
OTR bot Documentation
Release 1.0 Alpha

Chris Snijder, Maarten de Waard

Feb 17, 2017

Table of Contents

1 Quick Start 3
1.1 OTR Bot . 3
1.2 Translations . 6
1.3 OTR Plugin . 7
1.4 State Machine . 10
1.5 LTI . 13
1.6 OTR bot utility functions . 15
1.7 Colourised logging . 17
1.8 Settings . 19
1.9 Exceptions . 23

2 Indices and tables 25

Python Module Index 27

i

ii

OTR bot Documentation, Release 1.0 Alpha

The bot exists of four modules:

• The OTR Bot module that runs an XMPP client that communicates with peers, to teach them how to enable and
verify OTR connections.

• The OTR Plugin module that enables the use of OTR with SleekXMPP.

• A State Machine that executes actions and handles events.

• A Learning Tools Interoperability (LTI) interface to be able to start talking with the OTR bot from a Learning
Management System (LMS).

Table of Contents 1

OTR bot Documentation, Release 1.0 Alpha

2 Table of Contents

CHAPTER 1

Quick Start

• It is recommended to start by creating a virtualenv environment for the bot. The bot uses external python
libraries that are fixed on a certain version. The easiest way to ensure that nothing else on your system breaks
when installing these dependencies, is by using a virtual environment.

• Install python-dev in order to be able to install all dependencies. On debian-based systems, run apt-get install
python-dev.

• Run pip install -r requirements.txt to fulfill all python requirements.

• By default, the environment in settings/env.py is set to production. This means it searches for production.py in
the settings folder. Alter this environment, or the production.py file:

– The XMPP_ACCOUNTS dictionary should at least contain one valid jabber account. Its JID should be the
key, its value a dictionary with the contents ‘password’, ‘private_key’, ‘SSL’, ‘port’ and ‘allow_plain_text’.

– Enter the JID of one of the accounts in XMPP_ACCOUNTS in XMPP_DEFAULT_ACCOUNTS. This is
the default account to start the bot with. If you don’t have a default account, always start the bot with the
–jid flag.

• Start the bot by running ./bot.py runclient. Run ./bot.py runclient –help for information on the available argu-
ments. Other subcommands are available as well. Run python bot.py –help for more information.

OTR Bot

XMPP client for the OTR bot. Manages all conversations.

Usage

Start a bot by initialising the class:

>>> bot = OtrBot()

Then, you can connect to the Jabber server:

>>> bot.connect()

Lastly, start the bot by running process:

>>> bot.process()

3

OTR bot Documentation, Release 1.0 Alpha

If a user wants to be able to talk to the OTR bot, you should be added to its whitelist. This is achieved by running
OtrBot.add_jid(), or adding the jid to the whitelist in the Settings. When adding someone to the whitelist, it is
possible to supply its locale. All supported locales are in the root directory, in the locales folder.

After running add_jid, the bot will add a user to his whitelist and roster, and will invite the user to talk with him
over Jabber. When the user starts talking to the bot, it will start a session for the user, and respond to him. When
a user is inactive for too long, his session will be removed from the bot. See the functions warn_session(),
kill_session() and terminate_session() for more information.

The bot is supplied in conjunction with an LTI interface for adding Jabber IDs to the bot and supplying shared secrets,
but it is possible to use the bot from the command line, without using the LTI interface.

SleekXMPP

The bot uses SleekXMPP for communication and scheduling. A custom OTR Plugin fires events through SleekXMPP
and are used by the bot to react on the user’s actions.

Class documentation

class otrbot.core.client.OtrBot(jid=None, **kwargs)
OTR bot ClientXMPP implementation

Start an OTR bot for a specifig Jabber ID.

Parameters

• jid (str) – The Jabber ID the bot can use. Its password needs to be in the settings,
or supplied as a keyword argument. :keyword str password: The password for the jabber
account

• default_locale (str) – The default locale for the bot, overrides the setting
DEFAULT_LOCALE.

• shared_secret (str) – The default shared secret for the bot, overrides the setting
DEFAULT_SECRET. Can be None, if the secret is added via another route, e.g., LTI.

• key_file (str) – The name of the file containing the private key for the bot

REFRESH_SESSION_WHITELIST = (‘message_received’, ‘otr_enabled’, ‘smp_started’, ‘smp_aborted’, ‘otr_disabled’)
The events that allow the session of a user to be refreshed, extending its timeout

SIGN_OUT_MESSAGE = ‘Your session has expired, you can start a new session from ${project_name}.’
This message is sent when the bot signs out and no other message is supplied

connect()
Connecting with the TLS and SSL flags set to None allows manipulation of these settings through the
XML stream object

bot_connected(event)
Verify that the connection is established as requested, i.e.: the TLS cipher(s) that was(/were) configured
is(/are) used. If this is not the case, disconnect and quit with a fatal error.

session_start(event)
Bring the bot online. All the JIDs that are already in the bot’s whitelist are added to the roster.

session_end(event)
Clean up at the end of the session. Kill all sessions, delete all aggregated data and empty the roster.

4 Chapter 1. Quick Start

http://sleekxmpp.com/
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

OTR bot Documentation, Release 1.0 Alpha

otr_event(event)
Apply an OTR event to the state machine of a specific JID. OTR events are fired by the OtrPlugin.

If the JID was unknown in the _sessions dict, but is in the _whitelist, a new session is started with
start_sessions.

Parameters event (dict) – A dictionary containing the keys jid (JID), type (str) and
data (any type). The type should be an event that can be handled by the current state.
If the event can not be handled by the state, it will raise a CannotHandle exception.

check_sessions()
Checks all sessions’ contexts in self._sessions for timeouts. If a timeout is imminent
(WARNING_TIMEOUT seconds have passed), it fires a warning using warn_session(). If a
timeout has passed (SESSION_TIMEOUT seconds have passed), it removes the session by using
kill_session().

refresh_session(jid)
Refresh the users session by resetting the timeouts. If the user has been warned about a session timeout,
the bot sends a notification that the session has been refreshed.

Parameters jid (JID) – The user’s jid.

warn_session(jid)
Send a warning to the user, that they should reply to maintain the session.

Parameters jid (JID) – The user’s jid.

kill_session(jid, msg=None)
Tell the user the session has expired, then set a timeout for termination of the session (allows the message
to be sent out first).

Parameters

• jid (JID) – The user’s jid, an instance of sleekxmpp.jid.JID

• msg (str) – The message that will be sent by the bot before going down.

terminate_session(jid, msg=None)
Remove the session from _sessions and the user from the roster. Also makes the bot offline to the user.
A status message is set explaining how the user can re-enable the bot.

Parameters

• jid (JID) – The user’s jid, an instance of sleekxmpp.jid.JID

• msg (str) – The status message for the bot the user will see.

changed_subscription(presence)
Only authorize and subscribe to people in self._whitelist, which is populated by settings.JID_WHITELIST.

