

The Minecraft Overviewer

See also the Github Homepage [https://github.com/overviewer/Minecraft-Overviewer] and the Updates Blog [https://overviewer.org/blog/], and follow us on
our Twitter account [https://twitter.com/mcoverviewer].

Introduction

The Minecraft Overviewer is a command-line tool for rendering high-resolution
maps of Minecraft Java Edition worlds. It generates a set of static html and
image files and uses Leaflet to display a nice interactive map.

The Overviewer has been in active development for several years and has many
features, including day and night lighting, cave rendering, mineral overlays,
and many plugins for even more features! It is written mostly in Python with
critical sections in C as an extension module.

For a simple example of what your renders will look like, head over to The
“Exmaple” Map [https://overviewer.org/example/]. For more user-contributed
examples, see The Example Wiki Page [https://github.com/overviewer/Minecraft-Overviewer/wiki/Map-examples].

[image: _images/front_page_screenshot.png]

Documentation Contents

	Installing
	Windows

	Debian / Ubuntu

	CentOS / RHEL / Fedora

	Building the Overviewer from Source
	Get The Source

	Build Instructions For Various Operating Systems

	Running the Overviewer
	Rendering your First Map

	Usage

	Installing the Textures

	The Configuration File
	Examples

	Config File Specifications

	Custom Rendermodes and Rendermode Primitives

	Signs and Markers
	Configuration File

	Generating the POI Markers

	Predefined Filter Functions

	Marker Icons Overviewer ships by default

	Windows Newbie Guide
	Common Pitfalls

	Using GitHub Gist

	Frequently Asked Questions
	General Questions

	Contributing
	Prerequisites

	Acquiring the Source Code

	Finding Your Way around the Code Base

	Code Style

	Example Scenarios

	Good Git Practices

	Talking with other Developers

	Design Documentation
	Background Info

	Overviewer at a High Level

	Block Rendering

	Chunk Rendering

	Chunk Placement

	Tile Rendering

	Quadtrees

	Reading the Data Files

	Image Composition

	Multiprocessing

	Caching

	Lighting

	Cave Mode

Features

	Renders high resolution images of your world, lets you “deep zoom” and see
details!

	Gloriously awesome smooth lighting is here!
(rendermode name is smooth_lighting)

	Customizable textures! Pulls textures straight from your installed texture
pack!

	Choose from four rendering angles.

	Generates a Leaflet powered map!

	Runs on Linux, Windows, and Mac platforms!

	Renders efficiently in parallel, using as many simultaneous processes as you
want!

	Only requires: Python, Numpy, and PIL (all of which are included in the
Windows download!)

	Utilizes caching to speed up subsequent renderings of your world. Only parts
that need re-rendering are re-rendered.

	Throw the output directory up on a web server to share your Minecraft world
with the internet!

	Run The Overviewer from a command line or on a cron schedule for constantly
updated maps! Run it for your Minecraft server world to provide your users
with a detailed map!

	Supports Nether and The End dimensions!

	Built-in support for Biomes!

What The Overviewer is not

Full disclosure disclaimers of what The Overviewer is not.

	It does not run fast. Because of the high level of detail, initial renders of
a world can take some time. Expect minutes for medium worlds, hours for large
to huge worlds. Subsequent renders are much faster due to the caching.

Also note that speed is improving all the time. We continually make efficiency
improvements to The Overviewer. Besides, for the level of detail provided,
our users consider it worth the time!

	The Overviewer is not targeted at end users. We mainly see Overviewer fitting
in best with server operators, rendering their server’s map for all users to
view.

You are welcome to use The Overviewer for your single player worlds, and it
will work just fine. However, since the only interface is currently command
line based, you will need to know a bit about the command line in order to
operate The Overviewer.

	The Overviewer does not support Bedrock/Win10/Portable Edition worlds.

	The Overviewer is not a potato.

Requirements

This is a quick list of what’s required to run The Overviewer. It runs on
Windows, Mac, and Linux as long as you have these software packages installed:

	Python 3.4 or above (we are no longer compatible with Python 2.x)

	PIL (Python Imaging Library) or Pillow

	Numpy

	Either a Minecraft Client installed or a textures/ folder for the textures (possibly from a texturepack)

The first three are included in the Windows download. Also, there are additional
requirements for compiling it (like a compiler). More details are available in
either the Building or Installing pages.

Getting Started

The Overviewer works with Linux, Mac, and Windows! We provide Windows and Debian
built executables for your convenience. Find them as well as the full sources on
our Github Homepage [https://github.com/overviewer/Minecraft-Overviewer].

If you are running Windows, Debian, or Ubuntu and would like the pre-built
packages and don’t want to have to compile anything yourself, head to the
Installing page.

Running Windows and not familiar with the command line? Head to the
Windows Newbie Guide page.

If you would like to build the Overviewer from source yourself (it’s not that
bad), head to the Building page.

For all other platforms you will need to build it yourself.
Building the Overviewer from Source.

After you have The Overviewer built/installed see Running the Overviewer and
The Configuration File.

Help

IF YOU NEED HELP COMPILING OR RUNNING THE OVERVIEWER feel free to chat with
us live in IRC: #overviewer on Libera.Chat. There’s usually someone on there that
can help you out. Not familiar with IRC? Use the web client [https://overviewer.org/irc]. (If there’s no immediate
response, wait around or try a different time of day; we have to sleep sometime)

Also check our Frequently Asked Questions page.

If you think you’ve found a bug or other issue, file an issue on our Issue
Tracker [https://github.com/overviewer/Minecraft-Overviewer/issues]. Filing or
commenting on an issue sends a notice to our IRC channel, so the response time
is often very good!

