_2:/etc/keys/host_1-cert.pem

In host_2:

$ ovs-pki req -u host_2
$ ovs-pki self-sign host_2
$ scp host_2-cert.pem $ip_1:/etc/keys/host_2-cert.pem

Note: If you use StrongSwan as IKE daemon, please move the host certificates to /etc/ipsec.d/certs/ and
private key to /etc/ipsec.d/private/ so that StrongSwan has permission to access those files.

Configure IPsec tunnel to use self-signed certificates.

In host_1:

$ ovs-vsctl set Open_vSwitch . \
other_config:certificate=/etc/keys/host_1-cert.pem \
other_config:private_key=/etc/keys/host_1-privkey.pem

$ ovs-vsctl add-port br-ipsec tun -- \
set interface tun type=gre \

options:remote_ip=$ip_2 \
options:remote_cert=/etc/keys/host_2-cert.pem

In host_2:

$ ovs-vsctl set Open_vSwitch . \
other_config:certificate=/etc/keys/host_2-cert.pem \
other_config:private_key=/etc/keys/host_2-privkey.pem

$ ovs-vsctl add-port br-ipsec tun -- \
set interface tun type=gre \

(continues on next page)
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options:remote_ip=$ip_1 \
options:remote_cert=/etc/keys/host_1-cert.pem

Note: The confidentiality of the private key is very critical. Don’t copy it to places where it might be
compromised. (The certificate need not be kept confidential.)

c) Using CA-signed certificate:

First you need to establish a public key infrastructure (PKI). Suppose you choose host_1 to host PKI.

In host_1:

$ ovs-pki init

Generate certificate requests and copy the certificate request of host_2 to host_1.

In host_1:

$ ovs-pki req -u host_1

In host_2:

$ ovs-pki req -u host_2
$ scp host_2-req.pem $ip_1:/etc/keys/host_2-req.pem

Sign the certificate requests with the CA key. Copy host_2’s signed certificate and the CA certificate to
host_2.

In host_1:

$ ovs-pki sign host_1 switch
$ ovs-pki sign host_2 switch
$ scp host_2-cert.pem $ip_2:/etc/keys/host_2-cert.pem
$ scp /var/lib/openvswitch/pki/switchca/cacert.pem \

$ip_2:/etc/keys/cacert.pem

Note: If you use StrongSwan as IKE daemon, please move the host certificates to /etc/ipsec.d/certs/, CA
certificate to /etc/ipsec.d/cacerts/, and private key to /etc/ipsec.d/private/ so that StrongSwan has permis-
sion to access those files.

Configure IPsec tunnel to use CA-signed certificate.

In host_1:

$ ovs-vsctl set Open_vSwitch . \
other_config:certificate=/etc/keys/host_1-cert.pem \
other_config:private_key=/etc/keys/host_1-privkey.pem \
other_config:ca_cert=/etc/keys/cacert.pem

$ ovs-vsctl add-port br-ipsec tun -- \
set interface tun type=gre \

options:remote_ip=$ip_2 \
options:remote_name=host_2

In host_2:
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$ ovs-vsctl set Open_vSwitch . \
other_config:certificate=/etc/keys/host_2-cert.pem \
other_config:private_key=/etc/keys/host_2-privkey.pem \
other_config:ca_cert=/etc/keys/cacert.pem

$ ovs-vsctl add-port br-ipsec tun -- \
set interface tun type=gre \

options:remote_ip=$ip_1 \
options:remote_name=host_1

Note: remote_name is the common name (CN) of the signed-certificate. It must match the name given
as the argument to the ovs-pki sign command. It ensures that only certificate with the expected CN
can be authenticated; otherwise, any certificate signed by the CA would be accepted.

3. Test IPsec tunnel.

Now you should have an IPsec GRE tunnel running between two hosts. To verify it, in host_1:

$ ping 192.0.0.2 &
$ tcpdump -ni any net $ip_2

You should be able to see that ESP packets are being sent from host_1 to host_2.

3.2.4 Troubleshooting

The ovs-monitor-ipsec daemon manages and monitors the IPsec tunnel state. Use the following ovs-appctl
command to view ovs-monitor-ipsec internal representation of tunnel configuration:

$ ovs-appctl -t ovs-monitor-ipsec tunnels/show

If there is misconfiguration, then ovs-appctl should indicate why. For example:

Interface name: gre0 v5 (CONFIGURED) <--- Should be set to CONFIGURED.
Otherwise, error message will
be provided

Tunnel Type: gre
Remote IP: 2.2.2.2
SKB mark: None
Local cert: None
Local name: None
Local key: None
Remote cert: None
Remote name: None
CA cert: None
PSK: swordfish
Ofport: 1 <--- Whether ovs-vswitchd has assigned Ofport

number to this Tunnel Port
CFM state: Up <--- Whether CFM declared this tunnel healthy
Kernel policies installed:
... <--- IPsec policies for this OVS tunnel in

Linux Kernel installed by strongSwan
Kernel security associations installed:
... <--- IPsec security associations for this OVS

tunnel in Linux Kernel installed by
strongswan

(continues on next page)
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IPsec connections that are active:
... <--- IPsec "connections" for this OVS

tunnel

If you don’t see any active connections, try to run the following command to refresh the ovs-monitor-ipsec
daemon:

$ ovs-appctl -t ovs-monitor-ipsec refresh

You can also check the logs of the ovs-monitor-ipsec daemon and the IKE daemon to locate issues.
ovs-monitor-ipsec outputs log messages to /var/log/openvswitch/ovs-monitor-ipsec.log.

3.2.5 Bug Reporting

If you think you may have found a bug with security implications, like

1. IPsec protected tunnel accepted packets that came unencrypted; OR

2. IPsec protected tunnel allowed packets to leave unencrypted;

Then report such bugs according to Open vSwitch’s Security Process.

If bug does not have security implications, then report it according to instructions in Reporting Bugs in Open vSwitch.

If you have suggestions to improve this tutorial, please send a email to ovs-discuss@openvswitch.org.

3.3 Open vSwitch Advanced Features

Many tutorials cover the basics of OpenFlow. This is not such a tutorial. Rather, a knowledge of the basics of
OpenFlow is a prerequisite. If you do not already understand how an OpenFlow flow table works, please go read a
basic tutorial and then continue reading here afterward.

It is also important to understand the basics of Open vSwitch before you begin. If you have never used ovs-vsctl or
ovs-ofctl before, you should learn a little about them before proceeding.

Most of the features covered in this tutorial are Open vSwitch extensions to OpenFlow. Also, most of the features in
this tutorial are specific to the software Open vSwitch implementation. If you are using an Open vSwitch port to an
ASIC-based hardware switch, this tutorial will not help you.

This tutorial does not cover every aspect of the features that it mentions. You can find the details elsewhere in
the Open vSwitch documentation, especially ovs-ofctl(8) and the comments in the include/openflow/
nicira-ext.h and include/openvswitch/meta-flow.h header files.

3.3.1 Getting Started

This is a hands-on tutorial. To get the most out of it, you will need Open vSwitch binaries. You do not, on the
other hand, need any physical networking hardware or even supervisor privilege on your system. Instead, we will
use a script called ovs-sandbox, which accompanies the tutorial, that constructs a software simulated network
environment based on Open vSwitch.

You can use ovs-sandbox three ways:

• If you have already installed Open vSwitch on your system, then you should be able to just run ovs-sandbox
from this directory without any options.
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• If you have not installed Open vSwitch (and you do not want to install it), then you can build Open vSwitch
according to the instructions in Open vSwitch on Linux, FreeBSD and NetBSD, without installing it. Then run
./ovs-sandbox -b DIRECTORY from this directory, substituting the Open vSwitch build directory for
DIRECTORY.

• As a slight variant on the latter, you can run make sandbox from an Open vSwitch build directory.

When you run ovs-sandbox, it does the following:

1. CAUTION: Deletes any subdirectory of the current directory named “sandbox” and any files in that directory.

2. Creates a new directory “sandbox” in the current directory.

3. Sets up special environment variables that ensure that Open vSwitch programs will look inside the “sandbox”
directory instead of in the Open vSwitch installation directory.

4. If you are using a built but not installed Open vSwitch, installs the Open vSwitch manpages in a subdirectory of
“sandbox” and adjusts the MANPATH environment variable to point to this directory. This means that you can
use, for example, man ovs-vsctl to see a manpage for the ovs-vsctl program that you built.

5. Creates an empty Open vSwitch configuration database under “sandbox”.

6. Starts ovsdb-server running under “sandbox”.

7. Starts ovs-vswitchd running under “sandbox”, passing special options that enable a special “dummy” mode
for testing.

8. Starts a nested interactive shell inside “sandbox”.

At this point, you can run all the usual Open vSwitch utilities from the nested shell environment. You can, for example,
use ovs-vsctl to create a bridge:

$ ovs-vsctl add-br br0

From Open vSwitch’s perspective, the bridge that you create this way is as real as any other. You can, for example,
connect it to an OpenFlow controller or use ovs-ofctl to examine and modify it and its OpenFlow flow table. On
the other hand, the bridge is not visible to the operating system’s network stack, so ip cannot see it or affect it, which
means that utilities like ping and tcpdump will not work either. (That has its good side, too: you can’t screw up
your computer’s network stack by manipulating a sandboxed OVS.)

When you’re done using OVS from the sandbox, exit the nested shell (by entering the “exit” shell command or
pressing Control+D). This will kill the daemons that ovs-sandbox started, but it leaves the “sandbox” directory
and its contents in place.

The sandbox directory contains log files for the Open vSwitch dameons. You can examine them while you’re running
in the sandboxed environment or after you exit.

3.3.2 Using GDB

GDB support is not required to go through the tutorial. It is added in case user wants to explore the internals of OVS
programs.

GDB can already be used to debug any running process, with the usual gdb <program> <process-id> com-
mand.

ovs-sandbox also has a -g option for launching ovs-vswitchd under GDB. This option can be handy for setting
break points before ovs-vswitchd runs, or for catching early segfaults. Similarly, a -d option can be used to run
ovsdb-server under GDB. Both options can be specified at the same time.
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In addition, a -e option also launches ovs-vswitchd under GDB. However, instead of displaying a gdb> prompt and
waiting for user input, ovs-vswitchd will start to execute immediately. -r option is the corresponding option for
running ovsdb-server under gdb with immediate execution.

To avoid GDB mangling with the sandbox sub shell terminal, ovs-sandbox starts a new xterm to run each GDB
session. For systems that do not support X windows, GDB support is effectively disabled.

When launching sandbox through the build tree’s make file, the -g option can be passed via the SANDBOXFLAGS
environment variable. make sandbox SANDBOXFLAGS=-g will start the sandbox with ovs-vswitchd running
under GDB in its own xterm if X is available.

In addition, a set of GDB macros are available in utilities/gdb/ovs_gdb.py. Which are able to dump various
internal data structures. See the header of the file itself for some more details and an example.

3.3.3 Motivation

The goal of this tutorial is to demonstrate the power of Open vSwitch flow tables. The tutorial works through the
implementation of a MAC-learning switch with VLAN trunk and access ports. Outside of the Open vSwitch features
that we will discuss, OpenFlow provides at least two ways to implement such a switch:

1. An OpenFlow controller to implement MAC learning in a “reactive” fashion. Whenever a new MAC appears on
the switch, or a MAC moves from one switch port to another, the controller adjusts the OpenFlow flow table to
match.

2. The “normal” action. OpenFlow defines this action to submit a packet to “the traditional non-OpenFlow pipeline
of the switch”. That is, if a flow uses this action, then the packets in the flow go through the switch in the same
way that they would if OpenFlow was not configured on the switch.

Each of these approaches has unfortunate pitfalls. In the first approach, using an OpenFlow controller to implement
MAC learning, has a significant cost in terms of network bandwidth and latency. It also makes the controller more
difficult to scale to large numbers of switches, which is especially important in environments with thousands of hy-
pervisors (each of which contains a virtual OpenFlow switch). MAC learning at an OpenFlow controller also behaves
poorly if the OpenFlow controller fails, slows down, or becomes unavailable due to network problems.

The second approach, using the “normal” action, has different problems. First, little about the “normal” action is
standardized, so it behaves differently on switches from different vendors, and the available features and how those
features are configured (usually not through OpenFlow) varies widely. Second, “normal” does not work well with
other OpenFlow actions. It is “all-or-nothing”, with little potential to adjust its behavior slightly or to compose it with
other features.

3.3.4 Scenario

We will construct Open vSwitch flow tables for a VLAN-capable, MAC-learning switch that has four ports:

p1 a trunk port that carries all VLANs, on OpenFlow port 1.

p2 an access port for VLAN 20, on OpenFlow port 2.

p3, p4 both access ports for VLAN 30, on OpenFlow ports 3 and 4, respectively.

Note: The ports’ names are not significant. You could call them eth1 through eth4, or any other names you like.

Note: An OpenFlow switch always has a “local” port as well. This scenario won’t use the local port.

Our switch design will consist of five main flow tables, each of which implements one stage in the switch pipeline:
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Table 0 Admission control.

Table 1 VLAN input processing.

Table 2 Learn source MAC and VLAN for ingress port.

Table 3 Look up learned port for destination MAC and VLAN.

Table 4 Output processing.

The section below describes how to set up the scenario, followed by a section for each OpenFlow table.

You can cut and paste the ovs-vsctl and ovs-ofctl commands in each of the sections below into your
ovs-sandbox shell. They are also available as shell scripts in this directory, named t-setup, t-stage0,
t-stage1, . . . , t-stage4. The ovs-appctl test commands are intended for cutting and pasting and are not
supplied separately.

3.3.5 Setup

To get started, start ovs-sandbox. Inside the interactive shell that it starts, run this command:

$ ovs-vsctl add-br br0 -- set Bridge br0 fail-mode=secure

This command creates a new bridge “br0” and puts “br0” into so-called “fail-secure” mode. For our purpose, this just
means that the OpenFlow flow table starts out empty.

Note: If we did not do this, then the flow table would start out with a single flow that executes the “normal” action.
We could use that feature to yield a switch that behaves the same as the switch we are currently building, but with the
caveats described under “Motivation” above.)

The new bridge has only one port on it so far, the “local port” br0. We need to add p1, p2, p3, and p4. A shell for
loop is one way to do it:

for i in 1 2 3 4; do
ovs-vsctl add-port br0 p$i -- set Interface p$i ofport_request=$i
ovs-ofctl mod-port br0 p$i up

done

In addition to adding a port, the ovs-vsctl command above sets its ofport_request column to ensure that port
p1 is assigned OpenFlow port 1, p2 is assigned OpenFlow port 2, and so on.

Note: We could omit setting the ofport_request and let Open vSwitch choose port numbers for us, but it’s convenient
for the purposes of this tutorial because we can talk about OpenFlow port 1 and know that it corresponds to p1.

The ovs-ofctl command above brings up the simulated interfaces, which are down initially, using an OpenFlow
request. The effect is similar to ip link up, but the sandbox’s interfaces are not visible to the operating system
and therefore ip would not affect them.

We have not configured anything related to VLANs or MAC learning. That’s because we’re going to implement those
features in the flow table.

To see what we’ve done so far to set up the scenario, you can run a command like ovs-vsctl show or ovs-ofctl
show br0.
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3.3.6 Implementing Table 0: Admission control

Table 0 is where packets enter the switch. We use this stage to discard packets that for one reason or another are
invalid. For example, packets with a multicast source address are not valid, so we can add a flow to drop them at
ingress to the switch with:

$ ovs-ofctl add-flow br0 \
"table=0, dl_src=01:00:00:00:00:00/01:00:00:00:00:00, actions=drop"

A switch should also not forward IEEE 802.1D Spanning Tree Protocol (STP) packets, so we can also add a flow to
drop those and other packets with reserved multicast protocols:

$ ovs-ofctl add-flow br0 \
"table=0, dl_dst=01:80:c2:00:00:00/ff:ff:ff:ff:ff:f0, actions=drop"

We could add flows to drop other protocols, but these demonstrate the pattern.

We need one more flow, with a priority lower than the default, so that flows that don’t match either of the “drop” flows
we added above go on to pipeline stage 1 in OpenFlow table 1:

$ ovs-ofctl add-flow br0 "table=0, priority=0, actions=resubmit(,1)"

Note: The “resubmit” action is an Open vSwitch extension to OpenFlow.

3.3.7 Testing Table 0

If we were using Open vSwitch to set up a physical or a virtual switch, then we would naturally test it by sending
packets through it one way or another, perhaps with common network testing tools like ping and tcpdump or more
specialized tools like Scapy. That’s difficult with our simulated switch, since it’s not visible to the operating system.

But our simulated switch has a few specialized testing tools. The most powerful of these tools is ofproto/trace.
Given a switch and the specification of a flow, ofproto/trace shows, step-by-step, how such a flow would be
treated as it goes through the switch.

Example 1

Try this command:

$ ovs-appctl ofproto/trace br0 in_port=1,dl_dst=01:80:c2:00:00:05

The output should look something like this:

Flow: in_port=1,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,dl_dst=01:80:c2:00:00:05,dl_
→˓type=0x0000

bridge("br0")
-------------
0. dl_dst=01:80:c2:00:00:00/ff:ff:ff:ff:ff:f0, priority 32768

drop

Final flow: unchanged
Megaflow: recirc_id=0,in_port=1,dl_src=00:00:00:00:00:00/01:00:00:00:00:00,dl_
→˓dst=01:80:c2:00:00:00/ff:ff:ff:ff:ff:f0,dl_type=0x0000
Datapath actions: drop

3.3. Open vSwitch Advanced Features 93



Open vSwitch, Release 2.12.90

The first line shows the flow being traced, in slightly greater detail than specified on the command line. It is mostly
zeros because unspecified fields default to zeros.

The second group of lines shows the packet’s trip through bridge br0. We see, in table 0, the OpenFlow flow that the
fields matched, along with its priority, followed by its actions, one per line. In this case, we see that this packet that
has a reserved multicast destination address matches the flow that drops those packets.

The final block of lines summarizes the results, which are not very interesting here.

Example 2

Try another command:

$ ovs-appctl ofproto/trace br0 in_port=1,dl_dst=01:80:c2:00:00:10

The output should be:

Flow: in_port=1,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,dl_dst=01:80:c2:00:00:10,dl_
→˓type=0x0000

bridge("br0")
-------------
0. priority 0

resubmit(,1)
1. No match.

drop

Final flow: unchanged
Megaflow: recirc_id=0,in_port=1,dl_src=00:00:00:00:00:00/01:00:00:00:00:00,dl_
→˓dst=01:80:c2:00:00:10/ff:ff:ff:ff:ff:f0,dl_type=0x0000
Datapath actions: drop

This time the flow we handed to ofproto/trace doesn’t match any of our “drop” flows in table 0, so it falls through
to the low-priority “resubmit” flow. The “resubmit” causes a second lookup in OpenFlow table 1, described by the
block of text that starts with “1.” We haven’t yet added any flows to OpenFlow table 1, so no flow actually matches in
the second lookup. Therefore, the packet is still actually dropped, which means that the externally observable results
would be identical to our first example.

3.3.8 Implementing Table 1: VLAN Input Processing

A packet that enters table 1 has already passed basic validation in table 0. The purpose of table 1 is validate the
packet’s VLAN, based on the VLAN configuration of the switch port through which the packet entered the switch. We
will also use it to attach a VLAN header to packets that arrive on an access port, which allows later processing stages
to rely on the packet’s VLAN always being part of the VLAN header, reducing special cases.

Let’s start by adding a low-priority flow that drops all packets, before we add flows that pass through acceptable
packets. You can think of this as a “default drop” flow:

$ ovs-ofctl add-flow br0 "table=1, priority=0, actions=drop"

Our trunk port p1, on OpenFlow port 1, is an easy case. p1 accepts any packet regardless of whether it has a VLAN
header or what the VLAN was, so we can add a flow that resubmits everything on input port 1 to the next table:

$ ovs-ofctl add-flow br0 \
"table=1, priority=99, in_port=1, actions=resubmit(,2)"
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On the access ports, we want to accept any packet that has no VLAN header, tag it with the access port’s VLAN
number, and then pass it along to the next stage:

$ ovs-ofctl add-flows br0 - <<'EOF'
table=1, priority=99, in_port=2, vlan_tci=0, actions=mod_vlan_vid:20, resubmit(,2)
table=1, priority=99, in_port=3, vlan_tci=0, actions=mod_vlan_vid:30, resubmit(,2)
table=1, priority=99, in_port=4, vlan_tci=0, actions=mod_vlan_vid:30, resubmit(,2)
EOF

We don’t write any flows that match packets with 802.1Q that enter this stage on any of the access ports, so the “default
drop” flow we added earlier causes them to be dropped, which is ordinarily what we want for access ports.

Note: Another variation of access ports allows ingress of packets tagged with VLAN 0 (aka 802.1p priority tagged
packets). To allow such packets, replace vlan_tci=0 by vlan_tci=0/0xfff above.

3.3.9 Testing Table 1

ofproto/trace allows us to test the ingress VLAN flows that we added above.

Example 1: Packet on Trunk Port

Here’s a test of a packet coming in on the trunk port:

$ ovs-appctl ofproto/trace br0 in_port=1,vlan_tci=5

The output shows the lookup in table 0, the resubmit to table 1, and the resubmit to table 2 (which does nothing
because we haven’t put anything there yet):

Flow: in_port=1,vlan_tci=0x0005,dl_src=00:00:00:00:00:00,dl_dst=00:00:00:00:00:00,dl_
→˓type=0x0000

bridge("br0")
-------------
0. priority 0

resubmit(,1)
1. in_port=1, priority 99

resubmit(,2)
2. No match.

drop

Final flow: unchanged
Megaflow: recirc_id=0,in_port=1,dl_src=00:00:00:00:00:00/01:00:00:00:00:00,dl_
→˓dst=00:00:00:00:00:00/ff:ff:ff:ff:ff:f0,dl_type=0x0000
Datapath actions: drop

Example 2: Valid Packet on Access Port

Here’s a test of a valid packet (a packet without an 802.1Q header) coming in on access port p2:

$ ovs-appctl ofproto/trace br0 in_port=2

The output is similar to that for the previous case, except that it additionally tags the packet with p2’s VLAN 20 before
it passes it along to table 2:

3.3. Open vSwitch Advanced Features 95



Open vSwitch, Release 2.12.90

Flow: in_port=2,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,dl_dst=00:00:00:00:00:00,dl_
→˓type=0x0000

bridge("br0")
-------------
0. priority 0

resubmit(,1)
1. in_port=2,vlan_tci=0x0000, priority 99

mod_vlan_vid:20
resubmit(,2)

2. No match.
drop

Final flow: in_port=2,dl_vlan=20,dl_vlan_pcp=0,dl_src=00:00:00:00:00:00,dl_
→˓dst=00:00:00:00:00:00,dl_type=0x0000
Megaflow: recirc_id=0,in_port=2,vlan_tci=0x0000,dl_src=00:00:00:00:00:00/
→˓01:00:00:00:00:00,dl_dst=00:00:00:00:00:00/ff:ff:ff:ff:ff:f0,dl_type=0x0000
Datapath actions: drop

Example 3: Invalid Packet on Access Port

This tests an invalid packet (one that includes an 802.1Q header) coming in on access port p2:

$ ovs-appctl ofproto/trace br0 in_port=2,vlan_tci=5

The output shows the packet matching the default drop flow:

Flow: in_port=2,vlan_tci=0x0005,dl_src=00:00:00:00:00:00,dl_dst=00:00:00:00:00:00,dl_
→˓type=0x0000

bridge("br0")
-------------
0. priority 0

resubmit(,1)
1. priority 0

drop

Final flow: unchanged
Megaflow: recirc_id=0,in_port=2,vlan_tci=0x0005,dl_src=00:00:00:00:00:00/
→˓01:00:00:00:00:00,dl_dst=00:00:00:00:00:00/ff:ff:ff:ff:ff:f0,dl_type=0x0000
Datapath actions: drop

3.3.10 Implementing Table 2: MAC+VLAN Learning for Ingress Port

This table allows the switch we’re implementing to learn that the packet’s source MAC is located on the packet’s
ingress port in the packet’s VLAN.

Note: This table is a good example why table 1 added a VLAN tag to packets that entered the switch through an access
port. We want to associate a MAC+VLAN with a port regardless of whether the VLAN in question was originally part
of the packet or whether it was an assumed VLAN associated with an access port.

It only takes a single flow to do this. The following command adds it:
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$ ovs-ofctl add-flow br0 \
"table=2 actions=learn(table=10, NXM_OF_VLAN_TCI[0..11], \

NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[], \
load:NXM_OF_IN_PORT[]->NXM_NX_REG0[0..15]), \

resubmit(,3)"

The “learn” action (an Open vSwitch extension to OpenFlow) modifies a flow table based on the content of the flow
currently being processed. Here’s how you can interpret each part of the “learn” action above:

table=10 Modify flow table 10. This will be the MAC learning table.

NXM_OF_VLAN_TCI[0..11] Make the flow that we add to flow table 10 match the same VLAN ID that the packet
we’re currently processing contains. This effectively scopes the MAC learning entry to a single VLAN, which
is the ordinary behavior for a VLAN-aware switch.

NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[] Make the flow that we add to flow table 10 match, as Ethernet des-
tination, the Ethernet source address of the packet we’re currently processing.

load:NXM_OF_IN_PORT[]->NXM_NX_REG0[0..15] Whereas the preceding parts specify fields for the new
flow to match, this specifies an action for the flow to take when it matches. The action is for the flow to load
the ingress port number of the current packet into register 0 (a special field that is an Open vSwitch extension to
OpenFlow).

Note: A real use of “learn” for MAC learning would probably involve two additional elements. First, the “learn”
action would specify a hard_timeout for the new flow, to enable a learned MAC to eventually expire if no new packets
were seen from a given source within a reasonable interval. Second, one would usually want to limit resource con-
sumption by using the Flow_Table table in the Open vSwitch configuration database to specify a maximum number of
flows in table 10.

This definitely calls for examples.

3.3.11 Testing Table 2

Example 1

Try the following test command:

$ ovs-appctl ofproto/trace br0 \
in_port=1,vlan_tci=20,dl_src=50:00:00:00:00:01 -generate

The output shows that “learn” was executed in table 2 and the particular flow that was added:

Flow: in_port=1,vlan_tci=0x0014,dl_src=50:00:00:00:00:01,dl_dst=00:00:00:00:00:00,dl_
→˓type=0x0000

bridge("br0")
-------------
0. priority 0

resubmit(,1)
1. in_port=1, priority 99

resubmit(,2)
2. priority 32768

learn(table=10,NXM_OF_VLAN_TCI[0..11],NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[],load:NXM_
→˓OF_IN_PORT[]->NXM_NX_REG0[0..15])

-> table=10 vlan_tci=0x0014/0x0fff,dl_dst=50:00:00:00:00:01 priority=32768
→˓actions=load:0x1->NXM_NX_REG0[0..15] (continues on next page)

3.3. Open vSwitch Advanced Features 97



Open vSwitch, Release 2.12.90

(continued from previous page)

resubmit(,3)
3. No match.

drop

Final flow: unchanged
Megaflow: recirc_id=0,in_port=1,vlan_tci=0x0014/0x1fff,dl_src=50:00:00:00:00:01,dl_
→˓dst=00:00:00:00:00:00/ff:ff:ff:ff:ff:f0,dl_type=0x0000
Datapath actions: drop

The -generate keyword is new. Ordinarily, ofproto/trace has no side effects: “output” actions do not ac-
tually output packets, “learn” actions do not actually modify the flow table, and so on. With -generate, though,
ofproto/trace does execute “learn” actions. That’s important now, because we want to see the effect of the
“learn” action on table 10. You can see that by running:

$ ovs-ofctl dump-flows br0 table=10

which (omitting the duration and idle_age fields, which will vary based on how soon you ran this command
after the previous one, as well as some other uninteresting fields) prints something like:

NXST_FLOW reply (xid=0x4):
table=10, vlan_tci=0x0014/0x0fff,dl_dst=50:00:00:00:00:01 actions=load:0x1->NXM_NX_
→˓REG0[0..15]

You can see that the packet coming in on VLAN 20 with source MAC 50:00:00:00:00:01 became a flow that
matches VLAN 20 (written in hexadecimal) and destination MAC 50:00:00:00:00:01. The flow loads port
number 1, the input port for the flow we tested, into register 0.

Example 2

Here’s a second test command:

$ ovs-appctl ofproto/trace br0 \
in_port=2,dl_src=50:00:00:00:00:01 -generate

The flow that this command tests has the same source MAC and VLAN as example 1, although the VLAN comes from
an access port VLAN rather than an 802.1Q header. If we again dump the flows for table 10 with:

$ ovs-ofctl dump-flows br0 table=10

then we see that the flow we saw previously has changed to indicate that the learned port is port 2, as we would expect:

NXST_FLOW reply (xid=0x4):
table=10, vlan_tci=0x0014/0x0fff,dl_dst=50:00:00:00:00:01 actions=load:0x2->NXM_NX_
→˓REG0[0..15]

3.3.12 Implementing Table 3: Look Up Destination Port

This table figures out what port we should send the packet to based on the destination MAC and VLAN. That is, if
we’ve learned the location of the destination (from table 2 processing some previous packet with that destination as its
source), then we want to send the packet there.

We need only one flow to do the lookup:
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$ ovs-ofctl add-flow br0 \
"table=3 priority=50 actions=resubmit(,10), resubmit(,4)"

The flow’s first action resubmits to table 10, the table that the “learn” action modifies. As you saw previously, the
learned flows in this table write the learned port into register 0. If the destination for our packet hasn’t been learned,
then there will be no matching flow, and so the “resubmit” turns into a no-op. Because registers are initialized to 0, we
can use a register 0 value of 0 in our next pipeline stage as a signal to flood the packet.

The second action resubmits to table 4, continuing to the next pipeline stage.

We can add another flow to skip the learning table lookup for multicast and broadcast packets, since those should
always be flooded:

$ ovs-ofctl add-flow br0 \
"table=3 priority=99 dl_dst=01:00:00:00:00:00/01:00:00:00:00:00 \

actions=resubmit(,4)"

Note: We don’t strictly need to add this flow, because multicast addresses will never show up in our learning table.
(In turn, that’s because we put a flow into table 0 to drop packets that have a multicast source address.)

3.3.13 Testing Table 3

Example

Here’s a command that should cause OVS to learn that f0:00:00:00:00:01 is on p1 in VLAN 20:

$ ovs-appctl ofproto/trace br0 \
in_port=1,dl_vlan=20,dl_src=f0:00:00:00:00:01,dl_dst=90:00:00:00:00:01 \
-generate

The output shows (from the “no match” looking up the resubmit to table 10) that the flow’s destination was unknown:

Flow: in_port=1,dl_vlan=20,dl_vlan_pcp=0,dl_src=f0:00:00:00:00:01,dl_
→˓dst=90:00:00:00:00:01,dl_type=0x0000

bridge("br0")
-------------
0. priority 0

resubmit(,1)
1. in_port=1, priority 99

resubmit(,2)
2. priority 32768

learn(table=10,NXM_OF_VLAN_TCI[0..11],NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[],load:NXM_
→˓OF_IN_PORT[]->NXM_NX_REG0[0..15])

-> table=10 vlan_tci=0x0014/0x0fff,dl_dst=f0:00:00:00:00:01 priority=32768
→˓actions=load:0x1->NXM_NX_REG0[0..15]

resubmit(,3)
3. priority 50

resubmit(,10)
10. No match.

drop
resubmit(,4)

4. No match.
drop

(continues on next page)
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Final flow: unchanged
Megaflow: recirc_id=0,in_port=1,dl_vlan=20,dl_src=f0:00:00:00:00:01,dl_
→˓dst=90:00:00:00:00:01,dl_type=0x0000
Datapath actions: drop

There are two ways that you can verify that the packet’s source was learned. The most direct way is to dump the
learning table with:

$ ovs-ofctl dump-flows br0 table=10

which ought to show roughly the following, with extraneous details removed:

table=10, vlan_tci=0x0014/0x0fff,dl_dst=f0:00:00:00:00:01 actions=load:0x1->NXM_NX_
→˓REG0[0..15]

Note: If you tried the examples for the previous step, or if you did some of your own experiments, then you might
see additional flows there. These additional flows are harmless. If they bother you, then you can remove them with
ovs-ofctl del-flows br0 table=10.

The other way is to inject a packet to take advantage of the learning entry. For example, we can inject a packet on p2
whose destination is the MAC address that we just learned on p1:

$ ovs-appctl ofproto/trace br0 \
in_port=2,dl_src=90:00:00:00:00:01,dl_dst=f0:00:00:00:00:01 -generate

Here is this command’s output. Take a look at the lines that trace the resubmit(,10), showing that the packet
matched the learned flow for the first MAC we used, loading the OpenFlow port number for the learned port p1 into
register 0:

Flow: in_port=2,vlan_tci=0x0000,dl_src=90:00:00:00:00:01,dl_dst=f0:00:00:00:00:01,dl_
→˓type=0x0000

bridge("br0")
-------------
0. priority 0

resubmit(,1)
1. in_port=2,vlan_tci=0x0000, priority 99

mod_vlan_vid:20
resubmit(,2)

2. priority 32768
learn(table=10,NXM_OF_VLAN_TCI[0..11],NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[],load:NXM_

→˓OF_IN_PORT[]->NXM_NX_REG0[0..15])
-> table=10 vlan_tci=0x0014/0x0fff,dl_dst=90:00:00:00:00:01 priority=32768

→˓actions=load:0x2->NXM_NX_REG0[0..15]
resubmit(,3)

3. priority 50
resubmit(,10)
10. vlan_tci=0x0014/0x0fff,dl_dst=f0:00:00:00:00:01, priority 32768

load:0x1->NXM_NX_REG0[0..15]
resubmit(,4)

4. No match.
drop

(continues on next page)
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Final flow: reg0=0x1,in_port=2,dl_vlan=20,dl_vlan_pcp=0,dl_src=90:00:00:00:00:01,dl_
→˓dst=f0:00:00:00:00:01,dl_type=0x0000
Megaflow: recirc_id=0,in_port=2,vlan_tci=0x0000,dl_src=90:00:00:00:00:01,dl_
→˓dst=f0:00:00:00:00:01,dl_type=0x0000
Datapath actions: drop

If you read the commands above carefully, then you might have noticed that they simply have the Ethernet source and
destination addresses exchanged. That means that if we now rerun the first ovs-appctl command above, e.g.:

$ ovs-appctl ofproto/trace br0 \
in_port=1,dl_vlan=20,dl_src=f0:00:00:00:00:01,dl_dst=90:00:00:00:00:01 \
-generate

then we see in the output, looking at the indented “load” action executed in table 10, that the destination has now been
learned:

Flow: in_port=1,dl_vlan=20,dl_vlan_pcp=0,dl_src=f0:00:00:00:00:01,dl_
→˓dst=90:00:00:00:00:01,dl_type=0x0000

bridge("br0")
-------------
0. priority 0

resubmit(,1)
1. in_port=1, priority 99

resubmit(,2)
2. priority 32768

learn(table=10,NXM_OF_VLAN_TCI[0..11],NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[],load:NXM_
→˓OF_IN_PORT[]->NXM_NX_REG0[0..15])

-> table=10 vlan_tci=0x0014/0x0fff,dl_dst=f0:00:00:00:00:01 priority=32768
→˓actions=load:0x1->NXM_NX_REG0[0..15]

resubmit(,3)
3. priority 50

resubmit(,10)
10. vlan_tci=0x0014/0x0fff,dl_dst=90:00:00:00:00:01, priority 32768

load:0x2->NXM_NX_REG0[0..15]
resubmit(,4)

4. No match.
drop

3.3.14 Implementing Table 4: Output Processing

At entry to stage 4, we know that register 0 contains either the desired output port or is zero if the packet should be
flooded. We also know that the packet’s VLAN is in its 802.1Q header, even if the VLAN was implicit because the
packet came in on an access port.

The job of the final pipeline stage is to actually output packets. The job is trivial for output to our trunk port p1:

$ ovs-ofctl add-flow br0 "table=4 reg0=1 actions=1"

For output to the access ports, we just have to strip the VLAN header before outputting the packet:

$ ovs-ofctl add-flows br0 - <<'EOF'
table=4 reg0=2 actions=strip_vlan,2
table=4 reg0=3 actions=strip_vlan,3

(continues on next page)
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table=4 reg0=4 actions=strip_vlan,4
EOF

The only slightly tricky part is flooding multicast and broadcast packets and unicast packets with unlearned destina-
tions. For those, we need to make sure that we only output the packets to the ports that carry our packet’s VLAN, and
that we include the 802.1Q header in the copy output to the trunk port but not in copies output to access ports:

$ ovs-ofctl add-flows br0 - <<'EOF'
table=4 reg0=0 priority=99 dl_vlan=20 actions=1,strip_vlan,2
table=4 reg0=0 priority=99 dl_vlan=30 actions=1,strip_vlan,3,4
table=4 reg0=0 priority=50 actions=1
EOF

Note: Our flows rely on the standard OpenFlow behavior that an output action will not forward a packet back out the
port it came in on. That is, if a packet comes in on p1, and we’ve learned that the packet’s destination MAC is also on
p1, so that we end up with actions=1 as our actions, the switch will not forward the packet back out its input port.
The multicast/broadcast/unknown destination cases above also rely on this behavior.

3.3.15 Testing Table 4

Example 1: Broadcast, Multicast, and Unknown Destination

Try tracing a broadcast packet arriving on p1 in VLAN 30:

$ ovs-appctl ofproto/trace br0 \
in_port=1,dl_dst=ff:ff:ff:ff:ff:ff,dl_vlan=30

The interesting part of the output is the final line, which shows that the switch would remove the 802.1Q header and
then output the packet to p3 and p4, which are access ports for VLAN 30:

Datapath actions: pop_vlan,3,4

Similarly, if we trace a broadcast packet arriving on p3:

$ ovs-appctl ofproto/trace br0 in_port=3,dl_dst=ff:ff:ff:ff:ff:ff

then we see that it is output to p1 with an 802.1Q tag and then to p4 without one:

Datapath actions: push_vlan(vid=30,pcp=0),1,pop_vlan,4

Note: Open vSwitch could simplify the datapath actions here to just 4,push_vlan(vid=30,pcp=0),1 but it
is not smart enough to do so.

The following are also broadcasts, but the result is to drop the packets because the VLAN only belongs to the input
port:

$ ovs-appctl ofproto/trace br0 \
in_port=1,dl_dst=ff:ff:ff:ff:ff:ff

$ ovs-appctl ofproto/trace br0 \
in_port=1,dl_dst=ff:ff:ff:ff:ff:ff,dl_vlan=55
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Try some other broadcast cases on your own:

$ ovs-appctl ofproto/trace br0 \
in_port=1,dl_dst=ff:ff:ff:ff:ff:ff,dl_vlan=20

$ ovs-appctl ofproto/trace br0 \
in_port=2,dl_dst=ff:ff:ff:ff:ff:ff

$ ovs-appctl ofproto/trace br0 \
in_port=4,dl_dst=ff:ff:ff:ff:ff:ff

You can see the same behavior with multicast packets and with unicast packets whose destination has not been learned,
e.g.:

$ ovs-appctl ofproto/trace br0 \
in_port=4,dl_dst=01:00:00:00:00:00

$ ovs-appctl ofproto/trace br0 \
in_port=1,dl_dst=90:12:34:56:78:90,dl_vlan=20

$ ovs-appctl ofproto/trace br0 \
in_port=1,dl_dst=90:12:34:56:78:90,dl_vlan=30

Example 2: MAC Learning

Let’s follow the same pattern as we did for table 3. First learn a MAC on port p1 in VLAN 30:

$ ovs-appctl ofproto/trace br0 \
in_port=1,dl_vlan=30,dl_src=10:00:00:00:00:01,dl_dst=20:00:00:00:00:01 \
-generate

You can see from the last line of output that the packet’s destination is unknown, so it gets flooded to both p3 and p4,
the other ports in VLAN 30:

Datapath actions: pop_vlan,3,4

Then reverse the MACs and learn the first flow’s destination on port p4:

$ ovs-appctl ofproto/trace br0 \
in_port=4,dl_src=20:00:00:00:00:01,dl_dst=10:00:00:00:00:01 -generate

The last line of output shows that the this packet’s destination is known to be p1, as learned from our previous
command:

Datapath actions: push_vlan(vid=30,pcp=0),1

Now, if we rerun our first command:

$ ovs-appctl ofproto/trace br0 \
in_port=1,dl_vlan=30,dl_src=10:00:00:00:00:01,dl_dst=20:00:00:00:00:01 \
-generate

. . . we can see that the result is no longer a flood but to the specified learned destination port p4:

Datapath actions: pop_vlan,4

Contact

bugs@openvswitch.org http://openvswitch.org/
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3.4 OVS Conntrack Tutorial

OVS can be used with the Connection tracking system where OpenFlow flow can be used to match on the state of
a TCP, UDP, ICMP, etc., connections. (Connection tracking system supports tracking of both statefull and stateless
protocols)

This tutorial demonstrates how OVS can use the connection tracking system to match on the TCP segments from
connection setup to connection tear down. It will use OVS with the Linux kernel module as the datapath for this
tutorial. (The datapath that utilizes the openvswitch kernel module to do the packet processing in the Linux kernel) It
was tested with the “master” branch of Open vSwitch.

3.4.1 Definitions

conntrack: is a connection tracking module for stateful packet inspection.

pipeline: is the packet processing pipeline which is the path taken by the packet when traversing through the tables
where the packet matches the match fields of a flow in the table and performs the actions present in the matched flow.

network namespace: is a way to create virtual routing domains within a single instance of linux kernel. Each network
namespace has it’s own instance of network tables (arp, routing) and certain interfaces attached to it.

flow: used in this tutorial refers to the OpenFlow flow which can be programmed using an OpenFlow controller or
OVS command line tools like ovs-ofctl which is used here. A flow will have match fields and actions.

3.4.2 Conntrack Related Fields

Match Fields

OVS supports following match fields related to conntrack:

1. ct_state: The state of a connection matching the packet. Possible values:

• new

• est

• rel

• rpl

• inv

• trk

• snat

• dnat

Each of these flags is preceded by either a “+” for a flag that must be set, or a “-” for a flag that must be unset. Multiple
flags can also be specified e.g. ct_state=+trk+new. We will see the usage of some of these flags below. For a detailed
description, please see the OVS fields documentation at: http://openvswitch.org/support/dist-docs/ovs-fields.7.txt

2. ct_zone: A zone is an independent connection tracking context which can be set by a ct action. A 16-bit ct_zone
set by the most recent ct action (by an OpenFlow flow on a conntrack entry) can be used as a match field in another
flow entry.

3. ct_mark: The 32-bit metadata committed, by an action within the exec parameter to the ct action, to the connection
to which the current packet belongs.
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4. ct_label: The 128-bit label committed by an action within the exec parameter to the ct action, to the connection to
which the current packet belongs.

5. ct_nw_src / ct_ipv6_src: Matches IPv4/IPv6 conntrack original direction tuple source address.

6. ct_nw_dst / ct_ipv6_dst: Matches IPv4/IPv6 conntrack original direction tuple destination address.

7. ct_nw_proto: Matches conntrack original direction tuple IP protocol type.

8. ct_tp_src: Matches on the conntrack original direction tuple transport source port.

9. ct_tp_dst: Matches on the conntrack original direction tuple transport destination port.

Actions

OVS supports “ct” action related to conntrack.

ct([argument][,argument. . . ])

The ct action sends the packet through the connection tracker.

The following arguments are supported:

1. commit: Commit the connection to the connection tracking module which will be stored beyond the lifetime of
packet in the pipeline.

2. force: The force flag may be used in addition to commit flag to effectively terminate the existing connection and
start a new one in the current direction.

3. table=number: Fork pipeline processing in two. The original instance of the packet will continue processing the
current actions list as an untracked packet. An additional instance of the packet will be sent to the connection tracker,
which will be re-injected into the OpenFlow pipeline to resume processing in table number, with the ct_state and other
ct match fields set.

4. zone=value OR zone=src[start..end]: A 16-bit context id that can be used to isolate connections into separate
domains, allowing over-lapping network addresses in different zones. If a zone is not provided, then the default is to
use zone zero.

5. exec([action][,action. . . ]): Perform restricted set of actions within the context of connection tracking. Only actions
which modify the ct_mark or ct_label fields are accepted within the exec action.

6. alg=<ftp/tftp>: Specify alg (application layer gateway) to track specific connection types.

7. nat: Specifies the address and port translation for the connection being tracked.

3.4.3 Sample Topology

This tutorial uses the following topology to carry out the tests.

+ +
| |
| +-----+ |
| | | |
| | | |
| +----------+ | OVS | +----------+ |
| | left | | | | right | |
| | namespace| | | |namespace | |
+-----+ A +------+ +-----+ B +--------+
| | | A'| | B' | | |
| | | | | | | |

(continues on next page)
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| +----------+ | | +----------+ |
| | | |
| | | |
| | | |
| +-----+ |
| |
| |
+ +

192.168.0.X n/w 10.0.0.X n/w

A = veth_l1
A' = veth_l0
B = veth_r1
B' = veth_r0

Diagram: Sample Topology for conntrack testing

The steps for creation of the setup are mentioned below.

Create “left” network namespace:

$ ip netns add left

Create “right” network namespace:

$ ip netns add right

Create first pair of veth interfaces:

$ ip link add veth_l0 type veth peer name veth_l1

Add veth_l1 to “left” network namespace:

$ ip link set veth_l1 netns left

Create second pair of veth interfaces:

$ ip link add veth_r0 type veth peer name veth_r1

Add veth_r1 to “right” network namespace:

$ ip link set veth_r1 netns right

Create a bridge br0:

$ ovs-vsctl add-br br0

Add veth_l0 and veth_r0 to br0:

$ ovs-vsctl add-port br0 veth_l0
$ ovs-vsctl add-port br0 veth_r0

Packets generated with src/dst IP set to 192.168.0.X / 10.0.0.X in the “left” and the inverse in the “right” namespaces
will appear to OVS as hosts in two networks (192.168.0.X and 10.0.0.X) communicating with each other. This is
basically a simulation of two networks / subnets with hosts communicating with each other with OVS in middle.
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3.4.4 Tool used to generate TCP segments

You can use scapy to generate the TCP segments. We used scapy on Ubuntu 16.04 for the steps carried out in this
testing. (Installation of scapy is not discussed and is out of scope of this document.)

You can keep two scapy sessions active on each of the namespaces:

$ sudo ip netns exec left sudo `which scapy`

$ sudo ip netns exec right sudo `which scapy`

Note: In case you encounter this error:

ifreq = ioctl(s, SIOCGIFADDR,struct.pack("16s16x",LOOPBACK_NAME))

IOError: [Errno 99] Cannot assign requested address

run the command:

$ sudo ip netns exec <namespace> sudo ip link set lo up

3.4.5 Matching TCP packets

TCP Connection setup

Two simple flows can be added in OVS which will forward packets from “left” to “right” and from “right” to “left”:

$ ovs-ofctl add-flow br0 \
"table=0, priority=10, in_port=veth_l0, actions=veth_r0"

$ ovs-ofctl add-flow br0 \
"table=0, priority=10, in_port=veth_r0, actions=veth_l0"

Instead of adding these two flows, we will add flows to match on the states of the TCP segments.

We will send the TCP connection setup segments namely: syn, syn-ack and ack between hosts 192.168.0.2 in the
“left” namespace and 10.0.0.2 in the “right” namespace.

First, let’s add a flow to start “tracking” a packet received at OVS.

How do we start tracking a packet?

To start tracking a packet, it first needs to match a flow, which has action as “ct”. This action sends the packet through
the connection tracker. To identify that a packet is an “untracked” packet, the ct_state in the flow match field must be
set to “-trk”, which means it is not a tracked packet. Once the packet is sent to the connection tracker, then only we
will know about its conntrack state. (i.e. whether this packet represents start of a new connection or the packet belongs
to an existing connection or it is a malformed packet and so on.)

Let’s add that flow:

(flow #1)
$ ovs-ofctl add-flow br0 \

"table=0, priority=50, ct_state=-trk, tcp, in_port=veth_l0, actions=ct(table=0)"

A TCP syn packet sent from “left” namespace will match flow #1 because the packet is coming to OVS from veth_l0
port and it is not being tracked. This is because the packet just entered OVS. When a packet enters a namespace
for the first time, a new connection tracker context is entered, hence, the packet will be initially “untracked” in that
namespace. When a packet (re)enters the same datapath that it already belongs to there is no need to discard the
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namespace and other information associated with the conntrack flow. In this case the packet will remain in the tracked
state. If the namespace has changed then it is discarded and a new connection tracker is created since connection
tracking information is logically separate for different namespaces. The flow will send the packet to the connection
tracker due to the action “ct”. Also “table=0” in the “ct” action forks the pipeline processing in two. The original
instance of packet will continue processing the current action list as untracked packet. (Since there are no actions after
this, the original packet gets dropped.) The forked instance of the packet will be sent to the connection tracker, which
will be re-injected into the OpenFlow pipeline to resume processing in table number, with the ct_state and other ct
match fields set. In this case, the packet with the ct_state and other ct match fields comes back to table 0.

Next, we add a flow to match on the packet coming back from conntrack:

(flow #2)
$ ovs-ofctl add-flow br0 \

"table=0, priority=50, ct_state=+trk+new, tcp, in_port=veth_l0,
→˓actions=ct(commit),veth_r0"

Now that the packet is coming back from conntrack, the ct_state would have the “trk” set. Also, if this is the first
packet of the TCP connection, the ct_state “new” would be set. (Which is the condition here as there does not exist
any TCP connection between hosts 192.168.0.2 and 10.0.0.2) The ct argument “commit” will commit the connection
to the connection tracking module. The significance of this action is that the information about the connection will
now be stored beyond the lifetime of the packet in the pipeline.

Let’s send the TCP syn segment using scapy (at the “left” scapy session) (flags=0x02 is syn):

$ >>> sendp(Ether()/IP(src="192.168.0.2", dst="10.0.0.2")/TCP(sport=1024, dport=2048,
→˓flags=0x02, seq=100), iface="veth_l1")

This packet will match flow #1 and flow #2.

The conntrack module will now have an entry for this connection:

$ ovs-appctl dpctl/dump-conntrack | grep "192.168.0.2"
tcp,orig=(src=192.168.0.2,dst=10.0.0.2,sport=1024,dport=2048),reply=(src=10.0.0.2,
→˓dst=192.168.0.2,sport=2048,dport=1024),protoinfo=(state=SYN_SENT)

Note: At this stage, if the TCP syn packet is re-transmitted, it will again match flow #1 (since a new packet is
untracked) and it will match flow #2. The reason it will match flow #2 is that although conntrack has information
about the connection, but it is not in “ESTABLISHED” state, therefore it matches the “new” state again.

Next for the TCP syn-ack from the opposite/server direction, we need following flows at OVS:

(flow #3)
$ ovs-ofctl add-flow br0 \

"table=0, priority=50, ct_state=-trk, tcp, in_port=veth_r0, actions=ct(table=0)"
(flow #4)
$ ovs-ofctl add-flow br0 \

"table=0, priority=50, ct_state=+trk+est, tcp, in_port=veth_r0, actions=veth_l0"

flow #3 matches untracked packets coming back from server (10.0.0.2) and sends this to conntrack. (Alternatively, we
could have also combined flow #1 and flow #3 into one flow by not having the “in_port” match)

The syn-ack packet which has now gone through the conntrack has the ct_state of “est”.

Note: Conntrack puts the ct_state of the connection to “est” state when it sees bidirectional traffic, but till it does not
get the third ack from client, it puts a short cleanup timer on the conntrack entry.

Sending TCP syn-ack segment using scapy (at the “right” scapy session) (flags=0x12 is ack and syn):

$ >>> sendp(Ether()/IP(src="10.0.0.2", dst="192.168.0.2")/TCP(sport=2048, dport=1024,
→˓flags=0x12, seq=200, ack=101), iface="veth_r1")
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This packet will match flow #3 and flow #4.

conntrack entry:

$ ovs-appctl dpctl/dump-conntrack | grep "192.168.0.2"

tcp,orig=(src=192.168.0.2,dst=10.0.0.2,sport=1024,dport=2048),reply=(src=10.0.0.2,
→˓dst=192.168.0.2,sport=2048,dport=1024),protoinfo=(state=ESTABLISHED)

The conntrack state is “ESTABLISHED” on receiving just syn and syn-ack packets, but at this point if it does not
receive the third ack (from client), the connection gets cleared up from conntrack quickly.

Next, for a TCP ack from client direction, we can add following flows to match on the packet:

(flow #5)
$ ovs-ofctl add-flow br0 \

"table=0, priority=50, ct_state=+trk+est, tcp, in_port=veth_l0, actions=veth_r0"

Send the third TCP ack segment using scapy (at the “left” scapy session) (flags=0x10 is ack):

$ >>> sendp(Ether()/IP(src="192.168.0.2", dst="10.0.0.2")/TCP(sport=1024, dport=2048,
→˓flags=0x10, seq=101, ack=201), iface="veth_l1")

This packet will match on flow #1 and flow #5.

conntrack entry:

$ ovs-appctl dpctl/dump-conntrack | grep "192.168.0.2"

tcp,orig=(src=192.168.0.2,dst=10.0.0.2,sport=1024,dport=2048), \
reply=(src=10.0.0.2,dst=192.168.0.2,sport=2048,dport=1024), \

protoinfo=(state=ESTABLISHED)

The conntrack state stays in “ESTABLISHED” state, but now since it has received the ack from client, it will stay in
this state for a longer time even without receiving any data on this connection.

TCP Data

When a data segment, carrying one byte of TCP payload, is sent from 192.168.0.2 to 10.0.0.2, the packet carrying the
segment would hit flow #1 and then flow #5.

Send a TCP segment with one byte data using scapy (at the “left” scapy session) (flags=0x10 is ack):

$ >>> sendp(Ether()/IP(src="192.168.0.2", dst="10.0.0.2")/TCP(sport=1024, dport=2048,
→˓flags=0x10, seq=101, ack=201)/"X", iface="veth_l1")

Send the TCP ack for the above segment using scapy (at the “right” scapy session) (flags=0x10 is ack):

$ >>> sendp(Ether()/IP(src="10.0.0.2", dst="192.168.0.2")/TCP(sport=2048, dport=1024,
→˓flags=0X10, seq=201, ack=102), iface="veth_r1")

The acknowledgement for the data would hit flow #3 and flow #4.

TCP Connection Teardown

There are different ways to tear down TCP connection. We will tear down the connection by sending “fin” from client,
“fin-ack” from server followed by the last “ack” by client.
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All the packets from client to server would hit flow #1 and flow #5. All the packets from server to client would hit flow
#3 and flow #4. Interesting point to note is that even when the TCP connection is going down, all the packets (which
are actually tearing down the connection) still hits “+est” state. A packet, for which the conntrack entry is or was in
“ESTABLISHED” state, would continue to match “+est” ct_state in OVS.

Note: In fact, when the conntrack connection state is in “TIME_WAIT” state (after all the TCP fins and their acks are
exchanged), a re-transmitted data packet (from 192.168.0.2 -> 10.0.0.2), still hits flows #1 and #5.

Sending TCP fin segment using scapy (at the “left” scapy session) (flags=0x11 is ack and fin):

$ >>> sendp(Ether()/IP(src="192.168.0.2", dst="10.0.0.2")/TCP(sport=1024, dport=2048,
→˓flags=0x11, seq=102, ack=201), iface="veth_l1")

This packet hits flow #1 and flow #5.

conntrack entry:

$ sudo ovs-appctl dpctl/dump-conntrack | grep "192.168.0.2"

tcp,orig=(src=192.168.0.2,dst=10.0.0.2,sport=1024,dport=2048),reply=(src=10.0.0.2,
→˓dst=192.168.0.2,sport=2048,dport=1024),protoinfo=(state=FIN_WAIT_1)

Sending TCP fin-ack segment using scapy (at the “right” scapy session) (flags=0x11 is ack and fin):

$ >>> sendp(Ether()/IP(src="10.0.0.2", dst="192.168.0.2")/TCP(sport=2048, dport=1024,
→˓flags=0X11, seq=201, ack=103), iface="veth_r1")

This packet hits flow #3 and flow #4.

conntrack entry:

$ sudo ovs-appctl dpctl/dump-conntrack | grep "192.168.0.2"

tcp,orig=(src=192.168.0.2,dst=10.0.0.2,sport=1024,dport=2048),reply=(src=10.0.0.2,
→˓dst=192.168.0.2,sport=2048,dport=1024),protoinfo=(state=LAST_ACK)

Sending TCP ack segment using scapy (at the “left” scapy session) (flags=0x10 is ack):

$ >>> sendp(Ether()/IP(src="192.168.0.2", dst="10.0.0.2")/TCP(sport=1024, dport=2048,
→˓flags=0x10, seq=103, ack=202), iface="veth_l1")

This packet hits flow #1 and flow #5.

conntrack entry:

$ sudo ovs-appctl dpctl/dump-conntrack | grep "192.168.0.2"

tcp,orig=(src=192.168.0.2,dst=10.0.0.2,sport=1024,dport=2048),reply=(src=10.0.0.2,
→˓dst=192.168.0.2,sport=2048,dport=1024),protoinfo=(state=TIME_WAIT)

3.4.6 Summary

Following table summarizes the TCP segments exchanged against the flow match fields

110 Chapter 3. Tutorials



Open vSwitch, Release 2.12.90

TCP Segment ct_state(flow#)
Connection Setup
192.168.0.2 → 10.0.0.2 [SYN] Seq=0 -trk(#1) then +trk+new(#2)
10.0.0.2 → 192.168.0.2 [SYN, ACK] Seq=0 Ack=1 -trk(#3) then +trk+est(#4)
192.168.0.2 → 10.0.0.2 [ACK] Seq=1 Ack=1 -trk(#1) then +trk+est(#5)
Data Transfer
192.168.0.2 → 10.0.0.2 [ACK] Seq=1 Ack=1 -trk(#1) then +trk+est(#5)
10.0.0.2 → 192.168.0.2 [ACK] Seq=1 Ack=2 -trk(#3) then +trk+est(#4)
Connection Teardown
192.168.0.2 → 10.0.0.2 [FIN, ACK] Seq=2 Ack=1 -trk(#1) then +trk+est(#5)
10.0.0.2 → 192.168.0.2 [FIN, ACK] Seq=1 Ack=3 -trk(#3) then +trk+est(#4)
192.168.0.2 → 10.0.0.2 [ACK] Seq=3 Ack=2 -trk(#1) then +trk+est(#5)

Note: Relative sequence number and acknowledgement numbers are shown as captured from tshark.

Flows

(flow #1)
$ ovs-ofctl add-flow br0 \

"table=0, priority=50, ct_state=-trk, tcp, in_port=veth_l0, actions=ct(table=0)"

(flow #2)
$ ovs-ofctl add-flow br0 \

"table=0, priority=50, ct_state=+trk+new, tcp, in_port=veth_l0,
→˓actions=ct(commit),veth_r0"

(flow #3)
$ ovs-ofctl add-flow br0 \

"table=0, priority=50, ct_state=-trk, tcp, in_port=veth_r0, actions=ct(table=0)"

(flow #4)
$ ovs-ofctl add-flow br0 \

"table=0, priority=50, ct_state=+trk+est, tcp, in_port=veth_r0, actions=veth_l0"

(flow #5)
$ ovs-ofctl add-flow br0 \

"table=0, priority=50, ct_state=+trk+est, tcp, in_port=veth_l0, actions=veth_r0"
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CHAPTER 4

Deep Dive

How Open vSwitch is implemented and, where necessary, why it was implemented that way.

4.1 OVS

4.1.1 Design Decisions In Open vSwitch

This document describes design decisions that went into implementing Open vSwitch. While we believe these to be
reasonable decisions, it is impossible to predict how Open vSwitch will be used in all environments. Understanding
assumptions made by Open vSwitch is critical to a successful deployment. The end of this document contains contact
information that can be used to let us know how we can make Open vSwitch more generally useful.

Asynchronous Messages

Over time, Open vSwitch has added many knobs that control whether a given controller receives OpenFlow asyn-
chronous messages. This section describes how all of these features interact.

First, a service controller never receives any asynchronous messages unless it changes its miss_send_len from the
service controller default of zero in one of the following ways:

• Sending an OFPT_SET_CONFIG message with nonzero miss_send_len.

• Sending any NXT_SET_ASYNC_CONFIG message: as a side effect, this message changes the
miss_send_len to OFP_DEFAULT_MISS_SEND_LEN (128) for service controllers.

Second, OFPT_FLOW_REMOVED and NXT_FLOW_REMOVED messages are generated only if the flow that was re-
moved had the OFPFF_SEND_FLOW_REM flag set.

Third, OFPT_PACKET_IN and NXT_PACKET_IN messages are sent only to OpenFlow controller connections that
have the correct connection ID (see struct nx_controller_id and struct nx_action_controller):

• For packet-in messages generated by a NXAST_CONTROLLER action, the controller ID specified in the action.
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• For other packet-in messages, controller ID zero. (This is the default ID when an OpenFlow controller does not
configure one.)

Finally, Open vSwitch consults a per-connection table indexed by the message type, reason code, and current role.
The following table shows how this table is initialized by default when an OpenFlow connection is made. An entry
labeled yes means that the message is sent, an entry labeled --- means that the message is suppressed.

Table 1: OFPT_PACKET_IN / NXT_PACKET_IN
message and reason code other slave
OFPR_NO_MATCH yes —
OFPR_ACTION yes —
OFPR_INVALID_TTL — —
OFPR_ACTION_SET (OF1.4+) yes —
OFPR_GROUP (OF1.4+) yes —
OFPR_PACKET_OUT (OF1.4+) yes —

Table 2: OFPT_FLOW_REMOVED / NXT_FLOW_REMOVED
message and reason code other slave
OFPRR_IDLE_TIMEOUT yes —
OFPRR_HARD_TIMEOUT yes —
OFPRR_DELETE yes —
OFPRR_GROUP_DELETE (OF1.3+) yes —
OFPRR_METER_DELETE (OF1.4+) yes —
OFPRR_EVICTION (OF1.4+) yes —

Table 3: OFPT_PORT_STATUS
message and reason code other slave
OFPPR_ADD yes yes
OFPPR_DELETE yes yes
OFPPR_MODIFY yes yes

Table 4: OFPT_ROLE_REQUEST / OFPT_ROLE_REPLY (OF1.4+)
message and reason code other slave
OFPCRR_MASTER_REQUEST — —
OFPCRR_CONFIG — —
OFPCRR_EXPERIMENTER — —

Table 5: OFPT_TABLE_STATUS (OF1.4+)
message and reason code other slave
OFPTR_VACANCY_DOWN — —
OFPTR_VACANCY_UP — —

Table 6: OFPT_REQUESTFORWARD (OF1.4+)
message and reason code other slave
OFPRFR_GROUP_MOD — —
OFPRFR_METER_MOD — —
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The NXT_SET_ASYNC_CONFIG message directly sets all of the values in this table for the current connection.
The OFPC_INVALID_TTL_TO_CONTROLLER bit in the OFPT_SET_CONFIG message controls the setting for
OFPR_INVALID_TTL for the “master” role.

OFPAT_ENQUEUE

The OpenFlow 1.0 specification requires the output port of the OFPAT_ENQUEUE action to “refer to a valid phys-
ical port (i.e. < OFPP_MAX) or OFPP_IN_PORT”. Although OFPP_LOCAL is not less than OFPP_MAX, it is an
‘internal’ port which can have QoS applied to it in Linux. Since we allow the OFPAT_ENQUEUE to apply to ‘inter-
nal’ ports whose port numbers are less than OFPP_MAX, we interpret OFPP_LOCAL as a physical port and support
OFPAT_ENQUEUE on it as well.

OFPT_FLOW_MOD

The OpenFlow specification for the behavior of OFPT_FLOW_MOD is confusing. The following tables summarize the
Open vSwitch implementation of its behavior in the following categories:

“match on priority” Whether the flow_mod acts only on flows whose priority matches that included in the
flow_mod message.

“match on out_port” Whether the flow_mod acts only on flows that output to the out_port included in the
flow_mod message (if out_port is not OFPP_NONE). OpenFlow 1.1 and later have a similar feature (not listed
separately here) for out_group.

“match on flow_cookie”: Whether the flow_mod acts only on flows whose flow_cookie matches an optional
controller-specified value and mask.

“updates flow_cookie”: Whether the flow_mod changes the flow_cookie of the flow or flows that it matches
to the flow_cookie included in the flow_mod message.

“updates OFPFF_ flags”: Whether the flow_mod changes the OFPFF_SEND_FLOW_REM flag of the flow or flows
that it matches to the setting included in the flags of the flow_mod message.

“honors OFPFF_CHECK_OVERLAP”: Whether the OFPFF_CHECK_OVERLAP flag in the flow_mod is significant.

“updates idle_timeout” and “updates hard_timeout”: Whether the idle_timeout and hard_timeout in
the flow_mod, respectively, have an effect on the flow or flows matched by the flow_mod.

“updates idle timer”: Whether the flow_mod resets the per-flow timer that measures how long a flow has been
idle.

“updates hard timer”: Whether the flow_mod resets the per-flow timer that measures how long it has been since a
flow was modified.

“zeros counters”: Whether the flow_mod resets per-flow packet and byte counters to zero.

“may add a new flow”: Whether the flow_modmay add a new flow to the flow table. (Obviously this is always true
for “add” commands but in some OpenFlow versions “modify” and “modify-strict” can also add new flows.)

“sends flow_removed message”: Whether the flow_mod generates a flow_removed message for the flow or flows
that it affects.

An entry labeled yes means that the flow mod type does have the indicated behavior, --- means that it does not, an
empty cell means that the property is not applicable, and other values are explained below the table.
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OpenFlow 1.0

RULE ADD MODIFY STRICT DELETE STRICT
match on
priority

yes — yes — yes

match on
out_port

— — — yes yes

match on
flow_cookie

— — — — —

match on
table_id

— — — — —

controller
chooses
table_id

— — —

updates
flow_cookie

yes yes yes

updates
OFPFF_SEND_FLOW_REM

yes • •

honors
OFPFF_CHECK_OVERLAP

yes • •

updates
idle_timeout

yes • •

updates
hard_timeout

yes • •

resets idle timer yes • •

resets hard timer yes yes yes
zeros counters yes • •

may add a new
flow

yes yes yes

sends
flow_removed
message

— — — % %

where:

+ “modify” and “modify-strict” only take these actions when they create a new flow, not when they update an existing
flow.

% “delete” and “delete_strict” generates a flow_removed message if the deleted flow or flows have the
OFPFF_SEND_FLOW_REM flag set. (Each controller can separately control whether it wants to receive the
generated messages.)

OpenFlow 1.1

OpenFlow 1.1 makes these changes:

• The controller now must specify the table_id of the flow match searched and into which a flow may be
inserted. Behavior for a table_id of 255 is undefined.
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• A flow_mod, except an “add”, can now match on the flow_cookie.

• When a flow_mod matches on the flow_cookie, “modify” and “modify-strict” never insert a new flow.

RULE ADD MODIFY STRICT DELETE STRICT
match on
priority

yes — yes — yes

match on
out_port

— — — yes yes

match on
flow_cookie

— yes yes yes yes

match on
table_id

yes yes yes yes yes

controller
chooses
table_id

yes yes yes

updates
flow_cookie

yes — —

updates
OFPFF_SEND_FLOW_REM

yes • •

honors
OFPFF_CHECK_OVERLAP

yes • •

updates
idle_timeout

yes • •

updates
hard_timeout

yes • •

resets idle timer yes • •

resets hard timer yes yes yes
zeros counters yes • •

may add a new
flow

yes # #

sends
flow_removed
message

— — — % %

where:

+ “modify” and “modify-strict” only take these actions when they create a new flow, not when they update an existing
flow.

% “delete” and “delete_strict” generates a flow_removed message if the deleted flow or flows have the
OFPFF_SEND_FLOW_REM flag set. (Each controller can separately control whether it wants to receive the
generated messages.)

# “modify” and “modify-strict” only add a new flow if the flow_mod does not match on any bits of the flow cookie

OpenFlow 1.2

OpenFlow 1.2 makes these changes:
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• Only “add” commands ever add flows, “modify” and “modify-strict” never do.

• A new flag OFPFF_RESET_COUNTS now controls whether “modify” and “modify-strict” reset counters,
whereas previously they never reset counters (except when they inserted a new flow).

RULE ADD MODIFY STRICT DELETE STRICT
match on priority yes — yes — yes
match on out_port — — — yes yes
match on flow_cookie — yes yes yes yes
match on table_id yes yes yes yes yes
controller chooses table_id yes yes yes
updates flow_cookie yes — —
updates OFPFF_SEND_FLOW_REM yes — —
honors OFPFF_CHECK_OVERLAP yes — —
updates idle_timeout yes — —
updates hard_timeout yes — —
resets idle timer yes — —
resets hard timer yes yes yes
zeros counters yes & &
may add a new flow yes — —
sends flow_removed message — — — % %

% “delete” and “delete_strict” generates a flow_removed message if the deleted flow or flows have the
OFPFF_SEND_FLOW_REM flag set. (Each controller can separately control whether it wants to receive the
generated messages.)

& “modify” and “modify-strict” reset counters if the OFPFF_RESET_COUNTS flag is specified.

OpenFlow 1.3

OpenFlow 1.3 makes these changes:

• Behavior for a table_id of 255 is now defined, for “delete” and “delete-strict” commands, as meaning to delete
from all tables. A table_id of 255 is now explicitly invalid for other commands.

• New flags OFPFF_NO_PKT_COUNTS and OFPFF_NO_BYT_COUNTS for “add” operations.

The table for 1.3 is the same as the one shown above for 1.2.

OpenFlow 1.4

OpenFlow 1.4 makes these changes:

• Adds the “importance” field to flow_mods, but it does not explicitly specify which kinds of flow_mods set
the importance. For consistency, Open vSwitch uses the same rule for importance as for idle_timeout and
hard_timeout, that is, only an “ADD” flow_mod sets the importance. (This issue has been filed with the
ONF as EXT-496.)

• Eviction Mechanism to automatically delete entries of lower importance to make space for newer entries.

OpenFlow 1.4 Bundles

Open vSwitch makes all flow table modifications atomically, i.e., any datapath packet only sees flow table configura-
tions either before or after any change made by any flow_mod. For example, if a controller removes all flows with a
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single OpenFlow flow_mod, no packet sees an intermediate version of the OpenFlow pipeline where only some of
the flows have been deleted.

It should be noted that Open vSwitch caches datapath flows, and that the cached flows are NOT flushed immediately
when a flow table changes. Instead, the datapath flows are revalidated against the new flow table as soon as possible,
and usually within one second of the modification. This design amortizes the cost of datapath cache flushing across
multiple flow table changes, and has a significant performance effect during simultaneous heavy flow table churn and
high traffic load. This means that different cached datapath flows may have been computed based on a different flow
table configurations, but each of the datapath flows is guaranteed to have been computed over a coherent view of the
flow tables, as described above.

With OpenFlow 1.4 bundles this atomicity can be extended across an arbitrary set of flow_mod. Bundles are sup-
ported for flow_mod and port_mod messages only. For flow_mod, both atomic and ordered bundle flags are
trivially supported, as all bundled messages are executed in the order they were added and all flow table modifications
are now atomic to the datapath. Port mods may not appear in atomic bundles, as port status modifications are not
atomic.

To support bundles, ovs-ofctl has a --bundle option that makes the flow mod commands (add-flow,
add-flows, mod-flows, del-flows, and replace-flows) use an OpenFlow 1.4 bundle to operate the mod-
ifications as a single atomic transaction. If any of the flow mods in a transaction fail, none of them are executed. All
flow mods in a bundle appear to datapath lookups simultaneously.

Furthermore, ovs-ofctl add-flow and add-flows commands now accept arbitrary flow mods as an input by allow-
ing the flow specification to start with an explicit add, modify, modify_strict, delete, or delete_strict
keyword. A missing keyword is treated as add, so this is fully backwards compatible. With the new --bundle
option all the flow mods are executed as a single atomic transaction using an OpenFlow 1.4 bundle. Without the
--bundle option the flow mods are executed in order up to the first failing flow_mod, and in case of an error the
earlier successful flow_mod calls are not rolled back.

OFPT_PACKET_IN

The OpenFlow 1.1 specification for OFPT_PACKET_IN is confusing. The definition in OF1.1 openflow.h is[*]:

/* Packet received on port (datapath -> controller). */
struct ofp_packet_in {

struct ofp_header header;
uint32_t buffer_id; /* ID assigned by datapath. */
uint32_t in_port; /* Port on which frame was received. */
uint32_t in_phy_port; /* Physical Port on which frame was received. */
uint16_t total_len; /* Full length of frame. */
uint8_t reason; /* Reason packet is being sent (one of OFPR_*) */
uint8_t table_id; /* ID of the table that was looked up */
uint8_t data[0]; /* Ethernet frame, halfway through 32-bit word,

so the IP header is 32-bit aligned. The
amount of data is inferred from the length
field in the header. Because of padding,
offsetof(struct ofp_packet_in, data) ==
sizeof(struct ofp_packet_in) - 2. */

};
OFP_ASSERT(sizeof(struct ofp_packet_in) == 24);

The confusing part is the comment on the data[]member. This comment is a leftover from OF1.0 openflow.h, in
which the comment was correct: sizeof(struct ofp_packet_in) is 20 in OF1.0 and ffsetof(struct
ofp_packet_in, data) is 18. When OF1.1 was written, the structure members were changed but the com-
ment was carelessly not updated, and the comment became wrong: sizeof(struct ofp_packet_in) and
offsetof(struct ofp_packet_in, data) are both 24 in OF1.1.
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That leaves the question of how to implement ofp_packet_in in OF1.1. The OpenFlow reference implementation
for OF1.1 does not include any padding, that is, the first byte of the encapsulated frame immediately follows the
table_id member without a gap. Open vSwitch therefore implements it the same way for compatibility.

For an earlier discussion, please see the thread archived at: https://mailman.stanford.edu/pipermail/openflow-discuss/
2011-August/002604.html

[*] The quoted definition is directly from OF1.1. Definitions used inside OVS omit the 8-byte ofp_header mem-
bers, so the sizes in this discussion are 8 bytes larger than those declared in OVS header files.

VLAN Matching

The 802.1Q VLAN header causes more trouble than any other 4 bytes in networking. More specifically, three versions
of OpenFlow and Open vSwitch have among them four different ways to match the contents and presence of the
VLAN header. The following table describes how each version works.

Match NXM OF1.0 OF1.1 OF1.2
[1] 0000/0000 ????/1,??/? ????/1,??/? 0000/0000,--
[2] 0000/ffff ffff/0,??/? ffff/0,??/? 0000/ffff,--
[3] 1xxx/1fff 0xxx/0,??/1 0xxx/0,??/1 1xxx/ffff,--
[4] z000/f000 ????/1,0y/0 fffe/0,0y/0 1000/1000,0y
[5] zxxx/ffff 0xxx/0,0y/0 0xxx/0,0y/0 1xxx/ffff,0y
[6] 0000/0fff <none> <none> <none>
[7] 0000/f000 <none> <none> <none>
[8] 0000/efff <none> <none> <none>
[9] 1001/1001 <none> <none> 1001/1001,--
[10] 3000/3000 <none> <none> <none>
[11] 1000/1000 <none> fffe/0,??/1 1000/1000,--

where:

Match: See the list below.

NXM: xxxx/yyyy means NXM_OF_VLAN_TCI_W with value xxxx and mask yyyy. A mask of 0000 is equiv-
alent to omitting NXM_OF_VLAN_TCI(_W), a mask of ffff is equivalent to NXM_OF_VLAN_TCI.