Parameters presence (Presence) – A sleekxmpp.stanza.presence.Presence
stanza for the subscription

add_jid(jid, locale=’en_GB’)
Add the supplied JID to the whitelist and the roster and send a presence to appear online for that user.

Parameters jid (JID) – The Jabber ID to add

get_shared_secret(jid)
Return the shared secret set by the jabber ID jid, or none if he has not set one

Parameters jid (str) – The JID that should have set a shared secret

set_shared_secret(jid, secret)
Insert the secret into the context for the jid. The otr_event ‘secret_received’ is fired afterwards.

1.1. OTR Bot 5

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

OTR bot Documentation, Release 1.0 Alpha

Parameters

• jid (str) – A valid jabber ID that is in self._sessions

• secret (str) – A secret that should be supplied by the user

check_bot_secret(jid, secret)
Check if the secret that the bot has provided via chat corresponds with the secret that is inserted into this
function

Parameters

• jid (str) – The JID that received the secret

• secret (str) – The secret. Note that this is not the SMP shared secret

Return bool True if the secrets are the same, False otherwise.

Raises JidNotKnown – If the jid is not in _sessions, an exception is raised.

jid_in_sessions(jid)
Checks if the supplied JID has a running session.

Parameters jid (str) – The Jabber ID

Returns bool True if the jid is a key in self._sessions

Translations

The OTR bot supports translations made with Gettext. The translation files are placed in the
otrbot/locales/<language> directories. The otrbot comes with four commands that help you setup new
translations and update existing ones. run ./bot -h to get an overview of the commands. Each subcommand also
supports help, so when in doubt, just try ./bot.py <subcommand> -h

Extracting translation messages

When the otr bot’s messages have been altered, or new ones have been added, the command ./bot extract will
extract these new messages from the program code. This generates a new .pot file (messages.pot by default)
that can be used to update the current translations. If you want the .pot file to have another name, supply that name
with the -o flag.

Starting a translation

To start a translation, you use the init subcommand. When you run ./bot init <pot-file> <locale>, a
new locale will be created in the otrbot/locales directory. So, let’s say you want to start an en_US translation
and you extracted the translations to messages.pot, run ./bot init messages.pot en_US.

Updating an existing translation

When you have an updated .pot file, because the application changed, you can update your translation files by
running ./bot update <pot-file> <locale>. If you used the default filename (messages.pot) for
extraction and, for example, want to update your en_US translation, you run ./bot update messages.pot
en_US. The program will notify you of which file it created. You can then edit that file with your favorite editor.

6 Chapter 1. Quick Start

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

OTR bot Documentation, Release 1.0 Alpha

Compiling your changes

When you are happy with your changes, you should compile the new messages to a messages.mo file, a binary file
that can be read quickly by the computer. To compile your locale files, run ./bot compile. This automatically
compiles all the locales in the otrbot/locales directory. If you only want to compile one of the locales, you can
use the -l flag. For example, to only compile your en_GB translation, run ./bot compile -l en_US.

OTR Plugin

SleekXMPP Plugin to use OTR

Uses Python-Potr in combination with SleekXMPP to enable OTR messaging for Jabber clients. This plugin adds
the event ‘message_received’, which forwards decrypted messages as well. Use that instead of the ‘message’ event.
Furthermore, the plugin fires ‘otr_event’ events. These events always consist of a dictionary with the following content
(keys):

jid The Jabber ID this event is about (This is a SleekXMPP JID object)

type The name of the event type that is fired, e.g. “otr_enabled”

data Accompanying data for the event, this may be of any class, but we would recommend using strings.
Currently, no events use this field.

List of event types

otr_enabled OTR was off and is now on

otr_disabled OTR was on and is now off

otr_already_setup OTR conversation was finished and is refreshed

smp_started User tried to start SMP

smp_question_used User tried to start SMP with a question

smp_aborted SMP was aborted from either side.

correct_secret_received User supplied the secret through anothes channel and was received correctly.
SMP trust is now established.

incorrect_secret_received No trust has been established after SMP

unsafe_secret_received Not implemented in this plugin. Can be used if you have a way to check the
strength of secrets. Look at core.otrbot.state.action_check_secret_safe() for
an example

Credits

The following two scripts have been used as a basis for this plugin:

• https://gist.github.com/marianoguerra/4023941

• https://github.com/mikegogulski/python-otrxmppchannel

class otrbot.otrplugin.plugin.OtrPlugin(xmpp, config=None)
OtrPlugin: enables OTR commands

1.3. OTR Plugin 7

https://github.com/python-otr/pure-python-otr
https://github.com/fritzy/SleekXMPP
https://gist.github.com/marianoguerra/4023941
https://github.com/mikegogulski/python-otrxmppchannel

OTR bot Documentation, Release 1.0 Alpha

plugin_init()
Initialise plugin. Sets the description (needed for being a SleekXMPP plugin) to the docstring of this class.
Makes this plugin handle the ‘message’ event and registers the OtrMessage stanza plugin.

setup_otr(xmpp_account)
Setup OTR account to be used for encryption and decryption. This function should be run after plugin_init
and before anything else.

Parameters xmpp_account (dict) – An account as found in the sample settings. This needs
at least a JID. Private keys for the account will be generated automatically

set_secret(jid, secret, start_smp=False)
Set the secret in the otr_context for this jid to this secret. Create a context if it does not exist for this jid.

Parameters

• jid (str) – The jabber ID to set the secret for

• secret (str) – The secret that should be set.

• start_smp (bool) – If this is true, smpGotSecret is run in the OtrContext. If SMP has
not started yet, this means that the bot will start it.

decrypt(message)
Try to decrypt a message and sets message.otr_state to a state from OTR_STATES. Then launches the
event ‘message_received’, unless the message was empty.

Parameters message (str) – A string that can be decrypted by Python-Potr

encrypt(jid, message_string)
Send message “message” to “jid” if encryption is possible. If there’s no encryption, “jid” is asked to enable
encryption(?)

Parameters

• jid (str) – a JID to whom the message will be sent

• message_string (str) – A message to send

Returns The message as it was sent

emit_event(jid, event, data=None)
Emit an otr_event on xmpp

Parameters

• jid (str) – The JID that the event is for/started by

• event (str) – The type of the event

• data – accompanying data. For example the event ‘message_received’ has the message
body in the data variable. This variable may be of any data type.

send_plain(jid, message_string)
Send a message over xmpp without checking anything. The :class OtrContext uses this to inject messages

Parameters

• jid (JID) – The Jabber ID to send to

• message_string (str) – The message to send

Otr Context that keeps all the otr-relevant information for a certain peer

class otrbot.otrplugin.context.OtrContext(account, otr_plugin, peer, fingerprint)
Knows how peers can be contacted (OTR enabled or not, etc.) Implements these functions from Context:

8 Chapter 1. Quick Start

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://github.com/python-otr/pure-python-otr
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

OTR bot Documentation, Release 1.0 Alpha

•getPolicy

•setState

•inject

Create a context for the account to OTR-message with.