Indices and tables

	Index

	Module Index

	Search Page

Installing

This page is for installing the pre-compiled binary versions of the Overviewer.
If you want to build the Overviewer from source yourself, head to Building. If you have already built The Overviewer, proceed to
Running the Overviewer.

The latest prebuilt packages for various systems will always be found
at the Overviewer Downloads [https://overviewer.org/downloads] page.

Windows

Running Windows and don’t want to compile the Overviewer? You’ve come to the
right place!

	Head to the Downloads [https://overviewer.org/downloads] page and download the most recent Windows download for your architecture (32 or 64 bit).

	For 32 bit you may need to install the VC++ 2008 (x86) [http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9b2da534-3e03-4391-8a4d-074b9f2bc1bf] and VC++ 2010 (x86) [http://www.microsoft.com/downloads/en/details.aspx?familyid=a7b7a05e-6de6-4d3a-a423-37bf0912db84] redistributables.

For 64 bit, you’ll want these instead: VC++ 2008 (x64) [http://www.microsoft.com/downloads/en/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6] and VC++ 2010 (x64) [http://www.microsoft.com/download/en/details.aspx?id=14632]

	That’s it! Proceed with instructions on Running the Overviewer.

Debian / Ubuntu

We provide an APT repository with pre-built Overviewer packages for
Debian and Ubuntu users. To do this, add the following line to your
/etc/apt/sources.list

deb https://overviewer.org/debian ./

Note that you will need to have the apt-transport-https package installed
for this source to work.

Our APT repository is signed. To install the key (and allow for
automatic updates), run

wget -O - https://overviewer.org/debian/overviewer.gpg.asc | sudo apt-key add -

Then run apt-get update and apt-get install minecraft-overviewer and
you’re all set! See you at the Running the Overviewer page!

CentOS / RHEL / Fedora

Prerequisites for CentOS/RHEL 7

Enable EPEL to get a release of Python 3:

yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

The official instructions [https://fedoraproject.org/wiki/EPEL] also recommend enabling a few
additional repositories, as some EPEL packages may depend on them. However, this is only relevant
if you are not using CentOS:

subscription-manager repos --enable "rhel-*-optional-rpms" --enable "rhel-*-extras-rpms" --enable "rhel-ha-for-rhel-*-server-rpms"

Installing the Overviewer

We provide a RPM repository with pre-built packages for users on RPM-based
distros. To add the Overviewer repository to YUM, just run

wget -O /etc/yum.repos.d/overviewer.repo https://overviewer.org/rpms/overviewer.repo

Then to install Overviewer run

yum install Minecraft-Overviewer

After that head to the Running the Overviewer page!

Building the Overviewer from Source

These instructions are for building the C extension for Overviewer. Once you
have finished with these instructions, head to Running the Overviewer.

Note

Pre-built Windows and Debian executables are available on the
Installing page. These kits already contain the compiled code and
require no further setup, so you can skip to the next section of the docs:
Running the Overviewer.

 Running the Overviewer

Running the Overviewer

Rendering your First Map

Overviewer is a command-line application, and so it needs to be run from the
command line. If you installed Overviewer from a package manager, the command is
overviewer.py. If you downloaded it manually, open a terminal window and
navigate to wherever you downloaded Overviewer. For pre-compiled Windows builds,
the command is overviewer.exe. For other systems, it’s overviewer.py.

What follows in this section is a few examples to get you started. For full
usage, see the Usage section.

So, let’s render your first map! Let’s say you want to render your single player
world called “My World”. Let’s also say you want to save it c:mcmap. You
would type into your command prompt the following:

overviewer.exe "My World" c:\mcmap

If you’re on Linux or a Mac, you could do something like one of the following:

overviewer.py "My World" /home/username/mcmap

or

overviewer.py "My World" /Users/username/mcmap

Those will look for a single player world by that name. You can also specify the
path to the world you want to render. This is useful for rendering servers.

Let’s say you have a server installed in /home/username/mcserver. This command
will render the default dimension (in the case of Bukkit multiworld servers, the
default world is used. You can also specify the directory to the specific world
you want to render).

overviewer.py /home/username/mcserver /home/username/mcmap

After you enter one of the commands, The Overviewer should start rendering your
map. When the render is done, open up index.html using your web-browser of
choice. Pretty cool, huh? You can even upload this map to a web server to share
with others! Simply upload the entire folder to a web server and point your
users to index.html!

Incremental updates are just as easy, and a lot faster. If you go and change
something inside your world, run the command again and The Overviewer will
automatically re-render only what’s needed.

Specifying a different rendermode

There are a few built-in rendermodes for you to choose from. Each will render
your map differently. For example, if you want smooth lighting (which looks
really good), you would add --rendermodes=smooth-lighting to your command.
e.g.

overviewer.py --rendermodes=smooth-lighting /home/username/mcserver /home/username/mcmap

The rendermodes you have to choose from are:

	normal (the default)

	lighting

	smooth-lighting

	cave

You can specify more than one. Just separate them with a comma!

Usage

For this section, we assume the executable is overviewer.py. Replace that
with overviewer.exe for windows.

Overviewer usage:

overviewer.py [--rendermodes=...] [options] <World> <Output Dir>
overviewer.py --config=<config file> [options]

The first form is for basic or quick renderings without having to create a
config file. It is intentionally limited because the amount of configuration was
becoming unmanageable for the command line.

The second, preferred usage involves creating a configuration file which
specifies all the options including what to render, where to place the output,
and all the settings. See The Configuration File for details on that.