OF1.0, OF1.1: wwww/x,yy/z means dl_vlan wwww, OFPFW_DL_VLAN x, dl_vlan_pcp yy, and
OFPFW_DL_VLAN_PCP z. If OFPFW_DL_VLAN or OFPFW_DL_VLAN_PCP is 1, the corresponding field
value is wildcarded, otherwise it is matched. ? means that the given bits are ignored (their conventional values
are 0000/x,00/0 in OF1.0, 0000/x,00/1 in OF1.1; x is never ignored). <none> means that the given
match is not supported.

OF1.2: xxxx/yyyy,zz means OXM_OF_VLAN_VID_W with value xxxx and mask yyyy, and
OXM_OF_VLAN_PCP (which is not maskable) with value zz. A mask of 0000 is equivalent to omit-
ting OXM_OF_VLAN_VID(_W), a mask of ffff is equivalent to OXM_OF_VLAN_VID. -- means that
OXM_OF_VLAN_PCP is omitted. <none> means that the given match is not supported.

The matches are:

[1]: Matches any packet, that is, one without an 802.1Q header or with an 802.1Q header with any TCI value.

[2] Matches only packets without an 802.1Q header.

NXM: Any match with vlan_tci == 0 and (vlan_tci_mask & 0x1000) != 0 is equivalent to the
one listed in the table.

OF1.0: The spec doesn’t define behavior if dl_vlan is set to 0xffff and OFPFW_DL_VLAN_PCP is not
set.
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OF1.1: The spec says explicitly to ignore dl_vlan_pcp when dl_vlan is set to 0xffff.

OF1.2: The spec doesn’t say what should happen if vlan_vid == 0 and (vlan_vid_mask &
0x1000) != 0 but vlan_vid_mask != 0x1000, but it would be straightforward to also interpret
as [2].

[3] Matches only packets that have an 802.1Q header with VID xxx (and any PCP).

[4] Matches only packets that have an 802.1Q header with PCP y (and any VID).

NXM: z is (y << 1) | 1.

OF1.0: The spec isn’t very clear, but OVS implements it this way.

OF1.2: Presumably other masks such that (vlan_vid_mask & 0x1fff) == 0x1000would also work,
but the spec doesn’t define their behavior.

[5] Matches only packets that have an 802.1Q header with VID xxx and PCP y.

NXM: z is ((y << 1) | 1).

OF1.2: Presumably other masks such that (vlan_vid_mask & 0x1fff) == 0x1fff
would also work.

[6] Matches packets with no 802.1Q header or with an 802.1Q header with a VID of 0. Only possible with NXM.

[7] Matches packets with no 802.1Q header or with an 802.1Q header with a PCP of 0. Only possible with NXM.

[8] Matches packets with no 802.1Q header or with an 802.1Q header with both VID and PCP of 0. Only possible
with NXM.

[9] Matches only packets that have an 802.1Q header with an odd-numbered VID (and any PCP). Only possible
with NXM and OF1.2. (This is just an example; one can match on any desired VID bit pattern.)

[10] Matches only packets that have an 802.1Q header with an odd-numbered PCP (and any VID). Only possible
with NXM. (This is just an example; one can match on any desired VID bit pattern.)

[11] Matches any packet with an 802.1Q header, regardless of VID or PCP.

Additional notes:

OF1.2: The top three bits of OXM_OF_VLAN_VID are fixed to zero, so bits 13, 14, and 15 in the masks listed in the
table may be set to arbitrary values, as long as the corresponding value bits are also zero. The suggested ffff
mask for [2], [3], and [5] allows a shorter OXM representation (the mask is omitted) than the minimal 1fff
mask.

Flow Cookies

OpenFlow 1.0 and later versions have the concept of a “flow cookie”, which is a 64-bit integer value attached to each
flow. The treatment of the flow cookie has varied greatly across OpenFlow versions, however.

In OpenFlow 1.0:

• OFPFC_ADD set the cookie in the flow that it added.

• OFPFC_MODIFY and OFPFC_MODIFY_STRICT updated the cookie for the flow or flows that it modified.

• OFPST_FLOW messages included the flow cookie.

• OFPT_FLOW_REMOVED messages reported the cookie of the flow that was removed.

OpenFlow 1.1 made the following changes:
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• Flow mod operations OFPFC_MODIFY, OFPFC_MODIFY_STRICT, OFPFC_DELETE, and
OFPFC_DELETE_STRICT, plus flow stats requests and aggregate stats requests, gained the ability to
match on flow cookies with an arbitrary mask.

• OFPFC_MODIFY and OFPFC_MODIFY_STRICT were changed to add a new flow, in the case of no match,
only if the flow table modification operation did not match on the cookie field. (In OpenFlow 1.0, modify
operations always added a new flow when there was no match.)

• OFPFC_MODIFY and OFPFC_MODIFY_STRICT no longer updated flow cookies.

OpenFlow 1.2 made the following changes:

• OFPC_MODIFY and OFPFC_MODIFY_STRICT were changed to never add a new flow, regardless of whether
the flow cookie was used for matching.

Open vSwitch support for OpenFlow 1.0 implements the OpenFlow 1.0 behavior with the following extensions:

• An NXM extension field NXM_NX_COOKIE(_W) allows the NXM versions of OFPFC_MODIFY,
OFPFC_MODIFY_STRICT, OFPFC_DELETE, and OFPFC_DELETE_STRICT flow_mod calls, plus flow
stats requests and aggregate stats requests, to match on flow cookies with arbitrary masks. This is much like the
equivalent OpenFlow 1.1 feature.

• Like OpenFlow 1.1, OFPC_MODIFY and OFPFC_MODIFY_STRICT add a new flow if there is no match and
the mask is zero (or not given).

• The cookie field in OFPT_FLOW_MOD and NXT_FLOW_MOD messages is used as the cookie
value for OFPFC_ADD commands, as described in OpenFlow 1.0. For OFPFC_MODIFY and
OFPFC_MODIFY_STRICT commands, the cookie field is used as a new cookie for flows that match un-
less it is UINT64_MAX, in which case the flow’s cookie is not updated.

• NXT_PACKET_IN (the Nicira extended version of OFPT_PACKET_IN) reports the cookie of the rule that
generated the packet, or all-1-bits if no rule generated the packet. (Older versions of OVS used all-0-bits instead
of all-1-bits.)

The following table shows the handling of different protocols when receiving OFPFC_MODIFY and
OFPFC_MODIFY_STRICT messages. A mask of 0 indicates either an explicit mask of zero or an implicit one
by not specifying the NXM_NX_COOKIE(_W) field.

OpenFlow 1.0 no yes (add on miss) (add on miss)
OpenFlow 1.1 yes no no yes
OpenFlow 1.2 yes no no no
NXM yes yes* no yes

* Updates the flow’s cookie unless the cookie field is UINT64_MAX.

Multiple Table Support

OpenFlow 1.0 has only rudimentary support for multiple flow tables. Notably, OpenFlow 1.0 does not allow the
controller to specify the flow table to which a flow is to be added. Open vSwitch adds an extension for this purpose,
which is enabled on a per-OpenFlow connection basis using the NXT_FLOW_MOD_TABLE_ID message. When the
extension is enabled, the upper 8 bits of the commandmember in an OFPT_FLOW_MOD or NXT_FLOW_MODmessage
designates the table to which a flow is to be added.

The Open vSwitch software switch implementation offers 255 flow tables. On packet ingress, only the first flow table
(table 0) is searched, and the contents of the remaining tables are not considered in any way. Tables other than table 0
only come into play when an NXAST_RESUBMIT_TABLE action specifies another table to search.

Tables 128 and above are reserved for use by the switch itself. Controllers should use only tables 0 through 127.
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OFPTC_* Table Configuration

This section covers the history of the OFPTC_* table configuration bits across OpenFlow versions.

OpenFlow 1.0 flow tables had fixed configurations.

OpenFlow 1.1 enabled controllers to configure behavior upon flow table miss and added the OFPTC_MISS_* con-
stants for that purpose. OFPTC_* did not control anything else but it was nevertheless conceptualized as a set of
bit-fields instead of an enum. OF1.1 added the OFPT_TABLE_MOD message to set OFPTC_MISS_* for a flow table
and added the config field to the OFPST_TABLE reply to report the current setting.

OpenFlow 1.2 did not change anything in this regard.

OpenFlow 1.3 switched to another means to changing flow table miss behavior and deprecated OFPTC_MISS_*with-
out adding any more OFPTC_* constants. This meant that OFPT_TABLE_MOD now had no purpose at all, but OF1.3
kept it around “for backward compatibility with older and newer versions of the specification.” At the same time,
OF1.3 introduced a new message OFPMP_TABLE_FEATURES that included a field config documented as report-
ing the OFPTC_* values set with OFPT_TABLE_MOD; of course this served no real purpose because no OFPTC_*
values are defined. OF1.3 did remove the OFPTC_* field from OFPMP_TABLE (previously named OFPST_TABLE).

OpenFlow 1.4 defined two new OFPTC_* constants, OFPTC_EVICTION and OFPTC_VACANCY_EVENTS, us-
ing bits that did not overlap with OFPTC_MISS_* even though those bits had not been defined since OF1.2.
OFPT_TABLE_MOD still controlled these settings. The field for OFPTC_* values in OFPMP_TABLE_FEATURES
was renamed from config to capabilities and documented as reporting the flags that are supported in a
OFPT_TABLE_MOD message. The OFPMP_TABLE_DESC message newly added in OF1.4 reported the OFPTC_*
setting.

OpenFlow 1.5 did not change anything in this regard.

Table 7: Revisions
Open-
Flow

OFPTC_* flags TABLE_MOD Statis-
tics

TABLE_FEATURES TABLE_DESC

OF1.0 none no (*)(+) no (*) nothing (*)(+) no (*)(+)
OF1.1/1.2 MISS_* yes yes nothing (+) no (+)
OF1.3 none yes (*) no (*) config (*) no (*)(+)
OF1.4/1.5 EVICTION/VACANCY_EVENTS yes no capabilities yes

where:

OpenFlow: The OpenFlow version(s).

OFPTC_* flags: The OFPTC_* flags defined in those versions.

TABLE_MOD: Whether OFPT_TABLE_MOD can modify OFPTC_* flags.

Statistics: Whether OFPST_TABLE/OFPMP_TABLE reports the OFPTC_* flags.

TABLE_FEATURES: What OFPMP_TABLE_FEATURES reports (if it exists): either the current configuration or the
switch’s capabilities.

TABLE_DESC: Whether OFPMP_TABLE_DESC reports the current configuration.

(*): Nothing to report/change anyway.

(+): No such message.
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IPv6

Open vSwitch supports stateless handling of IPv6 packets. Flows can be written to support matching TCP, UDP, and
ICMPv6 headers within an IPv6 packet. Deeper matching of some Neighbor Discovery messages is also supported.

IPv6 was not designed to interact well with middle-boxes. This, combined with Open vSwitch’s stateless nature, have
affected the processing of IPv6 traffic, which is detailed below.

Extension Headers

The base IPv6 header is incredibly simple with the intention of only containing information relevant for routing
packets between two endpoints. IPv6 relies heavily on the use of extension headers to provide any other functionality.
Unfortunately, the extension headers were designed in such a way that it is impossible to move to the next header
(including the layer-4 payload) unless the current header is understood.

Open vSwitch will process the following extension headers and continue to the next header:

• Fragment (see the next section)

• AH (Authentication Header)

• Hop-by-Hop Options

• Routing

• Destination Options

When a header is encountered that is not in that list, it is considered “terminal”. A terminal header’s IPv6 protocol
value is stored in nw_proto for matching purposes. If a terminal header is TCP, UDP, or ICMPv6, the packet will
be further processed in an attempt to extract layer-4 information.

Fragments

IPv6 requires that every link in the internet have an MTU of 1280 octets or greater (RFC 2460). As such, a terminal
header (as described above in “Extension Headers”) in the first fragment should generally be reachable. In this case,
the terminal header’s IPv6 protocol type is stored in the nw_proto field for matching purposes. If a terminal header
cannot be found in the first fragment (one with a fragment offset of zero), the nw_proto field is set to 0. Subsequent
fragments (those with a non-zero fragment offset) have the nw_proto field set to the IPv6 protocol type for fragments
(44).

Jumbograms

An IPv6 jumbogram (RFC 2675) is a packet containing a payload longer than 65,535 octets. A jumbogram is only
relevant in subnets with a link MTU greater than 65,575 octets, and are not required to be supported on nodes that do
not connect to link with such large MTUs. Currently, Open vSwitch doesn’t process jumbograms.

In-Band Control

Motivation

An OpenFlow switch must establish and maintain a TCP network connection to its controller. There are two basic
ways to categorize the network that this connection traverses: either it is completely separate from the one that the
switch is otherwise controlling, or its path may overlap the network that the switch controls. We call the former case
“out-of-band control”, the latter case “in-band control”.
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Out-of-band control has the following benefits:

• Simplicity: Out-of-band control slightly simplifies the switch implementation.

• Reliability: Excessive switch traffic volume cannot interfere with control traffic.

• Integrity: Machines not on the control network cannot impersonate a switch or a controller.

• Confidentiality: Machines not on the control network cannot snoop on control traffic.

In-band control, on the other hand, has the following advantages:

• No dedicated port: There is no need to dedicate a physical switch port to control, which is important on switches
that have few ports (e.g. wireless routers, low-end embedded platforms).

• No dedicated network: There is no need to build and maintain a separate control network. This is important in
many environments because it reduces proliferation of switches and wiring.

Open vSwitch supports both out-of-band and in-band control. This section describes the principles behind in-band
control. See the description of the Controller table in ovs-vswitchd.conf.db(5) to configure OVS for in-band control.

Principles

The fundamental principle of in-band control is that an OpenFlow switch must recognize and switch control traffic
without involving the OpenFlow controller. All the details of implementing in-band control are special cases of this
principle.

The rationale for this principle is simple. If the switch does not handle in-band control traffic itself, then it will be
caught in a contradiction: it must contact the controller, but it cannot, because only the controller can set up the flows
that are needed to contact the controller.

The following points describe important special cases of this principle.

• In-band control must be implemented regardless of whether the switch is connected.

It is tempting to implement the in-band control rules only when the switch is not connected to the controller,
using the reasoning that the controller should have complete control once it has established a connection with
the switch.

This does not work in practice. Consider the case where the switch is connected to the controller. Occasionally
it can happen that the controller forgets or otherwise needs to obtain the MAC address of the switch. To do so,
the controller sends a broadcast ARP request. A switch that implements the in-band control rules only when it is
disconnected will then send an OFPT_PACKET_IN message up to the controller. The controller will be unable
to respond, because it does not know the MAC address of the switch. This is a deadlock situation that can only
be resolved by the switch noticing that its connection to the controller has hung and reconnecting.

• In-band control must override flows set up by the controller.

It is reasonable to assume that flows set up by the OpenFlow controller should take precedence over in-band
control, on the basis that the controller should be in charge of the switch.

Again, this does not work in practice. Reasonable controller implementations may set up a “last resort” fallback
rule that wildcards every field and, e.g., sends it up to the controller or discards it. If a controller does that, then
it will isolate itself from the switch.

• The switch must recognize all control traffic.

The fundamental principle of in-band control states, in part, that a switch must recognize control traffic without
involving the OpenFlow controller. More specifically, the switch must recognize all control traffic. “False
negatives”, that is, packets that constitute control traffic but that the switch does not recognize as control traffic,
lead to control traffic storms.
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Consider an OpenFlow switch that only recognizes control packets sent to or from that switch. Now suppose
that two switches of this type, named A and B, are connected to ports on an Ethernet hub (not a switch) and that
an OpenFlow controller is connected to a third hub port. In this setup, control traffic sent by switch A will be
seen by switch B, which will send it to the controller as part of an OFPT_PACKET_IN message. Switch A will
then see the OFPT_PACKET_IN message’s packet, re-encapsulate it in another OFPT_PACKET_IN, and send
it to the controller. Switch B will then see that OFPT_PACKET_IN, and so on in an infinite loop.

Incidentally, the consequences of “false positives”, where packets that are not control traffic are nevertheless
recognized as control traffic, are much less severe. The controller will not be able to control their behavior, but
the network will remain in working order. False positives do constitute a security problem.

• The switch should use echo-requests to detect disconnection.

TCP will notice that a connection has hung, but this can take a considerable amount of time. For example, with
default settings the Linux kernel TCP implementation will retransmit for between 13 and 30 minutes, depend-
ing on the connection’s retransmission timeout, according to kernel documentation. This is far too long for a
switch to be disconnected, so an OpenFlow switch should implement its own connection timeout. OpenFlow
OFPT_ECHO_REQUEST messages are the best way to do this, since they test the OpenFlow connection itself.

Implementation

This section describes how Open vSwitch implements in-band control. Correctly implementing in-band control has
proven difficult due to its many subtleties, and has thus gone through many iterations. Please read through and
understand the reasoning behind the chosen rules before making modifications.

Open vSwitch implements in-band control as “hidden” flows, that is, flows that are not visible through OpenFlow,
and at a higher priority than wildcarded flows can be set up through OpenFlow. This is done so that the OpenFlow
controller cannot interfere with them and possibly break connectivity with its switches. It is possible to see all flows,
including in-band ones, with the ovs-appctl “bridge/dump-flows” command.

The Open vSwitch implementation of in-band control can hide traffic to arbitrary “remotes”, where each remote
is one TCP port on one IP address. Currently the remotes are automatically configured as the in-band OpenFlow
controllers plus the OVSDB managers, if any. (The latter is a requirement because OVSDB managers are responsible
for configuring OpenFlow controllers, so if the manager cannot be reached then OpenFlow cannot be reconfigured.)

The following rules (with the OFPP_NORMAL action) are set up on any bridge that has any remotes:

(a) DHCP requests sent from the local port.

(b) ARP replies to the local port’s MAC address.

(c) ARP requests from the local port’s MAC address.

In-band also sets up the following rules for each unique next-hop MAC address for the remotes’ IPs (the “next hop” is
either the remote itself, if it is on a local subnet, or the gateway to reach the remote):

(d) ARP replies to the next hop’s MAC address.

(e) ARP requests from the next hop’s MAC address.

In-band also sets up the following rules for each unique remote IP address:

(f) ARP replies containing the remote’s IP address as a target.

(g) ARP requests containing the remote’s IP address as a source.

In-band also sets up the following rules for each unique remote (IP,port) pair:

(h) TCP traffic to the remote’s IP and port.

(i) TCP traffic from the remote’s IP and port.
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The goal of these rules is to be as narrow as possible to allow a switch to join a network and be able to communicate
with the remotes. As mentioned earlier, these rules have higher priority than the controller’s rules, so if they are too
broad, they may prevent the controller from implementing its policy. As such, in-band actively monitors some aspects
of flow and packet processing so that the rules can be made more precise.

In-band control monitors attempts to add flows into the datapath that could interfere with its duties. The datapath only
allows exact match entries, so in-band control is able to be very precise about the flows it prevents. Flows that miss
in the datapath are sent to userspace to be processed, so preventing these flows from being cached in the “fast path”
does not affect correctness. The only type of flow that is currently prevented is one that would prevent DHCP replies
from being seen by the local port. For example, a rule that forwarded all DHCP traffic to the controller would not be
allowed, but one that forwarded to all ports (including the local port) would.

As mentioned earlier, packets that miss in the datapath are sent to the userspace for processing. The userspace has
its own flow table, the “classifier”, so in-band checks whether any special processing is needed before the classifier is
consulted. If a packet is a DHCP response to a request from the local port, the packet is forwarded to the local port,
regardless of the flow table. Note that this requires L7 processing of DHCP replies to determine whether the ‘chaddr’
field matches the MAC address of the local port.

It is interesting to note that for an L3-based in-band control mechanism, the majority of rules are devoted to ARP
traffic. At first glance, some of these rules appear redundant. However, each serves an important role. First, in order to
determine the MAC address of the remote side (controller or gateway) for other ARP rules, we must allow ARP traffic
for our local port with rules (b) and (c). If we are between a switch and its connection to the remote, we have to allow
the other switch’s ARP traffic to through. This is done with rules (d) and (e), since we do not know the addresses of
the other switches a priori, but do know the remote’s or gateway’s. Finally, if the remote is running in a local guest
VM that is not reached through the local port, the switch that is connected to the VM must allow ARP traffic based on
the remote’s IP address, since it will not know the MAC address of the local port that is sending the traffic or the MAC
address of the remote in the guest VM.

With a few notable exceptions below, in-band should work in most network setups. The following are considered
“supported” in the current implementation:

• Locally Connected. The switch and remote are on the same subnet. This uses rules (a), (b), (c), (h), and (i).

• Reached through Gateway. The switch and remote are on different subnets and must go through a gateway. This
uses rules (a), (b), (c), (h), and (i).

• Between Switch and Remote. This switch is between another switch and the remote, and we want to allow the
other switch’s traffic through. This uses rules (d), (e), (h), and (i). It uses (b) and (c) indirectly in order to know
the MAC address for rules (d) and (e). Note that DHCP for the other switch will not work unless an OpenFlow
controller explicitly lets this switch pass the traffic.

• Between Switch and Gateway. This switch is between another switch and the gateway, and we want to allow
the other switch’s traffic through. This uses the same rules and logic as the “Between Switch and Remote”
configuration described earlier.

• Remote on Local VM. The remote is a guest VM on the system running in-band control. This uses rules (a),
(b), (c), (h), and (i).

• Remote on Local VM with Different Networks. The remote is a guest VM on the system running in-band
control, but the local port is not used to connect to the remote. For example, an IP address is configured on
eth0 of the switch. The remote’s VM is connected through eth1 of the switch, but an IP address has not been
configured for that port on the switch. As such, the switch will use eth0 to connect to the remote, and eth1’s
rules about the local port will not work. In the example, the switch attached to eth0 would use rules (a), (b), (c),
(h), and (i) on eth0. The switch attached to eth1 would use rules (f), (g), (h), and (i).

The following are explicitly not supported by in-band control:

• Specify Remote by Name. Currently, the remote must be identified by IP address. A naive approach would be
to permit all DNS traffic. Unfortunately, this would prevent the controller from defining any policy over DNS.
Since switches that are located behind us need to connect to the remote, in-band cannot simply add a rule that
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allows DNS traffic from the local port. The “correct” way to support this is to parse DNS requests to allow all
traffic related to a request for the remote’s name through. Due to the potential security problems and amount of
processing, we decided to hold off for the time-being.

• Differing Remotes for Switches. All switches must know the L3 addresses for all the remotes that other switches
may use, since rules need to be set up to allow traffic related to those remotes through. See rules (f), (g), (h),
and (i).

• Differing Routes for Switches. In order for the switch to allow other switches to connect to a remote through a
gateway, it allows the gateway’s traffic through with rules (d) and (e). If the routes to the remote differ for the
two switches, we will not know the MAC address of the alternate gateway.

Action Reproduction

It seems likely that many controllers, at least at startup, use the OpenFlow “flow statistics” request to obtain existing
flows, then compare the flows’ actions against the actions that they expect to find. Before version 1.8.0, Open vSwitch
always returned exact, byte-for-byte copies of the actions that had been added to the flow table. The current version
of Open vSwitch does not always do this in some exceptional cases. This section lists the exceptions that controller
authors must keep in mind if they compare actual actions against desired actions in a bytewise fashion:

• Open vSwitch zeros padding bytes in action structures, regardless of their values when the flows were added.

• Open vSwitch “normalizes” the instructions in OpenFlow 1.1 (and later) in the following way:

– OVS sorts the instructions into the following order: Apply-Actions, Clear-Actions, Write-Actions, Write-
Metadata, Goto-Table.

– OVS drops Apply-Actions instructions that have empty action lists.

– OVS drops Write-Actions instructions that have empty action sets.

Please report other discrepancies, if you notice any, so that we can fix or document them.

Suggestions

Suggestions to improve Open vSwitch are welcome at discuss@openvswitch.org.

4.1.2 Open vSwitch Datapath Development Guide

The Open vSwitch kernel module allows flexible userspace control over flow-level packet processing on selected
network devices. It can be used to implement a plain Ethernet switch, network device bonding, VLAN processing,
network access control, flow-based network control, and so on.

The kernel module implements multiple “datapaths” (analogous to bridges), each of which can have multiple “vports”
(analogous to ports within a bridge). Each datapath also has associated with it a “flow table” that userspace populates
with “flows” that map from keys based on packet headers and metadata to sets of actions. The most common action
forwards the packet to another vport; other actions are also implemented.

When a packet arrives on a vport, the kernel module processes it by extracting its flow key and looking it up in the
flow table. If there is a matching flow, it executes the associated actions. If there is no match, it queues the packet to
userspace for processing (as part of its processing, userspace will likely set up a flow to handle further packets of the
same type entirely in-kernel).
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Flow Key Compatibility

Network protocols evolve over time. New protocols become important and existing protocols lose their prominence.
For the Open vSwitch kernel module to remain relevant, it must be possible for newer versions to parse additional
protocols as part of the flow key. It might even be desirable, someday, to drop support for parsing protocols that have
become obsolete. Therefore, the Netlink interface to Open vSwitch is designed to allow carefully written userspace
applications to work with any version of the flow key, past or future.

To support this forward and backward compatibility, whenever the kernel module passes a packet to userspace, it also
passes along the flow key that it parsed from the packet. Userspace then extracts its own notion of a flow key from the
packet and compares it against the kernel-provided version:

• If userspace’s notion of the flow key for the packet matches the kernel’s, then nothing special is necessary.

• If the kernel’s flow key includes more fields than the userspace version of the flow key, for example if the kernel
decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then
again nothing special is necessary. Userspace can still set up a flow in the usual way, as long as it uses the
kernel-provided flow key to do it.

• If the userspace flow key includes more fields than the kernel’s, for example if userspace decoded an IPv6 header
but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up
a flow in the kernel. This case is bad for performance because every packet that the kernel considers part of the
flow must go to userspace, but the forwarding behavior is correct. (If userspace can determine that the values of
the extra fields would not affect forwarding behavior, then it could set up a flow anyway.)

How flow keys evolve over time is important to making this work, so the following sections go into detail.

Flow Key Format

A flow key is passed over a Netlink socket as a sequence of Netlink attributes. Some attributes represent packet
metadata, defined as any information about a packet that cannot be extracted from the packet itself, e.g. the vport on
which the packet was received. Most attributes, however, are extracted from headers within the packet, e.g. source
and destination addresses from Ethernet, IP, or TCP headers.

The <linux/openvswitch.h> header file defines the exact format of the flow key attributes. For informal ex-
planatory purposes here, we write them as comma-separated strings, with parentheses indicating arguments and nest-
ing. For example, the following could represent a flow key corresponding to a TCP packet that arrived on vport
1:

in_port(1), eth(src=e0:91:f5:21:d0:b2, dst=00:02:e3:0f:80:a4),
eth_type(0x0800), ipv4(src=172.16.0.20, dst=172.18.0.52, proto=6, tos=0,
frag=no), tcp(src=49163, dst=80)

Often we ellipsize arguments not important to the discussion, e.g.:

in_port(1), eth(...), eth_type(0x0800), ipv4(...), tcp(...)

Wildcarded Flow Key Format

A wildcarded flow is described with two sequences of Netlink attributes passed over the Netlink socket. A flow key,
exactly as described above, and an optional corresponding flow mask.

A wildcarded flow can represent a group of exact match flows. Each 1 bit in the mask specifies an exact match with
the corresponding bit in the flow key. A 0 bit specifies a don’t care bit, which will match either a 1 or 0 bit of an
incoming packet. Using a wildcarded flow can improve the flow set up rate by reducing the number of new flows that
need to be processed by the user space program.
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Support for the mask Netlink attribute is optional for both the kernel and user space program. The kernel can ignore
the mask attribute, installing an exact match flow, or reduce the number of don’t care bits in the kernel to less than what
was specified by the user space program. In this case, variations in bits that the kernel does not implement will simply
result in additional flow setups. The kernel module will also work with user space programs that neither support nor
supply flow mask attributes.

Since the kernel may ignore or modify wildcard bits, it can be difficult for the userspace program to know exactly what
matches are installed. There are two possible approaches: reactively install flows as they miss the kernel flow table
(and therefore not attempt to determine wildcard changes at all) or use the kernel’s response messages to determine
the installed wildcards.

When interacting with userspace, the kernel should maintain the match portion of the key exactly as originally installed.
This will provides a handle to identify the flow for all future operations. However, when reporting the mask of an
installed flow, the mask should include any restrictions imposed by the kernel.

The behavior when using overlapping wildcarded flows is undefined. It is the responsibility of the user space program
to ensure that any incoming packet can match at most one flow, wildcarded or not. The current implementation
performs best-effort detection of overlapping wildcarded flows and may reject some but not all of them. However, this
behavior may change in future versions.

Unique Flow Identifiers

An alternative to using the original match portion of a key as the handle for flow identification is a unique flow
identifier, or “UFID”. UFIDs are optional for both the kernel and user space program.

User space programs that support UFID are expected to provide it during flow setup in addition to the flow, then refer
to the flow using the UFID for all future operations. The kernel is not required to index flows by the original flow key
if a UFID is specified.

Basic Rule for Evolving Flow Keys

Some care is needed to really maintain forward and backward compatibility for applications that follow the rules listed
under “Flow key compatibility” above.

The basic rule is obvious:

New network protocol support must only supplement existing flow key attributes. It must not change the
meaning of already defined flow key attributes.

This rule does have less-obvious consequences so it is worth working through a few examples. Suppose, for exam-
ple, that the kernel module did not already implement VLAN parsing. Instead, it just interpreted the 802.1Q TPID
(0x8100) as the Ethertype then stopped parsing the packet. The flow key for any packet with an 802.1Q header would
look essentially like this, ignoring metadata:

eth(...), eth_type(0x8100)

Naively, to add VLAN support, it makes sense to add a new “vlan” flow key attribute to contain the VLAN tag, then
continue to decode the encapsulated headers beyond the VLAN tag using the existing field definitions. With this
change, a TCP packet in VLAN 10 would have a flow key much like this:

eth(...), vlan(vid=10, pcp=0), eth_type(0x0800), ip(proto=6, ...), tcp(...)

But this change would negatively affect a userspace application that has not been updated to understand the new “vlan”
flow key attribute. The application could, following the flow compatibility rules above, ignore the “vlan” attribute that
it does not understand and therefore assume that the flow contained IP packets. This is a bad assumption (the flow
only contains IP packets if one parses and skips over the 802.1Q header) and it could cause the application’s behavior
to change across kernel versions even though it follows the compatibility rules.
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The solution is to use a set of nested attributes. This is, for example, why 802.1Q support uses nested attributes. A
TCP packet in VLAN 10 is actually expressed as:

eth(...), eth_type(0x8100), vlan(vid=10, pcp=0), encap(eth_type(0x0800),
ip(proto=6, ...), tcp(...)))

Notice how the eth_type, ip, and tcp flow key attributes are nested inside the encap attribute. Thus, an appli-
cation that does not understand the vlan key will not see either of those attributes and therefore will not misinterpret
them. (Also, the outer eth_type is still 0x8100, not changed to 0x0800)

Handling Malformed Packets

Don’t drop packets in the kernel for malformed protocol headers, bad checksums, etc. This would prevent userspace
from implementing a simple Ethernet switch that forwards every packet.

Instead, in such a case, include an attribute with “empty” content. It doesn’t matter if the empty content could be valid
protocol values, as long as those values are rarely seen in practice, because userspace can always forward all packets
with those values to userspace and handle them individually.

For example, consider a packet that contains an IP header that indicates protocol 6 for TCP, but which is truncated just
after the IP header, so that the TCP header is missing. The flow key for this packet would include a tcp attribute with
all-zero src and dst, like this:

eth(...), eth_type(0x0800), ip(proto=6, ...), tcp(src=0, dst=0)

As another example, consider a packet with an Ethernet type of 0x8100, indicating that a VLAN TCI should follow,
but which is truncated just after the Ethernet type. The flow key for this packet would include an all-zero-bits vlan and
an empty encap attribute, like this:

eth(...), eth_type(0x8100), vlan(0), encap()

Unlike a TCP packet with source and destination ports 0, an all-zero-bits VLAN TCI is not that rare, so the CFI bit
(aka VLAN_TAG_PRESENT inside the kernel) is ordinarily set in a vlan attribute expressly to allow this situation to
be distinguished. Thus, the flow key in this second example unambiguously indicates a missing or malformed VLAN
TCI.

Other Rules

The other rules for flow keys are much less subtle:

• Duplicate attributes are not allowed at a given nesting level.

• Ordering of attributes is not significant.

• When the kernel sends a given flow key to userspace, it always composes it the same way. This allows userspace
to hash and compare entire flow keys that it may not be able to fully interpret.

Coding Rules

Implement the headers and codes for compatibility with older kernel in linux/compat/ directory. All public
functions should be exported using EXPORT_SYMBOL macro. Public function replacing the same-named kernel
function should be prefixed with rpl_. Otherwise, the function should be prefixed with ovs_. For special case
when it is not possible to follow this rule (e.g., the pskb_expand_head() function), the function name must
be added to linux/compat/build-aux/export-check-whitelist, otherwise, the compilation check
check-export-symbol will fail.
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4.1.3 Fuzzing

All about fuzzing in Open vSwitch.

What is Fuzzing?

Usually, software teams do functional testing (which is great) but not security testing of their code. For example:

func_add(int x, int y) { return x+y; }

may have a unit test like so:

ASSERT((func_add(4,5)==9))

However, corner cases are usually not tested so that x=INT_MAX; y=1 demonstrates a problem in the implementation.

Fuzz testing is routinely used to probabilistically generate such corner cases and feed them to program APIs to test
their behavior.

OVS Fuzzing Infrastructure

Open vSwitch is enrolled in the oss-fuzz program. oss-fuzz is a free continuous fuzzing service and infrastructure
offered by Google. An enrolled project is continually fuzzed and bug reports are sent to maintainers as and when they
are generated.

The technical requirements to enrol OvS in oss-fuzz program are:

• Dockerfile (hosted in Google’s ossfuzz GitHub repo)

• Bash build script (hosted in Google’s ossfuzz GitHub repo)

Each of these requirements is explained in the following paragraphs.

Dockerfile

Dockerfile defines the box in which OvS will be built by oss-fuzz builder bots. This file must be self sufficient in that
it must define a build environment in which OvS can be built from source code.

The build environment comprises

• Linux box provided by Google (Ubuntu)

• Packages required to build OvS (e.g., libssl-dev python etc.)

• Source code of OvS (fetched by oss-fuzz builder bots from OvS’ GitHub mirror on a daily basis)

• Build script written in Bash

The Dockerfile definition for OvS is located in the projects/openvswitch/Dockerfile sub-directory of Google’s oss-fuzz
repo.

Build script

The build script defines steps required to compile OvS from source code. The (Linux) box used by oss-fuzz builder
bots (defined by Dockerfile) is different from the box in which fuzzing actually happens. It follows that the build script
must ensure that fuzzing binaries are linked statically so that no assumption is made about packages available in the
fuzzing box.
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OvS contains a make target called oss-fuzz-targets for compiling and linking OvS fuzzer binaries. The line of bash
script responsible for building statically linked OvS fuzzing binaries is the following:

./boot.sh && ./configure && make -j$(nproc) && make oss-fuzz-targets

The oss-fuzz build environment assumes that OvS build system respects compiler/linker flags defined via standard
bash environment variables called CFLAGS, CXXFLAGS etc. The oss-fuzz builder bot defines these flags so that OvS
fuzzing binaries are correctly instrumented.

oss-fuzz expects all fuzzing binaries, and optionally, configuration and seed inputs to be located in a hard-coded
directory, referenced by the bash variable $OUT, in the root filesystem of the build box.

OvS source repo contains configuration for the oss-fuzz fuzzers in the tests/oss-fuzz/config sub-directory. There are
two types of configuration files:

• <fuzzer_target_name>.options: Defines configuration options for the fuzzer that apply while fuzzing
fuzzer_target_name

• <name>.dict: Defines a dictionary to be used for some fuzzer_target_name

Fuzzer configuration parameters of relevance to OvS are:

• dict: names the dictionary file to be used for fuzzing

• close_fd_mask: defines a file descriptor mask that filters console output generated by OvS fuzzing binaries

OVS Fuzzers

OvS fuzzer test harnesses define the libFuzzer fuzz API. In doing so, they define what is to be done with the input
supplied by the fuzzer.

At a minimum, the libfuzzer API is defined as follows:

// input_ is a byte array, size is the length of said byte array
int
LLVMFuzzerTestOneInput(const uint8_t *input, size_t size)
{

// Input processing
process_input(input, size);

// Must always return 0. Non-zero return codes are reserved by libFuzzer.
return 0;

}

In certain scenarios, it may be necessary to constrain the input supplied by the fuzzer. One scenario is when pro-
cess_input accepts a C string. One way to do this would be as follows:

// input_ is a byte array, size is the length of said byte array
int
LLVMFuzzerTestOneInput(const uint8_t *input, size_t size)
{

// Constrain input
// Check if input is null terminated
const char *cstring = (const char*) input;
if (cstring[size - 1] != '\0')

return 0;

// Input processing
process_input(cstring);

(continues on next page)
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(continued from previous page)

// Must always return 0. Non-zero return codes are reserved by libFuzzer.
return 0;

}

OvS fuzzer test harnesses are located in the tests/oss-fuzz sub-directory. At the time of writing, there are a total of six
harnesses:

• flow_extract_target.c

• json_parser_target.c

• miniflow_target.c

• odp_target.c

• ofctl_parse_target.c

• ofp_print_target.c

flow_extract_target

Extracts flow from and parses fuzzer supplied packet payload.

json_parser_target

Parses fuzzer supplied string as JSON, encoding the parsed JSON into a JSON RPC message, and finally decoding the
encoded JSON RPC message back to JSON.

miniflow_target

Extracts flow from fuzzer supplied packet payload, converts flow to a miniflow and performs various miniflow opera-
tions.

odp_target

Parses fuzzer supplied string as an ODP flow, and the same string as an ODP action.

ofctl_parse_target

Treats fuzzer supplied input as a <flow_command> followed by a <flow_mod_string>, invoking the
parse_ofp_flow_mod_str on the pair.

ofp_print_target

Parses fuzzer supplied data as an Open Flow Protocol buffer.
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Security Analysis of OVS Fuzzers

OvS fuzzer harnesses test different components of OvS. This document performs a security analysis of these harnesses.
The intention is to not only tabulate what is currently done but also to help expand on the set of harnesses.

Fuzzer harness Interface Input source
flow_extract_target External Untrusted
json_parser_target OVS DB Trusted
miniflow_target External Untrusted
odp_target North-bound Trusted
ofctl_parse_target Management Trusted
ofp_print_target South/North-bound Trusted

4.1.4 Integration Guide for Centralized Control

This document describes how to integrate Open vSwitch onto a new platform to expose the state of the switch and
attached devices for centralized control. (If you are looking to port the switching components of Open vSwitch to a
new platform, refer to Porting Open vSwitch to New Software or Hardware) The focus of this guide is on hypervisors,
but many of the interfaces are useful for hardware switches, as well. The XenServer integration is the most mature
implementation, so most of the examples are drawn from it.

The externally visible interface to this integration is platform-agnostic. We encourage anyone who integrates Open
vSwitch to use the same interface, because keeping a uniform interface means that controllers require less customiza-
tion for individual platforms (and perhaps no customization at all).

Integration centers around the Open vSwitch database and mostly involves the external_ids columns in several of
the tables. These columns are not interpreted by Open vSwitch itself. Instead, they provide information to a controller
that permits it to associate a database record with a more meaningful entity. In contrast, the other_config column
is used to configure behavior of the switch. The main job of the integrator, then, is to ensure that these values are
correctly populated and maintained.

An integrator sets the columns in the database by talking to the ovsdb-server daemon. A few of the columns can
be set during startup by calling the ovs-ctl tool from inside the startup scripts. The xenserver/etc_init.
d_openvswitch script provides examples of its use, and the ovs-ctl(8) manpage contains complete docu-
mentation. At runtime, ovs-vsctl can be be used to set columns in the database. The script xenserver/
etc_xensource_scripts_vif contains examples of its use, and ovs-vsctl(8) manpage contains complete doc-
umentation.

Python and C bindings to the database are provided if deeper integration with a program are needed. The XenServer
ovs-xapi-sync daemon (xenserver/usr_share_openvswitch_scripts_ovs-xapi-sync) provides an
example of using the Python bindings. More information on the python bindings is available at python/ovs/db/
idl.py. Information on the C bindings is available at lib/ovsdb-idl.h.

The following diagram shows how integration scripts fit into the Open vSwitch architecture:

Diagram

+----------------------------------------+
| Controller Cluster +
+----------------------------------------+

|
|

+----------------------------------------------------------+
| | |
| +--------------+---------------+ |

(continues on next page)
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(continued from previous page)

| | | |
| +-------------------+ +------------------+ |
| | ovsdb-server |-----------| ovs-vswitchd | |
| +-------------------+ +------------------+ |
| | | |
| +---------------------+ | |
| | Integration scripts | | |
| | (ex: ovs-xapi-sync) | | |
| +---------------------+ | |
| | Userspace |
|----------------------------------------------------------|
| | Kernel |
| | |
| +---------------------+ |
| | OVS Kernel Module | |
| +---------------------+ |
+----------------------------------------------------------+

A description of the most relevant fields for integration follows. By setting these values, controllers are able to
understand the network and manage it more dynamically and precisely. For more details about the database and each
individual column, please refer to the ovs-vswitchd.conf.db(5) manpage.

Open_vSwitch table

The Open_vSwitch table describes the switch as a whole. The system_type and system_version columns
identify the platform to the controller. The external_ids:system-id key uniquely identifies the physical host.
In XenServer, the system-id will likely be the same as the UUID returned by xe host-list. This key allows
controllers to distinguish between multiple hypervisors.

Most of this configuration can be done with the ovs-ctl command at startup. For example:

$ ovs-ctl --system-type="XenServer" --system-version="6.0.0-50762p" \
--system-id="${UUID}" "${other_options}" start

Alternatively, the ovs-vsctl command may be used to set a particular value at runtime. For example:

$ ovs-vsctl set open_vswitch . external-ids:system-id='"${UUID}"'

The other_config:enable-statistics key may be set to true to have OVS populate the database with
statistics (e.g., number of CPUs, memory, system load) for the controller’s use.

Bridge table

The Bridge table describes individual bridges within an Open vSwitch instance. The external-ids:bridge-id
key uniquely identifies a particular bridge. In XenServer, this will likely be the same as the UUID returned by xe
network-list for that particular bridge.

For example, to set the identifier for bridge “br0”, the following command can be used:

$ ovs-vsctl set Bridge br0 external-ids:bridge-id='"${UUID}"'

The MAC address of the bridge may be manually configured by setting it with the other_config:hwaddr key.
For example:

136 Chapter 4. Deep Dive



Open vSwitch, Release 2.12.90

$ ovs-vsctl set Bridge br0 other_config:hwaddr="12:34:56:78:90:ab"

Interface table

The Interface table describes an interface under the control of Open vSwitch. The external_ids column contains
keys that are used to provide additional information about the interface:

attached-mac

This field contains the MAC address of the device attached to the interface. On a hypervisor, this is
the MAC address of the interface as seen inside a VM. It does not necessarily correlate to the host-
side MAC address. For example, on XenServer, the MAC address on a VIF in the hypervisor is always
FE:FF:FF:FF:FF:FF, but inside the VM a normal MAC address is seen.

iface-id

This field uniquely identifies the interface. In hypervisors, this allows the controller to follow VM network
interfaces as VMs migrate. A well-chosen identifier should also allow an administrator or a controller to
associate the interface with the corresponding object in the VM management system. For example, the
Open vSwitch integration with XenServer by default uses the XenServer assigned UUID for a VIF record
as the iface-id.

iface-status

In a hypervisor, there are situations where there are multiple interface choices for a single virtual ethernet
interface inside a VM. Valid values are “active” and “inactive”. A complete description is available in the
ovs-vswitchd.conf.db(5) manpage.

vm-id

This field uniquely identifies the VM to which this interface belongs. A single VM may have multiple
interfaces attached to it.

As in the previous tables, the ovs-vsctl command may be used to configure the values. For example, to set the
iface-id on eth0, the following command can be used:

$ ovs-vsctl set Interface eth0 external-ids:iface-id='"${UUID}"'

HA for OVN DB servers using pacemaker

The ovsdb servers can work in either active or backup mode. In backup mode, db server will be connected to an active
server and replicate the active servers contents. At all times, the data can be transacted only from the active server.
When the active server dies for some reason, entire OVN operations will be stalled.

Pacemaker is a cluster resource manager which can manage a defined set of resource across a set of clustered nodes.
Pacemaker manages the resource with the help of the resource agents. One among the resource agent is OCF

OCF is nothing but a shell script which accepts a set of actions and returns an appropriate status code.

With the help of the OCF resource agent ovn/utilities/ovndb-servers.ocf, one can defined a resource for the pacemaker
such that pacemaker will always maintain one running active server at any time.

After creating a pacemaker cluster, use the following commands to create one active and multiple backup servers for
OVN databases:

4.1. OVS 137

http://clusterlabs.org/pacemaker.html
http://www.linux-ha.org/wiki/OCF_Resource_Agents


Open vSwitch, Release 2.12.90

$ pcs resource create ovndb_servers ocf:ovn:ovndb-servers \
master_ip=x.x.x.x \
ovn_ctl=<path of the ovn-ctl script> \
op monitor interval="10s" \
op monitor role=Master interval="15s"

$ pcs resource master ovndb_servers-master ovndb_servers \
meta notify="true"

The master_ip and ovn_ctl are the parameters that will be used by the OCF script. ovn_ctl is optional, if not given,
it assumes a default value of /usr/share/openvswitch/scripts/ovn-ctl. master_ip is the IP address on which the active
database server is expected to be listening, the slave node uses it to connect to the master node. You can add the optional
parameters ‘nb_master_port’, ‘nb_master_protocol’, ‘sb_master_port’, ‘sb_master_protocol’ to set the protocol and
port.

Whenever the active server dies, pacemaker is responsible to promote one of the backup servers to be active. Both
ovn-controller and ovn-northd needs the ip-address at which the active server is listening. With pacemaker changing
the node at which the active server is run, it is not efficient to instruct all the ovn-controllers and the ovn-northd to
listen to the latest active server’s ip-address.

This problem can be solved by two ways:

1. By using a native ocf resource agent ocf:heartbeat:IPaddr2. The IPAddr2 resource agent is just a resource
with an ip-address. When we colocate this resource with the active server, pacemaker will enable the active server to
be connected with a single ip-address all the time. This is the ip-address that needs to be given as the parameter while
creating the ovndb_servers resource.

Use the following command to create the IPAddr2 resource and colocate it with the active server:

$ pcs resource create VirtualIP ocf:heartbeat:IPaddr2 ip=x.x.x.x \
op monitor interval=30s

$ pcs constraint order promote ovndb_servers-master then VirtualIP
$ pcs constraint colocation add VirtualIP with master ovndb_servers-master \

score=INFINITY

2. Using load balancer vip ip as a master_ip. In order to use this feature, one needs to use listen_on_master_ip_only
to no. Current code for load balancer have been tested to work with tcp protocol and needs to be tested/enchanced
for ssl. Using load balancer, standby nodes will not listen on nb and sb db ports so that load balancer will always
communicate to the active node and all the traffic will be sent to active node only. Standby will continue to sync using
LB VIP IP in this case.

Use the following command to create pcs resource using LB VIP IP:

$ pcs resource create ovndb_servers ocf:ovn:ovndb-servers \
master_ip="<load_balance_vip_ip>" \
listen_on_master_ip_only="no" \
ovn_ctl=<path of the ovn-ctl script> \
op monitor interval="10s" \
op monitor role=Master interval="15s"

$ pcs resource master ovndb_servers-master ovndb_servers \
meta notify="true"

4.1.5 Porting Open vSwitch to New Software or Hardware

Open vSwitch (OVS) is intended to be easily ported to new software and hardware platforms. This document describes
the types of changes that are most likely to be necessary in porting OVS to Unix-like platforms. (Porting OVS to other
kinds of platforms is likely to be more difficult.)
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Vocabulary

For historical reasons, different words are used for essentially the same concept in different areas of the Open vSwitch
source tree. Here is a concordance, indexed by the area of the source tree:

datapath/ vport ---
vswitchd/ iface port
ofproto/ port bundle
ofproto/bond.c slave bond
lib/lacp.c slave lacp
lib/netdev.c netdev ---
database Interface Port

Open vSwitch Architectural Overview

The following diagram shows the very high-level architecture of Open vSwitch from a porter’s perspective.

+-------------------+
| ovs-vswitchd |<-->ovsdb-server
+-------------------+
| ofproto |<-->OpenFlow controllers
+--------+-+--------+
| netdev | | ofproto|
+--------+ |provider|
| netdev | +--------+
|provider|
+--------+

Some of the components are generic. Modulo bugs or inadequacies, these components should not need to be modified
as part of a port:

ovs-vswitchd The main Open vSwitch userspace program, in vswitchd/. It reads the desired Open vSwitch configu-
ration from the ovsdb-server program over an IPC channel and passes this configuration down to the “ofproto”
library. It also passes certain status and statistical information from ofproto back into the database.

ofproto The Open vSwitch library, in ofproto/, that implements an OpenFlow switch. It talks to OpenFlow controllers
over the network and to switch hardware or software through an “ofproto provider”, explained further below.

netdev The Open vSwitch library, in lib/netdev.c, that abstracts interacting with network devices, that is, Ethernet
interfaces. The netdev library is a thin layer over “netdev provider” code, explained further below.

The other components may need attention during a port. You will almost certainly have to implement a “netdev
provider”. Depending on the type of port you are doing and the desired performance, you may also have to implement
an “ofproto provider” or a lower-level component called a “dpif” provider.

The following sections talk about these components in more detail.

Writing a netdev Provider

A “netdev provider” implements an operating system and hardware specific interface to “network devices”, e.g. eth0
on Linux. Open vSwitch must be able to open each port on a switch as a netdev, so you will need to implement a
“netdev provider” that works with your switch hardware and software.

struct netdev_class, in lib/netdev-provider.h, defines the interfaces required to implement a netdev.
That structure contains many function pointers, each of which has a comment that is meant to describe its behavior in
detail. If the requirements are unclear, report this as a bug.
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The netdev interface can be divided into a few rough categories:

• Functions required to properly implement OpenFlow features. For example, OpenFlow requires the ability to
report the Ethernet hardware address of a port. These functions must be implemented for minimally correct
operation.

• Functions required to implement optional Open vSwitch features. For example, the Open vSwitch support for
in-band control requires netdev support for inspecting the TCP/IP stack’s ARP table. These functions must be
implemented if the corresponding OVS features are to work, but may be omitted initially.

• Functions needed in some implementations but not in others. For example, most kinds of ports (see below) do
not need functionality to receive packets from a network device.

The existing netdev implementations may serve as useful examples during a port:

• lib/netdev-linux.c implements netdev functionality for Linux network devices, using Linux kernel calls. It may
be a good place to start for full-featured netdev implementations.

• lib/netdev-vport.c provides support for “virtual ports” implemented by the Open vSwitch datapath module for
the Linux kernel. This may serve as a model for minimal netdev implementations.

• lib/netdev-dummy.c is a fake netdev implementation useful only for testing.

Porting Strategies

After a netdev provider has been implemented for a system’s network devices, you may choose among three basic
porting strategies.

The lowest-effort strategy is to use the “userspace switch” implementation built into Open vSwitch. This ought to
work, without writing any more code, as long as the netdev provider that you implemented supports receiving packets.
It yields poor performance, however, because every packet passes through the ovs-vswitchd process. Refer to Open
vSwitch without Kernel Support for instructions on how to configure a userspace switch.

If the userspace switch is not the right choice for your port, then you will have to write more code. You may implement
either an “ofproto provider” or a “dpif provider”. Which you should choose depends on a few different factors:

• Only an ofproto provider can take full advantage of hardware with built-in support for wildcards (e.g. an ACL
table or a TCAM).

• A dpif provider can take advantage of the Open vSwitch built-in implementations of bonding, LACP, 802.1ag,
802.1Q VLANs, and other features. An ofproto provider has to provide its own implementations, if the hardware
can support them at all.

• A dpif provider is usually easier to implement, but most appropriate for software switching. It “explodes”
wildcard rules into exact-match entries (with an optional wildcard mask). This allows fast hash lookups in
software, but makes inefficient use of TCAMs in hardware that support wildcarding.

The following sections describe how to implement each kind of port.

ofproto Providers

An “ofproto provider” is what ofproto uses to directly monitor and control an OpenFlow-capable switch. struct
ofproto_class, in ofproto/ofproto-provider.h, defines the interfaces to implement an ofproto provider
for new hardware or software. That structure contains many function pointers, each of which has a comment that is
meant to describe its behavior in detail. If the requirements are unclear, report this as a bug.

The ofproto provider interface is preliminary. Let us know if it seems unsuitable for your purpose. We will try to
improve it.
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Writing a dpif Provider

Open vSwitch has a built-in ofproto provider named “ofproto-dpif”, which is built on top of a library for manipulating
datapaths, called “dpif”. A “datapath” is a simple flow table, one that is only required to support exact-match flows,
that is, flows without wildcards. When a packet arrives on a network device, the datapath looks for it in this table.
If there is a match, then it performs the associated actions. If there is no match, the datapath passes the packet up to
ofproto-dpif, which maintains the full OpenFlow flow table. If the packet matches in this flow table, then ofproto-dpif
executes its actions and inserts a new entry into the dpif flow table. (Otherwise, ofproto-dpif passes the packet up to
ofproto to send the packet to the OpenFlow controller, if one is configured.)

When calculating the dpif flow, ofproto-dpif generates an exact-match flow that describes the missed packet. It makes
an effort to figure out what fields can be wildcarded based on the switch’s configuration and OpenFlow flow table. The
dpif is free to ignore the suggested wildcards and only support the exact-match entry. However, if the dpif supports
wildcarding, then it can use the masks to match multiple flows with fewer entries and potentially significantly reduce
the number of flow misses handled by ofproto-dpif.

The “dpif” library in turn delegates much of its functionality to a “dpif provider”. The following diagram shows how
dpif providers fit into the Open vSwitch architecture:

Architecure

_
| +-------------------+
| | ovs-vswitchd |<-->ovsdb-server
| +-------------------+
| | ofproto |<-->OpenFlow controllers
| +--------+-+--------+ _
| | netdev | |ofproto-| |

userspace | +--------+ | dpif | |
| | netdev | +--------+ |
| |provider| | dpif | |
| +---||---+ +--------+ |
| || | dpif | | implementation of
| || |provider| | ofproto provider
|_ || +---||---+ |

|| || |
_ +---||-----+---||---+ |

| | |datapath| |
kernel | | +--------+ _|

| | |
|_ +--------||---------+

||
physical

NIC

struct dpif_class, in lib/dpif-provider.h, defines the interfaces required to implement a dpif provider for
new hardware or software. That structure contains many function pointers, each of which has a comment that is meant
to describe its behavior in detail. If the requirements are unclear, report this as a bug.

There are two existing dpif implementations that may serve as useful examples during a port:

• lib/dpif-netlink.c is a Linux-specific dpif implementation that talks to an Open vSwitch-specific kernel module
(whose sources are in the “datapath” directory). The kernel module performs all of the switching work, passing
packets that do not match any flow table entry up to userspace. This dpif implementation is essentially a wrapper
around calls into the kernel module.

• lib/dpif-netdev.c is a generic dpif implementation that performs all switching internally. This is how the Open
vSwitch userspace switch is implemented.
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Miscellaneous Notes

Open vSwitch source code uses uint16_t, uint32_t, and uint64_t as fixed-width types in host byte order, and
ovs_be16, ovs_be32, and ovs_be64 as fixed-width types in network byte order. Each of the latter is equivalent
to the one of the former, but the difference in name makes the intended use obvious.

The default “fail-mode” for Open vSwitch bridges is “standalone”, meaning that, when the OpenFlow controllers can-
not be contacted, Open vSwitch acts as a regular MAC-learning switch. This works well in virtualization environments
where there is normally just one uplink (either a single physical interface or a bond). In a more general environment,
it can create loops. So, if you are porting to a general-purpose switch platform, you should consider changing the
default “fail-mode” to “secure”, which does not behave this way. See documentation for the “fail-mode” column in
the Bridge table in ovs-vswitchd.conf.db(5) for more information.

lib/entropy.c assumes that it can obtain high-quality random number seeds at startup by reading from
/dev/urandom. You will need to modify it if this is not true on your platform.

vswitchd/system-stats.c only knows how to obtain some statistics on Linux. Optionally you may implement
them for your platform as well.

Why OVS Does Not Support Hybrid Providers

The porting strategies section above describes the “ofproto provider” and “dpif provider” porting strategies. Only an
ofproto provider can take advantage of hardware TCAM support, and only a dpif provider can take advantage of the
OVS built-in implementations of various features. It is therefore tempting to suggest a hybrid approach that shares the
advantages of both strategies.

However, Open vSwitch does not support a hybrid approach. Doing so may be possible, with a significant amount of
extra development work, but it does not yet seem worthwhile, for the reasons explained below.

First, user surprise is likely when a switch supports a feature only with a high performance penalty. For example,
one user questioned why adding a particular OpenFlow action to a flow caused a 1,058x slowdown on a hardware
OpenFlow implementation1. The action required the flow to be implemented in software.

Given that implementing a flow in software on the slow management CPU of a hardware switch causes a major
slowdown, software-implemented flows would only make sense for very low-volume traffic. But many of the features
built into the OVS software switch implementation would need to apply to every flow to be useful. There is no value,
for example, in applying bonding or 802.1Q VLAN support only to low-volume traffic.

Besides supporting features of OpenFlow actions, a hybrid approach could also support forms of matching not sup-
ported by particular switching hardware, by sending all packets that might match a rule to software. But again this can
cause an unacceptable slowdown by forcing bulk traffic through software in the hardware switch’s slow management
CPU. Consider, for example, a hardware switch that can match on the IPv6 Ethernet type but not on fields in IPv6 head-
ers. An OpenFlow table that matched on the IPv6 Ethernet type would perform well, but adding a rule that matched
only UDPv6 would force every IPv6 packet to software, slowing down not just UDPv6 but all IPv6 processing.

Questions

Direct porting questions to dev@openvswitch.org. We will try to use questions to improve this porting guide.

4.1.6 OpenFlow Support in Open vSwitch

Open vSwitch support for OpenFlow 1.1 and beyond is a work in progress. This file describes the work still to be
done.

1 Aaron Rosen, “Modify packet fields extremely slow”, openflow-discuss mailing list, June 26, 2011, archived at https://mailman.stanford.edu/
pipermail/openflow-discuss/2011-June/002386.html.
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The Plan

OpenFlow version support is not a build-time option. A single build of Open vSwitch must be able to handle all
supported versions of OpenFlow. Ideally, even at runtime it should be able to support all protocol versions at the same
time on different OpenFlow bridges (and perhaps even on the same bridge).

At the same time, it would be a shame to litter the core of the OVS code with lots of ugly code concerned with the
details of various OpenFlow protocol versions.

The primary approach to compatibility is to abstract most of the details of the differences from the core code, by
adding a protocol layer that translates between OF1.x and a slightly higher-level abstract representation. The core of
this approach is the many struct ofputil_* structures in include/openvswitch/ofp-*.h.

As a consequence of this approach, OVS cannot use OpenFlow protocol definitions that closely resemble those
in the OpenFlow specification, because openflow.h in different versions of the OpenFlow specification defines
the same identifier with different values. Instead, openflow-common.h contains definitions that are common to
all the specifications and separate protocol version-specific headers contain protocol-specific definitions renamed so
as not to conflict, e.g. OFPAT10_ENQUEUE and OFPAT11_ENQUEUE for the OpenFlow 1.0 and 1.1 values for
OFPAT_ENQUEUE. Generally, in cases of conflict, the protocol layer will define a more abstract OFPUTIL_* or
struct ofputil_*.

Here are the current approaches in a few tricky areas:

• Port numbering.

OpenFlow 1.0 has 16-bit port numbers and later OpenFlow versions have 32-bit port numbers. For now, OVS
support for later protocol versions requires all port numbers to fall into the 16-bit range, translating the reserved
OFPP_* port numbers.

• Actions.

OpenFlow 1.0 and later versions have very different ideas of actions. OVS reconciles by translating all the
versions’ actions (and instructions) to and from a common internal representation.

OpenFlow 1.1

OpenFlow 1.1 support is complete.

OpenFlow 1.2

OpenFlow 1.2 support is complete.

OpenFlow 1.3

OpenFlow 1.3 support requires OpenFlow 1.2 as a prerequisite, plus the following additional work. (This is based on
the change log at the end of the OF1.3 spec, reusing most of the section titles directly. I didn’t compare the specs
carefully yet.)

• IPv6 extension header handling support.

Fully implementing this requires kernel support. This likely will take some careful and probably time-
consuming design work. The actual coding, once that is all done, is probably 2 or 3 days work.

(optional for OF1.3+)
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• Auxiliary connections.

An implementation in generic code might be a week’s worth of work. The value of an implementation in
generic code is questionable, though, since much of the benefit of axuiliary connections is supposed to be to
take advantage of hardware support. (We could make the kernel module somehow send packets across the
auxiliary connections directly, for some kind of “hardware” support, if we judged it useful enough.)

(optional for OF1.3+)

• Provider Backbone Bridge tagging.

I don’t plan to implement this (but we’d accept an implementation).

(optional for OF1.3+)

• On-demand flow counters.

I think this might be a real optimization in some cases for the software switch.

(optional for OF1.3+)

OpenFlow 1.4 & ONF Extensions for 1.3.X Pack1

The following features are both defined as a set of ONF Extensions for 1.3 and integrated in 1.4.

When defined as an ONF Extension for 1.3, the feature is using the Experimenter mechanism with the ONF Experi-
menter ID.

When defined integrated in 1.4, the feature use the standard OpenFlow structures (for example defined in openflow-
1.4.h).

The two definitions for each feature are independent and can exist in parallel in OVS.

• Flow entry notifications

This seems to be modelled after OVS’s NXST_FLOW_MONITOR.

(EXT-187) (optional for OF1.4+)

• Flow entry eviction

OVS has flow eviction functionality. table_mod OFPTC_EVICTION, flow_mod 'importance', and
table_desc ofp_table_mod_prop_eviction need to be implemented.

(EXT-192-e)

(optional for OF1.4+)

• Vacancy events

(EXT-192-v)

(optional for OF1.4+)

• Table synchronisation

Probably not so useful to the software switch.

(EXT-232)

(optional for OF1.4+)

• Group and Meter change notifications

(EXT-235)

(optional for OF1.4+)
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• PBB UCA header field

See comment on Provider Backbone Bridge in section about OpenFlow 1.3.

(EXT-256)

(optional for OF1.4+)

OpenFlow 1.4 only

Those features are those only available in OpenFlow 1.4, other OpenFlow 1.4 features are listed in the previous section.

• Optical port properties

(EXT-154)

(optional for OF1.4+)

OpenFlow 1.5 & ONF Extensions for 1.3.X Pack2

The following features are both defined as a set of ONF Extensions for 1.3 and integrated in 1.5. Note that this list is
not definitive as those are not yet published.

When defined as an ONF Extension for 1.3, the feature is using the Experimenter mechanism with the ONF Experi-
menter ID. When defined integrated in 1.5, the feature use the standard OpenFlow structures (for example defined in
openflow-1.5.h).

The two definitions for each feature are independent and can exist in parallel in OVS.

• Time scheduled bundles

(EXT-340)

(optional for OF1.5+)

OpenFlow 1.5 only

Those features are those only available in OpenFlow 1.5, other OpenFlow 1.5 features are listed in the previous section.

• Egress Tables

(EXT-306)

(optional for OF1.5+)

• Flow Entry Statistics Trigger

(EXT-335)

(optional for OF1.5+)

• Controller connection status

Prototype for OVS was done during specification.

(EXT-454)

(optional for OF1.5+)

• Port properties for pipeline fields

Prototype for OVS was done during specification.

(EXT-388)
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(optional for OF1.5+)

• Port property for recirculation

Prototype for OVS was done during specification.

(EXT-399)

(optional for OF1.5+)

General

• ovs-ofctl(8) often lists as Nicira extensions features that later OpenFlow versions support in standard ways.

How to contribute

If you plan to contribute code for a feature, please let everyone know on ovs-dev before you start work. This will help
avoid duplicating work.

Consider the following:

• Testing.

Please test your code.

• Unit tests.

Consider writing some. The tests directory has many examples that you can use as a starting point.

• ovs-ofctl.

If you add a feature that is useful for some ovs-ofctl command then you should add support for it there.

• Documentation.

If you add a user-visible feature, then you should document it in the appropriate manpage and mention it in
NEWS as well.

Refer to Contributing to Open vSwitch for more information.

4.1.7 Bonding

Bonding allows two or more interfaces (the “slaves”) to share network traffic. From a high-level point of view, bonded
interfaces act like a single port, but they have the bandwidth of multiple network devices, e.g. two 1 GB physical
interfaces act like a single 2 GB interface. Bonds also increase robustness: the bonded port does not go down as long
as at least one of its slaves is up.

In vswitchd, a bond always has at least two slaves (and may have more). If a configuration error, etc. would cause a
bond to have only one slave, the port becomes an ordinary port, not a bonded port, and none of the special features of
bonded ports described in this section apply.

There are many forms of bonding of which ovs-vswitchd implements only a few. The most complex bond ovs-vswitchd
implements is called “source load balancing” or SLB bonding. SLB bonding divides traffic among the slaves based on
the Ethernet source address. This is useful only if the traffic over the bond has multiple Ethernet source addresses, for
example if network traffic from multiple VMs are multiplexed over the bond.

Note: Most of the ovs-vswitchd implementation is in vswitchd/bridge.c, so code references below should be
assumed to refer to that file except as otherwise specified.
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Enabling and Disabling Slaves

When a bond is created, a slave is initially enabled or disabled based on whether carrier is detected on the NIC (see
iface_create()). After that, a slave is disabled if its carrier goes down for a period of time longer than the down-
delay, and it is enabled if carrier comes up for longer than the updelay (see bond_link_status_update()).
There is one exception where the updelay is skipped: if no slaves at all are currently enabled, then the first slave on
which carrier comes up is enabled immediately.

The updelay should be set to a time longer than the STP forwarding delay of the physical switch to which the bond
port is connected (if STP is enabled on that switch). Otherwise, the slave will be enabled, and load may be shifted to
it, before the physical switch starts forwarding packets on that port, which can cause some data to be “blackholed” for
a time. The exception for a single enabled slave does not cause any problem in this regard because when no slaves are
enabled all output packets are blackholed anyway.

When a slave becomes disabled, the vswitch immediately chooses a new output port for traffic that was destined for
that slave (see bond_enable_slave()). It also sends a “gratuitous learning packet”, specifically a RARP, on the
bond port (on the newly chosen slave) for each MAC address that the vswitch has learned on a port other than the bond
(see bundle_send_learning_packets()), to teach the physical switch that the new slave should be used in
place of the one that is now disabled. (This behavior probably makes sense only for a vswitch that has only one port
(the bond) connected to a physical switch; vswitchd should probably provide a way to disable or configure it in other
scenarios.)

Bond Packet Input

Bonding accepts unicast packets on any bond slave. This can occasionally cause packet duplication for the first few
packets sent to a given MAC, if the physical switch attached to the bond is flooding packets to that MAC because it
has not yet learned the correct slave for that MAC.

Bonding only accepts multicast (and broadcast) packets on a single bond slave (the “active slave”) at any given time.
Multicast packets received on other slaves are dropped. Otherwise, every multicast packet would be duplicated, once
for every bond slave, because the physical switch attached to the bond will flood those packets.

Bonding also drops received packets when the vswitch has learned that the packet’s MAC is on a port other than the
bond port itself. This is because it is likely that the vswitch itself sent the packet out the bond port on a different
slave and is now receiving the packet back. This occurs when the packet is multicast or the physical switch has not
yet learned the MAC and is flooding it. However, the vswitch makes an exception to this rule for broadcast ARP
replies, which indicate that the MAC has moved to another switch, probably due to VM migration. (ARP replies are
normally unicast, so this exception does not match normal ARP replies. It will match the learning packets sent on
bond fail-over.)

The active slave is simply the first slave to be enabled after the bond is created (see
bond_choose_active_slave()). If the active slave is disabled, then a new active slave is chosen among the
slaves that remain active. Currently due to the way that configuration works, this tends to be the remaining slave
whose interface name is first alphabetically, but this is by no means guaranteed.

Bond Packet Output

When a packet is sent out a bond port, the bond slave actually used is selected based on the packet’s source MAC and
VLAN tag (see bond_choose_output_slave()). In particular, the source MAC and VLAN tag are hashed into
one of 256 values, and that value is looked up in a hash table (the “bond hash”) kept in the bond_hash member of
struct port. The hash table entry identifies a bond slave. If no bond slave has yet been chosen for that hash table entry,
vswitchd chooses one arbitrarily.

Every 10 seconds, vswitchd rebalances the bond slaves (see bond_rebalance()). To rebalance, vswitchd exam-
ines the statistics for the number of bytes transmitted by each slave over approximately the past minute, with data
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sent more recently weighted more heavily than data sent less recently. It considers each of the slaves in order from
most-loaded to least-loaded. If highly loaded slave H is significantly more heavily loaded than the least-loaded slave
L, and slave H carries at least two hashes, then vswitchd shifts one of H’s hashes to L. However, vswitchd will only
shift a hash from H to L if it will decrease the ratio of the load between H and L by at least 0.1.

Currently, “significantly more loaded” means that H must carry at least 1 Mbps more traffic, and that traffic must be at
least 3% greater than L’s.

Bond Balance Modes

Each bond balancing mode has different considerations, described below.

LACP Bonding

LACP bonding requires the remote switch to implement LACP, but it is otherwise very simple in that, after LACP
negotiation is complete, there is no need for special handling of received packets.

Several of the physical switches that support LACP block all traffic for ports that are configured to use LACP, until
LACP is negotiated with the host. When configuring a LACP bond on a OVS host (eg: XenServer), this means that
there will be an interruption of the network connectivity between the time the ports on the physical switch and the
bond on the OVS host are configured. The interruption may be relatively long, if different people are responsible for
managing the switches and the OVS host.

Such network connectivity failure can be avoided if LACP can be configured on the OVS host before configuring the
physical switch, and having the OVS host fall back to a bond mode (active-backup) till the physical switch LACP
configuration is complete. An option “lacp-fallback-ab” exists to provide such behavior on Open vSwitch.

Active Backup Bonding

Active Backup bonds send all traffic out one “active” slave until that slave becomes unavailable. Since they are
significantly less complicated than SLB bonds, they are preferred when LACP is not an option. Additionally, they are
the only bond mode which supports attaching each slave to a different upstream switch.

SLB Bonding

SLB bonding allows a limited form of load balancing without the remote switch’s knowledge or cooperation. The
basics of SLB are simple. SLB assigns each source MAC+VLAN pair to a link and transmits all packets from that
MAC+VLAN through that link. Learning in the remote switch causes it to send packets to that MAC+VLAN through
the same link.

SLB bonding has the following complications:

0. When the remote switch has not learned the MAC for the destination of a unicast packet and hence floods the
packet to all of the links on the SLB bond, Open vSwitch will forward duplicate packets, one per link, to each
other switch port.

Open vSwitch does not solve this problem.

1. When the remote switch receives a multicast or broadcast packet from a port not on the SLB bond, it will forward
it to all of the links in the SLB bond. This would cause packet duplication if not handled specially.

Open vSwitch avoids packet duplication by accepting multicast and broadcast packets on only the active slave,
and dropping multicast and broadcast packets on all other slaves.
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2. When Open vSwitch forwards a multicast or broadcast packet to a link in the SLB bond other than the active
slave, the remote switch will forward it to all of the other links in the SLB bond, including the active slave.
Without special handling, this would mean that Open vSwitch would forward a second copy of the packet to
each switch port (other than the bond), including the port that originated the packet.

Open vSwitch deals with this case by dropping packets received on any SLB bonded link that have a source
MAC+VLAN that has been learned on any other port. (This means that SLB as implemented in Open vSwitch
relies critically on MAC learning. Notably, SLB is incompatible with the “flood_vlans” feature.)

3. Suppose that a MAC+VLAN moves to an SLB bond from another port (e.g. when a VM is migrated from this
hypervisor to a different one). Without additional special handling, Open vSwitch will not notice until the MAC
learning entry expires, up to 60 seconds later as a consequence of rule #2.

Open vSwitch avoids a 60-second delay by listening for gratuitous ARPs, which VMs commonly emit upon
migration. As an exception to rule #2, a gratuitous ARP received on an SLB bond is not dropped and updates
the MAC learning table in the usual way. (If a move does not trigger a gratuitous ARP, or if the gratuitous ARP
is lost in the network, then a 60-second delay still occurs.)

4. Suppose that a MAC+VLAN moves from an SLB bond to another port (e.g. when a VM is migrated from a
different hypervisor to this one), that the MAC+VLAN emits a gratuitous ARP, and that Open vSwitch forwards
that gratuitous ARP to a link in the SLB bond other than the active slave. The remote switch will forward the
gratuitous ARP to all of the other links in the SLB bond, including the active slave. Without additional special
handling, this would mean that Open vSwitch would learn that the MAC+VLAN was located on the SLB bond,
as a consequence of rule #3.

Open vSwitch avoids this problem by “locking” the MAC learning table entry for a MAC+VLAN from which a
gratuitous ARP was received from a non-SLB bond port. For 5 seconds, a locked MAC learning table entry will
not be updated based on a gratuitous ARP received on a SLB bond.

4.1.8 Open vSwitch Networking Namespaces on Linux

The Open vSwitch has networking namespaces basic support on Linux. That allows ovs-vswitchd daemon to continue
tracking status and statistics after moving a port to another networking namespace.

How It Works

The daemon ovs-vswitchd runs on what is called parent network namespace. It listens to netlink event messages
from all networking namespaces (netns) with an identifier on the parent. Each netlink message contains the network
namespace identifier (netnsid) as ancillary data which is used to match the event to the corresponding port.

The ovs-vswitchd uses an extended openvswitch kernel API1 to get the current netnsid (stored in struct netdev_linux)
and statistics from a specific port. The netnsid remains cached in userspace until a changing event is received, for
example, when the port is moved to another network namespace.

Using another extended kernel API2, the daemon gets port’s information such as flags, MTU, MAC address and ifindex
from a port already in another namespace.

The upstream kernel 4.15 includes the necessary changes for the basic support. In case of the running kernel doesn’t
provide the APIs, the daemon falls back to the previous behavior.

Limitations

Currently it is only possible to retrieve the information listed in the above section. Most of other operations, for
example querying MII or setting MTU, lacks the proper API in the kernel, so they remain unsupported.

1 Request cmd: OVS_VPORT_CMD_GET, attribute: OVS_VPORT_ATTR_NETNSID
2 Request cmd: RTM_GETLINK passing IFLA_IF_NETNSID attribute.
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In most use cases that needs to move ports to another networking namespaces should use veth pairs instead because it
offers a cleaner and more robust solution with no noticeable performance penalty.

4.1.9 OVSDB Replication Implementation

Given two Open vSwitch databases with the same schema, OVSDB replication keeps these databases in the same state,
i.e. each of the databases have the same contents at any given time even if they are not running in the same host. This
document elaborates on the implementation details to provide this functionality.

Terminology

Source of truth database database whose content will be replicated to another database.

Active server ovsdb-server providing RPC interface to the source of truth database.

Standby server ovsdb-server providing RPC interface to the database that is not the source of truth.

