

 [image: sol repository]
 [https://github.com/ThePhD/sol2]
sol 2.20

a fast, simple C++ and Lua Binding

When you need to hit the ground running with Lua and C++, sol [https://github.com/ThePhD/sol2] is the go-to framework for high-performance binding with an easy to use API.

get going:

	tutorial: quick ‘n’ dirty

	tutorial

	errors

	supported compilers, binary size, compile time

	features

	functions

	usertypes

	containers

	threading

	customization traits

	api reference manual

	mentions

	benchmarks

	getting performance

	config and safety

	exceptions

	run-time type information (rtti)

	unicode transformation format handling

	Build

	licenses

	origin

“I need feature X, maybe you have it?”

Take a look at the Features page: it links to much of the API. You can also just straight up browse the api or ease in with the tutorials. To know more about the implementation for usertypes, see here To know how function arguments are handled, see this note. Don’t see a feature you want? Send inquiries for support for a particular abstraction to the issues [https://github.com/ThePhD/sol2/issues] tracker.

the basics:

Note

The code below and more examples can be found in the examples directory [https://github.com/ThePhD/sol2/tree/develop/examples]

 tutorial: quick ‘n’ dirty

tutorial: quick ‘n’ dirty

These are all the things. Use your browser’s search to find things you want.

Note

After you learn the basics of sol, it is usually advised that if you think something can work, you should TRY IT. It will probably work!

 tutorial

tutorial

Take some time to learn the framework with these tutorials. But, if you need to get going FAST, try using the quick ‘n’ dirty approach and your browser’s / editors search function. It will also serve you well to look at all the examples [https://github.com/ThePhD/sol2/tree/develop/examples], which have recently gotten a bit of an overhaul to contain more relevant working examples and other advanced tricks that you can leverage to have a good time!

Sol Tutorial

	tutorial: quick ‘n’ dirty
	asserts / prerequisites

	opening a state

	using sol2 on a lua_State*

	running lua code

	running lua code (low-level)

	set and get variables

	tables

	make tables

	functions

	self call

	multiple returns from lua

	multiple returns to lua

	C++ classes from C++

	C++ classes put into Lua

	namespacing

	there is a LOT more

	getting started

	integrating into existing code

	variables
	reading

	writing

	functions and You
	Setting a new function

	Getting a function from Lua

	Multiple returns to and from Lua

	Any return to and from Lua

	C++ in Lua

	ownership

	adding your own types

 tutorial: quick ‘n’ dirty

tutorial: quick ‘n’ dirty

These are all the things. Use your browser’s search to find things you want.

Note

After you learn the basics of sol, it is usually advised that if you think something can work, you should TRY IT. It will probably work!

 getting started

getting started

Let’s get you going with Sol! To start, you’ll need to use a lua distribution of some sort. Sol doesn’t provide that: it only wraps the API that comes with it, so you can pick whatever distribution you like for your application. There are lots, but the two popular ones are vanilla Lua [https://www.lua.org/] and speedy LuaJIT [http://luajit.org/] . We recommend vanilla Lua if you’re getting started, LuaJIT if you need speed and can handle some caveats: the interface for Sol doesn’t change no matter what Lua version you’re using.

If you need help getting or building Lua, check out the Lua page on getting started [https://www.lua.org/start.html]. Note that for Visual Studio, one can simply download the sources, include all the Lua library files in that project, and then build for debug/release, x86/x64/ARM rather easily and with minimal interference. Just make sure to adjust the Project Property page to build as a static library (or a DLL with the proper define set in the Preprocessor step).

After that, make sure you grab either the single header file release [https://github.com/ThePhD/sol2/releases], or just perform a clone of the github repository here [https://github.com/ThePhD/sol2] and set your include paths up so that you can get at sol.hpp somehow. Note that we also have the latest version of the single header file with all dependencies included kept in the repository as well [https://github.com/ThePhD/sol2/blob/develop/single/sol/sol.hpp]. We recommend the single-header-file release, since it’s easier to move around, manage and update if you commit it with some form of version control. You can also clone/submodule the repository and then point at the single/sol/sol.hpp [https://github.com/ThePhD/sol2/blob/develop/single/sol/sol.hpp] on your include files path. Clone with:

>>> git clone https://github.com/ThePhD/sol2.git

When you’re ready, try compiling this short snippet:

test.cpp: the first snippet

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	#include <sol.hpp> // or #include "sol.hpp", whichever suits your needs

int main (int argc, char* argv[]) {

 sol::state lua;
 lua.open_libraries(sol::lib::base);

 lua.script("print('bark bark bark!')");

 return 0;
}

Using this simple command line:

>>> g++ -std=c++14 test.cpp -I"path/to/lua/include" -L"path/to/lua/lib" -llua

Or using your favorite IDE / tool after setting up your include paths and library paths to Lua according to the documentation of the Lua distribution you got. Remember your linked lua library (-llua) and include / library paths will depend on your OS, file system, Lua distribution and your installation / compilation method of your Lua distribution.

Note

If you get an avalanche of errors (particularly referring to auto), you may not have enabled C++14 / C++17 mode for your compiler. Add one of std=c++14, std=c++1z OR std=c++1y to your compiler options. By default, this is always-on for VC++ compilers in Visual Studio and friends, but g++ and clang++ require a flag (unless you’re on GCC 6.0 [https://gcc.gnu.org/gcc-6/changes.html] or better).

 integrating into existing code

integrating into existing code

If you’re already using lua and you just want to use sol in some places, you can use state_view:

using state_view

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	int something_in_my_system (lua_State* L) {
 // start using Sol with a pre-existing system
 sol::state_view lua(L); // non-owning

 lua.script("print('bark bark bark!')");

 // get the table off the top of the stack
 sol::table expected_table(L, -1);
 // start using it...

 return 0; // or whatever you require of working with a raw function
}

sol::state_view is exactly like sol::state, but it doesn’t manage the lifetime of a lua_State*. Therefore, you get all the goodies that come with a sol::state without any of the ownership implications. Sol has no initialization components that need to deliberately remain alive for the duration of the program. It’s entirely self-containing and uses lua’s garbage collectors and various implementation techniques to require no state C++-side. After you do that, all of the power of Sol is available to you, and then some!

sol::state_view is also helpful when you want to create a DLL that loads some Lua module [https://github.com/ThePhD/sol2/tree/develop/examples/require_dll_example] via requires.

You may also want to call require and supply a string of a script file or something that returns an object that you set equal to something in C++. For that, you can use the require functionality.

Remember that Sol can be as lightweight as you want it: almost all of Sol’s Lua types take the lua_State* argument and then a second int index stack index argument, meaning you can use tables, lua functions, coroutines, and other reference-derived objects that expose the proper constructor for your use. You can also set usertypes and other things you need without changing your entire architecture in one go.

You can even customize it to work with an external Lua wrapper/framework/library [https://github.com/ThePhD/sol2/tree/develop/examples/interop].

Note that you can also make non-standard pointer and reference types with custom reference counting and such also play nice with the system. See unique_usertype_traits<T> to see how! Custom types is also mentioned in the customization tutorial.

There are a few things that creating a sol::state does for you. You can read about it in the sol::state docs and call those functions directly if you need them.

 variables

variables

Working with variables is easy with sol, and behaves pretty much like any associative array / map structure you might have dealt with previously.

reading

Given this lua file that gets loaded into sol:

	1
2
3
4

	config = {
	fullscreen = false,
	resolution = { x = 1024, y = 768 }
}

You can interact with the Lua Virtual Machine like so:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	#define SOL_CHECK_ARGUMENTS 1
#include <sol.hpp>

#include <tuple>
#include "../assert.hpp"
#include <utility> // for std::pair

int main() {

	sol::state lua;
	lua.script_file("variables.lua");
	// the type "sol::state" behaves
	// exactly like a table!
	bool isfullscreen = lua["config"]["fullscreen"]; // can get nested variables
	sol::table config = lua["config"];
	c_assert(isfullscreen);
	return 0;
}

From this example, you can see that there’s many ways to pull out the varaibles you want. For example, to determine if a nested variable exists or not, you can use auto to capture the value of a table[key] lookup, and then use the .valid() method:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	#define SOL_CHECK_ARGUMENTS 1
#include <sol.hpp>

#include <tuple>
#include "../assert.hpp"
#include <utility> // for std::pair

int main() {

	sol::state lua;
	lua.script_file("variables.lua");

	// test variable
	auto bark = lua["config"]["bark"];
	if (bark.valid()) {
		// branch not taken: config and/or bark are not variables
	}
	else {
		// Branch taken: config and bark are existing variables
	}

	return 0;
}

This comes in handy when you want to check if a nested variable exists. You can also check if a toplevel variable is present or not by using sol::optional, which also checks if A) the keys you’re going into exist and B) the type you’re trying to get is of a specific type:

optional lookup

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	#define SOL_CHECK_ARGUMENTS 1
#include <sol.hpp>

#include <tuple>
#include "../assert.hpp"
#include <utility> // for std::pair

int main() {

	sol::state lua;
	lua.script_file("variables.lua");

	// can also use optional
	sol::optional<int> not_an_integer = lua["config"]["fullscreen"];
	if (not_an_integer) {
		// Branch not taken: value is not an integer
	}

	sol::optional<bool> is_a_boolean = lua["config"]["fullscreen"];
	if (is_a_boolean) {
		// Branch taken: the value is a boolean
	}

	sol::optional<double> does_not_exist = lua["not_a_variable"];
	if (does_not_exist) {
		// Branch not taken: that variable is not present
	}
	return 0;
}

This can come in handy when, even in optimized or release modes, you still want the safety of checking. You can also use the get_or methods to, if a certain value may be present but you just want to default the value to something else:

optional lookup

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	#define SOL_CHECK_ARGUMENTS 1
#include <sol.hpp>

