

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	OTR bot 1.0 Alpha documentation 
 
      

    


    
      
          
            
  
Welcome to OTR bot’s documentation!

The bot exists of four modules:


	The OTR Bot module that runs an XMPP client that communicates with
peers, to teach them how to enable and verify OTR connections.

	The OTR Plugin module that enables the use of OTR with SleekXMPP.

	A State Machine that executes actions and handles events.

	A Learning Tools Interoperability (LTI) interface to be able to start talking
with the OTR bot from a Learning Management System (LMS).




Quick Start


	It is recommended to start by creating a virtualenv environment for the bot.
The bot uses external python libraries that are fixed on a certain version.
The easiest way to ensure that nothing else on your system breaks when
installing these dependencies, is by using a virtual environment.

	Install python-dev in order to be able to install all dependencies. On
debian-based systems, run apt-get install python-dev.

	Run pip install -r requirements.txt to fulfill all python requirements.

	By default, the environment in settings/env.py is set to production. This
means it searches for production.py in the settings folder. Alter this
environment, or the production.py file:
	The XMPP_ACCOUNTS dictionary should at least contain one valid jabber
account. Its JID should be the key, its value a dictionary with the
contents ‘password’, ‘private_key’, ‘SSL’, ‘port’ and ‘allow_plain_text’.

	Enter the JID of one of the accounts in XMPP_ACCOUNTS in
XMPP_DEFAULT_ACCOUNTS. This is the default account to start the bot
with. If you don’t have a default account, always start the bot with
the –jid flag.





	Start the bot by running ./bot.py runclient. Run ./bot.py runclient –help
for information on the available arguments. Other subcommands are available as
well. Run python bot.py –help for more information.




Table of Contents


	OTR Bot
	Usage

	SleekXMPP

	Class documentation





	Translations
	Extracting translation messages

	Starting a translation

	Updating an existing translation

	Compiling your changes





	OTR Plugin
	List of event types

	Credits





	State Machine
	State Machine module

	State module

	Shared Context module





	LTI
	Adding the bot to your LMS

	Class documentation





	OTR bot utility functions

	Colourised logging
	Class documentation





	Settings
	Environment variables

	The SSL/TLS configuration options

	Other settings





	Exceptions
	Exceptions related to the otrbot client.

	Exceptions related to the LTI interface

	Exceptions related to the state machine.














Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2016 Greenhost https://greenhost.net.
      Created using Sphinx 1.4.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	OTR bot 1.0 Alpha documentation 
 
      

    


    
      
          
            
  
OTR Bot

XMPP client for the OTR bot. Manages all conversations.


Usage

Start a bot by initialising the class:

>>> bot = OtrBot()





Then, you can connect to the Jabber server:

>>> bot.connect()





Lastly, start the bot by running process:

>>> bot.process()





If a user wants to be able to talk to the OTR bot, you should be added to
its whitelist. This is achieved by running OtrBot.add_jid(), or
adding the jid to the whitelist in the Settings. When adding
someone to the whitelist, it is possible to supply its locale. All
supported locales are in the root directory, in the locales folder.

After running add_jid, the bot will add a user to his whitelist and roster,
and will invite the user to talk with him over Jabber. When the user starts
talking to the bot, it will start a session for the user, and respond to
him. When a user is inactive for too long, his session will be removed from
the bot. See the functions warn_session(),
kill_session() and terminate_session() for more
information.

The bot is supplied in conjunction with an LTI interface for adding Jabber
IDs to the bot and supplying shared secrets, but it is possible to use the
bot from the command line, without using the LTI interface.




SleekXMPP

The bot uses SleekXMPP [http://sleekxmpp.com/] for communication and scheduling. A custom
OTR Plugin fires events through SleekXMPP and are used by the bot to
react on the user’s actions.




Class documentation


	
class otrbot.core.client.OtrBot(jid=None, **kwargs)

	OTR bot ClientXMPP implementation

Start an OTR bot for a specifig Jabber ID.





	Parameters:	
	jid (str [https://docs.python.org/2.7/library/functions.html#str]) – The Jabber ID the bot can use. Its password needs
to be in the settings, or supplied as a keyword argument.            :keyword str password: The password for the jabber account

	default_locale (str [https://docs.python.org/2.7/library/functions.html#str]) – The default locale for the bot,
overrides the setting
DEFAULT_LOCALE.

	shared_secret (str [https://docs.python.org/2.7/library/functions.html#str]) – The default shared secret for the bot,
overrides the setting
DEFAULT_SECRET. Can be None, if
the secret is added via another route, e.g., LTI.

	key_file (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the file containing the private
key for the bot










	
REFRESH_SESSION_WHITELIST = ('message_received', 'otr_enabled', 'smp_started', 'smp_aborted', 'otr_disabled')

	The events that allow the session of a user to be refreshed, extending
its timeout






	
SIGN_OUT_MESSAGE = 'Your session has expired, you can start a new session from ${project_name}.'

	This message is sent when the bot signs out and no other message is
supplied






	
connect()

	Connecting with the TLS and SSL flags set to None allows
manipulation of these settings through the XML stream object






	
bot_connected(event)

	Verify that the connection is established as requested, i.e.: the
TLS cipher(s) that was(/were) configured is(/are) used. If this is
not the case, disconnect and quit with a fatal error.






	
session_start(event)

	Bring the bot online. All the JIDs that are already in the bot’s
whitelist are added to the roster.






	
session_end(event)

	Clean up at the end of the session. Kill all sessions, delete all
aggregated data and empty the roster.






	
otr_event(event)

	Apply an OTR event to the state machine of a specific JID. OTR
events are fired by the OtrPlugin.

If the JID was unknown in the _sessions dict, but is
in the _whitelist, a new session is started with
start_sessions.





	Parameters:	event (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – A dictionary containing the keys jid (JID),
type (str) and data (any type). The type should be
an event that can be handled by the current state. If the event
can not be handled by the state, it will raise a CannotHandle
exception.










	
check_sessions()

	Checks all sessions’ contexts in self._sessions for timeouts. If a
timeout is imminent (WARNING_TIMEOUT
seconds have passed), it fires a warning using
warn_session(). If a timeout has passed
(SESSION_TIMEOUT seconds have
passed), it removes the session by using kill_session().






	
refresh_session(jid)

	Refresh the users session by resetting the timeouts. If the user
has been warned about a session timeout, the bot sends a
notification that the session has been refreshed.





	Parameters:	jid (JID) – The user’s jid.










	
warn_session(jid)

	Send a warning to the user, that they should reply to maintain the
session.





	Parameters:	jid (JID) – The user’s jid.










	
kill_session(jid, msg=None)

	Tell the user the session has expired, then set a timeout for
termination of the session (allows the message to be sent out
first).





	Parameters:	
	jid (JID) – The user’s jid, an instance of
sleekxmpp.jid.JID

	msg (str [https://docs.python.org/2.7/library/functions.html#str]) – The message that will be sent by the bot before
going down.














	
terminate_session(jid, msg=None)

	Remove the session from _sessions and the user from the
roster. Also makes the bot offline to the user. A status message is
set explaining how the user can re-enable the bot.





	Parameters:	
	jid (JID) – The user’s jid, an instance of
sleekxmpp.jid.JID

	msg (str [https://docs.python.org/2.7/library/functions.html#str]) – The status message for the bot the user will see.














	
changed_subscription(presence)

	Only authorize and subscribe to people in self._whitelist, which is
populated by settings.JID_WHITELIST.





	Parameters:	presence (Presence) – A
sleekxmpp.stanza.presence.Presence stanza for the
subscription










	
add_jid(jid, locale='en_GB')

	Add the supplied JID to the whitelist and the roster and send a
presence to appear online for that user.





	Parameters:	jid (JID) – The Jabber ID to add










	
get_shared_secret(jid)

	Return the shared secret set by the jabber ID jid, or none if he
has not set one





	Parameters:	jid (str [https://docs.python.org/2.7/library/functions.html#str]) – The JID that should have set a shared secret










	
set_shared_secret(jid, secret)

	Insert the secret into the context for the jid. The otr_event
‘secret_received’ is fired afterwards.