Design

The overall design of replication consists of one ovsdb-server (active server) communicating the state of its databases
to another ovsdb-server (standby server) so that the latter keep its own databases in that same state. To achieve this,
the standby server acts as a client of the active server, in the sense that it sends a monitor request to keep up to date
with the changes in the active server databases. When a notification from the active server arrives, the standby server
executes the necessary set of operations so its databases reach the same state as the active server databases. Below is
the design represented as a diagram.:

+--------------+ replication +--------------+
| Active |<-------------------| Standby |
| OVSDB-server | | OVSDB-server |
+--------------+ +--------------+

| |
| |

+-------+ +-------+
| SoT | | |
| OVSDB | | OVSDB |
+-------+ +-------+

Setting Up The Replication

To initiate the replication process, the standby server must be executed indicating the location of the active server via
the command line option --sync-from=server, where server can take any form described in the ovsdb-client
manpage and it must specify an active connection type (tcp, unix, ssl). This option will cause the standby server to
attempt to send a monitor request to the active server in every main loop iteration, until the active server responds.

When sending a monitor request the standby server is doing the following:

1. Erase the content of the databases for which it is providing a RPC interface.

2. Open the jsonrpc channel to communicate with the active server.

3. Fetch all the databases located in the active server.

4. For each database with the same schema in both the active and standby servers: construct and send a monitor
request message specifying the tables that will be monitored (i.e all the tables on the database except the ones
blacklisted [*]).
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5. Set the standby database to the current state of the active database.

Once the monitor request message is sent, the standby server will continuously receive notifications of changes occur-
ring to the tables specified in the request. The process of handling this notifications is detailed in the next section.

[*] A set of tables that will be excluded from replication can be configure as a blacklist of tables via the command
line option --sync-exclude-tables=db:table[,db:table]..., where db corresponds to the database
where the table resides.

Replication Process

The replication process consists on handling the update notifications received in the standby server caused by the
monitor request that was previously sent to the active server. In every loop iteration, the standby server attempts to
receive a message from the active server which can be an error, an echo message (used to keep the connection alive) or
an update notification. In case the message is a fatal error, the standby server will disconnect from the active without
dropping the replicated data. If it is an echo message, the standby server will reply with an echo message as well. If
the message is an update notification, the following process occurs:

1. Create a new transaction.

2. Get the <table-updates> object from the params member of the notification.

3. For each <table-update> in the <table-updates> object do:

1. For each <row-update> in <table-update> check what kind of operation should be executed ac-
cording to the following criteria about the presence of the object members:

• If old member is not present, execute an insert operation using <row> from the new member.

• If old member is present and new member is not present, execute a delete operation using <row>
from the old member

• If both old and new members are present, execute an update operation using <row> from the new
member.

4. Commit the transaction.

If an error occurs during the replication process, all replication is restarted by resending a new monitor request
as described in the section “Setting up the replication”.

Runtime Management Commands

Runtime management commands can be sent to a running standby server via ovs-appctl in order to configure the
replication functionality. The available commands are the following.

ovsdb-server/set-remote-ovsdb-server {server} sets the name of the active server

ovsdb-server/get-remote-ovsdb-server gets the name of the active server

ovsdb-server/connect-remote-ovsdb-server causes the server to attempt to send a monitor request
every main loop iteration

ovsdb-server/disconnect-remote-ovsdb-server closes the jsonrpc channel between the active server
and frees the memory used for the replication configuration.

ovsdb-server/set-sync-exclude-tables {db:table,...} sets the tables list that will be excluded
from being replicated

ovsdb-server/get-sync-excluded-tables gets the tables list that is currently excluded from replication
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4.1.10 DPDK Support

DPDK Bridges

Bridge must be specially configured to utilize DPDK-backed physical and virtual ports.

Quick Example

This example demonstrates how to add a bridge that will take advantage of DPDK:

$ ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev

This assumes Open vSwitch has been built with DPDK support. Refer to Open vSwitch with DPDK for more infor-
mation.

Extended & Custom Statistics

The DPDK Extended Statistics API allows PMDs to expose a unique set of statistics. The Extended Statistics are
implemented and supported only for DPDK physical and vHost ports. Custom statistics are a dynamic set of counters
which can vary depending on the driver. Those statistics are implemented for DPDK physical ports and contain all
“dropped”, “error” and “management” counters from XSTATS. A list of all XSTATS counters can be found here.

Note: vHost ports only support RX packet size-based counters. TX packet size counters are not available.

To enable statistics, you have to enable OpenFlow 1.4 support for OVS. To configure a bridge, br0, to support
OpenFlow version 1.4, run:

$ ovs-vsctl set bridge br0 datapath_type=netdev \
protocols=OpenFlow10,OpenFlow11,OpenFlow12,OpenFlow13,OpenFlow14

Once configured, check the OVSDB protocols column in the bridge table to ensure OpenFlow 1.4 support is enabled:

$ ovsdb-client dump Bridge protocols

You can also query the port statistics by explicitly specifying the -O OpenFlow14 option:

$ ovs-ofctl -O OpenFlow14 dump-ports br0

There are custom statistics that OVS accumulates itself and these stats has ovs_ as prefix. These custom stats are
shown along with other stats using the following command:

$ ovs-vsctl get Interface <iface> statistics

EMC Insertion Probability

By default 1 in every 100 flows is inserted into the Exact Match Cache (EMC). It is possible to change this insertion
probability by setting the emc-insert-inv-prob option:

$ ovs-vsctl --no-wait set Open_vSwitch . other_config:emc-insert-inv-prob=N

where:
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N A positive integer representing the inverse probability of insertion, i.e. on average 1 in every N packets with a
unique flow will generate an EMC insertion.

If N is set to 1, an insertion will be performed for every flow. If set to 0, no insertions will be performed and the EMC
will effectively be disabled.

With default N set to 100, higher megaflow hits will occur initially as observed with pmd stats:

$ ovs-appctl dpif-netdev/pmd-stats-show

For certain traffic profiles with many parallel flows, it’s recommended to set N to ‘0’ to achieve higher forwarding
performance.

It is also possible to enable/disable EMC on per-port basis using:

$ ovs-vsctl set interface <iface> other_config:emc-enable={true,false}

Note: This could be useful for cases where different number of flows expected on different ports. For example, if one
of the VMs encapsulates traffic using additional headers, it will receive large number of flows but only few flows will
come out of this VM. In this scenario it’s much faster to use EMC instead of classifier for traffic from the VM, but it’s
better to disable EMC for the traffic which flows to the VM.

For more information on the EMC refer to Open vSwitch with DPDK .

SMC cache

SMC cache or signature match cache is a new cache level after EMC cache. The difference between SMC and EMC
is SMC only stores a signature of a flow thus it is much more memory efficient. With same memory space, EMC can
store 8k flows while SMC can store 1M flows. When traffic flow count is much larger than EMC size, it is generally
beneficial to turn off EMC and turn on SMC. It is currently turned off by default.

To turn on SMC:

$ ovs-vsctl --no-wait set Open_vSwitch . other_config:smc-enable=true

DPDK Physical Ports

The netdev datapath allows attaching of DPDK-backed physical interfaces in order to provide high-performance
ingress/egress from the host.

Important: To use any DPDK-backed interface, you must ensure your bridge is configured correctly. For more
information, refer to DPDK Bridges.

Changed in version 2.7.0: Before Open vSwitch 2.7.0, it was necessary to prefix port names with a dpdk prefix.
Starting with 2.7.0, this is no longer necessary.

Quick Example

This example demonstrates how to bind two dpdk ports, bound to physical interfaces identified by hardware IDs
0000:01:00.0 and 0000:01:00.1, to an existing bridge called br0:
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$ ovs-vsctl add-port br0 dpdk-p0 \
-- set Interface dpdk-p0 type=dpdk options:dpdk-devargs=0000:01:00.0

$ ovs-vsctl add-port br0 dpdk-p1 \
-- set Interface dpdk-p1 type=dpdk options:dpdk-devargs=0000:01:00.1

For the above example to work, the two physical interfaces must be bound to the DPDK poll-mode drivers in userspace
rather than the traditional kernel drivers. See the binding NIC drivers <dpdk-binding-nics> section for details.

Binding NIC Drivers

DPDK operates entirely in userspace and, as a result, requires use of its own poll-mode drivers in user space for
physical interfaces and a passthrough-style driver for the devices in kernel space.

There are two different tools for binding drivers: driverctl which is a generic tool for persistently configuring
alternative device drivers, and dpdk-devbind which is a DPDK-specific tool and whose changes do not persist
across reboots. In addition, there are two options available for this kernel space driver - VFIO (Virtual Function I/O)
and UIO (Userspace I/O) - along with a number of drivers for each option. We will demonstrate examples of both
tools and will use the vfio-pci driver, which is the more secure, robust driver of those available. More information
can be found in the DPDK documentation.

To list devices using driverctl, run:

$ driverctl -v list-devices | grep -i net
0000:07:00.0 igb (I350 Gigabit Network Connection (Ethernet Server Adapter I350-T2))
0000:07:00.1 igb (I350 Gigabit Network Connection (Ethernet Server Adapter I350-T2))

You can then bind one or more of these devices using the same tool:

$ driverctl set-override 0000:07:00.0 vfio-pci

Alternatively, to list devices using dpdk-devbind, run:

$ dpdk-devbind --status
Network devices using DPDK-compatible driver
============================================
<none>

Network devices using kernel driver
===================================
0000:07:00.0 'I350 Gigabit Network Connection 1521' if=enp7s0f0 drv=igb unused=igb_uio
0000:07:00.1 'I350 Gigabit Network Connection 1521' if=enp7s0f1 drv=igb unused=igb_uio

Other Network devices
=====================
...

Once again, you can then bind one or more of these devices using the same tool:

$ dpdk-devbind --bind=vfio-pci 0000:07:00.0

Changed in version 2.6.0: Open vSwitch 2.6.0 added support for DPDK 16.07, which in turn renamed the former
dpdk_nic_bind tool to dpdk-devbind.

For more information, refer to the DPDK documentation.
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Multiqueue

Poll Mode Driver (PMD) threads are the threads that do the heavy lifting for userspace switching. Correct configuration
of PMD threads and the Rx queues they utilize is a requirement in order to deliver the high-performance possible with
DPDK acceleration. It is possible to configure multiple Rx queues for dpdk ports, thus ensuring this is not a bottleneck
for performance. For information on configuring PMD threads, refer to PMD Threads.

Flow Control

Flow control can be enabled only on DPDK physical ports. To enable flow control support at Tx side while adding a
port, run:

$ ovs-vsctl add-port br0 dpdk-p0 -- set Interface dpdk-p0 type=dpdk \
options:dpdk-devargs=0000:01:00.0 options:tx-flow-ctrl=true

Similarly, to enable Rx flow control, run:

$ ovs-vsctl add-port br0 dpdk-p0 -- set Interface dpdk-p0 type=dpdk \
options:dpdk-devargs=0000:01:00.0 options:rx-flow-ctrl=true

To enable flow control auto-negotiation, run:

$ ovs-vsctl add-port br0 dpdk-p0 -- set Interface dpdk-p0 type=dpdk \
options:dpdk-devargs=0000:01:00.0 options:flow-ctrl-autoneg=true

To turn on the Tx flow control at run time for an existing port, run:

$ ovs-vsctl set Interface dpdk-p0 options:tx-flow-ctrl=true

The flow control parameters can be turned off by setting false to the respective parameter. To disable the flow
control at Tx side, run:

$ ovs-vsctl set Interface dpdk-p0 options:tx-flow-ctrl=false

Rx Checksum Offload

By default, DPDK physical ports are enabled with Rx checksum offload.

Rx checksum offload can offer performance improvement only for tunneling traffic in OVS-DPDK because the check-
sum validation of tunnel packets is offloaded to the NIC. Also enabling Rx checksum may slightly reduce the perfor-
mance of non-tunnel traffic, specifically for smaller size packet.

Hotplugging

OVS supports port hotplugging, allowing the use of physical ports that were not bound to DPDK when ovs-vswitchd
was started.

Warning: This feature is not compatible with all NICs. Refer to vendor documentation for more information.

4.1. OVS 155



Open vSwitch, Release 2.12.90

Important: Ports must be bound to DPDK. Refer to Binding NIC Drivers for more information.

To hotplug a port, simply add it like any other port:

$ ovs-vsctl add-port br0 dpdkx -- set Interface dpdkx type=dpdk \
options:dpdk-devargs=0000:01:00.0

Ports can be detached using the del-port command:

$ ovs-vsctl del-port dpdkx

This should both delete the port and detach the device. If successful, you should see an INFO log. For example:

INFO|Device '0000:04:00.1' has been detached

If the log is not seen then the port can be detached like so:

$ ovs-appctl netdev-dpdk/detach 0000:01:00.0

Warning: Detaching should not be done if a device is known to be non-detachable, as this may cause the device
to behave improperly when added back with add-port. The Chelsio Terminator adapters which use the cxgbe driver
seem to be an example of this behavior; check the driver documentation if this is suspected.

Hotplugging with IGB_UIO

As of DPDK 19.11, default igb_uio hotplugging behavior changes from previous DPDK versions.

With DPDK 19.11, if no device is bound to igb_uio when OVS is launched then the IOVA mode may be set to virtual
addressing for DPDK. This is incompatible for hotplugging with igb_uio.

To hotplug a port with igb_uio in this case, DPDK must be configured to use physical addressing for IOVA mode. For
more information regarding IOVA modes in DPDK please refer to the DPDK IOVA Mode Detection.

To configure OVS DPDK to use physical addressing for IOVA:

$ ovs-vsctl --no-wait set Open_vSwitch . \
other_config:dpdk-extra="--iova-mode=pa"

Note: Changing IOVA mode requires restarting the ovs-vswitchd application.

Representors

DPDK representors enable configuring a phy port to a guest (VM) machine.

OVS resides in the hypervisor which has one or more physical interfaces also known as the physical functions (PFs).
If a PF supports SR-IOV it can be used to enable communication with the VMs via Virtual Functions (VFs). The VFs
are virtual PCIe devices created from the physical Ethernet controller.

DPDK models a physical interface as a rte device on top of which an eth device is created. DPDK (version 18.xx)
introduced the representors eth devices. A representor device represents the VF eth device (VM side) on the hypervisor
side and operates on top of a PF. Representors are multi devices created on top of one PF.
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For more information, refer to the DPDK documentation.

Prior to port representors there was a one-to-one relationship between the PF and the eth device. With port representors
the relationship becomes one PF to many eth devices. In case of two representors ports, when one of the ports is closed
- the PCI bus cannot be detached until the second representor port is closed as well.

When configuring a PF-based port, OVS traditionally assigns the device PCI address in devargs. For an existing bridge
called br0 and PCI address 0000:08:00.0 an add-port command is written as:

$ ovs-vsctl add-port br0 dpdk-pf -- set Interface dpdk-pf type=dpdk \
options:dpdk-devargs=0000:08:00.0

When configuring a VF-based port, DPDK uses an extended devargs syntax which has the following format:

BDBF,representor=[<representor id>]

This syntax shows that a representor is an enumerated eth device (with a representor ID) which uses the PF PCI
address. The following commands add representors 3 and 5 using PCI device address 0000:08:00.0:

$ ovs-vsctl add-port br0 dpdk-rep3 -- set Interface dpdk-rep3 type=dpdk \
options:dpdk-devargs=0000:08:00.0,representor=[3]

$ ovs-vsctl add-port br0 dpdk-rep5 -- set Interface dpdk-rep5 type=dpdk \
options:dpdk-devargs=0000:08:00.0,representor=[5]

Important: Representors ports are configured prior to OVS invocation and independently of it, or by other means as
well. Please consult a NIC vendor instructions on how to establish representors.

Intel NICs ixgbe and i40e

In the following example we create one representor on PF address 0000:05:00.0. Once the NIC is bounded to a
DPDK compatible PMD the representor is created:

# echo 1 > /sys/bus/pci/devices/0000\:05\:00.0/max_vfs

Mellanox NICs ConnectX-4, ConnectX-5 and ConnectX-6

In the following example we create two representors on PF address 0000:05:00.0 and net device name
enp3s0f0.

• Ensure SR-IOV is enabled on the system.

Enable IOMMU in Linux by adding intel_iommu=on to kernel parameters, for example, using GRUB (see
/etc/grub/grub.conf).

• Verify the PF PCI address prior to representors creation:

# lspci | grep Mellanox
05:00.0 Ethernet controller: Mellanox Technologies MT27700 Family [ConnectX-4]
05:00.1 Ethernet controller: Mellanox Technologies MT27700 Family [ConnectX-4]

• Create the two VFs on the compute node:

# echo 2 > /sys/class/net/enp3s0f0/device/sriov_numvfs

Verify the VFs creation:
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# lspci | grep Mellanox
05:00.0 Ethernet controller: Mellanox Technologies MT27700 Family [ConnectX-
→˓4]
05:00.1 Ethernet controller: Mellanox Technologies MT27700 Family [ConnectX-
→˓4]
05:00.2 Ethernet controller: Mellanox Technologies MT27700 Family [ConnectX-
→˓4 Virtual Function]
05:00.3 Ethernet controller: Mellanox Technologies MT27700 Family [ConnectX-
→˓4 Virtual Function]

• Unbind the relevant VFs 0000:05:00.2..0000:05:00.3:

# echo 0000:05:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind
# echo 0000:05:00.3 > /sys/bus/pci/drivers/mlx5_core/unbind

• Change e-switch mode.

The Mellanox NIC has an e-switch on it. Change the e-switch mode from legacy to switchdev using the PF PCI
address:

# sudo devlink dev eswitch set pci/0000:05:00.0 mode switchdev

This will create the VF representors network devices in the host OS.

• After setting the PF to switchdev mode bind back the relevant VFs:

# echo 0000:05:00.2 > /sys/bus/pci/drivers/mlx5_core/bind
# echo 0000:05:00.3 > /sys/bus/pci/drivers/mlx5_core/bind

• Restart Open vSwitch

To verify representors correct configuration, execute:

$ ovs-vsctl show

and make sure no errors are indicated.

Port representors are an example of multi devices. There are NICs which support multi devices by other methods than
representors for which a generic devargs syntax is used. The generic syntax is based on the device mac address:

class=eth,mac=<MAC address>

For example, the following command adds a port to a bridge called br0 using an eth device whose mac address is
00:11:22:33:44:55:

$ ovs-vsctl add-port br0 dpdk-mac -- set Interface dpdk-mac type=dpdk \
options:dpdk-devargs="class=eth,mac=00:11:22:33:44:55"

Jumbo Frames

DPDK physical ports can be configured to use Jumbo Frames. For more information, refer to Jumbo Frames.

Link State Change (LSC) detection configuration

There are two methods to get the information when Link State Change (LSC) happens on a network interface: by
polling or interrupt.
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Configuring the lsc detection mode has no direct effect on OVS itself, instead it configures the NIC how it should
handle link state changes. Processing the link state update request triggered by OVS takes less time using interrupt
mode, since the NIC updates its link state in the background, while in polling mode the link state has to be fetched
from the firmware every time to fulfil this request.

Note that not all PMD drivers support LSC interrupts.

The default configuration is polling mode. To set interrupt mode, option dpdk-lsc-interrupt has to be set to
true.

Command to set interrupt mode for a specific interface:: $ ovs-vsctl set interface <iface_name> options:dpdk-lsc-
interrupt=true

Command to set polling mode for a specific interface:: $ ovs-vsctl set interface <iface_name> options:dpdk-lsc-
interrupt=false

DPDK vHost User Ports

OVS userspace switching supports supports vHost user ports as a primary way to interact with guests. For more
information on vHost User, refer to the QEMU documentation on same.

Important: To use any DPDK-backed interface, you must ensure your bridge is configured correctly. For more
information, refer to DPDK Bridges.

Quick Example

This example demonstrates how to add two dpdkvhostuserclient ports to an existing bridge called br0:

$ ovs-vsctl add-port br0 dpdkvhostclient0 \
-- set Interface dpdkvhostclient0 type=dpdkvhostuserclient \

options:vhost-server-path=/tmp/dpdkvhostclient0
$ ovs-vsctl add-port br0 dpdkvhostclient1 \

-- set Interface dpdkvhostclient1 type=dpdkvhostuserclient \
options:vhost-server-path=/tmp/dpdkvhostclient1

For the above examples to work, an appropriate server socket must be created at the paths specified (/tmp/
dpdkvhostclient0 and /tmp/dpdkvhostclient1). These sockets can be created with QEMU; see the
vhost-user client section for details.

vhost-user vs. vhost-user-client

Open vSwitch provides two types of vHost User ports:

• vhost-user (dpdkvhostuser)

• vhost-user-client (dpdkvhostuserclient)

vHost User uses a client-server model. The server creates/manages/destroys the vHost User sockets, and the client
connects to the server. Depending on which port type you use, dpdkvhostuser or dpdkvhostuserclient, a
different configuration of the client-server model is used.

For vhost-user ports, Open vSwitch acts as the server and QEMU the client. This means if OVS dies, all VMs must
be restarted. On the other hand, for vhost-user-client ports, OVS acts as the client and QEMU the server. This means
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OVS can die and be restarted without issue, and it is also possible to restart an instance itself. For this reason, vhost-
user-client ports are the preferred type for all known use cases; the only limitation is that vhost-user client mode ports
require QEMU version 2.7. Ports of type vhost-user are currently deprecated and will be removed in a future release.

vhost-user

Important: Use of vhost-user ports requires QEMU >= 2.2; vhost-user ports are deprecated.

To use vhost-user ports, you must first add said ports to the switch. DPDK vhost-user ports can have arbitrary
names with the exception of forward and backward slashes, which are prohibited. For vhost-user, the port type is
dpdkvhostuser:

$ ovs-vsctl add-port br0 vhost-user-1 -- set Interface vhost-user-1 \
type=dpdkvhostuser

This action creates a socket located at /usr/local/var/run/openvswitch/vhost-user-1, which you
must provide to your VM on the QEMU command line.

Note: If you wish for the vhost-user sockets to be created in a sub-directory of /usr/local/var/run/
openvswitch, you may specify this directory in the ovsdb like so:

$ ovs-vsctl --no-wait \
set Open_vSwitch . other_config:vhost-sock-dir=subdir

Once the vhost-user ports have been added to the switch, they must be added to the guest. There are two ways to do
this: using QEMU directly, or using libvirt.

Note: IOMMU and Post-copy Live Migration are not supported with vhost-user ports.

Adding vhost-user ports to the guest (QEMU)

To begin, you must attach the vhost-user device sockets to the guest. To do this, you must pass the following parameters
to QEMU:

-chardev socket,id=char1,path=/usr/local/var/run/openvswitch/vhost-user-1
-netdev type=vhost-user,id=mynet1,chardev=char1,vhostforce
-device virtio-net-pci,mac=00:00:00:00:00:01,netdev=mynet1

where vhost-user-1 is the name of the vhost-user port added to the switch.

Repeat the above parameters for multiple devices, changing the chardev path and id as necessary. Note that a
separate and different chardev path needs to be specified for each vhost-user device. For example you have a second
vhost-user port named vhost-user-2, you append your QEMU command line with an additional set of parameters:

-chardev socket,id=char2,path=/usr/local/var/run/openvswitch/vhost-user-2
-netdev type=vhost-user,id=mynet2,chardev=char2,vhostforce
-device virtio-net-pci,mac=00:00:00:00:00:02,netdev=mynet2
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In addition, QEMU must allocate the VM’s memory on hugetlbfs. vhost-user ports access a virtio-net device’s virtual
rings and packet buffers mapping the VM’s physical memory on hugetlbfs. To enable vhost-user ports to map the
VM’s memory into their process address space, pass the following parameters to QEMU:

-object memory-backend-file,id=mem,size=4096M,mem-path=/dev/hugepages,share=on
-numa node,memdev=mem -mem-prealloc

Finally, you may wish to enable multiqueue support. This is optional but, should you wish to enable it, run:

-chardev socket,id=char2,path=/usr/local/var/run/openvswitch/vhost-user-2
-netdev type=vhost-user,id=mynet2,chardev=char2,vhostforce,queues=$q
-device virtio-net-pci,mac=00:00:00:00:00:02,netdev=mynet2,mq=on,vectors=$v

where:

$q The number of queues

$v The number of vectors, which is $q * 2 + 2

The vhost-user interface will be automatically reconfigured with required number of Rx and Tx queues after connection
of virtio device. Manual configuration of n_rxq is not supported because OVS will work properly only if n_rxq
will match number of queues configured in QEMU.

A least two PMDs should be configured for the vswitch when using multiqueue. Using a single PMD will cause traffic
to be enqueued to the same vhost queue rather than being distributed among different vhost queues for a vhost-user
interface.

If traffic destined for a VM configured with multiqueue arrives to the vswitch via a physical DPDK port, then the
number of Rx queues should also be set to at least two for that physical DPDK port. This is required to increase the
probability that a different PMD will handle the multiqueue transmission to the guest using a different vhost queue.

If one wishes to use multiple queues for an interface in the guest, the driver in the guest operating system must be
configured to do so. It is recommended that the number of queues configured be equal to $q.

For example, this can be done for the Linux kernel virtio-net driver with:

$ ethtool -L <DEV> combined <$q>

where:

-L Changes the numbers of channels of the specified network device

combined Changes the number of multi-purpose channels.

Adding vhost-user ports to the guest (libvirt)

To begin, you must change the user and group that qemu runs under, and restart libvirtd.

• In /etc/libvirt/qemu.conf add/edit the following lines:

user = "root"
group = "root"

• Finally, restart the libvirtd process, For example, on Fedora:

$ systemctl restart libvirtd.service

Once complete, instantiate the VM. A sample XML configuration file is provided at the end of this file. Save this file,
then create a VM using this file:
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$ virsh create demovm.xml

Once created, you can connect to the guest console:

$ virsh console demovm

The demovm xml configuration is aimed at achieving out of box performance on VM. These enhancements include:

• The vcpus are pinned to the cores of the CPU socket 0 using vcpupin.

• Configure NUMA cell and memory shared using memAccess='shared'.

• Disable mrg_rxbuf='off'

Refer to the libvirt documentation for more information.

vhost-user-client

Important: Use of vhost-user ports requires QEMU >= 2.7

To use vhost-user-client ports, you must first add said ports to the switch. Like DPDK vhost-user ports, DPDK vhost-
user-client ports can have mostly arbitrary names. However, the name given to the port does not govern the name
of the socket device. Instead, this must be configured by the user by way of a vhost-server-path option. For
vhost-user-client, the port type is dpdkvhostuserclient:

$ VHOST_USER_SOCKET_PATH=/path/to/socket
$ ovs-vsctl add-port br0 vhost-client-1 \

-- set Interface vhost-client-1 type=dpdkvhostuserclient \
options:vhost-server-path=$VHOST_USER_SOCKET_PATH

Once the vhost-user-client ports have been added to the switch, they must be added to the guest. Like vhost-user ports,
there are two ways to do this: using QEMU directly, or using libvirt. Only the QEMU case is covered here.

Adding vhost-user-client ports to the guest (QEMU)

Attach the vhost-user device sockets to the guest. To do this, you must pass the following parameters to QEMU:

-chardev socket,id=char1,path=$VHOST_USER_SOCKET_PATH,server
-netdev type=vhost-user,id=mynet1,chardev=char1,vhostforce
-device virtio-net-pci,mac=00:00:00:00:00:01,netdev=mynet1

where vhost-user-1 is the name of the vhost-user port added to the switch.

If the corresponding dpdkvhostuserclient port has not yet been configured in OVS with
vhost-server-path=/path/to/socket, QEMU will print a log similar to the following:

QEMU waiting for connection on: disconnected:unix:/path/to/socket,server

QEMU will wait until the port is created sucessfully in OVS to boot the VM. One benefit of using this mode is the
ability for vHost ports to ‘reconnect’ in event of the switch crashing or being brought down. Once it is brought back
up, the vHost ports will reconnect automatically and normal service will resume.
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vhost-user-client IOMMU Support

vhost IOMMU is a feature which restricts the vhost memory that a virtio device can access, and as such is useful in
deployments in which security is a concern.

IOMMU support may be enabled via a global config value, `vhost-iommu-support`. Setting this to true enables
vhost IOMMU support for all vhost ports when/where available:

$ ovs-vsctl set Open_vSwitch . other_config:vhost-iommu-support=true

The default value is false.

Important: Changing this value requires restarting the daemon.

Important: Enabling the IOMMU feature also enables the vhost user reply-ack protocol; this is known to work
on QEMU v2.10.0, but is buggy on older versions (2.7.0 - 2.9.0, inclusive). Consequently, the IOMMU feature is
disabled by default (and should remain so if using the aforementioned versions of QEMU). Starting with QEMU
v2.9.1, vhost-iommu-support can safely be enabled, even without having an IOMMU device, with no performance
penalty.

vhost-user-client Post-copy Live Migration Support (experimental)

Post-copy migration is the migration mode where the destination CPUs are started before all the memory has been
transferred. The main advantage is the predictable migration time. Mostly used as a second phase after the normal
‘pre-copy’ migration in case it takes too long to converge.

More information can be found in QEMU docs.

Post-copy support may be enabled via a global config value vhost-postcopy-support. Setting this to true
enables Post-copy support for all vhost-user-client ports:

$ ovs-vsctl set Open_vSwitch . other_config:vhost-postcopy-support=true

The default value is false.

Important: Changing this value requires restarting the daemon.

Important: DPDK Post-copy migration mode uses userfaultfd syscall to communicate with the kernel about page
fault handling and uses shared memory based on huge pages. So destination host linux kernel should support user-
faultfd over shared hugetlbfs. This feature only introduced in kernel upstream version 4.11.

Post-copy feature supported in DPDK since 18.11.0 version and in QEMU since 2.12.0 version. But it’s suggested
to use QEMU >= 3.0.1 because migration recovery was fixed for post-copy in 3.0 and few additional bug fixes (like
userfaulfd leak) was released in 3.0.1.

DPDK Post-copy feature requires avoiding to populate the guest memory (application must not call mlock* syscall).
So enabling mlockall and dequeue zero-copy features is mis-compatible with post-copy feature.

Note that during migration of vhost-user device, PMD threads hang for the time of faulted pages download from source
host. Transferring 1GB hugepage across a 10Gbps link possibly unacceptably slow. So recommended hugepage size
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is 2MB.

vhost-user-client tx retries config

For vhost-user-client interfaces, the max amount of retries can be changed from the default 8 by setting
tx-retries-max.

The minimum is 0 which means there will be no retries and if any packets in each batch cannot be sent immediately
they will be dropped. The maximum is 32, which would mean that after the first packet(s) in the batch was sent there
could be a maximum of 32 more retries.

Retries can help with avoiding packet loss when temporarily unable to send to a vhost interface because the virtqueue
is full. However, spending more time retrying to send to one interface, will reduce the time available for rx/tx and
processing packets on other interfaces, so some tuning may be required for best performance.

Tx retries max can be set for vhost-user-client ports:

$ ovs-vsctl set Interface vhost-client-1 options:tx-retries-max=0

Note: Configurable vhost tx retries are not supported with vhost-user ports.

DPDK in the Guest

The DPDK testpmd application can be run in guest VMs for high speed packet forwarding between vhostuser ports.
DPDK and testpmd application has to be compiled on the guest VM. Below are the steps for setting up the testpmd
application in the VM.

Note: Support for DPDK in the guest requires QEMU >= 2.2

To begin, instantiate a guest as described in vhost-user or vhost-user-client. Once started, connect to the VM, download
the DPDK sources to VM and build DPDK:

$ cd /root/dpdk/
$ wget https://fast.dpdk.org/rel/dpdk-19.11.tar.xz
$ tar xf dpdk-19.11.tar.xz
$ export DPDK_DIR=/root/dpdk/dpdk-19.11
$ export DPDK_TARGET=x86_64-native-linuxapp-gcc
$ export DPDK_BUILD=$DPDK_DIR/$DPDK_TARGET
$ cd $DPDK_DIR
$ make install T=$DPDK_TARGET DESTDIR=install

Build the test-pmd application:

$ cd app/test-pmd
$ export RTE_SDK=$DPDK_DIR
$ export RTE_TARGET=$DPDK_TARGET
$ make

Setup huge pages and DPDK devices using UIO:
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$ sysctl vm.nr_hugepages=1024
$ mkdir -p /dev/hugepages
$ mount -t hugetlbfs hugetlbfs /dev/hugepages # only if not already mounted
$ modprobe uio
$ insmod $DPDK_BUILD/kmod/igb_uio.ko
$ $DPDK_DIR/usertools/dpdk-devbind.py --status
$ $DPDK_DIR/usertools/dpdk-devbind.py -b igb_uio 00:03.0 00:04.0

Note: vhost ports pci ids can be retrieved using:

lspci | grep Ethernet

Finally, start the application:

# TODO

Sample XML

<domain type='kvm'>
<name>demovm</name>
<uuid>4a9b3f53-fa2a-47f3-a757-dd87720d9d1d</uuid>
<memory unit='KiB'>4194304</memory>
<currentMemory unit='KiB'>4194304</currentMemory>
<memoryBacking>
<hugepages>

<page size='2' unit='M' nodeset='0'/>
</hugepages>

</memoryBacking>
<vcpu placement='static'>2</vcpu>
<cputune>
<shares>4096</shares>
<vcpupin vcpu='0' cpuset='4'/>
<vcpupin vcpu='1' cpuset='5'/>
<emulatorpin cpuset='4,5'/>

</cputune>
<os>
<type arch='x86_64' machine='pc'>hvm</type>
<boot dev='hd'/>

</os>
<features>
<acpi/>
<apic/>

</features>
<cpu mode='host-model'>
<model fallback='allow'/>
<topology sockets='2' cores='1' threads='1'/>
<numa>

<cell id='0' cpus='0-1' memory='4194304' unit='KiB' memAccess='shared'/>
</numa>

</cpu>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>

(continues on next page)
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(continued from previous page)

<devices>
<emulator>/usr/bin/qemu-system-x86_64</emulator>
<disk type='file' device='disk'>

<driver name='qemu' type='qcow2' cache='none'/>
<source file='/root/CentOS7_x86_64.qcow2'/>
<target dev='vda' bus='virtio'/>

</disk>
<interface type='vhostuser'>

<mac address='00:00:00:00:00:01'/>
<source type='unix' path='/usr/local/var/run/openvswitch/dpdkvhostuser0' mode=

→˓'client'/>
<model type='virtio'/>

<driver queues='2'>
<host mrg_rxbuf='on'/>

</driver>
</interface>
<interface type='vhostuser'>

<mac address='00:00:00:00:00:02'/>
<source type='unix' path='/usr/local/var/run/openvswitch/dpdkvhostuser1' mode=

→˓'client'/>
<model type='virtio'/>
<driver queues='2'>

<host mrg_rxbuf='on'/>
</driver>

</interface>
<serial type='pty'>

<target port='0'/>
</serial>
<console type='pty'>

<target type='serial' port='0'/>
</console>

</devices>
</domain>

Jumbo Frames

DPDK vHost User ports can be configured to use Jumbo Frames. For more information, refer to Jumbo Frames.

vhost tx retries

When sending a batch of packets to a vhost-user or vhost-user-client interface, it may happen that some but not all of
the packets in the batch are able to be sent to the guest. This is often because there is not enough free descriptors in
the virtqueue for all the packets in the batch to be sent. In this case there will be a retry, with a default maximum of 8
occurring. If at any time no packets can be sent, it may mean the guest is not accepting packets, so there are no (more)
retries.

For information about configuring the maximum amount of tx retries for vhost-user-client interfaces see vhost-user-
client tx retries config.

Note: Maximum vhost tx batch size is defined by NETDEV_MAX_BURST, and is currently as 32.

Tx Retries may be reduced or even avoided by some external configuration, such as increasing the virtqueue size
through the rx_queue_size parameter introduced in QEMU 2.7.0 / libvirt 2.3.0:
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<interface type='vhostuser'>
<mac address='56:48:4f:53:54:01'/>
<source type='unix' path='/tmp/dpdkvhostclient0' mode='server'/>
<model type='virtio'/>
<driver name='vhost' rx_queue_size='1024' tx_queue_size='1024'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x10' function='0x0'/>

</interface>

The guest application will also need need to provide enough descriptors. For example with testpmd the command
line argument can be used:

--rxd=1024 --txd=1024

The guest should also have sufficient cores dedicated for consuming and processing packets at the required rate.

The amount of Tx retries on a vhost-user or vhost-user-client interface can be shown with:

$ ovs-vsctl get Interface dpdkvhostclient0 statistics:ovs_tx_retries

vhost-user Dequeue Zero Copy (experimental)

Normally when dequeuing a packet from a vHost User device, a memcpy operation must be used to copy that packet
from guest address space to host address space. This memcpy can be removed by enabling dequeue zero-copy like so:

$ ovs-vsctl add-port br0 dpdkvhostuserclient0 -- set Interface \
dpdkvhostuserclient0 type=dpdkvhostuserclient \
options:vhost-server-path=/tmp/dpdkvhostclient0 \
options:dq-zero-copy=true

With this feature enabled, a reference (pointer) to the packet is passed to the host, instead of a copy of the packet.
Removing this memcpy can give a performance improvement for some use cases, for example switching large packets
between different VMs. However additional packet loss may be observed.

Note that the feature is disabled by default and must be explicitly enabled by setting the dq-zero-copy option
to true while specifying the vhost-server-path option as above. If you wish to split out the command into
multiple commands as below, ensure dq-zero-copy is set before vhost-server-path:

$ ovs-vsctl set Interface dpdkvhostuserclient0 options:dq-zero-copy=true
$ ovs-vsctl set Interface dpdkvhostuserclient0 \

options:vhost-server-path=/tmp/dpdkvhostclient0

The feature is only available to dpdkvhostuserclient port types.

A limitation exists whereby if packets from a vHost port with dq-zero-copy=true are destined for a dpdk type
port, the number of tx descriptors (n_txq_desc) for that port must be reduced to a smaller number, 128 being the
recommended value. This can be achieved by issuing the following command:

$ ovs-vsctl set Interface dpdkport options:n_txq_desc=128

Note: The sum of the tx descriptors of all dpdk ports the VM will send to should not exceed 128. For example, in
case of a bond over two physical ports in balance-tcp mode, one must divide 128 by the number of links in the bond.

Refer to DPDK Physical Port Queue Sizes for more information.

The reason for this limitation is due to how the zero copy functionality is implemented. The vHost device’s ‘tx used
vring’, a virtio structure used for tracking used ie. sent descriptors, will only be updated when the NIC frees the
corresponding mbuf. If we don’t free the mbufs frequently enough, that vring will be starved and packets will no
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longer be processed. One way to ensure we don’t encounter this scenario, is to configure n_txq_desc to a small
enough number such that the ‘mbuf free threshold’ for the NIC will be hit more often and thus free mbufs more
frequently. The value of 128 is suggested, but values of 64 and 256 have been tested and verified to work too, with
differing performance characteristics. A value of 512 can be used too, if the virtio queue size in the guest is increased
to 1024 (available to configure in QEMU versions v2.10 and greater). This value can be set like so:

$ qemu-system-x86_64 ... -chardev socket,id=char1,path=<sockpath>,server
-netdev type=vhost-user,id=mynet1,chardev=char1,vhostforce
-device virtio-net-pci,mac=00:00:00:00:00:01,netdev=mynet1,
tx_queue_size=1024

Because of this limitation, this feature is considered ‘experimental’.

Note: Post-copy Live Migration is not compatible with dequeue zero copy.

Further information can be found in the DPDK documentation

DPDK Ring Ports

Warning: DPDK ring ports are considered deprecated. Please migrate to virtio-based interfaces, e.g. vhost-user
ports, net_virtio_user DPDK vdev.

Warning: DPDK ring interfaces cannot be used for guest communication and are retained mainly for backwards
compatibility purposes. In nearly all cases, vhost-user ports are a better choice and should be used instead.

OVS userspace switching supports ring ports implemented using DPDK’s librte_ring library. For more informa-
tion on this library, refer to the DPDK documentation.

Important: To use any DPDK-backed interface, you must ensure your bridge is configured correctly. For more
information, refer to DPDK Bridges.

Quick Example

This example demonstrates how to add a dpdkr port to an existing bridge called br0:

$ ovs-vsctl add-port br0 dpdkr0 -- set Interface dpdkr0 type=dpdkr

dpdkr

To use ring ports, you must first add said ports to the switch. Unlike vhost-user ports, ring port names must take a
specific format, dpdkrNN, where NN is the port ID. For example:

$ ovs-vsctl add-port br0 dpdkr0 -- set Interface dpdkr0 type=dpdkr

Once the port has been added to the switch, they can be used by host processes. A sample loopback application -
test-dpdkr - is included with Open vSwitch. To use this, run the following:
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$ ./tests/test-dpdkr -c 1 -n 4 --proc-type=secondary -- -n 0

Further functionality would require developing your own application. Refer to the DPDK documentation for more
information on how to do this.

Adding dpdkr ports to the guest

It is not recommended to use ring ports from guests. Historically, this was possible using a patched version of QEMU
and the IVSHMEM feature provided with DPDK. However, this functionality was removed because:

• The IVSHMEM library was removed from DPDK in DPDK 16.11

• Support for IVSHMEM was never upstreamed to QEMU and has been publicly rejected by the QEMU commu-
nity

• vhost-user interfaces are the de facto DPDK-based path to guests

DPDK Virtual Devices

DPDK provides drivers for both physical and virtual devices. Physical DPDK devices are added to OVS by specifying
a valid PCI address in dpdk-devargs. Virtual DPDK devices which do not have PCI addresses can be added using
a different format for dpdk-devargs.

Important: To use any DPDK-backed interface, you must ensure your bridge is configured correctly. For more
information, refer to DPDK Bridges.

Note: Not all DPDK virtual PMD drivers have been tested and verified to work.

New in version 2.7.0.

Quick Example

To add a virtual dpdk devices, the dpdk-devargs argument should be of the format eth_<driver_name><x>,
where x’ is a unique identifier of your choice for the given port. For example to add a dpdk port that uses the null
DPDK PMD driver, run:

$ ovs-vsctl add-port br0 null0 -- set Interface null0 type=dpdk \
options:dpdk-devargs=eth_null0

Similarly, to add a dpdk port that uses the af_packet DPDK PMD driver, run:

$ ovs-vsctl add-port br0 myeth0 -- set Interface myeth0 type=dpdk \
options:dpdk-devargs=eth_af_packet0,iface=eth0

More information on the different types of virtual DPDK PMDs can be found in the DPDK documentation.
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PMD Threads

Poll Mode Driver (PMD) threads are the threads that do the heavy lifting for userspace switching. They perform tasks
such as continuous polling of input ports for packets, classifying packets once received, and executing actions on the
packets once they are classified.

PMD threads utilize Receive (Rx) and Transmit (Tx) queues, commonly known as rxqs and txqs. While Tx queue
configuration happens automatically, Rx queues can be configured by the user. This can happen in one of two ways:

• For physical interfaces, configuration is done using the ovs-appctl utility.

• For virtual interfaces, configuration is done using the ovs-appctl utility, but this configuration must be
reflected in the guest configuration (e.g. QEMU command line arguments).

The ovs-appctl utility also provides a number of commands for querying PMD threads and their respective queues.
This, and all of the above, is discussed here.

PMD Thread Statistics

To show current stats:

$ ovs-appctl dpif-netdev/pmd-stats-show

To clear previous stats:

$ ovs-appctl dpif-netdev/pmd-stats-clear

Port/Rx Queue Assigment to PMD Threads

Correct configuration of PMD threads and the Rx queues they utilize is a requirement in order to achieve maximum
performance. This is particularly true for enabling things like multiqueue for physical and vhost-user interfaces.

To show port/Rx queue assignment:

$ ovs-appctl dpif-netdev/pmd-rxq-show

Rx queues may be manually pinned to cores. This will change the default Rx queue assignment to PMD threads:

$ ovs-vsctl set Interface <iface> \
other_config:pmd-rxq-affinity=<rxq-affinity-list>

where:

• <rxq-affinity-list> is a CSV list of <queue-id>:<core-id> values

For example:

$ ovs-vsctl set interface dpdk-p0 options:n_rxq=4 \
other_config:pmd-rxq-affinity="0:3,1:7,3:8"

This will ensure there are 4 Rx queues and that these queues are configured like so:

• Queue #0 pinned to core 3

• Queue #1 pinned to core 7

• Queue #2 not pinned

• Queue #3 pinned to core 8
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PMD threads on cores where Rx queues are pinned will become isolated. This means that this thread will only poll
the pinned Rx queues.

Warning: If there are no non-isolated PMD threads, non-pinned RX queues will not be polled. Also, if the
provided <core-id> is not available (e.g. the <core-id> is not in pmd-cpu-mask), the RX queue will not
be polled by any PMD thread.

If pmd-rxq-affinity is not set for Rx queues, they will be assigned to PMDs (cores) automatically.

The algorithm used to automatically assign Rxqs to PMDs can be set by:

$ ovs-vsctl set Open_vSwitch . other_config:pmd-rxq-assign=<assignment>

By default, cycles assignment is used where the Rxqs will be ordered by their measured processing cycles, and then
be evenly assigned in descending order to PMDs based on an up/down walk of the PMDs. For example, where there
are five Rx queues and three cores - 3, 7, and 8 - available and the measured usage of core cycles per Rx queue over
the last interval is seen to be:

• Queue #0: 30%

• Queue #1: 80%

• Queue #3: 60%

• Queue #4: 70%

• Queue #5: 10%

The Rx queues will be assigned to the cores in the following order:

Core 3: Q1 (80%) |
Core 7: Q4 (70%) | Q5 (10%)
Core 8: Q3 (60%) | Q0 (30%)

Alternatively, roundrobin assignment can be used, where the Rxqs are assigned to PMDs in a round-robined
fashion. This algorithm was used by default prior to OVS 2.9. For example, given the following ports and queues:

• Port #0 Queue #0 (P0Q0)

• Port #0 Queue #1 (P0Q1)

• Port #1 Queue #0 (P1Q0)

• Port #1 Queue #1 (P1Q1)

• Port #1 Queue #2 (P1Q2)

The Rx queues may be assigned to the cores in the following order:

Core 3: P0Q0 | P1Q1
Core 7: P0Q1 | P1Q2
Core 8: P1Q0 |

To see the current measured usage history of PMD core cycles for each Rx queue:

$ ovs-appctl dpif-netdev/pmd-rxq-show

Note: A history of one minute is recorded and shown for each Rx queue to allow for traffic pattern spikes. Any
changes in the Rx queue’s PMD core cycles usage, due to traffic pattern or reconfig changes, will take one minute to
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be fully reflected in the stats.

Rx queue to PMD assignment takes place whenever there are configuration changes or can be triggered by using:

$ ovs-appctl dpif-netdev/pmd-rxq-rebalance

Changed in version 2.6.0: The pmd-rxq-show command was added in OVS 2.6.0.

Changed in version 2.9.0: Utilization-based allocation of Rx queues to PMDs and the pmd-rxq-rebalance com-
mand were added in OVS 2.9.0. Prior to this, allocation was round-robin and processing cycles were not taken into
consideration.

In addition, the output of pmd-rxq-show was modified to include Rx queue utilization of the PMD as a percentage.
Prior to this, tracking of stats was not available.

Automatic assignment of Port/Rx Queue to PMD Threads (experimental)

Cycle or utilization based allocation of Rx queues to PMDs gives efficient load distribution but it is not adaptive to
change in traffic pattern occurring over the time. This causes uneven load among the PMDs which results in overall
lower throughput.

To address this automatic load balancing of PMDs can be set by:

$ ovs-vsctl set open_vswitch . other_config:pmd-auto-lb="true"

If pmd-auto-lb is set to true AND cycle based assignment is enabled then auto load balancing of PMDs is enabled
provided there are 2 or more non-isolated PMDs and at least one of these PMDs is polling more than one RX queue.
So, following conditions need to be met to have Auto Load balancing enabled:

1. cycle based assignment of RX queues to PMD is enabled.

2. pmd-auto-lb is set to true.

3. There are two or more non-isolated PMDs present.

4. And at least one of the non-isolated PMD has more than one queue polling.

If any of above is not met PMD Auto Load Balancing is disabled.

Once auto load balancing is set, each non-isolated PMD measures the processing load for each of its associated queues
every 10 seconds. If the aggregated PMD load reaches 95% for 6 consecutive intervals then PMD considers itself to
be overloaded.

If any PMD is overloaded, a dry-run of the PMD assignment algorithm is performed by OVS main thread. The dry-run
does NOT change the existing queue to PMD assignments.

If the resultant mapping of dry-run indicates an improved distribution of the load then the actual reassignment will be
performed.

Note: PMD Auto Load Balancing doesn’t currently work if queues are assigned cross NUMA as actual processing
load could get worse after assignment as compared to what dry run predicts.

The minimum time between 2 consecutive PMD auto load balancing iterations can also be configured by:

$ ovs-vsctl set open_vswitch .\
other_config:pmd-auto-lb-rebal-interval="<interval>"
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where <interval> is a value in minutes. The default interval is 1 minute and setting it to 0 will also result in default
value i.e. 1 min.

A user can use this option to avoid frequent trigger of Auto Load Balancing of PMDs. For e.g. set this (in min) such
that it occurs once in few hours or a day or a week.

Note: In some scenarios it may not be desired to have Auto Load Balancing triggerred. For example, if traffic profile
for specific RX queue is changing dramatically very frequently which in turn thrashes CPU cache due to changes
required in dpctl flows and EMC for newly added flows. In such scenarios user should configure rebalance interval
accordingly to avoid frequent rebalancing happening.

Quality of Service (QoS)

It is possible to apply both ingress and egress limiting when using the DPDK datapath. These are referred to as QoS
and Rate Limiting, respectively.

New in version 2.7.0.

QoS (Egress Policing)

Assuming you have a vhost-user port transmitting traffic consisting of packets of size 64 bytes, the following command
would limit the egress transmission rate of the port to ~1,000,000 packets per second:

$ ovs-vsctl set port vhost-user0 qos=@newqos -- \
--id=@newqos create qos type=egress-policer other-config:cir=46000000 \
other-config:cbs=2048`

To examine the QoS configuration of the port, run:

$ ovs-appctl -t ovs-vswitchd qos/show vhost-user0

To clear the QoS configuration from the port and ovsdb, run:

$ ovs-vsctl destroy QoS vhost-user0 -- clear Port vhost-user0 qos

Refer to vswitch.xml for more details on egress policer.

Rate Limiting (Ingress Policing)

Assuming you have a vhost-user port receiving traffic consisting of packets of size 64 bytes, the following command
would limit the reception rate of the port to ~1,000,000 packets per second:

$ ovs-vsctl set interface vhost-user0 ingress_policing_rate=368000 \
ingress_policing_burst=1000`

To examine the ingress policer configuration of the port:

$ ovs-vsctl list interface vhost-user0

To clear the ingress policer configuration from the port:

$ ovs-vsctl set interface vhost-user0 ingress_policing_rate=0
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Refer to vswitch.xml for more details on ingress policer.

Flow Control

Flow control is available for DPDK physical ports. For more information, refer to Flow Control.

pdump

New in version 2.6.0.

Warning: DPDK pdump support is deprecated in OVS and will be removed in next releases.

pdump allows you to listen on DPDK ports and view the traffic that is passing on them. To use this utility, one must
have libpcap installed on the system. Furthermore, DPDK must be built with CONFIG_RTE_LIBRTE_PDUMP=y
and CONFIG_RTE_LIBRTE_PMD_PCAP=y. OVS should be built with --enable-dpdk-pdump configuration
option.

Warning: A performance decrease is expected when using a monitoring application like the DPDK pdump app.

To use pdump, simply launch OVS as usual, then navigate to the app/pdump directory in DPDK, make the applica-
tion and run like so:

$ sudo ./build/app/dpdk-pdump -- \
--pdump port=0,queue=0,rx-dev=/tmp/pkts.pcap

The above command captures traffic received on queue 0 of port 0 and stores it in /tmp/pkts.pcap. Other com-
binations of port numbers, queues numbers and pcap locations are of course also available to use. For example, to
capture all packets that traverse port 0 in a single pcap file:

$ sudo ./build/app/dpdk-pdump -- \
--pdump 'port=0,queue=*,rx-dev=/tmp/pkts.pcap,tx-dev=/tmp/pkts.pcap'

Note: XDG_RUNTIME_DIR environment variable might need to be adjusted to OVS runtime directory (/var/
run/openvswitch in most cases) for dpdk-pdump utility if OVS started by non-root user.

Many tools are available to view the contents of the pcap file. Once example is tcpdump. Issue the following command
to view the contents of pkts.pcap:

$ tcpdump -r pkts.pcap

More information on the pdump app and its usage can be found in the DPDK documentation.

Jumbo Frames

New in version 2.6.0.

By default, DPDK ports are configured with standard Ethernet MTU (1500B). To enable Jumbo Frames support for a
DPDK port, change the Interface’s mtu_request attribute to a sufficiently large value. For example, to add a DPDK
physical port with an MTU of 9000, run:
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$ ovs-vsctl add-port br0 dpdk-p0 -- set Interface dpdk-p0 type=dpdk \
options:dpdk-devargs=0000:01:00.0 mtu_request=9000

Similarly, to change the MTU of an existing port to 6200, run:

$ ovs-vsctl set Interface dpdk-p0 mtu_request=6200

Some additional configuration is needed to take advantage of jumbo frames with vHost User ports:

• Mergeable buffers must be enabled for vHost User ports, as demonstrated in the QEMU command line snippet
below:

-netdev type=vhost-user,id=mynet1,chardev=char0,vhostforce \
-device virtio-net-pci,mac=00:00:00:00:00:01,netdev=mynet1,mrg_rxbuf=on

• Where virtio devices are bound to the Linux kernel driver in a guest environment (i.e. interfaces are not bound to
an in-guest DPDK driver), the MTU of those logical network interfaces must also be increased to a sufficiently
large value. This avoids segmentation of Jumbo Frames received in the guest. Note that ‘MTU’ refers to the
length of the IP packet only, and not that of the entire frame.

To calculate the exact MTU of a standard IPv4 frame, subtract the L2 header and CRC lengths (i.e. 18B) from
the max supported frame size. So, to set the MTU for a 9018B Jumbo Frame:

$ ip link set eth1 mtu 9000

When Jumbo Frames are enabled, the size of a DPDK port’s mbuf segments are increased, such that a full Jumbo
Frame of a specific size may be accommodated within a single mbuf segment.

Jumbo frame support has been validated against 9728B frames, which is the largest frame size supported by Fortville
NIC using the DPDK i40e driver, but larger frames and other DPDK NIC drivers may be supported. These cases are
common for use cases involving East-West traffic only.

Userspace Datapath - TSO

Note: This feature is considered experimental.

TCP Segmentation Offload (TSO) enables a network stack to delegate segmentation of an oversized TCP segment to
the underlying physical NIC. Offload of frame segmentation achieves computational savings in the core, freeing up
CPU cycles for more useful work.

A common use case for TSO is when using virtualization, where traffic that’s coming in from a VM can offload the
TCP segmentation, thus avoiding the fragmentation in software. Additionally, if the traffic is headed to a VM within
the same host further optimization can be expected. As the traffic never leaves the machine, no MTU needs to be
accounted for, and thus no segmentation and checksum calculations are required, which saves yet more cycles. Only
when the traffic actually leaves the host the segmentation needs to happen, in which case it will be performed by the
egress NIC. Consult your controller’s datasheet for compatibility. Secondly, the NIC must have an associated DPDK
Poll Mode Driver (PMD) which supports TSO. For a list of features per PMD, refer to the DPDK documentation.

Enabling TSO

The TSO support may be enabled via a global config value tso-support. Setting this to true enables TSO support
for all ports.

$ ovs-vsctl set Open_vSwitch . other_config:tso-support=true
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The default value is false.

Changing tso-support requires restarting the daemon.

When using vHost User ports, TSO may be enabled as follows.

TSO is enabled in OvS by the DPDK vHost User backend; when a new guest connection is established, TSO is thus
advertised to the guest as an available feature:

QEMU Command Line Parameter:

$ sudo $QEMU_DIR/x86_64-softmmu/qemu-system-x86_64 \
...
-device virtio-net-pci,mac=00:00:00:00:00:01,netdev=mynet1,\
csum=on,guest_csum=on,guest_tso4=on,guest_tso6=on\
...

2. Ethtool. Assuming that the guest’s OS also supports TSO, ethtool can be used to enable same:

$ ethtool -K eth0 sg on # scatter-gather is a prerequisite for TSO
$ ethtool -K eth0 tso on
$ ethtool -k eth0

Limitations

The current OvS userspace TSO implementation supports flat and VLAN networks only (i.e. no support for TSO over
tunneled connection [VxLAN, GRE, IPinIP, etc.]).

There is no software implementation of TSO, so all ports attached to the datapath must support TSO or packets using
that feature will be dropped on ports without TSO support. That also means guests using vhost-user in client mode
will receive TSO packet regardless of TSO being enabled or disabled within the guest.

DPDK Device Memory Models

DPDK device memory can be allocated in one of two ways in OVS DPDK, shared memory or per port memory.
The specifics of both are detailed below.

Shared Memory

By default OVS DPDK uses a shared memory model. This means that multiple ports can share the same mempool.
For example when a port is added it will have a given MTU and socket ID associated with it. If a mempool has been
created previously for an existing port that has the same MTU and socket ID, that mempool is used for both ports. If
there is no existing mempool supporting these parameters then a new mempool is created.

Per Port Memory

In the per port memory model, mempools are created per device and are not shared. The benefit of this is a more
transparent memory model where mempools will not be exhausted by other DPDK devices. However this comes at
a potential increase in cost for memory dimensioning for a given deployment. Users should be aware of the memory
requirements for their deployment before using this model and allocate the required hugepage memory.

Per port mempool support may be enabled via a global config value, `per-port-memory`. Setting this to true
enables the per port memory model for all DPDK devices in OVS:
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$ ovs-vsctl set Open_vSwitch . other_config:per-port-memory=true

Important: This value should be set before setting dpdk-init=true. If set after dpdk-init=true then the daemon must
be restarted to use per-port-memory.

Calculating Memory Requirements

The amount of memory required for a given mempool can be calculated by the number mbufs in the mempool *
mbuf size.

Users should be aware of the following:

• The number of mbufs per mempool will differ between memory models.

• The size of each mbuf will be affected by the requested MTU size.

Important: An mbuf size in bytes is always larger than the requested MTU size due to alignment and rounding
needed in OVS DPDK.

Below are a number of examples of memory requirement calculations for both shared and per port memory models.

Shared Memory Calculations

In the shared memory model the number of mbufs requested is directly affected by the requested MTU size as described
in the table below.

MTU Size Num MBUFS
1500 or greater 262144
Less than 1500 16384

Important: If a deployment does not have enough memory to provide 262144 mbufs then the requested amount is
halved up until 16384.

Example 1

MTU = 1500 Bytes
Number of mbufs = 262144
Mbuf size = 3008 Bytes
Memory required = 262144 * 3008 = 788 MB

Example 2
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MTU = 1800 Bytes
Number of mbufs = 262144
Mbuf size = 3008 Bytes
Memory required = 262144 * 3008 = 788 MB

Note: Assuming the same socket is in use for example 1 and 2 the same mempool would be shared.

Example 3

MTU = 6000 Bytes
Number of mbufs = 262144
Mbuf size = 7104 Bytes
Memory required = 262144 * 7104 = 1862 MB

Example 4

MTU = 9000 Bytes
Number of mbufs = 262144
Mbuf size = 10176 Bytes
Memory required = 262144 * 10176 = 2667 MB

Per Port Memory Calculations

The number of mbufs requested in the per port model is more complicated and accounts for multiple dynamic factors
in the datapath and device configuration.

A rough estimation of the number of mbufs required for a port is:

packets required to fill the device rxqs +
packets that could be stuck on other ports txqs +
packets on the pmd threads +
additional corner case memory.

The algorithm in OVS used to calculate this is as follows:

requested number of rxqs * requested rxq size +
requested number of txqs * requested txq size +
min(RTE_MAX_LCORE, requested number of rxqs) * netdev_max_burst +
MIN_NB_MBUF.

where:

• requested number of rxqs: Number of requested receive queues for a device.

• requested rxq size: The number of descriptors requested for a rx queue.

• requested number of txqs: Number of requested transmit queues for a device. Calculated as the number of
PMDs configured +1.

• requested txq size: the number of descriptors requested for a tx queue.
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• min(RTE_MAX_LCORE, requested number of rxqs): Compare the maximum number of lcores supported
by DPDK to the number of requested receive queues for the device and use the variable of lesser value.

• NETDEV_MAX_BURST: Maximum number of of packets in a burst, defined as 32.

• MIN_NB_MBUF: Additional memory for corner case, defined as 16384.

For all examples below assume the following values:

• requested_rxq_size = 2048

• requested_txq_size = 2048

• RTE_MAX_LCORE = 128

• netdev_max_burst = 32

• MIN_NB_MBUF = 16384

Example 1: (1 rxq, 1 PMD, 1500 MTU)

MTU = 1500
Number of mbufs = (1 * 2048) + (2 * 2048) + (1 * 32) + (16384) = 22560
Mbuf size = 3008 Bytes
Memory required = 22560 * 3008 = 67 MB

Example 2: (1 rxq, 2 PMD, 6000 MTU)

MTU = 6000
Number of mbufs = (1 * 2048) + (3 * 2048) + (1 * 32) + (16384) = 24608
Mbuf size = 7104 Bytes
Memory required = 24608 * 7104 = 175 MB

Example 3: (2 rxq, 2 PMD, 9000 MTU)

MTU = 9000
Number of mbufs = (2 * 2048) + (3 * 2048) + (1 * 32) + (16384) = 26656
Mbuf size = 10176 Bytes
Memory required = 26656 * 10176 = 271 MB

4.1.11 OVS-on-Hyper-V Design

This document provides details of the effort to develop Open vSwitch on Microsoft Hyper-V. This document should
give enough information to understand the overall design.

Note: The userspace portion of the OVS has been ported to Hyper-V in a separate effort, and committed to the
openvswitch repo. This document will mostly emphasize on the kernel driver, though we touch upon some of the
aspects of userspace as well.
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Background Info

Microsoft’s hypervisor solution - Hyper-V1 implements a virtual switch that is extensible and provides opportunities
for other vendors to implement functional extensions2. The extensions need to be implemented as NDIS drivers that
bind within the extensible switch driver stack provided. The extensions can broadly provide the functionality of moni-
toring, modifying and forwarding packets to destination ports on the Hyper-V extensible switch. Correspondingly, the
extensions can be categorized into the following types and provide the functionality noted:

• Capturing extensions: monitoring packets

• Filtering extensions: monitoring, modifying packets

• Forwarding extensions: monitoring, modifying, forwarding packets

As can be expected, the kernel portion (datapath) of OVS on Hyper-V solution will be implemented as a forwarding
extension.

In Hyper-V, the virtual machine is called the Child Partition. Each VIF or physical NIC on the Hyper-V extensible
switch is attached via a port. Each port is both on the ingress path or the egress path of the switch. The ingress path
is used for packets being sent out of a port, and egress is used for packet being received on a port. By design, NDIS
provides a layered interface. In this layered interface, higher level layers call into lower level layers, in the ingress
path. In the egress path, it is the other way round. In addition, there is a object identifier (OID) interface for control
operations Eg. addition of a port. The workflow for the calls is similar in nature to the packets, where higher level
layers call into the lower level layers. A good representational diagram of this architecture is in4.

Windows Filtering Platform (WFP)5 is a platform implemented on Hyper-V that provides APIs and services for filter-
ing packets. WFP has been utilized to filter on some of the packets that OVS is not equipped to handle directly. More
details in later sections.

IP Helper6 is a set of API available on Hyper-V to retrieve information related to the network configuration information
on the host machine. IP Helper has been used to retrieve some of the configuration information that OVS needs.

Design

Various blocks of the OVS Windows implementation

+-------------------------------+
| |
| CHILD PARTITION |
| |

+------+ +--------------+ | +-----------+ +------------+ |
| | | | | | | | | |
| ovs- | | OVS- | | | Virtual | | Virtual | |
| *ctl | | USERSPACE | | | Machine #1| | Machine #2 | |
| | | DAEMON | | | | | | |
+------+-++---+---------+ | +--+------+-+ +----+------++ | +--------+
| dpif- | | netdev- | | |VIF #1| |VIF #2| | |Physical|
| netlink | | windows | | +------+ +------+ | | NIC |
+---------+ +---------+ | || /\ | +--------+

User /\ /\ | || *#1* *#4* || | /\
=========||=========||============+------||-------------------||--+ ||

(continues on next page)

1 Hyper-V Extensible Switch https://msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch
2 Hyper-V Extensible Switch Extensions https://msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch-extensions
4 Hyper-V Extensible Switch Components https://msdn.microsoft.com/windows/hardware/drivers/network/

hyper-v-extensible-switch-components
5 Windows Filtering Platform https://msdn.microsoft.com/en-us/library/windows/desktop/aa366510(v=vs.85).aspx
6 IP Helper https://msdn.microsoft.com/windows/hardware/drivers/network/ip-helper
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(continued from previous page)

Kernel || || \/ || ||=====/
\/ \/ +-----+ +-----+ *#5*

+-------------------------------+ | | | |
| +----------------------+ | | | | |
| | OVS Pseudo Device | | | | | |
| +----------------------+ | | | | |
| | Netlink Impl. | | | | | |
| ----------------- | | I | | |
| +------------+ | | N | | E |
| | Flowtable | +------------+ | | G | | G |
| +------------+ | Packet | |*#2*| R | | R |
| +--------+ | Processing | |<=> | E | | E |
| | WFP | | | | | S | | S |
| | Driver | +------------+ | | S | | S |
| +--------+ | | | | |
| | | | | |
| OVS FORWARDING EXTENSION | | | | |
+-------------------------------+ +-----+-----------------+-----+

|HYPER-V Extensible Switch *#3|
+-----------------------------+

NDIS STACK

This diagram shows the various blocks involved in the OVS Windows implementation, along with some of the com-
ponents available in the NDIS stack, and also the virtual machines. The workflow of a packet being transmitted from
a VIF out and into another VIF and to a physical NIC is also shown. Later on in this section, we will discuss the flow
of a packet at a high level.

The figure gives a general idea of where the OVS userspace and the kernel components fit in, and how they interface
with each other.

The kernel portion (datapath) of OVS on Hyper-V solution has be implemented as a forwarding extension roughly
implementing the following sub-modules/functionality. Details of each of these sub-components in the kernel are
contained in later sections:

• Interfacing with the NDIS stack

• Netlink message parser

• Netlink sockets

• Switch/Datapath management

• Interfacing with userspace portion of the OVS solution to implement the necessary functionality that userspace
needs

• Port management

• Flowtable/Actions/packet forwarding

• Tunneling

• Event notifications

The datapath for the OVS on Linux is a kernel module, and cannot be directly ported since there are significant differ-
ences in architecture even though the end functionality provided would be similar. Some examples of the differences
are:

• Interfacing with the NDIS stack to hook into the NDIS callbacks for functionality such as receiving and sending
packets, packet completions, OIDs used for events such as a new port appearing on the virtual switch.

• Interface between the userspace and the kernel module.

4.1. OVS 181



Open vSwitch, Release 2.12.90

• Event notifications are significantly different.

• The communication interface between DPIF and the kernel module need not be implemented in the way OVS
on Linux does. That said, it would be advantageous to have a similar interface to the kernel module for reasons
of readability and maintainability.

• Any licensing issues of using Linux kernel code directly.

Due to these differences, it was a straightforward decision to develop the datapath for OVS on Hyper-V from scratch
rather than porting the one on Linux. A re-development focused on the following goals:

• Adhere to the existing requirements of userspace portion of OVS (such as ovs-vswitchd), to minimize changes
in the userspace workflow.

• Fit well into the typical workflow of a Hyper-V extensible switch forwarding extension.

The userspace portion of the OVS solution is mostly POSIX code, and not very Linux specific. Majority of the
userspace code does not interface directly with the kernel datapath and was ported independently of the kernel datapath
effort.

As explained in the OVS porting design document7, DPIF is the portion of userspace that interfaces with the kernel
portion of the OVS. The interface that each DPIF provider has to implement is defined in dpif-provider.h3.
Though each platform is allowed to have its own implementation of the DPIF provider, it was found, via community
feedback, that it is desired to share code whenever possible. Thus, the DPIF provider for OVS on Hyper-V shares code
with the DPIF provider on Linux. This interface is implemented in dpif-netlink.c.

We’ll elaborate more on kernel-userspace interface in a dedicated section below. Here it suffices to say that the DPIF
provider implementation for Windows is netlink-based and shares code with the Linux one.

Kernel Module (Datapath)

Interfacing with the NDIS Stack

For each virtual switch on Hyper-V, the OVS extensible switch extension can be enabled/disabled. We support enabling
the OVS extension on only one switch. This is consistent with using a single datapath in the kernel on Linux. All the
physical adapters are connected as external adapters to the extensible switch.

When the OVS switch extension registers itself as a filter driver, it also registers callbacks for the switch/port man-
agement and datapath functions. In other words, when a switch is created on the Hyper-V root partition (host), the
extension gets an activate callback upon which it can initialize the data structures necessary for OVS to function.
Similarly, there are callbacks for when a port gets added to the Hyper-V switch, and an External Network adapter or a
VM Network adapter is connected/disconnected to the port. There are also callbacks for when a VIF (NIC of a child
partition) send out a packet, or a packet is received on an external NIC.

As shown in the figures, an extensible switch extension gets to see a packet sent by the VM (VIF) twice - once on the
ingress path and once on the egress path. Forwarding decisions are to be made on the ingress path. Correspondingly,
we will be hooking onto the following interfaces:

• Ingress send indication: intercept packets for performing flow based forwarding.This includes straight forward-
ing to output ports. Any packet modifications needed to be performed are done here either inline or by creating
a new packet. A forwarding action is performed as the flow actions dictate.

• Ingress completion indication: cleanup and free packets that we generated on the ingress send path, pass-through
for packets that we did not generate.

• Egress receive indication: pass-through.

• Egress completion indication: pass-through.

7 How to Port Open vSwitch to New Software or Hardware Porting Open vSwitch to New Software or Hardware
3 DPIF Provider http://openvswitch.sourcearchive.com/documentation/1.1.0-1/dpif-provider_8h_source.html

182 Chapter 4. Deep Dive

http://openvswitch.sourcearchive.com/documentation/1.1.0-1/dpif-provider_8h_source.html


Open vSwitch, Release 2.12.90

Interfacing with OVS Userspace

We have implemented a pseudo device interface for letting OVS userspace talk to the OVS kernel module. This is
equivalent to the typical character device interface on POSIX platforms where we can register custom functions for
read, write and ioctl functionality. The pseudo device supports a whole bunch of ioctls that netdev and DPIF on OVS
userspace make use of.

Netlink Message Parser

The communication between OVS userspace and OVS kernel datapath is in the form of Netlink messages1,8. More
details about this are provided below. In the kernel, a full fledged netlink message parser has been implemented along
the lines of the netlink message parser in OVS userspace. In fact, a lot of the code is ported code.

On the lines of struct ofpbuf in OVS userspace, a managed buffer has been implemented in the kernel datapath
to make it easier to parse and construct netlink messages.

Netlink Sockets

On Linux, OVS userspace utilizes netlink sockets to pass back and forth netlink messages. Since much of userspace
code including DPIF provider in dpif-netlink.c (formerly dpif-linux.c) has been reused, pseudo-netlink sockets have
been implemented in OVS userspace. As it is known, Windows lacks native netlink socket support, and also the socket
family is not extensible either. Hence it is not possible to provide a native implementation of netlink socket. We
emulate netlink sockets in lib/netlink-socket.c and support all of the nl_* APIs to higher levels. The implementation
opens a handle to the pseudo device for each netlink socket. Some more details on this topic are provided in the
userspace section on netlink sockets.

Typical netlink semantics of read message, write message, dump, and transaction have been implemented so that
higher level layers are not affected by the netlink implementation not being native.

Switch/Datapath Management

As explained above, we hook onto the management callback functions in the NDIS interface for when to initialize the
OVS data structures, flow tables etc. Some of this code is also driven by OVS userspace code which sends down ioctls
for operations like creating a tunnel port etc.

Port Management

As explained above, we hook onto the management callback functions in the NDIS interface to know when a port is
added/connected to the Hyper-V switch. We use these callbacks to initialize the port related data structures in OVS.
Also, some of the ports are tunnel ports that don’t exist on the Hyper-V switch and get added from OVS userspace.

In order to identify a Hyper-V port, we use the value of ‘FriendlyName’ field in each Hyper-V port. We call this the
“OVS-port-name”. The idea is that OVS userspace sets ‘OVS-port-name’ in each Hyper-V port to the same value as
the ‘name’ field of the ‘Interface’ table in OVSDB. When OVS userspace calls into the kernel datapath to add a port,
we match the name of the port with the ‘OVS-port-name’ of a Hyper-V port.

We maintain separate hash tables, and separate counters for ports that have been added from the Hyper-V switch, and
for ports that have been added from OVS userspace.

8 Netlink https://en.wikipedia.org/wiki/Netlink
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Flowtable/Actions/Packet Forwarding

The flowtable and flow actions based packet forwarding is the core of the OVS datapath functionality. For each packet
on the ingress path, we consult the flowtable and execute the corresponding actions. The actions can be limited to
simple forwarding to a particular destination port(s), or more commonly involves modifying the packet to insert a
tunnel context or a VLAN ID, and thereafter forwarding to the external port to send the packet to a destination host.

Tunneling

We make use of the Internal Port on a Hyper-V switch for implementing tunneling. The Internal Port is a virtual
adapter that is exposed on the Hyper- V host, and connected to the Hyper-V switch. Basically, it is an interface
between the host and the virtual switch. The Internal Port acts as the Tunnel end point for the host (aka VTEP), and
holds the VTEP IP address.

Tunneling ports are not actual ports on the Hyper-V switch. These are virtual ports that OVS maintains and while
executing actions, if the outport is a tunnel port, we short circuit by performing the encapsulation action based on
the tunnel context. The encapsulated packet gets forwarded to the external port, and appears to the outside world as
though it was set from the VTEP.

Similarly, when a tunneled packet enters the OVS from the external port bound to the internal port (VTEP), and if yes,
we short circuit the path, and directly forward the inner packet to the destination port (mostly a VIF, but dictated by
the flow). We leverage the Windows Filtering Platform (WFP) framework to be able to receive tunneled packets that
cannot be decapsulated by OVS right away. Currently, fragmented IP packets fall into that category, and we leverage
the code in the host IP stack to reassemble the packet, and performing decapsulation on the reassembled packet.

We’ll also be using the IP helper library to provide us IP address and other information corresponding to the Internal
port.

Event Notifications

The pseudo device interface described above is also used for providing event notifications back to OVS userspace. A
shared memory/overlapped IO model is used.

Userspace Components

The userspace portion of the OVS solution is mostly POSIX code, and not very Linux specific. Majority of the
userspace code does not interface directly with the kernel datapath and was ported independently of the kernel datapath
effort.

In this section, we cover the userspace components that interface with the kernel datapath.

As explained earlier, OVS on Hyper-V shares the DPIF provider implementation with Linux. The DPIF provider on
Linux uses netlink sockets and netlink messages. Netlink sockets and messages are extensively used on Linux to
exchange information between userspace and kernel. In order to satisfy these dependencies, netlink socket (pseudo
and non-native) and netlink messages are implemented on Hyper-V.

The following are the major advantages of sharing DPIF provider code:

1. Maintenance is simpler:

Any change made to the interface defined in dpif-provider.h need not be propagated to multiple implementations.
Also, developers familiar with the Linux implementation of the DPIF provider can easily ramp on the Hyper-V
implementation as well.