#include <tuple>
#include "../assert.hpp"
#include <utility> // for std::pair

int main() {

	sol::state lua;
	lua.script_file("variables.lua");
	// this will result in a value of '24'
	// (it tries to get a number, and fullscreen is
	// not a number
	int is_defaulted = lua["config"]["fullscreen"].get_or(24);
	c_assert(is_defaulted == 24);

	// This will result in the value of the config, which is 'false'
	bool is_not_defaulted = lua["config"]["fullscreen"];
	c_assert(!is_not_defaulted);

	return 0;
}

That’s all it takes to read variables!

writing

Writing gets a lot simpler. Even without scripting a file or a string, you can read and write variables into lua as you please:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	#define SOL_CHECK_ARGUMENTS 1
#include <sol.hpp>

#include <iostream>

int main() {

	sol::state lua;

	// open those basic lua libraries
	// again, for print() and other basic utilities
	lua.open_libraries(sol::lib::base);

	// value in the global table
	lua["bark"] = 50;

	// a table being created in the global table
	lua["some_table"] = lua.create_table_with(
		"key0", 24,
		"key1", 25,
		lua["bark"], "the key is 50 and this string is its value!");

	// Run a plain ol' string of lua code
	// Note you can interact with things set through Sol in C++ with lua!
	// Using a "Raw String Literal" to have multi-line goodness:
	// http://en.cppreference.com/w/cpp/language/string_literal
	lua.script(R"(
		
	print(some_table[50])
	print(some_table["key0"])
	print(some_table["key1"])

	-- a lua comment: access a global in a lua script with the _G table
	print(_G["bark"])

)");

	return 0;
}

This example pretty much sums up what can be done. Note that the syntax lua["non_existing_key_1"] = 1 will make that variable, but if you tunnel too deep without first creating a table, the Lua API will panic (e.g., lua["does_not_exist"]["b"] = 20 will trigger a panic). You can also be lazy with reading / writing values:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	#define SOL_CHECK_ARGUMENTS 1
#include <sol.hpp>

#include <iostream>

int main() {

	sol::state lua;

	auto barkkey = lua["bark"];
	if (barkkey.valid()) {
		// Branch not taken: doesn't exist yet
		std::cout << "How did you get in here, arf?!" << std::endl;
	}

	barkkey = 50;
	if (barkkey.valid()) {
		// Branch taken: value exists!
		std::cout << "Bark Bjork Wan Wan Wan" << std::endl;
	}

	return 0;
}

Finally, it’s possible to erase a reference/variable by setting it to nil, using the constant sol::nil in C++:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	#define SOL_CHECK_ARGUMENTS 1
#include <sol.hpp>

int main() {

	sol::state lua;
	lua["bark"] = 50;
	sol::optional<int> x = lua["bark"];
	// x will have a value

	lua["bark"] = sol::nil;
	sol::optional<int> y = lua["bark"];
	// y will not have a value

	return 0;
}

It’s easy to see that there’s a lot of options to do what you want here. But, these are just traditional numbers and strings. What if we want more power, more capabilities than what these limited types can offer us? Let’s throw some functions in there C++ classes into the mix!

 functions and You

functions and You

Sol can register all kinds of functions. Many are shown in the quick ‘n’ dirty, but here we will discuss many of the additional ways you can register functions into a sol-wrapped Lua system.

Setting a new function

Given a C++ function, you can drop it into Sol in several equivalent ways, working similar to how setting variables works:

Registering C++ functions

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	#include <sol.hpp>

std::string my_function(int a, std::string b) {
 // Create a string with the letter 'D' "a" times,
 // append it to 'b'
 return b + std::string('D', a);
}

int main () {

 sol::state lua;

 lua["my_func"] = my_function; // way 1
 lua.set("my_func", my_function); // way 2
 lua.set_function("my_func", my_function); // way 3

 // This function is now accessible as 'my_func' in
 // lua scripts / code run on this state:
 lua.script("some_str = my_func(1, 'Da')");

 // Read out the global variable we stored in 'some_str' in the
 // quick lua code we just executed
 std::string some_str = lua["some_str"];
 // some_str == "DaD"
}

The same code works with all sorts of functions, from member function/variable pointers you have on a class as well as lambdas:

Registering C++ member functions

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

	struct my_class {
 int a = 0;

 my_class(int x) : a(x) {

 }

 int func() {
 ++a; // increment a by 1
 return a;
 }
};

int main () {

 sol::state lua;

 // Here, we are binding the member function and a class instance: it will call the function on
 // the given class instance
 lua.set_function("my_class_func", &my_class::func, my_class());

 // We do not pass a class instance here:
 // the function will need you to pass an instance of "my_class" to it
 // in lua to work, as shown below
 lua.set_function("my_class_func_2", &my_class::func);

 // With a pre-bound instance:
 lua.script(R"(
 first_value = my_class_func()
 second_value = my_class_func()
)");
 // first_value == 1
 // second_value == 2

 // With no bound instance:
 lua.set("obj", my_class(24));
 // Calls "func" on the class instance
 // referenced by "obj" in Lua
 lua.script(R"(
 third_value = my_class_func_2(obj)
 fourth_value = my_class_func_2(obj)
)");
 // first_value == 25
 // second_value == 26
}

Member class functions and member class variables will both be turned into functions when set in this manner. You can get intuitive variable with the obj.a = value access after this section when you learn about usertypes to have C++ in Lua, but for now we’re just dealing with functions!

Another question a lot of people have is about function templates. Function templates – member functions or free functions – cannot be registered because they do not exist until you instantiate them in C++. Therefore, given a templated function such as:

A C++ templated function

	1
2
3
4

	template <typename A, typename B>
auto my_add(A a, B b) {
 return a + b;
}

You must specify all the template arguments in order to bind and use it, like so:

Registering function template instantiations

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	int main () {

 sol::state lua;

 // adds 2 integers
 lua["my_int_add"] = my_add<int, int>;

 // concatenates 2 strings
 lua["my_string_combine"] = my_add<std::string, std::string>;

 lua.script("my_num = my_int_add(1, 2)");
 int my_num = lua["my_num"];
 // my_num == 3

 lua.script("my_str = my_string_combine('bark bark', ' woof woof')");
 std::string my_str = lua["my_str"];
 // my_str == "bark bark woof woof"
}

Notice here that we bind two separate functions. What if we wanted to bind only one function, but have it behave differently based on what arguments it is called with? This is called Overloading, and it can be done with sol::overload like so:

Registering C++ function template instantiations

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	int main () {

 sol::state lua;

 // adds 2 integers
 lua["my_combine"] = sol::overload(my_add<int, int>, my_add<std::string, std::string>);

 lua.script("my_num = my_combine(1, 2)");
 lua.script("my_str = my_combine('bark bark', ' woof woof')");
 int my_num = lua["my_num"];
 std::string my_str = lua["my_str"];
 // my_num == 3
 // my_str == "bark bark woof woof"
}

This is useful for functions which can take multiple types and need to behave differently based on those types. You can set as many overloads as you want, and they can be of many different types.

As a side note, binding functions with default parameters does not magically bind multiple versions of the function to be called with the default parameters. You must instead use sol::overload.

As a side note, please make sure to understand Make sure you understand the implications of binding a lambda/callable struct in the various ways and what it means for your code!

Getting a function from Lua

There are 2 ways to get a function from Lua. One is with sol::function and the other is a more advanced wrapper with sol::protected_function. Use them to retrieve callables from Lua and call the underlying function, in two ways:

Retrieving a sol::function

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	int main () {

 sol::state lua;

 lua.script(R"(
 function f (a)
 return a + 5
 end
)");

 // Get and immediately call
 int x = lua["f"](30);
 // x == 35

 // Store it into a variable first, then call
 sol::function f = lua["f"];
 int y = f(20);
 // y == 25
}

You can get anything that’s a callable in Lua, including C++ functions you bind using set_function or similar. sol::protected_function behaves similarly to sol::function, but has a error_handler variable you can set to a Lua function. This catches all errors and runs them through the error-handling function:

Retrieving a sol::protected_function

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	int main () {
 sol::state lua;

 lua.script(R"(
 function handler (message)
 return "Handled this message: " .. message
 end

 function f (a)
 if a < 0 then
 error("negative number detected")
 end
 return a + 5
 end
)");

 sol::protected_function f = lua["f"];
 f.error_handler = lua["handler"];

 sol::protected_function_result result = f(-500);
 if (result.valid()) {
 // Call succeeded
 int x = result;
 }
 else {
 // Call failed
 sol::error err = result;
 std::string what = err.what();
 // 'what' Should read
 // "Handled this message: negative number detected"
 }
}

Multiple returns to and from Lua

You can return multiple items to and from Lua using std::tuple/std::pair classes provided by C++. These enable you to also use sol::tie to set return values into pre-declared items. To recieve multiple returns, just ask for a std::tuple type from the result of a function’s computation, or sol::tie a bunch of pre-declared variables together and set the result equal to that:

Multiple returns from Lua

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	int main () {
 sol::state lua;

 lua.script("function f (a, b, c) return a, b, c end");

 std::tuple<int, int, int> result;
 result = lua["f"](1, 2, 3);
 // result == { 1, 2, 3 }
 int a, int b;
 std::string c;
 sol::tie(a, b, c) = lua["f"](1, 2, "bark");
 // a == 1
 // b == 2
 // c == "bark"
}

You can also return mutiple items yourself from a C++-bound function. Here, we’re going to bind a C++ lambda into Lua, and then call it through Lua and get a std::tuple out on the other side:

Multiple returns into Lua

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	int main () {
 sol::state lua;

 lua["f"] = [](int a, int b, sol::object c) {
 // sol::object can be anything here: just pass it through
 return std::make_tuple(a, b, c);
 };

 std::tuple<int, int, int> result = lua["f"](1, 2, 3);
 // result == { 1, 2, 3 }

 std::tuple<int, int, std::string> result2;
 result2 = lua["f"](1, 2, "Arf?")
 // result2 == { 1, 2, "Arf?" }

 int a, int b;
 std::string c;
 sol::tie(a, b, c) = lua["f"](1, 2, "meow");
 // a == 1
 // b == 2
 // c == "meow"
}

Note here that we use sol::object to transport through “any value” that can come from Lua. You can also use sol::make_object to create an object from some value, so that it can be returned into Lua as well.