	Parameters:	
	jid (str [https://docs.python.org/2.7/library/functions.html#str]) – A valid jabber ID that is in self._sessions

	secret (str [https://docs.python.org/2.7/library/functions.html#str]) – A secret that should be supplied by the user














	
check_bot_secret(jid, secret)

	Check if the secret that the bot has provided via chat corresponds
with the secret that is inserted into this function





	Parameters:	
	jid (str [https://docs.python.org/2.7/library/functions.html#str]) – The JID that received the secret

	secret (str [https://docs.python.org/2.7/library/functions.html#str]) – The secret. Note that this is not the SMP
shared secret






	Return bool:	True if the secrets are the same, False otherwise.




	Raises:	JidNotKnown – If the jid is not in _sessions, an exception
is raised.












	
jid_in_sessions(jid)

	Checks if the supplied JID has a running session.





	Parameters:	jid (str [https://docs.python.org/2.7/library/functions.html#str]) – The Jabber ID


	Returns bool:	True if the jid is a key in self._sessions



















          

      

      

    


    
         Copyright 2016 Greenhost https://greenhost.net.
      Created using Sphinx 1.4.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	OTR bot 1.0 Alpha documentation 
 
      

    


    
      
          
            
  
Translations

The OTR bot supports translations made with Gettext. The translation files are
placed in the otrbot/locales/<language> directories. The otrbot comes with
four commands that help you setup new translations and update existing ones.
run ./bot -h to get an overview of the commands. Each subcommand also supports
help, so when in doubt, just try ./bot.py <subcommand> -h


Extracting translation messages

When the otr bot’s messages have been altered, or new ones have been added, the
command ./bot extract will extract these new messages from the program code.
This generates a new .pot file (messages.pot by default) that can be used to
update the current translations. If you want the .pot file to have another
name, supply that name with the -o flag.




Starting a translation

To start a translation, you use the init subcommand. When you run ./bot init
<pot-file> <locale>, a new locale will be created in the otrbot/locales
directory. So, let’s say you want to start an en_US translation and you
extracted the translations to messages.pot, run ./bot init messages.pot
en_US.




Updating an existing translation

When you have an updated .pot file, because the application changed, you can
update your translation files by running ./bot update <pot-file> <locale>. If
you used the default filename (messages.pot) for extraction and, for example,
want to update your en_US translation, you run ./bot update messages.pot
en_US. The program will notify you of which file it created. You can then edit
that file with your favorite editor.




Compiling your changes

When you are happy with your changes, you should compile the new messages to a
messages.mo file, a binary file that can be read quickly by the computer. To
compile your locale files, run ./bot compile. This automatically compiles all
the locales in the otrbot/locales directory. If you only want to compile one
of the locales, you can use the -l flag. For example, to only compile your
en_GB translation, run ./bot compile -l en_US.







          

      

      

    


    
         Copyright 2016 Greenhost https://greenhost.net.
      Created using Sphinx 1.4.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	OTR bot 1.0 Alpha documentation 
 
      

    


    
      
          
            
  
OTR Plugin

SleekXMPP Plugin to use OTR

Uses Python-Potr [https://github.com/python-otr/pure-python-otr] in combination with SleekXMPP [https://github.com/fritzy/SleekXMPP] to enable OTR messaging
for Jabber clients. This plugin adds the event ‘message_received’, which
forwards decrypted messages as well. Use that instead of the ‘message’
event. Furthermore, the plugin fires ‘otr_event’ events. These events
always consist of a dictionary with the following content (keys):





	jid:	The Jabber ID this event is about (This is a SleekXMPP JID object)


	type:	The name of the event type that is fired, e.g. “otr_enabled”


	data:	Accompanying data for the event, this may be of any class, but we would
recommend using strings. Currently, no events use this field.






List of event types





	otr_enabled:	OTR was off and is now on


	otr_disabled:	OTR was on and is now off


	otr_already_setup:

		OTR conversation was finished and is refreshed


	smp_started:	User tried to start SMP


	smp_question_used:

		User tried to start SMP with a question


	smp_aborted:	SMP was aborted from either side.


	correct_secret_received:

		User supplied the secret through anothes channel and was received
correctly. SMP trust is now established.


	incorrect_secret_received:

		No trust has been established after SMP


	unsafe_secret_received:

		Not implemented in this plugin. Can be used if you have a way to check
the strength of secrets. Look at
core.otrbot.state.action_check_secret_safe() for an example








Credits

The following two scripts have been used as a basis for this plugin:


	https://gist.github.com/marianoguerra/4023941

	https://github.com/mikegogulski/python-otrxmppchannel






	
class otrbot.otrplugin.plugin.OtrPlugin(xmpp, config=None)

	OtrPlugin: enables OTR commands


	
plugin_init()

	Initialise plugin. Sets the description (needed for being a
SleekXMPP plugin) to the docstring of this class. Makes this plugin
handle the ‘message’ event and registers the OtrMessage stanza
plugin.






	
setup_otr(xmpp_account)

	Setup OTR account to be used for encryption and decryption. This
function should be run after plugin_init and before anything else.





	Parameters:	xmpp_account (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – An account as found in the sample
settings. This needs at least a JID. Private keys for the
account will be generated automatically










	
set_secret(jid, secret, start_smp=False)

	Set the secret in the otr_context for this jid to this secret.
Create a context if it does not exist for this jid.





	Parameters:	
	jid (str [https://docs.python.org/2.7/library/functions.html#str]) – The jabber ID to set the secret for

	secret (str [https://docs.python.org/2.7/library/functions.html#str]) – The secret that should be set.

	start_smp (bool [https://docs.python.org/2.7/library/functions.html#bool]) – If this is true, smpGotSecret is run in the
OtrContext. If SMP has not started yet, this means that the bot
will start it.














	
decrypt(message)

	Try to decrypt a message and sets message.otr_state to a state from
OTR_STATES. Then launches the event ‘message_received’, unless the
message was empty.





	Parameters:	message (str [https://docs.python.org/2.7/library/functions.html#str]) – A string that can be decrypted by
Python-Potr [https://github.com/python-otr/pure-python-otr]










	
encrypt(jid, message_string)

	Send message “message” to “jid” if encryption is possible. If
there’s no encryption, “jid” is asked to enable encryption(?)





	Parameters:	
	jid (str [https://docs.python.org/2.7/library/functions.html#str]) – a JID to whom the message will be sent

	message_string (str [https://docs.python.org/2.7/library/functions.html#str]) – A message to send






	Returns:	The message as it was sent












	
emit_event(jid, event, data=None)

	Emit an otr_event on xmpp





	Parameters:	
	jid (str [https://docs.python.org/2.7/library/functions.html#str]) – The JID that the event is for/started by

	event (str [https://docs.python.org/2.7/library/functions.html#str]) – The type of the event

	data – accompanying data. For example the event
‘message_received’ has the message body in the data variable.
This variable may be of any data type.














	
send_plain(jid, message_string)

	Send a message over xmpp without checking anything. The :class
OtrContext uses this to inject messages





	Parameters:	
	jid (JID) – The Jabber ID to send to

	message_string (str [https://docs.python.org/2.7/library/functions.html#str]) – The message to send

















Otr Context that keeps all the otr-relevant information for a certain peer


	
class otrbot.otrplugin.context.OtrContext(account, otr_plugin, peer, fingerprint)

	Knows how peers can be contacted (OTR enabled or not, etc.)
Implements these functions from Context:


	getPolicy

	setState

	inject



Create a context for the account to OTR-message with.





	Parameters:	
	account (OtrAccount) – The OTR account

	otr_plugin (OtrPlugin) – An OTR plugin instance

	peer (str [https://docs.python.org/2.7/library/functions.html#str]) – A JID

	fingerprint (str [https://docs.python.org/2.7/library/functions.html#str]) – fingerprint for the JID, becomes lower
case, is allowed to be None










	
emit_event(event, data=None)

	Makes the otr_plugin emit an event for self.peer





	Parameters:	
	event (str [https://docs.python.org/2.7/library/functions.html#str]) – An otr_event type that can be executed by the
OtrBot.

	data (str [https://docs.python.org/2.7/library/functions.html#str]) – The data of the event, e.g., a message for a
message_received event.














	
processTLVs(tlvs, appdata=None)

	Process typle/length/value records. First check if message is an
SMP message and fire the appropriate otr_event if so. Then call the
super to do further processing.