For example, on Windows if your Minecraft server runs out of c:\server\ and you want
to put the rendered map in c:\mcmap\, run this:

overviewer.exe c:\server\world c:\mcmap

For Mac or Linux builds from source, you would run something like this with the
current directory in the top level of the source tree:

./overviewer.py /opt/minecraft/server/world /opt/minecraft/mcmap

The first render can take a while, depending on the size of your world.

Options

The following options change the way The Overviewer generates or updates the
map, and are intended to be things you only have to use in special situations.
You should not normally have to specify these options; the default is
typically correct.

	
--no-tile-checks

	With this option, The Overviewer will determine which tiles to render by
looking at the saved last-render timestamp and comparing it to the
last-modified time of the chunks of the world. It builds a tree of tiles
that need updating and renders only those tiles.

This option does not do any checking of tile mtimes on disk, and thus is
the cheapest option: only rendering what needs updating while minimising
disk IO.

The caveat is that the only thing to trigger a tile update is if Minecraft
updates a chunk. Any other reason a tile may have for needing re-rendering
is not detected. This means that changes in your render configuration will
not be reflected in your world except in updated chunks. It could also cause
problems if the system clock of the machine running Minecraft is not stable.

This option is the default unless --forcerender or
--check-tiles is in effect. This option conflicts with
--forcerender and --check-tiles.

	
--check-tiles

	Forces The Overviewer to check each tile on disk and check to make sure it
is up to date. This also checks for tiles that shouldn’t exist and deletes
them.

This is functionally equivalent to --no-tile-checks with the
difference that each tile is individually checked. It is therefore useful if
the tiles are not consistent with the last-render timestamp that is
automatically stored. This option was designed to handle the case where the
last render was interrupted – some tiles have been updated but others
haven’t, so each one is checked before it is rendered.

This is slightly slower than --no-tile-checks due to the
additional disk-io involved in reading tile mtimes from the filesystem

Since this option also checks for erroneous tiles, It is also useful after
you delete sections of your map, e.g. with worldedit, to delete tiles that
should no longer exist. Overviewer greatly overestimates tiles to be
rendered and time needed to complete.

The caveats with this option are the same as for --no-tile-checks
with the additional caveat that tile timestamps in the filesystem must be
preserved. If you copy tiles or make changes to them with an external tool
that modifies mtimes of tiles, it could cause problems with this option.

This option is automatically activated when The Overviewer detects the last
render was interrupted midway through. This option conflicts with
--forcerender and --no-tile-checks

	
--forcerender

	Forces The Overviewer to re-render every tile regardless of whether it
thinks it needs updating or not. It does no tile mtime checks, and therefore
ignores the last render time of the world, the last modification times of
each chunk, and the filesystem mtimes of each tile. It unconditionally
renders every tile that exists.

The caveat with this option is that it does no checks, period. Meaning it
will not detect tiles that do exist, but shouldn’t (this can happen if your
world shrinks for some reason. For that specific case,
--check-tiles is actually the appropriate mode).

This option is useful if you have changed a render setting and wish to
re-render every tile with the new settings.

This option is automatically activated for first-time renders. This option
conflicts with --check-tiles and --no-tile-checks

	
--genpoi

	
Note

Don’t use this flag without first reading Signs and Markers!

 The Configuration File

The Configuration File

Using a configuration file is now the preferred way of running The Overviewer.
You will need to create a blank file and specify it when running The Overviewer
like this:

overviewer.py --config=path/to/my_configfile

The config file is formatted in Python syntax. If you aren’t familiar with
Python, don’t worry, it’s pretty simple. Just follow the examples.

Note

You should always use forward slashes (/), even on
Windows. This is required because the backslash (\) has special meaning
in Python.

 Signs and Markers

Signs and Markers

The Overviewer can display signs, markers, and other points of interest on your
map. This works a little differently than it has in the past, so be sure to read
these docs carefully.

In these docs, we use the term POI (or point of interest) to refer to entities and
tileentities.

Configuration File

Filter Functions

A filter function is a python function that is used to figure out if a given POI
should be part of a markerSet or not, and to control how it is displayed.
The function should accept one argument (a dictionary, also know as an associative
array), and return a string representing the text to be displayed. For example:

def signFilter(poi):
 if poi['id'] == 'Sign' or poi['id'] == 'minecraft:sign':
 return "\n".join([poi['Text1'], poi['Text2'], poi['Text3'], poi['Text4']])

Note

This example is intended as a teaching aid and does not escape HTML,
so if you are concerned that your Minecraft players will put HTML/JS into
their signs, see below for a version that does do escaping.

 Windows Newbie Guide

Windows Newbie Guide

If you’re running Windows and aren’t as familiar with the Windows command
prompt as the rest of the documentation assumes you are, this page is for you!

The Overviewer is a command line tool, which means you will need to use the command line to run it.

	First step: Open the command line.

	Open your Start menu and type in the box ‘cmd’ and press enter. If you’re
running XP you’ll go to the “run” option instead and then type ‘cmd’ and
press enter.

[image: ../_images/opening_cmd.png]
This should bring up the command prompt, a black window with a prompt
where you can type commands. The prompt part will probably look something
like C:\Users\andrew> followed by a cursor where you type your commands.

[image: ../_images/cmd.png]
Leave this window open and move on to step 2.

Now that you know how to open a command line, and haven’t been scared off yet,
the next step is to download the latest Overviewer.

	Step 2: Download Overviewer

	Go to the Downloads Page [https://overviewer.org/downloads] and
download the latest version for your architecture, either 32 bit
or 64 bit.