Any return to and from Lua

It was hinted at in the previous code example, but sol::object is a good way to pass “any type” back into Lua (while we all wait for std::variant<...> to get implemented and shipped by C++ compiler/library implementers).

It can be used like so, inconjunction with sol::this_state:

Return anything into Lua

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	sol::object fancy_func (sol::object a, sol::object b, sol::this_state s) {
 sol::state_view lua(s);
 if (a.is<int>() && b.is<int>()) {
 return sol::make_object(lua, a.as<int>() + b.as<int>());
 }
 else if (a.is<bool>()) {
 bool do_triple = a.as<bool>();
 return sol::make_object(lua, b.as<double>() * (do_triple ? 3 : 1));
 }
 return sol::make_object(lua, sol::nil);
}

int main () {
 sol::state lua;

 lua["f"] = fancy_func;

 int result = lua["f"](1, 2);
 // result == 3
 double result2 = lua["f"](false, 2.5);
 // result2 == 2.5

 // call in Lua, get result
 lua.script("result3 = f(true, 5.5)");
 double result3 = lua["result3"];
 // result3 == 16.5
}

This covers almost everything you need to know about Functions and how they interact with Sol. For some advanced tricks and neat things, check out sol::this_state and sol::variadic_args. The next stop in this tutorial is about C++ types (usertypes) in Lua! If you need a bit more information about functions in the C++ side and how to best utilize arguments from C++, see this note.

 C++ in Lua

C++ in Lua

Using user defined types (“usertype”s, or just “udt”s) is simple with Sol. If you don’t call any member variables or functions, then you don’t even have to ‘register’ the usertype at all: just pass it through. But if you want variables and functions on your usertype inside of Lua, you need to register it. We’re going to give a short example here that includes a bunch of information on how to work with things.

Take this player struct in C++ in a header file:

test_player.hpp

struct player {
public:
 int bullets;
 int speed;

 player()
 : player(3, 100) {

 }

 player(int ammo)
 : player(ammo, 100) {

 }

 player(int ammo, int hitpoints)
 : bullets(ammo), hp(hitpoints) {

 }

 void boost () {
 speed += 10;
 }

 bool shoot () {
 if (bullets < 1)
 return false;
 --bullets;
 return true;
 }

 void set_hp(int value) {
 hp = value;
 }

 int get_hp() const {
 return hp;
 }

private:
 int hp;
};

It’s a fairly minimal class, but we don’t want to have to rewrite this with metatables in Lua. We want this to be part of Lua easily. The following is the Lua code that we’d like to have work properly:

player_script.lua

-- call single argument integer constructor
p1 = player.new(2)

-- p2 is still here from being
-- set with lua["p2"] = player(0);
-- in cpp file
local p2shoots = p2:shoot()
assert(not p2shoots)
-- had 0 ammo

-- set variable property setter
p1.hp = 545;
-- get variable through property getter
print(p1.hp);

local did_shoot_1 = p1:shoot()
print(did_shoot_1)
print(p1.bullets)
local did_shoot_2 = p1:shoot()
print(did_shoot_2)
print(p1.bullets)
local did_shoot_3 = p1:shoot()
print(did_shoot_3)

-- can read
print(p1.bullets)
-- would error: is a readonly variable, cannot write
-- p1.bullets = 20

p1:boost()

To do this, you bind things using the new_usertype and set_usertype methods as shown below. These methods are on both table and state(_view), but we’re going to just use it on state:

player_script.cpp

#include <sol.hpp>

int main () {
 sol::state lua;

 // note that you can set a
 // userdata before you register a usertype,
 // and it will still carry
 // the right metatable if you register it later

 // set a variable "p2" of type "player" with 0 ammo
 lua["p2"] = player(0);

 // make usertype metatable
 lua.new_usertype<player>("player",

 // 3 constructors
 sol::constructors<player(), player(int), player(int, int)>(),

 // typical member function that returns a variable
 "shoot", &player::shoot,
 // typical member function
 "boost", &player::boost,

 // gets or set the value using member variable syntax
 "hp", sol::property(&player::get_hp, &player::set_hp),

 // read and write variable
 "speed", &player::speed,
 // can only read from, not write to
 "bullets", sol::readonly(&player::bullets)
);

 lua.script_file("player_script.lua");
}

That script should run fine now, and you can observe and play around with the values. Even more stuff you can do is described elsewhere, like initializer functions (private constructors / destructors support), “static” functions callable with name.my_function(...), and overloaded member functions. You can even bind global variables (even by reference with std::ref) with sol::var. There’s a lot to try out!

This is a powerful way to allow reuse of C++ code from Lua beyond just registering functions, and should get you on your way to having more complex classes and data structures! In the case that you need more customization than just usertypes, however, you can customize Sol to behave more fit to your desires by using the desired customization and extension structures.

You can check out this code and more complicated code at the examples directory [https://github.com/ThePhD/sol2/tree/develop/examples] by looking at the usertype_-prefixed examples.

 ownership

ownership

You can take a reference to something that exists in Lua by pulling out a sol::reference or a sol::object:

sol::state lua;
lua.open_libraries(sol::lib::base);

lua.script(R"(
obj = "please don't let me die";
)");

sol::object keep_alive = lua["obj"];
lua.script(R"(
obj = nil;
function say(msg)
 print(msg)
end
)");

lua.collect_garbage();

lua["say"](lua["obj"]);
// still accessible here and still alive in Lua
// even though the name was cleared
std::string message = keep_alive.as<std::string>();
std::cout << message << std::endl;

// Can be pushed back into Lua as an argument
// or set to a new name,
// whatever you like!
lua["say"](keep_alive);

Sol will not take ownership of raw pointers: raw pointers do not own anything. Sol will not delete raw pointers, because they do not (and are not supposed to) own anything:

struct my_type {
 void stuff () {}
};

sol::state lua;

// AAAHHH BAD
// dangling pointer!
lua["my_func"] = []() -> my_type* {
 return new my_type();
};

// AAAHHH!
lua.set("something", new my_type());

// AAAAAAHHH!!!
lua["something_else"] = new my_type();

Use/return a unique_ptr or shared_ptr instead or just return a value:

// :ok:
lua["my_func"] = []() -> std::unique_ptr<my_type> {
 return std::make_unique<my_type>();
};

// :ok:
lua["my_func"] = []() -> std::shared_ptr<my_type> {
 return std::make_shared<my_type>();
};

// :ok:
lua["my_func"] = []() -> my_type {
 return my_type();
};

// :ok:
lua.set("something", std::unique_ptr<my_type>(new my_type()));

std::shared_ptr<my_type> my_shared = std::make_shared<my_type>();
// :ok:
lua.set("something_else", my_shared);

auto my_unique = std::make_unique<my_type>();
lua["other_thing"] = std::move(my_unique);

If you have something you know is going to last and you just want to give it to Lua as a reference, then it’s fine too:

// :ok:
lua["my_func"] = []() -> my_type* {
 static my_type mt;
 return &mt;
};

Sol can detect nullptr, so if you happen to return it there won’t be any dangling because a sol::nil will be pushed.

struct my_type {
 void stuff () {}
};

sol::state lua;

// BUT THIS IS STILL BAD DON'T DO IT AAAHHH BAD
// return a unique_ptr still or something!
lua["my_func"] = []() -> my_type* {
 return nullptr;
};

lua["my_func_2"] = [] () -> std::unique_ptr<my_type> {
 // default-constructs as a nullptr,
 // gets pushed as nil to Lua
 return std::unique_ptr<my_type>();
 // same happens for std::shared_ptr
}

// Acceptable, it will set 'something' to nil
// (and delete it on next GC if there's no more references)
lua.set("something", nullptr);

// Also fine
lua["something_else"] = nullptr;

 adding your own types

adding your own types

Sometimes, overriding Sol to make it handle certain struct’s and class’es as something other than just userdata is desirable. The way to do this is to take advantage of the 4 customization points for Sol. These are sol::lua_size<T>, sol::stack::pusher<T, C>, sol::stack::getter<T, C>, sol::stack::checker<T, sol::type t, C>.

These are template class/structs, so you’ll override them using a technique C++ calls class/struct specialization. Below is an example of a struct that gets broken apart into 2 pieces when going in the C++ –> Lua direction, and then pulled back into a struct when going in the Lua –> C++:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	#define SOL_CHECK_ARGUMENTS 1
#include <sol.hpp>

#include <iostream>
#include "assert.hpp"

struct two_things {
	int a;
	bool b;
};

namespace sol {

	// First, the expected size
	// Specialization of a struct
	template <>
	struct lua_size<two_things> : std::integral_constant<int, 2> {};

	// Then, specialize the type
	// this makes sure Sol can return it properly
	template <>
	struct lua_type_of<two_things> : std::integral_constant<sol::type, sol::type::poly> {};

	// Now, specialize various stack structures
	namespace stack {

		template <>
		struct checker<two_things> {
			template <typename Handler>
			static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
				// indices can be negative to count backwards from the top of the stack,
				// rather than the bottom up
				// to deal with this, we adjust the index to
				// its absolute position using the lua_absindex function
				int absolute_index = lua_absindex(L, index);
				// Check first and second second index for being the proper types
				bool success = stack::check<int>(L, absolute_index, handler)
					&& stack::check<bool>(L, absolute_index + 1, handler);
				tracking.use(2);
				return success;
			}
		};

		template <>
		struct getter<two_things> {
			static two_things get(lua_State* L, int index, record& tracking) {
				int absolute_index = lua_absindex(L, index);
				// Get the first element
				int a = stack::get<int>(L, absolute_index);
				// Get the second element,
				// in the +1 position from the first
				bool b = stack::get<bool>(L, absolute_index + 1);
				// we use 2 slots, each of the previous takes 1
				tracking.use(2);
				return two_things{ a, b };
			}
		};

		template <>
		struct pusher<two_things> {
			static int push(lua_State* L, const two_things& things) {
				int amount = stack::push(L, things.a);
				// amount will be 1: int pushes 1 item
				amount += stack::push(L, things.b);
				// amount 2 now, since bool pushes a single item
				// Return 2 things
				return amount;
			}
		};

	}
}

This is the base formula that you can follow to extend to your own classes. Using it in the rest of the library should then be seamless:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	int main() {
	std::cout << "=== customization ===" << std::endl;
	std::cout << std::boolalpha;
	
	sol::state lua;
	lua.open_libraries(sol::lib::base);

	// Create a pass-through style of function
	lua.script("function f (a, b) print(a, b) return a, b end");

	// get the function out of Lua
	sol::function f = lua["f"];

	two_things things = f(two_things{ 24, false });
	c_assert(things.a == 24);
	c_assert(things.b == false);
	// things.a == 24
	// things.b == true

	std::cout << "things.a: " << things.a << std::endl;
	std::cout << "things.b: " << things.b << std::endl;
	std::cout << std::endl;

	return 0;
}

And that’s it!