Parameters

• account (OtrAccount) – The OTR account

• otr_plugin (OtrPlugin) – An OTR plugin instance

• peer (str) – A JID

• fingerprint (str) – fingerprint for the JID, becomes lower case, is allowed to be None

emit_event(event, data=None)
Makes the otr_plugin emit an event for self.peer

Parameters

• event (str) – An otr_event type that can be executed by the OtrBot.

• data (str) – The data of the event, e.g., a message for a message_received event.

processTLVs(tlvs, appdata=None)
Process typle/length/value records. First check if message is an SMP message and fire the appropriate
otr_event if so. Then call the super to do further processing.

Parameters

• tlvs (list) – a list of TLV objects

• appdata – Gets passed to super

getPolicy(key)
Returns the default policy from DEFAULT_POLICY_FLAGS. Returns False if the policy does not exist.

Parameters key – The policy that should be returned. Possible keys:

• ALLOW_V1

• ALLOW_V2

• REQUIRE_ENCRYPTION

• SEND_TAG

• WHITESPACE_START_AKE

• ERROR_START_AKE

setState(new_state)
Sets trust based on their fingerprint

Parameters new_state (int) – The new state corresponding to the possible states in
potr.context.

inject(msg, appdata=None)
Use OtrPlugin to send a message. This will be encrypted if possible.

Parameters

• msg (str) – The message that will be injected.

• appdata (dict) – This is not used.

1.3. OTR Plugin 9

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#list
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict

OTR bot Documentation, Release 1.0 Alpha

smpAbort(appdata=None)
This function is overriden in order to fire an “smp_aborted” otr_event when it is called.

Parameters appdata (dict) – This is forwarded to other calls.

Simple implementation of the abstract potr Account class.

class otrbot.otrplugin.account.OtrAccount(otr_plugin, jid, private_key=None)
Implementation of potr Account class

Taken from OtrXMPPChannel

Init and create a private key if needed

loadPrivkey()
overload not-implemented load function

savePrivkey()
Should be overloaded, but don’t know with what functionality

saveTrusts()
Should be overloaded, but don’t know with what functionality. Apparently this function is called after a
user ends a private conversation

Simple implementation of the abstract potr Manager class.

class otrbot.otrplugin.manager.OtrManager(jid, otr_plugin)
Class that retrieves contexts for messages. The contexts manage decryption and encryption of messages

Initialise with account and empty contexts dictionary. The dictionary wil contain bare JIDs and OtrContext
objects. Each JID will talk to a different OtrAccount instance of the bot. This way, the bot always has a different
fingerprint for each session, enabling a user to go through the same steps several times.

contexts = None
Dictionary of people the bot is talking to - Keys: str of bare jids - Values: OtrContexts objects

get_context(jid)
Return the context for the conversation with JID jid. If it does not exist, a new account (with a new random
private key) is created for the session with the jid.

Parameters

• jid (str) – the Jabber ID of the peer

• fingerprint (str) – An optional fingerprint of the JID for trying to manually estab-
lish trust (not tested).

destroy_context(jid)
Remove the context with JID jid from the contexts

Parameters jid (JID) –

destroy_all_contexts()
Remove all context for converations

State Machine

State Machine module

This module contains the StateMachine class.

This StateMachine class is designed to do 3 specific things:

10 Chapter 1. Quick Start

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

OTR bot Documentation, Release 1.0 Alpha

• Allow only transitions that are valid for the current state (enforced by the State object).

• Pass events to the State and let the state handle them. You can pass both transition events as well as
events that should trigger something, which you can define yourself. The State class can be extended with
handle_...() functions that handle these specific events. You should be careful not to name your transitions
the same as your handle_...() functions because an exception will be raised if they collide.

• Pass actions to the State and let the state handle them. The State class can be extended with
action_...() functions that do these specific actions.

The state machine’s __init__() takes a dict argument that contains all states the state machine should support.

The states can have ‘on_enter’ and ‘on_leave’ definitions, which are lists of actions to do when the state is entered or
left respectively. These actions have to be defined in the State object for this to work. There should also be a list of
‘allowed_actions’ array defined in each state definition, this array should contain the action names without the prefix
‘action_’. The reason the ‘action_’ is not prefixed is that the prefix string can be changed in a class extension, to e.g.:
‘do_’.

class otrbot.statemachine.statemachine.StateMachine(states_object, ctxt)
This class in not supposed to be used directly, you should extend this class and add the application specific
functions to it.

You will most likely require your own definition of the State class as well, to override the definition of the
State class the state machine uses, you will need to override the STATE_OBJECT in your state machine class
extension.

You should also use super() to initialise the StateMachine object, you will need to pass some arguments
too, see below.

Initialise the StateMachine class.

Parameters

• states_object (dict) – A dict containing all possible states, its transitions, actions,
‘on_enter’ and ‘on_leave’ actions

• ctxt (SharedContext) – A shared context that contains the current state context data

Raises StateDoesNotExist – Indicates that the state you chose to be the initial state is not in
the states_object

STATE_OBJECT
alias of State

action(action, *args, **kwargs)
Run an action using the current state.

Parameters

• action (str) – String containing the function name of the action you want to execute

• args (set) – Arbitrary positional arguments to pass to the action

• kwargs (dict) – Arbitrary keyword arguments to pass to the action

The action will be handled by the current state which is an instance of State. See State.action()
for more information.

state
Return current state.

Returns State The instance of the current State object.

handle(event, *args, **kwargs)
Handle an event using the current state.

1.4. State Machine 11

https://docs.python.org/2.7/library/functions.html#super
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#set
https://docs.python.org/2.7/library/stdtypes.html#dict

OTR bot Documentation, Release 1.0 Alpha

Parameters

• event (str) – String containing the event name of the event you want handled by the
state.

• args (set) – Arbitrary positional arguments to pass to the action

• kwargs (dict) – Arbitrary keyword arguments to pass to the action

The event will be handled by the current state which is an instance of State. See State.handle()
for more information.

ctxt
Return the current context.

Returns SharedContext The shared context used by the state machine

State module

This module contains the State class for the StateMachine.

You can extend this class to add action_...() and handle_...() functions. To let the StateMachine
use your own custom state class, you need to extend the StateMachine class and override the
StateMachine.STATE_OBJECT constant.

class otrbot.statemachine.state.State(name, states_object, ctxt)
This class in not supposed to be used directly, you should extend this class and add the application specific
functions to it.

To override the definition of the State classthe state machine uses, you will need to override the
STATE_OBJECT in your state machine class extension.

You should also use super() to initialise the State object, you will need to pass some arguments too, see
below.