This is important. If you don’t know which to choose, 32 or 64, then you
can find out by clicking on the start menu, right clicking on the
“Computer” icon or “My Computer” icon (depending on your version of
Windows), and then selecting “Properties.” Somewhere among the information
about your computer it should tell you if you’re running a 32 bit operating
system or 64 bit operating system.

[image: ../_images/computer_properties.png]
[image: ../_images/system.png]
Once you know if your computer is 32 or 64 bit, go and download the latest
version. We make small changes all the time, and a new version is uploaded
to that page for every change we make. It’s usually best to just get the
latest.

Okay, you’ve got a command prompt open. You’ve got The Overviewer downloaded.
We’re half way there!

	Step 3: Extract the Overviewer zip you downloaded.

	This is easy. I assume you know how to unzip things. Unzip the contents to
somewhere you can find easily. You’ll need to find it in the command
prompt. It may help to leave the window with the unzipped contents open so
you can remind yourself where it is.

Keep all those files together! They’re all needed to run The Overviewer.

[image: ../_images/extracting.png]

	Step 4: Change directory in command prompt to the location of overviewer.exe

	You remember the location of the files you just extracted? Windows doesn’t
always make it easy. Here’s how in windows 7: just click on the little icon
to the left of the directory name.

[image: ../_images/location1.png]
[image: ../_images/location2.png]
Got the location? Good. We’re going to change directory to that directory
with the command prompt. Bring the command prompt window back up. The
command we’re going to use is called cd, it stands for … change
directory!

I’m going to illustrate this with an example. Let’s say you extracted
Overviewer to the directory
c:\users\andrew\overviewer. Here is exactly
what you’ll type into the command prompt and then press enter:

cd c:\users\andrew\overviewer

[image: ../_images/changed_dir.png]
Okay, did it work? Your command prompt should now have the current
working directory in it. If your prompt changed to the directory that you
just cd’d to, then your current directory changed successfully! You’re ready
for the next step!

Okay before we actually run Overviewer for real, let’s do a checkpoint. You
should have cd’d to the directory where overviewer.exe is. To test, type this
in and you should see the help text print out:

overviewer.exe --help

note the two hyphens before “help”. You should see something like this:

[image: ../_images/usage.png]
The help text displays the usage of overviewer.exe, or the parameters it takes
to run it. It’s kind of long, I had to make my window larger to show it all.

Usage:
overviewer.exe [--rendermodes=...] [options] <World> <Output Dir>

Command line tool usage convention says that items in [square brackets] are
optional, while items in <angled brackets> are required.

	Step 5 Render a map!

	Okay, so to render a map, you have to run overviewer.exe with two
parameters: the world path and a destination directory.

Let’s say you have a world named “Singleplayer world” and you want to put
the tiles into a directory on your desktop. Singleplayer worlds are stored
on your hard drive at a location called %appdata%\.minecraft\saves. Try
typing this into the command prompt:

overviewer.exe "%appdata%\.minecraft\saves\Singleplayer World" c:\users\andrew\desktop\mymap

Note

You must use quotation marks around a path that has spaces in it.

 Frequently Asked Questions

Frequently Asked Questions

	General Questions

	Does the Overviewer work with mod blocks?

	Can I view Overviewer maps without having an internet connection?

	When my map expands, I see remnants of another zoom level.

	You’ve added a new feature or changed textures, but it’s not showing up on my map!

	The background color of the map is black, and I don’t like it!

	I downloaded the Windows version but when I double-click it, the window closes real fast.

	The Overviewer is eating up all my memory!

	How can I log The Overviewer’s output to a file?

	I’ve deleted some sections of my world, but they still appear in the map.

	My map is zoomed out so far that it looks (almost) blank.

	I want to put manual POI definitions or other parts of my config into a separate file.

General Questions

Does the Overviewer work with mod blocks?

The Overviewer will render the world, but none of the blocks added by mods
will be visible. Currently, the blocks Overviewer supports are hardcoded, and
because there is no official Minecraft modding API as of the time of writing,
supporting mod blocks is not trivial.

Can I view Overviewer maps without having an internet connection?

Yes, absolutely. The Overviewer switched away from the Google Maps API and
now uses Leaflet. All files which Overviewer needs are included in the output,
so even if you have no internet connection, you will still be able to view the
map without any issues.

When my map expands, I see remnants of another zoom level.

When your map expands (“Your map seems to have expanded beyond its previous
bounds”) you may see tiles at a zoom level that shouldn’t be there, usually
around the borders. This is probably not a bug, but is typically caused by
copying the map tiles from their render destination to another location (such as
a web server).

When you’re copying the rendered map, you need to be sure files that don’t
exist in the source are deleted in the destination.

Explanation: When Overviewer re-arranges tiles to make room for another zoom
level, it moves some tiles at a particular zoom level and places them at a
higher zoom level. The tiles that used to be at that zoom level should no longer
exist there, but if you’re copying tiles, there is no mechanism to delete
those files at the copy destination.

If that explanation doesn’t make full sense, then just know that you must do one
of the following:

	Render the tiles directly to the destination.

	Copy the tiles from the render destination in a way that deletes extra files,
such as using rsync with --delete.

	Erase and re-copy the files at the final destination when the map expands.
Map expansions double the width and height of the map, so you will eventually
hit a map size that is unlikely to need another level.

You’ve added a new feature or changed textures, but it’s not showing up on my map!

Some new features will only show up in newly-rendered areas. Use the
--forcerender option to update the entire map. If you have a really
large map and don’t want to re-render everything, take a look at
the rerenderprob configuration option.

The background color of the map is black, and I don’t like it!

You can change the background color by specifying a new one in the configuration
file. See the The Configuration File page for more details.

I downloaded the Windows version but when I double-click it, the window closes real fast.