	Parameters:	
	tlvs (list) – a list of TLV objects

	appdata – Gets passed to super














	
getPolicy(key)

	Returns the default policy from DEFAULT_POLICY_FLAGS. Returns False
if the policy does not exist.





	Parameters:	key – The policy that should be returned. Possible keys:


	ALLOW_V1

	ALLOW_V2

	REQUIRE_ENCRYPTION

	SEND_TAG

	WHITESPACE_START_AKE

	ERROR_START_AKE














	
setState(new_state)

	Sets trust based on their fingerprint





	Parameters:	new_state (int [https://docs.python.org/2.7/library/functions.html#int]) – The new state corresponding to the possible
states in potr.context.










	
inject(msg, appdata=None)

	Use OtrPlugin to send a message. This will be encrypted if
possible.





	Parameters:	
	msg (str [https://docs.python.org/2.7/library/functions.html#str]) – The message that will be injected.

	appdata (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – This is not used.














	
smpAbort(appdata=None)

	This function is overriden in order to fire an “smp_aborted”
otr_event when it is called.





	Parameters:	appdata (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – This is forwarded to other calls.













Simple implementation of the abstract potr Account class.


	
class otrbot.otrplugin.account.OtrAccount(otr_plugin, jid, private_key=None)

	Implementation of potr Account class

Taken from OtrXMPPChannel

Init and create a private key if needed


	
loadPrivkey()

	overload not-implemented load function






	
savePrivkey()

	Should be overloaded, but don’t know with what functionality






	
saveTrusts()

	Should be overloaded, but don’t know with what functionality.
Apparently this function is called after a user ends a private
conversation









Simple implementation of the abstract potr Manager class.


	
class otrbot.otrplugin.manager.OtrManager(jid, otr_plugin)

	Class that retrieves contexts for messages. The contexts manage
decryption and encryption of messages

Initialise with account and empty contexts dictionary. The
dictionary wil contain bare JIDs and OtrContext objects. Each JID
will talk to a different OtrAccount instance of the bot. This way,
the bot always has a different fingerprint for each session,
enabling a user to go through the same steps several times.


	
contexts = None

	Dictionary of people the bot is talking to
- Keys: str of bare jids
- Values: OtrContexts objects






	
get_context(jid)

	Return the context for the conversation with JID jid. If it does
not exist, a new account (with a new  random private key) is
created for the session with the jid.





	Parameters:	
	jid (str [https://docs.python.org/2.7/library/functions.html#str]) – the Jabber ID of the peer

	fingerprint (str [https://docs.python.org/2.7/library/functions.html#str]) – An optional fingerprint of the JID for
trying to manually establish trust (not tested).














	
destroy_context(jid)

	Remove the context with JID jid from the contexts





	Parameters:	jid (JID) – 










	
destroy_all_contexts()

	Remove all context for converations













          

      

      

    


    
         Copyright 2016 Greenhost https://greenhost.net.
      Created using Sphinx 1.4.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	OTR bot 1.0 Alpha documentation 
 
      

    


    
      
          
            
  
State Machine


State Machine module

This module contains the StateMachine class.

This StateMachine class is designed to do 3 specific things:



	Allow only transitions that are valid for the current state (enforced
by the State object).

	Pass events to the State and let the state handle them. You
can pass both transition events as well as events that should trigger
something, which you can define yourself.
The State class can be extended with handle_...()
functions that handle these specific events. You should be careful not
to name your transitions the same as your handle_...() functions
because an exception will be raised if they collide.

	Pass actions to the State and let the state handle them.
The State class can be extended with action_...()
functions that do these specific actions.






The state machine’s __init__() takes a dict argument that contains
all states the state machine should support.

The states can have ‘on_enter’ and ‘on_leave’ definitions, which are lists
of actions to do when the state is entered or left respectively. These
actions have to be defined in the State object for this to work.
There should also be a list of ‘allowed_actions’ array defined in each
state definition, this array should contain the action names without the
prefix ‘action_’. The reason the ‘action_’ is not prefixed is that
the prefix string can be changed in a class extension, to e.g.: ‘do_’.


	
class otrbot.statemachine.statemachine.StateMachine(states_object, ctxt)

	This class in not supposed to be used directly, you should extend this
class and add the application specific functions to it.

You will most likely require your own definition of the State
class as well, to override the definition of the State class
the state machine uses, you will need to override the
STATE_OBJECT in your state machine class extension.

You should also use super() [https://docs.python.org/2.7/library/functions.html#super] to initialise the
StateMachine object, you will need to pass some arguments too,
see below.

Initialise the StateMachine class.





	Parameters:	
	states_object (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – A dict containing all possible states,
its transitions, actions, ‘on_enter’ and ‘on_leave’ actions

	ctxt (SharedContext) – A shared context that contains the
current state context data






	Raises:	StateDoesNotExist – Indicates that the state you chose to be
the initial state is not in the states_object








	
STATE_OBJECT

	alias of State






	
action(action, *args, **kwargs)

	Run an action using the current state.





	Parameters:	
	action (str [https://docs.python.org/2.7/library/functions.html#str]) – String containing the function name of the
action you want to execute

	args (set [https://docs.python.org/2.7/library/stdtypes.html#set]) – Arbitrary positional arguments to pass to the
action

	kwargs (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Arbitrary keyword arguments to pass to the
action









The action will be handled by the current state which is an
instance of State. See State.action() for more
information.






	
state

	Return current state.





	Returns State:	The instance of the current State object.










	
handle(event, *args, **kwargs)

	Handle an event using the current state.





	Parameters:	
	event (str [https://docs.python.org/2.7/library/functions.html#str]) – String containing the event name of the
event you want handled by the state.

	args (set [https://docs.python.org/2.7/library/stdtypes.html#set]) – Arbitrary positional arguments to pass to the
action

	kwargs (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Arbitrary keyword arguments to pass to the
action









The event will be handled by the current state which is an
instance of State. See State.handle() for more
information.






	
ctxt

	Return the current context.





	Returns SharedContext:

		The shared context used by the state
machine
















State module

This module contains the State class for the
StateMachine.

You can extend this class to add action_...() and handle_...()
functions. To let the StateMachine use your own custom state
class, you need to extend the StateMachine class and override the
StateMachine.STATE_OBJECT constant.


	
class otrbot.statemachine.state.State(name, states_object, ctxt)

	This class in not supposed to be used directly, you should extend this
class and add the application specific functions to it.

To override the definition of the State classthe state machine
uses, you will need to override the STATE_OBJECT in your state
machine class extension.

You should also use super() [https://docs.python.org/2.7/library/functions.html#super] to initialise the
State object, you will need to pass some arguments too, see
below.

If you want to define different prefixes for the action_...() or
handle_...() functions, e.g.: do_...(), you can override
the PREFIX_ACTION or the PREFIX_HANDLE class
constants.

Initialise the state.





	Parameters:	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the current state

	states_object (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – A dict containing all possible states,
its transitions, actions, ‘on_enter’ and ‘on_leave’ actions

	ctxt (SharedContext) – A shared context that contains the
current state context data










	
on_enter()

	When the state is entered the “on_enter” actions will be executed.






	
on_leave()

	When the state is left the “on_leave” actions will be executed.






	
action(action, *args, **kwargs)

	Run an action that is defined in the State and prefixed by
PREFIX_ACTION.





	Parameters:	
	action (str [https://docs.python.org/2.7/library/functions.html#str]) – Name of the action to run (without prefix)

	args (set [https://docs.python.org/2.7/library/stdtypes.html#set]) – Arbitrary positional arguments to pass to the
action

	kwargs (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Arbitrary keyword arguments to pass to the
action






	Raises:	
	NotImplementedError – If the requested action is not
implemented

	ActionNotAllowed – If the action is not allowed within the
current state.














	
handle(event, *args, **kwargs)

	Handle events passed to the State object.