If you want to define different prefixes for the action_...() or handle_...() functions, e.g.:
do_...(), you can override the PREFIX_ACTION or the PREFIX_HANDLE class constants.

Initialise the state.

Parameters

• name (str) – The name of the current state

• states_object (dict) – A dict containing all possible states, its transitions, actions,
‘on_enter’ and ‘on_leave’ actions

• ctxt (SharedContext) – A shared context that contains the current state context data

on_enter()
When the state is entered the “on_enter” actions will be executed.

on_leave()
When the state is left the “on_leave” actions will be executed.

action(action, *args, **kwargs)
Run an action that is defined in the State and prefixed by PREFIX_ACTION.

Parameters

• action (str) – Name of the action to run (without prefix)

• args (set) – Arbitrary positional arguments to pass to the action

• kwargs (dict) – Arbitrary keyword arguments to pass to the action

12 Chapter 1. Quick Start

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#set
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#super
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#set
https://docs.python.org/2.7/library/stdtypes.html#dict

OTR bot Documentation, Release 1.0 Alpha

Raises

• NotImplementedError – If the requested action is not implemented

• ActionNotAllowed – If the action is not allowed within the current state.

handle(event, *args, **kwargs)
Handle events passed to the State object.

There are 2 types of events that can be handled by state objects:

•Transition events, which should cause a transition to another state if the transition is allowed.

•Events that should be handled by the state without transitioning.

Parameters

• event (str) – Event name.

• args (set) – Arbitrary positional arguments to pass to the action

• kwargs (dict) – Arbitrary keyword arguments to pass to the action

Raises CannotHandle – If there is no way to handle the event.

possible_actions
Return all actions that are defined in the State object.

The results of the introspection are cached, if you dynamically modify the object after getting this property
the changes will not be reflected by the result.

Returns set All actions defined in this State object.

transitions
Return transition

Returns dict All transitions supported by this State object.

ctxt
Return the current context.

Returns SharedContext The shared context used by the state object

Shared Context module

This module contains the SharedContext class.

This SharedContext hold all the data that needs to be shared between the State and the StateMachine
objects.

class otrbot.statemachine.context.SharedContext(state=None)
A shared context for the state machine and the state.

Parameters state (str) – The curent StateMachine state

LTI

LTI provider that interfaces with the bot. This is a simple setup using Flask, because the PyLTI library already
implements Flask decorators.

1.5. LTI 13

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#set
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str

OTR bot Documentation, Release 1.0 Alpha

This module runs a flask server on 0.0.0.0:5000 (which maps to any host, port 5000). It accepts LTI requests using the
key and secret in the settings file.

Adding the bot to your LMS

To add this tool to your LMS, you need to run it on your own server, say example.com. Currently it is started by running
./bot.py runclient, which starts an OTR bot and the LTI server. The server can then be reached at example.com:5000.

In your LMS, enter example.com:5000 as the launch URL for this LTI application. The “Consumer key” and “Shared
secret” are in the settings file for your environment. In our settings.development_sample settings, find
PYLTI_CONFIG. You can see that we added one consumer under “consumers”, which has __consumer_key__ as
his consumer key, and __lti_secret__ as his secret. It is recommended to change these defaults.

Now it’s time to add your bot to the plugins/apps in your LMS. In canvas, follow these steps to add the bot to a course:

• In your course, click Settings and then go to the Apps tab.

• Click Add App

• Choose “Manual entry”

• The only fields that are currently relevant in Canvas are “Consumer key”, “Shared secret” and “Launch URL”.
Follow your previously defined settings for the key and secret. The launch URL in our example is exam-
ple.com:5000. Add a useful name in the “Name” field and keep the other fields empty.

• Click the Submit button to save the app. Note that Canvas does not typically check any of the fields. To test the
application, add the bot to an assignment.

And to add the bot to an assignment:

• Go to Courses -> Assignments

• Click + Assignment to add a new assignment and add a new assignment.

• Click the + next to your new assignment to add a sub-assignment.

• Click “More options” to be able to add LTI components.

• Write whatever you want in the screens, an Assignment name is required for the assignment to be saved. Be
sure to add “Points” to the assignment if you want to be able to see grades.

• Under “Submission Type” choose “External Tool” Insert example.com:5000 as the URL for the external tool.

• Save the assignment. You will now see an example of the course page you just made, with the OTR bot screen
that is provided through LTI.

• Note that the OTR bot only supplies a grade if the assignment is viewed by a student: in the teacher environment,
no grade will be passed back to Canvas.

otrbot.lti.lti.app = <Flask ‘otrbot.lti.lti’>
The flask decorator (unfortunately does not follow conventions).

otrbot.lti.lti.mock_ltid(_app=None, _request=’any’, error=None, role=’any’, *lti_args,
**lti_kwargs)

For debug purposes, replace the normal lti decorator with this one, that returns ‘mock-lti’ as nickname and does
not verify or authenticate

otrbot.lti.lti.BOT = None
It is important to initialise the bot variable before calling ‘run()’. It should point to an instance of the OtrBot
class.

otrbot.lti.lti.get_locale()
Try to set the locale to something sensible

14 Chapter 1. Quick Start

OTR bot Documentation, Release 1.0 Alpha

otrbot.lti.lti.error_page(exception=None)
Render error page

Parameters exception – optional exception

Returns the error.plim template rendered

otrbot.lti.lti.hello_world(lti=<function lti>)
Indicate the flask app is working. Provided for debugging purposes.

Parameters lti – the lti object from pylti

Returns simple page that indicates the request was processed by the lti provider

otrbot.lti.lti.index(*args, **kwargs)
initial access page to the lti provider. This page provides authorization for the user. Contains a button to enter a
JID

Parameters lti – the lti object from pylti

Returns index page for lti provider

otrbot.lti.lti.enter_jid(*args, **kwargs)
Insert a JID for the bot to add to its roster. The form validates the JID using SleekXMPP’s JID constructor. After
that, it tries to add the JID to the bot. If that fails (unlikely), the error page is shown.

Parameters lti – the lti object from pylti

Returns Either the form to enter the jid or a redirect to the jid_entered page.

otrbot.lti.lti.jid_entered(*args, **kwargs)
A page that confirms that the jid was added to the bot. Contains a button that directs the user tot he
“ask_for_secret” page.

Parameters lti – the lti object from pylti

Returns The page confirming the jid was added.

otrbot.lti.lti.ask_for_secret(*args, **kwargs)
Show a form to submit a shared secret. When the secret is submitted, it is utf-8 encoded and added to the bot.
The bot then checks if the secret is strong enough. If so, it saves it, else, the user is informed about this through
Jabber, and asked to enter a new secret through LTI.

If this function is called when a strong secret is already set, the page is skipped and the next page is loaded,
where the user is notified that his secret is added.