A few things of note about the implementation: First, there’s an auxiliary parameter of type sol::stack::record for the getters and checkers. This keeps track of what the last complete operation performed. Since we retrieved 2 members, we use tracking.use(2); to indicate that we used 2 stack positions (one for bool, one for int). The second thing to note here is that we made sure to use the index parameter, and then proceeded to add 1 to it for the next one.

You can make something pushable into Lua, but not get-able in the same way if you only specialize one part of the system. If you need to retrieve it (as a return using one or multiple values from Lua), you should specialize the sol::stack::getter template class and the sol::stack::checker template class. If you need to push it into Lua at some point, then you’ll want to specialize the sol::stack::pusher template class. The sol::lua_size template class trait needs to be specialized for both cases, unless it only pushes 1 item, in which case the default implementation will assume 1.

Note

It is important to note here that the getter, pusher and checker differentiate between a type T and a pointer to a type T*. This means that if you want to work purely with, say, a T* handle that does not have the same semantics as just T, you may need to specify checkers/getters/pushers for both T* and T. The checkers for T* forward to the checkers for T, but the getter for T* does not forward to the getter for T (e.g., because of int* not being quite the same as int).

 errors

errors

how to handle exceptions or other errors

Here is some advice and some tricks for common errors about iteration, compile time / linker errors, and other pitfalls, especially when dealing with thrown exceptions, error conditions and the like in Sol.

Running Scripts

Scripts can have syntax errors, can load from the file system wrong, or have runtime issues. Knowing which one can be troublesome. There are various small building blocks to load and run code, but to check errors you can use the overloaded script/script_file functions on sol::state/sol::state_view, specifically the safe_script variants. These also take an error callback that is called only when something goes wrong, and Sol comes with some default error handlers in the form of sol::script_default_on_error and sol::script_pass_on_error.

Compiler Errors / Warnings

A myriad of compiler errors can occur when something goes wrong. Here is some basic advice about working with these types:

	If there are a myriad of errors relating to std::index_sequence, type traits, and other std:: members, it is likely you have not turned on your C++14 switch for your compiler. Visual Studio 2015 turns these on by default, but g++ and clang++ do not have them as defaults and you should pass the flag --std=c++1y or --std=c++14, or similar for your compiler.

	If you are pushing a non-primitive type into Lua, you may get strange errors about initializer lists or being unable to initializer a luaL_Reg. This may be due to automatic function and operator registration. Disabling it may help.

	Sometimes, a generated usertype can be very long if you are binding a lot of member functions. You may end up with a myriad of warnings about debug symbols being cut off or about __LINE_VAR exceeding maximum length. You can silence these warnings safely for some compilers.

	Template depth errors may also be a problem on earlier versions of clang++ and g++. Use -ftemplate-depth compiler flag and specify really high number (something like 2048 or even double that amount) to let the compiler work freely.

	When using usertype templates extensively, MSVC may invoke compiler error C1128 [https://msdn.microsoft.com/en-us/library/8578y171.aspx] , which is solved by using the /bigobj compilation flag [https://msdn.microsoft.com/en-us/library/ms173499.aspx].

	If you have a move-only type, that type may need to be made readonly if it is bound as a member variable on a usertype or bound using state_view::set_function. See sol::readonly for more details.

	Assigning a std::string or a std::pair<T1, T2> using operator= after it’s been constructed can result in compiler errors when working with sol::function and its results. See this issue for fixes to this behavior [https://github.com/ThePhD/sol2/issues/414#issuecomment-306839439].

	Sometimes, using __stdcall in a 32-bit (x86) environment on VC++ can cause problems binding functions because of a compiler bug. We have a prelimanry fix in, but if it doesn’t work and there are still problems: put the function in a std::function to make the compiler errors and other problems go away. Also see this __stdcall issue report [https://github.com/ThePhD/sol2/issues/463] for more details.

	If you are using /std:c++latest on VC++ and get a number of errors for noexcept specifiers on functions, you may need to file an issue or wait for the next release of the VC++ compiler.

Mac OSX Crashes

On LuaJIT, your code may crash at seemingly random points when using Mac OSX. Make sure that your build has these flags, as advised by the LuaJIT website:

-pagezero_size 10000 -image_base 100000000

These will allow your code to run properly, without crashing arbitrarily. Please read the LuaJIT documentation on compiling and running with LuaJIT for more information.

“compiler out of heap space”

Typical of Visual Studio, the compiler will complain that it is out of heap space because Visual Studio defaults to using the x86 (32-bit) version of itself (it will still compile x86 or x64 or ARM binaries, just the compiler itself is a 32-bit executable). In order to get around heap space requirements, add the following statement in your .vcoxproj files under the <Import .../> statement, as instructed by OrfeasZ in this issue [https://github.com/ThePhD/sol2/issues/329#issuecomment-276824983]:

<PropertyGroup>
 <PreferredToolArchitecture>x64</PreferredToolArchitecture>
</PropertyGroup>

This should use the 64-bit tools by default, and increase your maximum heap space to whatever a 64-bit windows machine can handle. If you do not have more than 4 GB of RAM, or you still encounter issues, you should look into using create_simple_usertype and adding functions 1 by 1 using .set(...), as shown in the simple usertype example here [https://github.com/ThePhD/sol2/blob/develop/examples/usertype_simple.cpp#L45].

Linker Errors

There are lots of reasons for compiler linker errors. A common one is not knowing that you’ve compiled the Lua library as C++: when building with C++, it is important to note that every typical (static or dynamic) library expects the C calling convention to be used and that Sol includes the code using extern 'C' where applicable.

However, when the target Lua library is compiled with C++, one must change the calling convention and name mangling scheme by getting rid of the extern 'C' block. This can be achieved by adding #define SOL_USING_CXX_LUA before including sol2, or by adding it to your compilation’s command line. If you build LuaJIT in C++ mode (how you would even, is beyond me), then you need to #define SOL_USING_CXX_LUAJIT as well. Typically, there is never a need to use this last one.

Note that you should not be defining these with standard builds of either Lua or LuaJIT. See the config page for more details.

“caught (…) exception” errors

Sometimes, you expect properly written errors and instead receive an error about catching a ... exception instead. This might mean that you either built Lua as C++ or are using a framework like LuaJIT that has full interopability support for exceptions on certain system types (x64 for LuaJIT 2.0.5, x86 and x64 on LuaJIT 2.1.x-beta and later).

Please make sure to use the SOL_EXCEPTIONS_SAFE_PROPAGATION define before including sol2 to make this work out. You can read more at the exception page here.

Catch and CRASH!

By default, Sol will add a default_at_panic handler to states opened by Sol (see sol::state automatic handlers for more details). If exceptions are not turned off, this handler will throw to allow the user a chance to recover. However, in almost all cases, when Lua calls lua_atpanic and hits this function, it means that something irreversibly wrong occured in your code or the Lua code and the VM is in an unpredictable or dead state. Catching an error thrown from the default handler and then proceeding as if things are cleaned up or okay is NOT the best idea. Unexpected bugs in optimized and release mode builds can result, among other serious issues.

It is preferred if you catch an error that you log what happened, terminate the Lua VM as soon as possible, and then crash if your application cannot handle spinning up a new Lua state. Catching can be done, but you should understand the risks of what you’re doing when you do it. For more information about catching exceptions, the potentials, not turning off exceptions and other tricks and caveats, read about exceptions in Sol here.

Lua is a C API first and foremost: exceptions bubbling out of it is essentially last-ditch, terminal behavior that the VM does not expect. You can see an example of handling a panic on the exceptions page here. This means that setting up a try { ... } catch (...) {} around an unprotected sol2 function or script call is NOT enough to keep the VM in a clean state. Lua does not understand exceptions and throwing them results in undefined behavior if they bubble through the C API once and then the state is used again. Please catch, and crash.

Furthermore, it would be a great idea for you to use the safety features talked about safety section, especially for those related to functions.

Destructors and Safety

Another issue is that Lua is a C API. It uses setjmp and longjmp to jump out of code when an error occurs. This means it will ignore destructors in your code if you use the library or the underlying Lua VM improperly. To solve this issue, build Lua as C++. When a Lua VM error occurs and lua_error is triggered, it raises it as an exception which will provoke proper unwinding semantics.

Building Lua as C++ gets around this issue, and allows lua-thrown errors to properly stack unwind.

Protected Functions and Access

By default, sol::function assumes the code ran just fine and there are no problems. sol::state(_view)::script(_file) also assumes that code ran just fine. Use sol::protected_function to have function access where you can check if things worked out. Use sol::optional to get a value safely from Lua. Use sol::state(_view)::do_string/do_file/load/load_file to safely load and get results from a script. The defaults are provided to be simple and fast with thrown exceptions to violently crash the VM in case things go wrong.