There are 2 types of events that can be handled by state objects:



	Transition events, which should cause a transition to another
state if the transition is allowed.

	Events that should be handled by the state without
transitioning.










	Parameters:	
	event (str [https://docs.python.org/2.7/library/functions.html#str]) – Event name.

	args (set [https://docs.python.org/2.7/library/stdtypes.html#set]) – Arbitrary positional arguments to pass to the
action

	kwargs (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Arbitrary keyword arguments to pass to the
action






	Raises:	CannotHandle – If there is no way to handle the event.












	
possible_actions

	Return all actions that are defined in the State object.

The results of the introspection are cached, if you dynamically
modify the object after getting this property the changes will not
be reflected by the result.





	Returns set:	All actions defined in this State object.










	
transitions

	Return transition





	Returns dict:	All transitions supported by this State
object.










	
ctxt

	Return the current context.





	Returns SharedContext:

		The shared context used by the state object
















Shared Context module

This module contains the SharedContext class.

This SharedContext hold all the data that needs to be shared
between the State and the StateMachine objects.


	
class otrbot.statemachine.context.SharedContext(state=None)

	A shared context for the state machine and the state.





	Parameters:	state (str [https://docs.python.org/2.7/library/functions.html#str]) – The curent StateMachine state















          

      

      

    


    
         Copyright 2016 Greenhost https://greenhost.net.
      Created using Sphinx 1.4.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	OTR bot 1.0 Alpha documentation 
 
      

    


    
      
          
            
  
LTI


Adding the bot to your LMS

To add this tool to your LMS, you need to run it on your own server, let’s say
example.com. Currently it is started by running ./bot.py runclient, which
starts an OTR bot and the LTI server. The server can then be reached at
example.com:5000.

In your LMS, enter example.com:5000 as the launch URL for this LTI
application.  The “Consumer key” and “Shared secret” are in the settings
file for your environment. In our settings.development_sample
settings, find PYLTI_CONFIG. You can see that we added one consumer under
“consumers”, which has __consumer_key__ as his consumer key, and
__lti_secret__ as his secret. It is recommended to change these
defaults.

Now it’s time to add your bot to the plugins/apps in your LMS.


Open EdX

To add your bot to a course in Open EdX, follow these steps.


	In Open EdX studio, go to Settings -> Advanced Settings

	In Advanced Module List, enable the LTI module, by adding "lti" to the
list. If you have no other modules enabled, the value of the text field will
look like [ "lti" ].

	In LTI Passports, add the otrbot. This is done by adding three colon (:)
separated values to the list, in 1 string:
"otrbot:<consumer_key>:<lti_secret>". Make sure that you fill in
<consumer_key> and <lti_secret> with the same values as you entered
in the settings file.



Now, in your course:


	Add a unit, you will see that you can choose an “Advanced” module.
Click that, and choose LTI.

	Click the edit button of the LTI module. Here, fill in
	LTI URL: example.com:5000 (replace example.com with the URL to your OTR bot machine).

	LTI ID: otrbot

	Take a look at the other settings. You might want to configure Open in New
Page and Display Name as well.







You should now be able to use the LTI otr-bot component




Canvas

In canvas,
follow these steps to add the bot to a course:


	In your course, click Settings and then go to the Apps tab.

	Click Add App

	Choose “Manual entry”

	The only fields that are currently relevant in Canvas are “Consumer key”,
“Shared secret” and “Launch URL”. Follow your previously defined settings
for the key and secret. The launch URL in our example is
example.com:5000. Add a useful name in the “Name” field and keep the
other fields empty.

	Click the Submit button to save the app. Note that Canvas does not
typically check any of the fields. To test the application, add the bot
to an assignment.



And to add the bot to an assignment:


	Go to Courses -> Assignments

	Click + Assignment to add a new assignment and add a new assignment.

	Click the + next to your new assignment to add a sub-assignment.

	Click “More options” to be able to add LTI components.

	Write whatever you want in the screens, an Assignment name is required
for the assignment to be saved. Be sure to add “Points” to the assignment
if you want to be able to see grades.

	Under “Submission Type” choose “External Tool” Insert example.com:5000 as
the URL for the external tool.

	Save the assignment. You will now see an example of the course page you
just made, with the OTR bot screen that is provided through LTI.

	Note that the OTR bot only supplies a grade if the assignment is viewed
by a student: in the teacher environment, no grade will be passed back to
Canvas.








Class documentation

LTI provider that interfaces with the bot. This is a simple setup using
Flask, because the PyLTI library already implements Flask decorators.

This module runs a flask server on 0.0.0.0:5000 (which maps to any host,
port 5000). It accepts LTI requests using the key and secret in the
settings file.

With the playbooks provided, it is also possible to serve these pages via
nginx, over port 80.


Adding the bot to your LMS

To add this tool to your LMS, you need to run it on your own server, say
example.com. Note that you need to run in production mode, through nginx.
This will speed up the server and enable you to use TLS.

In your LMS, enter example.com as the launch URL for this LTI
application.  The “Consumer key” and “Shared secret” are in the settings
file for your environment. In our settings.development_sample
settings, find PYLTI_CONFIG. You can see that we added one consumer under
“consumers”, which has __consumer_key__ as his consumer key, and
__lti_secret__ as his secret. It is recommended to change these
defaults.

Now it’s time to add your bot to the plugins/apps in your LMS. In canvas,
follow these steps to add the bot to a course:


	In your course, click Settings and then go to the Apps tab.

	Click Add App

	Choose “Manual entry”

	The only fields that are currently relevant in Canvas are “Consumer key”,
“Shared secret” and “Launch URL”. Follow your previously defined settings
for the key and secret. The launch URL in our example is
example.com. Add a useful name in the “Name” field and keep the
other fields empty.

	Click the Submit button to save the app. Note that Canvas does not
typically check any of the fields. To test the application, add the bot
to an assignment.



And to add the bot to an assignment:


	Go to Courses -> Assignments

	Click + Assignment to add a new assignment and add a new assignment.

	Click the + next to your new assignment to add a sub-assignment.

	Click “More options” to be able to add LTI components.

	Write whatever you want in the screens, an Assignment name is required
for the assignment to be saved. Be sure to add “Points” to the assignment
if you want to be able to see grades.

	Under “Submission Type” choose “External Tool” Insert example.com as
the URL for the external tool.

	Save the assignment. You will now see an example of the course page you
just made, with the OTR bot screen that is provided through LTI.

	Note that the OTR bot only supplies a grade if the assignment is viewed
by a student: in the teacher environment, no grade will be passed back to
Canvas.






Running LTI in develop mode

By just running ./bot you should have a werkzeug instance of the LTI
bot running. Test it by going to http://localhost:5000/is_up




Running LTI in production

The function otrbot.__init__.app() is runnable by gunicorn. You can
run a gunicorn instance by simply typing gunicorn otrbot:app. Test the
setup by going to http://localhost:8000/is_up.

The ansible playbooks should install a systemd service that runs gunicorn
and an nginx configuration that serves this through port 443.

The ansible playbooks assume that you ran certbot on your VPS to install
certificates. If you haven’t, please run this (works on debian):

$ sudo apt install certbot
$ certbot standalone






	
otrbot.lti.lti.app = <Flask 'otrbot.lti.lti'>

	The flask decorator (unfortunately does not follow conventions).






	
otrbot.lti.lti.mock_ltid(_app=None, _request='any', error=None, role='any', *lti_args, **lti_kwargs)

	For debug purposes, replace the normal lti decorator with this one,
that returns ‘mock-lti’ as nickname and does not verify or authenticate






	
otrbot.lti.lti.BOT = None

	It is important to initialise the bot variable before calling ‘run()’. It
should point to an instance of the OtrBot
class.






	
otrbot.lti.lti.get_locale()

	Try to set the locale to something sensible






	
otrbot.lti.lti.error_page(exception=None)

	Render error page





	Parameters:	exception – optional exception


	Returns:	the error.plim template rendered










	
otrbot.lti.lti.hello_world(lti=<function lti>)

	Indicate the flask app is working. Provided for debugging purposes.