Parameters lti – the lti object from pylti

Returns Either a page showing the secret form or a page saying that the secret was entered.

otrbot.lti.lti.enter_bot_secret(*args, **kwargs)
Form to enter the secret that the bot shares after SMP is successful

otrbot.lti.lti.run_lti()
For if you want to run the flask development server directly

OTR bot utility functions

A set of utility functions that are often used throughout the application.

otrbot.core.utils.fatal(code=exit_codes.UNKNOWN_EXCEPTION, last_error=None)
Log a fatal error an exit the application with an exit code.

1.6. OTR bot utility functions 15

OTR bot Documentation, Release 1.0 Alpha

Parameters

• code (int) – The exit code the application failed with.

– exit_codes.INVALID_ARGUMENT

– exit_codes.BAD_SETTING

– exit_codes.NO_SETTINGS

– exit_codes.MISSING_DEPDENDENCY

– exit_codes.WRONG_TLS_CIPHER_NEGOTIATED = 127

– exit_codes.UNKNOWN_EXCEPTION

• last_error (str) – A fatal error message to logger.

otrbot.core.utils.dummy_i18n(msg)
Dummy i18n function, use when nothing is translated, only defined.

otrbot.core.utils.generate_secret(**kwargs)
Generate a cryptographically secure secret according to a format.

Supply either the format keyword or the length keyword, not both.

In the format string any occurrence of “X” will be replaced by a random character. You can put any separators
characters you wish.

Parameters

• format (str) – Format string, each X will be replaced by a random character (“XXXX-
XXXX-XXXX-XXXX”).

• length (int) – Length of the random string.

• alpha (bool) – Include alphabet in the output (True).

• case (str) – Case of character options: upper, lower, mixed (upper)

• numeric (bool) – Include numbers in the output (False).

• symbols (bool) – Include common symbols in the output (False).

• options (str) – A string containing all possible characters.

Returns str Secret according to format.

otrbot.core.utils.call_function(function, *args, **kwargs)
calls the function with the appropriate amount of arguments. This enables defining functions with or withouth
*args and **kwargs that can both be called through this function.

Parameters

• function (function) – The function with an arbitrary amount of arguments.

• args (tuple) – The unnamed arguments of the function (in order).

• kwargs (dict) – The keyword arguments of the function.

class otrbot.core.utils.CacheReturn(func)
Cache return of a function/method for a specific set of arguments.

This class memorises all the arguments passed to it and all the return values so it can potentially have a huge
memory footprint. Use with caution.

Initialise the CacheReturn class.

16 Chapter 1. Quick Start

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#tuple
https://docs.python.org/2.7/library/stdtypes.html#dict

OTR bot Documentation, Release 1.0 Alpha

Parameters func (function) – The function object, automatically passed by decorating a func-
tion with this class.

otrbot.core.utils.template_substitute(input_string, **kwargs)
shorthand for using string.Template’s safe_substitute

class otrbot.core.utils.SleekFilter(name=’‘)
Filter annoyingly large sleek messages

Initialize a filter.

Initialize with the name of the logger which, together with its children, will have its events allowed through the
filter. If no name is specified, allow every event.

AVATAR_MSGS = [’<TYPE>image/png</TYPE><BINVAL>’, ‘data xmlns=”urn:xmpp:avatar:data”’]
These strings are typical for messages about avatars:

TRUNCATE = 60
Truncate everything between the first and last TRUNCATE characters

filter(record)
Filter a record:

•Truncate messages that contain avatar data

Colourised logging

ANSI colourise the logging stream (works on LINUX/UNIX based systems).

Constants for colours:

attr const BLACK Black

attr const RED Red

attr const GREEN Green

attr const YELLOW Yellow

attr const BLUE Blue

attr const CYAN Cyan

attr const WHITE White

Class documentation

class otrbot.core.colourlog.ColourFormatter(*args, **kwargs)
ANSI colourise the logging stream (works on LINUX/UNIX based systems).

Initialise some variables for colourising.

Make cache dict for formats, backup original format string, initialise the parent log formatter.

Parameters

• args (tuple) – Positional arguments that should be passed to the parent formatter.

• kwargs (dict) – Keyword arguments that should be passed to the parent formatter. Two
keywords are taken from this dict, see below.

1.7. Colourised logging 17

https://docs.python.org/2.7/library/functions.html#tuple
https://docs.python.org/2.7/library/stdtypes.html#dict

OTR bot Documentation, Release 1.0 Alpha

• colours (dict) – A dictionary containing the colour schemes to be used by the logger,
see below for more information.

• no_colour_nl (bool) – Tell the logger not to colour anything after a new line character.

There is a default colour scheme with 2 colour indexes. You can use these colourschemes as follows:

formatter = ColourFormatter(
"$lvl[%(levelname)s]$reset $msg%(name)s %(message)s"

)

Note the $lvl and $msg variables are used as template strings in the format string. Also note there is a $reset
variable, use this before any change in colour, it is automatically added at the end of the string to prevent the
terminal from printing coloured strings after the log line was printed.

You can also make custom colour schemes and pass them as a keyword argument (colours) when instantiating a
ColourFormatter object.

The colours dictionary that can be passed to the ColourFormatter is formatted as follows.

{
'lvl': {

logging.DEBUG: (WHITE, BLUE, False),
logging.INFO: (BLACK, GREEN, False),
logging.WARNING: (BLACK, YELLOW, False),
logging.ERROR: (WHITE, RED, False),
logging.CRITICAL: (YELLOW, RED, True),

},
'msg': {

logging.DEBUG: (BLUE, None, False),
logging.INFO: (GREEN, None, False),
logging.WARNING: (YELLOW, None, False),
logging.ERROR: (RED, None, False),
logging.CRITICAL: (RED, None, True),

}
}

The dictionary contains indexes followed by the log levels, followed by a tuple in the form of foreground colour,
background color, bold face.

The colourschemes above are the default colours, they colour the %(levelname)s in colour scheme lvl, which
adds background colours as well as foreground colours. The rest of message is can be formatted using the msg
scheme, which does not add any background colours but does add foreground colours.

The lvl and msg indexes specify colourschemes. You can make your own indexes, indexes can have arbitrary
names but should be formatted be a-zA-Z0-9-_ and start with a-zA-Z. To make use of your colour scheme you
need to change your format string. Like this:

import logging
logger = logging.getLogger(__name__)
logger.setLevel(level=logging.DEBUG)
handler = logging.StreamHandler()
handler.setFormatter(

ColourFormatter(
"$lvl[%(levelname)s]$reset $msg%(name)s %(message)s "
"$reset"

)
)
logger.addHandler(handler)

logger.debug("This is detailed information..")

18 Chapter 1. Quick Start

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool

OTR bot Documentation, Release 1.0 Alpha

logger.info("This somewhat more useful..")
logger.warn("This might be dangerous..")
logger.error("Something might have gone a bit wrong")
logger.critical("Woah! do something!!")