Protected Functions Are Not Catch All

Sometimes, some scripts load poorly. Even if you protect the function call, the actual file loading or file execution will be bad, in which case sol::protected_function will not save you. Make sure you register your own panic handler so you can catch errors, or follow the advice of the catch + crash behavior above. Remember that you can also bind your own functions and forego sol2’s built-in protections for you own by binding a raw lua_CFunction function

Iteration

Tables may have other junk on them that makes iterating through their numeric part difficult when using a bland for-each loop, or when calling sol’s for_each function. Use a numeric look to iterate through a table. Iteration does not iterate in any defined order also: see this note in the table documentation for more explanation.

 supported compilers, binary size, compile time

supported compilers, binary size, compile time

getting good final product out of sol

supported compilers

GCC 7.x is now out alongside Visual Studio 2018. This means that sol release v2.20.1 [https://github.com/ThePhD/sol2/releases/tag/v2.20.1] is the current version of the code targeted at the older compilers not listed below. Newer code will be targeted at working with the following compilers and leveraging their features, possibly taking advantage of whatever C++17 features are made available by the compilers and standard libraries bundled by-default with them.

v2.20.1 supports:

	
	VC++

	
	Visual Studio 2018

	Visual Studio 2015 (Latest updates)

	
	GCC (includes MinGW)

	
	v7.x

	v6.x

	v5.x

	v4.8+

	
	Clang

	
	v4.x

	v3.9.x

	v3.8.x

	v3.7.x

	v3.6.x

	Note: this applies to XCode’s Apple Clang as well, but that compiler packs its own deficiencies and problems as well

This does not mean we are immediately abandoning older compilers. We will update this page as relevant bugfixes are backported to the v2.x.x releases. Remember that sol2 is feature-complete: there is nothing more we can add to the library at this time with C++11/C++14 compiler support, so your code will be covered for a long time to come.

Newer features will be targeted at the following compilers:

	
	VC++

	
	Visual Studio vNext

	Visual Studio 2018

	
	GCC (includes MinGW)

	
	v8.x

	v7.x

	
	Clang

	
	v7.x

	v6.x

	v5.x

	v4.x

	v3.9.x

Note that Visual Studio’s 2018 Community Edition is absolutely free now, and installs faster and easier than ever before. It also removes a lot of hacky work arounds and formally supports decltype SFINAE.

MinGW’s GCC version 7.x of the compiler fixes a long-standing derp in the <codecvt> header that swapped the endianness of utf16 and utf32 strings.

Clang 3.4, 3.5 and 3.6 have many bugs we have run into when developing sol2 and that have negatively impacted users for a long time now.

We encourage all users to upgrade immediately. If you need old code for some reason, use sol release v2.20.1 [https://github.com/ThePhD/sol2/releases/tag/v2.20.1]: otherwise, always grab sol2’s latest.

feature support

track future compiler and feature support in this issue here [https://github.com/ThePhD/sol2/issues/426].

supported Lua version

We support:

	Lua 5.3+

	Lua 5.2

	Lua 5.1

	LuaJIT 2.0.x+

	LuaJIT 2.1.x-beta3+

binary sizes

For individiauls who use usertypes a lot, they can find their compilation times increase. This is due to C++11 and C++14 not having very good facilities for handling template parameters and variadic template parameters. There are a few things in cutting-edge C++17 and C++Next that sol can use, but the problem is many people cannot work with the latest and greatest: therefore, we have to use older techniques that result in a fair amount of redundant function specializations that can be subject to the pickiness of the compiler’s inlining and other such techniques.

compile speed improvemements

Here are some notes on achieving better compile times without sacrificing too much performance:

	
	When you bind lots of usertypes, put them all in a single translation unit (one C++ file) so that it is not recompiled multiple times over, only to be discarded later by the linker.

	
	Remember that the usertype binding ends up being serialized into the Lua state, so you never need them to appear in a header and cause that same compilation overhead for every compiled unit in your project.

	
	Consider placing groups of bindings in multiple different translation units (multiple C++ source files) so that only part of the bindings are recompiled when you have to change the bindings.

	
	Avoid putting your bindings into headers: it will slow down your compilation

	If you are developing a shared library, restrict your overall surface area by specifically and explicitly marking functions as visible and exported and leaving everything else as hidden or invisible by default

	For people who already have a tool that retrieves function signatures and arguments, it might be in your best interest to hook into that tool or generator and dump out the information once using sol2’s lower-level abstractions. An issue describing preliminary steps can be found here [https://github.com/ThePhD/sol2/issues/436#issuecomment-312021508].

next steps

The next step for Sol from a developer standpoint is to formally make the library a C++17 one. This would mean using Fold Expressions and several other things which will reduce compilation time drastically. Unfortunately, that means also boosting compiler requirements. While most wouldn’t care, others are very slow to upgrade: finding the balance is difficult, and often we have to opt for backwards compatibility and fixes for bad / older compilers (of which there are many in the codebase already).

Hopefully, as things progress, we move things forward.

 features

features

what does Sol (and other libraries) support?

The goal of Sol is to provide an incredibly clean API that provides high performance (comparable or better than the C it was written on) and extreme ease of use. That is, users should be able to say: “this works pretty much how I expected it to.”

For the hard technical components of Lua and its ecosystem we support, here is the full rundown:

what Sol supports

	Support for Lua 5.1, 5.2, and 5.3+ and LuaJIT 2.0.4 + 2.1.x-beta3+. We achieve this through our compatibility header.

	
	Table support: setting values, getting values of multiple (different) types

	
	
	Lazy evaluation for nested/chained queries

	table["a"]["b"]["c"] = 24;

	
	Implicit conversion to the types you want

	double b = table["computed_value"];

	yielding support: tag a function as whose return is meant to yield into a coroutine

	
	Optional support: setting values, getting values of multiple (different) types

	
	
	Lazy evaluation for nested/chained queries

	optional<int> maybe_number = table["a"]["b"]["invalid_key"];

	Turns on safety when you want it: speed when you don’t

	
	Support for callables (functions, lambdas, member functions)

	
	Pull out any Lua function with sol::function: sol::function fx = table["socket_send"];

	Can also set callables into operator[] proxies: table["move_dude"] = &engine::move_dude;

	
	Safety: use sol::protected_function to catch any kind of error

	
	ANY kind: C++ exception or Lua erors are trapped and run through the optional error_handler variable

	Advanced: overloading of a single function name so you don’t need to do boring typechecks

	Advanced: efficient handling and well-documented way of dealing with arguments

	
	User-Defined Type (sol::usertype in the API) support:

	
	Set member functions to be called

	Set member variables

	Set variables on a class that are based on setter/getter functions using properties

	Use free-functions that take the Type as a first argument (pointer or reference)

	Support for “Factory” classes that do not expose constructor or destructor

	Modifying memory of userdata in C++ directly affects Lua without copying, and

	
	Modifying userdata in Lua directly affects C++ references/pointers

	my_class& a = table["a"];
my_class* a_ptr = table["a"];

	
	If you want a copy, just use value semantics and get copies:

	my_class a = table["a"];

	
	Thread/Coroutine support

	
	Use, resume, and play with coroutines like regular functions

	Get and use them even on a separate Lua thread

	Monitor status and get check errors

	Advanced: Customizable and extensible to your own types if you override getter/pusher/checker template struct definitions.

The Feature Matrix™

The below feature table checks for the presence of something. It, however, does not actually account for any kind of laborious syntax.

✔ full support: works as you’d expect (operator[] on tables, etc…)

~ partial support / wonky support: this means its either supported through some other fashion (not with the desired syntax, serious caveats, etc.). Sometimes means dropping down to use the plain C API (at which point, what was the point of the abstraction?).

✗ no support: feature doesn’t work or, if it’s there, it REALLY sucks to use

Implementation notes from using the libraries are below the tables.

category explanations

Explanations for a few categories are below (rest are self-explanatory).

	optional: Support for getting an element, or potentially not (and not forcing the default construction of what amounts to a bogus/dead object). Usually comes with std(::experimental)::optional. It’s a fairly new class, so a hand-rolled class internal to the library with similar semantics is also acceptable

	tables: Some sort of abstraction for dealing with tables. Ideal support is mytable["some_key"] = value, and everything that the syntax implies.

	table chaining: In conjunction with tables, having the ability to query deeply into tables mytable["key1"]["key2"]["key3"]. Note that this becomes a tripping point for some libraries: crashing if "key1" doesn’t exist while trying to access "key2" (Sol avoids this specifically when you use sol::optional), and sometimes it’s also a heavy performance bottleneck as expressions are not lazy-evaluated by a library.

	arbitrary keys: Letting C++ code use userdata, other tables, integers, etc. as keys for into a table.

	user-defined types (udts): C++ types given form and function in Lua code.

	udts - member functions: C++ member functions on a type, usually callable with my_object:foo(1) or similar in Lua.

	udts - table variables: C++ member variables/properties, manipulated by my_object.var = 24 and in Lua

	function binding: Support for binding all types of functions. Lambdas, member functions, free functions, in different contexts, etc…

	protected function: Use of lua_pcall to call a function, which offers error-handling and trampolining (as well as the ability to opt-in / opt-out of this behavior)

	multi-return: returning multiple values from and to Lua (generally through std::tuple<...> or in some other way)

	variadic/variant argument: being able to accept “anything” from Lua, and even return “anything” to Lua (object abstraction, variadic arguments, etc…)

	inheritance: allowing some degree of subtyping or inheritance on classes / userdata from Lua - this generally means that you can retrieve a base pointer from Lua even if you hand the library a derived pointer

	overloading: the ability to call overloaded functions, matched based on arity or type (foo(1) from lua calls a different function then foo("bark")).