	Parameters:	lti – the lti object from pylti


	Returns:	simple page that indicates the request was processed by the
lti provider










	
otrbot.lti.lti.index(*args, **kwargs)

	initial access page to the lti provider.  This page provides
authorization for the user. Contains a button to enter a JID





	Parameters:	lti – the lti object from pylti


	Returns:	index page for lti provider










	
otrbot.lti.lti.enter_jid(*args, **kwargs)

	Insert a JID for the bot to add to its roster. The form validates the
JID using SleekXMPP’s JID constructor. After that, it tries to add the
JID to the bot. If that fails (unlikely), the error page is shown.





	Parameters:	lti – the lti object from pylti


	Returns:	Either the form to enter the jid or a redirect to the
jid_entered page.










	
otrbot.lti.lti.jid_entered(*args, **kwargs)

	A page that confirms that the jid was added to the bot. Contains a
button that directs the user tot he “ask_for_secret” page.





	Parameters:	lti – the lti object from pylti


	Returns:	The page confirming the jid was added.










	
otrbot.lti.lti.ask_for_secret(*args, **kwargs)

	Show a form to submit a shared secret. When the secret is submitted, it
is utf-8 encoded and added to the bot. The bot then checks if the
secret is strong enough. If so, it saves it, else, the user is informed
about this through Jabber, and asked to enter a new secret through LTI.

If this function is called when a strong secret is already set, the
page is skipped and the next page is loaded, where the user is notified
that his secret is added.





	Parameters:	lti – the lti object from pylti


	Returns:	Either a page showing the secret form or a page saying that
the secret was entered.










	
otrbot.lti.lti.enter_bot_secret(*args, **kwargs)

	Form to enter the secret that the bot shares after SMP is successful






	
otrbot.lti.lti.run_lti()

	For if you want to run the flask development server directly













          

      

      

    


    
         Copyright 2016 Greenhost https://greenhost.net.
      Created using Sphinx 1.4.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	OTR bot 1.0 Alpha documentation 
 
      

    


    
      
          
            
  
OTR bot utility functions

A set of utility functions that are often used throughout the application.


	
otrbot.core.utils.fatal(code=exit_codes.UNKNOWN_EXCEPTION, last_error=None)

	Log a fatal error an exit the application with an exit code.





	Parameters:	
	code (int [https://docs.python.org/2.7/library/functions.html#int]) – The exit code the application failed with.


	exit_codes.INVALID_ARGUMENT

	exit_codes.BAD_SETTING

	exit_codes.NO_SETTINGS

	exit_codes.MISSING_DEPDENDENCY

	exit_codes.WRONG_TLS_CIPHER_NEGOTIATED = 127

	exit_codes.UNKNOWN_EXCEPTION





	last_error (str [https://docs.python.org/2.7/library/functions.html#str]) – A fatal error message to logger.














	
otrbot.core.utils.dummy_i18n(msg)

	Dummy i18n function, use when nothing is translated, only defined.






	
otrbot.core.utils.generate_secret(**kwargs)

	Generate a cryptographically secure secret according to a format.

Supply either the format keyword or the length keyword, not both.

In the format string any occurrence of “X” will be replaced by a random
character. You can put any separators characters you wish.





	Parameters:	
	format (str [https://docs.python.org/2.7/library/functions.html#str]) – Format string, each X will be replaced by a random
character (“XXXX-XXXX-XXXX-XXXX”).

	length (int [https://docs.python.org/2.7/library/functions.html#int]) – Length of the random string.

	alpha (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Include alphabet in the output (True).

	case (str [https://docs.python.org/2.7/library/functions.html#str]) – Case of character options: upper, lower, mixed
(upper)

	numeric (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Include numbers in the output (False).

	symbols (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Include common symbols in the output (False).

	options (str [https://docs.python.org/2.7/library/functions.html#str]) – A string containing all possible characters.






	Returns str:	Secret according to format.












	
otrbot.core.utils.call_function(function, *args, **kwargs)

	calls the function with the appropriate amount of arguments. This
enables defining functions with or withouth *args and **kwargs that
can both be called through this function.





	Parameters:	
	function (function) – The function with an arbitrary amount of
arguments.

	args (tuple [https://docs.python.org/2.7/library/functions.html#tuple]) – The unnamed arguments of the function (in order).

	kwargs (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – The keyword arguments of the function.














	
class otrbot.core.utils.CacheReturn(func)

	Cache return of a function/method for a specific set of arguments.

This class memorises all the arguments passed to it and all the return
values so it can potentially have a huge memory footprint. Use with
caution.

Initialise the CacheReturn class.





	Parameters:	func (function) – The function object, automatically passed by
decorating a function with this class.










	
otrbot.core.utils.template_substitute(input_string, **kwargs)

	shorthand for using string.Template’s safe_substitute






	
otrbot.core.utils.add_syslog_handler(syslog_address='/dev/log', syslog_level='INFO')

	Add a handler to the logger that logs to syslog.






	
class otrbot.core.utils.SleekFilter(name='')

	Filter annoyingly large sleek messages

Initialize a filter.

Initialize with the name of the logger which, together with its
children, will have its events allowed through the filter. If no
name is specified, allow every event.


	
AVATAR_MSGS = ['<TYPE>image/png</TYPE><BINVAL>', 'data xmlns="urn:xmpp:avatar:data"']

	These strings are typical for messages about avatars:






	
TRUNCATE = 60

	Truncate everything between the first and last TRUNCATE characters






	
filter(record)

	Filter a record:


	Truncate messages that contain avatar data















          

      

      

    


    
         Copyright 2016 Greenhost https://greenhost.net.
      Created using Sphinx 1.4.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	OTR bot 1.0 Alpha documentation 
 
      

    


    
      
          
            
  
Colourised logging

ANSI colourise the logging stream (works on LINUX/UNIX based systems).

Constants for colours:





	attr const BLACK:

		Black


	attr const RED:	Red


	attr const GREEN:

		Green


	attr const YELLOW:

		Yellow


	attr const BLUE:

		Blue


	attr const CYAN:

		Cyan


	attr const WHITE:

		White






Class documentation


	
class otrbot.core.colourlog.ColourFormatter(*args, **kwargs)

	ANSI colourise the logging stream (works on LINUX/UNIX based systems).

Initialise some variables for colourising.

Make cache dict for formats, backup original format string,
initialise the parent log formatter.





	Parameters:	
	args (tuple [https://docs.python.org/2.7/library/functions.html#tuple]) – Positional arguments that should be passed to
the parent formatter.

	kwargs (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Keyword arguments that should be passed to
the parent formatter. Two keywords are taken from this dict,
see below.

	colours (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – A dictionary containing the colour schemes
to be used by the logger, see below for more information.

	no_colour_nl (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Tell the logger not to colour anything
after a new line character.









There is a default colour scheme with 2 colour indexes. You can use
these colourschemes as follows:

formatter = ColourFormatter(
    "$lvl[%(levelname)s]$reset $msg%(name)s %(message)s"
)





Note the $lvl and $msg variables are used as template strings
in the format string. Also note there is a $reset variable, use
this before any change in colour, it is automatically added at
the end of the string to prevent the terminal from printing
coloured strings after the log line was printed.

You can also make custom colour schemes and pass them as a keyword
argument (colours) when instantiating a ColourFormatter object.

The colours dictionary that can be passed to the
ColourFormatter is formatted as follows.

{
    'lvl': {
        logging.DEBUG: (WHITE, BLUE, False),
        logging.INFO: (BLACK, GREEN, False),
        logging.WARNING: (BLACK, YELLOW, False),
        logging.ERROR: (WHITE, RED, False),
        logging.CRITICAL: (YELLOW, RED, True),
    },
    'msg': {
        logging.DEBUG: (BLUE, None, False),
        logging.INFO: (GREEN, None, False),
        logging.WARNING: (YELLOW, None, False),
        logging.ERROR: (RED, None, False),
        logging.CRITICAL: (RED, None, True),
    }
}





The dictionary contains indexes followed by the log levels,
followed by a tuple in the form of foreground colour, background
color, bold face.