184 Chapter 4. Deep Dive



Open vSwitch, Release 2.12.90

2. Netlink messages provides inherent advantages:

Netlink messages are known for their extensibility. Each message is versioned, so the provided data structures
offer a mechanism to perform version checking and forward/backward compatibility with the kernel module.

Netlink Sockets

As explained in other sections, an emulation of netlink sockets has been implemented in lib/netlink-socket.c
for Windows. The implementation creates a handle to the OVS pseudo device, and emulates netlink socket semantics
of receive message, send message, dump, and transact. Most of the nl_* functions are supported.

The fact that the implementation is non-native manifests in various ways. One example is that PID for the netlink
socket is not automatically assigned in userspace when a handle is created to the OVS pseudo device. There’s an extra
command (defined in OvsDpInterfaceExt.h) that is used to grab the PID generated in the kernel.

DPIF Provider

As has been mentioned in earlier sections, the netlink socket and netlink message based DPIF provider on Linux has
been ported to Windows.

Most of the code is common. Some divergence is in the code to receive packets. The Linux implementation uses
epoll()9 which is not natively supported on Windows.

netdev-windows

We have a Windows implementation of the interface defined in lib/netdev-provider.h. The implementation
provides functionality to get extended information about an interface. It is limited in functionality compared to the
Linux implementation of the netdev provider and cannot be used to add any interfaces in the kernel such as a tap in-
terface or to send/receive packets. The netdev-windows implementation uses the datapath interface extensions defined
in datapath-windows/include/OvsDpInterfaceExt.h.

Powershell Extensions to Set OVS-port-name

As explained in the section on “Port management”, each Hyper-V port has a ‘FriendlyName’ field, which we call as the
“OVS-port-name” field. We have implemented powershell command extensions to be able to set the “OVS-port-name”
of a Hyper-V port.

Kernel-Userspace Interface

openvswitch.h and OvsDpInterfaceExt.h

Since the DPIF provider is shared with Linux, the kernel datapath provides the same interface as the Linux datapath.
The interface is defined in datapath/linux/compat/include/linux/openvswitch.h. Derivatives of
this interface file are created during OVS userspace compilation. The derivative for the kernel datapath on Hyper-V is
provided in datapath-windows/include/OvsDpInterface.h.

That said, there are Windows specific extensions that are defined in the interface file datapath-windows/
include/OvsDpInterfaceExt.h.

9 epoll https://en.wikipedia.org/wiki/Epoll
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Flow of a Packet

Figure 2 shows the numbered steps in which a packets gets sent out of a VIF and is forwarded to another VIF or a
physical NIC. As mentioned earlier, each VIF is attached to the switch via a port, and each port is both on the ingress
and egress path of the switch, and depending on whether a packet is being transmitted or received, one of the paths
gets used. In the figure, each step n is annotated as #n

The steps are as follows:

1. When a packet is sent out of a VIF or an physical NIC or an internal port, the packet is part of the ingress path.

2. The OVS kernel driver gets to intercept this packet.

a. OVS looks up the flows in the flowtable for this packet, and executes the corresponding action.

b. If there is not action, the packet is sent up to OVS userspace to examine the packet and figure out the
actions.

c. Userspace executes the packet by specifying the actions, and might also insert a flow for such a packet in
the future.

d. The destination ports are added to the packet and sent down to the Hyper- V switch.

3. The Hyper-V forwards the packet to the destination ports specified in the packet, and sends it out on the egress
path.

4. The packet gets forwarded to the destination VIF.

5. It might also get forwarded to a physical NIC as well, if the physical NIC has been added as a destination port
by OVS.

Build/Deployment

The userspace components added as part of OVS Windows implementation have been integrated with autoconf, and
can be built using the steps mentioned in the BUILD.Windows file. Additional targets need to be specified to make.

The OVS kernel code is part of a Visual Studio 2013 solution, and is compiled from the IDE. There are plans in the
future to move this to a compilation mode such that we can compile it without an IDE as well.

Once compiled, we have an install script that can be used to load the kernel driver.

References

4.1.12 Language Bindings

Bindings exist for Open vSwitch in a variety of languages.

Official Bindings

Python

The Python bindings are part of the Open vSwitch package. You can install the bindings using pip:

$ pip install ovs

186 Chapter 4. Deep Dive

https://github.com/openvswitch/ovs/tree/master/python/ovs


Open vSwitch, Release 2.12.90

Third-Party Bindings

Lua

• LJIT2ovs: LuaJIT binding for Open vSwitch

Go

• go-odp: A Go library to control the Open vSwitch in-kernel datapath

4.1.13 Testing

It is possible to test Open vSwitch using both tooling provided with Open vSwitch and using a variety of third party
tooling.

Built-in Tooling

Open vSwitch provides a number of different test suites and other tooling for validating basic functionality of OVS.
Before running any of the tests described here, you must bootstrap, configure and build Open vSwitch as described in
Open vSwitch on Linux, FreeBSD and NetBSD. You do not need to install Open vSwitch or to build or load the kernel
module to run these test suites. You do not need supervisor privilege to run these test suites.

Unit Tests

Open vSwitch includes a suite of self-tests. Before you submit patches upstream, we advise that you run the tests and
ensure that they pass. If you add new features to Open vSwitch, then adding tests for those features will ensure your
features don’t break as developers modify other areas of Open vSwitch.

To run all the unit tests in Open vSwitch, one at a time, run:

$ make check

This takes under 5 minutes on a modern desktop system.

To run all the unit tests in Open vSwitch in parallel, run:

$ make check TESTSUITEFLAGS=-j8

You can run up to eight threads. This takes under a minute on a modern 4-core desktop system.

To see a list of all the available tests, run:

$ make check TESTSUITEFLAGS=--list

To run only a subset of tests, e.g. test 123 and tests 477 through 484, run:

$ make check TESTSUITEFLAGS='123 477-484'

Tests do not have inter-dependencies, so you may run any subset.

To run tests matching a keyword, e.g. ovsdb, run:
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$ make check TESTSUITEFLAGS='-k ovsdb'

To see a complete list of test options, run:

$ make check TESTSUITEFLAGS=--help

The results of a testing run are reported in tests/testsuite.log. Report report test failures as bugs and include
the testsuite.log in your report.

Note: Sometimes a few tests may fail on some runs but not others. This is usually a bug in the testsuite, not a
bug in Open vSwitch itself. If you find that a test fails intermittently, please report it, since the developers may not
have noticed. You can make the testsuite automatically rerun tests that fail, by adding RECHECK=yes to the make
command line, e.g.:

$ make check TESTSUITEFLAGS=-j8 RECHECK=yes

Debugging unit tests

To initiate debugging from artifacts generated from make check run, set the OVS_PAUSE_TEST environment variable
to 1. For example, to run test case 139 and pause on error:

$ OVS_PAUSE_TEST=1 make check TESTSUITEFLAGS='-v 139'

When error occurs, above command would display something like this:

Set environment variable to use various ovs utilities
export OVS_RUNDIR=<dir>/ovs/_build-gcc/tests/testsuite.dir/0139
Press ENTER to continue:

And from another window, one can execute ovs-xxx commands like:

export OVS_RUNDIR=/opt/vdasari/Developer/ovs/_build-gcc/tests/testsuite.dir/0139
$ ovs-ofctl dump-ports br0
.
.

Once done with investigation, press ENTER to perform cleanup operation.

Coverage

If the build was configured with --enable-coverage and the lcov utility is installed, you can run the testsuite
and generate a code coverage report by using the check-lcov target:

$ make check-lcov

All the same options are available via TESTSUITEFLAGS. For example:

$ make check-lcov TESTSUITEFLAGS='-j8 -k ovsdb'
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Valgrind

If you have valgrind installed, you can run the testsuite under valgrind by using the check-valgrind target:

$ make check-valgrind

When you do this, the “valgrind” results for test <N> are reported in files named tests/testsuite.dir/<N>/
valgrind.*.

To test the testsuite of kernel datapath under valgrind, you can use the check-kernel-valgrind target and find
the “valgrind” results under directory tests/system-kmod-testsuite.dir/.

All the same options are available via TESTSUITEFLAGS.

Hint: You may find that the valgrind results are easier to interpret if you put -q in ~/.valgrindrc, since that
reduces the amount of output.

OFTest

OFTest is an OpenFlow protocol testing suite. Open vSwitch includes a Makefile target to run OFTest with Open
vSwitch in “dummy mode”. In this mode of testing, no packets travel across physical or virtual networks. Instead,
Unix domain sockets stand in as simulated networks. This simulation is imperfect, but it is much easier to set up, does
not require extra physical or virtual hardware, and does not require supervisor privileges.

To run OFTest with Open vSwitch, you must obtain a copy of OFTest and install its prerequisites. You need a copy of
OFTest that includes commit 406614846c5 (make ovs-dummy platform work again). This commit was merged into
the OFTest repository on Feb 1, 2013, so any copy of OFTest more recent than that should work. Testing OVS in
dummy mode does not require root privilege, so you may ignore that requirement.

Optionally, add the top-level OFTest directory (containing the oft program) to your $PATH. This slightly simplifies
running OFTest later.

To run OFTest in dummy mode, run the following command from your Open vSwitch build directory:

$ make check-oftest OFT=<oft-binary>

where <oft-binary> is the absolute path to the oft program in OFTest. If you added “oft” to your $PATH, you
may omit the OFT variable assignment

By default, check-oftest passes oft just enough options to enable dummy mode. You can use OFTFLAGS to
pass additional options. For example, to run just the basic.Echo test instead of all tests (the default) and enable
verbose logging, run:

$ make check-oftest OFT=<oft-binary> OFTFLAGS='--verbose -T basic.Echo'

If you use OFTest that does not include commit 4d1f3eb2c792 (oft: change default port to 6653), merged into the
OFTest repository in October 2013, then you need to add an option to use the IETF-assigned controller port:

$ make check-oftest OFT=<oft-binary> OFTFLAGS='--port=6653'

Interpret OFTest results cautiously. Open vSwitch can fail a given test in OFTest for many reasons, including bugs in
Open vSwitch, bugs in OFTest, bugs in the “dummy mode” integration, and differing interpretations of the OpenFlow
standard and other standards.
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Note: Open vSwitch has not been validated against OFTest. Report test failures that you believe to represent bugs in
Open vSwitch. Include the precise versions of Open vSwitch and OFTest in your bug report, plus any other information
needed to reproduce the problem.

Ryu

Ryu is an OpenFlow controller written in Python that includes an extensive OpenFlow testsuite. Open vSwitch includes
a Makefile target to run Ryu in “dummy mode”. See OFTest above for an explanation of dummy mode.

To run Ryu tests with Open vSwitch, first read and follow the instructions under Testing above. Second, obtain a copy
of Ryu, install its prerequisites, and build it. You do not need to install Ryu (some of the tests do not get installed, so
it does not help).

To run Ryu tests, run the following command from your Open vSwitch build directory:

$ make check-ryu RYUDIR=<ryu-source-dir>

where <ryu-source-dir> is the absolute path to the root of the Ryu source distribution. The default
<ryu-source-dir> is $srcdir/../ryu where $srcdir is your Open vSwitch source directory. If this is
correct, omit RYUDIR

Note: Open vSwitch has not been validated against Ryu. Report test failures that you believe to represent bugs in
Open vSwitch. Include the precise versions of Open vSwitch and Ryu in your bug report, plus any other information
needed to reproduce the problem.

Datapath testing

Open vSwitch includes a suite of tests specifically for datapath functionality, which can be run against the userspace
or kernel datapaths. If you are developing datapath features, it is recommended that you use these tests and build upon
them to verify your implementation.

The datapath tests make some assumptions about the environment. They must be run under root privileges on a Linux
system with support for network namespaces. For ease of use, the OVS source tree includes a vagrant box to invoke
these tests. Running the tests inside Vagrant provides kernel isolation, protecting your development host from kernel
panics or configuration conflicts in the testsuite. If you wish to run the tests without using the vagrant box, there are
further instructions below.

Vagrant

Important: Requires Vagrant (version 1.7.0 or later) and a compatible hypervisor

Note: You must bootstrap and configure the sources (see doc:/intro/install/general) before you run the steps described
here.

A Vagrantfile is provided allowing to compile and provision the source tree as found locally in a virtual machine using
the following command:
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$ vagrant up

This will bring up a Fedora 23 VM by default. If you wish to use a different box or a vagrant backend not supported
by the default box, the Vagrantfile can be modified to use a different box as base.

The VM can be reprovisioned at any time:

$ vagrant provision

OVS out-of-tree compilation environment can be set up with:

$ ./boot.sh
$ vagrant provision --provision-with configure_ovs,build_ovs

This will set up an out-of-tree build environment inside the VM in /root/build. The source code can be found in
/vagrant.

To recompile and reinstall OVS in the VM using RPM:

$ ./boot.sh
$ vagrant provision --provision-with configure_ovs,install_rpm

Two provisioners are included to run system tests with the OVS kernel module or with a userspace datapath. This tests
are different from the self-tests mentioned above. To run them:

$ ./boot.sh
$ vagrant provision --provision-with \

configure_ovs,test_ovs_kmod,test_ovs_system_userspace

The results of the testsuite reside in the VM root user’s home directory:

$ vagrant ssh
$ sudo -s
$ cd /root/build
$ ls tests/system*

Native

The datapath testsuite as invoked by Vagrant above may also be run manually on a Linux system with root privileges.
Make sure, no other Open vSwitch instance is running on the test suite. These tests may take several minutes to
complete, and cannot be run in parallel.

Userspace datapath

To invoke the datapath testsuite with the userspace datapath, run:

$ make check-system-userspace

The results of the testsuite are in tests/system-userspace-testsuite.dir.

All the features documented under Unit Tests are available for the userspace datapath testsuite.
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Userspace datapath with DPDK

To test Open vSwitch with DPDK (i.e., the build was configured with --with-dpdk, the DPDK is installed), run the
testsuite and generate a report by using the check-dpdk target:

# make check-dpdk

or if you are not a root, but a sudo user:

$ sudo -E make check-dpdk

To see a list of all the available tests, run:

# make check-dpdk TESTSUITEFLAGS=--list

These tests support a DPDK supported NIC. The tests operate on a wider set of environments, for instance, when a
virtual port is used. They do require proper DPDK variables (DPDK_DIR and DPDK_BUILD). Moreover you need to
have root privileges to load the required modules and to bind the NIC to the DPDK-compatible driver.

All tests are skipped if no hugepages are configured. User must look into the DPDK manual to figure out how to
Configure hugepages. The phy test will skip if no compatible physical device is available.

All the features documented under Unit Tests are available for the DPDK datapath testsuite.

Kernel datapath

Make targets are also provided for testing the Linux kernel module. Note that these tests operate by inserting modules
into the running Linux kernel, so if the tests are able to trigger a bug in the OVS kernel module or in the upstream
kernel then the kernel may panic.

To run the testsuite against the kernel module which is currently installed on your system, run:

$ make check-kernel

To install the kernel module from the current build directory and run the testsuite against that kernel module:

$ make check-kmod

The results of the testsuite are in tests/system-kmod-testsuite.dir.

All the features documented under Unit Tests are available for the kernel datapath testsuite.

Static Code Analysis

Static Analysis is a method of debugging Software by examining code rather than actually executing it. This can
be done through ‘scan-build’ commandline utility which internally uses clang (or) gcc to compile the code and also
invokes a static analyzer to do the code analysis. At the end of the build, the reports are aggregated in to a common
folder and can later be analyzed using ‘scan-view’.

Open vSwitch includes a Makefile target to trigger static code analysis:

$ ./boot.sh
$ ./configure CC=clang # clang
# or
$ ./configure CC=gcc CFLAGS="-std=gnu99" # gcc
$ make clang-analyze
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You should invoke scan-view to view analysis results. The last line of output from clang-analyze will list the
command (containing results directory) that you should invoke to view the results on a browser.

Continuous Integration with Travis CI

A .travis.yml file is provided to automatically build Open vSwitch with various build configurations and run the
testsuite using Travis CI. Builds will be performed with gcc, sparse and clang with the -Werror compiler flag included,
therefore the build will fail if a new warning has been introduced.

The CI build is triggered via git push (regardless of the specific branch) or pull request against any Open vSwitch
GitHub repository that is linked to travis-ci.

Instructions to setup travis-ci for your GitHub repository:

1. Go to https://travis-ci.org/ and sign in using your GitHub ID.

2. Go to the “Repositories” tab and enable the ovs repository. You may disable builds for pushes or pull requests.

3. In order to avoid forks sending build failures to the upstream mailing list, the notification email recipient is
encrypted. If you want to receive email notification for build failures, replace the encrypted string:

1. Install the travis-ci CLI (Requires ruby >=2.0): gem install travis

2. In your Open vSwitch repository: travis encrypt mylist@mydomain.org

3. Add/replace the notifications section in .travis.yml and fill in the secure string as returned by travis encrypt:

notifications:
email:
recipients:
- secure: "....."

Note: You may remove/omit the notifications section to fall back to default notification behaviour which
is to send an email directly to the author and committer of the failing commit. Note that the email is only
sent if the author/committer have commit rights for the particular GitHub repository.

4. Pushing a commit to the repository which breaks the build or the testsuite will now trigger a email sent to
mylist@mydomain.org

vsperf

The vsperf project aims to develop a vSwitch test framework that can be used to validate the suitability of different
vSwitch implementations in a telco deployment environment. More information can be found on the OPNFV wiki.

Proof of Concepts

Proof of Concepts are documentation materialized into Ansible recipes executed in VirtualBox or Libvirt environments
orchastrated by Vagrant. Proof of Concepts allow developers to create small virtualized setups that demonstrate how
certain Open vSwitch features are intended to work avoiding user introduced errors by overlooking instructions. Proof
of Concepts are also helpful when integrating with thirdparty software, because standard unit tests with make check
are limited.

Vagrant by default uses VirtualBox provider. However, if Libvirt is your choice of virtualization technology, then you
can use it by installing Libvirt plugin:
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$ vagrant plugin install vagrant-libvirt

And then appending --provider=libvirt flag to vagrant commands.

The host where Vagrant runs does not need to have any special software installed besides vagrant, virtualbox (or libvirt
and libvirt-dev) and ansible.

The following Proof of Concepts are supported:

Builders

This particular Proof of Concept demonstrates integration with Debian and RPM packaging tools:

$ cd ./poc/builders
$ vagrant up

Once that command finished you can get packages from /var/www/html directory. Since those hosts are also
configured as repositories then you can add them to /etc/apt/sources.list.d or /etc/yum.repos.d
configuration files on another host to retrieve packages with yum or apt-get.

When you have made changes to OVS source code and want to rebuild packages run:

$ git commit -a
$ vagrant rsync && vagrant provision

Whenever packages are rebuilt the Open vSwitch release number increases by one and you can simply upgrade Open
vSwitch by running yum or apt-get update commands.

Once you are done with experimenting you can tear down setup with:

$ vagrant destroy

Sometimes deployment of Proof of Concept may fail, if, for example, VMs don’t have network reachability to the
Internet.

4.1.14 Tracing packets inside Open vSwitch

Open vSwitch (OVS) is a programmable software switch that can execute actions at per packet level. This docu-
ment explains how to use the tracing tool to know what is happening with packets as they go through the data plane
processing.

The ovs-vswitchd(8) manpage describes basic usage of the ofproto/trace command used for tracing in Open vSwitch.

Packet Tracing

In order to understand the tool, let’s use the following flows as an example:

table=3,ip,tcp,tcp_dst=80,action=output:2
table=2,ip,tcp,tcp_dst=22,action=output:1
table=0,in_port=3,ip,nw_src=192.0.2.0/24,action=resubmit(,2)
table=0,in_port=3,ip,nw_src=198.51.100.0/24,action=resubmit(,3)
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Note: If you can’t use a “real” OVS setup you can use ovs-sandbox, as described in Open vSwitch Advanced
Features, which also provides additional tracing examples.

The first line adds a rule in table 3 matching on TCP/IP packet with destination port 80 (HTTP). If a packet matches,
the action is to output the packet on OpenFlow port 2.

The second line is similar but matches on destination port 22. If a packet matches, the action is to output the packet
on OpenFlow port 1.

The next two lines matches on source IP addresses. If there is a match, the packet is submitted to table indicated as
parameter to the resubmit() action.

Now let’s see if a packet from IP address 192.0.2.1 and destination port 22 would really go to OpenFlow port 1:

$ ovs-appctl ofproto/trace br0 in_port=3,tcp,nw_src=192.0.2.2,tcp_dst=22
Flow: tcp,in_port=3,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,dl_dst=00:00:00:00:00:00,
→˓nw_src=192.0.2.2,nw_dst=0.0.0.0,nw_tos=0,nw_ecn=0,nw_ttl=0,tp_src=0,tp_dst=22,tcp_
→˓flags=0

bridge("br0")
-------------
0. ip,in_port=3,nw_src=192.0.2.0/24, priority 32768

resubmit(,2)
2. tcp,tp_dst=22, priority 32768

output:1

Final flow: unchanged
Megaflow: recirc_id=0,tcp,in_port=3,nw_src=192.0.2.0/24,nw_frag=no,tp_dst=22
Datapath actions: 1

The first line is the trace command. The br0 is the bridge where the packet is going through. The next arguments
describe the packet itself. For instance, the nw_src matches with the IP source address. All the packet fields are well
documented in the ovs-fields(7) man-page.

The second line shows the flow extracted from the packet described in the command line. Unspecified packet fields
are zeroed.

The second group of lines shows the packet’s trip through bridge br0. We see, in table 0, the OpenFlow flow that
the fields matched, along with its priority, followed by its actions, one per line. In this case, we see that this packet
matches the flow that resubmit those packets to table 2. The “resubmit” causes a second lookup in OpenFlow table 2,
described by the block of text that starts with “2.”. In the second lookup we see that this packet matches the rule that
outputs those packets to OpenFlow port #1.

In summary, it is possible to follow the flow entries and actions until the final decision is made. At the end, the trace
tool shows the Megaflow which matches on all relevant fields followed by the data path actions.

Let’s see what happens with the same packet but with another TCP destination port:

$ ovs-appctl ofproto/trace br0 in_port=3,tcp,nw_src=192.0.2.2,tcp_dst=80
Flow: tcp,in_port=3,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,dl_dst=00:00:00:00:00:00,
→˓nw_src=192.0.2.2,nw_dst=0.0.0.0,nw_tos=0,nw_ecn=0,nw_ttl=0,tp_src=0,tp_dst=80,tcp_
→˓flags=0

bridge("br0")
-------------
0. ip,in_port=3,nw_src=192.0.2.0/24, priority 32768

resubmit(,2)
2. No match.

(continues on next page)
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(continued from previous page)

drop

Final flow: unchanged
Megaflow: recirc_id=0,tcp,in_port=3,nw_src=192.0.2.0/24,nw_frag=no,tp_dst=0x40/0xffc0
Datapath actions: drop

In the second group of lines, in table 0, you can see that the packet matches with the rule because of the source IP
address, so it is resubmitted to the table 2 as before. However, it doesn’t match any rule there. When the packet doesn’t
match any rule in the flow tables, it is called a table miss. The virtual switch table miss behavior can be configured
and it depends on the OpenFlow version being used. In this example the default action was to drop the packet.

Credits

This document is heavily based on content from Flavio Bruno Leitner at Red Hat:

• https://developers.redhat.com/blog/2016/10/12/tracing-packets-inside-open-vswitch/

4.1.15 C IDL Compound Indexes

Introduction

This document describes the design and usage of the C IDL Compound Indexes feature, which allows OVSDB client
applications to efficiently search table contents using arbitrary sets of column values in a generic way.

This feature is implemented entirely in the client IDL, requiring no changes to the OVSDB Server, OVSDB Protocol
(OVSDB RFC (RFC 7047)) or additional interaction with the OVSDB server.

Please note that in this document, the term “index” refers to the common database term defined as “a data structure
that facilitates data retrieval”. Unless stated otherwise, the definition for index from the OVSDB RFC (RFC 7047) is
not used.

Typical Use Cases

Fast lookups

Depending on the topology, the route table of a network device could manage thousands of routes. Commands such
as “show ip route <specific route>” would need to do a sequential lookup of the routing table to find the specific route.
With an index created, the lookup time could be faster.

This same scenario could be applied to other features such as Access List rules and even interfaces lists.

Lexicographic order

There are a number of cases in which retrieving data in a particular lexicographic order is needed. For example, SNMP.
When an administrator or even a NMS would like to retrieve data from a specific device, it’s possible that they will
request data from full tables instead of just specific values. Also, they would like to have this information displayed
in lexicographic order. This operation could be done by the SNMP daemon or by the CLI, but it would be better if the
database could provide the data ready for consumption. Also, duplicate efforts by different processes will be avoided.
Another use case for requesting data in lexicographic order is for user interfaces (web or CLI) where it would be better
and quicker if the DB sends the data sorted instead of letting each process to sort the data by itself.
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Implementation Design

This feature maintains a collection of indexes per table. The application can create any number of indexes per table.

An index can be defined over any number of columns, and supports the following options:

• Add a column with type string, boolean, uuid, integer or real (using default comparators).

• Select ordering direction of a column (ascending or descending, must be selected when creating the index).

• Use a custom ordering comparator (eg: treat a string column like a IP, or sort by the value of the “config” key in
a map column).

Indexes can be searched for matches based on the key. They can also be iterated across a range of keys or in full.

For lookups, the user needs to provide a key to be used for locating the specific rows that meet his criteria. This key
could be an IP address, a MAC address, an ACL rule, etc. If several rows match the query then the user can easily
iterate over all of the matches.

For accessing data in lexicographic order, the user can use the ranged iterators, which use “from” and “to” values to
define a range.

The indexes maintain a pointer to the row in the local replica, avoiding the need to make additional copies of the data
and thereby minimizing any additional memory and CPU overhead for their maintenance. It is intended that creating
and maintaining indexes should be very cheap.

Another potential issue is the time needed to create the data structure and the time needed to add/remove elements.
The indexes are always synchronized with the replica. For this reason is VERY IMPORTANT that the comparison
functions (built-in and user provided) are FAST.

Skiplists are used as the primary data structure for the implementation of indexes. Indexes therefore have an expected
O(log(n)) cost when inserting, deleting or modifying a row, O(log(n)) when retrieving a row by key, and O(1)
when retrieving the first or next row.

Indexes are maintained incrementally in the replica as notifications of database changes are received from the OVSDB
server, as shown in the following diagram.

+---------------------------------------------------------+
| |

+-------------+Client changes to data IDL |
| | |

+---v---+ | |
| OVSDB +--------->OVSDB Notification |
+-------+ | + |

| | +------------+ |
| | | | |
| | | Insert Row +----> Insert row to indexes |
| | | | ^ |
| +-> | Modify Row +-------------------+ |
| | | v |
| | Delete Row +----> Delete row from indexes |
| | | |
| +----+-------+ |
| | |
| +-> IDL Replica |
| |
+---------------------------------------------------------+

C IDL API
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Index Creation

Each index must be created with the function ovsdb_idl_index_create() or one of the simpler convenience
functions ovsdb_idl_index_create1() or ovsdb_idl_index_create2(). All indexes must be created
before the first call to ovsdb_idl_run().

Index Creation Example

/* Define a custom comparator for the column "stringField" in table

* "Test". (Note that custom comparison functions are not often

* necessary.)

*/
int stringField_comparator(const void *a, const void *b)
{

struct ovsrec_test *AAA, *BBB;
AAA = (struct ovsrec_test *)a;
BBB = (struct ovsrec_test *)b;
return strcmp(AAA->stringField, BBB->stringField);

}

void init_idl(struct ovsdb_idl **, char *remote)
{

/* Add the columns to the IDL */

*idl = ovsdb_idl_create(remote, &ovsrec_idl_class, false, true);
ovsdb_idl_add_table(*idl, &ovsrec_table_test);
ovsdb_idl_add_column(*idl, &ovsrec_test_col_stringField);
ovsdb_idl_add_column(*idl, &ovsrec_test_col_numericField);
ovsdb_idl_add_column(*idl, &ovsrec_test_col_enumField);
ovsdb_idl_add_column(*idl, &ovsrec_test_col_boolField);

struct ovsdb_idl_index_column columns[] = {
{ .column = &ovsrec_test_col_stringField,
.comparer = stringField_comparator },

{ .column = &ovsrec_test_col_numericField,
.order = OVSDB_INDEX_DESC },

};
struct ovsdb_idl_index *index = ovsdb_idl_create_index(

*idl, columns, ARRAY_SIZE(columns));
...

}

Index Usage

Iterators

The recommended way to do queries is using a “ranged foreach”, an “equal foreach” or a “full foreach” over an index.
The mechanism works as follows:

1. Create index row objects with index columns set to desired search key values (one is needed for equality iterators,
two for range iterators, a search key is not needed for the full index iterator).

2. Pass the index, an iteration variable, and the index row object to the iterator.

3. Use the values within iterator loop.
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The library implements three different iterators: a range iterator, an equality iterator and a full index iterator. The
range iterator receives two values and iterates over all rows with values that are within that range (inclusive of the two
values defining the range). The equality iterator iterates over all rows that exactly match the value passed. The full
index iterator iterates over all rows in the index, in an order determined by the comparison function and configured
direction (ascending or descending).

Note that indexes are sorted by the “concatenation” of the values in all indexed columns, so the ranged iterator returns
all the values between “from.col1 from.col2 . . . from.coln” and “to.col1 to.col2 . . . to.coln”, NOT the rows with a
value in column 1 between from.col1 and to.col1, and so on.

The iterators are macros specific to each table. An example of the use of these iterators follows:

/*
* Equality iterator; iterates over all the records equal to "value".

*/
struct ovsrec_test *target = ovsrec_test_index_init_row(index);
ovsrec_test_index_set_stringField(target, "hello world");
struct ovsrec_test *record;
OVSREC_TEST_FOR_EACH_EQUAL (record, target, index) {

/* Can return zero, one or more records */
assert(strcmp(record->stringField, "hello world") == 0);
printf("Found one record with %s", record->stringField);

}
ovsrec_test_index_destroy_row(target);

/*
* Range iterator; iterates over all records between two values

* (inclusive).

*/
struct ovsrec_test *from = ovsrec_test_index_init_row(index);
struct ovsrec_test *to = ovsrec_test_index_init_row(index);

ovsrec_test_index_set_stringField(from, "aaa");
ovsrec_test_index_set_stringField(to, "mmm");
OVSREC_TEST_FOR_EACH_RANGE (record, from, to, index) {

/* Can return zero, one or more records */
assert(strcmp("aaa", record->stringField) <= 0);
assert(strcmp(record->stringField, "mmm") <= 0);
printf("Found one record with %s", record->stringField);

}
ovsrec_test_index_destroy_row(from);
ovsrec_test_index_destroy_row(to);

/*
* Index iterator; iterates over all nodes in the index, in order

* determined by comparison function and configured order (ascending

* or descending).

*/
OVSREC_TEST_FOR_EACH_BYINDEX (record, index) {

/* Can return zero, one or more records */
printf("Found one record with %s", record->stringField);

}

General Index Access

While the currently defined iterators are suitable for many use cases, it is also possible to create custom iterators using
the more general API on which the existing iterators have been built. See ovsdb-idl.h for the details.
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4.1.16 Open vSwitch Extensions

Introduction

OpenFlow allows vendor extensions to the protocol. OVS implements many of its own extensions. These days,
we typically refer to these as “Open vSwitch extensions” to OpenFlow. You might also see them called “Nicira
extensions” after the company that initiated the Open vSwitch project. These extensions have been used to add
additional functionality for the desired features not present in the standard OpenFlow protocol.

OpenFlow 1.0 refers to extensions as “vendor extensions”, whereas OpenFlow 1.1 and later call them “experimenter
extensions”. These are different names for the same concept and we use them interchangeably.

OVS vendor extension messages in OpenFlow and OVS

Vendor/experimenter request and replies

OpenFlow supports vendor extensions for basic requests and replies. In OpenFlow 1.0, such messages carry
OFPT_VENDOR in the struct ofp_header message type field, and in later versions OFPT_EXPERIMENTER.
After the header of this message, there is a vendor id field which identifies the vendor. Everything after the vendor
ID is vendor specific, but it would typically include a subtype field to identify a particular kind of vendor-specific
message. Vendor ids are defined in ovs/include/openflow/openflow-common.h.

To see a list of all the vendor message subtypes that OVS understands, we can refer to ovs/lib/ofp-msgs.
h. We can see the instances of enum ofpraw which has a comment containing the keyword NXT, e.g.
OFPRAW_NXT_FLOW_MOD below:

/* NXT 1.0+ (13): struct nx_flow_mod, uint8_t[8][]. */
OFPRAW_NXT_FLOW_MOD,

which may be interpreted as follows:

NXT stands for Nicira extension message.

nx_flow_mod data that follow the OpenFlow header.

uint8_t[8][] multiple of 8 data.

13 the subtype for the Flow Mod message when it is sent as a Open vSwitch extension message

OFPRAW_NXT_FLOW_MOD the Open vSwitch Flow Mod extension message.

For reference, the vendor message header is defined as struct ofp_vendor_header in ovs/lib/
ofp-msgs.c.

The general structure of a message with a vendor message type is:

ofp_header(msg_type=VENDOR/EXPERIMENTER) / vendor id / vendor subtype / vendor defined additional data
(e.g. nx_flow_mod structure for OFPRAW_NXT_FLOW_MOD message)

Multipart vendor requests and replies

OpenFlow supports “statistics” or “multipart” messages that consist of a sequence of shorter messages
with associated content. In OpenFlow 1.0 through 1.2, these are OFPT_STATS_REQUEST requests and
OFPT_STATS_REPLY replies, and in OpenFlow 1.3 and later, they are OFPT_MULTIPART_REQUEST``and
``OFPT_MULTIPART_REPLY.
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A multipart message carries its own embedded type that denotes the kind of multipart data. Multipart vendor requests
and replies use type OFPT_VENDOR in OpenFlow 1.0, OFPST_EXPERIMENTER in OpenFlow 1.1 and 1.2, and
OFPMP_EXPERIMENTER in OpenFlow 1.3 and later.

Again if we refer to ovs/lib/ofp-msgs.h, we see the following lines:

/* NXST 1.0 (2): uint8_t[8][]. */
OFPRAW_NXST_FLOW_MONITOR_REQUEST,

NXST stands for Nicira extension statistics or multipart message.

uint8_t[8][] multiple of 8 data.

2 the subtype for the Flow Monitor Request message when it is sent as a Flow Monitor Request message with exten-
sion vendor id.

OFPRAW_NXST_FLOW_MONITOR_REQUEST the OpenFlow Flow Monitor extension message.

For reference, the vendor extension stats message header is defined as struct ofp11_vendor_stats_msg in
ovs/lib/ofp-msgs.c.

The general structure of a multipart/stats message with vendor type is:

ofp_header(msg_type=STATS/MULTIPART) / stats_msg(type=VENDOR/EXPERIMENTER) / vendor-id /
subtype / vendor defined additional data

Extended Match

OpenFlow 1.0 uses a fixed size flow match structure (struct ofp_match) to define the fields to match in a packet. This is
limiting and not extensible. To make the match structure extensible, OVS added as an extension nx_match structure,
called NXM, as a series of TLV (type-length-value) entries or nxm_entry. OpenFlow 1.2 standardized NXM as
OXM, with extensions of its own. OVS supports standard and extension OXM and NXM TLVs.

For a detailed description of NXM and OXM, please see the OVS fields documentation at https://www.openvswitch.
org/support/dist-docs/ovs-fields.7.pdf.

Error Message Extension

In OpenFlow version 1.0 and 1.1, there is no provision to generate vendor specific error codes and does not even
provide generic error codes that can apply to problems not anticipated by the OpenFlow specification authors. OVS
added a generic “error vendor extension” which uses NXET_VENDOR as type and NXVC_VENDOR_ERROR as code,
followed by struct nx_vendor_error with vendor-specific details, followed by at least 64 bytes of the failed
request.

OpenFlow version 1.2+ added a OFPET_EXPERIMENTER error type to support vendor specific error codes.

Source files related to Open vSwitch extensions

ovs/include/openflow/nicira-ext.h
ovs/lib/ofp-msgs.inc
ovs/include/openvswitch/ofp-msgs.h
ovs/lib/ofp-msgs.c
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CHAPTER 5

How-to Guides

Answers to common “How do I?”-style questions. For more information on the topics covered herein, refer to Deep
Dive.

5.1 OVS

5.1.1 Open vSwitch with KVM

This document describes how to use Open vSwitch with the Kernel-based Virtual Machine (KVM).

Note: This document assumes that you have Open vSwitch set up on a Linux system.

Setup

KVM uses tunctl to handle various bridging modes, which you can install with the Debian/Ubuntu package
uml-utilities:

$ apt-get install uml-utilities

Next, you will need to modify or create custom versions of the qemu-ifup and qemu-ifdown scripts. In this
guide, we’ll create custom versions that make use of example Open vSwitch bridges that we’ll describe in this guide.

Create the following two files and store them in known locations. For example:

$ cat << 'EOF' > /etc/ovs-ifup
#!/bin/sh

switch='br0'
ip link set $1 up

(continues on next page)
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(continued from previous page)

ovs-vsctl add-port ${switch} $1
EOF

$ cat << 'EOF' > /etc/ovs-ifdown
#!/bin/sh

switch='br0'
ip addr flush dev $1
ip link set $1 down
ovs-vsctl del-port ${switch} $1
EOF

The basic usage of Open vSwitch is described at the end of Open vSwitch on Linux, FreeBSD and NetBSD. If you
haven’t already, create a bridge named br0 with the following command:

$ ovs-vsctl add-br br0

Then, add a port to the bridge for the NIC that you want your guests to communicate over (e.g. eth0):

$ ovs-vsctl add-port br0 eth0

Refer to ovs-vsctl(8) for more details.

Next, we’ll start a guest that will use our ifup and ifdown scripts:

$ kvm -m 512 -net nic,macaddr=00:11:22:EE:EE:EE -net \
tap,script=/etc/ovs-ifup,downscript=/etc/ovs-ifdown -drive \
file=/path/to/disk-image,boot=on

This will start the guest and associate a tap device with it. The ovs-ifup script will add a port on the br0 bridge so
that the guest will be able to communicate over that bridge.

To get some more information and for debugging you can use Open vSwitch utilities such as ovs-dpctl and ovs-ofctl,
For example:

$ ovs-dpctl show
$ ovs-ofctl show br0

You should see tap devices for each KVM guest added as ports to the bridge (e.g. tap0)

Refer to ovs-dpctl(8) and ovs-ofctl(8) for more details.

Bug Reporting

Please report problems to bugs@openvswitch.org.

5.1.2 Encrypt Open vSwitch Tunnels with IPsec

This document gives detailed description on the OVS IPsec tunnel and its configuration modes. If you want to follow
a step-by-step guide to run and test IPsec tunnel, please refer to OVS IPsec Tutorial.

Overview
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Why do encryption?

OVS tunnel packets are transported from one machine to another. Along the path, the packets are processed by physical
routers and physical switches. There are risks that these physical devices might read or write the contents of the tunnel
packets. IPsec encrypts IP payload and prevents the malicious party sniffing or manipulating the tunnel traffic.

OVS IPsec

OVS IPsec aims to provide a simple interface for user to add encryption on OVS tunnels. It supports GRE, GENEVE,
VXLAN, and STT tunnel. The IPsec configuration is done by setting options of the tunnel interface and other_config
of Open_vSwitch. You can choose different authentication methods and plaintext tunnel policies based on your re-
quirements.

OVS does not currently provide any support for IPsec encryption for traffic not encapsulated in a tunnel.

Configuration

Authentication Methods

Hosts of the IPsec tunnel need to authenticate each other to build a secure channel. There are three authentication
methods:

1) You can use a pre-shared key (PSK) to do authentication. In both hosts, set the same PSK value. This PSK is
like your password. You should never reveal it to untrusted parties. This method is easier to use but less secure
than the certificate-based methods:

$ ovs-vsctl add-port br0 ipsec_gre0 -- \
set interface ipsec_gre0 type=gre \

options:remote_ip=2.2.2.2 \
options:psk=swordfish

2) You can use a self-signed certificate to do authentication. In each host, generate a certificate and the paired
private key. Copy the certificate of the remote host to the local host and configure the OVS as following:

$ ovs-vsctl set Open_vSwitch . \
other_config:certificate=/path/to/local_cert.pem \
other_config:private_key=/path/to/priv_key.pem

$ ovs-vsctl add-port br0 ipsec_gre0 -- \
set interface ipsec_gre0 type=gre \

options:remote_ip=2.2.2.2 \
options:remote_cert=/path/to/remote_cert.pem

local_cert.pem is the certificate of the local host. priv_key.pem is the private key of the local host. priv_key.pem
needs to be stored in a secure location. remote_cert.pem is the certificate of the remote host.

Note: OVS IPsec requires x.509 version 3 certificate with the subjectAltName DNS field setting the same
string as the common name (CN) field. You can follow the tutorial in OVS IPsec Tutorial and use ovs-pki(8) to
generate compatible certificate and key.

(Before OVS version 2.10.90, ovs-pki(8) did not generate x.509 v3 certificates, so if your existing PKI was
generated by an older version, it is not suitable for this purpose.)
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3) You can also use CA-signed certificate to do authentication. First, you need to create a CA certificate and sign
each host certificate with the CA key (please see OVS IPsec Tutorial). Copy the CA certificate to each host and
configure the OVS as following:

$ ovs-vsctl set Open_vSwitch . \
other_config:certificate=/path/to/local_cert.pem \
other_config:private_key=/path/to/priv_key.pem \
other_config:ca_cert=/path/to/ca_cert.pem

$ ovs-vsctl add-port br0 ipsec_gre0 -- \
set interface ipsec_gre0 type=gre \

options:remote_ip=2.2.2.2 \
options:remote_name=remote_cn

ca_cert.pem is the CA certificate. You need to set remote_cn as the common name (CN) of the remote host’s
certificate so that only the certificate with the expected CN can be trusted in this connection. It is preferable to
use this method than 2) if there are many remote hosts since you don’t have to copy every remote certificate to
the local host.

Note: When using certificate-based authentication, you should not set psk in the interface options. When using
psk-based authentication, you should not set certificate, private_key, ca_cert, remote_cert, and remote_name.

Plaintext Policies

When an IPsec tunnel is configured in this database, multiple independent components take responsibility for imple-
menting it. ovs-vswitchd and its datapath handle packet forwarding to the tunnel and a separate daemon pushes
the tunnel’s IPsec policy configuration to the kernel or other entity that implements it. There is a race: if the former
configuration completes before the latter, then packets sent by the local host over the tunnel can be transmitted in
plaintext. Using this setting, OVS users can avoid this undesirable situation.

1) The default setting allows unencrypted packets to be sent before IPsec completes negotiation:

$ ovs-vsctl add-port br0 ipsec_gre0 -- \
set interface ipsec_gre0 type=gre \

options:remote_ip=2.2.2.2 \
options:psk=swordfish

This setting should be used only and only if tunnel configuration is static and/or if there is firewall that can drop
the plain packets that occasionally leak the tunnel unencrypted on OVSDB (re)configuration events.

2) Setiing ipsec_skb_mark drops unencrypted packets by using skb_mark of tunnel packets:

$ ovs-vsctl set Open_vSwitch . other_config:ipsec_skb_mark=0/1
$ ovs-vsctl add-port br0 ipsec_gre0 -- \

set interface ipsec_gre0 type=gre \
options:remote_ip=2.2.2.2 \
options:psk=swordfish

OVS IPsec drops unencrypted packets which carry the same skb_mark as ipsec_skb_mark. By setting the
ipsec_skb_mark as 0/1, OVS IPsec prevents all unencrypted tunnel packets leaving the host since the default
skb_mark value for tunnel packets are 0. This affects all OVS tunnels including those without IPsec being set
up. You can install OpenFlow rules to whitelist those non-IPsec tunnels by setting the skb_mark of the tunnel
traffic as non-zero value.

3) Setting ipsec_skb_mark as 1/1 only drops tunnel packets with skb_mark value being 1:
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$ ovs-vsctl set Open_vSwitch . other_config:ipsec_skb_mark=1/1
$ ovs-vsctl add-port br0 ipsec_gre0 -- \

set interface ipsec_gre0 type=gre \
options:remote_ip=2.2.2.2 \
options:psk=swordfish

Opposite to 2), this setting passes through unencrypted tunnel packets by default. To drop unencrypted IPsec
tunnel traffic, you need to explicitly set skb_mark to a non-zero value for those tunnel traffic by installing
OpenFlow rules.

Bug Reporting

If you think you may have found a bug with security implications, like

1) IPsec protected tunnel accepted packets that came unencrypted; OR

2) IPsec protected tunnel allowed packets to leave unencrypted

then please report such bugs according to Open vSwitch’s Security Process.

If the bug does not have security implications, then report it according to instructions in Reporting Bugs in Open
vSwitch.

5.1.3 Open vSwitch with SELinux

Security-Enhanced Linux (SELinux) is a Linux kernel security module that limits “the malicious things” that certain
processes, including OVS, can do to the system in case they get compromised. In our case SELinux basically serves
as the “second line of defense” that limits the things that OVS processes are allowed to do. The “first line of defense”
is proper input validation that eliminates code paths that could be used by attacker to do any sort of “escape attacks”,
such as file name escape, shell escape, command line argument escape, buffer escape. Since developers don’t always
implement proper input validation, then SELinux Access Control’s goal is to confine damage of such attacks, if they
turned out to be possible.

Besides Type Enforcement there are other SELinux features, but they are out of scope for this document.

Currently there are two SELinux policies for Open vSwitch:

• the one that ships with your Linux distribution (i.e. selinux-policy-targeted package)

• the one that ships with OVS (i.e. openvswitch-selinux-policy package)

Limitations

If Open vSwitch is directly started from command line, then it will run under unconfined_t SELinux domain that
basically lets daemon to do whatever it likes. This is very important for developers to understand, because they might
introduced code in OVS that invokes new system calls that SELinux policy did not anticipate. This means that their
feature may have worked out just fine for them. However, if someone else would try to run the same code when Open
vSwitch is started through systemctl, then Open vSwitch would get Permission Denied errors.

Currently the only distributions that enforce SELinux on OVS by default are RHEL, CentOS and Fedora. While
Ubuntu and Debian also have some SELinux support, they run Open vSwitch under the unrestricted unconfined
domain. Also, it seems that Ubuntu is leaning towards Apparmor that works slightly differently than SELinux.

SELinux and Open vSwitch are moving targets. What this means is that, if you solely rely on your Linux distribution’s
SELinux policy, then this policy might not have correctly anticipated that a newer Open vSwitch version needs extra
white list rules. However, if you solely rely on SELinux policy that ships with Open vSwitch, then Open vSwitch
developers might not have correctly anticipated the feature set that your SELinux implementation supports.
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Installation

Refer to Fedora, RHEL 7.x Packaging for Open vSwitch for instructions on how to build all Open vSwitch rpm
packages.

Once the package is built, install it on your Linux distribution:

$ dnf install openvswitch-selinux-policy-2.4.1-1.el7.centos.noarch.rpm

Restart Open vSwitch:

$ systemctl restart openvswitch

Troubleshooting

When SELinux was implemented some of the standard system utilities acquired -Z flag (e.g. ps -Z, ls -Z). For
example, to find out under which SELinux security domain process runs, use:

$ ps -AZ | grep ovs-vswitchd
system_u:system_r:openvswitch_t:s0 854 ? ovs-vswitchd

To find out the SELinux label of file or directory, use:

$ ls -Z /etc/openvswitch/conf.db
system_u:object_r:openvswitch_rw_t:s0 /etc/openvswitch/conf.db

If, for example, SELinux policy for Open vSwitch is too strict, then you might see in Open vSwitch log files “Permis-
sion Denied” errors:

$ cat /var/log/openvswitch/ovs-vswitchd.log
vlog|INFO|opened log file /var/log/openvswitch/ovs-vswitchd.log
ovs_numa|INFO|Discovered 2 CPU cores on NUMA node 0
ovs_numa|INFO|Discovered 1 NUMA nodes and 2 CPU cores
reconnect|INFO|unix:/var/run/openvswitch/db.sock: connecting...
reconnect|INFO|unix:/var/run/openvswitch/db.sock: connected
netlink_socket|ERR|fcntl: Permission denied
dpif_netlink|ERR|Generic Netlink family 'ovs_datapath' does not exist.

The Open vSwitch kernel module is probably not loaded.
dpif|WARN|failed to enumerate system datapaths: Permission denied
dpif|WARN|failed to create datapath ovs-system: Permission denied

However, not all “Permission denied” errors are caused by SELinux. So, before blaming too strict SELinux policy,
make sure that indeed SELinux was the one that denied OVS access to certain resources, for example, run:

$ grep “openvswitch_t” /var/log/audit/audit.log | tail type=AVC msg=audit(1453235431.640:114671):
avc: denied { getopt } for pid=4583 comm=”ovs-vswitchd” scon-
text=system_u:system_r:openvswitch_t:s0 tcontext=system_u:system_r:openvswitch_t:s0
tclass=netlink_generic_socket permissive=0

If SELinux denied OVS access to certain resources, then make sure that you have installed our SELinux policy package
that “loosens” up distribution’s SELinux policy:

$ rpm -qa | grep openvswitch-selinux
openvswitch-selinux-policy-2.4.1-1.el7.centos.noarch

Then verify that this module was indeed loaded:
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# semodule -l | grep openvswitch
openvswitch-custom 1.0
openvswitch 1.1.1

If you still see Permission denied errors, then take a look into selinux/openvswitch.te.in file in the OVS
source tree and try to add white list rules. This is really simple, just run SELinux audit2allow tool:

$ grep "openvswitch_t" /var/log/audit/audit.log | audit2allow -M ovslocal

Contributing SELinux policy patches

Here are few things to consider before proposing SELinux policy patches to Open vSwitch developer mailing list:

1. The SELinux policy that resides in Open vSwitch source tree amends SELinux policy that ships with your
distributions.

Implications of this are that it is assumed that the distribution’s Open vSwitch SELinux module must be already
loaded to satisfy dependencies.

2. The SELinux policy that resides in Open vSwitch source tree must work on all currently relevant Linux distri-
butions.

Implications of this are that you should use only those SELinux policy features that are supported by the lowest
SELinux version out there. Typically this means that you should test your SELinux policy changes on the oldest
RHEL or CentOS version that this OVS version supports. Refer to Fedora, RHEL 7.x Packaging for Open
vSwitch to find out this.

3. The SELinux policy is enforced only when state transition to openvswitch_t domain happens.

Implications of this are that perhaps instead of loosening SELinux policy you can do certain things at the time
rpm package is installed.

Reporting Bugs

Report problems to bugs@openvswitch.org.

5.1.4 Open vSwitch with Libvirt

This document describes how to use Open vSwitch with Libvirt 0.9.11 or later. This document assumes that you
followed Open vSwitch on Linux, FreeBSD and NetBSD or installed Open vSwitch from distribution packaging such
as a .deb or .rpm. The Open vSwitch support is included by default in Libvirt 0.9.11. Consult www.libvirt.org for
instructions on how to build the latest Libvirt, if your Linux distribution by default comes with an older Libvirt release.

Limitations

Currently there is no Open vSwitch support for networks that are managed by libvirt (e.g. NAT). As of now, only
bridged networks are supported (those where the user has to manually create the bridge).

Setup

First, create the Open vSwitch bridge by using the ovs-vsctl utility (this must be done with administrative privileges):
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$ ovs-vsctl add-br ovsbr

Once that is done, create a VM, if necessary, and edit its Domain XML file:

$ virsh edit <vm>

Lookup in the Domain XML file the <interface> section. There should be one such XML section for each
interface the VM has:

<interface type='network'>
<mac address='52:54:00:71:b1:b6'/>
<source network='default'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>

</interface>

And change it to something like this:

<interface type='bridge'>
<mac address='52:54:00:71:b1:b6'/>
<source bridge='ovsbr'/>
<virtualport type='openvswitch'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>

</interface>

The interface type must be set to bridge. The <source> XML element specifies to which bridge this interface will
be attached to. The <virtualport> element indicates that the bridge in <source> element is an Open vSwitch
bridge.

Then (re)start the VM and verify if the guest’s vnet interface is attached to the ovsbr bridge:

$ ovs-vsctl show

Troubleshooting

If the VM does not want to start, then try to run the libvirtd process either from the terminal, so that all errors are
printed in console, or inspect Libvirt/Open vSwitch log files for possible root cause.

Bug Reporting

Report problems to bugs@openvswitch.org.

5.1.5 Open vSwitch with SSL

If you plan to configure Open vSwitch to connect across the network to an OpenFlow controller, then we recom-
mend that you build Open vSwitch with OpenSSL. SSL support ensures integrity and confidentiality of the OpenFlow
connections, increasing network security.

This document describes how to configure an Open vSwitch to connect to an OpenFlow controller over SSL. Refer to
Open vSwitch on Linux, FreeBSD and NetBSD. for instructions on building Open vSwitch with SSL support.

Open vSwitch uses TLS version 1.0 or later (TLSv1), as specified by RFC 2246, which is very similar to SSL version
3.0. TLSv1 was released in January 1999, so all current software and hardware should implement it.

This document assumes basic familiarity with public-key cryptography and public-key infrastructure.
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SSL Concepts for OpenFlow

This section is an introduction to the public-key infrastructure architectures that Open vSwitch supports for SSL
authentication.

To connect over SSL, every Open vSwitch must have a unique private/public key pair and a certificate that signs that
public key. Typically, the Open vSwitch generates its own public/private key pair. There are two common ways to
obtain a certificate for a switch:

• Self-signed certificates: The Open vSwitch signs its certificate with its own private key. In this case, each switch
must be individually approved by the OpenFlow controller(s), since there is no central authority.

This is the only switch PKI model currently supported by NOX (http://noxrepo.org).

• Switch certificate authority: A certificate authority (the “switch CA”) signs each Open vSwitch’s public key.
The OpenFlow controllers then check that any connecting switches’ certificates are signed by that certificate
authority.

This is the only switch PKI model supported by the simple OpenFlow controller included with Open vSwitch.

Each Open vSwitch must also have a copy of the CA certificate for the certificate authority that signs OpenFlow
controllers’ keys (the “controller CA” certificate). Typically, the same controller CA certificate is installed on all of
the switches within a given administrative unit. There are two common ways for a switch to obtain the controller CA
certificate:

• Manually copy the certificate to the switch through some secure means, e.g. using a USB flash drive, or over
the network with “scp”, or even FTP or HTTP followed by manual verification.

• Open vSwitch “bootstrap” mode, in which Open vSwitch accepts and saves the controller CA certificate that
it obtains from the OpenFlow controller on its first connection. Thereafter the switch will only connect to
controllers signed by the same CA certificate.

Establishing a Public Key Infrastructure

Open vSwitch can make use of your existing public key infrastructure. If you already have a PKI, you may skip
forward to the next section. Otherwise, if you do not have a PKI, the ovs-pki script included with Open vSwitch can
help. To create an initial PKI structure, invoke it as:

$ ovs-pki init

This will create and populate a new PKI directory. The default location for the PKI directory depends on how the
Open vSwitch tree was configured (to see the configured default, look for the --dir option description in the output
of ovs-pki --help).

The pki directory contains two important subdirectories. The controllerca subdirectory contains controller CA files,
including the following:

cacert.pem Root certificate for the controller certificate authority. Each Open vSwitch must have a copy of this file to
allow it to authenticate valid controllers.

private/cakey.pem Private signing key for the controller certificate authority. This file must be kept secret. There is
no need for switches or controllers to have a copy of it.

The switchca subdirectory contains switch CA files, analogous to those in the controllerca subdirectory:

cacert.pem Root certificate for the switch certificate authority. The OpenFlow controller must have this file to enable
it to authenticate valid switches.

private/cakey.pem Private signing key for the switch certificate authority. This file must be kept secret. There is no
need for switches or controllers to have a copy of it.
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After you create the initial structure, you can create keys and certificates for switches and controllers with ovs-pki.
Refer to the ovs-pki(8) manage for complete details. A few examples of its use follow:

Controller Key Generation

To create a controller private key and certificate in files named ctl-privkey.pem and ctl-cert.pem, run the following on
the machine that contains the PKI structure:

$ ovs-pki req+sign ctl controller

ctl-privkey.pem and ctl-cert.pem would need to be copied to the controller for its use at runtime. If, for testing purposes,
you were to use ovs-testcontroller, the simple OpenFlow controller included with Open vSwitch, then the –private-key
and –certificate options, respectively, would point to these files.

It is very important to make sure that no stray copies of ctl-privkey.pem are created, because they could be used to
impersonate the controller.

Switch Key Generation with Self-Signed Certificates

If you are using self-signed certificates (see “SSL Concepts for OpenFlow”), this is one way to create an acceptable
certificate for your controller to approve.

1. Run the following command on the Open vSwitch itself:

$ ovs-pki self-sign sc

Note: This command does not require a copy of any of the PKI files generated by ovs-pki init, and you
should not copy them to the switch because some of them have contents that must remain secret for security.)

The ovs-pki self-sign command has the following output:

sc-privkey.pem the switch private key file. For security, the contents of this file must remain secret. There is
ordinarily no need to copy this file off the Open vSwitch.

sc-cert.pem the switch certificate, signed by the switch’s own private key. Its contents are not a secret.

2. Optionally, copy controllerca/cacert.pem from the machine that has the OpenFlow PKI structure and verify that
it is correct. (Otherwise, you will have to use CA certificate bootstrapping when you configure Open vSwitch
in the next step.)

3. Configure Open vSwitch to use the keys and certificates (see “Configuring SSL Support”, below).

Switch Key Generation with a Switch PKI (Easy Method)

If you are using a switch PKI (see “SSL Concepts for OpenFlow”, above), this method of switch key generation is a
little easier than the alternate method described below, but it is also a little less secure because it requires copying a
sensitive private key from file from the machine hosting the PKI to the switch.

1. Run the following on the machine that contains the PKI structure:

$ ovs-pki req+sign sc switch

This command has the following output:
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sc-privkey.pem the switch private key file. For security, the contents of this file must remain secret.

sc-cert.pem the switch certificate. Its contents are not a secret.

2. Copy sc-privkey.pem and sc-cert.pem, plus controllerca/cacert.pem, to the Open vSwitch.

3. Delete the copies of sc-privkey.pem and sc-cert.pem on the PKI machine and any other copies that may have
been made in transit. It is very important to make sure that there are no stray copies of sc-privkey.pem, because
they could be used to impersonate the switch.

Warning: Don’t delete controllerca/cacert.pem! It is not security-sensitive and you will need it to configure
additional switches.

4. Configure Open vSwitch to use the keys and certificates (see “Configuring SSL Support”, below).

Switch Key Generation with a Switch PKI (More Secure)

If you are using a switch PKI (see “SSL Concepts for OpenFlow”, above), then, compared to the previous method, the
method described here takes a little more work, but it does not involve copying the private key from one machine to
another, so it may also be a little more secure.

1. Run the following command on the Open vSwitch itself:

$ ovs-pki req sc

Note: This command does not require a copy of any of the PKI files generated by “ovs-pki init”, and you
should not copy them to the switch because some of them have contents that must remain secret for security.

The “ovs-pki req” command has the following output:

sc-privkey.pem the switch private key file. For security, the contents of this file must remain secret. There is
ordinarily no need to copy this file off the Open vSwitch.

sc-req.pem the switch “certificate request”, which is essentially the switch’s public key. Its contents are not a
secret.

a fingerprint this is output on stdout.

2. Write the fingerprint down on a slip of paper and copy sc-req.pem to the machine that contains the PKI structure.

3. On the machine that contains the PKI structure, run:

$ ovs-pki sign sc switch

This command will output a fingerprint to stdout and request that you verify it. Check that it is the same as the
fingerprint that you wrote down on the slip of paper before you answer “yes”.

ovs-pki sign creates a file named sc-cert.pem, which is the switch certificate. Its contents are not a secret.

4. Copy the generated sc-cert.pem, plus controllerca/cacert.pem from the PKI structure, to the Open vSwitch, and
verify that they were copied correctly.

You may delete sc-cert.pem from the machine that hosts the PKI structure now, although it is not important that
you do so.
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Warning: Don’t delete controllerca/cacert.pem! It is not security-sensitive and you will need it to configure
additional switches.

5. Configure Open vSwitch to use the keys and certificates (see “Configuring SSL Support”, below).

Configuring SSL Support

SSL configuration requires three additional configuration files. The first two of these are unique to each Open vSwitch.
If you used the instructions above to build your PKI, then these files will be named sc-privkey.pem and sc-cert.pem,
respectively:

• A private key file, which contains the private half of an RSA or DSA key.

This file can be generated on the Open vSwitch itself, for the greatest security, or it can be generated elsewhere
and copied to the Open vSwitch.

The contents of the private key file are secret and must not be exposed.

• A certificate file, which certifies that the private key is that of a trustworthy Open vSwitch.

This file has to be generated on a machine that has the private key for the switch certification authority, which
should not be an Open vSwitch; ideally, it should be a machine that is not networked at all.

The certificate file itself is not a secret.

The third configuration file is typically the same across all the switches in a given administrative unit. If you used the
instructions above to build your PKI, then this file will be named cacert.pem:

• The root certificate for the controller certificate authority. The Open vSwitch verifies it that is authorized to
connect to an OpenFlow controller by verifying a signature against this CA certificate.

Once you have these files, configure ovs-vswitchd to use them using the ovs-vsctl set-ssl command, e.g.:

$ ovs-vsctl set-ssl /etc/openvswitch/sc-privkey.pem \
/etc/openvswitch/sc-cert.pem /etc/openvswitch/cacert.pem

Substitute the correct file names, of course, if they differ from the ones used above. You should use absolute file
names (ones that begin with /), because ovs-vswitchd’s current directory is unrelated to the one from which you run
ovs-vsctl.

If you are using self-signed certificates (see “SSL Concepts for OpenFlow”) and you did not copy con-
trollerca/cacert.pem from the PKI machine to the Open vSwitch, then add the --bootstrap option, e.g.:

$ ovs-vsctl -- --bootstrap set-ssl /etc/openvswitch/sc-privkey.pem \
/etc/openvswitch/sc-cert.pem /etc/openvswitch/cacert.pem

After you have added all of these configuration keys, you may specify ssl: connection methods elsewhere in the
configuration database. tcp: connection methods are still allowed even after SSL has been configured, so for security
you should use only ssl: connections.

Reporting Bugs

Report problems to bugs@openvswitch.org.
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5.1.6 Using LISP tunneling

LISP is a layer 3 tunneling mechanism, meaning that encapsulated packets do not carry Ethernet headers, and ARP
requests shouldn’t be sent over the tunnel. Because of this, there are some additional steps required for setting up LISP
tunnels in Open vSwitch, until support for L3 tunnels will improve.

This guide assumes tunneling between two VMs connected to OVS bridges on different hypervisors reachable over
IPv4. Of course, more than one VM may be connected to any of the hypervisors, and a hypervisor may communicate
with several different hypervisors over the same lisp tunneling interface. A LISP “map-cache” can be implemented
using flows, see example at the bottom of this file.

There are several scenarios:

1) the VMs have IP addresses in the same subnet and the hypervisors are also in a single subnet (although one
different from the VM’s);

2) the VMs have IP addresses in the same subnet but the hypervisors are separated by a router;

3) the VMs are in different subnets.

In cases 1) and 3) ARP resolution can work as normal: ARP traffic is configured not to go through the LISP tunnel.
For case 1) ARP is able to reach the other VM, if both OVS instances default to MAC address learning. Case 3)
requires the hypervisor be configured as the default router for the VMs.

In case 2) the VMs expect ARP replies from each other, but this is not possible over a layer 3 tunnel. One solution
is to have static MAC address entries preconfigured on the VMs (e.g., arp -f /etc/ethers on startup on Unix
based VMs), or have the hypervisor do proxy ARP. In this scenario, the eth0 interfaces need not be added to the br0
bridge in the examples below.

On the receiving side, the packet arrives without the original MAC header. The LISP tunneling code attaches a header
with hard-coded source and destination MAC address 02:00:00:00:00:00. This address has all bits set to 0,
except the locally administered bit, in order to avoid potential collisions with existing allocations. In order for packets
to reach their intended destination, the destination MAC address needs to be rewritten. This can be done using the
flow table.

See below for an example setup, and the associated flow rules to enable LISP tunneling.

Diagram

+---+ +---+
|VM1| |VM2|
+---+ +---+
| |

+--[tap0]--+ +--[tap0]---+
| | | |

[lisp0] OVS1 [eth0]-----------------[eth0] OVS2 [lisp0]
| | | |
+----------+ +-----------+

On each hypervisor, interfaces tap0, eth0, and lisp0 are added to a single bridge instance, and become numbered 1, 2,
and 3 respectively:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 tap0
$ ovs-vsctl add-port br0 eth0
$ ovs-vsctl add-port br0 lisp0 \

-- set Interface lisp0 type=lisp options:remote_ip=flow options:key=flow

The last command sets up flow based tunneling on the lisp0 interface. From the LISP point of view, this is like having
the Tunnel Router map cache implemented as flow rules.
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Flows on br0 should be configured as follows:

priority=3,dl_dst=02:00:00:00:00:00,action=mod_dl_dst:<VMx_MAC>,output:1
priority=2,in_port=1,dl_type=0x0806,action=NORMAL
priority=1,in_port=1,dl_type=0x0800,vlan_tci=0,nw_src=<EID_prefix>,action=set_field:
→˓<OVSx_IP>->tun_dst,output:3
priority=0,action=NORMAL

The third rule is like a map cache entry: the <EID_prefix> specified by the nw_src match field is mapped to the
RLOC <OVSx_IP>, which is set as the tunnel destination for this particular flow.

Optionally, if you want to use Instance ID in a flow, you can add set_tunnel:<IID> to the action list.

5.1.7 Connecting VMs Using Tunnels

This document describes how to use Open vSwitch to allow VMs on two different hosts to communicate over port-
based GRE tunnels.

Note: This guide covers the steps required to configure GRE tunneling. The same approach can be used for any of
the other tunneling protocols supported by Open vSwitch.

Setup

This guide assumes the environment is configured as described below.

Two Physical Networks

• Transport Network

Ethernet network for tunnel traffic between hosts running OVS. Depending on the tunneling protocol being used
(this cookbook uses GRE), some configuration of the physical switches may be required (for example, it may
be necessary to adjust the MTU). Configuration of the physical switching hardware is outside the scope of this
cookbook entry.
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• Management Network

Strictly speaking this network is not required, but it is a simple way to give the physical host an IP address
for remote access since an IP address cannot be assigned directly to a physical interface that is part of an OVS
bridge.

Two Physical Hosts

The environment assumes the use of two hosts, named host1 and host2. Both hosts are hypervisors running Open
vSwitch. Each host has two NICs, eth0 and eth1, which are configured as follows:

• eth0 is connected to the Transport Network. eth0 has an IP address that is used to communicate with Host2 over
the Transport Network.

• eth1 is connected to the Management Network. eth1 has an IP address that is used to reach the physical host for
management.

Four Virtual Machines

Each host will run two virtual machines (VMs). vm1 and vm2 are running on host1, while vm3 and vm4 are running
on host2.

Each VM has a single interface that appears as a Linux device (e.g., tap0) on the physical host.

Note: For Xen/XenServer, VM interfaces appears as Linux devices with names like vif1.0. Other Linux systems
may present these interfaces as vnet0, vnet1, etc.

Configuration Steps

Before you begin, you’ll want to ensure that you know the IP addresses assigned to eth0 on both host1 and host2, as
they will be needed during the configuration.

Perform the following configuration on host1.

1. Create an OVS bridge:

$ ovs-vsctl add-br br0

Note: You will not add eth0 to the OVS bridge.

2. Boot vm1 and vm2 on host1. If the VMs are not automatically attached to OVS, add them to the OVS bridge
you just created (the commands below assume tap0 is for vm1 and tap1 is for vm2):

$ ovs-vsctl add-port br0 tap0
$ ovs-vsctl add-port br0 tap1

3. Add a port for the GRE tunnel:

$ ovs-vsctl add-port br0 gre0 \
-- set interface gre0 type=gre options:remote_ip=<IP of eth0 on host2>

Create a mirrored configuration on host2 using the same basic steps:
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1. Create an OVS bridge, but do not add any physical interfaces to the bridge:

$ ovs-vsctl add-br br0

2. Launch vm3 and vm4 on host2, adding them to the OVS bridge if needed (again, tap0 is assumed to be for vm3
and tap1 is assumed to be for vm4):

$ ovs-vsctl add-port br0 tap0
$ ovs-vsctl add-port br0 tap1

3. Create the GRE tunnel on host2, this time using the IP address for eth0 on host1 when specifying the
remote_ip option:

$ ovs-vsctl add-port br0 gre0 – set interface gre0 type=gre options:remote_ip=<IP of eth0 on
host1>

Testing

Pings between any of the VMs should work, regardless of whether the VMs are running on the same host or different
hosts.

Using ip route show (or equivalent command), the routing table of the operating system running inside the VM
should show no knowledge of the IP subnets used by the hosts, only the IP subnet(s) configured within the VM’s
operating system. To help illustrate this point, it may be preferable to use very different IP subnet assignments within
the guest VMs than what is used on the hosts.

Troubleshooting

If connectivity between VMs on different hosts isn’t working, check the following items:

• Make sure that host1 and host2 have full network connectivity over eth0 (the NIC attached to the Transport
Network). This may necessitate the use of additional IP routes or IP routing rules.

• Make sure that gre0 on host1 points to eth0 on host2, and that gre0 on host2 points to eth0 on host1.

• Ensure that all the VMs are assigned IP addresses on the same subnet; there is no IP routing functionality in this
configuration.

5.1.8 Connecting VMs Using Tunnels (Userspace)

This document describes how to use Open vSwitch to allow VMs on two different hosts to communicate over VXLAN
tunnels. Unlike Connecting VMs Using Tunnels, this configuration works entirely in userspace.

Note: This guide covers the steps required to configure VXLAN tunneling. The same approach can be used for any
of the other tunneling protocols supported by Open vSwitch.

+--------------+
| vm0 | 192.168.1.1/24
+--------------+

(vm_port0)
|
|
|

(continues on next page)
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(continued from previous page)

+--------------+
| br-int | 192.168.1.2/24
+--------------+ +--------------+
| vxlan0 | | vxlan0 |
+--------------+ +--------------+

| |
| |
| |

172.168.1.1/24 |
+--------------+ |
| br-phy | 172.168.1.2/24
+--------------+ +---------------+
| dpdk0/eth1 |----------------------------------| eth1 |
+--------------+ +---------------+
Host A with OVS. Remote host.

Setup

This guide assumes the environment is configured as described below.

Two Physical Hosts

The environment assumes the use of two hosts, named host1 and host2. We only detail the configuration of host1 but
a similar configuration can be used for host2. Both hosts should be configured with Open vSwitch (with or without
DPDK), QEMU/KVM and suitable VM images. Open vSwitch should be running before proceeding.

Configuration Steps

Perform the following configuration on host1:

1. Create a br-int bridge:

$ ovs-vsctl --may-exist add-br br-int \
-- set Bridge br-int datapath_type=netdev \
-- br-set-external-id br-int bridge-id br-int \
-- set bridge br-int fail-mode=standalone

2. Add a port to this bridge. If using tap ports, first boot a VM and then add the port to the bridge:

$ ovs-vsctl add-port br-int tap0

If using DPDK vhost-user ports, add the port and then boot the VM accordingly, using vm_port0 as the
interface name:

$ ovs-vsctl add-port br-int vm_port0 \
-- set Interface vm_port0 type=dpdkvhostuser

3. Configure the IP address of the VM interface in the VM itself :

$ ip addr add 192.168.1.1/24 dev eth0
$ ip link set eth0 up

4. On host1, add a port for the VXLAN tunnel:
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$ ovs-vsctl add-port br-int vxlan0 \
-- set interface vxlan0 type=vxlan options:remote_ip=172.168.1.2

Note: 172.168.1.2 is the remote tunnel end point address. On the remote host this will be 172.168.1.1

5. Create a br-phy bridge:

$ ovs-vsctl --may-exist add-br br-phy \
-- set Bridge br-phy datapath_type=netdev \
-- br-set-external-id br-phy bridge-id br-phy \
-- set bridge br-phy fail-mode=standalone \

other_config:hwaddr=<mac address of eth1 interface>

Note: This additional bridge is required when running Open vSwitch in userspace rather than kernel-based
Open vSwitch. The purpose of this bridge is to allow use of the kernel network stack for routing and ARP
resolution. The datapath needs to look-up the routing table and ARP table to prepare the tunnel header and
transmit data to the output port.

Note: eth1 is used rather than eth0. This is to ensure network connectivity is retained.

6. Attach eth1/dpdk0 to the br-phy bridge.

If the physical port eth1 is operating as a kernel network interface, run:

$ ovs-vsctl --timeout 10 add-port br-phy eth1
$ ip addr add 172.168.1.1/24 dev br-phy
$ ip link set br-phy up
$ ip addr flush dev eth1 2>/dev/null
$ ip link set eth1 up
$ iptables -F

If instead the interface is a DPDK interface and bound to the igb_uio or vfio driver, run:

$ ovs-vsctl --timeout 10 add-port br-phy dpdk0 \
-- set Interface dpdk0 type=dpdk options:dpdk-devargs=0000:06:00.0

$ ip addr add 172.168.1.1/24 dev br-phy
$ ip link set br-phy up
$ iptables -F

The commands are different as DPDK interfaces are not managed by the kernel, thus, the port details are not
visible to any ip commands.

Important: Attempting to use the kernel network commands for a DPDK interface will result in a loss of
connectivity through eth1. Refer to Basic Configuration for more details.

Once complete, check the cached routes using ovs-appctl command:

$ ovs-appctl ovs/route/show

If the tunnel route is missing, adding it now:
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$ ovs-appctl ovs/route/add 172.168.1.1/24 br-phy

Repeat these steps if necessary for host2, but using 192.168.1.1 and 172.168.1.2 for the VM and tunnel
interface IP addresses, respectively.

Testing

With this setup, ping to VXLAN target device (192.168.1.2) should work. Traffic will be VXLAN encapsulated
and sent over the eth1/dpdk0 interface.

Tunneling-related Commands

Tunnel routing table

To add route:

$ ovs-appctl ovs/route/add <IP address>/<prefix length> <output-bridge-name> <gw>

To see all routes configured:

$ ovs-appctl ovs/route/show

To delete route:

$ ovs-appctl ovs/route/del <IP address>/<prefix length>

To look up and display the route for a destination:

$ ovs-appctl ovs/route/lookup <IP address>

ARP

To see arp cache content:

$ ovs-appctl tnl/arp/show

To flush arp cache:

$ ovs-appctl tnl/arp/flush

To set a specific arp entry:

$ ovs-appctl tnl/arp/set <bridge> <IP address> <MAC address>

Ports

To check tunnel ports listening in ovs-vswitchd:

$ ovs-appctl tnl/ports/show

To set range for VxLan UDP source port:
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$ ovs-appctl tnl/egress_port_range <num1> <num2>

To show current range:

$ ovs-appctl tnl/egress_port_range

Datapath

To check datapath ports:

$ ovs-appctl dpif/show

To check datapath flows:

$ ovs-appctl dpif/dump-flows

5.1.9 Isolating VM Traffic Using VLANs

This document describes how to use Open vSwitch is to isolate VM traffic using VLANs.
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Setup

This guide assumes the environment is configured as described below.

Two Physical Networks

• Data Network

Ethernet network for VM data traffic, which will carry VLAN-tagged traffic between VMs. Your physical
switch(es) must be capable of forwarding VLAN-tagged traffic and the physical switch ports should operate as
VLAN trunks. (Usually this is the default behavior. Configuring your physical switching hardware is beyond
the scope of this document.)