	Lua thread: basic wrapping of the lua thread API; ties in with coroutine.

	coroutines: allowing a function to be called multiple times, resuming the execution of a Lua coroutine each time

	yielding C++ functions: allowing a function from C++ to be called multiple times, and yield any results it has back through the C API or into Lua

	environments: an abstraction for getting, setting and manipulating an environment, using table techniques, functions or otherwise. Typically for the purposes of sandboxing

	
	plain C

	luawrapper

	lua-intf

	luabind

	Selene

	Sol2

	oolua

	lua-api-pp

	kaguya

	SLB3

	SWIG

	luacppinterface

	luwra

	optional

	~

	✗

	✔

	✗

	✗

	✔

	✗

	✗

	✔

	✗

	✗

	✗

	✗

	tables

	~

	~

	~

	✔

	✔

	✔

	~

	✔

	✔

	✗

	✗

	~

	✔

	table chaining

	~

	~

	~

	✔

	✔

	✔

	✗

	✔

	✔

	✗

	✗

	~

	✔

	arbitrary keys

	~

	✔

	✔

	✔

	✔

	✔

	✗

	~

	✔

	✗

	✗

	✗

	✗

	user-defined types (udts)

	~

	✔

	✔

	✔

	✔

	✔

	~

	✔

	✔

	✔

	✔

	✔

	✔

	udts: member functions

	~

	✔

	✔

	✔

	✔

	✔

	~

	✔

	✔

	✔

	✔

	✔

	✔

	udts: table variables

	~

	~

	~

	~

	~

	✔

	~

	~

	~

	✗

	✔

	✗

	~

	stack abstractions

	~

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	~

	✗

	~

	✔

	lua callables from C(++)

	~

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	~

	function binding

	~

	✔

	✔

	✔

	✔

	✔

	~

	~

	✔

	~

	~

	~

	✔

	protected call

	~

	✗

	~

	~

	~

	✔

	~

	✔

	~

	~

	~

	~

	~

	multi-return

	~

	✗

	✔

	✔

	✔

	✔

	~

	✔

	✔

	~

	✔

	~

	✗

	variadic/variant argument

	~

	✔

	✔

	✔

	✔

	✔

	~

	✔

	✔

	~

	~

	~

	✗

	inheritance

	~

	✔

	✔

	✔

	✔

	✔

	~

	~

	✔

	~

	✔

	~

	✗

	overloading

	~

	✗

	✔

	✗

	✗

	✔

	✗

	✗

	✔

	✔

	✔

	✗

	✗

	Lua thread

	~

	✗

	~

	✗

	✗

	✔

	✔

	✗

	✔

	✗

	✗

	✔

	✗

	environments

	✗

	✗

	✗

	✗

	✗

	✔

	✗

	✗

	✗

	✗

	✗

	✗

	✗

	coroutines

	~

	✗

	~

	✔

	✔

	✔

	✗

	✗

	✔

	✗

	✗

	✔

	✗

	yielding C++ functions

	~

	✔

	✔

	✔

	~

	✔

	~

	✗

	✔

	✗

	~

	✔

	~

	no-rtti support

	✔

	✗

	✔

	✗

	✗

	✔

	✔

	✗

	✔

	✔

	~

	✔

	✔

	no-exception support

	✔

	✗

	✔

	~

	✗

	✔

	✔

	✗

	✔

	✔

	~

	✔

	✔

	Lua 5.1

	✔

	✔

	✔

	✔

	✗

	✔

	✔

	✔

	✔

	✔

	✔

	✗

	✔

	Lua 5.2

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	Lua 5.3

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	✔

	luajit

	✔

	✔

	✔

	✔

	~

	✔

	✔

	✔

	✔

	✔

	✔

	✗

	✔

	distribution

	compile

	header

	both

	compile

	header

	header

	compile

	compile

	header

	compile

	generated

	compile

	header

notes on implementations

Plain C -

	Obviously you can do anything you want with Plain C, but the effort involved is astronomical in comparison to what other wrappers, libraries and frameworks offer

	Does not scale very well (in terms of developer ease of use)

	Compilation (or package manager use) is obviously required for your platform and required to use ANY of these libraries, but that’s okay because all libraries need some version of Lua anyways, so you always have this!

kaguya -

	Table variables / member variables are automatically turned into obj:x(value) to set and obj:x() to get

	Has optional support

	Inspired coroutine support for Sol

	Library author (satoren) is a nice guy!

	C++11/14, or boostified (which makes it C++03 compatible)

	Class registration is a bit verbose, but not as offensive as OOLua or lua-intf or others

	Constructor setting syntax is snazzy and good

Sol -

	One of the few libraries with optional support!

	Basically the fastest in almomst all respects: http://sol2.readthedocs.io/en/latest/benchmarks.html

	Overloading support can get messy with inheritance, see here

	C++14/”C++1y” (-std=c++14, -std=c++1y, =std=c++1z) flags are used (available since GCC 4.9 and Clang 3.5)

	Active issues, active individuals

	Deserves lots of love!

lua-intf -

	Can be both header-only or compiled

	Has optional support

	C++11

	Macro-based registration (strange pseudo-language)

	Fairly fast in most regards

	Registering classes/”modules” in using C++ code is extremely verbose

	In order to chain lookups, one has to glue the keys together (e.g. "mykey.mykey2") on the operator[] lookup (e.g., you can’t nest them arbitrarily, you have to pre-compose the proper lookup string) (fails miserably for non-string lookups!).

	Not too shabby!

Selene -

	Table variables / member variables are automatically turned into obj:set_x(value) to set and obj:x() to get

	Registering classes/”modules” using C++ code is extremely verbose, similar to lua-intf’s style

	Eats crap when it comes to performance, most of the time (see benchmarks)

	Lots of users (blogpost etc. made it popular), but the Repository is kinda stagnant…

luawrapper -

	Takes the approach of writing and reading tables using readVariable and writeVariable functions

	C++11, no macros!

	The interface can be clunky (no table-like data structures: most things go though readVariable / writeVariable)

	Internal Compiler errors in Visual Studio 2015 - submitted a PR to fix it, hopefully it’ll get picked up

SWIG (3.0) -

	Very comprehensive for binding concepts of C++ (classes, variables, etc.) to Lua

	Helps with literally nothing else (tables, threads, stack abstractions, etc.)

	Not really a good, full-featured Library…

	Requires preprocessing step (but it’s not a… TERRIBLY complicated preprocessing step); some boilerplate in writing additional classes that you’ve already declared

luacppinterface -

	The branch that fixes VC++ warnings and introduces some new work has type checker issues, so use the stable branch only

	No table variable support

	Actually has tables (but no operator[])

	Does not support arbitrary keys

luabind -

	One of the older frameworks, but has many people updating it and providing “deboostified” versions

	
	Strange in-lua keywords and parsing to allow for classes to be written in lua

	
	not sure if good feature; vendor lock-in to that library to depend on this specific class syntax?

	Comprehensive lua bindings (can even bind “properties”)

	There’s some code that produces an ICE in Visual C++: I submitted a fix to the library in the hopes that it’ll get accepted

	Wonky table support: no basic conversion functions on luabind::object; have to push object then use lua API to get what you want

lua-api-pp -

	Compiled, but the recommendation is to add the source files directly to your project

	
	Userdata registration with thick setup-macros: LUAPP_USERDATA(…) plus a bunch of free functions that take a T& self argument

	
	You can bind member functions directly but only if you override metatable entries

	Otherwise, COMPLICATED self-registration that makes you wonder why you’re using the framework

	
	You have to create a context and then call it to start accessing the lua state (adding more boilerplate… thanks)

	
	Thankfully, unlike many libraries, it actually has a Table type that can be used semi-easily. FINALLY

	C++11-ish in some regards

	Sad face, thanks to the way userdata registration is handled

SLB3 -

	Old code exported to github from dying google code

	“.NET Style” - to override functionality, derive from class – boilerplate (isn’t that what we’re trying to get rid of?)

	Pointers everywhere: ownership semantics unclear

	Piss-poor documentation, ugh!

	Least favorite to work with, for sure!

oolua -

	The syntax for this library is not my favorite… go read the docs [https://oolua.org/docs/index.html], decide for yourself!

	
	The worst in terms of how to use it: may have docs, but the DSL is extraordinarily crappy with thick, hard-to-debug/hard-to-error-check macros

	
	Same problem as lua-api-pp: cannot have the declaration macros anywhere but the toplevel namespace because of template declaration macro

	Supports not having exceptions or rtti turned on (shiny!)

	
	Poor RAII support: default-construct-and-get style (requires some form of initalization to perform a get of an object, and it’s hard to extend)

	
	The library author has informed me that he does personally advises individuals do not use the Table abstraction in OOLua… Do I likewise tell people to consider its table abstractions defunct?

	Table variables / member variables from C++ are turned into function calls (get_x and set_x by default)

luwra -

	How do you store stateful functors / lambas? So far, no support for such.

	Cannot pull functions without first leaving them on the stack: manual cleanup becomes a thing

	Doesn’t understand std::function conversions and the like (but with some extra code can get it to work)

	Recently improved by a lot: can chain tables and such, even if performance is a bit sad for that use case

	When you do manage to set function calls with the macros they are fast (can a template solution do just as good? Sol is going to find out!)

	No table variable support - get turned into getter/setter functions, similar to kaguya

	Table variables become class statics (surprising)

	Tanks in later MSVCs

 functions

functions

working with functions in sol2

There are a number of examples dealing with functions and how they can be bound to sol2:

	For a quicker walkthrough that demonstrates almost everything, see the examples [https://github.com/ThePhD/sol2/blob/develop/examples/functions.cpp] and the the quick and dirty tutorial

	For a full explanation, read the tutorial and consult the subjects below

	If you have bindings and set-ups that want to leverage the C API without sol2’s interference, you can push a raw function, which has certain implications (noted below)

	
	Return multiple values into Lua by:

	
	returning a std::tuple

	using sol::variadic_results

	
	Overload function calls with different argument types and count on a single name (first-bound, first-serve overloading)

	
	Note: because of this feature, automatic number to string conversion from Lua is not permitted for overloads and does not work when safeties are turned on

	int/float overloads must have SOL_SAFE_NUMERICS turned on to differentiate between the two

	Use C++ captures and lambdas to bind member functions tied to a single object /

	
	You can work with transparent arguments that provide you with special information, such as

	
	sol::variadic_args, for handling variable number of arguments at runtime

	sol::this_state, for getting the current Lua state

	sol::this_environment, for potentially retrieving the current Lua environment

	Control serialization of arguments and return types with sol::nested, sol::as_table, sol::as_args and sol::as_function

	Set environments for Lua functions and scripts with sol::environment

	You can use filters to control dependencies and streamline return values, as well as apply custom behavior to a functions return

working with callables/lambdas

To be explicit about wanting a struct to be interpreted as a function, use my_table.set_function(key, func_value);. You can also use the sol::as_function call, which will wrap and identify your type as a function.