The colourschemes above are the default colours, they colour the
%(levelname)s in colour scheme lvl, which adds background
colours as well as foreground colours. The rest of message is can
be formatted using the msg scheme, which does not add any
background colours but does add foreground colours.

The lvl and msg indexes specify colourschemes. You can make
your own indexes, indexes can have arbitrary names but should be
formatted be a-zA-Z0-9-_ and start with a-zA-Z. To make use of
your colour scheme you need to change your format string. Like
this:

import logging
logger = logging.getLogger(__name__)
logger.setLevel(level=logging.DEBUG)
handler = logging.StreamHandler()
handler.setFormatter(
    ColourFormatter(
        "$lvl[%(levelname)s]$reset $msg%(name)s %(message)s "
        "$reset"
    )
)
logger.addHandler(handler)

logger.debug("This is detailed information..")
logger.info("This somewhat more useful..")
logger.warn("This might be dangerous..")
logger.error("Something might have gone a bit wrong")
logger.critical("Woah! do something!!")





\x1b[44;37m[DEBUG]\x1b[0m \x1b[34m__main__ This is detailed information..\x1b[0m
\x1b[42;30m[INFO]\x1b[0m \x1b[32m__main__ This somewhat more useful..\x1b[0m
\x1b[43;30m[WARNING]\x1b[0m \x1b[33m__main__ This might be dangerous..\x1b[0m
\x1b[41;37m[ERROR]\x1b[0m \x1b[31m__main__ Something might have gone a bit wrong\x1b[0m
\x1b[41;33;1m[CRITICAL]\x1b[0m \x1b[31;1m__main__ Woah! do something!!\x1b[0m






	
format(record)

	Override the normal format method to swap out the format string,
then call the parent format method.





	Parameters:	record (object [https://docs.python.org/2.7/library/functions.html#object]) – The log record.










	
get_colour_fmt(lvl)

	Add a colour to the msg strings and return them.

The result of the Template sting is cached.





	Parameters:	lvl (int [https://docs.python.org/2.7/library/functions.html#int]) – The log level.



















          

      

      

    


    
         Copyright 2016 Greenhost https://greenhost.net.
      Created using Sphinx 1.4.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	OTR bot 1.0 Alpha documentation 
 
      

    


    
      
          
            
  
Settings


Environment variables

If the ENV variable in otrbot.settings.env is set to “production”,
the otrbot.settings.production will be used. This is the default. You
should change this to “development” if you want to work on this project, to
prevent your credentials from begin pushed back to Github.


	
ENV = "production"

	






The SSL/TLS configuration options


	TLS is enabled by default but can be switched off for testing, or in
case you run your Jabber server on the same physical server.

	SleekXMPP can fall back to SSLv2/v3 if the server doesn’t support TLS
but don’t do this, SSLv3 is already deemed very unsafe.

	You can choose which TLS version the client should use at a minimum.

	You can define ciphers that are allowed, a reasonable list of ciphers
that are considered safe at the time of writing (Apr-‘16) is
preconfigured, which should be fine for most modern servers.




	
otrbot.settings.sample.ENABLE_TLS = True

	Enable or disable TLS (default: True — Do not disable!)






	
otrbot.settings.sample.ALLOW_SSL_FALLBACK = False

	Enable or disable SSL (default: False — Do not enable!)






	
otrbot.settings.sample.TLS_VERSION = 'TLSv1.2'

	TLS version to use (default: TLSv1)
This can be increased to TLSv1.1 or TLSv1.2 but it
requires Python 2.7.9+.






	
otrbot.settings.sample.CIPHER_LIST = ['ECDHE-RSA-AES256-GCM-SHA384', 'ECDHE-RSA-AES128-GCM-SHA256', 'ECDHE-RSA-AES256-SHA256', 'ECDHE-RSA-AES128-SHA256', 'ECDHE-RSA-AES256-SHA', 'ECDHE-RSA-AES128-SHA', 'ECDHE-ECDSA-AES256-GCM-SHA384', 'ECDHE-ECDSA-AES128-GCM-SHA256', 'ECDHE-ECDSA-AES256-SHA384', 'ECDHE-ECDSA-AES128-SHA256', 'ECDHE-ECDSA-AES256-SHA', 'ECDHE-ECDSA-AES128-SHA', 'DHE-RSA-AES256-GCM-SHA384', 'DHE-RSA-AES128-GCM-SHA256', 'DHE-RSA-AES256-SHA256', 'DHE-RSA-AES128-SHA256', 'DHE-RSA-AES256-SHA', 'DHE-RSA-AES128-SHA']

	The list of accepted ciphers, this list should be supported by most servers
and be reasonably safe at the time of writing (Apr-‘16).





	ECDHE-RSA-AESXXX-[XXX-]SHA[XXX]:

		

	Elliptic Curve Ephemeral Diffie Hellman key agreement

	Perfect Forward Secret (PFS, because of Ephemeral keys)

	RSA authentication

	AES in CBC or GCM mode for encryption

	SHA1, SHA256 or SHA384 digests






These are safe, and provide excellent performance (GCM is fastest).
AES in CBC and GCM mode can be hardware accelerated on most servers.
CBC is a block mode cipher, while GCM is a stream cipher, the latter
provides better performance for network connections.




	ECDHE-ECDSA-AESXXX-[XXX-]SHA[XXX]:

		

	Elliptic Curve Ephemeral Diffie Hellman key agreement

	Perfect Forward Secret (PFS, because of Ephemeral keys)

	ECDSA authentication

	AES in CBC or GCM mode for encryption

	SHA1, SHA256 or SHA384 digests






These are safe, and provide the best performance available, ECDSA
requires ECDSA server certificates which are rare at this point in time.




	DHE-RSA-AESXXX-[XXX-]SHA[XXX]:

		

	Ephemeral Diffie Hellman key agreement

	Perfect Forward Secret (PFS, because of Ephemeral keys)

	RSA authentication

	AES in CBC or GCM mode for encryption

	SHA1, SHA256 or SHA384 digests






These are safe, but perform significantly worse than ECDHE ciphers.




	TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256:

		

	Elliptic Curve Ephemeral Diffie Hellman key agreement

	Perfect Forward Secret (PFS, because of Ephemeral keys)

	RSA authentication

	ChaCha20 stream cipher, provides 256 bits of security

	Poly1305 authenticator to detect forged data.






Safe and lightweight, and provide excellent performance, most notably
for mobile devices. AES can be hardware accelerated on most servers,
which means it may still outperform ChaCha20-Poly1305. Currently not
supported by the most common OpenSSL versions in use.




	TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256:

		

	Elliptic Curve Ephemeral Diffie Hellman key agreement

	Perfect Forward Secret (PFS, because of Ephemeral keys)

	ECDSA authentication

	ChaCha20 stream cipher, provides 256 bits of security

	Poly1305 authenticator to detect forged data.






Safe and lightweight, and provide excellent performance, most notably
for mobile  devices. AES can be hardware accelerated on most servers,
which means it may still outperform ChaCha20-Poly1305. ECDSA requires
ECDSA server certificates which are rare at this point in time. Currently
not supported by the most common OpenSSL versions in use.




	TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256:

		

	Ephemeral Diffie Hellman key agreement

	Perfect Forward Secret (PFS, because of Ephemeral keys)

	RSA authentication

	ChaCha20 stream cipher, provides 256 bits of security

	Poly1305 authenticator to detect forged data.






Safe and lightweight, and provide excellent performance, most notably
for mobile devices. AES can be hardware accelerated on most servers,
which means it may still outperform ChaCha20-Poly1305. Currently not
supported by the most common OpenSSL versions in use.




	AESXXX-[XXX-]SHA[XXX]:

		

	RSA authentication

	AES in CBC or GCM mode for encryption

	SHA1, SHA256 or SHA384 digests






These good ciphers but they lack Perfect Forward Secrecy, which means
if the private keys of the server ever get stolen, all historic data can
be trivially decrypted. Performance is very good but at great cost to
security. Therefore these are disabled by default. If you experience
compatibility issues, enable one by one, top to bottom, until you get a
connection. However you should really consider upgrading the server
software!








