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Osprey is a tool for practical hyperparameter optimization of machine learning algorithms. It’s designed to provide
a practical, easy to use way for application scientists to find parameters that maximize the cross-validation score of
a model on their dataset. Osprey is being developed by researchers at Stanford University with primary application
areas in computational protein dynamics and drug design.
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CHAPTER 1

Overview

osprey is a command line tool. It runs using a simple config file which sets up the problem by describing the
estimator, search space, strategy, dataset, cross validation, and storage for the results.

Related tools include and spearmint, hyperopt, and MOE. Both hyperopt and MOE can serve as backend search
strategies for osprey.

To get started, run osprey skeleton to create an example config file, and then boot up one or more parallel
instances of osprey worker.

1.1 Background

1.1.1 Theory

Osprey is designed to optimize the hyperparameters of machine learning models by maximizing a cross-validation
score. As an optimization problem, the key factors here are

• very expensive objective function evaluations (minutes to hours, or more)

• no gradient information is available

• tension between exploration of parameter space and local optimization (explore / exploit dilemma)

A good, if somewhat dated overview of this problem setting can be found in Jones, Schonlau, Welch (1998) 1. The
key idea is that we can procede by fitting a surrogate function or response surface. This surrogate function needs to
provide both our best guess of the function as well as our degree of belief – our uncertainty in the parts of parameter
space that we haven’t yet explored. Does the maxima lie over there? Then at each iteration, a new point can be
selected by maximizing the expected improvement over our current best solution, by maximize the expected entropy
reduction in the distribution of maxima, 2 or a similar so-called acquisition function.

osprey supports multiple search strategies for choosing the next set of hyperparameters to evaluate your model at.
The most theoretically elegant of the supported methods, Gaussian process expected improvement using the MOE
backend, attacks this problem directly by modeling the objective function as a draw from a Gaussian process.

1 Jones, D. R., M. Schonlau, and W. J. Welch. “Efficient global optimization of expensive black-box functions.” J. Global Optim. 13.4 (1998):
455-492.

2 Hennig, P., and C. J. Schuler. “Entropy search for information-efficient global optimization.” JMLR 98888.1 (2012): 1809-1837.

3

https://github.com/JasperSnoek/spearmint
http://hyperopt.github.io/hyperopt/
http://yelp.github.io/MOE/
http://en.wikipedia.org/wiki/Gaussian_process
http://link.springer.com/article/10.1023/A:1008306431147
http://jmlr.org/papers/volume13/hennig12a/hennig12a.pdf
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1.1.2 References

1.2 Installation

Osprey is written in Python, and can be installed with standard python machinery

1.2.1 Development Version

# grab the latest version from github
$ pip install git+git://github.com/pandegroup/osprey.git

# or clone the repo yourself and run ‘setup.py‘
$ git clone https://github.com/pandegroup/osprey.git
$ cd osprey && python setup.py install

1.2.2 Release Version

Currently, we recommend that you use the development version, since things are moving fast. However, release
versions from PyPI can be installed using pip.

# grab the release version from PyPI
$ pip install osprey

1.2.3 Dependencies

• six

• pyyaml

• numpy

• scikit-learn

• sqlalchemy

• hyperopt (recommended, required for engine=hyperopt_tpe)

• MOE (recommended, required for engine=moe)

• scipy (optional, for testing)

• nose (optional, for testing)

You can grab most of them with conda.

$ conda install six pyyaml numpy scikit-learn sqlalchemy nose

Hyperopt can be installed with pip.

$ pip install hyperopt

4 Chapter 1. Overview
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1.2.4 Getting Moe

To use the MOE search strategy, osprey can call MOE via two interfaces

• MOE’s REST API, over HTTP

• MOE’s python API

Using the MOE REST API requires that you set up a MOE server somewhere. The recommended way to do this is
via the MOE docker image. See the MOE documentation for more information.

To use the MOE python API, you must install MOE on the machines you use to run osprey. The MOE documentation
has some information on how to do this, but it can be tricky. An easier alternative is to use the conda binary packages
that we compiled for 64-bit linux (otherwise, sorry, you’re on your own).

conda install -c https://conda.binstar.org/rmcgibbo moe

See the github repo for more info on the compilation of these binaries.

1.3 Getting Started

1.4 Configuration File

osprey jobs are configured via a small configuration file, which is written in a hand-editable YAML markup.

The command osprey skeleton will create an example config.yaml file for you to get started with. The
sections of the file are described below.