• Management Network

This network is not strictly required, but it is a simple way to give the physical host an IP address for remote
access, since an IP address cannot be assigned directly to eth0 (more on that in a moment).

Two Physical Hosts

The environment assumes the use of two hosts: host1 and host2. Both hosts are running Open vSwitch. Each host has
two NICs, eth0 and eth1, which are configured as follows:

• eth0 is connected to the Data Network. No IP address is assigned to eth0.

• eth1 is connected to the Management Network (if necessary). eth1 has an IP address that is used to reach the
physical host for management.

Four Virtual Machines

Each host will run two virtual machines (VMs). vm1 and vm2 are running on host1, while vm3 and vm4 are running
on host2.

Each VM has a single interface that appears as a Linux device (e.g., tap0) on the physical host.

Note: For Xen/XenServer, VM interfaces appears as Linux devices with names like vif1.0. Other Linux systems
may present these interfaces as vnet0, vnet1, etc.

Configuration Steps

Perform the following configuration on host1:

1. Create an OVS bridge:

$ ovs-vsctl add-br br0

2. Add eth0 to the bridge:

$ ovs-vsctl add-port br0 eth0
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Note: By default, all OVS ports are VLAN trunks, so eth0 will pass all VLANs

Note: When you add eth0 to the OVS bridge, any IP addresses that might have been assigned to eth0 stop
working. IP address assigned to eth0 should be migrated to a different interface before adding eth0 to the OVS
bridge. This is the reason for the separate management connection via eth1.

3. Add vm1 as an “access port” on VLAN 100. This means that traffic coming into OVS from VM1 will be
untagged and considered part of VLAN 100:

$ ovs-vsctl add-port br0 tap0 tag=100

Add VM2 on VLAN 200:

$ ovs-vsctl add-port br0 tap1 tag=200

Repeat these steps on host2:

1. Setup a bridge with eth0 as a VLAN trunk:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 eth0

2. Add VM3 to VLAN 100:

$ ovs-vsctl add-port br0 tap0 tag=100

3. Add VM4 to VLAN 200:

$ ovs-vsctl add-port br0 tap1 tag=200

Validation

Pings from vm1 to vm3 should succeed, as these two VMs are on the same VLAN.

Pings from vm2 to vm4 should also succeed, since these VMs are also on the same VLAN as each other.

Pings from vm1/vm3 to vm2/vm4 should not succeed, as these VMs are on different VLANs. If you have a router
configured to forward between the VLANs, then pings will work, but packets arriving at vm3 should have the source
MAC address of the router, not of vm1.

5.1.10 Quality of Service (QoS) Rate Limiting

This document explains how to use Open vSwitch to rate-limit traffic by a VM to either 1 Mbps or 10 Mbps.
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Setup

This guide assumes the environment is configured as described below.

One Physical Network

• Data Network

Ethernet network for VM data traffic. This network is used to send traffic to and from an external host used
for measuring the rate at which a VM is sending. For experimentation, this physical network is optional; you
can instead connect all VMs to a bridge that is not connected to a physical interface and use a VM as the
measurement host.

There may be other networks (for example, a network for management traffic), but this guide is only concerned with
the Data Network.

Two Physical Hosts

The first host, named host1, is a hypervisor that runs Open vSwitch and has one NIC. This single NIC, eth0, is
connected to the Data Network. Because it is participating in an OVS bridge, no IP address can be assigned on eth0.
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The second host, named Measurement Host, can be any host capable of measuring throughput from a VM. For this
guide, we use netperf, a free tool for testing the rate at which one host can send to another. The Measurement Host
has only a single NIC, eth0, which is connected to the Data Network. eth0 has an IP address that can reach any VM
on host1.

Two VMs

Both VMs (vm1 and vm2) run on host1.

Each VM has a single interface that appears as a Linux device (e.g., tap0) on the physical host.

Note: For Xen/XenServer, VM interfaces appears as Linux devices with names like vif1.0. Other Linux systems
may present these interfaces as vnet0, vnet1, etc.

Configuration Steps

For both VMs, we modify the Interface table to configure an ingress policing rule. There are two values to set:

ingress_policing_rate the maximum rate (in Kbps) that this VM should be allowed to send

ingress_policing_burst a parameter to the policing algorithm to indicate the maximum amount of data (in
Kb) that this interface can send beyond the policing rate.

To rate limit VM1 to 1 Mbps, use these commands:

$ ovs-vsctl set interface tap0 ingress_policing_rate=1000
$ ovs-vsctl set interface tap0 ingress_policing_burst=100

Similarly, to limit vm2 to 10 Mbps, enter these commands on host1:

$ ovs-vsctl set interface tap1 ingress_policing_rate=10000
$ ovs-vsctl set interface tap1 ingress_policing_burst=1000

To see the current limits applied to VM1, run this command:

$ ovs-vsctl list interface tap0

Testing

To test the configuration, make sure netperf is installed and running on both VMs and on the Measurement Host.
netperf consists of a client (netperf) and a server (netserver). In this example, we run netserver on the
Measurement Host (installing Netperf usually starts netserver as a daemon, meaning this is running by default).

For this example, we assume that the Measurement Host has an IP of 10.0.0.100 and is reachable from both VMs.

From vm1, run this command:

$ netperf -H 10.0.0.100

This will cause VM1 to send TCP traffic as quickly as it can to the Measurement Host. After 10 seconds, this will
output a series of values. We are interested in the “Throughput” value, which is measured in Mbps (10^6 bits/sec).
For VM1 this value should be near 1. Running the same command on VM2 should give a result near 10.
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Troubleshooting

Open vSwitch uses the Linux traffic-control capability for rate-limiting. If you are not seeing the configured rate-limit
have any effect, make sure that your kernel is built with “ingress qdisc” enabled, and that the user-space utilities (e.g.,
/sbin/tc) are installed.

Additional Information

Open vSwitch’s rate-limiting uses policing, which does not queue packets. It drops any packets beyond the specified
rate. Specifying a larger burst size lets the algorithm be more forgiving, which is important for protocols like TCP that
react severely to dropped packets. Setting a burst size of less than than the MTU (e.g., 10 kb) should be avoided.

For TCP traffic, setting a burst size to be a sizeable fraction (e.g., > 10%) of the overall policy rate helps a flow come
closer to achieving the full rate. If a burst size is set to be a large fraction of the overall rate, the client will actually
experience an average rate slightly higher than the specific policing rate.

For UDP traffic, set the burst size to be slightly greater than the MTU and make sure that your performance tool
does not send packets that are larger than your MTU (otherwise these packets will be fragmented, causing poor
performance). For example, you can force netperf to send UDP traffic as 1000 byte packets by running:

$ netperf -H 10.0.0.100 -t UDP_STREAM -- -m 1000

5.1.11 How to Use the VTEP Emulator

This document explains how to use ovs-vtep, a VXLAN Tunnel Endpoint (VTEP) emulator that uses Open vSwitch
for forwarding. VTEPs are the entities that handle VXLAN frame encapsulation and decapsulation in a network.

Requirements

The VTEP emulator is a Python script that invokes calls to tools like vtep-ctl and ovs-vsctl. It is only useful when
Open vSwitch daemons like ovsdb-server and ovs-vswitchd are running and installed. To do this, either:

• Follow the instructions in Open vSwitch on Linux, FreeBSD and NetBSD (don’t start any daemons yet).

• Follow the instructions in Debian Packaging for Open vSwitch and then install the openvswitch-vtep
package (if operating on a debian based machine). This will automatically start the daemons.

Design

At the end of this process, you should have the following setup:

Architecture

+---------------------------------------------------+
| Host Machine |
| |
| |
| +---------+ +---------+ |
| | | | | |
| | VM1 | | VM2 | |
| | | | | |
| +----o----+ +----o----+ |
| | | |

(continues on next page)
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(continued from previous page)

| br0 +------o-----------o--------------------o--+ |
| p0 p1 br0 |
| |
| |
| +------+ +------+ |
+------------------------------| eth0 |---| eth1 |--+

+------+ +------+
10.1.1.1 10.2.2.1

MANAGEMENT | |
+-----------------o----+ |

|
DATA/TUNNEL |

+-----------------o---+

Some important points.

• We will use Open vSwitch to create our “physical” switch labeled br0

• Our “physical” switch br0 will have one internal port also named br0 and two “physical” ports, namely p0
and p1.

• The host machine may have two external interfaces. We will use eth0 for management traffic and eth1 for
tunnel traffic (One can use a single interface to achieve both). Please take note of their IP addresses in the
diagram. You do not have to use exactly the same IP addresses. Just know that the above will be used in the
steps below.

• You can optionally connect physical machines instead of virtual machines to switch br0. In that case:

– Make sure you have two extra physical interfaces in your host machine, eth2 and eth3.

– In the rest of this doc, replace p0 with eth2 and p1 with eth3.

5. In addition to implementing p0 and p1 as physical interfaces, you can also optionally implement them as
standalone TAP devices, or VM interfaces for simulation.

6. Creating and attaching the VMs is outside the scope of this document and is included in the diagram for reference
purposes only.

Startup

These instructions describe how to run with a single ovsdb-server instance that handles both the OVS and VTEP
schema. You can skip steps 1-3 if you installed using the debian packages as mentioned in step 2 of the “Requirements”
section.