Note

It is still considered too hard to forge a certificate with a
SHA1 digest outright but SHA1 is considered deprecated. The ciphers
ending in _SHA should be disabled for better security. Since some
servers do not support SHA256 or higher yet, it is still included for
compatibility.








	
otrbot.settings.sample.CA_CERTS = '/etc/ssl/certs/ca-certificates.crt'

	Location of a PEM file containing all Certificate Authority certificates.
This is used for checking the server certificate. To not check the server
certificate, set this to None.


Warning

Do not disable server certificate checking in production environments,
except when running your own XMPP server locally, on the same physical
server.










Other settings


	
otrbot.settings.sample.ALLOW_SSL_FALLBACK = False

	Enable or disable SSL (default: False — Do not enable!)






	
otrbot.settings.sample.TLS_VERSION = 'TLSv1.2'

	TLS version to use (default: TLSv1)
This can be increased to TLSv1.1 or TLSv1.2 but it
requires Python 2.7.9+.






	
otrbot.settings.sample.FORMAT_STRINGS = {'bot_title': 'OTR Bot (Canvas)', 'bot_description': 'This is an instance of the OTR Bot. Source code is available on https://code.greenhost.net', 'project_name': 'Totem (Canvas)', 'bot_alias': 'Marvin (Canvas)'}

	The following dict contains the statically defined variables that get
formatted into the template strings of messages.






	
otrbot.settings.sample.XMPP_ACCOUNTS = {'totem@jabme.eu': {'password': 'quahnahgh6kohTeisixoh5ph', 'avatar_file': './avatar.jpg'}}

	A dictionary of the default Jabber account to be used by the bot.






	
otrbot.settings.sample.XMPP_DEFAULT_ACCOUNT = 'totem@jabme.eu'

	The JID that the bot uses when the flag -j is not supplied to runclient.






	
otrbot.settings.sample.FLASK_CONFIG = {'WTF_CSRF_ENABLED': True, 'PYLTI_URL_FIX': {'https://localhost/': {'https://localhost/': 'http://192.168.33.10/'}, 'https://localhost:8000/': {'https://localhost:8000/': 'http://localhost:8000/'}}, 'SECRET_KEY': 'REPLACE THIS BY A LONG RANDOM SEQUENCE OF CHARACTERS', 'PYLTI_CONFIG': {'consumers': {'__consumer_key__': {'secret': '__lti_secret__'}}}}

	The Flask and PyLTI configuration. The values in this dictionary update the
standard Flask and PyLTI configuration values.






	
otrbot.settings.sample.USE_LTI = 'True'

	When this is true, LTI will be used for authentication. For development
purposes, you can turn it off and reach the interface without authentication






	
otrbot.settings.sample.LTI_CSS_URL = 'https://hostname.tld/style.css'

	The CSS file that should be added to the head of the LTI (link).






	
otrbot.settings.sample.OTR_BOT_MAY_START_SMP = False

	If this is true, the bot is allowed to start SMP by itself as soon as it
receives a password. If it’s false, the bot will wait for the user to start
SMP.






	
otrbot.settings.sample.DEFAULT_LOCALE = 'en_GB'

	Default language to use. Take a look at the locales folder to see which
locales are available






	
otrbot.settings.sample.JID_WHITELIST = {'user@jabber.example.com': {'locale': 'en_GB'}}

	Whitelist for accounts that are authorised to talk to the OTR bot. Can be
extended by adding to self.whitelist in bot.py. Users are deleted from the
whitelist when their session ends. The whitelist may also contain default
values for bot sessions, like the locale






	
otrbot.settings.sample.DEFAULT_SECRET = None

	Use this in test-settings to have a default shared secret, so you won’t have
to bother using an external protocol to insert the secret into the bot.






	
otrbot.settings.sample.LOG_USER_MSGS = False

	Log connected users messages to the log file, should be set to False in
production to prevent potentially sensitive data from being collected.
Note: These are the messages the user sends to the bot.






	
otrbot.settings.sample.WARNING_TIMEOUT = 1500

	The number of seconds of inactivity before a user is warned that his session
will be killed






	
otrbot.settings.sample.SESSION_TIMEOUT = 1800

	The number of seconds of inactivity before a session is killed (should be
higher than WARNING_TIMEOUT)






	
otrbot.settings.sample.TIMEOUT_CHECK_INTERVAL = 60

	The interval in seconds that the timeouts should be checked on.






	
otrbot.settings.sample.SCHEDULED_MSG_SAY = True

	Use a scheduler to delay message with random intervals to make the
interaction seem more natural.






	
otrbot.settings.sample.THREADED_STATE_SCHEDULER = True

	Thread the state scheduler?






	
otrbot.settings.sample.TYPE_SPEED = 20

	How fast should the bot be able to type? (characters per second). This is
irrelevant if SCHEDULED_MSG_SAY is set to False.






	
otrbot.settings.sample.SYSLOG_ADDRESS = '/dev/log'

	Default syslog address.






	
otrbot.settings.sample.SYSLOG_LEVEL = 'INFO'

	Default syslog log level, can be either DEBUG, INFO, WARN or
ERROR











          

      

      

    


    
         Copyright 2016 Greenhost https://greenhost.net.
      Created using Sphinx 1.4.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	OTR bot 1.0 Alpha documentation 
 
      

    


    
      
          
            
  
Exceptions

This page lists all the custom exceptions that are raised by the OTR bot.


Exceptions related to the otrbot client.


	
exception otrbot.exceptions.client.JidNotKnown(jid=None)

	This exception is raised when a JID is not in the client’s _sessions
variable when it should be.








Exceptions related to the LTI interface


	
exception otrbot.exceptions.lti.BotNotStarted

	Raised if BOT is still None when the server is started. It should
contain a reference to the OTR bot.








Exceptions related to the state machine.


	
exception otrbot.exceptions.statemachine.StateDoesNotExist(state='undefined')

	Raise this exception when a state is request that does not exist.






	
exception otrbot.exceptions.statemachine.CannotHandle(event='undefined', state='undefined')

	Raise this exception when an event that can’t be handled is called.






	
exception otrbot.exceptions.statemachine.ActionNotAllowed(action='undefined', state='undefined')

	Raise this exception when an action is run that is not allowed by the
current state.











          

      

      

    


    
         Copyright 2016 Greenhost https://greenhost.net.
      Created using Sphinx 1.4.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	OTR bot 1.0 Alpha documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   o
   


   
     			

     		
       o	

     
       	[image: -]
       	
       otrbot	
       

     
       	
       	
       otrbot.core.client	
       

     
       	
       	
       otrbot.core.colourlog	
       

     
       	
       	
       otrbot.core.utils	
       

     
       	
       	
       otrbot.exceptions.client	
       

     
       	
       	
       otrbot.exceptions.lti	
       

     
       	
       	
       otrbot.exceptions.statemachine	
       

     
       	
       	
       otrbot.lti.lti	
       

     
       	
       	
       otrbot.otrplugin.account	
       

     
       	
       	
       otrbot.otrplugin.context	
       

     
       	
       	
       otrbot.otrplugin.manager	
       

     
       	
       	
       otrbot.otrplugin.plugin	
       

     
       	
       	
       otrbot.statemachine.context	
       

     
       	
       	
       otrbot.statemachine.state	
       

     
       	
       	
       otrbot.statemachine.statemachine	
       

   



          

      

      

    


    
         Copyright 2016 Greenhost https://greenhost.net.
      Created using Sphinx 1.4.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	OTR bot 1.0 Alpha documentation 
 
      

    


    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | W
 


A


  	
      
  	action() (otrbot.statemachine.state.State method)
  


      	
        
  	(otrbot.statemachine.statemachine.StateMachine method)
  


      


      
  	ActionNotAllowed
  


      
  	add_jid() (otrbot.core.client.OtrBot method)
  


      
  	add_syslog_handler() (in module otrbot.core.utils)
  