1.4.1 Estimator

The estimator section describes the model that osprey is tasked with optimizing. It can be specified either as a python
entry point, a pickle file, or as a raw string which is passed to python’s eval(). However specified, the estimator
should be an instance or subclass of sklearn’s BaseEstimator

Examples:

estimator:
entry_point: sklearn.linear_model.LinearRegression

estimator:
eval: Pipeline([(’vectorizer’, TfidfVectorizer), (’logistic’, LogisticRegression())])
eval_scope: sklearn

estimator:
pickle: my-model.pkl # path to pickle file on disk

1.4.2 Search Space

The search space describes the space of hyperparameters to search over to find the best model. It is specified as
the product space of bounded intervals for different variables, which can either be of type int, float, or enum.
Variables of type float can also be warped into log-space, which means that the optimization will be performed on
the log of the parameter instead of the parameter itself.

Example:

1.3. Getting Started 5

https://github.com/Yelp/MOE#install-in-docker
https://github.com/rmcgibbo/conda-moe
http://www.yaml.org/start.html
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search_space:
logistic__C:
min: 1e-3
max: 1e3
type: float
warp: log

logistic__penalty:
choices:

- l1
- l2

type: enum

1.4.3 Strategy

Three probablistic search strategies are supported. First, random search (strategy: {name: random}) can
be used, which samples hyperparameters randomly from the search space at each model-building iteration. Random
search has been shown to be significantly more effiicent than pure grid search. Example:

strategy:
name: random

strategy: {name: hyperopt_tpe} is an alternative strategy which uses a Tree of Parzen estimators, de-
scribed in this paper. This algorithim requires that the external package hyperopt be installed. Example:

strategy:
name: hyperopt_tpe

Finally, osprey supports a Gaussian process expected improvement search strategy, using the package MOE, with
strategy: {name: moe}. MOE can be used either as a python package installed locally, or over a HTTP
REST API. To use the REST API, specify the url param. Example:

strategy:
name: moe
params:
# url: http://path.to.moe.rest.api

1.4.4 Dataset Loader

Example:

dataset_loader:
name: joblib
params:
filenames: ~/path/to/file.pkl

1.4.5 Cross Validation

Many types of cross-validation iterators are supported. The simplest option is to simply pass an int, which sets up
k-fold cross validation. Example:

cv: 5

To access the other iterators, use the name and params keywords:

6 Chapter 1. Overview

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization
https://github.com/hyperopt/hyperopt
https://github.com/yelp/moe
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cv:
name: shufflesplit
params:
n_iter: 5
test_size: 0.5

Here’s a complete list of supported iterators, along with their name mappings:

• kfold: KFold

• shufflesplit: ShuffleSplit

• loo: LeaveOneOut

• stratifiedkfold: StratifiedKFold

• stratifiedshufflesplit: StratifiedShuffleSplit

1.4.6 Trials Storage

Example:

trials:
# path to a databse in which the results of each hyperparameter fit
# are stored any SQL database is suppoted, but we recommend using
# SQLite, which is simple and stores the results in a file on disk.
# the string format for connecting to other database is described here:
# http://docs.sqlalchemy.org/en/rel_0_9/core/engines.html#database-urls
uri: sqlite:///osprey-trials.db

1.5 Batch Submission

Multiple osprey worker processes can be run simultaneously and connect to the same trials database. The fol-
lowing scripts might be useful as templates for submitting multiple parallel osprey worker s to a cluster batch
scheduling system.

1.5.1 Example PBS/TORQUE Script

#!/bin/bash
#PBS -S /bin/bash
#PBS -l nodes=1:ppn=16
#PBS -l walltime=12:00:00
#PBS -V

cd $PBS_O_WORKDIR
NO_OF_CORES=‘cat $PBS_NODEFILE | egrep -v ’^#’\|’^$’ | wc -l | awk ’{print $1}’‘
for i in ‘seq $NO_OF_CORES‘; do

osprey worker config.yaml -n 100 > osprey.$PBS_JOBID.$i.log 2>&1 &
done
wait

1.5. Batch Submission 7

http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.KFold.html#sklearn.cross_validation.KFold
http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.ShuffleSplit.html#sklearn.cross_validation.ShuffleSplit
http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.LeaveOneOut.html#sklearn.cross_validation.LeaveOneOut
http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.StratifiedKFold.html#sklearn.cross_validation.StratifiedKFold
http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.StratifiedShuffleSplit.html#sklearn.cross_validation.StratifiedShuffleSplit
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1.5.2 Example SGE Script

1.5.3 Example SLURM Script
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