The Overviewer is a command line program and must be run from a command line. It
is necessary to become at least a little familiar with a command line to run The
Overviewer (if you have no interest in this, perhaps this isn’t the mapping
program for you). A brief guide is provided on the
Windows Newbie Guide page.

Unfortunately, A full tutorial of the Windows command line is out of scope for this
documentation; consult the almighty Google for tutorials and information on
the Windows command line. (If you would like to contribute a short tutorial to
these docs, please do!)

Batch files are another easy way to run the Overviewer without messing with
command lines, but information on how to do this has also not been written.

On a related note, we also welcome contributions for a graphical interface for
the Overviewer.

The Overviewer is eating up all my memory!

We have written The Overviewer with memory efficiency in mind. On even the
largest worlds we have at our disposal to test with, it should not be taking
more than a gigabyte or two. It varies of course, that number is only an
estimate, but most computers with a reasonable amount of RAM should run just
fine.

If you are seeing exorbitant memory usage, then it is likely either a bug or a
subtly corrupted world. Please file an issue or come talk to us on IRC so we can
take a look! See Help.

How can I log The Overviewer’s output to a file?

If you are on a UNIX-like system like MacOSX or Linux, you can use shell redirection
to write the output into a file:

overviewer.py --config=myconfig.py > renderlog.log 2>&1

What this does is redirect the previous commands standard output to the file “renderlog.log”,
and redirect the standard error to the standard output. The file will be overwritten each time
you run this command line; to simply append the output to the file, use two greater than signs:

overviewer.py --config=myconfig.py >> renderlog.log 2>&1

I’ve deleted some sections of my world, but they still appear in the map.

Okay, so making edits to your world in e.g. worldedit has some caveats,
especially regarding deleting sections of your world.

This faq also applies to using the crop option.

Under normal operation with vanilla Minecraft and no external tools fiddling
with the world, Overviewer performs correctly, rendering areas that have
changed, and everything is good.

Often with servers one user will travel reeeeally far out and cause a lot of
extra work for the server and for The Overviewer, so you may be tempted to
delete parts of your map. This can cause problems, so read on to learn what you
can do about it.

First some explanation: Until recently (Mid May 2012) The Overviewer did not
have any facility for detecting parts of the map that should no longer exist.
Remember that the map is split into small tiles. When Overviewer starts up, the
first thing it does is calculate which tiles should exist and which should be
updated. This means it does not check or even look at tiles that should not
exist. This means that parts of your world which have been deleted will hang
around on your map because Overviewer won’t even look at those tiles and notice
they shouldn’t be there. You may even see strange artifacts around the border as
tiles that should exist get updated.

Now, with the --check-tiles option, The Overviewer will look for and
remove tiles that should no longer exist. So you can render your map once with
that option and all those extra tiles will get removed automatically. However,
this is only half of the solution. The other half is making sure the tiles along
the border are re-rendered, or else it will look like your map is being cut off.

Explanation: The tiles next to the ones that were removed are tiles that should
continue to exist, but parts of them have chunks that no longer exist. Those
tiles then should be re-rendered to show that. However, since tile updates are
triggered by the chunk last-modified timestamp changing, and the chunks that
still exist have not been updated, those tiles will not get re-rendered.

The consequence of this is that your map will end up looking cut-off around the
new borders that were created by the parts you deleted. You can fix this one of
two ways.

	You can run a render with --forcerender. This has the unfortunate
side-effect of re-rendering everything and doing much more work than is
necessary.

	Manually navigate the tile directory hierarchy and manually delete tiles
along the edge. Then run once again with --check-tiles to re-render
the tiles you just deleted. This may not be as bad as it seems. Remember each
zoom level divides the world into 4 quadrants: 0, 1, 2, and 3 are the upper
left, upper right, lower left, and lower right. It shouldn’t be too hard to
navigate it manually to find the parts of the map that need re-generating.

	The third non-option is to not worry about it. The problem will fix itself if
people explore near there, because that will force that part of the map to
update.

My map is zoomed out so far that it looks (almost) blank.

We see this quite a bit, and seems to stem from a bug in the Minecraft terrain
generation.

Explanation: Minecraft generates chunks of your world as it needs them. When
Overviewer goes to render your map, it looks at how big the world is, and
calculates how big the maps needs to be in order to fit it all in.
Occasionally, we see that Minecraft has generated a few chunks of the world
extremely far away from the main part of the world. These erroneous chunks have
most likely not been explored [*] and should not exist.

There are two solutions. The preferred is to delete the offending chunks. Open
up your region folder of your world and look at the region file names. They are
numbered r.##.##.mcr where ## is a number. The two numbers indicate the
coordinates of that region file. Look for region files with coordinates much
larger in magnitude than any others. Most likely you will find around 1–3
region files with coordinates much larger than any others. Delete or otherwise
remove those files, and re-render your map.

The other option is to use the crop option to tell Overviewer not
to render all of your map, but instead to only render the specified region.

As always, if you need assistance, come chat with us on irc.

[*]
They could also have been triggered by an accidental teleport where the coordinates were typed in manually.

I want to put manual POI definitions or other parts of my config into a separate file.

This can be achieved by creating a module and then importing it in
your config. First, create a file containing your markers
definitions. We’ll call it manualmarkers.py.

mymarkers = [{'id':'town', 'x':200, 'y':64, 'z':-400, 'name':'Pillowcastle'},
 {'id':'town', 'x':500, 'y':70, 'z': 100, 'name':'brownotopia' }]

The final step is to import the very basic module you’ve just created
into your config. In your config, do the following

import sys
sys.path.append("/wherever/your/manualmarkers/is/") # Replace this with your path to manualmarkers.py,
 # so python can find it

from manualmarkers import * # import our markers

all the usual config stuff goes here

renders["myrender"] = {
 "title" : "foo",
 "world" : "someworld",
 "manualpois" : mymarkers, # IMPORTANT! Variable name from manualmarkers.py
 # and here goes the list of the filters, etc.
}

Now you should be all set.