\x1b[44;37m[DEBUG]\x1b[0m \x1b[34m__main__ This is detailed information..\x1b[0m
\x1b[42;30m[INFO]\x1b[0m \x1b[32m__main__ This somewhat more useful..\x1b[0m
\x1b[43;30m[WARNING]\x1b[0m \x1b[33m__main__ This might be dangerous..\x1b[0m
\x1b[41;37m[ERROR]\x1b[0m \x1b[31m__main__ Something might have gone a bit wrong\x1b[0m
\x1b[41;33;1m[CRITICAL]\x1b[0m \x1b[31;1m__main__ Woah! do something!!\x1b[0m

format(record)
Override the normal format method to swap out the format string, then call the parent format method.

Parameters record (object) – The log record.

get_colour_fmt(lvl)
Add a colour to the msg strings and return them.

The result of the Template sting is cached.

Parameters lvl (int) – The log level.

Settings

Environment variables

If the ENV variable in otrbot.settings.env is set to “production”, the otrbot.settings.production
will be used. This is the default. You should change this to “development” if you want to work on this project, to
prevent your credentials from begin pushed back to Github.

ENV = "production"

The SSL/TLS configuration options

• TLS is enabled by default but can be switched off for testing, or in case you run your Jabber server on the same
physical server.

• SleekXMPP can fall back to SSLv2/v3 if the server doesn’t support TLS but don’t do this, SSLv3 is already
deemed very unsafe.

• You can choose which TLS version the client should use at a minimum.

• You can define ciphers that are allowed, a reasonable list of ciphers that are considered safe at the time of writing
(Apr-‘16) is preconfigured, which should be fine for most modern servers.

otrbot.settings.sample.ENABLE_TLS = True
Enable or disable TLS (default: True — Do not disable!)

otrbot.settings.sample.ALLOW_SSL_FALLBACK = False
Enable or disable SSL (default: False — Do not enable!)

otrbot.settings.sample.TLS_VERSION = ‘TLSv1.2’
TLS version to use (default: TLSv1) This can be increased to TLSv1.1 or TLSv1.2 but it requires Python
2.7.9+.

1.8. Settings 19

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#int

OTR bot Documentation, Release 1.0 Alpha

otrbot.settings.sample.CIPHER_LIST = [’ECDHE-RSA-AES256-GCM-SHA384’, ‘ECDHE-RSA-AES128-GCM-SHA256’, ‘ECDHE-RSA-AES256-SHA256’, ‘ECDHE-RSA-AES128-SHA256’, ‘ECDHE-RSA-AES256-SHA’, ‘ECDHE-RSA-AES128-SHA’, ‘ECDHE-ECDSA-AES256-GCM-SHA384’, ‘ECDHE-ECDSA-AES128-GCM-SHA256’, ‘ECDHE-ECDSA-AES256-SHA384’, ‘ECDHE-ECDSA-AES128-SHA256’, ‘ECDHE-ECDSA-AES256-SHA’, ‘ECDHE-ECDSA-AES128-SHA’, ‘DHE-RSA-AES256-GCM-SHA384’, ‘DHE-RSA-AES128-GCM-SHA256’, ‘DHE-RSA-AES256-SHA256’, ‘DHE-RSA-AES128-SHA256’, ‘DHE-RSA-AES256-SHA’, ‘DHE-RSA-AES128-SHA’]
The list of accepted ciphers, this list should be supported by most servers and be reasonably safe at the time of
writing (Apr-‘16).

ECDHE-RSA-AESXXX-[XXX-]SHA[XXX]

• Elliptic Curve Ephemeral Diffie Hellman key agreement

• Perfect Forward Secret (PFS, because of Ephemeral keys)

• RSA authentication

• AES in CBC or GCM mode for encryption

• SHA1, SHA256 or SHA384 digests

These are safe, and provide excellent performance (GCM is fastest). AES in CBC and GCM
mode can be hardware accelerated on most servers. CBC is a block mode cipher, while GCM is
a stream cipher, the latter provides better performance for network connections.

ECDHE-ECDSA-AESXXX-[XXX-]SHA[XXX]

• Elliptic Curve Ephemeral Diffie Hellman key agreement

• Perfect Forward Secret (PFS, because of Ephemeral keys)

• ECDSA authentication

• AES in CBC or GCM mode for encryption

• SHA1, SHA256 or SHA384 digests

These are safe, and provide the best performance available, ECDSA requires ECDSA server
certificates which are rare at this point in time.

DHE-RSA-AESXXX-[XXX-]SHA[XXX]

• Ephemeral Diffie Hellman key agreement

• Perfect Forward Secret (PFS, because of Ephemeral keys)

• RSA authentication

• AES in CBC or GCM mode for encryption

• SHA1, SHA256 or SHA384 digests

These are safe, but perform significantly worse than ECDHE ciphers.

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

• Elliptic Curve Ephemeral Diffie Hellman key agreement

• Perfect Forward Secret (PFS, because of Ephemeral keys)

• RSA authentication

• ChaCha20 stream cipher, provides 256 bits of security

• Poly1305 authenticator to detect forged data.

Safe and lightweight, and provide excellent performance, most notably for mobile devices. AES
can be hardware accelerated on most servers, which means it may still outperform ChaCha20-
Poly1305. Currently not supported by the most common OpenSSL versions in use.

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256

• Elliptic Curve Ephemeral Diffie Hellman key agreement

20 Chapter 1. Quick Start

OTR bot Documentation, Release 1.0 Alpha

• Perfect Forward Secret (PFS, because of Ephemeral keys)

• ECDSA authentication

• ChaCha20 stream cipher, provides 256 bits of security

• Poly1305 authenticator to detect forged data.

Safe and lightweight, and provide excellent performance, most notably for mobile devices. AES
can be hardware accelerated on most servers, which means it may still outperform ChaCha20-
Poly1305. ECDSA requires ECDSA server certificates which are rare at this point in time.
Currently not supported by the most common OpenSSL versions in use.

TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256

• Ephemeral Diffie Hellman key agreement

• Perfect Forward Secret (PFS, because of Ephemeral keys)

• RSA authentication

• ChaCha20 stream cipher, provides 256 bits of security

• Poly1305 authenticator to detect forged data.

Safe and lightweight, and provide excellent performance, most notably for mobile devices. AES
can be hardware accelerated on most servers, which means it may still outperform ChaCha20-
Poly1305. Currently not supported by the most common OpenSSL versions in use.

AESXXX-[XXX-]SHA[XXX]

• RSA authentication

• AES in CBC or GCM mode for encryption

• SHA1, SHA256 or SHA384 digests

These good ciphers but they lack Perfect Forward Secrecy, which means if the private keys of the
server ever get stolen, all historic data can be trivially decrypted. Performance is very good but
at great cost to security. Therefore these are disabled by default. If you experience compatibility
issues, enable one by one, top to bottom, until you get a connection. However you should really
consider upgrading the server software!