1. Create the initial OVS and VTEP schemas:

$ ovsdb-tool create /etc/openvswitch/ovs.db vswitchd/vswitch.ovsschema
$ ovsdb-tool create /etc/openvswitch/vtep.db vtep/vtep.ovsschema
```

2. Start ovsdb-server and have it handle both databases:

$ ovsdb-server --pidfile --detach --log-file \
--remote punix:/var/run/openvswitch/db.sock \
--remote=db:hardware_vtep,Global,managers \
/etc/openvswitch/ovs.db /etc/openvswitch/vtep.db

3. Start ovs-vswitchd as normal:
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$ ovs-vswitchd --log-file --detach --pidfile \
unix:/var/run/openvswitch/db.sock

4. Create a “physical” switch and its ports in OVS:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 p0
$ ovs-vsctl add-port br0 p1

5. Configure the physical switch in the VTEP database:

$ vtep-ctl add-ps br0
$ vtep-ctl set Physical_Switch br0 tunnel_ips=10.2.2.1

6. Start the VTEP emulator. If you installed the components following Open vSwitch on Linux, FreeBSD and
NetBSD, run the following from the vtep directory:

$ ./ovs-vtep --log-file=/var/log/openvswitch/ovs-vtep.log \
--pidfile=/var/run/openvswitch/ovs-vtep.pid \
--detach br0

If the installation was done by installing the openvswitch-vtep package, you can find ovs-vtep at /usr/share/
openvswitch/scripts.

7. Configure the VTEP database’s manager to point at an NVC:

$ vtep-ctl set-manager tcp:<CONTROLLER IP>:6640

Where <CONTROLLER IP> is your controller’s IP address that is accessible via the Host Machine’s eth0
interface.

Simulating an NVC

A VTEP implementation expects to be driven by a Network Virtualization Controller (NVC), such as NSX. If one
does not exist, it’s possible to use vtep-ctl to simulate one:

1. Create a logical switch:

$ vtep-ctl add-ls ls0

2. Bind the logical switch to a port:

$ vtep-ctl bind-ls br0 p0 0 ls0
$ vtep-ctl set Logical_Switch ls0 tunnel_key=33

3. Direct unknown destinations out a tunnel.

For handling L2 broadcast, multicast and unknown unicast traffic, packets can be sent to all members of a logical
switch referenced by a physical switch. The “unknown-dst” address below is used to represent these packets.
There are different modes to replicate the packets. The default mode of replication is to send the traffic to a
service node, which can be a hypervisor, server or appliance, and let the service node handle replication to other
transport nodes (hypervisors or other VTEP physical switches). This mode is called service node replication.
An alternate mode of replication, called source node replication, involves the source node sending to all other
transport nodes. Hypervisors are always responsible for doing their own replication for locally attached VMs in
both modes. Service node mode is the default. Service node replication mode is considered a basic requirement
because it only requires sending the packet to a single transport node. The following configuration is for service
node replication mode as only a single transport node destination is specified for the unknown-dst address:
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$ vtep-ctl add-mcast-remote ls0 unknown-dst 10.2.2.2

4. Optionally, change the replication mode from a default of service_node to source_node, which can be
done at the logical switch level:

$ vtep-ctl set-replication-mode ls0 source_node

5. Direct unicast destinations out a different tunnel:

$ vtep-ctl add-ucast-remote ls0 00:11:22:33:44:55 10.2.2.3

5.1.12 Monitoring VM Traffic Using sFlow

This document describes how to use Open vSwitch is to monitor traffic sent between two VMs on the same host using
an sFlow collector. VLANs.

Setup

This guide assumes the environment is configured as described below.
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Two Physical Networks

• Data Network

Ethernet network for VM data traffic. For experimentation, this physical network is optional. You
can instead connect all VMs to a bridge that is not connected to a physical interface.

• Management Network

This network must exist, as it is used to send sFlow data from the agent to the remote collector.

Two Physical Hosts

The environment assumes the use of two hosts: host1 and hostMon. host is a hypervisor that run Open vSwitch and
has two NICs:

• eth0 is connected to the Data Network. No IP address can be assigned on eth0 because it is part of an OVS
bridge.

• eth1 is connected to the Management Network. eth1 has an IP address for management traffic, including sFlow.

hostMon can be any computer that can run the sFlow collector. For this cookbook entry, we use sFlowTrend, a free
sFlow collector that is a simple cross-platform Java download. Other sFlow collectors should work equally well.
hostMon has a single NIC, eth0, that is connected to the Management Network. eth0 has an IP adress that can reach
eth1 on host1.

Two Virtual Machines

This guide uses two virtual machines - vm1 and vm2- running on host1.

Note: For Xen/XenServer, VM interfaces appears as Linux devices with names like vif1.0. Other Linux systems
may present these interfaces as vnet0, vnet1, etc.

Configuration Steps

On host1, define the following configuration values in your shell environment:

COLLECTOR_IP=10.0.0.1
COLLECTOR_PORT=6343
AGENT_IP=eth1
HEADER_BYTES=128
SAMPLING_N=64
POLLING_SECS=10

Port 6343 (COLLECTOR_PORT) is the default port number for sFlowTrend. If you are using an sFlow collector other
than sFlowTrend, set this value to the appropriate port for your particular collector. Set your own IP address for the
collector in the place of 10.0.0.1 (COLLECTOR_IP). Setting the AGENT_IP value to eth1 indicates that the sFlow
agent should send traffic from eth1’s IP address. The other values indicate settings regarding the frequency and type
of packet sampling that sFlow should perform.

Still on host1, run the following command to create an sFlow configuration and attach it to bridge br0:
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$ ovs-vsctl -- --id=@sflow create sflow agent=${AGENT_IP} \
target="\"${COLLECTOR_IP}:${COLLECTOR_PORT}\"" header=${HEADER_BYTES} \
sampling=${SAMPLING_N} polling=${POLLING_SECS} \

-- set bridge br0 sflow=@sflow

Make note of the UUID that is returned by this command; this value is necessary to remove the sFlow configuration.

On hostMon, go to the sFlowTrend and click “Install” in the upper right-hand corner. If you have Java installed, this
will download and start the sFlowTrend application. Once sFlowTrend is running, the light in the lower right-hand
corner of the sFlowTrend application should blink green to indicate that the collector is receiving traffic.

The sFlow configuration is now complete, and sFlowTrend on hostMon should be receiving sFlow data from OVS on
host1.

To configure sFlow on additional bridges, just replace br0 in the above command with a different bridge name.

To remove sFlow configuration from a bridge (in this case, br0), run this command, where “sFlow UUID” is the
UUID returned by the command used to set the sFlow configuration initially:

$ ovs-vsctl remove bridge br0 sflow <sFlow UUID>

To see all current sets of sFlow configuration parameters, run:

$ ovs-vsctl list sflow

Troubleshooting

If sFlow data isn’t being collected and displayed by sFlowTrend, check the following items:

• Make sure the VMs are sending/receiving network traffic over bridge br0, preferably to multiple other hosts and
using a variety of protocols.

• To confirm that the agent is sending traffic, check that running the following command shows that the agent on
the physical server is sending traffic to the collector IP address (change the port below to match the port your
collector is using):

$ tcpdump -ni eth1 udp port 6343

If no traffic is being sent, there is a problem with the configuration of OVS. If traffic is being sent but nothing is visible
in the sFlowTrend user interface, this may indicate a configuration problem with the collector.

Check to make sure the host running the collector (hostMon) does not have a firewall that would prevent UDP port
6343 from reaching the collector.

Credit

This document is heavily based on content from Neil McKee at InMon:

• https://mail.openvswitch.org/pipermail/ovs-dev/2010-July/165245.html

• https://blog.sflow.com/2010/01/open-vswitch.html

Note: The configuration syntax is out of date, but the high-level descriptions are correct.
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5.1.13 Using Open vSwitch with DPDK

This document describes how to use Open vSwitch with DPDK.

Important: Using DPDK with OVS requires configuring OVS at build time to use the DPDK library. The version
of DPDK that OVS supports varies from one OVS release to another, as described in the releases FAQ. For build
instructions refer to Open vSwitch with DPDK.

Ports and Bridges

ovs-vsctl can be used to set up bridges and other Open vSwitch features. Bridges should be created with a
datapath_type=netdev:

$ ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev

ovs-vsctl can also be used to add DPDK devices. ovs-vswitchd should print the number of dpdk devices found in the
log file:

$ ovs-vsctl add-port br0 dpdk-p0 -- set Interface dpdk-p0 type=dpdk \
options:dpdk-devargs=0000:01:00.0

$ ovs-vsctl add-port br0 dpdk-p1 -- set Interface dpdk-p1 type=dpdk \
options:dpdk-devargs=0000:01:00.1

Some NICs (i.e. Mellanox ConnectX-3) have only one PCI address associated with multiple ports. Using a PCI device
like above won’t work. Instead, below usage is suggested:

$ ovs-vsctl add-port br0 dpdk-p0 -- set Interface dpdk-p0 type=dpdk \
options:dpdk-devargs="class=eth,mac=00:11:22:33:44:55"

$ ovs-vsctl add-port br0 dpdk-p1 -- set Interface dpdk-p1 type=dpdk \
options:dpdk-devargs="class=eth,mac=00:11:22:33:44:56"

Important: Hotplugging physical interfaces is not supported using the above syntax. This is expected to change
with the release of DPDK v18.05. For information on hotplugging physical interfaces, you should instead refer to
Hotplugging.

After the DPDK ports get added to switch, a polling thread continuously polls DPDK devices and consumes 100% of
the core, as can be checked from top and ps commands:

$ top -H
$ ps -eLo pid,psr,comm | grep pmd

Creating bonds of DPDK interfaces is slightly different to creating bonds of system interfaces. For DPDK, the interface
type and devargs must be explicitly set. For example:

$ ovs-vsctl add-bond br0 dpdkbond p0 p1 \
-- set Interface p0 type=dpdk options:dpdk-devargs=0000:01:00.0 \
-- set Interface p1 type=dpdk options:dpdk-devargs=0000:01:00.1

To stop ovs-vswitchd & delete bridge, run:

$ ovs-appctl -t ovs-vswitchd exit
$ ovs-appctl -t ovsdb-server exit
$ ovs-vsctl del-br br0

5.1. OVS 233



Open vSwitch, Release 2.12.90

OVS with DPDK Inside VMs

Additional configuration is required if you want to run ovs-vswitchd with DPDK backend inside a QEMU virtual
machine. ovs-vswitchd creates separate DPDK TX queues for each CPU core available. This operation fails inside
QEMU virtual machine because, by default, VirtIO NIC provided to the guest is configured to support only sin-
gle TX queue and single RX queue. To change this behavior, you need to turn on mq (multiqueue) property of all
virtio-net-pci devices emulated by QEMU and used by DPDK. You may do it manually (by changing QEMU
command line) or, if you use Libvirt, by adding the following string to <interface> sections of all network devices
used by DPDK:

<driver name='vhost' queues='N'/>

where:

N determines how many queues can be used by the guest.

This requires QEMU >= 2.2.

PHY-PHY

Add a userspace bridge and two dpdk (PHY) ports:

# Add userspace bridge
$ ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev

# Add two dpdk ports
$ ovs-vsctl add-port br0 phy0 -- set Interface phy0 type=dpdk \

options:dpdk-devargs=0000:01:00.0 ofport_request=1

$ ovs-vsctl add-port br0 phy1 -- set Interface phy1 type=dpdk
options:dpdk-devargs=0000:01:00.1 ofport_request=2

Add test flows to forward packets between DPDK port 0 and port 1:

# Clear current flows
$ ovs-ofctl del-flows br0

# Add flows between port 1 (phy0) to port 2 (phy1)
$ ovs-ofctl add-flow br0 in_port=1,action=output:2
$ ovs-ofctl add-flow br0 in_port=2,action=output:1

Transmit traffic into either port. You should see it returned via the other.

PHY-VM-PHY (vHost Loopback)

Add a userspace bridge, two dpdk (PHY) ports, and two dpdkvhostuser ports:

# Add userspace bridge
$ ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev

# Add two dpdk ports
$ ovs-vsctl add-port br0 phy0 -- set Interface phy0 type=dpdk \

options:dpdk-devargs=0000:01:00.0 ofport_request=1

$ ovs-vsctl add-port br0 phy1 -- set Interface phy1 type=dpdk
options:dpdk-devargs=0000:01:00.1 ofport_request=2

(continues on next page)
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# Add two dpdkvhostuser ports
$ ovs-vsctl add-port br0 dpdkvhostuser0 \

-- set Interface dpdkvhostuser0 type=dpdkvhostuser ofport_request=3
$ ovs-vsctl add-port br0 dpdkvhostuser1 \

-- set Interface dpdkvhostuser1 type=dpdkvhostuser ofport_request=4

Add test flows to forward packets between DPDK devices and VM ports:

# Clear current flows
$ ovs-ofctl del-flows br0

# Add flows
$ ovs-ofctl add-flow br0 in_port=1,action=output:3
$ ovs-ofctl add-flow br0 in_port=3,action=output:1
$ ovs-ofctl add-flow br0 in_port=4,action=output:2
$ ovs-ofctl add-flow br0 in_port=2,action=output:4

# Dump flows
$ ovs-ofctl dump-flows br0

Create a VM using the following configuration:

Configuration Values Comments
QEMU version 2.2.0 n/a
QEMU thread affinity core 5 taskset 0x20
Memory 4GB n/a
Cores 2 n/a
Qcow2 image CentOS7 n/a
mrg_rxbuf off n/a

You can do this directly with QEMU via the qemu-system-x86_64 application:

$ export VM_NAME=vhost-vm
$ export GUEST_MEM=3072M
$ export QCOW2_IMAGE=/root/CentOS7_x86_64.qcow2
$ export VHOST_SOCK_DIR=/usr/local/var/run/openvswitch

$ taskset 0x20 qemu-system-x86_64 -name $VM_NAME -cpu host -enable-kvm \
-m $GUEST_MEM -drive file=$QCOW2_IMAGE --nographic -snapshot \
-numa node,memdev=mem -mem-prealloc -smp sockets=1,cores=2 \
-object memory-backend-file,id=mem,size=$GUEST_MEM,mem-path=/dev/hugepages,share=on

→˓\
-chardev socket,id=char0,path=$VHOST_SOCK_DIR/dpdkvhostuser0 \
-netdev type=vhost-user,id=mynet1,chardev=char0,vhostforce \
-device virtio-net-pci,mac=00:00:00:00:00:01,netdev=mynet1,mrg_rxbuf=off \
-chardev socket,id=char1,path=$VHOST_SOCK_DIR/dpdkvhostuser1 \
-netdev type=vhost-user,id=mynet2,chardev=char1,vhostforce \
-device virtio-net-pci,mac=00:00:00:00:00:02,netdev=mynet2,mrg_rxbuf=off

For a explanation of this command, along with alternative approaches such as booting the VM via libvirt, refer to
DPDK vHost User Ports.

Once the guest is configured and booted, configure DPDK packet forwarding within the guest. To accomplish this,
build the testpmd application as described in DPDK in the Guest. Once compiled, run the application:

5.1. OVS 235



Open vSwitch, Release 2.12.90

$ cd $DPDK_DIR/app/test-pmd;
$ ./testpmd -c 0x3 -n 4 --socket-mem 1024 -- \

--burst=64 -i --txqflags=0xf00 --disable-hw-vlan
$ set fwd mac retry
$ start

When you finish testing, bind the vNICs back to kernel:

$ $DPDK_DIR/usertools/dpdk-devbind.py --bind=virtio-pci 0000:00:03.0
$ $DPDK_DIR/usertools/dpdk-devbind.py --bind=virtio-pci 0000:00:04.0

Note: Valid PCI IDs must be passed in above example. The PCI IDs can be retrieved like so:

$ $DPDK_DIR/usertools/dpdk-devbind.py --status

More information on the dpdkvhostuser ports can be found in DPDK vHost User Ports.

PHY-VM-PHY (vHost Loopback) (Kernel Forwarding)

PHY-VM-PHY (vHost Loopback) details steps for PHY-VM-PHY loopback testcase and packet forwarding using
DPDK testpmd application in the Guest VM. For users wishing to do packet forwarding using kernel stack below,
you need to run the below commands on the guest:

$ ip addr add 1.1.1.2/24 dev eth1
$ ip addr add 1.1.2.2/24 dev eth2
$ ip link set eth1 up
$ ip link set eth2 up
$ systemctl stop firewalld.service
$ systemctl stop iptables.service
$ sysctl -w net.ipv4.ip_forward=1
$ sysctl -w net.ipv4.conf.all.rp_filter=0
$ sysctl -w net.ipv4.conf.eth1.rp_filter=0
$ sysctl -w net.ipv4.conf.eth2.rp_filter=0
$ route add -net 1.1.2.0/24 eth2
$ route add -net 1.1.1.0/24 eth1
$ arp -s 1.1.2.99 DE:AD:BE:EF:CA:FE
$ arp -s 1.1.1.99 DE:AD:BE:EF:CA:EE

PHY-VM-PHY (vHost Multiqueue)

vHost Multiqueue functionality can also be validated using the PHY-VM-PHY configuration. To begin, follow the
steps described in PHY-PHY to create and initialize the database, start ovs-vswitchd and add dpdk-type devices to
bridge br0. Once complete, follow the below steps:

1. Configure PMD and RXQs.

For example, set the number of dpdk port rx queues to at least 2 The number of rx queues at vhost-user interface
gets automatically configured after virtio device connection and doesn’t need manual configuration:

$ ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=0xc
$ ovs-vsctl set Interface phy0 options:n_rxq=2
$ ovs-vsctl set Interface phy1 options:n_rxq=2
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2. Instantiate Guest VM using QEMU cmdline

We must configure with appropriate software versions to ensure this feature is supported.

Table 1: VM Configuration
Setting Value
QEMU version 2.5.0
QEMU thread affinity 2 cores (taskset 0x30)
Memory 4 GB
Cores 2
Distro Fedora 22
Multiqueue Enabled

To do this, instantiate the guest as follows:

$ export VM_NAME=vhost-vm
$ export GUEST_MEM=4096M
$ export QCOW2_IMAGE=/root/Fedora22_x86_64.qcow2
$ export VHOST_SOCK_DIR=/usr/local/var/run/openvswitch
$ taskset 0x30 qemu-system-x86_64 -cpu host -smp 2,cores=2 -m 4096M \

-drive file=$QCOW2_IMAGE --enable-kvm -name $VM_NAME \
-nographic -numa node,memdev=mem -mem-prealloc \
-object memory-backend-file,id=mem,size=$GUEST_MEM,mem-path=/dev/hugepages,

→˓share=on \
-chardev socket,id=char1,path=$VHOST_SOCK_DIR/dpdkvhostuser0 \
-netdev type=vhost-user,id=mynet1,chardev=char1,vhostforce,queues=2 \
-device virtio-net-pci,mac=00:00:00:00:00:01,netdev=mynet1,mq=on,vectors=6 \
-chardev socket,id=char2,path=$VHOST_SOCK_DIR/dpdkvhostuser1 \
-netdev type=vhost-user,id=mynet2,chardev=char2,vhostforce,queues=2 \
-device virtio-net-pci,mac=00:00:00:00:00:02,netdev=mynet2,mq=on,vectors=6

Note: Queue value above should match the queues configured in OVS, The vector value should be set to
“number of queues x 2 + 2”

3. Configure the guest interface

Assuming there are 2 interfaces in the guest named eth0, eth1 check the channel configuration and set the
number of combined channels to 2 for virtio devices:

$ ethtool -l eth0
$ ethtool -L eth0 combined 2
$ ethtool -L eth1 combined 2

More information can be found in vHost walkthrough section.

4. Configure kernel packet forwarding

Configure IP and enable interfaces:

$ ip addr add 5.5.5.1/24 dev eth0
$ ip addr add 90.90.90.1/24 dev eth1
$ ip link set eth0 up
$ ip link set eth1 up

Configure IP forwarding and add route entries:
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$ sysctl -w net.ipv4.ip_forward=1
$ sysctl -w net.ipv4.conf.all.rp_filter=0
$ sysctl -w net.ipv4.conf.eth0.rp_filter=0
$ sysctl -w net.ipv4.conf.eth1.rp_filter=0
$ ip route add 2.1.1.0/24 dev eth1
$ route add default gw 2.1.1.2 eth1
$ route add default gw 90.90.90.90 eth1
$ arp -s 90.90.90.90 DE:AD:BE:EF:CA:FE
$ arp -s 2.1.1.2 DE:AD:BE:EF:CA:FA

Check traffic on multiple queues:

$ cat /proc/interrupts | grep virtio

Flow Hardware Offload (Experimental)

The flow hardware offload is disabled by default and can be enabled by:

$ ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

So far only partial flow offload is implemented. Moreover, it only works with PMD drivers have the rte_flow action
“MARK + RSS” support.

The validated NICs are:

• Mellanox (ConnectX-4, ConnectX-4 Lx, ConnectX-5)

• Napatech (NT200B01)

Supported protocols for hardware offload are: - L2: Ethernet, VLAN - L3: IPv4, IPv6 - L4: TCP, UDP, SCTP, ICMP

Further Reading

More detailed information can be found in the DPDK topics section of the documentation. These guides are listed
below.
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CHAPTER 6

Reference Guide

6.1 Man Pages

The following man pages are written in rST and converted to roff at compile time:

6.1.1 ovs-appctl

Synopsis

ovs-appctl [--target=``<target> | ``-t <target>] [--timeout=``<secs> | ``-T <secs>]
<command> [<arg>. . . ]

ovs-appctl --help

ovs-appctl --version

Description

Open vSwitch daemons accept certain commands at runtime to control their behavior and query their settings. Every
daemon accepts a common set of commands documented under Common Commands below. Some daemons sup-
port additional commands documented in their own manpages. ovs-vswitchd in particular accepts a number of
additional commands documented in ovs-vswitchd(8).

The ovs-appctl program provides a simple way to invoke these commands. The command to be sent is specified on
ovs-appctl’s command line as non-option arguments. ovs-appctl sends the command and prints the daemon’s
response on standard output.

In normal use only a single option is accepted:

• -t <target> or --target <target>

Tells ovs-appctl which daemon to contact.
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If <target> begins with / it must name a Unix domain socket on which an Open vSwitch daemon is listening
for control channel connections. By default, each daemon listens on a Unix domain socket in the rundir (e.g.
/run) named <program>.<pid>.ctl, where <program> is the program’s name and <pid> is its process
ID. For example, if ovs-vswitchd has PID 123, it would listen on ovs-vswitchd.123.ctl.

Otherwise, ovs-appctl looks in the rundir for a pidfile, that is, a file whose contents are the process ID of
a running process as a decimal number, named <target>.pid. (The --pidfile option makes an Open
vSwitch daemon create a pidfile.) ovs-appctl reads the pidfile, then looks in the rundir for a Unix socket
named <target>.<pid>.ctl, where <pid> is replaced by the process ID read from the pidfile, and uses
that file as if it had been specified directly as the target.

On Windows, <target> can be an absolute path to a file that contains a localhost TCP port on which an Open
vSwitch daemon is listening for control channel connections. By default, each daemon writes the TCP port on
which it is listening for control connection into the file <program>.ctl located inside the rundir. If <target>
is not an absolute path, ovs-appctl looks in the rundir for a file named <target>.ctl. The default target
is ovs-vswitchd.

• -T <secs> or --timeout=<secs>

By default, or with a <secs> of 0, ovs-appctl waits forever to connect to the daemon and receive a response.
This option limits runtime to approximately <secs> seconds. If the timeout expires, ovs-appctl exits with a
SIGALRM signal.

Common Commands

Every Open vSwitch daemon supports a common set of commands, which are documented in this section.

General Commands

These commands display daemon-specific commands and the running version. Note that these commands are different
from the --help and --version options that return information about the ovs-appctl utility itself.

• list-commands

Lists the commands supported by the target.

• version

Displays the version and compilation date of the target.

Logging Commands

Open vSwitch has several log levels. The highest-severity log level is:

• off

No message is ever logged at this level, so setting a logging destination’s log level to off disables logging to
that destination.

The following log levels, in order of descending severity, are available:

• emer

A major failure forced a process to abort.

• err

A high-level operation or a subsystem failed. Attention is warranted.
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• warn

A low-level operation failed, but higher-level subsystems may be able to recover.

• info

Information that may be useful in retrospect when investigating a problem.

• dbg

Information useful only to someone with intricate knowledge of the system, or that would commonly cause
too-voluminous log output. Log messages at this level are not logged by default.

Every Open vSwitch daemon supports the following commands for examining and adjusting log levels:

• vlog/list

Lists the known logging modules and their current levels.

• vlog/list-pattern

Lists logging pattern used for each destination.

• vlog/set [<spec>]

Sets logging levels. Without any <spec>, sets the log level for every module and destination to dbg. Otherwise,
<spec> is a list of words separated by spaces or commas or colons, up to one from each category below:

– A valid module name, as displayed by the vlog/list command on ovs-appctl(8), limits the log
level change to the specified module.

– syslog, console, or file, to limit the log level change to only to the system log, to the console, or to
a file, respectively.

On Windows platform, syslog is only useful if <target> was started with the --syslog-target
option (it has no effect otherwise).

– off, emer, err, warn, info, or dbg, to control the log level. Messages of the given severity or higher
will be logged, and messages of lower severity will be filtered out. off filters out all messages.

Case is not significant within <spec>.

Regardless of the log levels set for file, logging to a file will not take place unless the target application was
invoked with the --log-file option.

For compatibility with older versions of OVS, any is accepted within <spec> but it has no effect.

• vlog/set PATTERN:<destination>:<pattern>

Sets the log pattern for <destination> to <pattern>. Each time a message is logged to <destination>, <pattern>
determines the message’s formatting. Most characters in <pattern> are copied literally to the log, but special
escapes beginning with % are expanded as follows:

– %A

The name of the application logging the message, e.g. ovs-vswitchd.

– %B

The RFC5424 syslog PRI of the message.

– %c

The name of the module (as shown by ovs-appctl --list) logging the message.

– %d

The current date and time in ISO 8601 format (YYYY-MM-DD HH:MM:SS).
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– %d{<format>}

The current date and time in the specified <format>, which takes the same format as the <template>
argument to strftime(3). As an extension, any # characters in <format> will be replaced by fractional
seconds, e.g. use %H:%M:%S.### for the time to the nearest millisecond. Sub-second times are only
approximate and currently decimal places after the third will always be reported as zero.

– %D

The current UTC date and time in ISO 8601 format (YYYY-MM-DD HH:MM:SS).

– %D{<format>}

The current UTC date and time in the specified <format>, which takes the same format as the <tem-
plate> argument to strftime``(3). Supports the same extension for sub-second
resolution as ``%d{...}.

– %E

The hostname of the node running the application.

– %m

The message being logged.

– %N

A serial number for this message within this run of the program, as a decimal number. The first message a
program logs has serial number 1, the second one has serial number 2, and so on.

– %n

A new-line.

– %p

The level at which the message is logged, e.g. DBG.

– %P

The program’s process ID (pid), as a decimal number.

– %r

The number of milliseconds elapsed from the start of the application to the time the message was logged.

– %t

The subprogram name, that is, an identifying name for the process or thread that emitted the log message,
such as monitor for the process used for --monitor or main for the primary process or thread in a
program.

– %T

The subprogram name enclosed in parentheses, e.g. (monitor), or the empty string for the primary
process or thread in a program.

– %%

A literal %.

A few options may appear between the % and the format specifier character, in this order:

– -

Left justify the escape’s expansion within its field width. Right justification is the default.
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– 0

Pad the field to the field width with 0 characters. Padding with spaces is the default.

– <width>

A number specifies the minimum field width. If the escape expands to fewer characters than <width> then
it is padded to fill the field width. (A field wider than <width> is not truncated to fit.)

The default pattern for console and file output is %D{%Y-%m-%dT %H:%M:%SZ}|%05N|%c|%p|%m; for
syslog output, %05N|%c|%p|%m.

Daemons written in Python (e.g. ovs-xapi-sync) do not allow control over the log pattern.

• vlog/set FACILITY:<facility>

Sets the RFC5424 facility of the log message. <facility> can be one of kern, user, mail, daemon, auth,
syslog, lpr, news, uucp, clock, ftp, ntp, audit, alert, clock2, local0, local1, local2,
local3, local4, local5, local6 or local7.

• vlog/close

Causes the daemon to close its log file, if it is open. (Use vlog/reopen to reopen it later.)

• vlog/reopen

Causes the daemon to close its log file, if it is open, and then reopen it. (This is useful after rotating log files, to
cause a new log file to be used.)

This has no effect if the target application was not invoked with the --log-file option.

Options

-h, --help
Prints a brief help message to the console.

-V, --version
Prints version information to the console.

See Also

ovs-appctl can control all Open vSwitch daemons, including ovs-vswitchd(8) and ovsdb-server(1).

6.1.2 ovs-ctl

Synopsis

ovs-ctl --system-id=random|<uuid> [<options>] start

ovs-ctl stop

ovs-ctl --system-id=random|<uuid> [<options>] restart

ovs-ctl status

ovs-ctl version

ovs-ctl [<options>] load-kmod

ovs-ctl --system-id=random|<uuid> [<options>] force-reload-kmod
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ovs-ctl [--protocol=<protocol>] [--sport=<sport>] [--dport=<dport>]
enable-protocol

ovs-ctl delete-transient-ports

ovs-ctl help | -h | --help

ovs-ctl --version

Description

The ovs-ctl program starts, stops, and checks the status of Open vSwitch daemons. It is not meant to be invoked
directly by system administrators but to be called internally by system startup scripts.

Each ovs-ctl command is described separately below.

The start command

The start command starts Open vSwitch. It performs the following tasks:

1. Loads the Open vSwitch kernel module. If this fails, and the Linux bridge module is loaded but no bridges exist,
it tries to unload the bridge module and tries loading the Open vSwitch kernel module again. (This is because
the Open vSwitch kernel module cannot coexist with the Linux bridge module before 2.6.37.)

The start command skips the following steps if ovsdb-server is already running:

2. If the Open vSwitch database file does not exist, it creates it. If the database does exist, but it has an obsolete
version, it upgrades it to the latest schema.

3. Starts ovsdb-server, unless the --no-ovsdb-server command option is given.

4. Initializes a few values inside the database.

5. If the --delete-bridges option was used, deletes all of the bridges from the database.

6. If the --delete-transient-ports option was used, deletes all ports that have
other_config:transient set to true.

The start command skips the following step if ovs-vswitchd is already running, or if the
--no-ovs-vswitchd command option is given:

7. Starts ovs-vswitchd.

Options

Several command-line options influence the start command’s behavior. Some form of the following option should
ordinarily be specified:

• --system-id=<uuid> or --system-id=random

This specifies a unique system identifier to store into external-ids:system-id in the database’s
Open_vSwitch table. Remote managers that talk to the Open vSwitch database server over network pro-
tocols use this value to identify and distinguish Open vSwitch instances, so it should be unique (at least) within
OVS instances that will connect to a single controller.

When random is specified, ovs-ctl will generate a random ID that persists from one run to another (stored
in a file). When another string is specified ovs-ctl uses it literally.

The following options should be specified if the defaults are not suitable:
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• --system-type=<type> or --system-version=<version>

Sets the value to store in the system-type and system-version columns, respectively, in the database’s
Open_vSwitch table. Remote managers may use these values too determine the kind of system to which they
are connected (primarily for display to human administrators).

When not specified, ovs-ctl uses values from the optional system-type.conf and
system-version.conf files (see Files) or it uses the lsb_release program, if present, to pro-
vide reasonable defaults.

The following options are also likely to be useful:

• --external-id="<name>=<value>"

Sets external-ids:<name> to <value> in the database’s Open_vSwitch table. Specifying this option
multiple times adds multiple key-value pairs.

• --delete-bridges

Ordinarily Open vSwitch bridges persist from one system boot to the next, as long as the database is preserved.
Some environments instead expect to re-create all of the bridges and other configuration state on every boot. This
option supports that, by deleting all Open vSwitch bridges after starting ovsdb-server but before starting
ovs-vswitchd.

• --delete-transient-ports

Deletes all ports that have other_config:transient set to true. This is important on certain envi-
ronments where some ports are going to be recreated after reboot, but other ports need to be persisted in the
database.

• --ovs-user=user[:group]

Ordinarily Open vSwitch daemons are started as the user invoking the ovs-ctl command. Some system admin-
istrators would prefer to have the various daemons spawn as different users in their environments. This option
allows passing the --user option to the ovsdb-server and ovs-vswitchd daemons, allowing them to
change their privilege levels.

The following options are less important:

• --no-monitor

By default ovs-ctl passes --monitor to ovs-vswitchd and ovsdb-server, requesting that it spawn
a process monitor which will restart the daemon if it crashes. This option suppresses that behavior.

• --daemon-cwd=<directory>

Specifies the current working directory that the OVS daemons should run from. The default is / (the root
directory) if this option is not specified. (This option is useful because most systems create core files in a
process’s current working directory and because a file system that is in use as a process’s current working
directory cannot be unmounted.)

• --no-force-corefiles

By default, ovs-ctl enables core dumps for the OVS daemons. This option disables that behavior.

• --no-mlockall

By default ovs-ctl passes --mlockall to ovs-vswitchd, requesting that it lock all of its virtual mem-
ory, preventing it from being paged to disk. This option suppresses that behavior.

• --no-self-confinement

Disable self-confinement for ovs-vswitchd and ovsdb-server daemons. This flag may be used when,
for example, OpenFlow controller creates its Unix Domain Socket outside OVS run directory and OVS needs to
connect to it. It is better to stick with the default behavior and not to use this flag, unless:
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– You have Open vSwitch running under SELinux or AppArmor Mandatory Access Control that would
prevent OVS from messing with sockets outside ordinary OVS directories.

– You believe that relying on protocol handshakes (e.g. OpenFlow) is enough to prevent OVS to adversely
interact with other daemons running on your system.

– You don’t have much worries of remote OVSDB exploits in the first place, because, perhaps, OVSDB
manager is running on the same host as OVS and share similar attack vectors.

• --ovsdb-server-priority=<niceness> or --ovs-vswitchd-priority=<niceness>

Sets the nice(1) level used for each daemon. All of them default to -10.

• --ovsdb-server-wrapper=<wrapper> or --ovs-vswitchd-wrapper=<wrapper>

Configures the specified daemon to run under <wrapper>, which is one of the following:

– valgrind: Run the daemon under valgrind(1), if it is installed, logging to <daemon>.
valgrind.log.<pid> in the log directory.

– strace: Run the daemon under strace(1), if it is installed, logging to <daemon>.strace.log.
<pid> in the log directory.

– glibc: Enable GNU C library features designed to find memory errors.

By default, no wrapper is used.

Each of the wrappers can expose bugs in Open vSwitch that lead to incorrect operation, including crashes. The
valgrind and strace wrappers greatly slow daemon operations so they should not be used in production.
They also produce voluminous logs that can quickly fill small disk partitions. The glibc wrapper is less
resource-intensive but still somewhat slows the daemons.

The following options control file locations. They should only be used if the default locations cannot be used. See
FILES, below, for more information.

• --db-file=<file>

Overrides the file name for the OVS database.

• --db-sock=<socket>

Overrides the file name for the Unix domain socket used to connect to ovsdb-server.

• --db-schema=<schema>

Overrides the file name for the OVS database schema.

• --extra-dbs=<file>

Adds <file> as an extra database for ovsdb-server to serve out. Multiple space-separated file names may
also be specified. <file> should begin with /; if it does not, then it will be taken as relative to <dbdir>.

The stop command

The stop command stops the ovs-vswitchd and ovsdb-server daemons. It does not unload the Open vSwitch
kernel modules. It can take the same --no-ovsdb-server and --no-ovs-vswitchd options as that of the
start command.

This command does nothing and finishes successfully if the OVS daemons aren’t running.
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The restart command

The restart command performs a stop followed by a start command. The command can take the same options
as that of the start command. In addition, it saves and restores OpenFlow flows for each individual bridge.

The status command

The status command checks whether the OVS daemons ovs-vswitchd and ovsdb-server are running and
prints messages with that information. It exits with status 0 if the daemons are running, 1 otherwise.

The version command

The version command runs ovsdb-server --version and ovs-vswitchd --version.

The force-reload-kmod command

The force-reload-kmod command allows upgrading the Open vSwitch kernel module without rebooting. It
performs the following tasks:

1. Gets a list of OVS “internal” interfaces, that is, network devices implemented by Open vSwitch. The most
common examples of these are bridge “local ports”.

2. Saves the OpenFlow flows of each bridge.

3. Stops the Open vSwitch daemons, as if by a call to ovs-ctl stop.

4. Saves the kernel configuration state of the OVS internal interfaces listed in step 1, including IP and IPv6 ad-
dresses and routing table entries.

5. Unloads the Open vSwitch kernel module (including the bridge compatibility module if it is loaded).

6. Starts OVS back up, as if by a call to ovs-ctl start. This reloads the kernel module, restarts the OVS
daemons and finally restores the saved OpenFlow flows.

7. Restores the kernel configuration state that was saved in step 4.

8. Checks for daemons that may need to be restarted because they have packet sockets that are listening on old
instances of Open vSwitch kernel interfaces and, if it finds any, prints a warning on stdout. DHCP is a common
example: if the ISC DHCP client is running on an OVS internal interface, then it will have to be restarted after
completing the above procedure. (It would be nice if ovs-ctl could restart daemons automatically, but the
details are far too specific to a particular distribution and installation.)

force-kmod-reload internally stops and starts OVS, so it accepts all of the options accepted by the start
command except for the --no-ovs-vswitchd option.

The load-kmod command

The load-kmod command loads the openvswitch kernel modules if they are not already loaded. This operation also
occurs as part of the start command. The motivation for providing the load-kmod command is to allow errors
when loading modules to be handled separately from other errors that may occur when running the start command.

By default the load-kmod command attempts to load the openvswitch kernel module.
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The enable-protocol command

The enable-protocol command checks for rules related to a specified protocol in the system’s iptables(8)
configuration. If there are no rules specifically related to that protocol, then it inserts a rule to accept the specified
protocol.

More specifically:

• If iptables is not installed or not enabled, this command does nothing, assuming that lack of filtering means
that the protocol is enabled.

• If the INPUT chain has a rule that matches the specified protocol, then this command does nothing, assuming
that whatever rule is installed reflects the system administrator’s decisions.

• Otherwise, this command installs a rule that accepts traffic of the specified protocol.

This command normally completes successfully, even if it does nothing. Only the failure of an attempt to insert a rule
normally causes it to return an exit code other than 0.

The following options control the protocol to be enabled:

• --protocol=<protocol>

The name of the IP protocol to be enabled, such as gre or tcp. The default is gre.

• --sport=<sport> or --dport=<dport>

TCP or UDP source or destination port to match. These are optional and allowed only with --protocol=tcp
or --protocol=udp.

The delete-transient-ports command

Deletes all ports that have the other_config:transient value set to true.

The help command

Prints a usage message and exits successfully.

Options

In addition to the options listed for each command above, these options control the behavior of several ovs-ctl
commands.

By default, ovs-ctl controls the ovsdb-server and ovs-vswitchd daemons. The following options restrict
that control to exclude one or the other:

• --no-ovsdb-server

Specifies that the ovs-ctl commands start, stop, and restart should not modify the running status of
ovsdb-server.

• --no-ovs-vswitchd

Specifies that the ovs-ctl commands start, stop, and restart should not modify the running status of
ovs-vswitchd. It is an error to include this option with the force-reload-kmod command.
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Exit Status

ovs-ctl exits with status 0 on success and nonzero on failure. The start command is considered to succeed if
OVS is already started; the stop command is considered to succeed if OVS is already stopped.

Environment

The following environment variables affect ovs-ctl:

• PATH

ovs-ctl does not hardcode the location of any of the programs that it runs. ovs-ctl will add the <sbindir>
and <bindir> that were specified at configure time to PATH, if they are not already present.

• OVS_LOGDIR, OVS_RUNDIR, OVS_DBDIR, OVS_SYSCONFDIR, OVS_PKGDATADIR, OVS_BINDIR,
OVS_SBINDIR

Setting one of these variables in the environment overrides the respective configure option, both for
ovs-ctl itself and for the other Open vSwitch programs that it runs.

Files

ovs-ctl uses the following files:

• ovs-lib

Shell function library used internally by ovs-ctl. It must be installed in the same directory as ovs-ctl.

• <logdir>/<daemon>.log

Per-daemon logfiles.

• <rundir>/<daemon>.pid

Per-daemon pidfiles to track whether a daemon is running and with what process ID.

• <pkgdatadir>/vswitch.ovsschema

The OVS database schema used to initialize the database (use --db-schema to override this location).

• <dbdir>/conf.db

The OVS database (use --db-file to override this location).

• <rundir>/openvswitch/db.sock

The Unix domain socket used for local communication with ovsdb-server (use --db-sock to override
this location).

• <sysconfdir>/openvswitch/system-id.conf

The persistent system UUID created and read by --system-id=random.

• <sysconfdir>/openvswitch/system-type.conf and <sysconfdir>/openvswitch/
system-version.conf

The system-type and system-version values stored in the database’s Open_vSwitch table when not
specified as a command-line option.
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Example

The files debian/openvswitch-switch.init and xenserver/etc_init.d_openvswitch in the
Open vSwitch source distribution are good examples of how to use ovs-ctl.

See Also

README.rst, ovsdb-server(8), ovs-vswitchd(8).

6.1.3 ovs-l3ping

Synopsis

ovs-l3ping -s <TunnelRemoteIP>,<InnerIP>[/<mask>] -t <tunnelmode>

ovs-l3ping -s <TunnelRemoteIP>,<InnerIP>[/<mask>][:<ControlPort>] -t
<tunnelmode>

ovs-l3ping -c <TunnelRemoteIP>,<InnerIP>[/<mask>],<RemoteInnerIP> -t
<tunnelmode>

ovs-l3ping -c <TunnelRemoteIP>,<InnerIP>[/<mask>][:<ControlPort>[:<DataPort>]],
<RemoteInnerIP>[:<ControlPort>[:<DataPort>]] [-b <targetbandwidth>] [-i
<testinterval>] -t <tunnelmode>

ovs-l3ping -h | --help

ovs-l3ping -V | --version

Description

The ovs-l3ping program may be used to check for problems that could be caused by invalid routing policy, mis-
configured firewall in the tunnel path or a bad NIC driver. On one of the nodes, run ovs-l3ping in server mode
and on the other node run it in client mode. The client and server will establish L3 tunnel, over which client will give
further testing instructions. The ovs-l3ping client will perform UDP and TCP tests. This tool is different from
ovs-test that it encapsulates XML/RPC control connection over the tunnel, so there is no need to open special
holes in firewall.

UDP tests can report packet loss and achieved bandwidth for various datagram sizes. By default target bandwidth for
UDP tests is 1Mbit/s.

TCP tests report only achieved bandwidth, because kernel TCP stack takes care of flow control and packet loss.

Client Mode

An ovs-l3ping client will create a L3 tunnel and connect over it to the ovs-l3ping server to schedule the tests.
<TunnelRemoteIP> is the peer’s IP address, where tunnel will be terminated. <InnerIP> is the address that will be
temporarily assigned during testing. All test traffic originating from this IP address to the <RemoteInnerIP> will be
tunneled. It is possible to override default <ControlPort> and <DataPort>, if there is any other application that already
listens on those two ports.
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Server Mode

To conduct tests, ovs-l3ping server must be running. It is required that both client and server <InnerIP> addresses
are in the same subnet. It is possible to specify <InnerIP> with netmask in CIDR format.

Options

One of -s or -c is required. The -t option is also required.

• -s <TunnelRemoteIP>,<InnerIP>[/<mask>][:<ControlPort>] or --server
<TunnelRemoteIP>,<InnerIP>[/<mask>][:<ControlPort>]

Run in server mode and create L3 tunnel with the client that will be accepting tunnel at <TunnelRemoteIP>
address. The socket on <InnerIP>[:<ControlPort>] will be used to receive further instructions from
the client.

• -c <TunnelRemoteIP>,<InnerIP>[/<mask>][:<ControlPort>[:<DataPort>]],
<RemoteInnerIP>[:<ControlPort>[:<DataPort>]] or --client
<TunnelRemoteIP>,<InnerIP>[/<mask>][:<ControlPort>[:<DataPort>]],
<RemoteInnerIP>[:<ControlPort>[:<DataPort>]]

Run in client mode and create L3 tunnel with the server on <TunnelRemoteIP>. The client will use <InnerIP>
to generate test traffic with the server’s <RemoteInnerIP>.

• -b <targetbandwidth> or --bandwidth <targetbandwidth>

Target bandwidth for UDP tests. The <targetbandwidth> must be given in bits per second. Use postfix M or K
to alter the target bandwidth magnitude.

• -i <testinterval> or --interval <testinterval>

How long each test should run. By default 5 seconds.

• -t <tunnelmode> or --tunnel-mode <tunnelmode>

Specify the tunnel type. This option must match on server and client.

• -h or --help

Prints a brief help message to the console.

• -V or --version

Prints version information to the console.

Examples

On host 192.168.122.220 start ovs-l3ping in server mode. This command will create a temporary GRE tunnel
with the host 192.168.122.236 and assign 10.1.1.1/28 as the inner IP address, where client will have to connect:

ovs-l3ping -s 192.168.122.236,10.1.1.1/28 -t gre

On host 192.168.122.236 start ovs-l3ping in client mode. This command will use 10.1.1.2/28 as the local inner IP
address and will connect over the L3 tunnel to the server’s inner IP address at 10.1.1.1:

ovs-l3ping -c 192.168.122.220,10.1.1.2/28,10.1.1.1 -t gre
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See Also

ovs-vswitchd(8), ovs-ofctl(8), ovs-vsctl(8), ovs-vlan-test(8), ovs-test(8),
ethtool(8), uname(1).

6.1.4 ovs-pki

Synopsis

Each command takes the form:

ovs-pki <options> <command> <args>...

The implemented commands and their arguments are:

• ovs-pki init

• ovs-pki req <name>

• ovs-pki sign <name> [<type>]

• ovs-pki req+sign <name> [<type>]

• ovs-pki verify <name> [<type>]

• ovs-pki fingerprint <file>

• ovs-pki self-sign <name>

Each <type> above is a certificate type, either switch (default) or controller.

The available options are:

• -k <type> or --key=<type>

• -B <nbits> or --bits=<nbits>

• -D <file> or --dsaparam=<file>

• -b or --batch

• -f or --force

• -d <dir> or --dir=<dir>

• -l <file> or --log=<file>

• -u or --unique

• -h or --help

Description

The ovs-pki program sets up and manages a public key infrastructure for use with OpenFlow. It is intended to be
a simple interface for organizations that do not have an established public key infrastructure. Other PKI tools can
substitute for or supplement the use of ovs-pki.

ovs-pki uses openssl(1) for certificate management and key generation.
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Offline Commands

The following ovs-pki commands support manual PKI administration:

• init

Initializes a new PKI (by default in /var/lib/openvswitch/pki, although this default may be changed
at Open vSwitch build time) and populates it with a pair of certificate authorities for controllers and switches.

This command should ideally be run on a high-security machine separate from any OpenFlow controller or
switch, called the CA machine. The files pki/controllerca/cacert.pem and pki/switchca/
cacert.pem that it produces will need to be copied over to the OpenFlow switches and controllers, respec-
tively. Their contents may safely be made public.

By default, ovs-pki generates 2048-bit RSA keys. The -B or --bits option (see below) may be used to
override the key length. The -k dsa or --key=dsa option may be used to use DSA in place of RSA. If DSA
is selected, the dsaparam.pem file generated in the new PKI hierarchy must be copied to any machine on
which the req command (see below) will be executed. Its contents may safely be made public.

Other files generated by init may remain on the CA machine. The files pki/controllerca/private/
cakey.pem and pki/switchca/private/cakey.pem have particularly sensitive contents that should
not be exposed.

• req <name>

Generates a new private key named <name>-privkey.pem and corresponding certificate request named
<name>-req.pem. The private key can be intended for use by a switch or a controller.

This command should ideally be run on the switch or controller that will use the private key to identify itself.
The file <name>-req.pem must be copied to the CA machine for signing with the sign command (below).

This command will output a fingerprint to stdout as its final step. Write down the fingerprint and take it to the
CA machine before continuing with the sign step.

When RSA keys are in use (as is the default), req, unlike the rest of the ovs-pki commands, does not need
access to a PKI hierarchy created by ovs-pki init. The -B or --bits option (see below) may be used to
specify the number of bits in the generated RSA key.

When DSA keys are used (as specified with --key=dsa), req needs access to the dsaparam.pem file
created as part of the PKI hierarchy (but not to other files in that tree). By default, ovs-pki looks for this
file in the PKI directory as dsaparam.pem, but the -D or --dsaparam option (see below) may be used to
specify an alternate location.

<name>-privkey.pem has sensitive contents that should not be exposed. <name>-req.pem may be
safely made public.

• sign <name> [<type>]

Signs the certificate request named <name>-req.pem that was produced in the previous step, producing a
certificate named <name>-cert.pem. <type>, either switch (default) or controller, indicates the use
for which the key is being certified.

This command must be run on the CA machine.

The command will output a fingerprint to stdout and request that you verify that it is the same fingerprint output
by the req command. This ensures that the request being signed is the same one produced by req. (The -b or
--batch option suppresses the verification step.)

The file <name>-cert.pem will need to be copied back to the switch or controller for which it is intended.
Its contents may safely be made public.

• req+sign <name> [<type>]
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Combines the req and sign commands into a single step, outputting all the files produced by each. The
<name>-privkey.pem and <name>-cert.pem files must be copied securely to the switch or controller.
<name>-privkey.pem has sensitive contents and must not be exposed in transit. Afterward, it should be
deleted from the CA machine.

This combined method is, theoretically, less secure than the individual steps performed separately on two dif-
ferent machines, because there is additional potential for exposure of the private key. However, it is also more
convenient.

• verify <name> [<type>]

Verifies that <name>-cert.pem is a valid certificate for the given <type> of use, either switch (default)
or controller. If the certificate is valid for this use, it prints the message <name>-cert.pem: OK;
otherwise, it prints an error message.

• fingerprint <file>

Prints the fingerprint for <file>. If <file> is a certificate, then this is the SHA-1 digest of the DER encoded
version of the certificate; otherwise, it is the SHA-1 digest of the entire file.

• self-sign <name>

Signs the certificate request named <name>-req.pem using the private key <name>-privkey.pem, pro-
ducing a self-signed certificate named <name>-cert.pem. The input files should have been produced with
ovs-pki req.

Some controllers accept such self-signed certificates.

Options

• -k <type> or --key=<type>

For the init command, sets the public key algorithm to use for the new PKI hierarchy. For the req and
req+sign commands, sets the public key algorithm to use for the key to be generated, which must match the
value specified on init. With other commands, the value has no effect.

The <type> may be rsa (the default) or dsa.

• -B <nbits> or --bits=<nbits>

Sets the number of bits in the key to be generated. When RSA keys are in use, this option affects only the init,
req, and req+sign commands, and the same value should be given each time. With DSA keys are in use,
this option affects only the init command.

The value must be at least 1024. The default is 2048.

• -D <file> or --dsaparam=<file>

Specifies an alternate location for the dsaparam.pem file required by the req and req+sign commands.
This option affects only these commands, and only when DSA keys are used.

The default is dsaparam.pem under the PKI hierarchy.

• -b or --batch

Suppresses the interactive verification of fingerprints that the sign command by default requires.

• -d <dir> or --dir=<dir>

Specifies the location of the PKI hierarchy to be used or created by the command. All commands, except req,
need access to a PKI hierarchy.

The default PKI hierarchy is /var/lib/openvswitch/pki, although this default may be changed at Open
vSwitch build time
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• -f or --force

By default, ovs-pki will not overwrite existing files or directories. This option overrides this behavior.

• -l <file> or --log=<file>

Sets the log file to <file>. The default is ovs-pki.log in the OVS log directory. The default OVS log
directory is /var/log/openvswitch, although this default may be changed at Open vSwitch build time.

• -u or --unique

Changes the format of the certificate’s Common Name (CN) field. By default, this field has the format <name>
id:<uuid-or-date>. This option causes the provided name to be treated as unique and changes the format
of the CN field to be simply <name>.

• -h or --help

Prints a help usage message and exits.

6.1.5 ovs-sim

Synopsis

ovs-sim [option]. . . [script]. . .

Description

ovs-sim provides a convenient environment for running one or more Open vSwitch instances and related software
in a sandboxed simulation environment.

To use ovs-sim, first build Open vSwitch, then invoke it directly from the build directory, e.g.:

git clone https://github.com/openvswitch/ovs.git
cd ovs
./configure
make
utilities/ovs-sim

When invoked in the most ordinary way as shown above, ovs-sim does the following:

1. Creates a directory sandbox as a subdirectory of the current directory (first destroying such a directory if it
already exists) and makes it the current directory.

2. Installs all of the Open vSwitch manpages into a man subdirectory of sandbox and adjusts the MANPATH envi-
ronment variable so that man and other manpage viewers can find them.

3. Creates a simulated Open vSwitch named main and sets it up as the default target for OVS commands, as if the
following ovs-sim commands had been run:

sim_add main
as main

See Commands, below, for an explanation.

4. Runs any scripts specified on the command line (see Options, below). The scripts can use arbitrary Bash syntax,
plus the additional commands described under Commands, below.

5. If no scripts were specified, or if -i or --interactive was specified, invokes an interactive Bash subshell.
The user can use arbitrary Bash commands, plus the additional commands described under Commands, below.
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ovs-sim and the sandbox environment that it creates does not require superuser or other special privileges. Generally,
it should not be run with such privileges.

Options

script Runs script, which should be a Bash script, within a subshell after initializing. If multiple script arguments are
given, then they are run in the order given. If any script exits with a nonzero exit code, then ovs-sim exits
immediately with the same exit code.

-i or --interactive By default, if any script is specified, ovs-sim exits as soon as the scripts finish executing.
With this option, or if no scripts are specified, ovs-sim instead starts an interactive Bash session.

Commands

Scripts and interactive usage may use the following commands implemented by ovs-sim. They are implemented as
Bash shell functions exported to subshells.

Basic Commands

These are the basic commands for working with sandboxed Open vSwitch instances.

sim_add sandbox Starts a new simulated Open vSwitch instance named sandbox. Files related to the instance, such
as logs, databases, sockets, and pidfiles, are created in a subdirectory also named sandbox. Afterward, the as
command (see below) can be used to run Open vSwitch utilities in the context of the new sandbox.

The new sandbox starts out without any bridges. Use ovs-vsctl in the context of the new sandbox to create
a bridge, e.g.:

sim_add hv0 # Create sandbox hv0.
as hv0 # Set hv0 as default sandbox.
ovs-vsctl add-br br0 # Add bridge br0 inside hv0.

The Open vSwitch instances that sim_add creates enable dummy devices. This means that bridges and inter-
faces can be created with type dummy to indicate that they should be totally simulated, without any reference to
system entities. In fact, ovs-sim also configures Open vSwitch so that the default system type of bridges and
interfaces are replaced by dummy devices. Other types of devices, however, retain their usual functions, which
means that, e.g., vxlan tunnels still act as tunnels (refer to the documentation).

as sandbox Sets sandbox as the default simulation target for Open vSwitch commands (e.g. ovs-vsctl,
ovs-ofctl, ovs-appctl).

This command updates the beginning of the shell prompt to indicate the new default target.

as sandbox command arg. . . Runs the given command with sandbox as the simulation target, e.g. as hv0
ovs-vsctl add-br br0 runs ovs-vsctl add-br br0 within sandbox hv0. The default target is
unchanged.

Interconnection Network Commands

When multiple sandboxed Open vSwitch instances exist, one will inevitably want to connect them together. These
commands allow for that. Conceptually, an interconnection network is a switch that ovs-sim makes it easy to plug
into other switches in other sandboxed Open vSwitch instances. Interconnection networks are implemented as bridges
in the main switch that ovs-sim creates by default, so to use interconnection networks please avoid working with
main directly.
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net_add network Creates a new interconnection network named network.

net_attach network bridge Adds a new port to bridge in the default sandbox (as set with as) and plugs it into
interconnection network network, which must already have been created by a previous invocation of net_add.
The default sandbox must not be main.

6.1.6 ovs-parse-backtrace

Synopsis

ovs-appctl backtrace | ovs-parse-backtrace [<binary>]

ovs-parse-backtrace [<binary>] < <backtrace>

Description

In some configurations, many Open vSwitch daemons can produce a series of backtraces using the ovs-appctl
backtrace command. Users can analyze these backtraces to figure out what the given Open vSwitch daemon may
be spending most of its time doing. ovs-parse-backtrace makes this output easier to interpret.

The ovs-appctl backtrace output must be supplied on standard input. The binary that produced the output
should be supplied as the sole non-option argument. For best results, the binary should have debug symbols.

Options

• --help

Prints a usage message and exits.

• --version

Prints the version and exits.

6.1.7 ovs-tcpdump

Synopsis

ovs-tcpdump -i <port> <tcpdump options>...

Description

ovs-tcpdump creates switch mirror ports in the ovs-vswitchd daemon and executes tcpdump to listen against
those ports. When the tcpdump instance exits, it then cleans up the mirror port it created.

ovs-tcpdump will not allow multiple mirrors for the same port. It has some logic to parse the current configuration
and prevent duplicate mirrors.

The -i option may not appear multiple times.

It is important to note that under Linux-based kernels, tap devices do not receive packets unless the specific tuntap de-
vice has been opened by an application. This requires CAP_NET_ADMIN privileges, so the ovs-tcpdump command
must be run as a user with such permissions (this is usually a super-user).
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Options

• -h or --help

Prints a brief help message to the console.

• -V or --version

Prints version information to the console.

• --db-sock <socket>

The Open vSwitch database socket connection string. The default is unix:<rundir>/db.sock.

• --dump-cmd <command>

The command to run instead of tcpdump.

• -i or --interface

The interface for which a mirror port should be created, and packets should be dumped.

• --mirror-to

The name of the interface which should be the destination of the mirrored packets. The default is mi<port>.

• --span

If specified, mirror all ports (optional).

See Also

ovs-appctl(8), ovs-vswitchd(8), ovs-pcap(1), ovs-tcpundump(1), tcpdump(8),
wireshark(8).

6.1.8 ovs-tcpundump

Synopsis

ovs-tcpundump < <file>

ovs-tcpundump -h | --help

ovs-tcpundump -V | --version

The ovs-tcpundump program reads tcpdump -xx output from stdin, looking for hexadecimal packet data,
and dumps each Ethernet as a single hexadecimal string on stdout. This format is suitable for use with the ofproto/
trace command supported by ovs-vswitchd(8) via ovs-appctl(8).

At least two -x or -X options must be given, otherwise the output will omit the Ethernet header, which prevents the
output from being used with ofproto/trace.

Options

• -h or --help

Prints a brief help message to the console.

• -V or --version

Prints version information to the console.
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See Also

ovs-appctl(8), ovs-vswitchd(8), ovs-pcap(1), tcpdump(8), wireshark(8).

6.1.9 ovs-test

Synopsis

ovs-test -s port

ovs-test -c server1 server2 [-b targetbandwidth] [-i testinterval] [-d] [-l vlantag] [-t tunnelmodes]

Description

The ovs-test program may be used to check for problems sending 802.1Q or GRE traffic that Open vSwitch may
uncover. These problems, for example, can occur when Open vSwitch is used to send 802.1Q traffic through physical
interfaces running certain drivers of certain Linux kernel versions. To run a test, configure IP addresses on server1 and
server2 for interfaces you intended to test. These interfaces could also be already configured OVS bridges that have
a physical interface attached to them. Then, on one of the nodes, run ovs-test in server mode and on the other
node run it in client mode. The client will connect to ovs-test server and schedule tests between both of them. The
ovs-test client will perform UDP and TCP tests.

UDP tests can report packet loss and achieved bandwidth for various datagram sizes. By default target bandwidth for
UDP tests is 1Mbit/s.

TCP tests report only achieved bandwidth, because kernel TCP stack takes care of flow control and packet loss. TCP
tests are essential to detect potential TSO related issues.

To determine whether Open vSwitch is encountering any problems, the user must compare packet loss and achieved
bandwidth in a setup where traffic is being directly sent and in one where it is not. If in the 802.1Q or L3 tunneled tests
both ovs-test processes are unable to communicate or the achieved bandwidth is much lower compared to direct
setup, then, most likely, Open vSwitch has encountered a pre-existing kernel or driver bug.

Some examples of the types of problems that may be encountered are:

• When NICs use VLAN stripping on receive they must pass a pointer to a vlan_group when reporting the stripped
tag to the networking core. If no vlan_group is in use then some drivers just drop the extracted tag. Drivers are
supposed to only enable stripping if a vlan_group is registered but not all of them do that.

• On receive, some drivers handle priority tagged packets specially and don’t pass the tag onto the network stack
at all, so Open vSwitch never has a chance to see it.

• Some drivers size their receive buffers based on whether a vlan_group is enabled, meaning that a maximum size
packet with a VLAN tag will not fit if no vlan_group is configured.

• On transmit, some drivers expect that VLAN acceleration will be used if it is available, which can only be done
if a vlan_group is configured. In these cases, the driver may fail to parse the packet and correctly setup checksum
offloading or TSO.

Client Mode An ovs-test client will connect to two ovs-test servers and will ask them to exchange test traffic.
It is also possible to spawn an ovs-test server automatically from the client.

Server Mode To conduct tests, two ovs-test servers must be running on two different hosts where the client can
connect. The actual test traffic is exchanged only between both ovs-test servers. It is recommended that
both servers have their IP addresses in the same subnet, otherwise one would have to make sure that routing is
set up correctly.
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Options

-s <port>, --server <port>
Run in server mode and wait for the client to establish XML RPC Control Connection on this TCP port. It is
recommended to have ethtool(8) installed on the server so that it could retrieve information about the NIC driver.

-c <server1> <server2>, --client <server1> <server2>
Run in client mode and schedule tests between server1 and server2, where each server must be given in the
following format:

OuterIP[:OuterPort],InnerIP[/Mask][:InnerPort].

The OuterIP must be already assigned to the physical interface which is going to be tested. This is the IP address
where client will try to establish XML RPC connection. If OuterIP is 127.0.0.1 then client will automatically
spawn a local instance of ovs-test server. OuterPort is TCP port where server is listening for incoming
XML/RPC control connections to schedule tests (by default it is 15531). The ovs-test will automatically
assign InnerIP[/Mask] to the interfaces that will be created on the fly for testing purposes. It is important that
InnerIP[/Mask] does not interfere with already existing IP addresses on both ovs-test servers and client.
InnerPort is port which will be used by server to listen for test traffic that will be encapsulated (by default it is
15532).

-b <targetbandwidth>, --bandwidth <targetbandwidth>
Target bandwidth for UDP tests. The targetbandwidth must be given in bits per second. It is possible to use
postfix M or K to alter the target bandwidth magnitude.

-i <testinterval>, --interval <testinterval>
How long each test should run. By default 5 seconds.

-h, --help
Prints a brief help message to the console.

-V, --version
Prints version information to the console.

The following test modes are supported by ovs-test. It is possible to combine multiple of them in a single
ovs-test invocation.

-d, --direct
Perform direct tests between both OuterIP addresses. These tests could be used as a reference to compare
802.1Q or L3 tunneling test results.

-l <vlantag>, --vlan-tag <vlantag>
Perform 802.1Q tests between both servers. These tests will create a temporary OVS bridge, if necessary, and
attach a VLAN tagged port to it for testing purposes.

-t <tunnelmodes>, --tunnel-modes <tunnelmodes>
Perform L3 tunneling tests. The given argument is a comma sepa- rated string that specifies all the L3 tunnel
modes that should be tested (e.g. gre). The L3 tunnels are terminated on interface that has the OuterIP address
assigned.

Examples

On host 1.2.3.4 start ovs-test in server mode:

ovs-test -s 15531

On host 1.2.3.5 start ovs-test in client mode and do direct, VLAN and GRE tests between both nodes:
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ovs-test -c 127.0.0.1,1.1.1.1/30 1.2.3.4,1.1.1.2/30 -d -l 123 -t
gre

See Also

ovs-vswitchd(8), ovs-ofctl(8), ovs-vsctl(8), ovs-vlan-test, ethtool(8), uname(1)

6.1.10 ovs-vlan-test

Synopsis

ovs-vlan-test [-s | –server] control_ip vlan_ip

Description

The ovs-vlan-test utility has some limitations, for example, it does not use TCP in its tests. Also it does
not take into account MTU to detect potential edge cases. To overcome those limitations a new tool was devel-
oped - ovs-test. ovs-test is currently supported only on Debian so, if possible, try to use that on instead of
ovs-vlan-test.

The ovs-vlan-test program may be used to check for problems sending 802.1Q traffic which may occur when
running Open vSwitch. These problems can occur when Open vSwitch is used to send 802.1Q traffic through physical
interfaces running certain drivers of certain Linux kernel versions. To run a test, configure Open vSwitch to tag traffic
originating from vlan_ip and forward it out the target interface. Then run the ovs-vlan-test in client mode
connecting to an ovs-vlan-test server. ovs-vlan-test will display “OK” if it did not detect problems.

Some examples of the types of problems that may be encountered are:

• When NICs use VLAN stripping on receive they must pass a pointer to a vlan_group when reporting the stripped
tag to the networking core. If no vlan_group is in use then some drivers just drop the extracted tag. Drivers are
supposed to only enable stripping if a vlan_group is registered but not all of them do that.

• On receive, some drivers handle priority tagged packets specially and don’t pass the tag onto the network stack
at all, so Open vSwitch never has a chance to see it.

• Some drivers size their receive buffers based on whether a vlan_group is enabled, meaning that a maximum size
packet with a VLAN tag will not fit if no vlan_group is configured.

• On transmit, some drivers expect that VLAN acceleration will be used if it is available, which can only be done
if a vlan_group is configured. In these cases, the driver may fail to parse the packet and correctly setup checksum
offloading or TSO.

Client Mode An ovs-vlan-test client may be run on a host to check for VLAN connectivity problems. The
client must be able to establish HTTP connections with an ovs-vlan-test server located at the specified
control_ip address. UDP traffic sourced at vlan_ip should be tagged and directed out the interface whose con-
nectivity is being tested.

Server Mode To conduct tests, an ovs-vlan-test server must be running on a host known not to have VLAN
connectivity problems. The server must have a control_ip on a non-VLAN network which clients can establish
connectivity with. It must also have a vlan_ip address on a VLAN network which clients will use to test their
VLAN connectivity. Multiple clients may test against a single ovs-vlan-test server concurrently.
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Options

-s, --server
Run in server mode.

-h, --help
Prints a brief help message to the console.

-V, --version
Prints version information to the console.

Examples

Display the Linux kernel version and driver of eth1:

uname -r
ethtool -i eth1

Set up a bridge which forwards traffic originating from 1.2.3.4 out eth1 with VLAN tag 10:

ovs-vsctl -- add-br vlan-br \
-- add-port vlan-br eth1 \
-- add-port vlan-br vlan-br-tag tag=10 \
-- set Interface vlan-br-tag type=internal

ip addr add 1.2.3.4/8 dev vlan-br-tag
ip link set vlan-br-tag up

Run an ovs-vlan-test server listening for client control traffic on 172.16.0.142 port 8080 and VLAN traffic on
the default port of 1.2.3.3:

ovs-vlan-test -s 172.16.0.142:8080 1.2.3.3

Run an ovs-vlan-test client with a control server located at 172.16.0.142 port 8080 and a local VLAN IP of
1.2.3.4:

ovs-vlan-test 172.16.0.142:8080 1.2.3.4

See Also

ovs-vswitchd(8), ovs-ofctl(8), ovs-vsctl(8), ovs-test, ethtool(8), uname(1)

6.1.11 ovsdb-server

Description

ovsdb-server implements the Open vSwitch Database (OVSDB) protocol specified in RFC 7047. This document
provides clarifications for how ovsdb-server implements the protocol and describes the extensions that it provides
beyond RFC 7047. Numbers in section headings refer to corresponding sections in RFC 7047.

3.1 JSON Usage

RFC 4627 says that names within a JSON object should be unique. The Open vSwitch JSON parser discards all but
the last value for a name that is specified more than once.
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The definition of <error> allows for implementation extensions. Currently ovsdb-server uses the following addi-
tional error strings (which might change in later releases):

syntax error or unknown column The request could not be parsed as an OVSDB request. An additional
syntax member, whose value is a string that contains JSON, may narrow down the particular syntax that
could not be parsed.

internal error The request triggered a bug in ovsdb-server.

ovsdb error A map or set contains a duplicate key.

permission error The request was denied by the role-based access control extension, introduced in version 2.8.

3.2 Schema Format

RFC 7047 requires the version field in <database-schema>. Current versions of ovsdb-server allow it to be
omitted (future versions are likely to require it).

RFC 7047 allows columns that contain weak references to be immutable. This raises the issue of the behavior of the
weak reference when the rows that it references are deleted. Since version 2.6, ovsdb-server forces columns that
contain weak references to be mutable.

Since version 2.8, the table name RBAC_Role is used internally by the role-based access control extension to
ovsdb-server and should not be used for purposes other than defining mappings of role names to table access
permissions. This table has one row per role name and the following columns:

name The role name.

permissions A map of table name to a reference to a row in a separate permission table.

The separate RBAC permission table has one row per access control configuration and the following columns:

name The name of the table to which the row applies.

authorization The set of column names and column:key pairs to be compared with the client ID in order to
determine the authorization status of the requested operation.

insert_delete A boolean value, true if authorized insertions and deletions are allowed, false if no insertions or
deletions are allowed.

update The set of columns and column:key pairs for which authorized update and mutate operations should be
permitted.

4 Wire Protocol

The original OVSDB specifications included the following reasons, omitted from RFC 7047, to operate JSON-RPC
directly over a stream instead of over HTTP:

• JSON-RPC is a peer-to-peer protocol, but HTTP is a client-server protocol, which is a poor match. Thus,
JSON-RPC over HTTP requires the client to periodically poll the server to receive server requests.

• HTTP is more complicated than stream connections and doesn’t provide any corresponding advantage.

• The JSON-RPC specification for HTTP transport is incomplete.

4.1.3 Transact

Since version 2.8, role-based access controls can be applied to operations within a transaction that would modify
the contents of the database (these operations include row insert, row delete, column update, and column mutate).
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Role-based access controls are applied when the database schema contains a table with the name RBAC_Role and
the connection on which the transaction request was received has an associated role name (from the role column
in the remote connection table). When role-based access controls are enabled, transactions that are otherwise well-
formed may be rejected depending on the client’s role, ID, and the contents of the RBAC_Role table and associated
permissions table.

4.1.5 Monitor

For backward compatibility, ovsdb-server currently permits a single <monitor-request> to be used instead of an
array; it is treated as a single-element array. Future versions of ovsdb-server might remove this compatibility
feature.

Because the <json-value> parameter is used to match subsequent update notifications (see below) to the request, it
must be unique among all active monitors. ovsdb-server rejects attempt to create two monitors with the same
identifier.

When a given client sends a transact request that changes a table that the same client is monitoring,
ovsdb-server always sends the update (or update2 or update3) for these changes before it sends the reply
to the transact request. Thus, when a client receives a transact reply, it can know immediately what changes
(if any) the transaction made. (If ovsdb-server might use the other order, then a client that wishes to act on based on
the results of its own transactions would not know when this was guaranteed to have taken place.)

4.1.7 Monitor Cancellation

When a database monitored by a session is removed, and database change awareness is enabled for the session (see
Section 4.1.16), the database server spontaneously cancels all monitors (including conditional monitors described in
Section 4.1.12) for the removed database. For each canceled monitor, it issues a notification in the following form:

"method": "monitor_canceled"
"params": [<json-value>]
"id": null

4.1.12 Monitor_cond

A new monitor method added in Open vSwitch version 2.6. The monitor_cond request enables a client to replicate
subsets of tables within an OVSDB database by requesting notifications of changes to rows matching one of the condi-
tions specified in where by receiving the specified contents of these rows when table updates occur. monitor_cond
also allows a more efficient update notifications by receiving <table-updates2> notifications (described below).

The monitor method described in Section 4.1.5 also applies to monitor_cond, with the following exceptions:

• RPC request method becomes monitor_cond.

• Reply result follows <table-updates2>, described in Section 4.1.14.

• Subsequent changes are sent to the client using the update2 monitor notification, described in Section 4.1.14

• Update notifications are being sent only for rows matching [<condition>*].

The request object has the following members:

"method": "monitor_cond"
"params": [<db-name>, <json-value>, <monitor-cond-requests>]
"id": <nonnull-json-value>
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The <json-value> parameter is used to match subsequent update notifications (see below) to this request. The
<monitor-cond-requests> object maps the name of the table to an array of <monitor-cond-request>.

Each <monitor-cond-request> is an object with the following members:

"columns": [<column>*] optional
"where": [<condition>*] optional
"select": <monitor-select> optional

The columns, if present, define the columns within the table to be monitored that match conditions. If not present,
all columns are monitored.

The where, if present, is a JSON array of <condition> and boolean values. If not present or condition is an empty
array, implicit True will be considered and updates on all rows will be sent.

<monitor-select> is an object with the following members:

"initial": <boolean> optional
"insert": <boolean> optional
"delete": <boolean> optional
"modify": <boolean> optional

The contents of this object specify how the columns or table are to be monitored as explained in more detail below.

The response object has the following members:

"result": <table-updates2>
"error": null
"id": same "id" as request

The <table-updates2> object is described in detail in Section 4.1.14. It contains the contents of the tables for which
initial rows are selected. If no tables initial contents are requested, then result is an empty object.

Subsequently, when changes to a specified table that match one of the conditions in <monitor-cond-request> are com-
mitted, the changes are automatically sent to the client using the update2 monitor notification (see Section 4.1.14).
This monitoring persists until the JSON-RPC session terminates or until the client sends a monitor_cancel JSON-
RPC request.

Each <monitor-cond-request> specifies one or more conditions and the manner in which the rows that match the
conditions are to be monitored. The circumstances in which an update notification is sent for a row within the table
are determined by <monitor-select>:

• If initial is omitted or true, every row in the original table that matches one of the conditions is sent as part
of the response to the monitor_cond request.

• If insert is omitted or true, update notifications are sent for rows newly inserted into the table that match
conditions or for rows modified in the table so that their old version does not match the condition and new
version does.

• If delete is omitted or true, update notifications are sent for rows deleted from the table that match conditions
or for rows modified in the table so that their old version does match the conditions and new version does not.

• If modify is omitted or true, update notifications are sent whenever a row in the table that matches conditions
in both old and new version is modified.

Both monitor and monitor_cond sessions can exist concurrently. However, monitor and monitor_cond
shares the same <json-value> parameter space; it must be unique among all monitor and monitor_cond sessions.
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4.1.13 Monitor_cond_change

The monitor_cond_change request enables a client to change an existing monitor_cond replication of the
database by specifying a new condition and columns for each replicated table. Currently changing the columns set is
not supported.

The request object has the following members:

"method": "monitor_cond_change"
"params": [<json-value>, <json-value>, <monitor-cond-update-requests>]
"id": <nonnull-json-value>

The <json-value> parameter should have a value of an existing conditional monitoring session from this client.
The second <json-value> in params array is the requested value for this session. This value is valid only after
monitor_cond_change is committed. A user can use these values to distinguish between update messages before
conditions update and after. The <monitor-cond-update-requests> object maps the name of the table to an array of
<monitor-cond-update-request>. Monitored tables not included in <monitor-cond-update-requests> retain their cur-
rent conditions.

Each <monitor-cond-update-request> is an object with the following members:

"columns": [<column>*] optional
"where": [<condition>*] optional

The columns specify a new array of columns to be monitored, although this feature is not yet supported.

The where specify a new array of conditions to be applied to this monitoring session.

The response object has the following members:

"result": null
"error": null
"id": same "id" as request

Subsequent <table-updates2> notifications are described in detail in Section 4.1.14 in the RFC. If insert contents are
requested by original monitor_cond request, <table-updates2> will contain rows that match the new condition and do
not match the old condition. If deleted contents are requested by origin monitor request, <table-updates2> will contain
any matched rows by old condition and not matched by the new condition.

Changes according to the new conditions are automatically sent to the client using the update2 monitor notifi-
cation. An update, if any, as a result of a condition change, will be sent to the client before the reply to the
monitor_cond_change request.

4.1.14 Update2 notification

The update2 notification is sent by the server to the client to report changes in tables that are being monitored
following a monitor_cond request as described above. The notification has the following members:

"method": "update2"
"params": [<json-value>, <table-updates2>]
"id": null

The <json-value> in params is the same as the value passed as the <json-value> in params for the corresponding
monitor request. <table-updates2> is an object that maps from a table name to a <table-update2>. A <table-
update2> is an object that maps from row’s UUID to a <row-update2> object. A <row-update2> is an object with one
of the following members:
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"initial": <row> present for initial updates

"insert": <row> present for insert updates

"delete": <row> present for delete updates

"modify": <row>" present for modify updates

The format of <row> is described in Section 5.1.

<row> is always a null object for a delete update. In initial and insert updates, <row> omits columns whose
values equal the default value of the column type.

For a modify update, <row> contains only the columns that are modified. <row> stores the difference between the
old and new value for those columns, as described below.

For columns with single value, the difference is the value of the new column.

The difference between two sets are all elements that only belong to one of the sets.

The difference between two maps are all key-value pairs whose keys appears in only one of the maps, plus the key-
value pairs whose keys appear in both maps but with different values. For the latter elements, <row> includes the
value from the new column.

Initial views of rows are not presented in update2 notifications, but in the response object to the monitor_cond
request. The formatting of the <table-updates2> object, however, is the same in either case.

4.1.15 Monitor_cond_since

A new monitor method added in Open vSwitch version 2.12. The monitor_cond_since request enables a client
to request changes that happened after a specific transaction id. A client can use this feature to request only latest
changes after a server connection reset instead of re-transfer all data from the server again.

The monitor_cond method described in Section 4.1.12 also applies to monitor_cond_since, with the follow-
ing exceptions:

• RPC request method becomes monitor_cond_since.

• Reply result includes extra parameters.

• Subsequent changes are sent to the client using the update3 monitor notification, described in Section 4.1.16

The request object has the following members:

"method": "monitor_cond_since"
"params": [<db-name>, <json-value>, <monitor-cond-requests>, <last-txn-id>]
"id": <nonnull-json-value>

The <last-txn-id> parameter is the transaction id that identifies the latest data the client already has, and it requests
server to send changes AFTER this transaction (exclusive).

All other parameters are the same as monitor_cond method.

The response object has the following members:

"result": [<found>, <last-txn-id>, <table-updates2>]
"error": null
"id": same "id" as request

The <found> is a boolean value that tells if the <last-txn-id> requested by client is found in server’s history or not. If
true, the changes after that version up to current is sent. Otherwise, all data is sent.
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The <last-txn-id> is the transaction id that identifies the latest transaction included in the changes in <table-updates2>
of this response, so that client can keep tracking. If there is no change involved in this response, it is the same as
the <last-txn-id> in the request if <found> is true, or zero uuid if <found> is false. If the server does not support
transaction uuid, it will be zero uuid as well.

All other parameters are the same as in response object of monitor_cond method.

Like in monitor_cond, subsequent changes that match conditions in <monitor-cond-request> are automatically
sent to the client, but using update3 monitor notification (see Section 4.1.16), instead of update2.

4.1.16 Update3 notification

The update3 notification is sent by the server to the client to report changes in tables that are being monitored
following a monitor_cond_since request as described above. The notification has the following members:

"method": "update3"
"params": [<json-value>, <last-txn-id>, <table-updates2>]
"id": null

The <last-txn-id> is the same as described in the response object of monitor_cond_since.

All other parameters are the same as in update2 monitor notification (see Section 4.1.14).

4.1.17 Get Server ID

A new RPC method added in Open vSwitch version 2.7. The request contains the following members:

"method": "get_server_id"
"params": null
"id": <nonnull-json-value>

The response object contains the following members:

"result": "<server_id>"
"error": null
"id": same "id" as request

<server_id> is JSON string that contains a UUID that uniquely identifies the running OVSDB server process. A fresh
UUID is generated when the process restarts.

4.1.18 Database Change Awareness

RFC 7047 does not provide a way for a client to find out about some kinds of configuration changes, such as about
databases added or removed while a client is connected to the server, or databases changing between read/write and
read-only due to a transition between active and backup roles. Traditionally, ovsdb-server disconnects all of its
clients when this happens, because this prompts a well-written client to reassess what is available from the server when
it reconnects.

OVS 2.9 provides a way for clients to keep track of these kinds of changes, by monitoring the Database table in the
_Server database introduced in this release (see ovsdb-server(5) for details). By itself, this does not suppress
ovsdb-server disconnection behavior, because a client might monitor this database without understanding its
special semantics. Instead, ovsdb-server provides a special request:
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"method": "set_db_change_aware"
"params": [<boolean>]
"id": <nonnull-json-value>

If the boolean in the request is true, it suppresses the connection-closing behavior for the current connection, and false
restores the default behavior. The reply is always the same:

"result": {}
"error": null
"id": same "id" as request

4.1.19 Schema Conversion

Open vSwitch 2.9 adds a new JSON-RPC request to convert an online database from one schema to another. The
request contains the following members:

"method": "convert"
"params": [<db-name>, <database-schema>]
"id": <nonnull-json-value>

Upon receipt, the server converts database <db-name> to schema <database-schema>. The schema’s name must be
<db-name>. The conversion is atomic, consistent, isolated, and durable. The data in the database must be valid when
interpreted under <database-schema>, with only one exception: data for tables and columns that do not exist in the
new schema are ignored. Columns that exist in <database-schema> but not in the database are set to their default
values. All of the new schema’s constraints apply in full.

If the conversion is successful, the server notifies clients that use the set_db_change_aware RPC introduced
in Open vSwitch 2.9 and cancels their outstanding transactions and monitors. The server disconnects other clients,
enabling them to notice the change when they reconnect. The server sends the following reply:

"result": {}
"error": null
"id": same "id" as request

If the conversion fails, then the server sends an error reply in the following form:

"result": null
"error": [<error>]
"id": same "id" as request

5.1 Notation

For <condition>, RFC 7047 only allows the use of !=, ==, includes, and excludes operators with set types.
Open vSwitch 2.4 and later extend <condition> to allow the use of <, <=, >=, and > operators with a column with type
“set of 0 or 1 integer” and an integer argument, and with “set of 0 or 1 real” and a real argument. These conditions
evaluate to false when the column is empty, and otherwise as described in RFC 7047 for integer and real types.

<condition> is specified in Section 5.1 in the RFC with the following change: A condition can be either a 3-element
JSON array as described in the RFC or a boolean value. In case of an empty array an implicit true boolean value will
be considered.
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5.2.6 Wait, 5.2.7 Commit, 5.2.9 Comment

RFC 7047 says that the wait, commit, and comment operations have no corresponding result object. This is not
true. Instead, when such an operation is successful, it yields a result object with no members.

6.1.12 ovsdb

Description

OVSDB, the Open vSwitch Database, is a database system whose network protocol is specified by RFC 7047. The
RFC does not specify an on-disk storage format. The OVSDB implementation in Open vSwitch implements two
storage formats: one for standalone (and active-backup) databases, and the other for clustered databases. This manpage
documents both of these formats.

Most users do not need to be concerned with this specification. Instead, to manipulate OVSDB files, refer to ovsdb-
tool(1). For an introduction to OVSDB as a whole, read ovsdb(7).

OVSDB files explicitly record changes that are implied by the database schema. For example, the OVSDB “garbage
collection” feature means that when a client removes the last reference to a garbage-collected row, the database server
automatically removes that row. The database file explicitly records the deletion of the garbage-collected row, so that
the reader does not need to infer it.

OVSDB files do not include the values of ephemeral columns.

Standalone and clustered database files share the common structure described here. They are text files encoded in
UTF-8 with LF (U+000A) line ends, organized as append-only series of records. Each record consists of 2 lines of
text.

The first line in each record has the format OVSDB <magic> <length> <hash>, where <magic> is JSON for
standalone databases or CLUSTER for clustered databases, <length> is a positive decimal integer, and <hash> is a
SHA-1 checksum expressed as 40 hexadecimal digits. Words in the first line must be separated by exactly one space.

The second line must be exactly length bytes long (including the LF) and its SHA-1 checksum (including the LF) must
match hash exactly. The line’s contents must be a valid JSON object as specified by RFC 4627. Strings in the JSON
object must be valid UTF-8. To ensure that the second line is exactly one line of text, the OVSDB implementation
expresses any LF characters within a JSON string as \n. For the same reason, and to save space, the OVSDB imple-
mentation does not “pretty print” the JSON object with spaces and LFs. (The OVSDB implementation tolerates LFs
when reading an OVSDB database file, as long as length and hash are correct.)

JSON Notation

We use notation from RFC 7047 here to describe the JSON data in records. In addition to the notation defined there,
we add the following:

<raw-uuid> A 36-character JSON string that contains a UUID in the format described by RFC 4122, e.g.
"550e8400-e29b-41d4-a716-446655440000"

Standalone Format

The first record in a standalone database contains the JSON schema for the database, as specified in RFC 7047. Only
this record is mandatory (a standalone file that contains only a schema represents an empty database).

The second and subsequent records in a standalone database are transaction records. Each record may have the
following optional special members, which do not have any semantics but are often useful to administrators looking
through a database log with ovsdb-tool show-log:
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"_date": <integer> The time at which the transaction was committed, as an integer number of milliseconds
since the Unix epoch. Early versions of OVSDB counted seconds instead of milliseconds; these can be detected
by noticing that their values are less than 2**32.

OVSDB always writes a _date member.

"_comment": <string> A JSON string that specifies the comment provided in a transaction comment oper-
ation. If a transaction has multiple comment operations, OVSDB concatenates them into a single _comment
member, separated by a new-line.

OVSDB only writes a _comment member if it would be a nonempty string.

Each of these records also has one or more additional members, each of which maps from the name of a database table
to a <table-txn>:

<table-txn> A JSON object that describes the effects of a transaction on a database table. Its names are <raw-uuid>s
for rows in the table and its values are <row-txn>s.

<row-txn> Either null, which indicates that the transaction deleted this row, or a JSON object that describes how the
transaction inserted or modified the row, whose names are the names of columns and whose values are <value>s
that give the column’s new value.

For new rows, the OVSDB implementation omits columns whose values have the default values for their types
defined in RFC 7047 section 5.2.1; for modified rows, the OVSDB implementation omits columns whose values
are unchanged.

Clustered Format

The clustered format has the following additional notation:

<uint64> A JSON integer that represents a 64-bit unsigned integer. The OVS JSON implementation only supports
integers in the range -2**63 through 2**63-1, so 64-bit unsigned integer values from 2**63 through 2**64-1
are expressed as negative numbers.

<address> A JSON string that represents a network address to support clustering, in the
<protocol>:<ip>:<port> syntax described in ovsdb-tool(1).

<servers> A JSON object whose names are <raw-uuid>s that identify servers and whose values are <address>es that
specify those servers’ addresses.

<cluster-txn> A JSON array with two elements:

1. The first element is either a <database-schema> or null. A <database-schema> element is always present
in the first record of a clustered database to indicate the database’s initial schema. If it is not null in a
later record, it indicates a change of schema for the database.

2. The second element is either a transaction record in the format described under Standalone Format
above, or null.

When a schema is present, the transaction record is relative to an empty database. That is, a schema change
effectively resets the database to empty and the transaction record represents the full database contents. This
allows readers to be ignorant of the full semantics of schema change.

The first record in a clustered database contains the following members, all of which are required, except
prev_election_timer:

"server_id": <raw-uuid> The server’s own UUID, which must be unique within the cluster.

"local_address": <address> The address on which the server listens for connections from other servers
in the cluster.
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"name": <id> The database schema name. It is only important when a server is in the process of joining a
cluster: a server will only join a cluster if the name matches. (If the database schema name were unique, then
we would not also need a cluster ID.)

"cluster_id": <raw-uuid> The cluster’s UUID. The all-zeros UUID is not a valid cluster ID.

"prev_term": <uint64> and "prev_index": <uint64> The Raft term and index just before the be-
ginning of the log.

"prev_servers": <servers> The set of one or more servers in the cluster at index “prev_index” and term
“prev_term”. It might not include this server, if it was not the initial server in the cluster.

"prev_election_timer": <uint64> The election base time before the beginning of the log. If not exist,
the default value 1000 ms is used as if it exists this record.

"prev_data": <json-value> and "prev_eid": <raw-uuid> A snapshot of the data in the database
at index “prev_index” and term “prev_term”, and the entry ID for that data. The snapshot must contain a schema.

The second and subsequent records, if present, in a clustered database represent changes to the database, to the cluster
state, or both. There are several types of these records. The most important types of records directly represent persistent
state described in the Raft specification:

Entry A Raft log entry.

Term The start of a new term.

Vote The server’s vote for a leader in the current term.

The following additional types of records aid debugging and troubleshooting, but they do not affect correctness.

Leader Identifies a newly elected leader for the current term.

Commit Index An update to the server’s commit_index.

Note A human-readable description of some event.

The table below identifies the members that each type of record contains. “yes” indicates that a member is required,
“?” that it is optional, blank that it is forbidden, and [1] that data and eid must be either both present or both absent.

member Entry Term Vote Leader Commit Index Note
comment ? ? ? ? ? ?
term yes yes yes yes
index yes
servers ?
election_timer ?
data [1]
eid [1]
vote yes
leader yes
commit_index yes
note yes

The members are:

"comment": <string> A human-readable string giving an administrator more information about the reason a
record was emitted.

"term": <uint64> The term in which the activity occurred.

"index": <uint64> The index of a log entry.

"servers": <servers> Server configuration in a log entry.
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"election_timer": <uint64> Leader election timeout base value in a log entry.

"data": <json-value> The data in a log entry.

"eid": <raw-uuid> Entry ID in a log entry.

"vote": <raw-uuid> The server ID for which this server voted.

"leader": <raw-uuid> The server ID of the server. Emitted by both leaders and followers when a leader is
elected.

"commit_index": <uint64> Updated commit_index value.

"note": <string> One of a few special strings indicating important events. The currently defined strings are:

"transfer leadership" This server transferred leadership to a different server (with details included in
comment).

"left" This server finished leaving the cluster. (This lets subsequent readers know that the server is not part
of the cluster and should not attempt to connect to it.)

Joining a Cluster

In addition to general format for a clustered database, there is also a special case for a database file created by
ovsdb-tool join-cluster. Such a file contains exactly one record, which conveys the information passed
to the join-cluster command. It has the following members:

"server_id": <raw-uuid> and "local_address": <address> and "name": <id> These
have the same semantics described above in the general description of the format.

"cluster_id": <raw-uuid> This is provided only if the user gave the --cid option to join-cluster.
It has the same semantics described above.

"remote_addresses"; [<address>*] One or more remote servers to contact for joining the cluster.

When the server successfully joins the cluster, the database file is replaced by one described in Clustered Format.

6.1.13 ovsdb

Description

OVSDB, the Open vSwitch Database, is a network-accessible database system. Schemas in OVSDB specify the
tables in a database and their columns’ types and can include data, uniqueness, and referential integrity constraints.
OVSDB offers atomic, consistent, isolated, durable transactions. RFC 7047 specifies the JSON-RPC based protocol
that OVSDB clients and servers use to communicate.

The OVSDB protocol is well suited for state synchronization because it allows each client to monitor the contents of a
whole database or a subset of it. Whenever a monitored portion of the database changes, the server tells the client what
rows were added or modified (including the new contents) or deleted. Thus, OVSDB clients can easily keep track of
the newest contents of any part of the database.

While OVSDB is general-purpose and not particularly specialized for use with Open vSwitch, Open vSwitch does
use it for multiple purposes. The leading use of OVSDB is for configuring and monitoring ovs-vswitchd(8),
the Open vSwitch switch daemon, using the schema documented in ovs-vswitchd.conf.db(5). The Open
Virtual Network (OVN) project uses two OVSDB schemas, documented as part of that project. Finally, Open vSwitch
includes the “VTEP” schema, documented in vtep(5) that many third-party hardware switches support for config-
uring VXLAN, although OVS itself does not directly use this schema.
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The OVSDB protocol specification allows independent, interoperable implementations of OVSDB to be developed.
Open vSwitch includes an OVSDB server implementation named ovsdb-server(1), which supports several pro-
tocol extensions documented in its manpage, and a basic command-line OVSDB client named ovsdb-client(1),
as well as OVSDB client libraries for C and for Python. Open vSwitch documentation often speaks of these OVSDB
implementations in Open vSwitch as simply “OVSDB,” even though that is distinct from the OVSDB protocol; we
make the distinction explicit only when it might otherwise be unclear from the context.

In addition to these generic OVSDB server and client tools, Open vSwitch includes tools for working with databases
that have specific schemas: ovs-vsctl works with the ovs-vswitchd configuration database and vtep-ctl
works with the VTEP database.

RFC 7047 specifies the OVSDB protocol but it does not specify an on-disk storage format. Open vSwitch includes
ovsdb-tool(1) for working with its own on-disk database formats. The most notable feature of this format is that
ovsdb-tool(1) makes it easy for users to print the transactions that have changed a database since the last time it
was compacted. This feature is often useful for troubleshooting.

Schemas

Schemas in OVSDB have a JSON format that is specified in RFC 7047. They are often stored in files with an extension
.ovsschema. An on-disk database in OVSDB includes a schema and data, embedding both into a single file. The
Open vSwitch utility ovsdb-tool has commands that work with schema files and with the schemas embedded in
database files.

An Open vSwitch schema has three important identifiers. The first is its name, which is also the name used in JSON-
RPC calls to identify a database based on that schema. For example, the schema used to configure Open vSwitch has
the name Open_vSwitch. Schema names begin with a letter or an underscore, followed by any number of letters,
underscores, or digits. The ovsdb-tool commands schema-name and db-name extract the schema name from
a schema or database file, respectively.

An OVSDB schema also has a version of the form x.y.z e.g. 1.2.3. Schemas managed within the Open vSwitch
project manage version numbering in the following way (but OVSDB does not mandate this approach). Whenever
we change the database schema in a non-backward compatible way (e.g. when we delete a column or a table), we
increment <x> and set <y> and <z> to 0. When we change the database schema in a backward compatible way
(e.g. when we add a new column), we increment <y> and set <z> to 0. When we change the database schema
cosmetically (e.g. we reindent its syntax), we increment <z>. The ovsdb-tool commands schema-version
and db-version extract the schema version from a schema or database file, respectively.

Very old OVSDB schemas do not have a version, but RFC 7047 mandates it.

An OVSDB schema optionally has a “checksum.” RFC 7047 does not specify the use of the checksum and recommends
that clients ignore it. Open vSwitch uses the checksum to remind developers to update the version: at build time, if
the schema’s embedded checksum, ignoring the checksum field itself, does not match the schema’s content, then it
fails the build with a recommendation to update the version and the checksum. Thus, a developer who changes the
schema, but does not update the version, receives an automatic reminder. In practice this has been an effective way to
ensure compliance with the version number policy. The ovsdb-tool commands schema-cksum and db-cksum
extract the schema checksum from a schema or database file, respectively.

Service Models

OVSDB supports three service models for databases: standalone, active-backup, and clustered. The service models
provide different compromises among consistency, availability, and partition tolerance. They also differ in the number
of servers required and in terms of performance. The standalone and active-backup database service models share
one on-disk format, and clustered databases use a different format, but the OVSDB programs work with both formats.
ovsdb(5) documents these file formats.

RFC 7047, which specifies the OVSDB protocol, does not mandate or specify any particular service model.
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The following sections describe the individual service models.

Standalone Database Service Model

A standalone database runs a single server. If the server stops running, the database becomes inaccessible, and if the
server’s storage is lost or corrupted, the database’s content is lost. This service model is appropriate when the database
controls a process or activity to which it is linked via “fate-sharing.” For example, an OVSDB instance that controls
an Open vSwitch virtual switch daemon, ovs-vswitchd, is a standalone database because a server failure would
take out both the database and the virtual switch.

To set up a standalone database, use ovsdb-tool create to create a database file, then run ovsdb-server to
start the database service.

To configure a client, such as ovs-vswitchd or ovs-vsctl, to use a standalone database, configure the server
to listen on a “connection method” that the client can reach, then point the client to that connection method. See
Connection Methods below for information about connection methods.

Active-Backup Database Service Model

An active-backup database runs two servers (on different hosts). At any given time, one of the servers is designated
with the active role and the other the backup role. An active server behaves just like a standalone server. A backup
server makes an OVSDB connection to the active server and uses it to continuously replicate its content as it changes
in real time. OVSDB clients can connect to either server but only the active server allows data modification or lock
transactions.

Setup for an active-backup database starts from a working standalone database service, which is initially the ac-
tive server. On another node, to set up a backup server, create a database file with the same schema as the active
server. The initial contents of the database file do not matter, as long as the schema is correct, so ovsdb-tool
create will work, as will copying the database file from the active server. Then use ovsdb-server
--sync-from=<active> to start the backup server, where <active> is an OVSDB connection method (see Con-
nection Methods below) that connects to the active server. At that point, the backup server will fetch a copy of the
active database and keep it up-to-date until it is killed.

When the active server in an active-backup server pair fails, an administrator can switch the backup server to an active
role with the ovs-appctl command ovsdb-server/disconnect-active-ovsdb-server. Clients then
have read/write access to the now-active server. Of course, administrators are slow to respond compared to software, so
in practice external management software detects the active server’s failure and changes the backup server’s role. For
example, the “Integration Guide for Centralized Control” in the OVN documentation describes how to use Pacemaker
for this purpose in OVN.

Suppose an active server fails and its backup is promoted to active. If the failed server is revived, it must be started as
a backup server. Otherwise, if both servers are active, then they may start out of sync, if the database changed while
the server was down, and they will continue to diverge over time. This also happens if the software managing the
database servers cannot reach the active server and therefore switches the backup to active, but other hosts can reach
both servers. These “split-brain” problems are unsolvable in general for server pairs.

Compared to a standalone server, the active-backup service model somewhat increases availability, at a risk of split-
brain. It adds generally insignificant performance overhead. On the other hand, the clustered service model, discussed
below, requires at least 3 servers and has greater performance overhead, but it avoids the need for external management
software and eliminates the possibility of split-brain.

Open vSwitch 2.6 introduced support for the active-backup service model.
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Clustered Database Service Model

A clustered database runs across 3 or 5 or more database servers (the cluster) on different hosts. Servers in a cluster
automatically synchronize writes within the cluster. A 3-server cluster can remain available in the face of at most 1
server failure; a 5-server cluster tolerates up to 2 failures. Clusters larger than 5 servers will also work, with every 2
added servers allowing the cluster to tolerate 1 more failure, but write performance decreases. The number of servers
should be odd: a 4- or 6-server cluster cannot tolerate more failures than a 3- or 5-server cluster, respectively.

To set up a clustered database, first initialize it on a single node by running ovsdb-tool create-cluster, then
start ovsdb-server. Depending on its arguments, the create-cluster command can create an empty database
or copy a standalone database’s contents into the new database.

To configure a client to use a clustered database, first configure all of the servers to listen on a connection method that
the client can reach, then point the client to all of the servers’ connection methods, comma-separated. See Connection
Methods, below, for more detail.

Open vSwitch 2.9 introduced support for the clustered service model.

How to Maintain a Clustered Database

To add a server to a cluster, run ovsdb-tool join-cluster on the new server and start ovsdb-server. To
remove a running server from a cluster, use ovs-appctl to invoke the cluster/leave command. When a server
fails and cannot be recovered, e.g. because its hard disk crashed, or to otherwise remove a server that is down from a
cluster, use ovs-appctl to invoke cluster/kick to make the remaining servers kick it out of the cluster.

The above methods for adding and removing servers only work for healthy clusters, that is, for clusters with no
more failures than their maximum tolerance. For example, in a 3-server cluster, the failure of 2 servers prevents
servers joining or leaving the cluster (as well as database access). To prevent data loss or inconsistency, the preferred
solution to this problem is to bring up enough of the failed servers to make the cluster healthy again, then if necessary
remove any remaining failed servers and add new ones. If this cannot be done, though, use ovs-appctl to invoke
cluster/leave --force on a running server. This command forces the server to which it is directed to leave
its cluster and form a new single-node cluster that contains only itself. The data in the new cluster may be inconsistent
with the former cluster: transactions not yet replicated to the server will be lost, and transactions not yet applied to the
cluster may be committed. Afterward, any servers in its former cluster will regard the server to have failed.

Once a server leaves a cluster, it may never rejoin it. Instead, create a new server and join it to the cluster.

The servers in a cluster synchronize data over a cluster management protocol that is specific to Open vSwitch; it is not
the same as the OVSDB protocol specified in RFC 7047. For this purpose, a server in a cluster is tied to a particular
IP address and TCP port, which is specified in the ovsdb-tool command that creates or joins the cluster. The TCP
port used for clustering must be different from that used for OVSDB clients. To change the port or address of a server
in a cluster, first remove it from the cluster, then add it back with the new address.

To upgrade the ovsdb-server processes in a cluster from one version of Open vSwitch to another, upgrading them
one at a time will keep the cluster healthy during the upgrade process. (This is different from upgrading a database
schema, which is covered later under Upgrading or Downgrading a Database.)

Clustered OVSDB does not support the OVSDB “ephemeral columns” feature. ovsdb-tool and ovsdb-client
change ephemeral columns into persistent ones when they work with schemas for clustered databases. Future versions
of OVSDB might add support for this feature.

Understanding Cluster Consistency

To ensure consistency, clustered OVSDB uses the Raft algorithm described in Diego Ongaro’s Ph.D. thesis, “Consen-
sus: Bridging Theory and Practice”. In an operational Raft cluster, at any given time a single server is the “leader”
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and the other nodes are “followers”. Only the leader processes transactions, but a transaction is only committed when
a majority of the servers confirm to the leader that they have written it to persistent storage.

In most database systems, read and write access to the database happens through transactions. In such a system, Raft
allows a cluster to present a strongly consistent transactional interface. OVSDB uses conventional transactions for
writes, but clients often effectively do reads a different way, by asking the server to “monitor” a database or a subset of
one on the client’s behalf. Whenever monitored data changes, the server automatically tells the client what changed,
which allows the client to maintain an accurate snapshot of the database in its memory. Of course, at any given time,
the snapshot may be somewhat dated since some of it could have changed without the change notification yet being
received and processed by the client.

Given this unconventional usage model, OVSDB also adopts an unconventional clustering model. Each server in a
cluster acts independently for the purpose of monitors and read-only transactions, without verifying that data is up-
to-date with the leader. Servers forward transactions that write to the database to the leader for execution, ensuring
consistency. This has the following consequences:

• Transactions that involve writes, against any server in the cluster, are linearizable if clients take care to use
correct prerequisites, which is the same condition required for linearizability in a standalone OVSDB. (Actually,
“at-least-once” consistency, because OVSDB does not have a session mechanism to drop duplicate transactions
if a connection drops after the server commits it but before the client receives the result.)

• Read-only transactions can yield results based on a stale version of the database, if they are executed against a
follower. Transactions on the leader always yield fresh results. (With monitors, as explained above, a client can
always see stale data even without clustering, so clustering does not change the consistency model for monitors.)

• Monitor-based (or read-heavy) workloads scale well across a cluster, because clustering OVSDB adds no addi-
tional work or communication for reads and monitors.

• A write-heavy client should connect to the leader, to avoid the overhead of followers forwarding transactions to
the leader.

• When a client conducts a mix of read and write transactions across more than one server in a cluster, it can see
inconsistent results because a read transaction might read stale data whose updates have not yet propagated from
the leader. By default, utilities such as ovn-sbctl (in OVN) connect to the cluster leader to avoid this issue.

The same might occur for transactions against a single follower except that the OVSDB server ensures that
the results of a write forwarded to the leader by a given server are visible at that server before it replies to the
requesting client.

• If a client uses a database on one server in a cluster, then another server in the cluster (perhaps because the first
server failed), the client could observe stale data. Clustered OVSDB clients, however, can use a column in the
_Server database to detect that data on a server is older than data that the client previously read. The OVSDB
client library in Open vSwitch uses this feature to avoid servers with stale data.

Database Replication

OVSDB can layer replication on top of any of its service models. Replication, in this context, means to make, and
keep up-to-date, a read-only copy of the contents of a database (the replica). One use of replication is to keep an
up-to-date backup of a database. A replica used solely for backup would not need to support clients of its own. A set
of replicas that do serve clients could be used to scale out read access to the primary database.

A database replica is set up in the same way as a backup server in an active-backup pair, with the difference that the
replica is never promoted to an active role.

A database can have multiple replicas.

Open vSwitch 2.6 introduced support for database replication.
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Connection Methods

An OVSDB connection method is a string that specifies how to make a JSON-RPC connection between an OVSDB
client and server. Connection methods are part of the Open vSwitch implementation of OVSDB and not specified by
RFC 7047. ovsdb-server uses connection methods to specify how it should listen for connections from clients
and ovsdb-client uses them to specify how it should connect to a server. Connections in the opposite direction,
where ovsdb-server connects to a client that is configured to listen for an incoming connection, are also possible.

Connection methods are classified as active or passive. An active connection method makes an outgoing connection to
a remote host; a passive connection method listens for connections from remote hosts. The most common arrangement
is to configure an OVSDB server with passive connection methods and clients with active ones, but the OVSDB
implementation in Open vSwitch supports the opposite arrangement as well.

OVSDB supports the following active connection methods:

ssl:<host>:<port> The specified SSL or TLS <port> on the given <host>.

tcp:<host>:<port> The specified TCP <port> on the given <host>.

unix:<file> On Unix-like systems, connect to the Unix domain server socket named <file>.

On Windows, connect to a local named pipe that is represented by a file created in the path <file> to mimic the
behavior of a Unix domain socket.

<method1>,<method2>,. . . ,<methodN> For a clustered database service to be highly available, a client must be
able to connect to any of the servers in the cluster. To do so, specify connection methods for each of the servers
separated by commas (and optional spaces).

In theory, if machines go up and down and IP addresses change in the right way, a client could talk to the wrong
instance of a database. To avoid this possibility, add cid:<uuid> to the list of methods, where <uuid> is the
cluster ID of the desired database cluster, as printed by ovsdb-tool db-cid. This feature is optional.

OVSDB supports the following passive connection methods:

pssl:<port>[:<ip>] Listen on the given TCP <port> for SSL or TLS connections. By default, connections are not
bound to a particular local IP address. Specifying <ip> limits connections to those from the given IP.

ptcp:<port>[:<ip>] Listen on the given TCP <port>. By default, connections are not bound to a particular local IP
address. Specifying <ip> limits connections to those from the given IP.

punix:<file> On Unix-like systems, listens for connections on the Unix domain socket named <file>.

On Windows, listens on a local named pipe, creating a named pipe <file> to mimic the behavior of a Unix
domain socket.

All IP-based connection methods accept IPv4 and IPv6 addresses. To specify an IPv6 address, wrap it in square
brackets, e.g. ssl:[::1]:6640. Passive IP-based connection methods by default listen for IPv4 connections only;
use [::] as the address to accept both IPv4 and IPv6 connections, e.g. pssl:6640:[::]. DNS names are also
accepted if built with unbound library. On Linux, use %<device> to designate a scope for IPv6 link-level addresses,
e.g. ssl:[fe80::1234%eth0]:6653.

The <port> may be omitted from connection methods that use a port number. The default <port> for TCP-based
connection methods is 6640, e.g. pssl: is equivalent to pssl:6640. In Open vSwitch prior to version 2.4.0, the
default port was 6632. To avoid incompatibility between older and newer versions, we encourage users to specify a
port number.

The ssl and pssl connection methods requires additional configuration through --private-key,
--certificate, and --ca-cert command line options. Open vSwitch can be built without SSL support, in
which case these connection methods are not supported.
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Database Life Cycle

This section describes how to handle various events in the life cycle of a database using the Open vSwitch implemen-
tation of OVSDB.

Creating a Database

Creating and starting up the service for a new database was covered separately for each database service model in the
Service Models section, above.

Backing Up and Restoring a Database

OVSDB is often used in contexts where the database contents are not particularly valuable. For example, in many
systems, the database for configuring ovs-vswitchd is essentially rebuilt from scratch at boot time. It is not
worthwhile to back up these databases.

When OVSDB is used for valuable data, a backup strategy is worth considering. One way is to use database replication,
discussed above in Database Replication which keeps an online, up-to-date copy of a database, possibly on a remote
system. This works with all OVSDB service models.

A more common backup strategy is to periodically take and store a snapshot. For the standalone and active-backup
service models, making a copy of the database file, e.g. using cp, effectively makes a snapshot, and because OVSDB
database files are append-only, it works even if the database is being modified when the snapshot takes place. This
approach does not work for clustered databases.

Another way to make a backup, which works with all OVSDB service models, is to use ovsdb-client backup,
which connects to a running database server and outputs an atomic snapshot of its schema and content, in the same
format used for standalone and active-backup databases.

Multiple options are also available when the time comes to restore a database from a backup. For the standalone and
active-backup service models, one option is to stop the database server or servers, overwrite the database file with
the backup (e.g. with cp), and then restart the servers. Another way, which works with any service model, is to
use ovsdb-client restore, which connects to a running database server and replaces the data in one of its
databases by a provided snapshot. The advantage of ovsdb-client restore is that it causes zero downtime for
the database and its server. It has the downside that UUIDs of rows in the restored database will differ from those in
the snapshot, because the OVSDB protocol does not allow clients to specify row UUIDs.

None of these approaches saves and restores data in columns that the schema designates as ephemeral. This is by
design: the designer of a schema only marks a column as ephemeral if it is acceptable for its data to be lost when a
database server restarts.

Clustering and backup serve different purposes. Clustering increases availability, but it does not protect against data
loss if, for example, a malicious or malfunctioning OVSDB client deletes or tampers with data.

Changing Database Service Model

Use ovsdb-tool create-cluster to create a clustered database from the contents of a standalone database.
Use ovsdb-client backup to create a standalone database from the contents of a running clustered database.
When the cluster is down and cannot be revived, ovsdb-client backup will not work.

Use ovsdb-tool cluster-to-standalone to convert clustered database to standalone database when the
cluster is down and cannot be revived.
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Upgrading or Downgrading a Database

The evolution of a piece of software can require changes to the schemas of the databases that it uses. For example, new
features might require new tables or new columns in existing tables, or conceptual changes might require a database
to be reorganized in other ways. In some cases, the easiest way to deal with a change in a database schema is to delete
the existing database and start fresh with the new schema, especially if the data in the database is easy to reconstruct.
But in many other cases, it is better to convert the database from one schema to another.

The OVSDB implementation in Open vSwitch has built-in support for some simple cases of converting a database
from one schema to another. This support can handle changes that add or remove database columns or tables or that
eliminate constraints (for example, changing a column that must have exactly one value into one that has one or more
values). It can also handle changes that add constraints or make them stricter, but only if the existing data in the
database satisfies the new constraints (for example, changing a column that has one or more values into a column
with exactly one value, if every row in the column has exactly one value). The built-in conversion can cause data loss
in obvious ways, for example if the new schema removes tables or columns, or indirectly, for example by deleting
unreferenced rows in tables that the new schema marks for garbage collection.

Converting a database can lose data, so it is wise to make a backup beforehand.

To use OVSDB’s built-in support for schema conversion with a standalone or active-backup database, first stop the
database server or servers, then use ovsdb-tool convert to convert it to the new schema, and then restart the
database server.

OVSDB also supports online database schema conversion for any of its database service models. To convert a
database online, use ovsdb-client convert. The conversion is atomic, consistent, isolated, and durable.
ovsdb-server disconnects any clients connected when the conversion takes place (except clients that use the
set_db_change_aware Open vSwitch extension RPC). Upon reconnection, clients will discover that the schema
has changed.

Schema versions and checksums (see Schemas above) can give hints about whether a database needs to be converted
to a new schema. If there is any question, though, the needs-conversion command on ovsdb-tool and
ovsdb-client can provide a definitive answer.

Working with Database History

Both on-disk database formats that OVSDB supports are organized as a stream of transaction records. Each record
describes a change to the database as a list of rows that were inserted or deleted or modified, along with the details.
Therefore, in normal operation, a database file only grows, as each change causes another record to be appended at the
end. Usually, a user has no need to understand this file structure. This section covers some exceptions.