 Contributing

Contributing

In this page, you’ll be given some pointers on how to start contributing to the
Minecraft-Overviewer project. This is useful for people who want to help develop
the Overviewer, but don’t quite know where to start.

This page is mostly focused on where to look for things and how to get your
changes back into the project, for help on how to compile the Overviewer, check
Building.

Prerequisites

Ideally you’re familiar with Python (Overviewer uses Python 3), and know the
basics of Git. Both have various very good resources online that help you in
learning them, but the best way of learning is always to use them in the real
world, so don’t hesitate to jump right in after having a basic grasp and ask
questions along the way.

Additionally, some parts of Overviewer are written in C, though unless you’re
interested in the drawing and compositing routines or the rendermodes, you don’t
need to know C.

Last but not least, some of the Overviewer’s code is written in JavaScript,
namely the part that runs in your browser when you view the map.

Acquiring the Source Code

First, you’ll need to get the Overviewer source code. We do version management
of code through Git [https://git-scm.com/], which allows multiple people to work on the code at the
same time. Naturally, this means you’ll also be getting the source code through
Git. For this to work, you’ll have to install Git on your computer.

Our source code is hosted on GitHub [https://github.com/overviewer/Minecraft-Overviewer], so it’s a good idea to make an account
there if you don’t already have one.

This page won’t go into the details of how to use Git, but it’ll give you some
advice on how your workflow should be to avoid some trouble.

Finding Your Way around the Code Base

At first glance, all the code can be a bit overwhelming. So here’s a quick
overview of the important parts.

	setup.py is the build script. If you need to make any changes to how the
Overviewer is built, you’ll want to look there.

	overviewer.py is the entry-point of the application. It imports all the
other functionality, and does the command line parsing.

	overviewer_core/ is the directory where the vast majority of the
Overviewer’s functionality is. More on that below.

	overviewer_core/aux_files/genPOI.py is where the genPOI functionality is
implemented. If you’re looking into changing the way markers are generated,
look there.

	overviewer_core/src/ is the directory for all the files that are part of
Overviewer’s C extension. This includes things such as rendermodes, which are
stored in the primitives sub-directory.

	overviewer_core/data/ mostly contains the parts that make up Overviewer’s
web front-end, with js_src containing the JS files and web_assets
containing the index.html, CSS files and image files such as icons or the
compass.

	docs/ contains the documentation, which can be built with the included
Makefile if you have sphinx installed.

overviewer_core

Let’s take a closer look at the overviewer_core/ directory:

	assetmanager.py controls how the HTML and JS output are written out, as
well as the overviewerConfig.js format.

	cache.py implements a Least-Recently-Used (LRU) cache, which is used for
caching chunks in memory as the rendering happens.

	config_parser.py contains some code that sets up how the config is parsed,
but is not really involved in the definitions of individual settings therein.

	dispatcher.py is the code that sets up multiprocessing, so Overviewer can
use all available CPU threads on a machine.

	files.py implements helpful routines which allow you to determine whether
some file operations such as replacing a file work in a given directory, and
also implements the FileReplacer class which can then safely replace a
file given the capabilities of the filesystem.

	items.py is a remnant of the past and entirely unused.

	logger.py sets up and implements Overviewer’s logging facilities.

	nbt.py contains the code that is used to parse the Minecraft NBT file
structure.

	observer.py defines all the observers that are available. If you want to
add a new observer, this is the place where you’ll want to look.

	optimizeimages.py defines all the optimizeimg tools and how they’re
called.

	progressbar.py implements the fancy progress bar that the Overviewer has.

	rcon.py implements an rcon client for the Minecraft server, used by the
RConObserver.

	rendermodes.py contains definitions and glue code for the rendermodes in
the C extension.

	settingsDefinitions.py includes all definitions for the Overviewer
configuration file. If you want to add a new configuration option, this is
where you’ll want to start.

	settingsValidators.py contains validation code for the settings
definitions, which ensures that the values are all good.

	signals.py is multiprocessing communication code. Scary stuff.

	textures.py contains all the block definitions and how Overviewer should
render them. If you want to add a new block to the Overviewer, this is where
you’ll want to do it. Additionally, this code also controls how the textures
are loaded.

	tileset.py contains code that maps a render dict entry to the output tiled
image structure.

	util.py contains random utility code that has no home anywhere else.

	world.py is a whole lot of code that does things like choosing which
chunks to load and to cache, and general functionality revolving around the
concept of Minecraft worlds.

docs

The documentation is written in reStructuredText [http://docutils.sourceforge.net/rst.html], a markup format. It can be
compiled into an HTML output using the Makefile in the docs/ subtree by
typing make. You’ll need to have sphinx [http://www.sphinx-doc.org/en/stable/] installed for this to work.

The theme that will be used in the locally generated HTML is different than what
is used on http://docs.overviewer.org. However, it should still be sufficient
to get a good idea of how your changes will end up looking like when they’re on
the main docs page.

Code Style

To be honest, currently the Overviewer’s codebase is a bit of a mess. There is
no consistent code style in use right now. However, it’s probably a good idea
to stick to PEP8 [https://www.python.org/dev/peps/pep-0008/] when writing new code. If you’re refactoring old code, it
would be great if you were to fix it to make it PEP8 compliant as well.