  

  	
      
  	app (in module otrbot.lti.lti)
  


      
  	ask_for_secret() (in module otrbot.lti.lti)
  


      
  	AVATAR_MSGS (otrbot.core.utils.SleekFilter attribute)
  


  





B


  	
      
  	BOT (in module otrbot.lti.lti)
  


      
  	bot_connected() (otrbot.core.client.OtrBot method)
  


  

  	
      
  	BotNotStarted
  


  





C


  	
      
  	CacheReturn (class in otrbot.core.utils)
  


      
  	call_function() (in module otrbot.core.utils)
  


      
  	CannotHandle
  


      
  	changed_subscription() (otrbot.core.client.OtrBot method)
  


      
  	check_bot_secret() (otrbot.core.client.OtrBot method)
  


  

  	
      
  	check_sessions() (otrbot.core.client.OtrBot method)
  


      
  	ColourFormatter (class in otrbot.core.colourlog)
  


      
  	connect() (otrbot.core.client.OtrBot method)
  


      
  	contexts (otrbot.otrplugin.manager.OtrManager attribute)
  


      
  	ctxt (otrbot.statemachine.state.State attribute)
  


      	
        
  	(otrbot.statemachine.statemachine.StateMachine attribute)
  


      


  





D


  	
      
  	decrypt() (otrbot.otrplugin.plugin.OtrPlugin method)
  


      
  	destroy_all_contexts() (otrbot.otrplugin.manager.OtrManager method)
  


  

  	
      
  	destroy_context() (otrbot.otrplugin.manager.OtrManager method)
  


      
  	dummy_i18n() (in module otrbot.core.utils)
  


  





E


  	
      
  	emit_event() (otrbot.otrplugin.context.OtrContext method)
  


      	
        
  	(otrbot.otrplugin.plugin.OtrPlugin method)
  


      


      
  	encrypt() (otrbot.otrplugin.plugin.OtrPlugin method)
  


      
  	enter_bot_secret() (in module otrbot.lti.lti)
  


  

  	
      
  	enter_jid() (in module otrbot.lti.lti)
  


      
  	error_page() (in module otrbot.lti.lti)
  


  





F


  	
      
  	fatal() (in module otrbot.core.utils)
  


      
  	filter() (otrbot.core.utils.SleekFilter method)
  


  

  	
      
  	format() (otrbot.core.colourlog.ColourFormatter method)
  


  





G


  	
      
  	generate_secret() (in module otrbot.core.utils)
  


      
  	get_colour_fmt() (otrbot.core.colourlog.ColourFormatter method)
  


      
  	get_context() (otrbot.otrplugin.manager.OtrManager method)
  


  

  	
      
  	get_locale() (in module otrbot.lti.lti)
  


      
  	get_shared_secret() (otrbot.core.client.OtrBot method)
  


      
  	getPolicy() (otrbot.otrplugin.context.OtrContext method)
  


  





H


  	
      
  	handle() (otrbot.statemachine.state.State method)
  


      	
        
  	(otrbot.statemachine.statemachine.StateMachine method)
  


      


  

  	
      
  	hello_world() (in module otrbot.lti.lti)
  


  





I


  	
      
  	index() (in module otrbot.lti.lti)
  


  

  	
      
  	inject() (otrbot.otrplugin.context.OtrContext method)
  


  





J


  	
      
  	jid_entered() (in module otrbot.lti.lti)
  


      
  	jid_in_sessions() (otrbot.core.client.OtrBot method)
  


  

  	
      
  	JidNotKnown
  


  





K


  	
      
  	kill_session() (otrbot.core.client.OtrBot method)
  


  





L


  	
      
  	loadPrivkey() (otrbot.otrplugin.account.OtrAccount method)
  


  





M


  	
      
  	mock_ltid() (in module otrbot.lti.lti)
  


  





O


  	
      
  	on_enter() (otrbot.statemachine.state.State method)
  


      
  	on_leave() (otrbot.statemachine.state.State method)
  


      
  	otr_event() (otrbot.core.client.OtrBot method)
  


      
  	OtrAccount (class in otrbot.otrplugin.account)
  


      
  	OtrBot (class in otrbot.core.client)
  


      
  	otrbot.core.client (module)
  


      
  	otrbot.core.colourlog (module)
  


      
  	otrbot.core.utils (module)
  


      
  	otrbot.exceptions.client (module)
  


      
  	otrbot.exceptions.lti (module)
  


      
  	otrbot.exceptions.statemachine (module)
  


  

  	
      
  	otrbot.lti.lti (module)
  


      
  	otrbot.otrplugin.account (module)
  


      
  	otrbot.otrplugin.context (module)
  


      
  	otrbot.otrplugin.manager (module)
  


      
  	otrbot.otrplugin.plugin (module)
  


      
  	otrbot.statemachine.context (module)
  


      
  	otrbot.statemachine.state (module)
  


      
  	otrbot.statemachine.statemachine (module)
  


      
  	OtrContext (class in otrbot.otrplugin.context)
  


      
  	OtrManager (class in otrbot.otrplugin.manager)
  


      
  	OtrPlugin (class in otrbot.otrplugin.plugin)
  


  





P


  	
      
  	plugin_init() (otrbot.otrplugin.plugin.OtrPlugin method)
  


      
  	possible_actions (otrbot.statemachine.state.State attribute)
  


  

  	
      
  	processTLVs() (otrbot.otrplugin.context.OtrContext method)
  


  





R


  	
      
  	refresh_session() (otrbot.core.client.OtrBot method)
  


      
  	REFRESH_SESSION_WHITELIST (otrbot.core.client.OtrBot attribute)
  


  

  	
      
  	run_lti() (in module otrbot.lti.lti)
  


  





S


  	
      
  	savePrivkey() (otrbot.otrplugin.account.OtrAccount method)
  


      
  	saveTrusts() (otrbot.otrplugin.account.OtrAccount method)
  


      
  	send_plain() (otrbot.otrplugin.plugin.OtrPlugin method)
  


      
  	session_end() (otrbot.core.client.OtrBot method)
  


      
  	session_start() (otrbot.core.client.OtrBot method)
  


      
  	set_secret() (otrbot.otrplugin.plugin.OtrPlugin method)
  


      
  	set_shared_secret() (otrbot.core.client.OtrBot method)
  


      
  	setState() (otrbot.otrplugin.context.OtrContext method)
  


      
  	setup_otr() (otrbot.otrplugin.plugin.OtrPlugin method)
  


  

  	
      
  	SharedContext (class in otrbot.statemachine.context)
  


      
  	SIGN_OUT_MESSAGE (otrbot.core.client.OtrBot attribute)
  


      
  	SleekFilter (class in otrbot.core.utils)
  


      
  	smpAbort() (otrbot.otrplugin.context.OtrContext method)
  


      
  	State (class in otrbot.statemachine.state)
  


      
  	state (otrbot.statemachine.statemachine.StateMachine attribute)
  


      
  	STATE_OBJECT (otrbot.statemachine.statemachine.StateMachine attribute)
  


      
  	StateDoesNotExist
  


      
  	StateMachine (class in otrbot.statemachine.statemachine)
  


  





T


  	
      
  	template_substitute() (in module otrbot.core.utils)
  


      
  	terminate_session() (otrbot.core.client.OtrBot method)
  


  

  	
      
  	transitions (otrbot.statemachine.state.State attribute)
  


      
  	TRUNCATE (otrbot.core.utils.SleekFilter attribute)
  


  





W


  	
      
  	warn_session() (otrbot.core.client.OtrBot method)
  


  







          

      

      

    


    
         Copyright 2016 Greenhost https://greenhost.net.
      Created using Sphinx 1.4.1.
    

  _static/comment-close.png





_static/minus.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/plus.png





search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		OTR bot 1.0 Alpha documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016 Greenhost https://greenhost.net.
      Created using Sphinx 1.4.1.
    

  

_static/down.png





_static/up.png





_static/ajax-loader.gif





_static/down-pressed.png





_static/up-pressed.png