Note: It is still considered too hard to forge a certificate with a SHA1 digest outright but SHA1 is considered
deprecated. The ciphers ending in _SHA should be disabled for better security. Since some servers do not
support SHA256 or higher yet, it is still included for compatibility.

otrbot.settings.sample.CA_CERTS = ‘/etc/ssl/certs/ca-certificates.crt’
Location of a PEM file containing all Certificate Authority certificates. This is used for checking the server
certificate. To not check the server certificate, set this to None.

Warning: Do not disable server certificate checking in production environments, except when running your
own XMPP server locally, on the same physical server.

Other settings

otrbot.settings.sample.ALLOW_SSL_FALLBACK = False
Enable or disable SSL (default: False — Do not enable!)

1.8. Settings 21

OTR bot Documentation, Release 1.0 Alpha

otrbot.settings.sample.TLS_VERSION = ‘TLSv1.2’
TLS version to use (default: TLSv1) This can be increased to TLSv1.1 or TLSv1.2 but it requires Python
2.7.9+.

otrbot.settings.sample.FORMAT_STRINGS = {‘bot_title’: ‘OTR Bot (Canvas)’, ‘bot_description’: ‘This is an instance of the OTR Bot. Source code is available on https://code.greenhost.net’, ‘project_name’: ‘Totem (Canvas)’, ‘bot_alias’: ‘Marvin (Canvas)’}
The following dict contains the statically defined variables that get formatted into the template strings of mes-
sages.

otrbot.settings.sample.XMPP_ACCOUNTS = {‘totem@jabme.eu’: {‘password’: ‘quahnahgh6kohTeisixoh5ph’, ‘avatar_file’: ‘./avatar.jpg’}}
A dictionary of the default Jabber account to be used by the bot.

otrbot.settings.sample.XMPP_DEFAULT_ACCOUNT = ‘totem@jabme.eu’
The JID that the bot uses when the flag -j is not supplied to runclient.

otrbot.settings.sample.FLASK_CONFIG = {‘WTF_CSRF_ENABLED’: True, ‘PYLTI_URL_FIX’: {‘https://localhost/’: {‘https://localhost/’: ‘http://192.168.33.10/’}, ‘https://localhost:8000/’: {‘https://localhost:8000/’: ‘http://localhost:8000/’}}, ‘SECRET_KEY’: ‘REPLACE THIS BY A LONG RANDOM SEQUENCE OF CHARACTERS’, ‘PYLTI_CONFIG’: {‘consumers’: {‘__consumer_key__’: {‘secret’: ‘__lti_secret__’}}}}
The Flask and PyLTI configuration. The values in this dictionary update the standard Flask and PyLTI configu-
ration values.

otrbot.settings.sample.USE_LTI = ‘True’
When this is true, LTI will be used for authentication. For development purposes, you can turn it off and reach
the interface without authentication

otrbot.settings.sample.LTI_CSS_URL = ‘https://hostname.tld/style.css’
The CSS file that should be added to the head of the LTI (link).

otrbot.settings.sample.OTR_BOT_MAY_START_SMP = False
If this is true, the bot is allowed to start SMP by itself as soon as it receives a password. If it’s false, the bot will
wait for the user to start SMP.

otrbot.settings.sample.DEFAULT_LOCALE = ‘en_GB’
Default language to use. Take a look at the locales folder to see which locales are available

otrbot.settings.sample.JID_WHITELIST = {‘user@jabber.example.com’: {‘locale’: ‘en_GB’}}
Whitelist for accounts that are authorised to talk to the OTR bot. Can be extended by adding to self.whitelist
in bot.py. Users are deleted from the whitelist when their session ends. The whitelist may also contain default
values for bot sessions, like the locale

otrbot.settings.sample.DEFAULT_SECRET = None
Use this in test-settings to have a default shared secret, so you won’t have to bother using an external protocol
to insert the secret into the bot.

otrbot.settings.sample.LOG_USER_MSGS = False
Log connected users messages to the log file, should be set to False in production to prevent potentially sensitive
data from being collected. Note: These are the messages the user sends to the bot.

otrbot.settings.sample.WARNING_TIMEOUT = 1500
The number of seconds of inactivity before a user is warned that his session will be killed

otrbot.settings.sample.SESSION_TIMEOUT = 1800
The number of seconds of inactivity before a session is killed (should be higher than WARNING_TIMEOUT)

otrbot.settings.sample.TIMEOUT_CHECK_INTERVAL = 60
The interval in seconds that the timeouts should be checked on.

otrbot.settings.sample.SCHEDULED_MSG_SAY = True
Use a scheduler to delay message with random intervals to make the interaction seem more natural.

otrbot.settings.sample.THREADED_STATE_SCHEDULER = True
Thread the state scheduler?

22 Chapter 1. Quick Start

OTR bot Documentation, Release 1.0 Alpha

otrbot.settings.sample.TYPE_SPEED = 20
How fast should the bot be able to type? (characters per second). This is irrelevant if SCHEDULED_MSG_SAY
is set to False.

Exceptions

This page lists all the custom exceptions that are raised by the OTR bot.

Exceptions related to the otrbot client.

exception otrbot.exceptions.client.JidNotKnown(jid=None)
This exception is raised when a JID is not in the client’s _sessions variable when it should be.

Exceptions related to the LTI interface

exception otrbot.exceptions.lti.BotNotStarted
Raised if BOT is still None when the server is started. It should contain a reference to the OTR bot.

Exceptions related to the state machine.

exception otrbot.exceptions.statemachine.StateDoesNotExist(state=’undefined’)
Raise this exception when a state is request that does not exist.

exception otrbot.exceptions.statemachine.CannotHandle(event=’undefined’,
state=’undefined’)

Raise this exception when an event that can’t be handled is called.

exception otrbot.exceptions.statemachine.ActionNotAllowed(action=’undefined’,
state=’undefined’)

Raise this exception when an action is run that is not allowed by the current state.