To check whether the code is PEP8 compliant, you can use pycodestyle [https://pypi.python.org/pypi/pycodestyle]. You can
easily install it with pip by using pip3 install pycodestyle.

Example Scenarios

This section will demonstrate by example how a few possible contributions might
be made. These serve as guidelines on how to quickly get started if you’re
interested in doing a specific task that many others before you have done too
in some other form.

Adding a Block

Let’s assume you want to add support for a new block to the Overviewer. This is
probably one of the most common ways people start contributing to the project,
as all blocks in the Overviewer are currently hardcoded and code to handle them
needs to be added by hand.

The place to look here is textures.py. It contains the block definitions,
which are assisted by Python decorators [https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators], which make it quite a bit simpler to
add new blocks.

The big decorator in question is @material, which takes arguments such as
the blockid (a list of block IDs this block definition should handle), and
data (a list of possible data values for this block). Additionally, it can
also take various additional arguments for the different block properties, such
as solid=True to indicate that the block is a solid block.

Simple Solid 6-Sided Block

A lot of times, new blocks are basically just your standard full-height block
with a new texture. For a block this simple, we don’t even really need to use
the material decorator. As an example, check out the definition of the coal
block:

block(blockid=173, top_image="assets/minecraft/textures/blocks/coal_block.png")

Block with a Different Top

Another common theme is a block where the top is a different texture than the
sides. Here we use the @material decorator to create the jukebox block:

@material(blockid=84, data=range(16), solid=True)
def jukebox(self, blockid, data):
 return self.build_block(self.load_image_texture("assets/minecraft/textures/blocks/jukebox_top.png"), self.load_image_texture("assets/minecraft/textures/blocks/noteblock.png"))

As you can see, we define a method called jukebox, taking the parameters
blockid and data, decorated by a decorator stating that the following
definition is a material with a blockid of 84 and a data value range
from 0 to 15 (or range(16)), which we won’t use as it doesn’t affect
the rendering of the block. We also specify that the block is solid.

Inside the method, we then return the return value of self.build_block(),
which is a helper method that takes a texture for the top and a texture for the
side as its arguments.

Block with Variable Colors

Occasionally, blocks can have colors stored in their data values.
textures.py includes an easy mapping list, called color_map, to map
between data values and Minecraft color names. Let’s take stained hardened clay
as an example of how this is used:

@material(blockid=159, data=range(16), solid=True)
def stained_clay(self, blockid, data):
 texture = self.load_image_texture("assets/minecraft/textures/blocks/hardened_clay_stained_%s.png" % color_map[data])

 return self.build_block(texture,texture)

As you can see, we specify that the block has 16 data values, then depending
on the data value we load the right block texture by looking up the color name
in the color_map list, formatting a string for the filename with it.

Good Git Practices

How you structure your Git workflow is ultimately up to you, but here are a few
recommendations to make your life and the life of the people who want to merge
your pull requests easier.

	Commit your changes in a separate branch, and then submit a pull request
from that branch. This makes it easier for you to rebase your changes, and
allows you to keep your repository’s master branch in-sync with our master
branch, so you can easily split off a new branch from master if you want to
develop a new change while your old change still isn’t merged into the master.

	Format your commit messages properly. The first line should be a 50
character long summary of the change the commit makes, in present tense, e.g.
“Add a spinner to the progress bar”. This should be followed by a blank line,
and a longer explanation of the change the commit actually does, wrapped at
72 characters.

	Don’t merge master into your branch. If you plan on submitting a change as
a pull request and the master branch has moved in the meantime, then don’t
merge the master branch into the branch of your pull request. Instead, rebase
your branch on top of the updated master.

	Keep commits logically separated. Don’t try to cram unrelated changes into
just one commit unless it’s a commit full of small fixes. If you find yourself
struggling to keep the commit summary below 50 characters, and find yourself
using the word “and” in it, rethink whether the changes you’re making should
be just one commit.

It’s also a good idea to look at the output of git diff before committing a
change, to make sure nothing was unintentionally changed in the file where you
weren’t expecting it. git diff will also highlight blank lines with spaces
in them with a solid red background.

Talking with other Developers

Occasionally, the issue tracker simply doesn’t cut it. You need to talk with
another developer, maybe to brainstorm a new feature or ask a question about
the code. For this, we have an IRC channel on Libera.Chat [https://overviewer.org/irc/], which allows you to
talk with other developers that are on the IRC channel in real-time.

Since most developers have jobs or are in college or university, it may
sometimes take a few moments to get a reply. So it’s useful to stick around and
wait for someone who can help you to be around.

 Design Documentation

Design Documentation

So you’d like a technical overview of how The Overviewer works, huh? You’ve come
to the right place!

This document’s scope does not cover the details of the code. The code is fairly
well commented and not difficult to understand. Instead, this document is
intended to give an explanation to how the Overviewer was designed, why certain
decisions were made, and how all the pieces fit together. Think of this document
as commenting on how all the high level pieces of the code work.

This document is probably a good read to anyone that wants to get involved in
Overviewer development.

So let’s get started!

Note

This page is continually under construction.