Note

When you set lambdas/callables through my_table.set(...) using the same function signature, you can suffer from const static data (like string literals) from not “behaving properly”. This is because some compilers do not provide unique type names that we can get at in C++ with RTTI disabled, and thusly it will register the first lambda of the specific signature as the one that will be called. The result is that string literals and other data stored in an compiler implementation-defined manner might be folded and the wrong routine run, even if other observable side effects are nice.

To avoid this problem, register all your lambdas with my_table.set_function and avoid the nightmare altogether [https://github.com/ThePhD/sol2/issues/608#issuecomment-372876206].

 usertypes

usertypes

Perhaps the most powerful feature of sol2, usertypes are the way sol2 and C++ communicate your classes to the Lua runtime and bind things between both tables and to specific blocks of C++ memory, allowing you to treat Lua userdata and other things like classes.

To learn more about usertypes, visit:

	the basic tutorial

	customization point tutorial

	api documentation

	memory documentation

The examples folder also has a number of really great examples for you to see. There are also some notes about guarantees you can find about usertypes, and their associated userdata, below:

	Containers get pushed as special usertypes, but can be disabled if problems arise as detailed here.

	Certain operators [https://github.com/ThePhD/sol2/blob/develop/examples/usertype_automatic_operators.cpp] are detected and bound automatically for usertypes

	You can use bitfields but it requires some finesse on your part. We have an example to help you get started here, that uses a few tricks [https://github.com/ThePhD/sol2/blob/develop/examples/usertype_bitfields.cpp].

	
	All usertypes are runtime extensible in both Lua [https://github.com/ThePhD/sol2/blob/develop/examples/usertype_advanced.cpp#L81] and C++ [https://github.com/ThePhD/sol2/blob/develop/examples/usertype_simple.cpp#L51]

	
	If you need dynamic callbacks or runtime overridable functions, have a std::function member variable and get/set it on the usertype object

	std::function works as a member variable or in passing as an argument / returning as a value (you can even use it with sol::property)

	You can also create an entirely dynamic object: see the dynamic_object example [https://github.com/ThePhD/sol2/blob/develop/examples/dynamic_object.cpp] for more details

	You can use filters to control dependencies and streamline return values, as well as apply custom behavior to a functions return

	
	You can work with special wrapper types such as std::unique_ptr<T>, std::shared_ptr<T>, and others by default

	
	Extend them using the sol::unique_usertype<T> traits

	This allows for custom smart pointers, special pointers, custom handles and others to be given certain handling semantics to ensure proper RAII with Lua’s garbage collection

	(Advanced) You can override the iteration function for Lua 5.2 and above (LuaJIT does not have the capability) as shown in the pairs example [https://github.com/ThePhD/sol2/blob/develop/examples/pairs.cpp]

	
	(Advanced) Interop with toLua, kaguya, OOLua, LuaBind, luwra, and all other existing libraries by using the stack API’s sol::stack::userdata_checker and sol::stack::userdata_getter extension points

	
	Must turn on SOL_ENABLE_INTEROP, as defined in the configuration and safety documentation, to use

Note

Note that to use many of sol2’s features, such as automatic constructor creation, sol::property, and similar, one must pass these things to the usertype as part of its initial creation and grouping of arguments. Attempting to do so afterwards will result in unexpected and wrong behavior, as the system will be missing information it needs. This is because many of these features rely on __index and __newindex Lua metamethods being overridden and handled in a special way!

 containers

containers

working with containers in sol2

Containers are objects that are meant to be inspected and iterated and whose job is to typically provide storage to a collection of items. The standard library has several containers of varying types, and all of them have begin() and end() methods which return iterators. C-style arrays are also containers, and sol2 will detect all of them for use and bestow upon them special properties and functions.

	
	Containers from C++ are stored as userdata with special usertype metatables with special operations

	
	
	In Lua 5.1, this means containers pushed without wrappers like as_table and nested will not work with pairs or other built-in iteration functions from Lua

	
	Lua 5.2+ will behave just fine (does not include LuaJIT 2.0.x)

	You must push containers into C++ by returning them directly and getting/setting them directly, and they will have a type of sol::type::userdata and treated like a usertype

	Containers can be manipulated from both C++ and Lua, and, like userdata, will reflect changes if you use a reference [https://github.com/ThePhD/sol2/blob/develop/examples/containers.cpp] to the data.

	
	This means containers do not automatically serialize as Lua tables

	
	If you need tables, consider using sol::as_table and sol::nested

	See this table serialization example [https://github.com/ThePhD/sol2/blob/develop/examples/containers_as_table.cpp] for more details

	Lua 5.1 has different semantics for pairs and ipairs: be wary. See examples down below for more details

	You can override container behavior by overriding the detection trait and specializing the container_traits template

	You can bind typical C-style arrays, but must follow the rules

Note

Please note that c-style arrays must be added to Lua using lua["my_arr"] = &my_c_array; or lua["my_arr"] = std::ref(my_c_array); to be bestowed these properties. No, a plain T* pointer is not considered an array. This is important because lua["my_string"] = "some string"; is also typed as an array (const char[n]) and thusly we can only use std::reference_wrappers or pointers to the actual array types to work for this purpose.

 threading

threading

Lua has no thread safety. sol does not force thread safety bottlenecks anywhere. Treat access and object handling like you were dealing with a raw int reference (int&) (no safety or order guarantees whatsoever).

Assume any access or any call on Lua affects the whole sol::state/lua_State* (because it does, in a fair bit of cases). Therefore, every call to a state should be blocked off in C++ with some kind of access control (when you’re working with multiple C++ threads). When you start hitting the same state from multiple threads, race conditions (data or instruction) can happen.

Individual Lua coroutines might be able to run on separate C++-created threads without tanking the state utterly, since each Lua coroutine has the capability to run on an independent Lua execution stack (Lua confusingly calls it a thread in the C API, but it really just means a separate execution stack) as well as some other associated bits and pieces that won’t quite interfere with the global state.

To handle multithreaded environments, it is encouraged to either spawn a Lua state (sol::state) for each thread you are working with and keep inter-state communication to synchronized serialization points. This means that 3 C++ threads should each have their own Lua state, and access between them should be controlled using some kind of synchronized C++ mechanism (actual transfer between states must be done by serializing the value into C++ and then re-pushing it into the other state).

Using coroutines and Lua’s threads might also buy you some concurrency and parallelism (unconfirmed and likely untrue, do not gamble on this), but remember that Lua’s ‘threading’ technique is ultimately cooperative and requires explicit yielding and resuming (simplified as function calls for sol::coroutine).

getting the main thread

Lua 5.1 does not keep a reference to the main thread, therefore the user has to store it themselves. If you create a sol::state or follow the steps for opening up compatibility and default handlers here, you can work with sol::main_thread to retrieve you the main thread, given a lua_State* that is either a full state or a thread: lua_state* Lmain = sol::main_thread(Lcoroutine); This function will always work in Lua 5.2 and above: in Lua 5.1, if you do not follow the sol::state instructions and do not pass a fallback lua_State* to the function, this function may not work properly and return nullptr.

working with multiple Lua threads

You can mitigate some of the pressure of using coroutines and threading by using the lua_xmove constructors that sol implements. Simply keep a reference to your sol::state_view or sol::state or the target lua_State* pointer, and pass it into the constructor along with the object you want to copy. Note that there is also some implicit lua_xmove checks that are done for copy and move assignment operators as well, as noted at the reference constructor explanations.

Note

Advanced used: Furthermore, for every single sol::reference derived type, there exists a version prefixed with the word main_, such as sol::main_table, sol::main_function, sol::main_object and similar. These classes, on construction, assignment and other operations, forcibly obtain the lua_State* associated with the main thread, if possible. Using these classes will allow your code to be immune when a wrapped coroutine or a lua thread is set to nil and then garbage-collected.

 customization traits

customization traits

These are customization points within the library to help you make sol2 work for the types in your framework and types.

To learn more about various customizable traits, visit:

	
	containers customization traits

	
	This is how to work with containers in their entirety and what operations you’re afforded on them

	when you have an compiler error when serializing a type that has begin and end functions but isn’t exactly a container

	
	unique usertype (custom pointer) traits

	
	This is how to deal with unique usertypes, e.g. boost::shared_ptr, reference-counted pointers, etc

	Useful for custom pointers from all sorts of frameworks or handle types that employ very specific kinds of destruction semantics and access

	
	customization points

	
	This is how to customize a type to work with sol2

	Can be used for specializations to push strings and other class types that are not natively std::string or const char*, like a wxString, for example [https://github.com/ThePhD/sol2/issues/140#issuecomment-237934947]

 api reference manual

api reference manual

Browse the various function and classes Sol utilizes to make your life easier when working with Lua.