1.9. Exceptions 23

OTR bot Documentation, Release 1.0 Alpha

24 Chapter 1. Quick Start

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

25

OTR bot Documentation, Release 1.0 Alpha

26 Chapter 2. Indices and tables

Python Module Index

o
otrbot.core.client, 3
otrbot.core.colourlog, 17
otrbot.core.utils, 15
otrbot.exceptions.client, 23
otrbot.exceptions.lti, 23
otrbot.exceptions.statemachine, 23
otrbot.lti.lti, 13
otrbot.otrplugin.account, 10
otrbot.otrplugin.context, 8
otrbot.otrplugin.manager, 10
otrbot.otrplugin.plugin, 7
otrbot.statemachine.context, 13
otrbot.statemachine.state, 12
otrbot.statemachine.statemachine, 10

27

OTR bot Documentation, Release 1.0 Alpha

28 Python Module Index

Index

A
action() (otrbot.statemachine.state.State method), 12
action() (otrbot.statemachine.statemachine.StateMachine

method), 11
ActionNotAllowed, 23
add_jid() (otrbot.core.client.OtrBot method), 5
app (in module otrbot.lti.lti), 14
ask_for_secret() (in module otrbot.lti.lti), 15
AVATAR_MSGS (otrbot.core.utils.SleekFilter attribute),

17

B
BOT (in module otrbot.lti.lti), 14
bot_connected() (otrbot.core.client.OtrBot method), 4
BotNotStarted, 23

C
CacheReturn (class in otrbot.core.utils), 16
call_function() (in module otrbot.core.utils), 16
CannotHandle, 23
changed_subscription() (otrbot.core.client.OtrBot

method), 5
check_bot_secret() (otrbot.core.client.OtrBot method), 6
check_sessions() (otrbot.core.client.OtrBot method), 5
ColourFormatter (class in otrbot.core.colourlog), 17
connect() (otrbot.core.client.OtrBot method), 4
contexts (otrbot.otrplugin.manager.OtrManager at-

tribute), 10
ctxt (otrbot.statemachine.state.State attribute), 13
ctxt (otrbot.statemachine.statemachine.StateMachine at-

tribute), 12

D
decrypt() (otrbot.otrplugin.plugin.OtrPlugin method), 8
destroy_all_contexts() (otr-

bot.otrplugin.manager.OtrManager method),
10

destroy_context() (otrbot.otrplugin.manager.OtrManager
method), 10

dummy_i18n() (in module otrbot.core.utils), 16

E
emit_event() (otrbot.otrplugin.context.OtrContext

method), 9
emit_event() (otrbot.otrplugin.plugin.OtrPlugin method),

8
encrypt() (otrbot.otrplugin.plugin.OtrPlugin method), 8
enter_bot_secret() (in module otrbot.lti.lti), 15
enter_jid() (in module otrbot.lti.lti), 15
error_page() (in module otrbot.lti.lti), 14

F
fatal() (in module otrbot.core.utils), 15
filter() (otrbot.core.utils.SleekFilter method), 17
format() (otrbot.core.colourlog.ColourFormatter

method), 19

G
generate_secret() (in module otrbot.core.utils), 16
get_colour_fmt() (otrbot.core.colourlog.ColourFormatter

method), 19
get_context() (otrbot.otrplugin.manager.OtrManager

method), 10
get_locale() (in module otrbot.lti.lti), 14
get_shared_secret() (otrbot.core.client.OtrBot method), 5
getPolicy() (otrbot.otrplugin.context.OtrContext method),

9

H
handle() (otrbot.statemachine.state.State method), 13
handle() (otrbot.statemachine.statemachine.StateMachine

method), 11
hello_world() (in module otrbot.lti.lti), 15

I
index() (in module otrbot.lti.lti), 15
inject() (otrbot.otrplugin.context.OtrContext method), 9

J
jid_entered() (in module otrbot.lti.lti), 15
jid_in_sessions() (otrbot.core.client.OtrBot method), 6

29

OTR bot Documentation, Release 1.0 Alpha

JidNotKnown, 23

K
kill_session() (otrbot.core.client.OtrBot method), 5

L
loadPrivkey() (otrbot.otrplugin.account.OtrAccount

method), 10

M
mock_ltid() (in module otrbot.lti.lti), 14

O
on_enter() (otrbot.statemachine.state.State method), 12
on_leave() (otrbot.statemachine.state.State method), 12
otr_event() (otrbot.core.client.OtrBot method), 4
OtrAccount (class in otrbot.otrplugin.account), 10
OtrBot (class in otrbot.core.client), 4
otrbot.core.client (module), 3
otrbot.core.colourlog (module), 17
otrbot.core.utils (module), 15
otrbot.exceptions.client (module), 23
otrbot.exceptions.lti (module), 23
otrbot.exceptions.statemachine (module), 23
otrbot.lti.lti (module), 13
otrbot.otrplugin.account (module), 10
otrbot.otrplugin.context (module), 8
otrbot.otrplugin.manager (module), 10
otrbot.otrplugin.plugin (module), 7
otrbot.statemachine.context (module), 13
otrbot.statemachine.state (module), 12
otrbot.statemachine.statemachine (module), 10
OtrContext (class in otrbot.otrplugin.context), 8
OtrManager (class in otrbot.otrplugin.manager), 10
OtrPlugin (class in otrbot.otrplugin.plugin), 7

P
plugin_init() (otrbot.otrplugin.plugin.OtrPlugin method),

7
possible_actions (otrbot.statemachine.state.State at-

tribute), 13
processTLVs() (otrbot.otrplugin.context.OtrContext

method), 9

R
refresh_session() (otrbot.core.client.OtrBot method), 5
REFRESH_SESSION_WHITELIST (otr-

bot.core.client.OtrBot attribute), 4
run_lti() (in module otrbot.lti.lti), 15

S
savePrivkey() (otrbot.otrplugin.account.OtrAccount

method), 10

saveTrusts() (otrbot.otrplugin.account.OtrAccount
method), 10

send_plain() (otrbot.otrplugin.plugin.OtrPlugin method),
8

session_end() (otrbot.core.client.OtrBot method), 4
session_start() (otrbot.core.client.OtrBot method), 4
set_secret() (otrbot.otrplugin.plugin.OtrPlugin method), 8
set_shared_secret() (otrbot.core.client.OtrBot method), 5
setState() (otrbot.otrplugin.context.OtrContext method),

9
setup_otr() (otrbot.otrplugin.plugin.OtrPlugin method), 8
SharedContext (class in otrbot.statemachine.context), 13
SIGN_OUT_MESSAGE (otrbot.core.client.OtrBot at-

tribute), 4
SleekFilter (class in otrbot.core.utils), 17
smpAbort() (otrbot.otrplugin.context.OtrContext

method), 9
State (class in otrbot.statemachine.state), 12
state (otrbot.statemachine.statemachine.StateMachine at-

tribute), 11
STATE_OBJECT (otrbot.statemachine.statemachine.StateMachine

attribute), 11
StateDoesNotExist, 23
StateMachine (class in otr-

bot.statemachine.statemachine), 11

T
template_substitute() (in module otrbot.core.utils), 17
terminate_session() (otrbot.core.client.OtrBot method), 5
transitions (otrbot.statemachine.state.State attribute), 13
TRUNCATE (otrbot.core.utils.SleekFilter attribute), 17

W
warn_session() (otrbot.core.client.OtrBot method), 5

30 Index

	Quick Start
	OTR Bot
	Translations
	OTR Plugin
	State Machine
	LTI
	OTR bot utility functions
	Colourised logging
	Settings
	Exceptions

	Indices and tables
	Python Module Index