 Index

Index

 Symbols
 | C

Symbols

 	
 	
 --check-tiles

 	command line option

 	
 --forcerender

 	command line option

 	
 --genpoi

 	command line option

 	
 --no-tile-checks

 	command line option

 	
 --skip-players

 	command line option

 	
 --skip-scan

 	command line option, [1]

 	
 	
 --update-web-assets

 	command line option

 	
 -c <file>, --config=<file>

 	command line option

 	
 -p <procs>, --processes <procs>

 	command line option

 	
 -q, --quiet

 	command line option, [1]

 	
 -v, --verbose

 	command line option

C

 	
 	
 command line option

 	--check-tiles

 	--forcerender

 	--genpoi

 	--no-tile-checks

 	--skip-players

 	--skip-scan, [1]

 	--update-web-assets

 	-c <file>, --config=<file>

 	-p <procs>, --processes <procs>

 	-q, --quiet, [1]

 	-v, --verbose

_static/ajax-loader.gif

_images/topofchunk.png

_images/usage.png
icrosoft Windows LUersion 6.1.76081
opyright (o> 2089 Microsoft Corporation. A1l rights reserved.

\Users\andreudcd overviewer
:\Users\andrewNovervieuerdoverviever.exe ——help
sage

vervieuer.exe [-—rendernodes=...1 [options] CHorld> <Output Dir>
vervieuer exe ——config=Cconfig file> [options]

ptions
“h. —help show this help message and exit
Gonf ig=CONFIG Specify the config file to use.
-p PROCS, ——processes=PROCS
The nunber of local worker processes to spaun.

Defaults to the number of CPU cores your computer has
rendernodes=RENDERMODES

If you’re not using a config file, specify which
rendernodes to render with this option. This is a
conna-separated list.
Force re-rendering the entire map.
Check each tile on disk and re-render old tiles
Only render tiles that come from chunks that have
changed since the last render Cthe default)
Prints the location and hash of terrain.png, useful
for debugging terrain.png problens
Displays version information and then exits
Print less output. You can specify this option
nultiple tines.
Print more output. You can specify this option
nultiple tines.

\Users\andreuNovervieuer>

_images/chunk_height.png

_static/comment.png

_images/chunk_perspective.png
A
A LT
BANRNA0S
SRR
SRR

b
X

%

VTI7 777777777777

000000 VTI7777 777777777
ooooooiiiiiiiiiiiiiii
NN
LT L]
ML

STT 7777777777777

_static/down-pressed.png

_images/changed_dir.png
opyright (o> 2089 Microsoft Corporation. A1l rights reserved.

\Usershandrewdcd c:\users\andreuNovervieuer

\Users\andreuNovervieuer>_

_static/comment-bright.png

_images/chunk_coords.png
o
O\

&
X3
\ QOKNEN
2o AR
S e
XXX o
ORI 7
e
QRN
R
/....:....

_static/comment-close.png

_images/chunkgridwithrowcol.png
Row -4
Row -3
Row -2
Row -1
Row 0
Row 1
Row 2
Row 3
Row 4

_images/chunkpositioning.png
192
—384— 34—

192 Q %

_images/chunk_width.png
AXORRON
L

AORAORS
Ao S
7
7
7
7
7
7
7
/7
7
7
7
0 7

——24—+—24—

_static/down.png

_images/chunkgrid.png

_images/chunksintile.png
Rows: 0

A W N -

Cols:

0

384

_images/cmd.png
opyright (o> 2089 Microsoft Corporation. A1l rights reserved.

:\Users\andrew>_

_images/4children.png

_images/computer_properties.png
Getting Started »

B comectton pojector

= andre
Caleulator

I sty ots

L siping Too!

»
P P

XPSViewer Open
Manage

ment;

Picture:

Music

& Windows Faxand Scan e

AL Remote Desktop Connection Disconnect netuwork drive

Default Progra

Show on Desktap
Magnifier

Help and Supp Rename

Propertes
> AllPrograms i

(S programs v 7]

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 The Minecraft Overviewer

 		
 Installing

 		
 Windows

 		
 Debian / Ubuntu

 		
 CentOS / RHEL / Fedora

 		
 Prerequisites for CentOS/RHEL 7

 		
 Installing the Overviewer

 		
 Building the Overviewer from Source

 		
 Get The Source

 		
 Build Instructions For Various Operating Systems

 		
 Windows Build Instructions

 		
 Linux

 		
 macOS

 		
 Running the Overviewer

 		
 Rendering your First Map

 		
 Specifying a different rendermode

 		
 Usage

 		
 Options

 		
 Installing the Textures

 		
 If you copy your world before you render it

 		
 The Configuration File

 		
 Examples

 		
 A Simple Example

 		
 A more complicated example

 		
 A dynamic config file

 		
 Config File Specifications

 		
 General

 		
 Render Dictionary Keys

 		
 Custom Rendermodes and Rendermode Primitives

 		
 The Rendermode Primitives

 		
 Defining Custom Rendermodes

 		
 Built-in Rendermodes

 		
 Signs and Markers

 		
 Configuration File

 		
 Filter Functions

 		
 Special POIs

 		
 Manual POIs

 		
 Render Dictionary Key

 		
 Generating the POI Markers

 		
 The –genpoi option

 		
 genPOI.py

 		
 Options

 		
 Predefined Filter Functions

 		
 Marker Icons Overviewer ships by default

 		
 Windows Newbie Guide

 		
 Common Pitfalls

 		
 Using GitHub Gist

 		
 Frequently Asked Questions

 		
 General Questions

 		
 Does the Overviewer work with mod blocks?

 		
 Can I view Overviewer maps without having an internet connection?

 		
 When my map expands, I see remnants of another zoom level.

 		
 You’ve added a new feature or changed textures, but it’s not showing up on my map!

 		
 The background color of the map is black, and I don’t like it!

 		
 I downloaded the Windows version but when I double-click it, the window closes real fast.

 		
 The Overviewer is eating up all my memory!

 		
 How can I log The Overviewer’s output to a file?

 		
 I’ve deleted some sections of my world, but they still appear in the map.