Sol API

	state
	sol::state automatic handlers

	enumerations

	members

	this_state

	reference
	members

	non-members

	stack_reference
	stack_aligned_function

	make_object/make_reference

	table
	members

	userdata

	environment
	free functions

	members

	this_environment

	proxy, (protectedunsafe)_function_result - proxy_base derivatives
	proxy

	members

	operator[] proxy-only members

	stack_proxy

	unsafe_function_result

	protected_function_result

	on function objects and proxies

	as_container

	nested

	as_table

	usertype<T>
	enumerations

	members

	runtime functions

	overloading

	inheritance

	automagical usertypes

	inheritance + overloading

	compilation speed

	performance note

	usertype memory
	To retrieve a T

	For T

	For T*

	For std::unique_ptr<T, D> and std::shared_ptr<T>

	unique_usertype_traits<T>

	tie

	function

	protected_function
	members

	coroutine
	members

	yielding

	error

	object
	members

	non-members

	thread
	free function

	members

	optional<T>

	variadic_args

	variadic_results

	as_args

	as_returns

	overload

	property

	var

	protect

	filters

	readonly

	as_function

	c_call

	resolve

	stack namespace
	structures

	members

	objects (extension points)

	light<T>/user<T>

	compatibility.hpp

	types
	enumerations

	type traits

	special types

	functions

	structs

	metatable_key

	new_table
	members

 state

state

owning and non-owning state holders for registry and globals

class state_view;

class state : state_view, std::unique_ptr<lua_State*, deleter>;

The most important class here is state_view. This structure takes a lua_State* that was already created and gives you simple, easy access to Lua’s interfaces without taking ownership. state derives from state_view, inheriting all of this functionality, but has the additional purpose of creating a fresh lua_State* and managing its lifetime for you in its constructors.

The majority of the members between state_view and sol::table are identical, with a few added for this higher-level type. Therefore, all of the examples and notes in sol::table apply here as well.

state_view is cheap to construct and creates 2 references to things in the lua_State* while it is alive: the global Lua table, and the Lua C Registry.

sol::state automatic handlers

One last thing you should understand: constructing a sol::state does a few things behind-the-scenes for you, mostly to ensure compatibility and good error handler/error handling. The function it uses to do this is set_default_state. They are as follows:

	set a default panic handler with state_view::set_panic/lua_atpnic

	set a default sol::protected_function handler with sol::protected_function::set_default_handler, using a sol::reference to &sol::detail::default_traceback_error_handler as the default handler function

	set a default exception handler to &sol::detail::default_exception_handler

	register the state as the main thread (only does something for Lua 5.1, which does not have a way to get the main thread) using sol::stack::register_main_thread(L)

	register the LuaJIT C function exception handler with stack::luajit_exception_handler(L)

You can read up on the various panic and exception handlers on the exceptions page.

sol::state_view does none of these things for you. If you want to make sure your self-created or self-managed state has the same properties, please apply this function once to the state. Please note that it will override your panic handler and, if using LuaJIT, your LuaJIT C function handler.

Warning

It is your responsibility to make sure sol::state_view goes out of scope before you call lua_close on a pre-existing state, or before sol::state goes out of scope and its destructor gets called. Failure to do so can result in intermittent crashes because the sol::state_view has outstanding references to an already-dead lua_State*, and thusly will try to decrement the reference counts for the Lua Registry and the Global Table on a dead state. Please use { and } to create a new scope, or other lifetime techniques, when you know you are going to call lua_close so that you have a chance to specifically control the lifetime of a sol::state_view object.

 this_state

this_state

transparent state argument for the current state

struct this_state;

This class is a transparent type that is meant to be gotten in functions to get the current lua state a bound function or usertype method is being called from. It does not actually retrieve anything from lua nor does it increment the argument count, making it “invisible” to function calls in lua and calls through std::function<...> and sol::function on this type. It can be put in any position in the argument list of a function:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	#define SOL_CHECK_ARGUMENTS 1
#include <sol.hpp>

#include "assert.hpp"

int main () {
	sol::state lua;

	lua.set_function("bark", [](sol::this_state s, int a, int b){
		lua_State* L = s; // current state
		return a + b + lua_gettop(L);
	});
	
	lua.script("first = bark(2, 2)"); // only takes 2 arguments, NOT 3
		
	// Can be at the end, too, or in the middle: doesn't matter
	lua.set_function("bark", [](int a, int b, sol::this_state s){
		lua_State* L = s; // current state
		return a + b + lua_gettop(L);
	});

	lua.script("second = bark(2, 2)"); // only takes 2 arguments
	int first = lua["first"];
	c_assert(first == 6);
	int second = lua["second"];
	c_assert(second == 6);

	return 0;
}

 reference

reference

general purpose reference to Lua object in registry

reference

class reference;

This type keeps around a reference to something inside of Lua, whether that object was on the stack or already present as an object in the Lua Runtime. It places the object Lua registry and will keep it alive.

It is the backbone for all things that reference items on the stack that need to be kept around beyond their appearance and lifetime on said Lua stack or need to be kept alive outside of a script beyond garbage collection times. Its progeny include sol::coroutine, sol::function, sol::protected_function, sol::object, sol::table/sol::global_table, sol::thread, and sol::(light_)userdata, which are type-specific versions of sol::reference.

Note that if you need to keep a reference to something inside of Lua, it is better to use sol::reference or sol::object to keep a reference to it and then use the obj.as<T>() member function to retrieve what you need than to take a direct dependency on the memory by retrieving a pointer or reference to the userdata itself. This will ensure that if a script or the Lua Runtime is finished with an object, it will not be garbage collected. Do this only if you need long-term storage.

For all of these types, there’s also a sol::stack_{x} version of them, such as sol::stack_table. They are useful for a small performance boost at the cost of not having a strong reference, which has implications for what happens when the item is moved off of the stack. See sol::stack_reference for more details.

members

constructor: reference

reference(lua_State* L, int index = -1);
reference(lua_State* L, lua_nil_t);
reference(lua_State* L, absolute_index index);
reference(lua_State* L, raw_index index);
reference(lua_State* L, ref_index index);
template <typename Object>
reference(Object&& o);
template <typename Object>
reference(lua_State* L, Object&& o);

The first constructor creates a reference from the Lua stack at the specified index, saving it into the metatable registry. The second attemtps to register something that already exists in the registry. The third attempts to reference a pre-existing object and create a reference to it. These constructors are exposed on all types that derive from sol::reference, meaning that you can grab tables, functions, and coroutines from the registry, stack, or from other objects easily.

Note

Note that the last constructor has lua_xmove safety built into it. You can pin an object to a certain thread (or the main thread) by initializing it with sol::reference pinned(state, other_reference_object);. This ensures that other_reference_object will exist in the state/thread of state. Also note that copy/move assignment operations will also use pinning semantics if it detects that the state of the object on the right is lua_xmove compatible. (But, the reference object on the left must have a valid state as well. You can have a nil reference with a valid state by using the sol::reference pinned(state, sol::lua_nil) constructor as well.) This applies for any sol::reference derived type.

You can un-pin and null the state by doing ref = sol::lua_nil;. This applies to all derived types, including sol::(protected_)function, sol::thread, sol::object, sol::table, and similar.

 stack_reference

stack_reference

zero-overhead object on the stack

When you work with a sol::reference, the object gotten from the stack has a reference to it made in the registry, keeping it alive. If you want to work with the Lua stack directly without having any additional references made, sol::stack_reference is for you. Its API is identical to sol::reference in every way, except it contains a int stack_index() member function that allows you to retrieve the stack index.

Note that this will not pin the object since a copy is not made in the registry, meaning things can be pulled out from under it, the stack can shrink under it, things can be added onto the stack before this object’s position, and what sol::stack_reference will point to will change. Please know what the Lua stack is and have discipline while managing your Lua stack when working at this level.

All of the base types have stack versions of themselves, and the APIs are identical to their non-stack forms. This includes sol::stack_table, sol::stack_function, sol::stack_protected_function, sol::stack_(light_)userdata and sol::stack_object. There is a special case for sol::stack_function, which has an extra type called sol::stack_aligned_function (and similar sol::stack_aligned_protected_function).

stack_aligned_function

This type is particular to working with the stack. It does not push the function object on the stack before pushing the arguments, assuming that the function present is already on the stack before going ahead and invoking the function it is targeted at. It is identical to sol::function and has a protected counterpart as well. If you are working with the stack and know there is a callable object in the right place (i.e., at the top of the Lua stack), use this abstraction to have it call your stack-based function while still having the easy-to-use Lua abstractions.

Furthermore, if you know you have a function in the right place alongside proper arguments on top of it, you can use the sol::stack_count structure and give its constructor the number of arguments off the top that you want to call your pre-prepared function with:

stack_aligned_function.cpp

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	#define SOL_CHECK_ARGUMENTS 1
#include <sol.hpp>

#include "assert.hpp"

int main(int, char*[]) {
	sol::state lua;
	lua.script("function func (a, b) return (a + b) * 2 end");

	sol::reference func_ref = lua["func"];

	// for some reason, you need to use the low-level API
	func_ref.push(); // function on stack now

	// maybe this is in a lua_CFunction you bind,
	// or maybe you're trying to work with a pre-existing system
	// maybe you've used a custom lua_load call, or you're working
	// with state_view's load(lua_Reader, ...) call...
	// here's a little bit of how you can work with the stack
	lua_State* L = lua.lua_state();
	sol::stack_aligned_function func(L, -1);
	lua_pushinteger(L, 5); // argument 1, using plain API
	lua_pushinteger(L, 6); // argument 2
	
	// take 2 arguments from the top,
	// and use "stack_aligned_function" to call
	int result = func(sol::stack_count(2));

	// make sure everything is clean
	c_assert(result == 22);
	c_assert(lua.stack_top() == 0); // stack is empty/balanced

	return 0;
}

Finally, there is a special abstraction that provides further stack optimizations for sol::protected_function variants that are aligned, and it is called sol::stack_aligned_stack_handler_protected_function. This typedef expects you to pass a stack_reference handler to its constructor, meaning that you have already placed an appropriate error-handling function somewhere on the stack before the aligned function. You can use sol::stack_count with this type as well.

Warning

Do not use sol::stack_count with a sol::stack_aligned_protected_function. The default behavior checks if the err