Compacting Databases

If OVSDB database files were truly append-only, then over time they would grow without bound. To avoid this
problem, OVSDB can compact a database file, that is, replace it by a new version that contains only the current
database contents, as if it had been inserted by a single transaction. From time to time, ovsdb-server automatically
compacts a database that grows much larger than its minimum size.

Because ovsdb-server automatically compacts databases, it is usually not necessary to compact them manually,
but OVSDB still offers a few ways to do it. First, ovsdb-tool compact can compact a standalone or active-
backup database that is not currently being served by ovsdb-server (or otherwise locked for writing by another
process). To compact any database that is currently being served by ovsdb-server, use ovs-appctl to send the
ovsdb-server/compact command. Each server in an active-backup or clustered database maintains its database
file independently, so to compact all of them, issue this command separately on each server.
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Viewing History

The ovsdb-tool utility’s show-log command displays the transaction records in an OVSDB database file in a
human-readable format. By default, it shows minimal detail, but adding the option -m once or twice increases the level
of detail. In addition to the transaction data, it shows the time and date of each transaction and any “comment” added
to the transaction by the client. The comments can be helpful for quickly understanding a transaction; for example,
ovs-vsctl adds its command line to the transactions that it makes.

The show-log command works with both OVSDB file formats, but the details of the output format differ. For active-
backup and clustered databases, the sequence of transactions in each server’s log will differ, even at points when they
reflect the same data.

Truncating History

It may occasionally be useful to “roll back” a database file to an earlier point. Because of the organization of OVSDB
records, this is easy to do. Start by noting the record number <i> of the first record to delete in ovsdb-tool
show-log output. Each record is two lines of plain text, so trimming the log is as simple as running head -n
<j>, where <j> = 2 * <i>.

Corruption

When ovsdb-server opens an OVSDB database file, of any kind, it reads as many transaction records as it can
from the file until it reaches the end of the file or it encounters a corrupted record. At that point it stops reading and
regards the data that it has read to this point as the full contents of the database file, effectively rolling the database
back to an earlier point.

Each transaction record contains an embedded SHA-1 checksum, which the server verifies as it reads a database file.
It detects corruption when a checksum fails to verify. Even though SHA-1 is no longer considered secure for use in
cryptography, it is acceptable for this purpose because it is not used to defend against malicious attackers.

The first record in a standalone or active-backup database file specifies the schema. ovsdb-server will refuse to
work with a database where this record is corrupted, or with a clustered database file with corruption in the first few
records. Delete and recreate such a database, or restore it from a backup.

When ovsdb-server adds records to a database file in which it detected corruption, it first truncates the file just
after the last good record.

See Also

RFC 7047, “The Open vSwitch Database Management Protocol.”

Open vSwitch implementations of generic OVSDB functionality: ovsdb-server(1), ovsdb-client(1),
ovsdb-tool(1).

Tools for working with databases that have specific OVSDB schemas: ovs-vsctl(8), vtep-ctl(8), and (in
OVN) ovn-nbctl(8), ovn-sbctl(8).

OVSDB schemas for Open vSwitch and related functionality: ovs-vswitchd.conf.db(5), vtep(5), and (in
OVN) ovn-nb(5), ovn-sb(5).

The remainder are still in roff format can be found below:
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ovs-actions(7) (pdf) (html) (plain text)
ovs-bugtool(8) (pdf) (html) (plain text)
ovsdb-client(1) (pdf) (html) (plain text)
ovsdb-server(1) (pdf) (html) (plain text)
ovsdb-tool(1) (pdf) (html) (plain text)
ovs-dpctl(8) (pdf) (html) (plain text)
ovs-dpctl-top(8) (pdf) (html) (plain text)
ovs-fields(7) (pdf) (html) (plain text)
ovs-ofctl(8) (pdf) (html) (plain text)
ovs-pcap(1) (pdf) (html) (plain text)
ovs-test(8) (pdf) (html) (plain text)
ovs-testcontroller(8) (pdf) (html) (plain text)
ovs-vlan-test(8) (pdf) (html) (plain text)
ovs-vsctl(8) (pdf) (html) (plain text)
ovs-vswitchd(8) (pdf) (html) (plain text)
ovs-vswitchd.conf.db(5) (pdf) (html) (plain text)
vtep(5) (pdf) (html) (plain text)
vtep-ctl(8) (pdf) (html) (plain text)
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Open vSwitch FAQ

7.1 Basic Configuration

Q: How do I configure a port as an access port?

A. Add tag=VLAN to your ovs-vsctl add-port command. For example, the following commands
configure br0 with eth0 as a trunk port (the default) and tap0 as an access port for VLAN 9:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 eth0
$ ovs-vsctl add-port br0 tap0 tag=9

If you want to configure an already added port as an access port, use ovs-vsctl set, e.g.:

$ ovs-vsctl set port tap0 tag=9

Q: How do I configure a port as a SPAN port, that is, enable mirroring of all traffic to that port?

A. The following commands configure br0 with eth0 and tap0 as trunk ports. All traffic coming in or
going out on eth0 or tap0 is also mirrored to tap1; any traffic arriving on tap1 is dropped:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 eth0
$ ovs-vsctl add-port br0 tap0
$ ovs-vsctl add-port br0 tap1 \

-- --id=@p get port tap1 \
-- --id=@m create mirror name=m0 select-all=true output-port=@p \
-- set bridge br0 mirrors=@m

To later disable mirroring, run:

$ ovs-vsctl clear bridge br0 mirrors

Q: Does Open vSwitch support configuring a port in promiscuous mode?

A: Yes. How you configure it depends on what you mean by “promiscuous mode”:
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• Conventionally, “promiscuous mode” is a feature of a network interface card. Ordinarily, a NIC
passes to the CPU only the packets actually destined to its host machine. It discards the rest to
avoid wasting memory and CPU cycles. When promiscuous mode is enabled, however, it passes
every packet to the CPU. On an old-style shared-media or hub-based network, this allows the host
to spy on all packets on the network. But in the switched networks that are almost everywhere these
days, promiscuous mode doesn’t have much effect, because few packets not destined to a host are
delivered to the host’s NIC.

This form of promiscuous mode is configured in the guest OS of the VMs on your bridge, e.g. with
“ip link set <device> promisc”.

• The VMware vSwitch uses a different definition of “promiscuous mode”. When you configure
promiscuous mode on a VMware vNIC, the vSwitch sends a copy of every packet received by the
vSwitch to that vNIC. That has a much bigger effect than just enabling promiscuous mode in a guest
OS. Rather than getting a few stray packets for which the switch does not yet know the correct
destination, the vNIC gets every packet. The effect is similar to replacing the vSwitch by a virtual
hub.

This “promiscuous mode” is what switches normally call “port mirroring” or “SPAN”. For infor-
mation on how to configure SPAN, see “How do I configure a port as a SPAN port, that is, enable
mirroring of all traffic to that port?”

Q: How do I configure a DPDK port as an access port?

A: Firstly, you must have a DPDK-enabled version of Open vSwitch.

If your version is DPDK-enabled it may support the dpdk_version and dpdk_initialized keys in the con-
figuration database. Earlier versions of Open vSwitch only supported the other-config:dpdk-init key in
the configuration in the database. All versions will display lines with “EAL:. . . ” during startup when
other_config:dpdk-init is set to ‘true’.

Secondly, when adding a DPDK port, unlike a system port, the type for the interface and valid dpdk-
devargs must be specified. For example:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 myportname -- set Interface myportname \

type=dpdk options:dpdk-devargs=0000:06:00.0

Refer to Open vSwitch with DPDK for more information on enabling and using DPDK with Open
vSwitch.

Q: How do I configure a VLAN as an RSPAN VLAN, that is, enable mirroring of all traffic to that VLAN?

A: The following commands configure br0 with eth0 as a trunk port and tap0 as an access port for VLAN
10. All traffic coming in or going out on tap0, as well as traffic coming in or going out on eth0 in VLAN
10, is also mirrored to VLAN 15 on eth0. The original tag for VLAN 10, in cases where one is present, is
dropped as part of mirroring:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 eth0
$ ovs-vsctl add-port br0 tap0 tag=10
$ ovs-vsctl \

-- --id=@m create mirror name=m0 select-all=true select-vlan=10 \
output-vlan=15 \

-- set bridge br0 mirrors=@m

To later disable mirroring, run:

$ ovs-vsctl clear bridge br0 mirrors
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Mirroring to a VLAN can disrupt a network that contains unmanaged switches. See ovs-
vswitchd.conf.db(5) for details. Mirroring to a GRE tunnel has fewer caveats than mirroring to a VLAN
and should generally be preferred.

Q: Can I mirror more than one input VLAN to an RSPAN VLAN?

A: Yes, but mirroring to a VLAN strips the original VLAN tag in favor of the specified output-vlan. This
loss of information may make the mirrored traffic too hard to interpret.

To mirror multiple VLANs, use the commands above, but specify a comma-separated list of VLANs as
the value for select-vlan. To mirror every VLAN, use the commands above, but omit select-vlan and its
value entirely.

When a packet arrives on a VLAN that is used as a mirror output VLAN, the mirror is disregarded.
Instead, in standalone mode, OVS floods the packet across all the ports for which the mirror output
VLAN is configured. (If an OpenFlow controller is in use, then it can override this behavior through the
flow table.) If OVS is used as an intermediate switch, rather than an edge switch, this ensures that the
RSPAN traffic is distributed through the network.

Mirroring to a VLAN can disrupt a network that contains unmanaged switches. See ovs-
vswitchd.conf.db(5) for details. Mirroring to a GRE tunnel has fewer caveats than mirroring to a VLAN
and should generally be preferred.

Q: How do I configure mirroring of all traffic to a GRE tunnel?

A: The following commands configure br0 with eth0 and tap0 as trunk ports. All traffic coming in or
going out on eth0 or tap0 is also mirrored to gre0, a GRE tunnel to the remote host 192.168.1.10; any
traffic arriving on gre0 is dropped:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 eth0
$ ovs-vsctl add-port br0 tap0
$ ovs-vsctl add-port br0 gre0 \

-- set interface gre0 type=gre options:remote_ip=192.168.1.10 \
-- --id=@p get port gre0 \
-- --id=@m create mirror name=m0 select-all=true output-port=@p \
-- set bridge br0 mirrors=@m

To later disable mirroring and destroy the GRE tunnel:

$ ovs-vsctl clear bridge br0 mirrors
$ ovs-vsctl del-port br0 gre0

Q: Does Open vSwitch support ERSPAN?

A: Yes. ERSPAN version I and version II over IPv4 GRE and IPv6 GRE tunnel are supported. See
ovs-fields(7) for matching and setting ERSPAN fields.

$ ovs-vsctl add-br br0
$ #For ERSPAN type 2 (version I)
$ ovs-vsctl add-port br0 at_erspan0 -- \

set int at_erspan0 type=erspan options:key=1 \
options:remote_ip=172.31.1.1 \
options:erspan_ver=1 options:erspan_idx=1

$ #For ERSPAN type 3 (version II)
$ ovs-vsctl add-port br0 at_erspan0 -- \

set int at_erspan0 type=erspan options:key=1 \
options:remote_ip=172.31.1.1 \
options:erspan_ver=2 options:erspan_dir=1 \
options:erspan_hwid=4
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Q: Does Open vSwitch support IPv6 GRE?

A: Yes. L2 tunnel interface GRE over IPv6 is supported. L3 GRE tunnel over IPv6 is not supported.

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 at_gre0 -- \

set int at_gre0 type=ip6gre \
options:remote_ip=fc00:100::1 \
options:packet_type=legacy_l2

Q: How do I connect two bridges?

A: First, why do you want to do this? Two connected bridges are not much different from a single bridge,
so you might as well just have a single bridge with all your ports on it.

If you still want to connect two bridges, you can use a pair of patch ports. The following example creates
bridges br0 and br1, adds eth0 and tap0 to br0, adds tap1 to br1, and then connects br0 and br1 with a pair
of patch ports.

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 eth0
$ ovs-vsctl add-port br0 tap0
$ ovs-vsctl add-br br1
$ ovs-vsctl add-port br1 tap1
$ ovs-vsctl \

-- add-port br0 patch0 \
-- set interface patch0 type=patch options:peer=patch1 \
-- add-port br1 patch1 \
-- set interface patch1 type=patch options:peer=patch0

Bridges connected with patch ports are much like a single bridge. For instance, if the example above also
added eth1 to br1, and both eth0 and eth1 happened to be connected to the same next-hop switch, then
you could loop your network just as you would if you added eth0 and eth1 to the same bridge (see the
“Configuration Problems” section below for more information).

If you are using Open vSwitch 1.9 or an earlier version, then you need to be using the kernel module
bundled with Open vSwitch rather than the one that is integrated into Linux 3.3 and later, because Open
vSwitch 1.9 and earlier versions need kernel support for patch ports. This also means that in Open vSwitch
1.9 and earlier, patch ports will not work with the userspace datapath, only with the kernel module.

Q: How do I configure a bridge without an OpenFlow local port? (Local port in the sense of OFPP_LOCAL)

A: Open vSwitch does not support such a configuration. Bridges always have their local ports.

7.2 Development

Q: How do I implement a new OpenFlow message?

A: Add your new message to enum ofpraw and enum ofptype in include/openvswitch/
ofp-msgs.h, following the existing pattern. Then recompile and fix all of the new warnings, imple-
menting new functionality for the new message as needed. (If you configure with --enable-Werror,
as described in Open vSwitch on Linux, FreeBSD and NetBSD, then it is impossible to miss any warnings.)

To add an OpenFlow vendor extension message (aka experimenter message) for a vendor that doesn’t
yet have any extension messages, you will also need to edit build-aux/extract-ofp-msgs and
at least ofphdrs_decode() and ofpraw_put__() in lib/ofp-msgs.c. OpenFlow doesn’t
standardize vendor extensions very well, so it’s hard to make the process simpler than that. (If you have a
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choice of how to design your vendor extension messages, it will be easier if you make them resemble the
ONF and OVS extension messages.)

Q: How do I add support for a new field or header?

A: Add new members for your field to struct flow in include/openvswitch/flow.
h, and add new enumerations for your new field to enum mf_field_id in include/
openvswitch/meta-flow.h, following the existing pattern. If the field uses a new OXM
class, add it to OXM_CLASSES in build-aux/extract-ofp-fields. Also, add support to
miniflow_extract() in lib/flow.c for extracting your new field from a packet into struct mini-
flow, and to nx_put_raw() in lib/nx-match.c to output your new field in OXM matches. Then
recompile and fix all of the new warnings, implementing new functionality for the new field or header as
needed. (If you configure with --enable-Werror, as described in Open vSwitch on Linux, FreeBSD
and NetBSD, then it is impossible to miss any warnings.)

If you want kernel datapath support for your new field, you also need to modify the kernel module for the
operating systems you are interested in. This isn’t mandatory, since fields understood only by userspace
work too (with a performance penalty), so it’s reasonable to start development without it. If you implement
kernel module support for Linux, then the Linux kernel “netdev” mailing list is the place to submit that
support first; please read up on the Linux kernel development process separately. The Windows datapath
kernel module support, on the other hand, is maintained within the OVS tree, so patches for that can go
directly to ovs-dev.

Q: How do I add support for a new OpenFlow action?

A: Add your new action to enum ofp_raw_action_type in lib/ofp-actions.c, following
the existing pattern. Then recompile and fix all of the new warnings, implementing new functionality for
the new action as needed. (If you configure with --enable-Werror, as described in the Open vSwitch
on Linux, FreeBSD and NetBSD, then it is impossible to miss any warnings.)

If you need to add an OpenFlow vendor extension action for a vendor that doesn’t yet
have any extension actions, then you will also need to add the vendor to vendor_map in
build-aux/extract-ofp-actions. Also, you will need to add support for the vendor to
ofpact_decode_raw() and ofpact_put_raw() in lib/ofp-actions.c. (If you have a
choice of how to design your vendor extension actions, it will be easier if you make them resemble the
ONF and OVS extension actions.)

Q: How do I add support for a new OpenFlow error message?

A: Add your new error to enum ofperr in include/openvswitch/ofp-errors.h. Read the
large comment at the top of the file for details. If you need to add an OpenFlow vendor extension error for a
vendor that doesn’t yet have any, first add the vendor ID to the <name>_VENDOR_ID list in include/
openflow/openflow-common.h.

Q: What’s a Signed-off-by and how do I provide one?

A: Free and open source software projects usually require a contributor to provide some assurance that
they’re entitled to contribute the code that they provide. Some projects, for example, do this with a
Contributor License Agreement (CLA) or a copyright assignment that is signed on paper or electronically.

For this purpose, Open vSwitch has adopted something called the Developer’s Certificate of Origin
(DCO), which is also used by the Linux kernel and originated there. Informally stated, agreeing to the
DCO is the developer’s way of attesting that a particular commit that they are contributing is one that they
are allowed to contribute. You should visit https://developercertificate.org/ to read the full statement of
the DCO, which is less than 200 words long.

To certify compliance with the Developer’s Certificate of Origin for a particular commit, just add the
following line to the end of your commit message, properly substituting your name and email address:

Signed-off-by: Firstname Lastname <email@example.org>
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Git has special support for adding a Signed-off-by line to a commit message: when you run “git commit”,
just add the -s option, as in “git commit -s”. If you use the “git citool” GUI for commits, you can add a
Signed-off-by line to the commit message by pressing Control+S. Other Git user interfaces may provide
similar support.

Q: How do I apply patches from email?

A: You can use git am on raw email contents, either from a file saved by or piped from an email client.
In mutt, for example, when you are viewing a patch, you can apply it to the tree in ~/ovs by issuing the
command |cd ~/ovs && git am. If you are an OVS committer, you might want to add -s to sign
off on the patch as part of applying it. If you do this often, then you can make the keystrokes ,a shorthand
for it by adding the following line to your .muttrc:

macro index,pager ,a “<pipe-message>cd ~/ovs && git am -s” “apply patch”

git am has a problem with some email messages from the ovs-dev list for which the mailing list manager
edits the From: address, replacing it by the list’s own address. The mailing list manager must do this for
messages whose sender’s email domain has DMARC configured, because receivers will otherwise discard
these messages when they do not come directly from the sender’s email domain. This editing makes the
patches look like they come from the mailing list instead of the author. To work around this problem, one
can use the following wrapper script for git am:

#! /bin/sh
tmp=$(mktemp)
cat >$tmp
if grep '^From:.*via dev.*' "$tmp" >/dev/null 2>&1; then

sed '/^From:.*via dev.*/d
s/^[Rr]eply-[tT]o:/From:/' $tmp

else
cat "$tmp"

fi | git am "$@"
rm "$tmp"

Another way to apply emailed patches is to use the pwclient program, which can obtain patches
from patchwork and apply them directly. Download pwclient at https://patchwork.ozlabs.org/project/
openvswitch/. You probably want to set up a .pwclientrc that looks something like this:

[options]
default=openvswitch
signoff=true

[openvswitch]
url=https://patchwork.ozlabs.org/xmlrpc/

After you install pwclient, you can apply a patch from patchwork with pwclient git-am #,
where # is the patch’s number. (This fails with certain patches that contain form-feeds, due to a limitation
of the protocol underlying pwclient.)

Another way to apply patches directly from patchwork which supports applying patch series is to use
the git-pw program. It can be obtained with pip install git-pw. Alternative installation in-
structions and general documentation can be found at https://patchwork.readthedocs.io/projects/git-pw/
en/latest/. You need to use your openvswitch patchwork login or create one at https://patchwork.ozlabs.
org/register/. The following can then be set on the command line with git config or through a .
gitconfig like this:

[pw]
server=https://patchwork.ozlabs.org/api/1.0
project=openvswitch

(continues on next page)
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(continued from previous page)

username=<username>
password=<password>

Patch series can be listed with git-pw series list and applied with git-pw series apply
#, where # is the series number. Individual patches can be applied with git-pw patch apply #,
where # is the patch number.

7.3 Implementation Details

Q: I hear OVS has a couple of kinds of flows. Can you tell me about them?

A: Open vSwitch uses different kinds of flows for different purposes:

• OpenFlow flows are the most important kind of flow. OpenFlow controllers use these flows to define
a switch’s policy. OpenFlow flows support wildcards, priorities, and multiple tables.

When in-band control is in use, Open vSwitch sets up a few “hidden” flows, with priority higher
than a controller or the user can configure, that are not visible via OpenFlow. (See the “Controller”
section of the FAQ for more information about hidden flows.)

• The Open vSwitch software switch implementation uses a second kind of flow internally. These
flows, called “datapath” or “kernel” flows, do not support priorities and comprise only a single
table, which makes them suitable for caching. (Like OpenFlow flows, datapath flows do support
wildcarding, in Open vSwitch 1.11 and later.) OpenFlow flows and datapath flows also support
different actions and number ports differently.

Datapath flows are an implementation detail that is subject to change in future versions of Open
vSwitch. Even with the current version of Open vSwitch, hardware switch implementations do not
necessarily use this architecture.

Users and controllers directly control only the OpenFlow flow table. Open vSwitch manages the datapath flow table
itself, so users should not normally be concerned with it.

Q: Why are there so many different ways to dump flows?

A: Open vSwitch has two kinds of flows (see the previous question), so it has commands with different
purposes for dumping each kind of flow:

• ovs-ofctl dump-flows <br> dumps OpenFlow flows, excluding hidden flows. This is the
most commonly useful form of flow dump. (Unlike the other commands, this should work with any
OpenFlow switch, not just Open vSwitch.)

• ovs-appctl bridge/dump-flows <br> dumps OpenFlow flows, including hidden flows.
This is occasionally useful for troubleshooting suspected issues with in-band control.

• ovs-dpctl dump-flows [dp] dumps the datapath flow table entries for a Linux kernel-based
datapath. In Open vSwitch 1.10 and later, ovs-vswitchd merges multiple switches into a single data-
path, so it will show all the flows on all your kernel-based switches. This command can occasionally
be useful for debugging. It doesn’t dump flows that was offloaded to hardware.

• ovs-appctl dpif/dump-flows <br>, new in Open vSwitch 1.10, dumps datapath flows
for only the specified bridge, regardless of the type. Supports dumping of HW offloaded flows. See
ovs-vswitchd(8) for details.

Q: How does multicast snooping works with VLANs?

A: Open vSwitch maintains snooping tables for each VLAN.

Q: Can OVS populate the kernel flow table in advance instead of in reaction to packets?
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A: No. There are several reasons:

• Kernel flows are not as sophisticated as OpenFlow flows, which means that some OpenFlow policies
could require a large number of kernel flows. The “conjunctive match” feature is an extreme exam-
ple: the number of kernel flows it requires is the product of the number of flows in each dimension.

• With multiple OpenFlow flow tables and simple sets of actions, the number of kernel flows required
can be as large as the product of the number of flows in each dimension. With more sophisticated
actions, the number of kernel flows could be even larger.

• Open vSwitch is designed so that any version of OVS userspace interoperates with any version of
the OVS kernel module. This forward and backward compatibility requires that userspace observe
how the kernel module parses received packets. This is only possible in a straightforward way when
userspace adds kernel flows in reaction to received packets.

For more relevant information on the architecture of Open vSwitch, please read “The Design and Imple-
mentation of Open vSwitch”, published in USENIX NSDI 2015.

Q: How many packets does OVS buffer?

A: Open vSwitch fast path packet processing uses a “run to completion” model in which every packet is
completely handled in a single pass. Therefore, in the common case where a packet just passes through
the fast path, Open vSwitch does not buffer packets itself. The operating system and the network drivers
involved in receiving and later in transmitting the packet do often include buffering. Open vSwitch is only
a middleman between these and does not have direct access or influence over their buffers.

Outside the common case, Open vSwitch does sometimes buffer packets. When the OVS fast path pro-
cesses a packet that does not match any of the flows in its megaflow cache, it passes that packet to the
Open vSwitch slow path. This procedure queues a copy of the packet to the Open vSwitch userspace
which processes it and, if necessary, passes it back to the kernel module. Queuing the packet to userspace
as part of this process involves buffering. (Going the opposite direction does not, because the kernel actu-
ally processes the request synchronously.) A few other exceptional cases also queue packets to userspace
for processing; most of these are due to OpenFlow actions that the fast path cannot handle and that must
therefore be handled by the slow path instead.

OpenFlow also has a concept of packet buffering. When an OpenFlow switch sends a packet to a con-
troller, it may opt to retain a copy of the packet in an OpenFlow “packet buffer”. Later, if the controller
wants to tell the switch to forward a copy of that packet, it can refer to the packet through its assigned
buffer, instead of sending the whole packet back to the switch, thereby saving bandwidth in the OpenFlow
control channel. Before Open vSwitch 2.7, OVS implemented such buffering; Open vSwitch 2.7 and later
do not.

7.4 General

Q: What is Open vSwitch?

A: Open vSwitch is a production quality open source software switch designed to be used as a vswitch in
virtualized server environments. A vswitch forwards traffic between different VMs on the same physical
host and also forwards traffic between VMs and the physical network. Open vSwitch supports standard
management interfaces (e.g. sFlow, NetFlow, IPFIX, RSPAN, CLI), and is open to programmatic exten-
sion and control using OpenFlow and the OVSDB management protocol.

Open vSwitch as designed to be compatible with modern switching chipsets. This means that it can be
ported to existing high-fanout switches allowing the same flexible control of the physical infrastructure
as the virtual infrastructure. It also means that Open vSwitch will be able to take advantage of on-NIC
switching chipsets as their functionality matures.

Q: What virtualization platforms can use Open vSwitch?
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A: Open vSwitch can currently run on any Linux-based virtualization platform (kernel 3.10 and newer),
including: KVM, VirtualBox, Xen, Xen Cloud Platform, XenServer. As of Linux 3.3 it is part of the
mainline kernel. The bulk of the code is written in platform- independent C and is easily ported to other
environments. We welcome inquires about integrating Open vSwitch with other virtualization platforms.

Q: How can I try Open vSwitch?

A: The Open vSwitch source code can be built on a Linux system. You can build and experiment with
Open vSwitch on any Linux machine. Packages for various Linux distributions are available on many
platforms, including: Debian, Ubuntu, Fedora.

You may also download and run a virtualization platform that already has Open vSwitch integrated. For
example, download a recent ISO for XenServer or Xen Cloud Platform. Be aware that the version inte-
grated with a particular platform may not be the most recent Open vSwitch release.

Q: Does Open vSwitch only work on Linux?

A: No, Open vSwitch has been ported to a number of different operating systems and hardware platforms.
Most of the development work occurs on Linux, but the code should be portable to any POSIX system.
We’ve seen Open vSwitch ported to a number of different platforms, including FreeBSD, Windows, and
even non-POSIX embedded systems.

By definition, the Open vSwitch Linux kernel module only works on Linux and will provide the highest
performance. However, a userspace datapath is available that should be very portable.

Q: What’s involved with porting Open vSwitch to a new platform or switching ASIC?

A: Porting Open vSwitch to New Software or Hardware describes how one would go about porting Open
vSwitch to a new operating system or hardware platform.

Q: Why would I use Open vSwitch instead of the Linux bridge?

A: Open vSwitch is specially designed to make it easier to manage VM network configuration and mon-
itor state spread across many physical hosts in dynamic virtualized environments. Refer to Why Open
vSwitch? for a more detailed description of how Open vSwitch relates to the Linux Bridge.

Q: How is Open vSwitch related to distributed virtual switches like the VMware vNetwork distributed switch or the
Cisco Nexus 1000V?

A: Distributed vswitch applications (e.g., VMware vNetwork distributed switch, Cisco Nexus 1000V)
provide a centralized way to configure and monitor the network state of VMs that are spread across
many physical hosts. Open vSwitch is not a distributed vswitch itself, rather it runs on each physical
host and supports remote management in a way that makes it easier for developers of virtualization/cloud
management platforms to offer distributed vswitch capabilities.

To aid in distribution, Open vSwitch provides two open protocols that are specially designed for remote
management in virtualized network environments: OpenFlow, which exposes flow-based forwarding state,
and the OVSDB management protocol, which exposes switch port state. In addition to the switch imple-
mentation itself, Open vSwitch includes tools (ovs-ofctl, ovs-vsctl) that developers can script and extend
to provide distributed vswitch capabilities that are closely integrated with their virtualization management
platform.

Q: Why doesn’t Open vSwitch support distribution?

A: Open vSwitch is intended to be a useful component for building flexible network infrastructure. There
are many different approaches to distribution which balance trade-offs between simplicity, scalability,
hardware compatibility, convergence times, logical forwarding model, etc. The goal of Open vSwitch is
to be able to support all as a primitive building block rather than choose a particular point in the distributed
design space.

Q: How can I contribute to the Open vSwitch Community?
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A: You can start by joining the mailing lists and helping to answer questions. You can also suggest
improvements to documentation. If you have a feature or bug you would like to work on, send a mail to
one of the mailing lists.

Q: Why can I no longer connect to my OpenFlow controller or OVSDB manager?

A: Starting in OVS 2.4, we switched the default ports to the IANA-specified port numbers for OpenFlow
(6633->6653) and OVSDB (6632->6640). We recommend using these port numbers, but if you cannot,
all the programs allow overriding the default port. See the appropriate man page.

7.5 Common Configuration Issues

Q: I created a bridge and added my Ethernet port to it, using commands like these:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 eth0

and as soon as I ran the “add-port” command I lost all connectivity through eth0. Help!

A: A physical Ethernet device that is part of an Open vSwitch bridge should not have an IP address. If
one does, then that IP address will not be fully functional.

You can restore functionality by moving the IP address to an Open vSwitch “internal” device, such
as the network device named after the bridge itself. For example, assuming that eth0’s IP address is
192.168.128.5, you could run the commands below to fix up the situation:

$ ip addr flush dev eth0
$ ip addr add 192.168.128.5/24 dev br0
$ ip link set br0 up

(If your only connection to the machine running OVS is through the IP address in question, then you
would want to run all of these commands on a single command line, or put them into a script.) If there
were any additional routes assigned to eth0, then you would also want to use commands to adjust these
routes to go through br0.

If you use DHCP to obtain an IP address, then you should kill the DHCP client that was listening on the
physical Ethernet interface (e.g. eth0) and start one listening on the internal interface (e.g. br0). You
might still need to manually clear the IP address from the physical interface (e.g. with “ip addr flush dev
eth0”).

There is no compelling reason why Open vSwitch must work this way. However, this is the way that the
Linux kernel bridge module has always worked, so it’s a model that those accustomed to Linux bridging
are already used to. Also, the model that most people expect is not implementable without kernel changes
on all the versions of Linux that Open vSwitch supports.

By the way, this issue is not specific to physical Ethernet devices. It applies to all network devices except
Open vSwitch “internal” devices.

Q: I created a bridge and added a couple of Ethernet ports to it, using commands like these:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 eth0
$ ovs-vsctl add-port br0 eth1

and now my network seems to have melted: connectivity is unreliable (even connectivity that doesn’t go through Open
vSwitch), all the LEDs on my physical switches are blinking, wireshark shows duplicated packets, and CPU usage is
very high.
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A: More than likely, you’ve looped your network. Probably, eth0 and eth1 are connected to the same
physical Ethernet switch. This yields a scenario where OVS receives a broadcast packet on eth0 and
sends it out on eth1, then the physical switch connected to eth1 sends the packet back on eth0, and so on
forever. More complicated scenarios, involving a loop through multiple switches, are possible too.

The solution depends on what you are trying to do:

• If you added eth0 and eth1 to get higher bandwidth or higher reliability between OVS and your
physical Ethernet switch, use a bond. The following commands create br0 and then add eth0 and
eth1 as a bond:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-bond br0 bond0 eth0 eth1

Bonds have tons of configuration options. Please read the documentation on the Port table in ovs-
vswitchd.conf.db(5) for all the details.

Configuration for DPDK-enabled interfaces is slightly less straightforward. Refer to Open vSwitch
with DPDK for more information.

• Perhaps you don’t actually need eth0 and eth1 to be on the same bridge. For example, if you simply
want to be able to connect each of them to virtual machines, then you can put each of them on a
bridge of its own:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 eth0

$ ovs-vsctl add-br br1
$ ovs-vsctl add-port br1 eth1

and then connect VMs to br0 and br1. (A potential disadvantage is that traffic cannot directly pass
between br0 and br1. Instead, it will go out eth0 and come back in eth1, or vice versa.)

• If you have a redundant or complex network topology and you want to prevent loops, turn on span-
ning tree protocol (STP). The following commands create br0, enable STP, and add eth0 and eth1 to
the bridge. The order is important because you don’t want have to have a loop in your network even
transiently:

$ ovs-vsctl add-br br0
$ ovs-vsctl set bridge br0 stp_enable=true
$ ovs-vsctl add-port br0 eth0
$ ovs-vsctl add-port br0 eth1

The Open vSwitch implementation of STP is not well tested. Report any bugs you observe, but if
you’d rather avoid acting as a beta tester then another option might be your best shot.

Q: I can’t seem to use Open vSwitch in a wireless network.

A: Wireless base stations generally only allow packets with the source MAC address of NIC that com-
pleted the initial handshake. Therefore, without MAC rewriting, only a single device can communicate
over a single wireless link.

This isn’t specific to Open vSwitch, it’s enforced by the access point, so the same problems will show up
with the Linux bridge or any other way to do bridging.

Q: I can’t seem to add my PPP interface to an Open vSwitch bridge.

A: PPP most commonly carries IP packets, but Open vSwitch works only with Ethernet frames. The
correct way to interface PPP to an Ethernet network is usually to use routing instead of switching.

Q: Is there any documentation on the database tables and fields?
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A: Yes. ovs-vswitchd.conf.db(5) is a comprehensive reference.

Q: When I run ovs-dpctl I no longer see the bridges I created. Instead, I only see a datapath called “ovs-system”. How
can I see datapath information about a particular bridge?

A: In version 1.9.0, OVS switched to using a single datapath that is shared by all bridges of that type. The
ovs-appctl dpif/* commands provide similar functionality that is scoped by the bridge.

Q: I created a GRE port using ovs-vsctl so why can’t I send traffic or see the port in the datapath?

A: On Linux kernels before 3.11, the OVS GRE module and Linux GRE module cannot be loaded at the
same time. It is likely that on your system the Linux GRE module is already loaded and blocking OVS
(to confirm, check dmesg for errors regarding GRE registration). To fix this, unload all GRE modules
that appear in lsmod as well as the OVS kernel module. You can then reload the OVS module following
the directions in Open vSwitch on Linux, FreeBSD and NetBSD , which will ensure that dependencies are
satisfied.

Q: Open vSwitch does not seem to obey my packet filter rules.

A: It depends on mechanisms and configurations you want to use.

You cannot usefully use typical packet filters, like iptables, on physical Ethernet ports that you add to
an Open vSwitch bridge. This is because Open vSwitch captures packets from the interface at a layer
lower below where typical packet-filter implementations install their hooks. (This actually applies to any
interface of type “system” that you might add to an Open vSwitch bridge.)

You can usefully use typical packet filters on Open vSwitch internal ports as they are mostly ordinary
interfaces from the point of view of packet filters.

For example, suppose you create a bridge br0 and add Ethernet port eth0 to it. Then you can usefully add
iptables rules to affect the internal interface br0, but not the physical interface eth0. (br0 is also where you
would add an IP address, as discussed elsewhere in the FAQ.)

For simple filtering rules, it might be possible to achieve similar results by installing appropriate Open-
Flow flows instead. The OVS conntrack feature (see the “ct” action in ovs-actions(7)) can implement a
stateful firewall.

If the use of a particular packet filter setup is essential, Open vSwitch might not be the best choice for
you. On Linux, you might want to consider using the Linux Bridge. (This is the only choice if you want
to use ebtables rules.) On NetBSD, you might want to consider using the bridge(4) with BRIDGE_IPF
option.

Q: It seems that Open vSwitch does nothing when I removed a port and then immediately put it back. For example,
consider that p1 is a port of type=internal:

$ ovs-vsctl del-port br0 p1 -- \
add-port br0 p1 -- \
set interface p1 type=internal

Any other type of port gets the same effect.

A: It’s an expected behaviour.

If del-port and add-port happen in a single OVSDB transaction as your example, Open vSwitch always
“skips” the intermediate steps. Even if they are done in multiple transactions, it’s still allowed for Open
vSwitch to skip the intermediate steps and just implement the overall effect. In both cases, your example
would be turned into a no-op.

If you want to make Open vSwitch actually destroy and then re-create the port for some side effects
like resetting kernel setting for the corresponding interface, you need to separate operations into multiple
OVSDB transactions and ensure that at least the first one does not have --no-wait. In the following
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example, the first ovs-vsctl will block until Open vSwitch reloads the new configuration and removes the
port:

$ ovs-vsctl del-port br0 p1
$ ovs-vsctl add-port br0 p1 -- \

set interface p1 type=internal

Q: I want to add thousands of ports to an Open vSwitch bridge, but it takes too long (minutes or hours) to do it with
ovs-vsctl. How can I do it faster?

A: If you add them one at a time with ovs-vsctl, it can take a long time to add thousands of ports to an
Open vSwitch bridge. This is because every invocation of ovs-vsctl first reads the current configuration
from OVSDB. As the number of ports grows, this starts to take an appreciable amount of time, and when
it is repeated thousands of times the total time becomes significant.

The solution is to add the ports in one invocation of ovs-vsctl (or a small number of them). For example,
using bash:

$ ovs-vsctl add-br br0
$ cmds=; for i in {1..5000}; do cmds+=" -- add-port br0 p$i"; done
$ ovs-vsctl $cmds

takes seconds, not minutes or hours, in the OVS sandbox environment.

Q: I created a bridge named br0. My bridge shows up in “ovs-vsctl show”, but “ovs-ofctl show br0” just prints “br0 is
not a bridge or a socket”.

A: Open vSwitch wasn’t able to create the bridge. Check the ovs-vswitchd log for details (Debian and
Red Hat packaging for Open vSwitch put it in /var/log/openvswitch/ovs-vswitchd.log).

In general, the Open vSwitch database reflects the desired configuration state. ovs-vswitchd monitors the
database and, when it changes, reconfigures the system to reflect the new desired state. This normally
happens very quickly. Thus, a discrepancy between the database and the actual state indicates that ovs-
vswitchd could not implement the configuration, and so one should check the log to find out why. (Another
possible cause is that ovs-vswitchd is not running. This will make ovs-vsctl commands hang, if they
change the configuration, unless one specifies --no-wait.)

Q: I have a bridge br0. I added a new port vif1.0, and it shows up in “ovs-vsctl show”, but “ovs-vsctl list port” says
that it has OpenFlow port (“ofport”) -1, and “ovs-ofctl show br0” doesn’t show vif1.0 at all.

A: Open vSwitch wasn’t able to create the port. Check the ovs-vswitchd log for details (Debian and Red
Hat packaging for Open vSwitch put it in /var/log/openvswitch/ovs-vswitchd.log). Please see the previous
question for more information.

You may want to upgrade to Open vSwitch 2.3 (or later), in which ovs-vsctl will immediately report when
there is an issue creating a port.

Q: I created a tap device tap0, configured an IP address on it, and added it to a bridge, like this:

$ tunctl -t tap0
$ ip addr add 192.168.0.123/24 dev tap0
$ ip link set tap0 up
$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 tap0

I expected that I could then use this IP address to contact other hosts on the network, but it doesn’t work. Why not?

A: The short answer is that this is a misuse of a “tap” device. Use an “internal” device implemented by
Open vSwitch, which works differently and is designed for this use. To solve this problem with an internal
device, instead run:
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$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 int0 -- set Interface int0 type=internal
$ ip addr add 192.168.0.123/24 dev int0
$ ip link set int0 up

Even more simply, you can take advantage of the internal port that every bridge has under the name of the
bridge:

$ ovs-vsctl add-br br0
$ ip addr add 192.168.0.123/24 dev br0
$ ip link set br0 up

In more detail, a “tap” device is an interface between the Linux (or BSD) network stack and a user program
that opens it as a socket. When the “tap” device transmits a packet, it appears in the socket opened by
the userspace program. Conversely, when the userspace program writes to the “tap” socket, the kernel
TCP/IP stack processes the packet as if it had been received by the “tap” device.

Consider the configuration above. Given this configuration, if you “ping” an IP address in the 192.168.0.x
subnet, the Linux kernel routing stack will transmit an ARP on the tap0 device. Open vSwitch userspace
treats “tap” devices just like any other network device; that is, it doesn’t open them as “tap” sockets. That
means that the ARP packet will simply get dropped.

You might wonder why the Open vSwitch kernel module doesn’t intercept the ARP packet and bridge
it. After all, Open vSwitch intercepts packets on other devices. The answer is that Open vSwitch only
intercepts received packets, but this is a packet being transmitted. The same thing happens for all other
types of network devices, except for Open vSwitch “internal” ports. If you, for example, add a physical
Ethernet port to an OVS bridge, configure an IP address on a physical Ethernet port, and then issue a
“ping” to an address in that subnet, the same thing happens: an ARP gets transmitted on the physical
Ethernet port and Open vSwitch never sees it. (You should not do that, as documented at the beginning of
this section.)

It can make sense to add a “tap” device to an Open vSwitch bridge, if some userspace program (other than
Open vSwitch) has opened the tap socket. This is the case, for example, if the “tap” device was created
by KVM (or QEMU) to simulate a virtual NIC. In such a case, when OVS bridges a packet to the “tap”
device, the kernel forwards that packet to KVM in userspace, which passes it along to the VM, and in the
other direction, when the VM sends a packet, KVM writes it to the “tap” socket, which causes OVS to
receive it and bridge it to the other OVS ports. Please note that in such a case no IP address is configured
on the “tap” device (there is normally an IP address configured in the virtual NIC inside the VM, but this
is not visible to the host Linux kernel or to Open vSwitch).

There is one special case in which Open vSwitch does directly read and write “tap” sockets. This is an
implementation detail of the Open vSwitch userspace switch, which implements its “internal” ports as
Linux (or BSD) “tap” sockets. In such a userspace switch, OVS receives packets sent on the “tap” device
used to implement an “internal” port by reading the associated “tap” socket, and bridges them to the rest
of the switch. In the other direction, OVS transmits packets bridged to the “internal” port by writing them
to the “tap” socket, causing them to be processed by the kernel TCP/IP stack as if they had been received
on the “tap” device. Users should not need to be concerned with this implementation detail.

Open vSwitch has a network device type called “tap”. This is intended only for implementing “internal”
ports in the OVS userspace switch and should not be used otherwise. In particular, users should not
configure KVM “tap” devices as type “tap” (use type “system”, the default, instead).

Q: I observe packet loss at the beginning of RFC2544 tests on a server running few hundred container apps bridged to
OVS with traffic generated by HW traffic generator. How can I fix this?

A: This is expected behavior on virtual switches. RFC2544 tests were designed for hardware switches,
which don’t have caches on the fastpath that need to be heated. Traffic generators in order to prime the
switch use learning phase to heat the caches before sending the actual traffic in test phase. In case of OVS
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the cache is flushed quickly and to accommodate the traffic generator’s delay between learning and test
phase, the max-idle timeout settings should be changed to 50000 ms.:

$ ovs-vsctl --no-wait set Open_vSwitch . other_config:max-idle=50000

Q: How can I configure the bridge internal interface MTU? Why does Open vSwitch keep changing internal ports
MTU?

A: By default Open vSwitch overrides the internal interfaces (e.g. br0) MTU. If you have just an internal
interface (e.g. br0) and a physical interface (e.g. eth0), then every change in MTU to eth0 will be reflected
to br0. Any manual MTU configuration using ip on internal interfaces is going to be overridden by Open
vSwitch to match the current bridge minimum.

Sometimes this behavior is not desirable, for example with tunnels. The MTU of an internal interface can
be explicitly set using the following command:

$ ovs-vsctl set int br0 mtu_request=1450

After this, Open vSwitch will configure br0 MTU to 1450. Since this setting is in the database it will be
persistent (compared to what happens with ip).

The MTU configuration can be removed to restore the default behavior with:

$ ovs-vsctl set int br0 mtu_request=[]

The mtu_request column can be used to configure MTU even for physical interfaces (e.g. eth0).

Q: I just upgraded and I see a performance drop. Why?

A: The OVS kernel datapath may have been updated to a newer version than the OVS userspace com-
ponents. Sometimes new versions of OVS kernel module add functionality that is backwards compatible
with older userspace components but may cause a drop in performance with them. Especially, if a kernel
module from OVS 2.1 or newer is paired with OVS userspace 1.10 or older, there will be a performance
drop for TCP traffic.

Updating the OVS userspace components to the latest released version should fix the performance degra-
dation.

To get the best possible performance and functionality, it is recommended to pair the same versions of the
kernel module and OVS userspace.

Q: I can’t unload the openvswitch kernel module. Why?

A: The userspace might still hold the reference count. So rmmod openvswitch does not work, for
example:

$ lsmod | grep openvswitch
openvswitch 155648 4
nf_conncount 24576 1 openvswitch

Use the command below to drop the refcnt:

$ ovs-dpctl del-dp system@ovs-system
$ rmmod openvswitch

7.6 Using OpenFlow

Q: What versions of OpenFlow does Open vSwitch support?
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A: The following table lists the versions of OpenFlow supported by each version of Open vSwitch:

Open vSwitch OF1.0 OF1.1 OF1.2 OF1.3 OF1.4 OF1.5
1.9 and earlier yes — — — — —
1.10, 1.11 yes — (*) (*) — —
2.0, 2.1 yes (*) (*) (*) — —
2.2 yes (*) (*) (*) (%) (*)
2.3, 2.4 yes yes yes yes (*) (*)
2.5, 2.6, 2.7 yes yes yes yes (*) (*)
2.8, 2.9, 2.10, 2.11 yes yes yes yes yes (*)
2.12 yes yes yes yes yes yes

—Not supported. yes Supported and enabled by default (*) Supported, but missing features, and must be
enabled by user. (%) Experimental, unsafe implementation.

In any case, the user may override the default:

• To enable OpenFlow 1.0, 1.1, 1.2, and 1.3 on bridge br0:

$ ovs-vsctl set bridge br0 \
protocols=OpenFlow10,OpenFlow11,OpenFlow12,OpenFlow13

• To enable OpenFlow 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 on bridge br0:

$ ovs-vsctl set bridge br0 \
protocols=OpenFlow10,OpenFlow11,OpenFlow12,OpenFlow13,OpenFlow14,

→˓OpenFlow15

• To enable only OpenFlow 1.0 on bridge br0:

$ ovs-vsctl set bridge br0 protocols=OpenFlow10

All current versions of ovs-ofctl enable only OpenFlow 1.0 by default. Use the -O option to enable support
for later versions of OpenFlow in ovs-ofctl. For example:

$ ovs-ofctl -O OpenFlow13 dump-flows br0

(Open vSwitch 2.2 had an experimental implementation of OpenFlow 1.4 that could cause crashes. We
don’t recommend enabling it.)

OpenFlow Support in Open vSwitch tracks support for OpenFlow 1.1 and later features.

Q: Does Open vSwitch support MPLS?

A: Before version 1.11, Open vSwitch did not support MPLS. That is, these versions can match on MPLS
Ethernet types, but they cannot match, push, or pop MPLS labels, nor can they look past MPLS labels
into the encapsulated packet.

Open vSwitch versions 1.11, 2.0, and 2.1 have very minimal support for MPLS. With the userspace
datapath only, these versions can match, push, or pop a single MPLS label, but they still cannot look
past MPLS labels (even after popping them) into the encapsulated packet. Kernel datapath support is
unchanged from earlier versions.

Open vSwitch version 2.3 can match, push, or pop a single MPLS label and look past the MPLS label into
the encapsulated packet. Both userspace and kernel datapaths will be supported, but MPLS processing
always happens in userspace either way, so kernel datapath performance will be disappointing.

Open vSwitch version 2.4 can match, push, or pop up to 3 MPLS labels and look past the MPLS label
into the encapsulated packet. It will have kernel support for MPLS, yielding improved performance.

298 Chapter 7. Open vSwitch FAQ



Open vSwitch, Release 2.12.90

Q: I’m getting “error type 45250 code 0”. What’s that?

A: This is a Open vSwitch extension to OpenFlow error codes. Open vSwitch uses this extension when it
must report an error to an OpenFlow controller but no standard OpenFlow error code is suitable.

Open vSwitch logs the errors that it sends to controllers, so the easiest thing to do is probably to look at
the ovs-vswitchd log to find out what the error was.

If you want to dissect the extended error message yourself, the format is documented in
include/openflow/nicira-ext.h in the Open vSwitch source distribution. The extended error codes are
documented in include/openvswitch/ofp-errors.h.

Q: Some of the traffic that I’d expect my OpenFlow controller to see doesn’t actually appear through the OpenFlow
connection, even though I know that it’s going through.

A: By default, Open vSwitch assumes that OpenFlow controllers are connected “in-band”, that is, that
the controllers are actually part of the network that is being controlled. In in-band mode, Open vSwitch
sets up special “hidden” flows to make sure that traffic can make it back and forth between OVS and the
controllers. These hidden flows are higher priority than any flows that can be set up through OpenFlow,
and they are not visible through normal OpenFlow flow table dumps.

Usually, the hidden flows are desirable and helpful, but occasionally they can cause unexpected behavior.
You can view the full OpenFlow flow table, including hidden flows, on bridge br0 with the command:

$ ovs-appctl bridge/dump-flows br0

to help you debug. The hidden flows are those with priorities greater than 65535 (the maximum priority
that can be set with OpenFlow).

The Documentation/topics/design doc describes the in-band model in detail.

If your controllers are not actually in-band (e.g. they are on localhost via 127.0.0.1, or on a separate
network), then you should configure your controllers in “out-of-band” mode. If you have one controller
on bridge br0, then you can configure out-of-band mode on it with:

$ ovs-vsctl set controller br0 connection-mode=out-of-band

Q: Some of the OpenFlow flows that my controller sets up don’t seem to apply to certain traffic, especially traffic
between OVS and the controller itself.

A: See above.

Q: I configured all my controllers for out-of-band control mode but “ovs-appctl bridge/dump-flows” still shows some
hidden flows.

A: You probably have a remote manager configured (e.g. with “ovs-vsctl set-manager”). By default, Open
vSwitch assumes that managers need in-band rules set up on every bridge. You can disable these rules on
bridge br0 with:

$ ovs-vsctl set bridge br0 other-config:disable-in-band=true

This actually disables in-band control entirely for the bridge, as if all the bridge’s controllers were config-
ured for out-of-band control.

Q: My OpenFlow controller doesn’t see the VLANs that I expect.

A: See answer under “VLANs”, above.

Q: I ran ovs-ofctl add-flow br0 nw_dst=192.168.0.1,actions=drop but I got a funny message
like this:
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ofp_util|INFO|normalization changed ofp_match, details:
ofp_util|INFO| pre: nw_dst=192.168.0.1
ofp_util|INFO|post:

and when I ran ovs-ofctl dump-flows br0 I saw that my nw_dst match had disappeared, so that the flow ends
up matching every packet.

A: The term “normalization” in the log message means that a flow cannot match on an L3 field without
saying what L3 protocol is in use. The “ovs-ofctl” command above didn’t specify an L3 protocol, so the
L3 field match was dropped.

In this case, the L3 protocol could be IP or ARP. A correct command for each possibility is, respectively:

$ ovs-ofctl add-flow br0 ip,nw_dst=192.168.0.1,actions=drop

and:

$ ovs-ofctl add-flow br0 arp,nw_dst=192.168.0.1,actions=drop

Similarly, a flow cannot match on an L4 field without saying what L4 protocol is in use. For example, the
flow match tp_src=1234 is, by itself, meaningless and will be ignored. Instead, to match TCP source
port 1234, write tcp,tp_src=1234, or to match UDP source port 1234, write udp,tp_src=1234.

Q: How can I figure out the OpenFlow port number for a given port?

A: The OFPT_FEATURES_REQUEST message requests an OpenFlow switch to respond with an
OFPT_FEATURES_REPLY that, among other information, includes a mapping between OpenFlow port
names and numbers. From a command prompt, ovs-ofctl show br0 makes such a request and
prints the response for switch br0.

The Interface table in the Open vSwitch database also maps OpenFlow port names to numbers. To print
the OpenFlow port number associated with interface eth0, run:

$ ovs-vsctl get Interface eth0 ofport

You can print the entire mapping with:

$ ovs-vsctl -- --columns=name,ofport list Interface

but the output mixes together interfaces from all bridges in the database, so it may be confusing if more
than one bridge exists.

In the Open vSwitch database, ofport value -1 means that the interface could not be created due to an
error. (The Open vSwitch log should indicate the reason.) ofport value [] (the empty set) means that the
interface hasn’t been created yet. The latter is normally an intermittent condition (unless ovs-vswitchd is
not running).

Q: I added some flows with my controller or with ovs-ofctl, but when I run “ovs-dpctl dump-flows” I don’t see them.

A: ovs-dpctl queries a kernel datapath, not an OpenFlow switch. It won’t display the information that you
want. You want to use ovs-ofctl dump-flows instead.

Q: It looks like each of the interfaces in my bonded port shows up as an individual OpenFlow port. Is that right?

A: Yes, Open vSwitch makes individual bond interfaces visible as OpenFlow ports, rather than the bond
as a whole. The interfaces are treated together as a bond for only a few purposes:

• Sending a packet to the OFPP_NORMAL port. (When an OpenFlow controller is not configured,
this happens implicitly to every packet.)

• Mirrors configured for output to a bonded port.
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It would make a lot of sense for Open vSwitch to present a bond as a single OpenFlow port. If you want
to contribute an implementation of such a feature, please bring it up on the Open vSwitch development
mailing list at dev@openvswitch.org.

Q: I have a sophisticated network setup involving Open vSwitch, VMs or multiple hosts, and other components. The
behavior isn’t what I expect. Help!

A: To debug network behavior problems, trace the path of a packet, hop-by-hop, from its origin in one
host to a remote host. If that’s correct, then trace the path of the response packet back to the origin.

The open source tool called plotnetcfg can help to understand the relationship between the network-
ing devices on a single host.

Usually a simple ICMP echo request and reply (ping) packet is good enough. Start by initiating an
ongoing ping from the origin host to a remote host. If you are tracking down a connectivity problem,
the “ping” will not display any successful output, but packets are still being sent. (In this case the packets
being sent are likely ARP rather than ICMP.)

Tools available for tracing include the following:

• tcpdump and wireshark for observing hops across network devices, such as Open vSwitch
internal devices and physical wires.

• ovs-appctl dpif/dump-flows <br> in Open vSwitch 1.10 and later or ovs-dpctl
dump-flows <br> in earlier versions. These tools allow one to observe the actions being taken
on packets in ongoing flows.

See ovs-vswitchd(8) for ovs-appctl dpif/dump-flows documentation, ovs-dpctl(8) for
ovs-dpctl dump-flows documentation, and “Why are there so many different ways to dump
flows?” above for some background.

• ovs-appctl ofproto/trace to observe the logic behind how ovs-vswitchd treats pack-
ets. See ovs-vswitchd(8) for documentation. You can out more details about a given flow that
ovs-dpctl dump-flows displays, by cutting and pasting a flow from the output into an
ovs-appctl ofproto/trace command.

• SPAN, RSPAN, and ERSPAN features of physical switches, to observe what goes on at these phys-
ical hops.

Starting at the origin of a given packet, observe the packet at each hop in turn. For example, in one
plausible scenario, you might:

1. tcpdump the eth interface through which an ARP egresses a VM, from inside the VM.

2. tcpdump the vif or tap interface through which the ARP ingresses the host machine.

3. Use ovs-dpctl dump-flows to spot the ARP flow and observe the host interface through
which the ARP egresses the physical machine. You may need to use ovs-dpctl show to interpret
the port numbers. If the output seems surprising, you can use ovs-appctl ofproto/trace
to observe details of how ovs-vswitchd determined the actions in the ovs-dpctl dump-flows
output.

4. tcpdump the eth interface through which the ARP egresses the physical machine.

5. tcpdump the eth interface through which the ARP ingresses the physical machine, at the remote
host that receives the ARP.

6. Use ovs-dpctl dump-flows to spot the ARP flow on the remote host remote host that re-
ceives the ARP and observe the VM vif or tap interface to which the flow is directed. Again,
ovs-dpctl show and ovs-appctl ofproto/trace might help.

7. tcpdump the vif or tap interface to which the ARP is directed.

7.6. Using OpenFlow 301

mailto:dev@openvswitch.org


Open vSwitch, Release 2.12.90

8. tcpdump the eth interface through which the ARP ingresses a VM, from inside the VM.

It is likely that during one of these steps you will figure out the problem. If not, then follow the ARP reply
back to the origin, in reverse.

Q: How do I make a flow drop packets?

A: To drop a packet is to receive it without forwarding it. OpenFlow explicitly specifies forwarding
actions. Thus, a flow with an empty set of actions does not forward packets anywhere, causing them to be
dropped. You can specify an empty set of actions with actions= on the ovs-ofctl command line. For
example:

$ ovs-ofctl add-flow br0 priority=65535,actions=

would cause every packet entering switch br0 to be dropped.

You can write “drop” explicitly if you like. The effect is the same. Thus, the following command also
causes every packet entering switch br0 to be dropped:

$ ovs-ofctl add-flow br0 priority=65535,actions=drop

drop is not an action, either in OpenFlow or Open vSwitch. Rather, it is only a way to say that there are
no actions.

Q: I added a flow to send packets out the ingress port, like this:

$ ovs-ofctl add-flow br0 in_port=2,actions=2

but OVS drops the packets instead.

A: Yes, OpenFlow requires a switch to ignore attempts to send a packet out its ingress port. The rationale
is that dropping these packets makes it harder to loop the network. Sometimes this behavior can even be
convenient, e.g. it is often the desired behavior in a flow that forwards a packet to several ports (“floods”
the packet).

Sometimes one really needs to send a packet out its ingress port (“hairpin”). In this case, output to
OFPP_IN_PORT, which in ovs-ofctl syntax is expressed as just in_port, e.g.:

$ ovs-ofctl add-flow br0 in_port=2,actions=in_port

This also works in some circumstances where the flow doesn’t match on the input port. For example,
if you know that your switch has five ports numbered 2 through 6, then the following will send every
received packet out every port, even its ingress port:

$ ovs-ofctl add-flow br0 actions=2,3,4,5,6,in_port

or, equivalently:

$ ovs-ofctl add-flow br0 actions=all,in_port

Sometimes, in complicated flow tables with multiple levels of resubmit actions, a flow needs to out-
put to a particular port that may or may not be the ingress port. It’s difficult to take advantage of
OFPP_IN_PORT in this situation. To help, Open vSwitch provides, as an OpenFlow extension, the
ability to modify the in_port field. Whatever value is currently in the in_port field is the port to which
outputs will be dropped, as well as the destination for OFPP_IN_PORT. This means that the following
will reliably output to port 2 or to ports 2 through 6, respectively:

$ ovs-ofctl add-flow br0 in_port=2,actions=load:0->NXM_OF_IN_PORT[],2
$ ovs-ofctl add-flow br0 actions=load:0->NXM_OF_IN_PORT[],2,3,4,5,6
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If the input port is important, then one may save and restore it on the stack:

$ ovs-ofctl add-flow br0 actions=push:NXM_OF_IN_PORT[], load:0-
>NXM_OF_IN_PORT[],2,3,4,5,6,pop:NXM_OF_IN_PORT[]

Q: My bridge br0 has host 192.168.0.1 on port 1 and host 192.168.0.2 on port 2. I set up flows to forward only traffic
destined to the other host and drop other traffic, like this:

priority=5,in_port=1,ip,nw_dst=192.168.0.2,actions=2
priority=5,in_port=2,ip,nw_dst=192.168.0.1,actions=1
priority=0,actions=drop

But it doesn’t work–I don’t get any connectivity when I do this. Why?

A: These flows drop the ARP packets that IP hosts use to establish IP connectivity over Ethernet. To solve
the problem, add flows to allow ARP to pass between the hosts:

priority=5,in_port=1,arp,actions=2
priority=5,in_port=2,arp,actions=1

This issue can manifest other ways, too. The following flows that match on Ethernet addresses instead of
IP addresses will also drop ARP packets, because ARP requests are broadcast instead of being directed to
a specific host:

priority=5,in_port=1,dl_dst=54:00:00:00:00:02,actions=2
priority=5,in_port=2,dl_dst=54:00:00:00:00:01,actions=1
priority=0,actions=drop

The solution already described above will also work in this case. It may be better to add flows to allow all
multicast and broadcast traffic:

priority=5,in_port=1,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00,actions=2
priority=5,in_port=2,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00,actions=1

Q: My bridge disconnects from my controller on add-port/del-port.

A: Reconfiguring your bridge can change your bridge’s datapath-id because Open vSwitch generates
datapath-id from the MAC address of one of its ports. In that case, Open vSwitch disconnects from
controllers because there’s no graceful way to notify controllers about the change of datapath-id.

To avoid the behaviour, you can configure datapath-id manually.:

$ ovs-vsctl set bridge br0 other-config:datapath-id=0123456789abcdef

Q: My controller complains that OVS is not buffering packets. What’s going on?

A: “Packet buffering” is an optional OpenFlow feature, and controllers should detect how many “buffers”
an OpenFlow switch implements. It was recently noticed that OVS implementation of the buffering fea-
ture was not compliant to OpenFlow specifications. Rather than fix it and risk controller incompatibility,
the buffering feature is removed as of OVS 2.7. Controllers are already expected to work properly in
cases where the switch can not buffer packets, but sends full packets in “packet-in” messages instead,
so this change should not affect existing users. After the change OVS always sends the buffer_id as
0xffffffff in “packet-in” messages and will send an error response if any other value of this field is
included in a “packet-out” or a “flow mod” sent by a controller.

Packet buffers have limited usefulness in any case. Table-miss packet-in messages most commonly pass
the first packet in a microflow to the OpenFlow controller, which then sets up an OpenFlow flow that
handles remaining traffic in the microflow without further controller intervention. In such a case, the
packet that initiates the microflow is in practice usually small (certainly for TCP), which means that the
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switch sends the entire packet to the controller and the buffer only saves a small number of bytes in the
reverse direction.

Q: How does OVS divide flows among buckets in an OpenFlow “select” group?

A: In Open vSwitch 2.3 and earlier, Open vSwitch used the destination Ethernet address to choose a
bucket in a select group.

Open vSwitch 2.4 and later by default hashes the source and destination Ethernet address, VLAN ID,
Ethernet type, IPv4/v6 source and destination address and protocol, and for TCP and SCTP only, the
source and destination ports. The hash is “symmetric”, meaning that exchanging source and destination
addresses does not change the bucket selection.

Select groups in Open vSwitch 2.4 and later can be configured to use a different hash function, us-
ing a Netronome extension to the OpenFlow 1.5+ group_mod message. For more information, see
Documentation/group-selection-method-property.txt in the Open vSwitch source tree.

Q: An OpenFlow “select” group isn’t dividing packets evenly among the buckets.

A: When a packet passes through a “select” group, Open vSwitch hashes a subset of the fields in the
packet, then it maps the hash value to a bucket. This means that packets whose hashed fields are the same
will always go to the same bucket[*]. More specifically, if you test with a single traffic flow, only one
bucket will receive any traffic[**]. Furthermore, statistics and probability mean that testing with a small
number of flows may still yield an uneven distribution.

[*] Unless its bucket has a watch port or group whose liveness changes during the test.

[**] Unless the hash includes fields that vary within a traffic flow, such as tcp_flags.

Q: I added a flow to accept packets on VLAN 123 and output them on VLAN 456, like so:

$ ovs-ofctl add-flow br0 dl_vlan=123,actions=output:1,mod_vlan_vid:456

but the packets are actually being output in VLAN 123. Why?

A: OpenFlow actions are executed in the order specified. Thus, the actions above first output the packet,
then change its VLAN. Since the output occurs before changing the VLAN, the change in VLAN will
have no visible effect.

To solve this and similar problems, order actions so that changes to headers happen before output, e.g.:

$ ovs-ofctl add-flow br0 dl_vlan=123,actions=mod_vlan_vid:456,output:1

See also the following question.

Q: I added a flow to a redirect packets for TCP port 80 to port 443, like so:

$ ovs-ofctl add-flow br0 tcp,tcp_dst=123,actions=mod_tp_dst:443

but the packets are getting dropped instead. Why?

A: This set of actions does change the TCP destination port to 443, but then it does nothing more. It
doesn’t, for example, say to continue to another flow table or to output the packet. Therefore, the packet
is dropped.

To solve the problem, add an action that does something with the modified packet. For example:

$ ovs-ofctl add-flow br0 tcp,tcp_dst=123,actions=mod_tp_dst:443,normal

See also the preceding question.

Q: When using the “ct” action with FTP connections, it doesn’t seem to matter if I set the “alg=ftp” parameter in the
action. Is this required?
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A: It is advisable to use this option. Some platforms may automatically detect and apply ALGs in the “ct”
action regardless of the parameters you provide, however this is not consistent across all implementations.
The ovs-ofctl(8) man pages contain further details in the description of the ALG parameter.

7.7 Quality of Service (QoS)

Q: Does OVS support Quality of Service (QoS)?

A: Yes. For traffic that egresses from a switch, OVS supports traffic shaping; for traffic that ingresses into
a switch, OVS support policing. Policing is a simple form of quality-of-service that simply drops packets
received in excess of the configured rate. Due to its simplicity, policing is usually less accurate and less
effective than egress traffic shaping, which queues packets.

Keep in mind that ingress and egress are from the perspective of the switch. That means that egress
shaping limits the rate at which traffic is allowed to transmit from a physical interface, but not the rate at
which traffic will be received on a virtual machine’s VIF. For ingress policing, the behavior is the opposite.

Q: How do I configure egress traffic shaping?

A: Suppose that you want to set up bridge br0 connected to physical Ethernet port eth0 (a 1 Gbps device)
and virtual machine interfaces vif1.0 and vif2.0, and that you want to limit traffic from vif1.0 to eth0 to
10 Mbps and from vif2.0 to eth0 to 20 Mbps. Then, you could configure the bridge this way:

$ ovs-vsctl -- \
add-br br0 -- \
add-port br0 eth0 -- \
add-port br0 vif1.0 -- set interface vif1.0 ofport_request=5 -- \
add-port br0 vif2.0 -- set interface vif2.0 ofport_request=6 -- \
set port eth0 qos=@newqos -- \
--id=@newqos create qos type=linux-htb \

other-config:max-rate=1000000000 \
queues:123=@vif10queue \
queues:234=@vif20queue -- \

--id=@vif10queue create queue other-config:max-rate=10000000 -- \
--id=@vif20queue create queue other-config:max-rate=20000000

At this point, bridge br0 is configured with the ports and eth0 is configured with the queues that you need
for QoS, but nothing is actually directing packets from vif1.0 or vif2.0 to the queues that we have set up
for them. That means that all of the packets to eth0 are going to the “default queue”, which is not what
we want.

We use OpenFlow to direct packets from vif1.0 and vif2.0 to the queues reserved for them:

$ ovs-ofctl add-flow br0 in_port=5,actions=set_queue:123,normal
$ ovs-ofctl add-flow br0 in_port=6,actions=set_queue:234,normal

Each of the above flows matches on the input port, sets up the appropriate queue (123 for vif1.0, 234 for
vif2.0), and then executes the “normal” action, which performs the same switching that Open vSwitch
would have done without any OpenFlow flows being present. (We know that vif1.0 and vif2.0 have
OpenFlow port numbers 5 and 6, respectively, because we set their ofport_request columns above. If we
had not done that, then we would have needed to find out their port numbers before setting up these flows.)

Now traffic going from vif1.0 or vif2.0 to eth0 should be rate-limited.

By the way, if you delete the bridge created by the above commands, with:
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$ ovs-vsctl del-br br0

then that will leave one unreferenced QoS record and two unreferenced Queue records in the Open vSwich
database. One way to clear them out, assuming you don’t have other QoS or Queue records that you want
to keep, is:

$ ovs-vsctl -- --all destroy QoS -- --all destroy Queue

If you do want to keep some QoS or Queue records, or the Open vSwitch you are using is older than
version 1.8 (which added the --all option), then you will have to destroy QoS and Queue records
individually.

Q: How do I configure ingress policing?

A: A policing policy can be configured on an interface to drop packets that arrive at a higher rate than the
configured value. For example, the following commands will rate-limit traffic that vif1.0 may generate to
10Mbps:

$ ovs-vsctl set interface vif1.0 ingress_policing_rate=10000 $ ovs-vsctl set interface vif1.0
ingress_policing_burst=8000

Traffic policing can interact poorly with some network protocols and can have surprising results. The
“Ingress Policing” section of ovs-vswitchd.conf.db(5) discusses the issues in greater detail.

Q: I configured Quality of Service (QoS) in my OpenFlow network by adding records to the QoS and Queue table, but
the results aren’t what I expect.

A: Did you install OpenFlow flows that use your queues? This is the primary way to tell Open vSwitch
which queues you want to use. If you don’t do this, then the default queue will be used, which will
probably not have the effect you want.

Refer to the previous question for an example.

Q: I’d like to take advantage of some QoS feature that Open vSwitch doesn’t yet support. How do I do that?

A: Open vSwitch does not implement QoS itself. Instead, it can configure some, but not all, of the QoS
features built into the Linux kernel. If you need some QoS feature that OVS cannot configure itself, then
the first step is to figure out whether Linux QoS supports that feature. If it does, then you can submit a
patch to support Open vSwitch configuration for that feature, or you can use “tc” directly to configure
the feature in Linux. (If Linux QoS doesn’t support the feature you want, then first you have to add that
support to Linux.)

Q: I configured QoS, correctly, but my measurements show that it isn’t working as well as I expect.

A: With the Linux kernel, the Open vSwitch implementation of QoS has two aspects:

• Open vSwitch configures a subset of Linux kernel QoS features, according to what is in OVSDB. It
is possible that this code has bugs. If you believe that this is so, then you can configure the Linux
traffic control (QoS) stack directly with the “tc” program. If you get better results that way, you can
send a detailed bug report to bugs@openvswitch.org.

It is certain that Open vSwitch cannot configure every Linux kernel QoS feature. If you need some
feature that OVS cannot configure, then you can also use “tc” directly (or add that feature to OVS).

• The Open vSwitch implementation of OpenFlow allows flows to be directed to particular queues.
This is pretty simple and unlikely to have serious bugs at this point.

However, most problems with QoS on Linux are not bugs in Open vSwitch at all. They tend to be either
configuration errors (please see the earlier questions in this section) or issues with the traffic control
(QoS) stack in Linux. The Open vSwitch developers are not experts on Linux traffic control. We suggest
that, if you believe you are encountering a problem with Linux traffic control, that you consult the tc
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manpages (e.g. tc(8), tc-htb(8), tc-hfsc(8)), web resources (e.g. http://lartc.org/), or mailing lists (e.g.
http://vger.kernel.org/vger-lists.html#netdev).

Q: Does Open vSwitch support OpenFlow meters?

A: Open vSwitch 2.0 added OpenFlow protocol support for OpenFlow meters. Open vSwitch 2.7 imple-
mented meters in the userspace datapath. Open vSwitch 2.10 implemented meters in the Linux kernel
datapath.

7.8 Releases

Q: What does it mean for an Open vSwitch release to be LTS (long-term support)?

A: All official releases have been through a comprehensive testing process and are suitable for production
use. Planned releases occur twice a year. If a significant bug is identified in an LTS release, we will
provide an updated release that includes the fix. Releases that are not LTS may not be fixed and may just
be supplanted by the next major release. The current LTS release is 2.5.x.

For more information on the Open vSwitch release process, refer to Open vSwitch Release Process.

Q: What Linux kernel versions does each Open vSwitch release work with?

A: The following table lists the Linux kernel versions against which the given versions of the Open
vSwitch kernel module will successfully build. The Linux kernel versions are upstream kernel versions,
so Linux kernels modified from the upstream sources may not build in some cases even if they are based
on a supported version. This is most notably true of Red Hat Enterprise Linux (RHEL) kernels, which are
extensively modified from upstream.

Open vSwitch Linux kernel
1.4.x 2.6.18 to 3.2
1.5.x 2.6.18 to 3.2
1.6.x 2.6.18 to 3.2
1.7.x 2.6.18 to 3.3
1.8.x 2.6.18 to 3.4
1.9.x 2.6.18 to 3.8
1.10.x 2.6.18 to 3.8
1.11.x 2.6.18 to 3.8
2.0.x 2.6.32 to 3.10
2.1.x 2.6.32 to 3.11
2.3.x 2.6.32 to 3.14
2.4.x 2.6.32 to 4.0
2.5.x 2.6.32 to 4.3
2.6.x 3.10 to 4.7
2.7.x 3.10 to 4.9
2.8.x 3.10 to 4.12
2.9.x 3.10 to 4.13
2.10.x 3.10 to 4.17
2.11.x 3.10 to 4.18
2.12.x 3.10 to 5.0

Open vSwitch userspace should also work with the Linux kernel module built into Linux 3.3 and later.

Open vSwitch userspace is not sensitive to the Linux kernel version. It should build against almost any
kernel, certainly against 2.6.32 and later.
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Q: Are all features available with all datapaths?

A: Open vSwitch supports different datapaths on different platforms. Each datapath has a different feature
set: the following tables try to summarize the status.

Supported datapaths:

Linux upstream The datapath implemented by the kernel module shipped with Linux upstream. Since
features have been gradually introduced into the kernel, the table mentions the first Linux release
whose OVS module supports the feature.

Linux OVS tree The datapath implemented by the Linux kernel module distributed with the OVS source
tree.

Userspace This datapath supports conventional system devices as well as DPDK and AF_XDP devices
when support for those is built. This is the only datapath that works on NetBSD, FreeBSD and Mac
OSX.

Hyper-V Also known as the Windows datapath.

The following table lists the datapath supported features from an Open vSwitch user’s perspective. The
“Linux upstream” column lists the Linux kernel version that introduced a given feature into its kernel
module. The “Linux OVS tree” and “Userspace” columns list the Open vSwitch release versions that
introduced a given feature into the included kernel module or the userspace datapath, respectively.

Feature Linux upstream Linux OVS tree Userspace Hyper-V
Connection tracking 4.3 2.5 2.6 YES
Conntrack Fragment Reass. 4.3 2.6 2.12 YES
Conntrack Timeout Policies 5.2 2.12 NO NO
Conntrack Zone Limit 4.18 2.10 2.13 YES
Conntrack NAT 4.6 2.6 2.8 YES
Tunnel - LISP NO 2.11 NO NO
Tunnel - STT NO 2.4 NO YES
Tunnel - GRE 3.11 1.0 2.4 YES
Tunnel - VXLAN 3.12 1.10 2.4 YES
Tunnel - Geneve 3.18 2.4 2.4 YES
Tunnel - GRE-IPv6 4.18 2.6 2.6 NO
Tunnel - VXLAN-IPv6 4.3 2.6 2.6 NO
Tunnel - Geneve-IPv6 4.4 2.6 2.6 NO
Tunnel - ERSPAN 4.18 2.10 2.10 NO
Tunnel - ERSPAN-IPv6 4.18 2.10 2.10 NO
QoS - Policing YES 1.1 2.6 NO
QoS - Shaping YES 1.1 NO NO
sFlow YES 1.0 1.0 NO
IPFIX 3.10 1.11 1.11 YES
Set action YES 1.0 1.0 PARTIAL
NIC Bonding YES 1.0 1.0 YES
Multiple VTEPs YES 1.10 1.10 YES
Meter action 4.15 2.10 2.7 NO

Do note, however:

• Only a limited set of flow fields is modifiable via the set action by the Hyper-V datapath.

• Userspace datapath support, in some cases, is dependent on the associated interface types. For
example, DPDK interfaces support ingress and egress policing, but not shaping.
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The following table lists features that do not directly impact an Open vSwitch user, e.g. because their
absence can be hidden by the ofproto layer (usually this comes with a performance penalty).

Feature Linux upstream Linux OVS tree Userspace Hyper-V
SCTP flows 3.12 YES YES YES
MPLS 3.19 YES YES YES
UFID 4.0 YES YES NO
Megaflows 3.12 YES YES NO
Masked set action 4.0 YES YES NO
Recirculation 3.19 YES YES YES
TCP flags matching 3.13 YES YES NO
Validate flow actions YES YES N/A NO
Multiple datapaths YES YES YES NO
Tunnel TSO - STT N/A YES NO YES

Q: What DPDK version does each Open vSwitch release work with?

A: The following table lists the DPDK version against which the given versions of Open vSwitch will
successfully build.

Open vSwitch DPDK
2.2.x 1.6
2.3.x 1.6
2.4.x 2.0
2.5.x 2.2
2.6.x 16.07.2
2.7.x 16.11.9
2.8.x 17.05.2
2.9.x 17.11.4
2.10.x 17.11.4
2.11.x 18.11.5
2.12.x 18.11.5

Q: Are all the DPDK releases that OVS versions work with maintained?

No. DPDK follows YY.MM.n (Year.Month.Number) versioning.

Typically, all DPDK releases get a stable YY.MM.1 update with bugfixes 3 months after the YY.MM.0
release. In some cases there may also be a YY.MM.2 release.

DPDK LTS releases start once a year at YY.11.0 and are maintained for two years, with YY.MM.n+1
releases around every 3 months.

The latest information about DPDK stable and LTS releases can be found at DPDK stable.

Q: I get an error like this when I configure Open vSwitch:

configure: error: Linux kernel in <dir> is version <x>, but version newer than <y> is not
supported (please refer to the FAQ for advice)

What should I do?

A: You have the following options:

• Use the Linux kernel module supplied with the kernel that you are using. (See also the following
FAQ.)

7.8. Releases 309

http://dpdk.org/doc/guides/contributing/stable.html


Open vSwitch, Release 2.12.90

• If there is a newer released version of Open vSwitch, consider building that one, because it may
support the kernel that you are building against. (To find out, consult the table in the previous FAQ.)

• The Open vSwitch “master” branch may support the kernel that you are using, so consider building
the kernel module from “master”.

All versions of Open vSwitch userspace are compatible with all versions of the Open vSwitch kernel
module, so you do not have to use the kernel module from one source along with the userspace programs
from the same source.

Q: What features are not available in the Open vSwitch kernel datapath that ships as part of the upstream Linux kernel?

A: The kernel module in upstream Linux does not include support for LISP. Work is in progress to add
support for LISP to the upstream Linux version of the Open vSwitch kernel module. For now, if you need
this feature, use the kernel module from the Open vSwitch distribution instead of the upstream Linux
kernel module.

Certain features require kernel support to function or to have reasonable performance. If the ovs-vswitchd
log file indicates that a feature is not supported, consider upgrading to a newer upstream Linux release or
using the kernel module paired with the userspace distribution.

Q: Why do tunnels not work when using a kernel module other than the one packaged with Open vSwitch?

A: Support for tunnels was added to the upstream Linux kernel module after the rest of Open vSwitch.
As a result, some kernels may contain support for Open vSwitch but not tunnels. The minimum kernel
version that supports each tunnel protocol is:

Protocol Linux Kernel
GRE 3.11
VXLAN 3.12
Geneve 3.18
ERSPAN 4.18
LISP not upstream
STT not upstream

If you are using a version of the kernel that is older than the one listed above, it is still possible to use
that tunnel protocol. However, you must compile and install the kernel module included with the Open
vSwitch distribution rather than the one on your machine. If problems persist after doing this, check to
make sure that the module that is loaded is the one you expect.

Q: Why are UDP tunnel checksums not computed for VXLAN or Geneve?

A: Generating outer UDP checksums requires kernel support that was not part of the initial implementa-
tion of these protocols. If using the upstream Linux Open vSwitch module, you must use kernel 4.0 or
newer. The out-of-tree modules from Open vSwitch release 2.4 and later support UDP checksums.

Q: What features are not available when using the userspace datapath?

A: Tunnel virtual ports are not supported, as described in the previous answer. It is also not possible to
use queue-related actions. On Linux kernels before 2.6.39, maximum-sized VLAN packets may not be
transmitted.

Q: Should userspace or kernel be upgraded first to minimize downtime?

A. In general, the Open vSwitch userspace should be used with the kernel version included in the same
release or with the version from upstream Linux. However, when upgrading between two releases of
Open vSwitch it is best to migrate userspace first to reduce the possibility of incompatibilities.

Q: What happened to the bridge compatibility feature?
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A: Bridge compatibility was a feature of Open vSwitch 1.9 and earlier. When it was enabled, Open
vSwitch imitated the interface of the Linux kernel “bridge” module. This allowed users to drop Open
vSwitch into environments designed to use the Linux kernel bridge module without adapting the environ-
ment to use Open vSwitch.

Open vSwitch 1.10 and later do not support bridge compatibility. The feature was dropped because version
1.10 adopted a new internal architecture that made bridge compatibility difficult to maintain. Now that
many environments use OVS directly, it would be rarely useful in any case.

To use bridge compatibility, install OVS 1.9 or earlier, including the accompanying kernel modules (both
the main and bridge compatibility modules), following the instructions that come with the release. Be
sure to start the ovs-brcompatd daemon.

7.9 Terminology

Q: I thought Open vSwitch was a virtual Ethernet switch, but the documentation keeps talking about bridges. What’s
a bridge?

A: In networking, the terms “bridge” and “switch” are synonyms. Open vSwitch implements an Ethernet
switch, which means that it is also an Ethernet bridge.

Q: What’s a VLAN?

A: See VLANs.

7.10 VLANs

Q: What’s a VLAN?

A: At the simplest level, a VLAN (short for “virtual LAN”) is a way to partition a single switch into
multiple switches. Suppose, for example, that you have two groups of machines, group A and group B.
You want the machines in group A to be able to talk to each other, and you want the machine in group
B to be able to talk to each other, but you don’t want the machines in group A to be able to talk to the
machines in group B. You can do this with two switches, by plugging the machines in group A into one
switch and the machines in group B into the other switch.

If you only have one switch, then you can use VLANs to do the same thing, by configuring the ports
for machines in group A as VLAN “access ports” for one VLAN and the ports for group B as “access
ports” for a different VLAN. The switch will only forward packets between ports that are assigned to the
same VLAN, so this effectively subdivides your single switch into two independent switches, one for each
group of machines.

So far we haven’t said anything about VLAN headers. With access ports, like we’ve described so far, no
VLAN header is present in the Ethernet frame. This means that the machines (or switches) connected to
access ports need not be aware that VLANs are involved, just like in the case where we use two different
physical switches.

Now suppose that you have a whole bunch of switches in your network, instead of just one, and that some
machines in group A are connected directly to both switches 1 and 2. To allow these machines to talk to
each other, you could add an access port for group A’s VLAN to switch 1 and another to switch 2, and then
connect an Ethernet cable between those ports. That works fine, but it doesn’t scale well as the number
of switches and the number of VLANs increases, because you use up a lot of valuable switch ports just
connecting together your VLANs.

This is where VLAN headers come in. Instead of using one cable and two ports per VLAN to connect a
pair of switches, we configure a port on each switch as a VLAN “trunk port”. Packets sent and received

7.9. Terminology 311



Open vSwitch, Release 2.12.90

on a trunk port carry a VLAN header that says what VLAN the packet belongs to, so that only two ports
total are required to connect the switches, regardless of the number of VLANs in use. Normally, only
switches (either physical or virtual) are connected to a trunk port, not individual hosts, because individual
hosts don’t expect to see a VLAN header in the traffic that they receive.

None of the above discussion says anything about particular VLAN numbers. This is because VLAN
numbers are completely arbitrary. One must only ensure that a given VLAN is numbered consistently
throughout a network and that different VLANs are given different numbers. (That said, VLAN 0 is
usually synonymous with a packet that has no VLAN header, and VLAN 4095 is reserved.)

Q: VLANs don’t work.

A: Do you have VLANs enabled on the physical switch that OVS is attached to? Make sure that the port
is configured to trunk the VLAN or VLANs that you are using with OVS.

Q: Outgoing VLAN-tagged traffic goes through OVS to my physical switch and to its destination host, but OVS seems
to drop incoming return traffic.

A: It’s possible that you have the VLAN configured on your physical switch as the “native” VLAN. In
this mode, the switch treats incoming packets either tagged with the native VLAN or untagged as part of
the native VLAN. It may also send outgoing packets in the native VLAN without a VLAN tag.

If this is the case, you have two choices:

• Change the physical switch port configuration to tag packets it forwards to OVS with the native
VLAN instead of forwarding them untagged.

• Change the OVS configuration for the physical port to a native VLAN mode. For example, the
following sets up a bridge with port eth0 in “native-tagged” mode in VLAN 9:

$ ovs-vsctl add-br br0 $ ovs-vsctl add-port br0 eth0 tag=9
vlan_mode=native-tagged

In this situation, “native-untagged” mode will probably work equally well. Refer to the documenta-
tion for the Port table in ovs-vswitchd.conf.db(5) for more information.

Q: I added a pair of VMs on different VLANs, like this:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 eth0
$ ovs-vsctl add-port br0 tap0 tag=9
$ ovs-vsctl add-port br0 tap1 tag=10

but the VMs can’t access each other, the external network, or the Internet.

A: It is to be expected that the VMs can’t access each other. VLANs are a means to partition a network.
When you configured tap0 and tap1 as access ports for different VLANs, you indicated that they should
be isolated from each other.

As for the external network and the Internet, it seems likely that the machines you are trying to access are
not on VLAN 9 (or 10) and that the Internet is not available on VLAN 9 (or 10).

Q: I added a pair of VMs on the same VLAN, like this:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 eth0
$ ovs-vsctl add-port br0 tap0 tag=9
$ ovs-vsctl add-port br0 tap1 tag=9

The VMs can access each other, but not the external network or the Internet.
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A: It seems likely that the machines you are trying to access in the external network are not on VLAN
9 and that the Internet is not available on VLAN 9. Also, ensure VLAN 9 is set up as an allowed trunk
VLAN on the upstream switch port to which eth0 is connected.

Q: Can I configure an IP address on a VLAN?

A: Yes. Use an “internal port” configured as an access port. For example, the following configures IP
address 192.168.0.7 on VLAN 9. That is, OVS will forward packets from eth0 to 192.168.0.7 only if
they have an 802.1Q header with VLAN 9. Conversely, traffic forwarded from 192.168.0.7 to eth0 will
be tagged with an 802.1Q header with VLAN 9:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 eth0
$ ovs-vsctl add-port br0 vlan9 tag=9 \

-- set interface vlan9 type=internal
$ ip addr add 192.168.0.7/24 dev vlan9
$ ip link set vlan9 up

See also the following question.

Q: I configured one IP address on VLAN 0 and another on VLAN 9, like this:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 eth0
$ ip addr add 192.168.0.5/24 dev br0
$ ip link set br0 up
$ ovs-vsctl add-port br0 vlan9 tag=9 -- set interface vlan9 type=internal
$ ip addr add 192.168.0.9/24 dev vlan9
$ ip link set vlan9 up

but other hosts that are only on VLAN 0 can reach the IP address configured on VLAN 9. What’s going on?

A: RFC 1122 section 3.3.4.2 “Multihoming Requirements” describes two approaches to IP address han-
dling in Internet hosts:

• In the “Strong ES Model”, where an ES is a host (“End System”), an IP address is primarily as-
sociated with a particular interface. The host discards packets that arrive on interface A if they
are destined for an IP address that is configured on interface B. The host never sends packets from
interface A using a source address configured on interface B.

• In the “Weak ES Model”, an IP address is primarily associated with a host. The host accepts packets
that arrive on any interface if they are destined for any of the host’s IP addresses, even if the address
is configured on some interface other than the one on which it arrived. The host does not restrict
itself to sending packets from an IP address associated with the originating interface.

Linux uses the weak ES model. That means that when packets destined to the VLAN 9 IP address arrive
on eth0 and are bridged to br0, the kernel IP stack accepts them there for the VLAN 9 IP address, even
though they were not received on vlan9, the network device for vlan9.

To simulate the strong ES model on Linux, one may add iptables rule to filter packets based on source and
destination address and adjust ARP configuration with sysctls.

BSD uses the strong ES model.

Q: My OpenFlow controller doesn’t see the VLANs that I expect.

A: The configuration for VLANs in the Open vSwitch database (e.g. via ovs-vsctl) only affects traffic that
goes through Open vSwitch’s implementation of the OpenFlow “normal switching” action. By default,
when Open vSwitch isn’t connected to a controller and nothing has been manually configured in the flow
table, all traffic goes through the “normal switching” action. But, if you set up OpenFlow flows on your
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own, through a controller or using ovs-ofctl or through other means, then you have to implement VLAN
handling yourself.

You can use “normal switching” as a component of your OpenFlow actions, e.g. by putting “normal” into
the lists of actions on ovs-ofctl or by outputting to OFPP_NORMAL from an OpenFlow controller. In
situations where this is not suitable, you can implement VLAN handling yourself, e.g.:

• If a packet comes in on an access port, and the flow table needs to send it out on a trunk port, then
the flow can add the appropriate VLAN tag with the “mod_vlan_vid” action.

• If a packet comes in on a trunk port, and the flow table needs to send it out on an access port, then
the flow can strip the VLAN tag with the “strip_vlan” action.

Q: I configured ports on a bridge as access ports with different VLAN tags, like this:

$ ovs-vsctl add-br br0
$ ovs-vsctl set-controller br0 tcp:192.168.0.10:6653
$ ovs-vsctl add-port br0 eth0
$ ovs-vsctl add-port br0 tap0 tag=9
$ ovs-vsctl add-port br0 tap1 tag=10

but the VMs running behind tap0 and tap1 can still communicate, that is, they are not isolated from each other even
though they are on different VLANs.

A: Do you have a controller configured on br0 (as the commands above do)? If so, then this is a variant
on the previous question, “My OpenFlow controller doesn’t see the VLANs that I expect,” and you can
refer to the answer there for more information.

Q: How MAC learning works with VLANs?

A: Open vSwitch implements Independent VLAN Learning (IVL) for OFPP_NORMAL action, e.g. it
logically has separate learning tables for each VLANs.

7.11 VXLANs

Q: What’s a VXLAN?

A: VXLAN stands for Virtual eXtensible Local Area Network, and is a means to solve the scaling chal-
lenges of VLAN networks in a multi-tenant environment. VXLAN is an overlay network which transports
an L2 network over an existing L3 network. For more information on VXLAN, please see RFC 7348.

Q: How much of the VXLAN protocol does Open vSwitch currently support?

A: Open vSwitch currently supports the framing format for packets on the wire. There is currently no
support for the multicast aspects of VXLAN. To get around the lack of multicast support, it is possible to
pre-provision MAC to IP address mappings either manually or from a controller.

Q: What destination UDP port does the VXLAN implementation in Open vSwitch use?

A: By default, Open vSwitch will use the assigned IANA port for VXLAN, which is 4789. However, it is
possible to configure the destination UDP port manually on a per-VXLAN tunnel basis. An example of
this configuration is provided below.:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 vxlan1 -- set interface vxlan1 type=vxlan \

options:remote_ip=192.168.1.2 options:key=flow options:dst_port=8472
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CHAPTER 8

Open vSwitch Internals

Information for people who want to know more about the Open vSwitch project itself and how they might involved.

8.1 Contributing to Open vSwitch

The below guides provide information on contributing to Open vSwitch itself.

8.1.1 Submitting Patches

Send changes to Open vSwitch as patches to dev@openvswitch.org. One patch per email. More details are included
below.

If you are using Git, then git format-patch takes care of most of the mechanics described below for you.

Before You Start

Before you send patches at all, make sure that each patch makes sense. In particular:

• A given patch should not break anything, even if later patches fix the problems that it causes. The source tree
should still build and work after each patch is applied. (This enables git bisect to work best.)

• A patch should make one logical change. Don’t make multiple, logically unconnected changes to disparate
subsystems in a single patch.

• A patch that adds or removes user-visible features should also update the appropriate user documentation or
manpages. Consider adding an item to NEWS for nontrivial changes. Check “Feature Deprecation Guidelines”
section in this document if you intend to remove user-visible feature.

Testing is also important:

• Test a patch that modifies existing code with make check before submission. Refer to the “Unit Tests” in
Testing, for more information. We also encourage running the kernel and userspace system tests.
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• Consider testing a patch that adds or deletes files with make distcheck before submission.

• A patch that modifies Linux kernel code should be at least build-tested on various Linux kernel versions before
submission. I suggest versions 3.10 and whatever the current latest release version is at the time.

• A patch that adds a new feature should add appropriate tests for the feature. A bug fix patch should preferably
add a test that would fail if the bug recurs.

If you are using GitHub, then you may utilize the travis-ci.org CI build system by linking your GitHub repository to it.
This will run some of the above tests automatically when you push changes to your repository. See the “Continuous
Integration with Travis-CI” in Testing for details on how to set it up.

Email Subject

The subject line of your email should be in the following format:

[PATCH <n>/<m>] <area>: <summary>

Where:

[PATCH <n>/<m>]: indicates that this is the nth of a series of m patches. It helps reviewers to read patches in the
correct order. You may omit this prefix if you are sending only one patch.

<area>: indicates the area of the Open vSwitch to which the change applies (often the name of a source file or a
directory). You may omit it if the change crosses multiple distinct pieces of code.

<summary>:

briefly describes the change. Use the imperative form, e.g. “Force SNAT for multiple gateway routers.” or
“Fix daemon exit for bad datapaths or flows.” Try to keep the summary short, about 50 characters wide.

The subject, minus the [PATCH <n>/<m>] prefix, becomes the first line of the commit’s change log message.

Description

The body of the email should start with a more thorough description of the change. This becomes the body of the
commit message, following the subject. There is no need to duplicate the summary given in the subject.

Please limit lines in the description to 75 characters in width. That allows the description to format properly even
when indented (e.g. by “git log” or in email quotations).

The description should include:

• The rationale for the change.

• Design description and rationale (but this might be better added as code comments).

• Testing that you performed (or testing that should be done but you could not for whatever reason).

• Tags (see below).

There is no need to describe what the patch actually changed, if the reader can see it for himself.

If the patch refers to a commit already in the Open vSwitch repository, please include both the commit number and
the subject of the patch, e.g. ‘commit 632d136c (vswitch: Remove restriction on datapath names.)’.

If you, the person sending the patch, did not write the patch yourself, then the very first line of the body should take
the form From: <author name> <author email>, followed by a blank line. This will automatically cause
the named author to be credited with authorship in the repository.
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Tags

The description ends with a series of tags, written one to a line as the last paragraph of the email. Each tag indicates
some property of the patch in an easily machine-parseable manner.

Please don’t wrap a tag across multiple lines. If necessary, it’s OK to have a tag extend beyond the customary maximum
width of a commit message.

Examples of common tags follow.

Signed-off-by: Author Name <author.name@email.address...>

Informally, this indicates that Author Name is the author or submitter of a patch and has the authority to
submit it under the terms of the license. The formal meaning is to agree to the Developer’s Certificate of
Origin (see below).

If the author and submitter are different, each must sign off. If the patch has more than one author, all
must sign off.

Signed-off-by tags should be the last tags in the commit message. If the author (or authors) and submitter
are different, the author tags should come first. More generally, occasionally a patch might pass through
a chain of submitters, and in such a case the sign-offs should be arranged in chronological order.

Signed-off-by: Author Name <author.name@email.address...>
Signed-off-by: Submitter Name <submitter.name@email.address...>

Co-authored-by: Author Name <author.name@email.address...>

Git can only record a single person as the author of a given patch. In the rare event that a patch has
multiple authors, one must be given the credit in Git and the others must be credited via Co-authored-by:
tags. (All co-authors must also sign off.)

Acked-by: Reviewer Name <reviewer.name@email.address...>

Reviewers will often give an Acked-by: tag to code of which they approve. It is polite for the submitter
to add the tag before posting the next version of the patch or applying the patch to the repository. Quality
reviewing is hard work, so this gives a small amount of credit to the reviewer.

Not all reviewers give Acked-by: tags when they provide positive reviews. It’s customary only to add
tags from reviewers who actually provide them explicitly.

Tested-by: Tester Name <reviewer.name@email.address...>

When someone tests a patch, it is customary to add a Tested-by: tag indicating that. It’s rare for a tester
to actually provide the tag; usually the patch submitter makes the tag himself in response to an email
indicating successful testing results.

Tested-at: <URL>

When a test report is publicly available, this provides a way to reference it. Typical <URL>s would be
build logs from autobuilders or references to mailing list archives.

Some autobuilders only retain their logs for a limited amount of time. It is less useful to cite these because
they may be dead links for a developer reading the commit message months or years later.

Reported-by: Reporter Name <reporter.name@email.address...>

When a patch fixes a bug reported by some person, please credit the reporter in the commit log in this
fashion. Please also add the reporter’s name and email address to the list of people who provided helpful
bug reports in the AUTHORS file at the top of the source tree.
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Fairly often, the reporter of a bug also tests the fix. Occasionally one sees a combined “Reported-and-
tested-by:” tag used to indicate this. It is also acceptable, and more common, to include both tags sepa-
rately.

(If a bug report is received privately, it might not always be appropriate to publicly credit the reporter. If
in doubt, please ask the reporter.)

Requested-by: Requester Name <requester.name@email.address...>

When a patch implements a request or a suggestion made by some person, please credit that person in the
commit log in this fashion. For a helpful suggestion, please also add the person’s name and email address
to the list of people who provided suggestions in the AUTHORS file at the top of the source tree.

(If a suggestion or a request is received privately, it might not always be appropriate to publicly give credit.
If in doubt, please ask.)

Suggested-by: Suggester Name <suggester.name@email.address...>

See Requested-by:.

CC: Person <name@email>

This is a way to tag a patch for the attention of a person when no more specific tag is appropriate. One
use is to request a review from a particular person. It doesn’t make sense to include the same person in
CC and another tag, so e.g. if someone who is CCed later provides an Acked-by, add the Acked-by and
remove the CC at the same time.

Reported-at: <URL>

If a patch fixes or is otherwise related to a bug reported in a public bug tracker, please include a reference
to the bug in the form of a URL to the specific bug, e.g.:

Reported-at: https://bugs.debian.org/743635

This is also an appropriate way to refer to bug report emails in public email archives, e.g.:

Reported-at: https://mail.openvswitch.org/pipermail/ovs-dev/2014-June/284495.
→˓html

Submitted-at: <URL>

If a patch was submitted somewhere other than the Open vSwitch development mailing list, such as a
GitHub pull request, this header can be used to reference the source.

Submitted-at: https://github.com/openvswitch/ovs/pull/92

VMware-BZ: #1234567

If a patch fixes or is otherwise related to a bug reported in a private bug tracker, you may include some
tracking ID for the bug for your own reference. Please include some identifier to make the origin clear,
e.g. “VMware-BZ” refers to VMware’s internal Bugzilla instance and “ONF-JIRA” refers to the Open
Networking Foundation’s JIRA bug tracker.

ONF-JIRA: EXT-12345

See VMware-BZ:.

Bug #1234567.

These are obsolete forms of VMware-BZ: that can still be seen in old change log entries. (They are
obsolete because they do not tell the reader what bug tracker is referred to.)

Issue: 1234567
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See Bug:.

Fixes: 63bc9fb1c69f (“packets: Reorder CS_* flags to remove gap.”)

If you would like to record which commit introduced a bug being fixed, you may do that with a “Fixes”
header. This assists in determining which OVS releases have the bug, so the patch can be applied to all
affected versions. The easiest way to generate the header in the proper format is with this git command.
This command also CCs the author of the commit being fixed, which makes sense unless the author also
made the fix or is already named in another tag:

$ git log -1 --pretty=format:"CC: %an <%ae>%nFixes: %h (\"%s\")" \
--abbrev=12 COMMIT_REF

Vulnerability: CVE-2016-2074

Specifies that the patch fixes or is otherwise related to a security vulnerability with the given CVE identi-
fier. Other identifiers in public vulnerability databases are also suitable.

If the vulnerability was reported publicly, then it is also appropriate to cite the URL to the report in a
Reported-at tag. Use a Reported-by tag to acknowledge the reporters.

Developer’s Certificate of Origin

To help track the author of a patch as well as the submission chain, and be clear that the developer has authority to
submit a patch for inclusion in Open vSwitch please sign off your work. The sign off certifies the following:

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

See also http://developercertificate.org/.
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Feature Deprecation Guidelines

Open vSwitch is intended to be user friendly. This means that under normal circumstances we don’t abruptly remove
features from OVS that some users might still be using. Otherwise, if we would, then we would possibly break our
user setup when they upgrade and would receive bug reports.

Typical process to deprecate a feature in Open vSwitch is to:

(a) Mention deprecation of a feature in the NEWS file. Also, mention expected release or absolute time when this
feature would be removed from OVS altogether. Don’t use relative time (e.g. “in 6 months”) because that is not
clearly interpretable.

(b) If Open vSwitch is configured to use deprecated feature it should print a warning message to the log files clearly
indicating that feature is deprecated and that use of it should be avoided.

(c) If this feature is mentioned in man pages, then add “Deprecated” keyword to it.

Also, if there is alternative feature to the one that is about to be marked as deprecated, then mention it in (a), (b) and
(c) as well.

Remember to follow-up and actually remove the feature from OVS codebase once deprecation grace period has expired
and users had opportunity to use at least one OVS release that would have informed them about feature deprecation!

Comments

If you want to include any comments in your email that should not be part of the commit’s change log message, put
them after the description, separated by a line that contains just ---. It may be helpful to include a diffstat here for
changes that touch multiple files.

Patch

The patch should be in the body of the email following the description, separated by a blank line.

Patches should be in diff -up format. We recommend that you use Git to produce your patches, in which case you
should use the -M -C options to git diff (or other Git tools) if your patch renames or copies files. Quilt might be
useful if you do not want to use Git.

Patches should be inline in the email message. Some email clients corrupt white space or wrap lines in patches. There
are hints on how to configure many email clients to avoid this problem on kernel.org. If you cannot convince your
email client not to mangle patches, then sending the patch as an attachment is a second choice.

Follow the style used in the code that you are modifying. Open vSwitch Coding Style file describes the coding style
used in most of Open vSwitch. Use Linux kernel coding style for Linux kernel code.

If your code is non-datapath code, you may use the utilities/checkpatch.py utility as a quick check for cer-
tain commonly occurring mistakes (improper leading/trailing whitespace, missing signoffs, some improper formatted
patch files). For Linux datapath code, it is a good idea to use the Linux script checkpatch.pl.

Example

From fa29a1c2c17682879e79a21bb0cdd5bbe67fa7c0 Mon Sep 17 00:00:00 2001
From: Jesse Gross <jesse@nicira.com>
Date: Thu, 8 Dec 2011 13:17:24 -0800
Subject: [PATCH] datapath: Alphabetize include/net/ipv6.h compat header.

Signed-off-by: Jesse Gross <jesse@nicira.com>
(continues on next page)
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(continued from previous page)

---
datapath/linux/Modules.mk | 2 +-
1 files changed, 1 insertions(+), 1 deletions(-)

diff --git a/datapath/linux/Modules.mk b/datapath/linux/Modules.mk
index fdd952e..f6cb88e 100644
--- a/datapath/linux/Modules.mk
+++ b/datapath/linux/Modules.mk
@@ -56,11 +56,11 @@ openvswitch_headers += \

linux/compat/include/net/dst.h \
linux/compat/include/net/genetlink.h \
linux/compat/include/net/ip.h \

+ linux/compat/include/net/ipv6.h \
linux/compat/include/net/net_namespace.h \
linux/compat/include/net/netlink.h \
linux/compat/include/net/protocol.h \
linux/compat/include/net/route.h \

- linux/compat/include/net/ipv6.h \
linux/compat/genetlink.inc

both_modules += brcompat
--
1.7.7.3

8.1.2 Backporting patches

Note: This is an advanced topic for developers and maintainers. Readers should familiarize themselves with building
and running Open vSwitch, with the git tool, and with the Open vSwitch patch submission process.

The backporting of patches from one git tree to another takes multiple forms within Open vSwitch, but is broadly
applied in the following fashion:

• Contributors submit their proposed changes to the latest development branch

• Contributors and maintainers provide feedback on the patches

• When the change is satisfactory, maintainers apply the patch to the development branch.

• Maintainers backport changes from a development branch to release branches.

With regards to Open vSwitch user space code and code that does not comprise the Linux datapath and compat code,
the development branch is master in the Open vSwitch repository. Patches are applied first to this branch, then to the
most recent branch-X.Y, then earlier branch-X.Z, and so on. The most common kind of patch in this category is a
bugfix which affects master and other branches.

For Linux datapath code, the primary development branch is in the net-next tree as described in the section below, and
patch discussion occurs on the netdev mailing list. Patches are first applied to the upstream branch by the networking
maintainer, then the contributor backports the patch to the Open vSwitch master development branch. Patches in this
category may include features which have been applied upstream, or bugfixes to the Open vSwitch datapath code.
For bugfixes, the patches subsequently follow the regular Open vSwitch process as described above to reach older
branches.
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Changes to userspace components

Patches which are fixing bugs should be considered for backporting from master to release branches. Open vSwitch
contributors submit their patches targeted to the master branch, using the Fixes tag described in Submitting Patches.
The maintainer first applies the patch to master, then backports the patch to each older affected tree, as far back as it
goes or at least to all currently supported branches. This is usually each branch back to the most recent LTS release
branch.

If the fix only affects a particular branch and not master, contributors should submit the change with the target
branch listed in the subject line of the patch. Contributors should list all versions that the bug affects. The git
format-patch argument --subject-prefix may be used when posting the patch, for example:

$ git format-patch HEAD --subject-prefix="PATCH branch-2.7"

If a maintainer is backporting a change to older branches and the backport is not a trivial cherry-pick, then the main-
tainer may opt to submit the backport for the older branch on the mailing list for further review. This should be done
in the same manner as described above.

Changes to Linux kernel components

The Linux kernel components in Open vSwitch go through initial review in the upstream Linux netdev community
before they go into the Open vSwitch tree. As such, backports from upstream to the Open vSwitch tree may include
bugfixes or new features. The netdev-FAQ describes the general process for merging patches to the upstream Linux
tree.

To keep track of the changes which are made upstream against the changes which have been backported to the Open
vSwitch tree, backports should be done in the order that they are applied to the upstream net-next tree. For example,
if the git history in linux/net/openvswitch/ in the net-next tree lists patches A, B and C that were applied
(in that order), then the backports of these patches to openvswitch/datapath/ should be done submitted in the
order A, B, then C.

Patches that are proposed against the Open vSwitch tree, including backports, should follow the guidelines described
in Submitting Patches. Ideally, a series which backports new functionality would also include a series of patches for
the userspace components which show how to use the new functionality, and include tests to validate the behaviour.
However, in the interests of keeping the Open vSwitch tree in sync with upstream net-next, contributors may send
Open vSwitch kernel module changes independently of userspace changes.

How to backport kernel patches

First, the patch should be submitted upstream to netdev. When the patch has been applied to net-next, it is ready to be
backported. Starting from the Linux tree, use git format-patch to format each patch that should be backported.
For each of these patches, they may only include changes to linux/net/openvswitch/, or they may include
changes to other directories. Depending on which files the patch touches, the backport may be easier or more difficult
to undertake.

Start by formatting the relevant patches from the Linux tree. For example, to format the last 5 patches to net/
openvswitch, going back from OVS commit 1234c0ffee5, placing them into /tmp/:

$ git format-patch -5 1234c0ffee5 net/openvswitch/ -o /tmp

Next, change into the Open vSwitch directory and apply the patch:

$ git am -p3 --reject --directory=datapath/ <patch>

If this is successful, proceed to the next patch:
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$ git am --continue

If this is unsuccessful, the above command applies all changes that it can to the working tree, and leaves rejected hunks
in corresponding *.rej files. Proceed by using git diff to identify the changes, and edit the files so that the hunk
matches what the file looks like when the corresponding commit is checked out in the linux tree. When all hunks are
fixed, add the files to the index using git add.

If the patch only changes filepaths under linux/net/openvswitch, then most likely the patch is fully back-
ported. At this point, review the patch’s changes and compare with the latest upstream code for the modified functions.
Occasionally, there may be bugs introduced in a particular patch which were fixed in a later patch upstream. To prevent
breakage in the OVS tree, consider rolling later bugfixes into the current patch - particularly if they are small, clear
bugfixes in the logic of this patch. Then proceed to the next patch using git am --continue. If you made any
changes to the patch compared with the original version, describe the changes in the commit message.

If the changes affects other paths, then you may also need to backport function definitions from the upstream tree into
the datapath/linux/compat directory. First, attempt to compile the datapath. If this is successful, then most
likely there is no further work required. As per the previous paragraph, consider reviewing and backporting any minor
fixes to this code if applicable, then proceed to the next patch using git am --continue.

If compilation fails, the compiler will show which functions are missing or broken. Typically this should match
with some function definitions provided in the patch file. The following command will attempt to apply all such
changes from the patch into the openvswitch/datapath/linux/compat directory; Like the previous git
am command above, it may succeed or fail. If it succeeds, review the patch and proceed to the next patch using git
am --continue.

$ git am -p3 --reject --directory='datapath/linux/compat/' <patch>

For each conflicting hunk, attempt to resolve the change so that the function reflects what the function looks like in
the upstream Linux tree. After resolving these changes, compile the changes, add the modified files to the index using
git add, review the patch, and proceed to the next patch using git am --continue.

Submission

Once the patches are all assembled and working on the Open vSwitch tree, they need to be formatted again using git
format-patch. The common format for commit messages for Linux backport patches is as follows:

datapath: Remove incorrect WARN_ONCE().

Upstream commit:
commit c6b2aafffc6934be72d96855c9a1d88970597fbc
Author: Jarno Rajahalme <jarno@ovn.org>
Date: Mon Aug 1 19:08:29 2016 -0700

openvswitch: Remove incorrect WARN_ONCE().

ovs_ct_find_existing() issues a warning if an existing conntrack entry
classified as IP_CT_NEW is found, with the premise that this should
not happen. However, a newly confirmed, non-expected conntrack entry
remains IP_CT_NEW as long as no reply direction traffic is seen. This
has resulted into somewhat confusing kernel log messages. This patch
removes this check and warning.

Fixes: 289f2253 ("openvswitch: Find existing conntrack entry after upcall.")
Suggested-by: Joe Stringer <joe@ovn.org>
Signed-off-by: Jarno Rajahalme <jarno@ovn.org>

(continues on next page)
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Acked-by: Joe Stringer <joe@ovn.org>

Signed-off-by: Jarno Rajahalme <jarno@ovn.org>

The upstream commit SHA should be the one that appears in Linus’ tree so that reviewers can compare the back-
ported patch with the one upstream. Note that the subject line for the backported patch replaces the original patch’s
openvswitch prefix with datapath. Patches which only affect the datapath/linux/compat directory
should be prefixed with compat.

The contents of a backport should be equivalent to the changes made by the original patch; explain any variations
from the original patch in the commit message - For instance if you rolled in a bugfix. Reviewers will verify that the
changes made by the backport patch are the same as the changes made in the original commit which the backport is
based upon. Patch submission should otherwise follow the regular steps described in Submitting Patches. In particular,
if performing kernel patch backports, pay attention to Datapath testing.

8.1.3 Open vSwitch Coding Style

This file describes the coding style used in most C files in the Open vSwitch distribution. However, Linux kernel code
datapath directory follows the Linux kernel’s established coding conventions. For the Windows kernel datapath code,
use the coding style described in Open vSwitch Windows Datapath Coding Style.

The following GNU indent options approximate this style.

-npro -bad -bap -bbb -br -blf -brs -cdw -ce -fca -cli0 -npcs -i4 -l79 \
-lc79 -nbfda -nut -saf -sai -saw -sbi4 -sc -sob -st -ncdb -pi4 -cs -bs \
-di1 -lp -il0 -hnl

Basics

• Limit lines to 79 characters.

• Use form feeds (control+L) to divide long source files into logical pieces. A form feed should appear as the only
character on a line.

• Do not use tabs for indentation.

• Avoid trailing spaces on lines.

Naming

• Use names that explain the purpose of a function or object.

• Use underscores to separate words in an identifier: multi_word_name.

• Use lowercase for most names. Use uppercase for macros, macro parameters, and members of enumerations.

• Give arrays names that are plural.

• Pick a unique name prefix (ending with an underscore) for each module, and apply that prefix to all of that
module’s externally visible names. Names of macro parameters, struct and union members, and parameters in
function prototypes are not considered externally visible for this purpose.

• Do not use names that begin with _. If you need a name for “internal use only”, use __ as a suffix instead of a
prefix.

• Avoid negative names: found is a better name than not_found.
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• In names, a size is a count of bytes, a length is a count of characters. A buffer has size, but a string has
length. The length of a string does not include the null terminator, but the size of the buffer that contains the
string does.

Comments

Comments should be written as full sentences that start with a capital letter and end with a period. Put two spaces
between sentences.

Write block comments as shown below. You may put the /* and */ on the same line as comment text if you prefer.

/*
* We redirect stderr to /dev/null because we often want to remove all

* traffic control configuration on a port so its in a known state. If

* this done when there is no such configuration, tc complains, so we just

* always ignore it.

*/

Each function and each variable declared outside a function, and each struct, union, and typedef declaration should be
preceded by a comment. See functions below for function comment guidelines.

Each struct and union member should each have an inline comment that explains its meaning. structs and unions with
many members should be additionally divided into logical groups of members by block comments, e.g.:

/* An event that will wake the following call to poll_block(). */
struct poll_waiter {

/* Set when the waiter is created. */
struct ovs_list node; /* Element in global waiters list. */
int fd; /* File descriptor. */
short int events; /* Events to wait for (POLLIN, POLLOUT). */
poll_fd_func *function; /* Callback function, if any, or null. */
void *aux; /* Argument to callback function. */
struct backtrace *backtrace; /* Event that created waiter, or null. */

/* Set only when poll_block() is called. */
struct pollfd *pollfd; /* Pointer to element of the pollfds array

(null if added from a callback). */
};

Use XXX or FIXME comments to mark code that needs work.

Don’t use // comments.

Don’t comment out or #if 0 out code. Just remove it. The code that was there will still be in version control history.

Functions

Put the return type, function name, and the braces that surround the function’s code on separate lines, all starting in
column 0.

Before each function definition, write a comment that describes the function’s purpose, including each parameter, the
return value, and side effects. References to argument names should be given in single-quotes, e.g. 'arg'. The
comment should not include the function name, nor need it follow any formal structure. The comment does not need
to describe how a function does its work, unless this information is needed to use the function correctly (this is often
better done with comments inside the function).

Simple static functions do not need a comment.
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Within a file, non-static functions should come first, in the order that they are declared in the header file, followed by
static functions. Static functions should be in one or more separate pages (separated by form feed characters) in logical
groups. A commonly useful way to divide groups is by “level”, with high-level functions first, followed by groups
of progressively lower-level functions. This makes it easy for the program’s reader to see the top-down structure by
reading from top to bottom.

All function declarations and definitions should include a prototype. Empty parentheses, e.g. int foo();, do not
include a prototype (they state that the function’s parameters are unknown); write void in parentheses instead, e.g.
int foo(void);.

Prototypes for static functions should either all go at the top of the file, separated into groups by blank lines, or they
should appear at the top of each page of functions. Don’t comment individual prototypes, but a comment on each
group of prototypes is often appropriate.

In the absence of good reasons for another order, the following parameter order is preferred. One notable exception is
that data parameters and their corresponding size parameters should be paired.

1. The primary object being manipulated, if any (equivalent to the this pointer in C++).

2. Input-only parameters.

3. Input/output parameters.

4. Output-only parameters.

5. Status parameter.

Example:

```
/* Stores the features supported by 'netdev' into each of '*current',

* '*advertised', '*supported', and '*peer' that are non-null. Each value

* is a bitmap of "enum ofp_port_features" bits, in host byte order.

* Returns 0 if successful, otherwise a positive errno value. On failure,

* all of the passed-in values are set to 0. */
int
netdev_get_features(struct netdev *netdev,

uint32_t *current, uint32_t *advertised,
uint32_t *supported, uint32_t *peer)

{
...

}
```

Functions that destroy an instance of a dynamically-allocated type should accept and ignore a null pointer argument.
Code that calls such a function (including the C standard library function free()) should omit a null-pointer check.
We find that this usually makes code easier to read.

Functions in .c files should not normally be marked inline, because it does not usually help code generation
and it does suppress compiler warnings about unused functions. (Functions defined in .h usually should be marked
inline.)

Function Prototypes

Put the return type and function name on the same line in a function prototype:

static const struct option_class *get_option_class(int code);

Omit parameter names from function prototypes when the names do not give useful information, e.g.:
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int netdev_get_mtu(const struct netdev *, int *mtup);

Statements

Indent each level of code with 4 spaces. Use BSD-style brace placement:

if (a()) {
b();
d();

}

Put a space between if, while, for, etc. and the expressions that follow them.

Enclose single statements in braces:

if (a > b) {
return a;

} else {
return b;

}

Use comments and blank lines to divide long functions into logical groups of statements.

Avoid assignments inside if and while conditions.

Do not put gratuitous parentheses around the expression in a return statement, that is, write return 0; and not
return(0);

Write only one statement per line.

Indent switch statements like this:

switch (conn->state) {
case S_RECV:

error = run_connection_input(conn);
break;

case S_PROCESS:
error = 0;
break;

case S_SEND:
error = run_connection_output(conn);
break;

default:
OVS_NOT_REACHED();

}

switch statements with very short, uniform cases may use an abbreviated style:

switch (code) {
case 200: return "OK";
case 201: return "Created";
case 202: return "Accepted";
case 204: return "No Content";
default: return "Unknown";
}
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Use for (;;) to write an infinite loop.

In an if/else construct where one branch is the “normal” or “common” case and the other branch is the “uncom-
mon” or “error” case, put the common case after the if, not the else. This is a form of documentation. It also places
the most important code in sequential order without forcing the reader to visually skip past less important details.
(Some compilers also assume that the if branch is the more common case, so this can be a real form of optimization
as well.)

Return Values

For functions that return a success or failure indication, prefer one of the following return value conventions:

• An int where 0 indicates success and a positive errno value indicates a reason for failure.

• A bool where true indicates success and false indicates failure.

Macros

Don’t define an object-like macro if an enum can be used instead.

Don’t define a function-like macro if a static inline function can be used instead.

If a macro’s definition contains multiple statements, enclose them with do { ... } while (0) to allow them to
work properly in all syntactic circumstances.

Do use macros to eliminate the need to update different parts of a single file in parallel, e.g. a list of enums and an
array that gives the name of each enum. For example:

/* Logging importance levels. */
#define VLOG_LEVELS \

VLOG_LEVEL(EMER, LOG_ALERT) \
VLOG_LEVEL(ERR, LOG_ERR) \
VLOG_LEVEL(WARN, LOG_WARNING) \
VLOG_LEVEL(INFO, LOG_NOTICE) \
VLOG_LEVEL(DBG, LOG_DEBUG)

enum vlog_level {
#define VLOG_LEVEL(NAME, SYSLOG_LEVEL) VLL_##NAME,

VLOG_LEVELS
#undef VLOG_LEVEL

VLL_N_LEVELS
};

/* Name for each logging level. */
static const char *level_names[VLL_N_LEVELS] = {
#define VLOG_LEVEL(NAME, SYSLOG_LEVEL) #NAME,

VLOG_LEVELS
#undef VLOG_LEVEL
};

Thread Safety Annotations

Use the macros in lib/compiler.h to annotate locking requirements. For example:

static struct ovs_mutex mutex = OVS_MUTEX_INITIALIZER;
static struct ovs_rwlock rwlock = OVS_RWLOCK_INITIALIZER;

(continues on next page)
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void function_require_plain_mutex(void) OVS_REQUIRES(mutex);
void function_require_rwlock(void) OVS_REQ_RDLOCK(rwlock);

Pass lock objects, not their addresses, to the annotation macros. (Thus we have OVS_REQUIRES(mutex) above,
not OVS_REQUIRES(&mutex).)

Source Files

Each source file should state its license in a comment at the very top, followed by a comment explaining the purpose
of the code that is in that file. The comment should explain how the code in the file relates to code in other files. The
goal is to allow a programmer to quickly figure out where a given module fits into the larger system.

The first non-comment line in a .c source file should be:

#include <config.h>

#include directives should appear in the following order:

1. #include <config.h>

2. The module’s own headers, if any. Including this before any other header (besides ) ensures that the module’s
header file is self-contained (see header files below).

3. Standard C library headers and other system headers, preferably in alphabetical order. (Occasionally one en-
counters a set of system headers that must be included in a particular order, in which case that order must take
precedence.)

4. Open vSwitch headers, in alphabetical order. Use "", not <>, to specify Open vSwitch header names.

Header Files

Each header file should start with its license, as described under source files above, followed by a “header guard” to
make the header file idempotent, like so:

#ifndef NETDEV_H
#define NETDEV_H 1

...

#endif /* netdev.h */

Header files should be self-contained; that is, they should #include whatever additional headers are required, with-
out requiring the client to #include them for it.

Don’t define the members of a struct or union in a header file, unless client code is actually intended to access them
directly or if the definition is otherwise actually needed (e.g. inline functions defined in the header need them).

Similarly, don’t #include a header file just for the declaration of a struct or union tag (e.g. just for struct ;).
Just declare the tag yourself. This reduces the number of header file dependencies.

Types

Use typedefs sparingly. Code is clearer if the actual type is visible at the point of declaration. Do not, in general,
declare a typedef for a struct, union, or enum. Do not declare a typedef for a pointer type, because this can be
very confusing to the reader.
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A function type is a good use for a typedef because it can clarify code. The type should be a function type, not a
pointer-to-function type. That way, the typedef name can be used to declare function prototypes. (It cannot be used
for function definitions, because that is explicitly prohibited by C89 and C99.)

You may assume that char is exactly 8 bits and that int and long are at least 32 bits.

Don’t assume that long is big enough to hold a pointer. If you need to cast a pointer to an integer, use intptr_t or
uintptr_t from .

Use the int_t and uint_t types from for exact-width integer types. Use the PRId, PRIu, and PRIx macros from
for formatting them with printf() and related functions.

For compatibility with antique printf() implementations:

• Instead of "%zu", use "%"PRIuSIZE.

• Instead of "%td", use "%"PRIdPTR.

• Instead of "%ju", use "%"PRIuMAX.

Other variants exist for different radixes. For example, use "%"PRIxSIZE instead of "%zx" or "%x" instead of
"%hhx".

Also, instead of "%hhd", use "%d". Be cautious substituting "%u", "%x", and "%o" for the corresponding ver-
sions with "hh": cast the argument to unsigned char if necessary, because printf("%hhu", -1) prints 255 but
printf("%u", -1) prints 4294967295.

Use bit-fields sparingly. Do not use bit-fields for layout of network protocol fields or in other circumstances where the
exact format is important.

Declare bit-fields to be signed or unsigned integer types or _Bool (aka bool). Do not declare bit-fields of type int:
C99 allows these to be either signed or unsigned according to the compiler’s whim. (A 1-bit bit-field of type int may
have a range of -1...0!)

Try to order structure members such that they pack well on a system with 2-byte short, 4-byte int, and 4- or 8-byte
long and pointer types. Prefer clear organization over size optimization unless you are convinced there is a size or
speed benefit.

Pointer declarators bind to the variable name, not the type name. Write int *x, not int* x and definitely not int
* x.

Expressions

Put one space on each side of infix binary and ternary operators:

* / %
+ -
<< >>
< <= > >=
== !=
&
^
|
&&
||
?:
= += -= *= /= %= &= ^= |= <<= >>=

Avoid comma operators.

Do not put any white space around postfix, prefix, or grouping operators:
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() [] -> .
! ~ ++ -- + - * &

Exception 1: Put a space after (but not before) the “sizeof” keyword.

Exception 2: Put a space between the () used in a cast and the expression whose type is cast: (void *) 0.

Break long lines before the ternary operators ? and :, rather than after them, e.g.

return (out_port != VIGP_CONTROL_PATH
? alpheus_output_port(dp, skb, out_port)
: alpheus_output_control(dp, skb, fwd_save_skb(skb),

VIGR_ACTION));

Parenthesize the operands of && and || if operator precedence makes it necessary, or if the operands are themselves
expressions that use && and ||, but not otherwise. Thus:

if (rule && (!best || rule->priority > best->priority)) {
best = rule;

}

but:

if (!isdigit((unsigned char)s[0]) ||
!isdigit((unsigned char)s[1]) ||
!isdigit((unsigned char)s[2])) {
printf("string %s does not start with 3-digit code\n", s);

}

Do parenthesize a subexpression that must be split across more than one line, e.g.:

*idxp = ((l1_idx << PORT_ARRAY_L1_SHIFT) |
(l2_idx << PORT_ARRAY_L2_SHIFT) |
(l3_idx << PORT_ARRAY_L3_SHIFT));

Breaking a long line after a binary operator gives its operands a more consistent look, since each operand has the same
horizontal position. This makes the end-of-line position a good choice when the operands naturally resemble each
other, as in the previous two examples. On the other hand, breaking before a binary operator better draws the eye
to the operator, which can help clarify code by making it more obvious what’s happening, such as in the following
example:

if (!ctx.freezing
&& xbridge->has_in_band
&& in_band_must_output_to_local_port(flow)
&& !actions_output_to_local_port(&ctx)) {

Thus, decide whether to break before or after a binary operator separately in each situation, based on which of these
factors appear to be more important.

Try to avoid casts. Don’t cast the return value of malloc().

The sizeof operator is unique among C operators in that it accepts two very different kinds of operands: an expres-
sion or a type. In general, prefer to specify an expression, e.g. int *x = xmalloc(sizeof *x);. When the
operand of sizeof is an expression, there is no need to parenthesize that operand, and please don’t.

Use the ARRAY_SIZE macro from lib/util.h to calculate the number of elements in an array.

When using a relational operator like < or ==, put an expression or variable argument on the left and a constant
argument on the right, e.g. x == 0, not 0 == x.
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Blank Lines

Put one blank line between top-level definitions of functions and global variables.

C DIALECT

Most C99 features are OK because they are widely implemented:

• Flexible array members (e.g. struct { int foo[]; }).

• static inline functions (but no other forms of inline, for which GCC and C99 have differing interpre-
tations).

• long long

• bool and <stdbool.h>, but don’t assume that bool or _Bool can only take on the values 0 or 1, because
this behavior can’t be simulated on C89 compilers.

Also, don’t assume that a conversion to bool or _Bool follows C99 semantics, i.e. use (bool)
(some_value != 0) rather than (bool) some_value. The latter might produce unexpected results
on non-C99 environments. For example, if bool is implemented as a typedef of char and some_value =
0x10000000.

• Designated initializers (e.g. struct foo foo = { .a = 1 }; and int a[] = { [2] = 5 };).

• Mixing of declarations and code within a block. Favor positioning that allows variables to be initialized at their
point of declaration.

• Use of declarations in iteration statements (e.g. for (int i = 0; i < 10; i++)).

• Use of a trailing comma in an enum declaration (e.g. enum { x = 1, };).

As a matter of style, avoid // comments.

Avoid using GCC or Clang extensions unless you also add a fallback for other compilers. You can, however, use
C99 features or GCC extensions also supported by Clang in code that compiles only on GNU/Linux (such as lib/
netdev-linux.c), because GCC is the system compiler there.

Python

When introducing new Python code, try to follow Python’s PEP 8 style. Consider running the pep8 or flake8 tool
against your code to find issues.

Libraries

When introducing a new library, follow Open vSwitch Library ABI guide

8.1.4 Open vSwitch Windows Datapath Coding Style

The coding style guide gives the flexibility for each platform to use its own coding style for the kernel datapath. This
file describes the specific coding style used in most of the C files in the Windows kernel datapath of the Open vSwitch
distribution.

Most of the coding conventions applicable for the Open vSwitch distribution are applicable to the Windows kernel dat-
apath as well. There are some exceptions and new guidelines owing to the commonly followed practices in Windows
kernel/driver code. They are noted as follows:
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Basics

• Limit lines to 79 characters.

Many times, this is not possible due to long names of functions and it is fine to go beyond the characters limit.
One common example is when calling into NDIS functions.

Types

Use data types defined by Windows for most of the code. This is a common practice in Windows driver code, and it
makes integrating with the data structures and functions defined by Windows easier. Example: DWORD and BOOLEAN.

Use caution in portions of the code that interface with the OVS userspace. OVS userspace does not use Windows
specific data types, and when copying data back and forth between kernel and userspace, care should be exercised.

Naming

It is common practice to use camel casing for naming variables, functions and files in Windows. For types, especially
structures, unions and enums, using all upper case letters with words separated by ‘_’ is common. These practices can
be used for OVS Windows datapath. However, use the following guidelines:

• Use lower case to begin the name of a variable.

• Do not use ‘_’ to begin the name of the variable. ‘_’ is to be used to begin the parameters of a pre-processor
macro.

• Use upper case to begin the name of a function, enum, file name etc.

• Static functions whose scope is limited to the file they are defined in can be prefixed with ‘_’. This is not
mandatory though.

• For types, use all upper case for all letters with words separated by ‘_’. If camel casing is preferred, use upper
case for the first letter.

• It is a common practice to define a pointer type by prefixing the letter ‘P’ to a data type. The same practice can
be followed here as well.

For example:

static __inline BOOLEAN
OvsDetectTunnelRxPkt(POVS_FORWARDING_CONTEXT ovsFwdCtx,

POVS_FLOW_KEY flowKey)
{

POVS_VPORT_ENTRY tunnelVport = NULL;

if (!flowKey->ipKey.nwFrag &&
flowKey->ipKey.nwProto == IPPROTO_UDP &&
flowKey->ipKey.l4.tpDst == VXLAN_UDP_PORT_NBO) {
tunnelVport = OvsGetTunnelVport(OVSWIN_VPORT_TYPE_VXLAN);
ovsActionStats.rxVxlan++;

} else {
return FALSE;

}

if (tunnelVport) {
ASSERT(ovsFwdCtx->tunnelRxNic == NULL);
ovsFwdCtx->tunnelRxNic = tunnelVport;
return TRUE;

(continues on next page)
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(continued from previous page)

}

return FALSE;
}

For declaring variables of pointer type, use of the pointer data type prefixed with ‘P’ is preferred over using ‘*’. This
is not mandatory though, and is only prescribed since it is a common practice in Windows.

Example, #1 is preferred over #2 though #2 is also equally correct:

1. PNET_BUFFER_LIST curNbl;

2. NET_BUFFER_LIST *curNbl;

Comments

Comments should be written as full sentences that start with a capital letter and end with a period. Putting two spaces
between sentences is not necessary.

// can be used for comments as long as the comment is a single line comment. For block comments, use /* */
comments

Functions

Put the return type, function name, and the braces that surround the function’s code on separate lines, all starting in
column 0.

Before each function definition, write a comment that describes the function’s purpose, including each parameter,
the return value, and side effects. References to argument names should be given in single-quotes, e.g. ‘arg’. The
comment should not include the function name, nor need it follow any formal structure. The comment does not need
to describe how a function does its work, unless this information is needed to use the function correctly (this is often
better done with comments inside the function).

Mention any side effects that the function has that are not obvious based on the name of the function or based on the
workflow it is called from.

In the interest of keeping comments describing functions similar in structure, use the following template.

/*
*----------------------------------------------------------------------------

* Any description of the function, arguments, return types, assumptions and

* side effects.

*----------------------------------------------------------------------------

*/

Source Files

Each source file should state its license in a comment at the very top, followed by a comment explaining the purpose
of the code that is in that file. The comment should explain how the code in the file relates to code in other files. The
goal is to allow a programmer to quickly figure out where a given module fits into the larger system.

The first non-comment line in a .c source file should be:

#include <precomp.h>
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#include directives should appear in the following order:

1. #include <precomp.h>

2. The module’s own headers, if any. Including this before any other header (besides <precomp.h>) ensures
that the module’s header file is self-contained (see Header Files) below.

3. Standard C library headers and other system headers, preferably in alphabetical order. (Occasionally one en-
counters a set of system headers that must be included in a particular order, in which case that order must take
precedence.)

4. Open vSwitch headers, in alphabetical order. Use "", not <>, to specify Open vSwitch header names.

8.1.5 Open vSwitch Documentation Style

This file describes the documentation style used in all documentation found in Open vSwitch. Documentation includes
any documents found in Documentation along with any README, MAINTAINERS, or generally rst suffixed
documents found in the project tree.

Note: This guide only applies to documentation for Open vSwitch v2.7. or greater. Previous versions of Open
vSwitch used a combination of Markdown and raw plain text, and guidelines for these are not detailed here.

reStructuredText vs. Sphinx

reStructuredText (rST) is the syntax, while Sphinx is a documentation generator. Sphinx introduces a number of
extensions to rST, like the :ref: role, which can and should be used in documentation, but these will not work
correctly on GitHub. As such, these extensions should not be used in any documentation in the root level, such as the
README.

rST Conventions

Basics

Many of the basic documentation guidelines match those of the Open vSwitch Coding Style.

• Use reStructuredText (rST) for all documentation.

Sphinx extensions can be used, but only for documentation in the Documentation folder.

• Limit lines at 79 characters.

Note: An exception to this rule is text within code-block elements that cannot be wrapped and links within
references.

• Use spaces for indentation.

• Match indentation levels.

A change in indentation level usually signifies a change in content nesting, by either closing the existing level
or introducing a new level.

• Avoid trailing spaces on lines.

• Include a license (see this file) in all docs.
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• Most importantly, always build and display documentation before submitting changes! Docs aren’t unit testable,
so visible inspection is necessary.

File Names

• Use hyphens as space delimiters. For example: my-readme-document.rst

Note: An exception to this rule is any man pages, which take an trailing number corresponding to the number
of arguments required. This number is preceded by an underscore.

• Use lowercase filenames.

Note: An exception to this rule is any documents found in the root-level of the project.

Titles

• Use the following headers levels.

======= Heading 0 (reserved for the title in a document)
------- Heading 1
~~~~~~~ Heading 2
+++++++ Heading 3
''''''' Heading 4

Note: Avoid using lower heading levels by rewriting and reorganizing the information.

• Under- and overlines should be of the same length as that of the heading text.

• Use “title case” for headers.

Code

• Use :: to prefix code.

• Don’t use syntax highlighting such as .. highlight:: <syntax> or code-block:: <syntax>
because it depends on external pygments library.

• Prefix commands with $.

• Where possible, include fully-working snippets of code. If there pre-requisites, explain what they are and how
to achieve them.

Admonitions

• Use admonitions to call attention to important information.:
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.. note::

This is a sample callout for some useful tip or trick.

Example admonitions include: warning, important, note, tip or seealso.

• Use notes sparingly. Avoid having more than one per subsection.

Tables

• Use either graphic tables, list tables or CSV tables.

Graphic tables

.. table:: OVS-Linux kernel compatibility

============ ==============
Open vSwitch Linux kernel
============ ==============
1.4.x 2.6.18 to 3.2
1.5.x 2.6.18 to 3.2
1.6.x 2.6.18 to 3.2
============ ==============

.. table:: OVS-Linux kernel compatibility

+--------------+---------------+
| Open vSwitch | Linux kernel |
+==============+===============+
| 1.4.x | 2.6.18 to 3.2 |
+--------------+---------------+
| 1.5.x | 2.6.18 to 3.2 |
+--------------+---------------+
| 1.6.x | 2.6.18 to 3.2 |
+--------------+---------------+

Note: The table role - .. table:: <name> - can be safely omitted.

List tables

.. list-table:: OVS-Linux kernel compatibility
:widths: 10 15
:header-rows: 1

* - Open vSwitch
- Linux kernel

* - 1.4.x
- 2.6.18 to 3.2

* - 1.5.x
- 2.6.18 to 3.2

(continues on next page)
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(continued from previous page)

* - 1.6.x
- 2.6.18 to 3.2

CSV tables

.. csv-table:: OVS-Linux kernel compatibility
:header: Open vSwitch, Linux kernel
:widths: 10 15

1.4.x, 2.6.18 to 3.2
1.5.x, 2.6.18 to 3.2
1.6.x, 2.6.18 to 3.2

Cross-referencing

• To link to an external file or document, include as a link.:

Here's a `link <http://openvswitch.org>`__ to the Open vSwitch website.

Here's a `link`_ in reference style.

.. _link: http://openvswitch.org

• You can also use citations.:

Refer to the Open vSwitch documentation [1]_.

References
----------

.. [1]: http://openvswitch.org

• To cross-reference another doc, use the doc role.:

Here is a link to the :doc:`/README.rst`

Note: This is a Sphinx extension. Do not use this in any top-level documents.

• To cross-reference an arbitrary location in a doc, use the ref role.:

.. _sample-crossref

Title
~~~~~

Hello, world.

Another Title
~~~~~~~~~~~~~

(continues on next page)
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(continued from previous page)

Here is a cross-reference to :ref:`sample-crossref`.

Note: This is a Sphinx extension. Do not use this in any top-level documents.

Figures and Other Media

• All images should be in PNG format and compressed where possible. For PNG files, use OptiPNG and Ad-
vanceCOMP’s advpng:

$ optipng -o7 -zm1-9 -i0 -strip all <path_to_png>
$ advpng -z4 <path_to_png>

• Any ASCII text “images” should be included in code-blocks to preserve formatting

• Include other reStructuredText verbatim in a current document

Comments

• Comments are indicated by means of the .. marker.:

.. TODO(stephenfin) This section needs some work. This TODO will not
appear in the final generated document, however.

Man Pages

In addition to the above, man pages have some specific requirements:

• You must define the following sections:

– Synopsis

– Description

– Options

Note that NAME is not included - this is automatically generated by Sphinx and should not be manually defined.
Also note that these do not need to be uppercase - Sphinx will do this automatically.

Additional sections are allowed. Refer to man-pages(8) for information on the sections generally allowed.

• You must not define a NAME section.

See above.

• The OPTIONS section must describe arguments and options using the program and option directives.

This ensures the output is formatted correctly and that you can cross-reference various programs and commands
from the documentation. For example:

.. program:: ovs-do-something

.. option:: -f, --force

(continues on next page)
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(continued from previous page)

Force the operation

.. option:: -b <bridge>, --bridge <bridge>

Name or ID of bridge

Important: Option argument names should be enclosed in angle brackets, as above.

• Any references to the application or any other Open vSwitch application must be marked up using the program
role.

This allows for easy linking in the HTML output and correct formatting in the man page output. For example:

To do something, run :program:`ovs-do-something`.

• The man page must be included in the list of man page documents found in conf.py

Refer to existing man pages, such as ovs-vlan-test for a worked example.

Writing Style

Follow these guidelines to ensure readability and consistency of the Open vSwitch documentation. These guidelines
are based on the /*IBM Style Guide/*.

• Use standard US English

Use a spelling and grammar checking tool as necessary.

• Expand initialisms and acronyms on first usage.

Commonly used terms like CPU or RAM are allowed.

Do not use Do use
OVS is a virtual switch. OVS has. . . Open vSwitch (OVS) is a virtual switch. OVS has. . .
The VTEP emulator is. . . The Virtual Tunnel Endpoint (VTEP) emulator is. . .

• Write in the active voice

The subject should do the verb’s action, rather than be acted upon.

Do not use Do use
A bridge is created by you Create a bridge

• Write in the present tense

Do not use Do use
Once the bridge is created, you can create a port Once the bridge is created, create a port

• Write in second person

Do not use Do use
To create a bridge, the user runs: To create a bridge, run:
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• Keep sentences short and concise

• Eliminate needless politeness

Avoid “please” and “thank you”

Helpful Tools

There are a number of tools, online and offline, which can be used to preview documents are you edit them:

• rst.ninjs.org

An online rST editor/previewer

• ReText

A simple but powerful editor for Markdown and reStructuredText. ReText is written in Python.

• restview

A viewer for ReStructuredText documents that renders them on the fly.

Useful Links

• Quick reStructuredText

• Sphinx Documentation

8.1.6 Open vSwitch Library ABI Updates

This file describes the manner in which the Open vSwitch shared library manages different ABI and API revisions.
This document aims to describe the background, goals, and concrete mechanisms used to export code-space function-
ality so that it may be shared between multiple applications.

Definitions

Table 1: Definitions for terms appearing in this document
Term Definition
ABI Abbreviation of Application Binary Interface
API Abbreviation of Application Programming Interface
Application Binary In-
terface

The low-level runtime interface exposed by an object file.

Application Program-
ming Interface

The source-code interface descriptions intended for use in multiple translation units
when compiling.

Code library A collection of function implementations and definitions intended to be exported and
called through a well-defined interface.

Shared Library A code library which is imported at run time.

Overview

C and C++ applications often use ‘external’ functionality, such as printing specialized data types or parsing mes-
sages, which has been exported for common use. There are many possible ways for applications to call such external
functionality, for instance by including an appropriate inline definition which the compiler can emit as code in each
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function it appears. One such way of exporting and importing such functionality is through the use of a library of
code.

When a compiler builds object code from source files to produce object code, the results are binary data arranged with
specific calling conventions, alignments, and order suitable for a run-time environment or linker. This result defines a
specific ABI.

As library of code develops and its exported interfaces change over time, the resulting ABI may change as well. There-
fore, care must be taken to ensure the changes made to libraries of code are effectively communicated to applications
which use them. This includes informing the applications when incompatible changes are made.

The Open vSwitch project exports much of its functionality through multiple such libraries of code. These libraries
are intended for multiple applications to import and use. As the Open vSwitch project continues to evolve and change,
its exported code will evolve as well. To ensure that applications linking to these libraries are aware of these changes,
Open vSwitch employs libtool version stamps.

ABI Policy

Open vSwitch will export the ABI version at the time of release, such that the library name will be the major.minor
version, and the rest of the release version information will be conveyed with a libtool interface version.

The intent is for Open vSwitch to maintain an ABI stability for each minor revision only (so that Open vSwitch release
2.5 carries a guarantee for all 2.5.ZZ micro-releases). This means that any porting effort to stable branches must take
not to disrupt the existing ABI.

In the event that a bug must be fixed in a backwards-incompatible way, developers must bump the libtool ‘current’
version to inform the linker of the ABI breakage. This will signal that libraries exposed by the subsequent release will
not maintain ABI stability with the previous version.

Coding

At build time, if building shared libraries by passing the –enable-shared arguments to ./configure, version information
is extracted from the $PACKAGE_VERSION automake variable and formatted into the appropriate arguments. These
get exported for use in Makefiles as $OVS_LTINFO, and passed to each exported library along with other LDFLAGS.

Therefore, when adding a new library to the build system, these version flags should be included with the $LDFLAGS
variable. Nothing else needs to be done.

Changing an exported function definition (from a file in, for instance lib/*.h) is only permitted from minor release to
minor release. Likewise changes to library data structures should only occur from minor release to minor release.

8.2 Mailing Lists

Important: Report security issues only to security@openvswitch.org. For more information, refer to our security
policies.

8.2.1 ovs-announce

The ovs-announce mailing list is used to announce new versions of Open vSwitch and is extremely low-volume.
(subscribe) (archives)
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8.2.2 ovs-discuss

The ovs-discuss mailing list is used to discuss plans and design decisions for Open vSwitch. It is also an appropriate
place for user questions. (subscribe) (archives)

8.2.3 ovs-dev

The ovs-dev mailing list is used to discuss development and review code before being committed. (subscribe)
(archives)

8.2.4 ovs-git

The ovs-git mailing list hooks into Open vSwitch’s version control system to receive commits. (subscribe) (archives)

8.2.5 ovs-build

The ovs-build mailing list hooks into Open vSwitch’s continuous integration system to receive build reports. (sub-
scribe) (archives)

8.2.6 bugs

The bugs mailing list is an alias for the discuss mailing list.

8.2.7 security

The security mailing list is for submitting security vulnerabilities to the security team.

8.3 Patchwork

Open vSwitch uses Patchwork to track the status of patches sent to the ovs-dev mailing list. The Open vSwitch
Patchwork instance can be found on ozlabs.org.

Patchwork provides a number of useful features for developers working on Open vSwitch:

• Tracking the lifecycle of patches (accepted, rejected, under-review, . . . )

• Assigning reviewers (delegates) to patches

• Downloading/applying patches, series, and bundles via the web UI or the REST API (see git-pw)

• A usable UI for viewing patch discussions

8.3.1 git-pw

The git-pw tool provides a way to download and apply patches, series, and bundles. You can install git-pw from PyPi
like so:

$ pip install --user git-pw
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To actually use git-pw, you must configure it with the Patchwork instance URL, Patchwork project, and your Patchwork
user authentication token. The URL and project are provided below, but you must obtain your authentication token
from your Patchwork User Profile page. If you do not already have a Patchwork user account, you should create one
now.

Once your token is obtained, configure git-pw as below. Note that this must be run from within the Open vSwitch Git
repository:

$ git config pw.server https://patchwork.ozlabs.org/
$ git config pw.project openvswitch
$ git config pw.token $PW_TOKEN # using the token obtained earlier

Once configured, run the following to get information about available commands:

$ git pw --help

8.3.2 pwclient

The pwclient is a legacy tool that provides some of the functionality of git-pw but uses the legacy XML-RPC API. It
is considered deprecated in its current form and git-pw should be used instead.

8.4 Open vSwitch Release Process

This document describes the process ordinarily used for Open vSwitch development and release. Exceptions are
sometimes necessary, so all of the statements here should be taken as subject to change through rough consensus of
Open vSwitch contributors, obtained through public discussion on, e.g., ovs-dev or the #openvswitch IRC channel.

8.4.1 Release Strategy

Open vSwitch feature development takes place on the “master” branch. Ordinarily, new features are rebased against
master and applied directly. For features that take significant development, sometimes it is more appropriate to merge
a separate branch into master; please discuss this on ovs-dev in advance.

The process of making a release has the following stages. See Release Scheduling for the timing of each stage:

1. “Soft freeze” of the master branch.

During the freeze, we ask committers to refrain from applying patches that add new features unless those patches
were already being publicly discussed and reviewed before the freeze began. Bug fixes are welcome at any time.
Please propose and discuss exceptions on ovs-dev.

2. Fork a release branch from master, named for the expected release number, e.g. “branch-2.3” for the branch that
will yield Open vSwitch 2.3.x.

Release branches are intended for testing and stabilization. At this stage and in later stages, they should receive
only bug fixes, not new features. Bug fixes applied to release branches should be backports of corresponding
bug fixes to the master branch, except for bugs present only on release branches (which are rare in practice).

At this stage, sometimes there can be exceptions to the rule that a release branch receives only bug fixes. Like
bug fixes, new features on release branches should be backports of the corresponding commits on the master
branch. Features to be added to release branches should be limited in scope and risk and discussed on ovs-dev
before creating the branch.

344 Chapter 8. Open vSwitch Internals

https://patchwork.ozlabs.org/user/


Open vSwitch, Release 2.12.90

3. When committers come to rough consensus that the release is ready, they release the .0 release on its branch, e.g.
2.3.0 for branch-2.3. To make the actual release, a committer pushes a signed tag named, e.g. v2.3.0, to the Open
vSwitch repository, makes a release tarball available on openvswitch.org, and posts a release announcement to
ovs-announce.

4. As bug fixes accumulate, or after important bugs or vulnerabilities are fixed, committers may make additional
releases from a branch: 2.3.1, 2.3.2, and so on. The process is the same for these additional release as for a .0
release.

At most two release branches are formally maintained at any given time: the latest release and the latest release
designed as LTS. An LTS release is one that the OVS project has designated as being maintained for a longer period
of time. Currently, an LTS release is maintained until the next LTS is chosen. There is not currently a strict guideline
on how often a new LTS release is chosen, but so far it has been about every 2 years. That could change based on
the current state of OVS development. For example, we do not want to designate a new release as LTS that includes
disruptive internal changes, as that may make it harder to support for a longer period of time. Discussion about
choosing the next LTS release occurs on the OVS development mailing list.

8.4.2 Release Numbering

The version number on master should normally end in .90. This indicates that the Open vSwitch version is “almost”
the next version to branch.

Forking master into branch-x.y requires two commits to master. The first is titled “Prepare for x.y.0” and increments
the version number to x.y. This is the initial commit on branch-x.y. The second is titled “Prepare for post-x.y.0
(x.y.90)” and increments the version number to x.y.90.

The version number on a release branch is x.y.z, where z is initially 0. Making a release requires two commits. The
first is titled Set release dates for x.y.z. and updates NEWS and debian/changelog to specify the release date of the
new release. This commit is the one made into a tarball and tagged. The second is titled Prepare for x.y.(z+1). and
increments the version number and adds a blank item to NEWS with an unspecified date.

8.4.3 Release Scheduling

Open vSwitch makes releases at the following six-month cadence. All dates are approximate:

Time (months) Dates Stage
T Mar 1, Sep 1 Begin x.y release cycle
T + 4 Jul 1, Jan 1 “Soft freeze” master for x.y release
T + 4.5 Jul 15, Jan 15 Fork branch-x.y from master
T + 5.5 Aug 15, Feb 15 Release version x.y.0

8.4.4 Contact

Use dev@openvswitch.org to discuss the Open vSwitch development and release process.

8.5 Reporting Bugs in Open vSwitch

We are eager to hear from users about problems that they have encountered with Open vSwitch. This file documents
how best to report bugs so as to ensure that they can be fixed as quickly as possible.

Please report bugs by sending email to bugs@openvswitch.org.
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For reporting security vulnerabilities, please read Open vSwitch’s Security Process.

The most important parts of your bug report are the following:

• What you did that make the problem appear.

• What you expected to happen.

• What actually happened.

Please also include the following information:

• The Open vSwitch version number (as output by ovs-vswitchd --version).

• The Git commit number (as output by git rev-parse HEAD), if you built from a Git snapshot.

• Any local patches or changes you have applied (if any).

The following are also handy sometimes:

• The kernel version on which Open vSwitch is running (from /proc/version) and the distribution and ver-
sion number of your OS (e.g. “Centos 5.0”).

• The contents of the vswitchd configuration database (usually /etc/openvswitch/conf.db).

• The output of ovs-dpctl show.

• If you have Open vSwitch configured to connect to an OpenFlow controller, the output of ovs-ofctl show
<bridge> for each <bridge> configured in the vswitchd configuration database.

• A fix or workaround, if you have one.

• Any other information that you think might be relevant.

Important: bugs@openvswitch.org is a public mailing list, to which anyone can subscribe, so do not include confi-
dential information in your bug report.

8.6 Open vSwitch’s Security Process

This is a proposed security vulnerability reporting and handling process for Open vSwitch. It is based on the Open-
Stack vulnerability management process described at https://wiki.openstack.org/wiki/Vulnerability_Management.

The OVS security team coordinates vulnerability management using the ovs-security mailing list. Membership in the
security team and subscription to its mailing list consists of a small number of trustworthy people, as determined by
rough consensus of the Open vSwitch committers on the ovs-committers mailing list. The Open vSwitch security team
should include Open vSwitch committers, to ensure prompt and accurate vulnerability assessments and patch review.

We encourage everyone involved in the security process to GPG-sign their emails. We additionally encourage GPG-
encrypting one-on-one conversations as part of the security process.

8.6.1 What is a vulnerability?

All vulnerabilities are bugs, but not every bug is a vulnerability. Vulnerabilities compromise one or more of:

• Confidentiality (personal or corporate confidential data).

• Integrity (trustworthiness and correctness).

• Availability (uptime and service).

346 Chapter 8. Open vSwitch Internals

mailto:bugs@openvswitch.org
https://wiki.openstack.org/wiki/Vulnerability_Management


Open vSwitch, Release 2.12.90

Here are some examples of vulnerabilities to which one would expect to apply this process:

• A crafted packet that causes a kernel or userspace crash (Availability).

• A flow translation bug that misforwards traffic in a way likely to hop over security boundaries (Integrity).

• An OpenFlow protocol bug that allows a controller to read arbitrary files from the file system (Confidentiality).

• Misuse of the OpenSSL library that allows bypassing certificate checks (Integrity).

• A bug (memory corruption, overflow, . . . ) that allows one to modify the behaviour of OVS through external
configuration interfaces such as OVSDB (Integrity).

• Privileged information is exposed to unprivileged users (Confidentiality).

If in doubt, please do use the vulnerability management process. At worst, the response will be to report the bug
through the usual channels.

8.6.2 Step 1: Reception

To report an Open vSwitch vulnerability, send an email to the ovs-security mailing list (see contact at the end of this
document). A security team member should reply to the reporter acknowledging that the report has been received.

Consider reporting the information mentioned in Reporting Bugs in Open vSwitch, where relevant.

Reporters may ask for a GPG key while initiating contact with the security team to deliver more sensitive reports.

The Linux kernel has its own vulnerability management process. Handling of vulnerabilities that affect both the Open
vSwitch tree and the upstream Linux kernel should be reported through both processes. Send your report as a single
email to both the kernel and OVS security teams to allow those teams to most easily coordinate among themselves.

8.6.3 Step 2: Assessment

The security team should discuss the vulnerability. The reporter should be included in the discussion (via “CC”) to an
appropriate degree.

The assessment should determine which Open vSwitch versions are affected (e.g. every version, only the latest release,
only unreleased versions), the privilege required to take advantage of the vulnerability (e.g. any network user, any local
L2 network user, any local system user, connected OpenFlow controllers), the severity of the vulnerability, and how
the vulnerability may be mitigated (e.g. by disabling a feature).

The treatment of the vulnerability could end here if the team determines that it is not a realistic vulnerability.

8.6.4 Step 3a: Document

The security team develops a security advisory document. The security team may, at its discretion, include the reporter
(via “CC”) in developing the security advisory document, but in any case should accept feedback from the reporter
before finalizing the document. When the document is final, the security team should obtain a CVE for the vulnerability
from a CNA (https://cve.mitre.org/cve/cna.html).

The document credits the reporter and describes the vulnerability, including all of the relevant information from the
assessment in step 2. Suitable sections for the document include:

* Title: The CVE identifier, a short description of the
vulnerability. The title should mention Open vSwitch.

In email, the title becomes the subject. Pre-release advisories
are often passed around in encrypted email, which have plaintext

(continues on next page)
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(continued from previous page)

subjects, so the title should not be too specific.

* Description: A few paragraphs describing the general
characteristics of the vulnerability, including the versions of
Open vSwitch that are vulnerable, the kind of attack that
exposes the vulnerability, and potential consequences of the
attack.

The description should re-state the CVE identifier, in case the
subject is lost when an advisory is sent over email.

* Mitigation: How an Open vSwitch administrator can minimize the
potential for exploitation of the vulnerability, before applying
a fix. If no mitigation is possible or recommended, explain
why, to reduce the chance that at-risk users believe they are
not at risk.

* Fix: Describe how to fix the vulnerability, perhaps in terms of
applying a source patch. The patch or patches themselves, if
included in the email, should be at the very end of the advisory
to reduce the risk that a reader would stop reading at this
point.

* Recommendation: A concise description of the security team's
recommendation to users.

* Acknowledgments: Thank the reporters.

* Vulnerability Check: A step-by-step procedure by which a user
can determine whether an installed copy of Open vSwitch is
vulnerable.

The procedure should clearly describe how to interpret the
results, including expected results in vulnerable and
not-vulnerable cases. Thus, procedures that produce clear and
easily distinguished results are preferred.

The procedure should assume as little understanding of Open
vSwitch as possible, to make it more likely that a competent
administrator who does not specialize in Open vSwitch can
perform it successfully.

The procedure should have minimal dependencies on tools that are
not widely installed.

Given a choice, the procedure should be one that takes at least
some work to turn into a useful exploit. For example, a
procedure based on "ovs-appctl" commands, which require local
administrator access, is preferred to one that sends test
packets to a machine, which only requires network connectivity.

The section should say which operating systems it is designed
for. If the procedure is likely to be specific to particular
architectures (e.g. x86-64, i386), it should state on which ones
it has been tested.

This section should state the risks of the procedure. For
(continues on next page)
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(continued from previous page)

example, if it can crash Open vSwitch or disrupt packet
forwarding, say so.

It is more useful to explain how to check an installed and
running Open vSwitch than one built locally from source, but if
it is easy to use the procedure from a sandbox environment, it
can be helpful to explain how to do so.

* Patch: If a patch or patches are available, and it is practical
to include them in the email, put them at the end. Format them
as described in :doc:`contributing/submitting-patches`, that is, as
output by "git format-patch".

The patch subjects should include the version for which they are
suited, e.g. "[PATCH branch-2.3]" for a patch against Open
vSwitch 2.3.x. If there are multiple patches for multiple
versions of Open vSwitch, put them in separate sections with
clear titles.

Multiple patches for a single version of Open vSwitch, that must
be stacked on top of each other to fix a single vulnerability,
are undesirable because users are less likely to apply all of
them correctly and in the correct order.

Each patch should include a Vulnerability tag with the CVE
identifier, a Reported-by tag or tags to credit the reporters,
and a Signed-off-by tag to acknowledge the Developer's
Certificate of Origin. It should also include other appropriate
tags, such as Acked-by tags obtained during review.

CVE-2016-2074 is an example advisory document.

8.6.5 Step 3b: Fix

Steps 3a and 3b may proceed in parallel.

The security team develops and obtains (private) reviews for patches that fix the vulnerability. If necessary, the security
team pulls in additional developers, who must agree to maintain confidentiality.

8.6.6 Step 4: Embargoed Disclosure

The security advisory and patches are sent to downstream stakeholders, with an embargo date and time set from the
time sent. Downstream stakeholders are expected not to deploy or disclose patches until the embargo is passed.

A disclosure date is negotiated by the security team working with the bug submitter as well as vendors. However, the
Open vSwitch security team holds the final say when setting a disclosure date. The timeframe for disclosure is from
immediate (esp. if it’s already publicly known) to a few weeks. As a basic default policy, we expect report date to
disclosure date to be 10 to 15 business days.

Operating system vendors are obvious downstream stakeholders. It may not be necessary to be too choosy about
who to include: any major Open vSwitch user who is interested and can be considered trustworthy enough could be
included. To become a downstream stakeholder, email the ovs-security mailing list.

If the vulnerability is already public, skip this step.
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8.6.7 Step 5: Public Disclosure

When the embargo expires, push the (reviewed) patches to appropriate branches, post the patches to the ovs-dev
mailing list (noting that they have already been reviewed and applied), post the security advisory to appropriate mailing
lists (ovs-announce, ovs-discuss), and post the security advisory on the Open vSwitch webpage.

When the patch is applied to LTS (long-term support) branches, a new version should be released.

The security advisory should be GPG-signed by a security team member with a key that is in a public web of trust.

Contact

Report security vulnerabilities to the ovs-security mailing list: security@openvswitch.org

Report problems with this document to the ovs-bugs mailing list: bugs@openvswitch.org

8.7 The Linux Foundation Open vSwitch Project Charter

Effective August 9, 2016

1. Mission of Open vSwitch Project (“OVS”).

The mission of OVS is to:

a. create an open source, production quality virtual networking platform, including a software switch, control
plane, and related components, that supports standard management interfaces and opens the forwarding
functions to programmatic extension and control; and

b. host the infrastructure for an OVS community, establishing a neutral home for community assets, infras-
tructure, meetings, events and collaborative discussions.

2. Technical Steering Committee (“TSC”)

a. A TSC shall be composed of the Committers for OVS. The list of Committers on the TSC are available at
Committers.

b. TSC projects generally will involve Committers and Contributors:

i. Contributors: anyone in the technical community that contributes code, documentation or other tech-
nical artifacts to the OVS codebase.

ii. Committers: Contributors who have the ability to commit directly to a project’s main branch or repos-
itory on an OVS project.

c. Participation in as a Contributor and/or Committer is open to anyone under the terms of this Charter. The
TSC may:

i. establish work flows and procedures for the submission, approval and closure or archiving of projects,

ii. establish criteria and processes for the promotion of Contributors to Committer status, available at
OVS Committer Grant/Revocation Policy. and

iii. amend, adjust and refine the roles of Contributors and Committers listed in Section 2.b., create new
roles and publicly document responsibilities and expectations for such roles, as it sees fit, available at
Expectations for Developers with Open vSwitch Repo Access.

d. Responsibilities: The TSC is responsible for overseeing OVS activities and making decisions that impact
the mission of OVS, including:

i. coordinating the technical direction of OVS;
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ii. approving project proposals (including, but not limited to, incubation, deprecation and changes to a
project’s charter or scope);

iii. creating sub-committees or working groups to focus on cross-project technical issues and require-
ments;

iv. communicating with external and industry organizations concerning OVS technical matters;

v. appointing representatives to work with other open source or standards communities;

vi. establishing community norms, workflows or policies including processes for contributing (available
at Contributing to Open vSwitch), issuing releases, and security issue reporting policies;

vii. discussing, seeking consensus, and where necessary, voting on technical matters relating to the code
base that affect multiple projects; and

viii. coordinate any marketing, events or communications with The Linux Foundation.

3. TSC Voting

a. While it is the goal of OVS to operate as a consensus based community, if any TSC decision requires a
vote to move forward, the Committers shall vote on a one vote per Committer basis.

b. TSC votes should be conducted by email. In the case of a TSC meeting where a valid vote is taken, the
details of the vote and any discussion should be subsequently documented for the community (e.g. to the
appropriate email mailing list).

c. Quorum for TSC meetings shall require two-thirds of the TSC representatives. The TSC may continue
to meet if quorum is not met, but shall be prevented from making any decisions requiring a vote at the
meeting.

d. Except as provided in Section 8.d. and 9.a., decisions by electronic vote (e.g. email) shall require a
majority of all voting TSC representatives. Decisions by electronic vote shall be made timely, and unless
specified otherwise, within three (3) business days. Except as provided in Section 8.d. and 9.a., decisions
by vote at a meeting shall require a majority vote, provided quorum is met.

e. In the event of a tied vote with respect to an action that cannot be resolved by the TSC, any TSC represen-
tative shall be entitled to refer the matter to the Linux Foundation for assistance in reaching a decision.

4. Antitrust Guidelines

a. All participants in OVS shall abide by The Linux Foundation Antitrust Policy available at http://www.
linuxfoundation.org/antitrust-policy.

b. All members shall encourage open participation from any organization able to meet the participation re-
quirements, regardless of competitive interests. Put another way, the community shall not seek to exclude
any participant based on any criteria, requirements or reasons other than those that are reasonable and
applied on a non-discriminatory basis to all participants.

5. Code of Conduct

a. The TSC may adopt a specific OVS Project code of conduct, with approval from the LF.

6. Budget and Funding

a. The TSC shall coordinate any budget or funding needs with The Linux Foundation. Companies participat-
ing may be solicited to sponsor OVS activities and infrastructure needs on a voluntary basis.

b. The Linux Foundation shall have custody of and final authority over the usage of any fees, funds and other
cash receipts.

c. A General & Administrative (G&A) fee will be applied by the Linux Foundation to funds raised to cover
Finance, Accounting, and operations. The G&A fee shall equal 9% of OVS’s first $1,000,000 of gross
receipts and 6% of OVS’s gross receipts over $1,000,000.
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d. Under no circumstances shall The Linux Foundation be expected or required to undertake any action on
behalf of OVS that is inconsistent with the tax exempt purpose of The Linux Foundation.

7. General Rules and Operations.

The OVS project shall be conducted so as to:

a. engage in the work of the project in a professional manner consistent with maintaining a cohesive commu-
nity, while also maintaining the goodwill and esteem of The Linux Foundation in the open source software
community;

b. respect the rights of all trademark owners, including any branding and usage guidelines;

c. engage The Linux Foundation for all OVS press and analyst relations activities;

d. upon request, provide information regarding Project participation, including information regarding atten-
dance at Project-sponsored events, to The Linux Foundation; and

e. coordinate with The Linux Foundation in relation to any websites created directly for OVS.

8. Intellectual Property Policy

a. Members agree that all new inbound code contributions to OVS shall be made under the Apache License,
Version 2.0 (available at http://www.apache.org/licenses/LICENSE-2.0). All contributions shall be ac-
companied by a Developer Certificate of Origin sign-off (http://developercertificate.org) that is submitted
through a TSC and LF-approved contribution process.

b. All outbound code will be made available under the Apache License, Version 2.0.

c. All documentation will be contributed to and made available by OVS under the Apache License, Version
2.0.

d. For any new project source code, if an alternative inbound or outbound license is required for compli-
ance with the license for a leveraged open source project (e.g. GPLv2 for Linux kernel) or is otherwise
required to achieve OVS’s mission, the TSC may approve the use of an alternative license for specific
inbound or outbound contributions on an exception basis. Any exceptions must be approved by a majority
vote of the entire TSC and must be limited in scope to what is required for such purpose. Please email
tsc@openvswitch.org to obtain exception approval.

e. Subject to available funds, OVS may engage The Linux Foundation to determine the availability of, and
register, trademarks, service marks, which shall be owned by the LF.

9. Amendments

a. This charter may be amended by a two-thirds vote of the entire TSC, subject to approval by The Linux
Foundation.

8.8 Emeritus Status for OVS Committers

OVS committers are nominated and elected based on their impact on the Open vSwitch project. Over time, as commit-
ters’ responsibilities change, some may become unable or uninterested in actively participating in project governance.
Committer “emeritus” status provides a way for committers to take a leave of absence from OVS governance respon-
sibilities. The following guidelines clarify the process around the emeritus status for committers:

• A committer may choose to transition from active to emeritus, or from emeritus to active, by sending an email
to the committers mailing list.

• If a committer hasn’t been heard from in 6 months, and does not respond to reasonable attempts to contact him
or her, the other committers can vote as a majority to transition the committer from active to emeritus. (If the
committer resurfaces, he or she can transition back to active by sending an email to the committers mailing list.)
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• Emeritus committers may stay on the committers mailing list to continue to follow any discussions there.

• Emeritus committers do not nominate or vote in committer elections. From a governance perspective, they are
equivalent to a non-committer.

• Emeritus committers cannot merge patches to the OVS repository.

• Emeritus committers will be listed in a separate section in the MAINTAINERS.rst file to continue to recognize
their contributions to the project.

Emeritus status does not replace the procedures for forcibly removing a committer.

Note that just because a committer is not able to work on the project on a day-to-day basis, we feel they are still
capable of providing input on the direction of the project. No committer should feel pressured to move themselves to
this status. Again, it’s just an option for those that do not currently have the time or interest.

8.9 Expectations for Developers with Open vSwitch Repo Access

8.9.1 Pre-requisites

Be familiar with the guidelines and standards defined in Contributing to Open vSwitch.

8.9.2 Review

Code (yours or others’) must be reviewed publicly (by you or others) before you push it to the repository. With one
exception (see below), every change needs at least one review.

If one or more people know an area of code particularly well, code that affects that area should ordinarily get a review
from one of them.

The riskier, more subtle, or more complicated the change, the more careful the review required. When a change needs
careful review, use good judgment regarding the quality of reviews. If a change adds 1000 lines of new code, and a
review posted 5 minutes later says just “Looks good,” then this is probably not a quality review.

(The size of a change is correlated with the amount of care needed in review, but it is not strictly tied to it. A search
and replace across many files may not need much review, but one-line optimization changes can have widespread
implications.)

Your own small changes to fix a recently broken build (“make”) or tests (“make check”), that you believe to be visible
to a large number of developers, may be checked in without review. If you are not sure, ask for review. If you do push
a build fix without review, send the patch to ovs-dev afterward as usual, indicating in the email that you have already
pushed it.

Regularly review submitted code in areas where you have expertise. Consider reviewing other code as well.

8.9.3 Git conventions

Do not push merge commits to the Git repository without prior discussion on ovs-dev.

If you apply a change (yours or another’s) then it is your responsibility to handle any resulting problems, especially
broken builds and other regressions. If it is someone else’s change, then you can ask the original submitter to address
it. Regardless, you need to ensure that the problem is fixed in a timely way. The definition of “timely” depends on the
severity of the problem.

If a bug is present on master and other branches, fix it on master first, then backport the fix to other branches. Straight-
forward backports do not require additional review (beyond that for the fix on master).
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Feature development should be done only on master. Occasionally it makes sense to add a feature to the most recent
release branch, before the first actual release of that branch. These should be handled in the same way as bug fixes,
that is, first implemented on master and then backported.

Keep the authorship of a commit clear by maintaining a correct list of “Signed-off-by:”s. If a confusing situation
comes up, as it occasionally does, bring it up on the mailing list. If you explain the use of “Signed-off-by:” to a new
developer, explain not just how but why, since the intended meaning of “Signed-off-by:” is more important than the
syntax. As part of your explanation, quote or provide a URL to the Developer’s Certificate of Origin in Submitting
Patches.

Use Reported-by: and Tested-by: tags in commit messages to indicate the source of a bug report.

Keep the AUTHORS.rst file up to date.

8.9.4 Pre-Push Hook

The following script can be helpful because it provides an extra chance to check for mistakes while pushing to the
master branch of OVS or OVN. If you would like to use it, install it as hooks/pre-push in your .git directory
and make sure to mark it as executable with chmod +x. For maximum utility, make sure checkpatch.py is in
$PATH:

#! /bin/bash

remote=$1

case $remote in
ovs|ovn|origin) ;;

*) exit 0 ;;
esac

while read local_ref local_sha1 remote_ref remote_sha1; do
case $remote_ref in

refs/heads/master)
n=0
while read sha
do

n=$(expr $n + 1)
git log -1 $sha
echo
checkpatch.py -1 $sha

done <<EOF
$(git --no-pager log --pretty=%H $local_sha1...$remote_sha1)
EOF

b=${remote_ref#refs/heads/}
echo "You're about to push $n commits to protected branch $b on $remote."

read -p "Do you want to proceed? [y|n] " reply < /dev/tty
if echo $reply | grep -E '^[Yy]$' > /dev/null; then

:
else

exit 1
fi
;;

esac
done

(continues on next page)
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(continued from previous page)

exit 0

8.10 OVS Committer Grant/Revocation Policy

An OVS committer is a participant in the project with the ability to commit code directly to the master repository.
Commit access grants a broad ability to affect the progress of the project as presented by its most important artifact,
the code and related resources that produce working binaries of Open vSwitch. As such it represents a significant level
of trust in an individual’s commitment to working with other committers and the community at large for the benefit of
the project. It can not be granted lightly and, in the worst case, must be revocable if the trust placed in an individual
was inappropriate.

This document suggests guidelines for granting and revoking commit access. It is intended to provide a framework for
evaluation of such decisions without specifying deterministic rules that wouldn’t be sensitive to the nuance of specific
situations. In the end the decision to grant or revoke committer privileges is a judgment call made by the existing set
of committers.

8.10.1 Granting Commit Access

Granting commit access should be considered when a candidate has demonstrated the following in their interaction
with the project:

• Contribution of significant new features through the patch submission process where:

– Submissions are free of obvious critical defects

– Submissions do not typically require many iterations of improvement to be accepted

• Consistent participation in code review of other’s patches, including existing committers, with comments con-
sistent with the overall project standards

• Assistance to those in the community who are less knowledgeable through active participation in project forums
such as the ovs-discuss mailing list.

• Plans for sustained contribution to the project compatible with the project’s direction as viewed by current
committers.

• Commitment to meet the expectations described in the “Expectations of Developer’s with Open vSwitch Access”

The process to grant commit access to a candidate is simple:

• An existing committer nominates the candidate by sending an email to all existing committers with information
substantiating the contributions of the candidate in the areas described above.

• All existing committers discuss the pros and cons of granting commit access to the candidate in the email thread.

• When the discussion has converged or a reasonable time has elapsed without discussion developing (e.g. a few
business days) the nominator calls for a final decision on the candidate with a followup email to the thread.

• Each committer may vote yes, no, or abstain by replying to the email thread. A failure to reply is an implicit
abstention.

• After votes from all existing committers have been collected or a reasonable time has elapsed for them to be
provided (e.g. a couple of business days) the votes are evaluated. To be granted commit access the candidate
must receive yes votes from a majority of the existing committers and zero no votes. Since a no vote is effectively
a veto of the candidate it should be accompanied by a reason for the vote.
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• The nominator summarizes the result of the vote in an email to all existing committers.

• If the vote to grant commit access passed, the candidate is contacted with an invitation to become a committer
to the project which asks them to agree to the committer expectations documented on the project web site.

• If the candidate agrees access is granted by setting up commit access to the repos on github.

8.10.2 Revoking Commit Access

When a committer behaves in a manner that other committers view as detrimental to the future of the project, it raises a
delicate situation with the potential for the creation of division within the greater community. These situations should
be handled with care. The process in this case is:

• Discuss the behavior of concern with the individual privately and explain why you believe it is detrimental to
the project. Stick to the facts and keep the email professional. Avoid personal attacks and the temptation to
hypothesize about unknowable information such as the other’s motivations. Make it clear that you would prefer
not to discuss the behavior more widely but will have to raise it with other contributors if it does not change.
Ideally the behavior is eliminated and no further action is required. If not,

• Start an email thread with all committers, including the source of the behavior, describing the behavior and the
reason it is detrimental to the project. The message should have the same tone as the private discussion and
should generally repeat the same points covered in that discussion. The person whose behavior is being ques-
tioned should not be surprised by anything presented in this discussion. Ideally the wider discussion provides
more perspective to all participants and the issue is resolved. If not,

• Start an email thread with all committers except the source of the detrimental behavior requesting a vote on
revocation of commit rights. Cite the discussion among all committers and describe all the reasons why it
was not resolved satisfactorily. This email should be carefully written with the knowledge that the reasoning it
contains may be published to the larger community to justify the decision.

• Each committer may vote yes, no, or abstain by replying to the email thread. A failure to reply is an implicit
abstention.

• After all votes have been collected or a reasonable time has elapsed for them to be provided (e.g. a couple of
business days) the votes are evaluated. For the request to revoke commit access for the candidate to pass it must
receive yes votes from two thirds of the existing committers.

• anyone that votes no must provide their reasoning, and

• if the proposal passes then counter-arguments for the reasoning in no votes should also be documented along
with the initial reasons the revocation was proposed. Ideally there should be no new counter-arguments supplied
in a no vote as all concerns should have surfaced in the discussion before the vote.

• The original person to propose revocation summarizes the result of the vote in an email to all existing committers
excepting the candidate for removal.

• If the vote to revoke commit access passes, access is removed and the candidate for revocation is informed of
that fact and the reasons for it as documented in the email requesting the revocation vote.

• Ideally the revoked committer peacefully leaves the community and no further action is required. However,
there is a distinct possibility that he/she will try to generate support for his/her point of view within the larger
community. In this case the reasoning for removing commit access as described in the request for a vote will be
published to the community.

8.10.3 Changing the Policy

The process for changing the policy is:

• Propose the changes to the policy in an email to all current committers and request discussion.

356 Chapter 8. Open vSwitch Internals



Open vSwitch, Release 2.12.90

• After an appropriate period of discussion (a few days) update the proposal based on feedback if required and
resend it to all current committers with a request for a formal vote.

• After all votes have been collected or a reasonable time has elapsed for them to be provided (e.g. a couple of
business days) the votes are evaluated. For the request to modify the policy to pass it must receive yes votes
from two thirds of the existing committers.

Template Emails

8.10.4 Nomination to Grant Commit Access

I would like to nominate [candidate] for commit access. I believe [he/she] has met the conditions for
commit access described in the committer grant policy on the project web site in the following ways:

[list of requirements & evidence]

Please reply to all in this message thread with your comments and questions. If that discussion concludes
favorably I will request a formal vote on the nomination in a few days.

8.10.5 Vote to Grant Commit Access

I nominated [candidate] for commit access on [date]. Having allowed sufficient time for discussion it’s
now time to formally vote on the proposal.

Please reply to all in this thread with your vote of: YES, NO, or ABSTAIN. A failure to reply will be
counted as an abstention. If you vote NO, by our policy you must include the reasons for that vote in your
reply. The deadline for votes is [date and time].

If a majority of committers vote YES and there are zero NO votes commit access will be granted.

8.10.6 Vote Results for Grant of Commit Access

The voting period for granting to commit access to [candidate] initiated at [date and time] is now closed
with the following results:

YES: [count of yes votes] ([% of voters])

NO: [count of no votes] ([% of voters])

ABSTAIN: [count of abstentions] ([% of voters])

Based on these results commit access [is/is NOT] granted.

8.10.7 Invitation to Accepted Committer

Due to your sustained contributions to the Open vSwitch (OVS) project we would like to provide you
with commit access to the project repository. Developers with commit access must agree to fulfill specific
responsibilities described in the source repository:

/Documentation/internals/committer-responsibilities.rst

Please let us know if you would like to accept commit access and if so that you agree to fulfill these
responsibilities. Once we receive your response we’ll set up access. We’re looking forward continuing to
work together to advance the Open vSwitch project.
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8.10.8 Proposal to Revoke Commit Access for Detrimental Behavior

I regret that I feel compelled to propose revocation of commit access for [candidate]. I have privately
discussed with [him/her] the following reasons I believe [his/her] actions are detrimental to the project
and we have failed to come to a mutual understanding:

[List of reasons and supporting evidence]

Please reply to all in this thread with your thoughts on this proposal. I plan to formally propose a vote on
the proposal on or after [date and time].

It is important to get all discussion points both for and against the proposal on the table during the dis-
cussion period prior to the vote. Please make it a high priority to respond to this proposal with your
thoughts.

8.10.9 Vote to Revoke Commit Access

I nominated [candidate] for revocation of commit access on [date]. Having allowed sufficient time for
discussion it’s now time to formally vote on the proposal.

Please reply to all in this thread with your vote of: YES, NO, or ABSTAIN. A failure to reply will be
counted as an abstention. If you vote NO, by our policy you must include the reasons for that vote in your
reply. The deadline for votes is [date and time].

If 2/3rds of committers vote YES commit access will be revoked.

The following reasons for revocation have been given in the original proposal or during discussion:

[list of reasons to remove access]

The following reasons for retaining access were discussed:

[list of reasons to retain access]

The counter-argument for each reason for retaining access is:

[list of counter-arguments for retaining access]

8.10.10 Vote Results for Revocation of Commit Access

The voting period for revoking the commit access of [candidate] initiated at [date and time] is now closed
with the following results:

• YES: [count of yes votes] ([% of voters])

• NO: [count of no votes] ([% of voters])

• ABSTAIN: [count of abstentions] ([% of voters])

Based on these results commit access [is/is NOT] revoked. The following reasons for retaining commit
access were proposed in NO votes:

[list of reasons]

The counter-arguments for each of these reasons are:

[list of counter-arguments]
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8.10.11 Notification of Commit Revocation for Detrimental Behavior

After private discussion with you and careful consideration of the situation, the other committers to the
Open vSwitch (OVS) project have concluded that it is in the best interest of the project that your commit
access to the project repositories be revoked and this has now occurred.

The reasons for this decision are:

[list of reasons for removing access]

While your goals and those of the project no longer appear to be aligned we greatly appreciate all the
work you have done for the project and wish you continued success in your future work.
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Thanks to all Open vSwitch contributors. If you are not listed above but believe that you should be, please write to
dev@openvswitch.org.

8.12 Committers

Open vSwitch committers are the people who have been granted access to push changes to to the Open vSwitch git
repository.

The responsibilities of an Open vSwitch committer are documented here.

The process for adding or removing committers is documented here.

This is the current list of active Open vSwitch committers:
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Table 4: OVS Maintainers
Name Email
Alex Wang ee07b291@gmail.com
Alin Serdean aserdean@cloudbasesolutions.com
Andy Zhou azhou@ovn.org
Ansis Atteka aatteka@nicira.com
Ben Pfaff blp@ovn.org
Daniele Di Proietto daniele.di.proietto@gmail.com
Gurucharan Shetty guru@ovn.org
Ian Stokes istokes@ovn.org
Ilya Maximets i.maximets@ovn.org
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The project also maintains a list of Emeritus Committers (or Maintainers). More information about Emeritus Com-
mitters can be found here.

Table 5: OVS Emeritus Maintainers
Name Email
Ethan J. Jackson ejj@eecs.berkeley.edu

8.13 How Open vSwitch’s Documentation Works

This document provides a brief overview on how the documentation build system within Open vSwitch works. This
is intended to maximize the “bus factor” and share best practices with other projects.

8.13.1 reStructuredText and Sphinx

Nearly all of Open vSwitch’s documentation is written in reStructuredText, with man pages being the sole exception.
Of this documentation, most of it is fed into Sphinx, which provides not only the ability to convert rST to a variety of
other output formats but also allows for things like cross-referencing and indexing. for more information on the two,
refer to the Open vSwitch Documentation Style.

8.13.2 ovs-sphinx-theme

The documentation uses its own theme, ovs-sphinx-theme, which can be found on GitHub and is published on pypi.
This is packaged separately from Open vSwitch itself to ensure all documentation gets the latest version of the theme
(assuming there are no major version bumps in that package). If building locally and the package is installed, it will
be used. If the package is not installed, Sphinx will fallback to the default theme.

The package is currently maintained by Stephen Finucane and Russell Bryant.
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8.13.3 Read the Docs

The documentation is hosted on readthedocs.org and a CNAME redirect is in place to allow access from
docs.openvswitch.org. Read the Docs provides a couple of nifty features for us, such as automatic building of docs
whenever there are changes and versioning of documentation.

The Read the Docs project is currently maintained by Stephen Finucane, Russell Bryant and Ben Pfaff.

8.13.4 openvswitch.org

The sources for openvswitch.org are maintained separately from docs.openvswitch.org. For modifications to this site,
refer to the GitHub project.
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