
OSMnx
Release 1.9.2

Geoff Boeing

Apr 08, 2024

CONTENTS

1 Citation 3

2 Getting Started 5

3 Installation 7

4 Support 9

5 License 11

6 Documentation 13

7 Indices 135

Python Module Index 137

Index 139

i

ii

OSMnx, Release 1.9.2

OSMnx is a Python package to easily download, model, analyze, and visualize street networks and other geospatial
features from OpenStreetMap. You can download and model walking, driving, or biking networks with a single line
of code then analyze and visualize them. You can just as easily work with urban amenities/points of interest, building
footprints, transit stops, elevation data, street orientations, speed/travel time, and routing.

OSMnx 2.0 is coming soon: read the migration guide.

CONTENTS 1

https://github.com/gboeing/osmnx/issues/1123

OSMnx, Release 1.9.2

2 CONTENTS

CHAPTER

ONE

CITATION

If you use OSMnx in your work, please cite the journal article:

Boeing, G. 2017. OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street
Networks. Computers, Environment and Urban Systems 65, 126-139.

3

https://geoffboeing.com/publications/osmnx-complex-street-networks/
https://geoffboeing.com/publications/osmnx-complex-street-networks/

OSMnx, Release 1.9.2

4 Chapter 1. Citation

CHAPTER

TWO

GETTING STARTED

First read the Getting Started guide for an introduction to the package and FAQ.

Then work through the OSMnx Examples gallery for step-by-step tutorials and sample code.

5

https://github.com/gboeing/osmnx-examples

OSMnx, Release 1.9.2

6 Chapter 2. Getting Started

CHAPTER

THREE

INSTALLATION

Follow the Installation guide to install OSMnx.

7

OSMnx, Release 1.9.2

8 Chapter 3. Installation

CHAPTER

FOUR

SUPPORT

If you have any trouble, consult the User Reference. The OSMnx repository is hosted on GitHub. If you have a “how-
to” or usage question, please ask it on StackOverflow, as we reserve the repository’s issue tracker for bug tracking and
feature development.

9

https://github.com/gboeing/osmnx
https://stackoverflow.com/search?q=osmnx

OSMnx, Release 1.9.2

10 Chapter 4. Support

CHAPTER

FIVE

LICENSE

OSMnx is open source and licensed under the MIT license. OpenStreetMap’s open data license requires that derivative
works provide proper attribution. Refer to the Getting Started guide for usage limitations.

11

https://www.openstreetmap.org/copyright

OSMnx, Release 1.9.2

12 Chapter 5. License

CHAPTER

SIX

DOCUMENTATION

6.1 Getting Started

6.1.1 Get Started in 4 Steps

1. Install OSMnx by following the Installation guide.

2. Read “Introducing OSMnx” below on this page.

3. Work through the OSMnx Examples Gallery for step-by-step tutorials and sample code.

4. Consult the User Reference for complete details on using the package.

Finally, if you’re not already familiar with NetworkX and GeoPandas, make sure you read their user guides as OSMnx
uses their data structures and functionality.

6.1.2 Introducing OSMnx

This quick introduction explains key concepts and the basic functionality of OSMnx.

Overview

OSMnx is pronounced as the initialism: “oh-ess-em-en-ex”. It is built on top of NetworkX and GeoPandas, and interacts
with OpenStreetMap APIs to:

• Download and model street networks or other infrastructure anywhere in the world with a single line of code

• Download geospatial features (e.g., political boundaries, building footprints, grocery stores, transit stops) as a
GeoDataFrame

• Query by city name, polygon, bounding box, or point/address + distance

• Model driving, walking, biking, and other travel modes

• Attach node elevations from a local raster file or web service and calculate edge grades

• Impute missing speeds and calculate graph edge travel times

• Simplify and correct the network’s topology to clean-up nodes and consolidate complex intersections

• Fast map-matching of points, routes, or trajectories to nearest graph edges or nodes

• Save/load network to/from disk as GraphML, GeoPackage, or OSM XML file

• Conduct topological and spatial analyses to automatically calculate dozens of indicators

• Calculate and visualize street bearings and orientations

13

https://github.com/gboeing/osmnx-examples
https://networkx.org
https://geopandas.org
https://www.openstreetmap.org

OSMnx, Release 1.9.2

• Calculate and visualize shortest-path routes that minimize distance, travel time, elevation, etc

• Explore street networks and geospatial features as a static map or interactive web map

• Visualize travel distance and travel time with isoline and isochrone maps

• Plot figure-ground diagrams of street networks and building footprints

The OSMnx Examples Gallery contains tutorials and demonstrations of all these features, and package usage is detailed
in the User Reference.

Configuration

You can configure OSMnx using the settings module. Here you can adjust logging behavior, caching, server end-
points, and more. You can also configure OSMnx to retrieve historical snapshots of OpenStreetMap data as of a certain
date. Refer to the FAQ below for server usage limitations.

Geocoding and Querying

OSMnx geocodes place names and addresses with the OpenStreetMap Nominatim API. You can use the geocoder
module to geocode place names or addresses to lat-lon coordinates. Or, you can retrieve place boundaries or any other
OpenStreetMap elements by name or ID.

Using the features and graphmodules, as described below, you can download data by lat-lon point, address, bound-
ing box, bounding polygon, or place name (e.g., neighborhood, city, county, etc).

Urban Amenities

Using OSMnx’s features module, you can search for and download geospatial features (such as building footprints,
grocery stores, schools, public parks, transit stops, etc) from the OpenStreetMap Overpass API as a GeoPandas Geo-
DataFrame. This uses OpenStreetMap tags to search for matching elements.

Modeling a Network

Using OSMnx’s graphmodule, you can retrieve any spatial network data (such as streets, paths, rail, canals, etc) from
the Overpass API and model them as NetworkX MultiDiGraphs.

MultiDiGraphs are nonplanar directed graphs with possible self-loops and parallel edges. Thus, a one-way street will
be represented with a single directed edge from node u to node v, but a bidirectional street will be represented with
two reciprocal directed edges (with identical geometries): one from node u to node v and another from v to u, to
represent both possible directions of flow. Because these graphs are nonplanar, they correctly model the topology
of interchanges, bridges, and tunnels. That is, edge crossings in a two-dimensional plane are not intersections in an
OSMnx model unless they represent true junctions in the three-dimensional real world.

The graph module uses filters to query the Overpass API: you can either specify a built-in network type or provide
your own custom filter with Overpass QL. Refer to the graph module’s documentation for more details. Under the
hood, OSMnx does several things to generate the best possible model. It initially creates a 500m-buffered graph before
truncating it to your desired query area, to ensure accurate streets-per-node stats and to attenuate graph perimeter effects.
It also simplifies the graph topology as discussed below.

14 Chapter 6. Documentation

https://github.com/gboeing/osmnx-examples
https://nominatim.org
https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Overpass_API
https://wiki.openstreetmap.org/wiki/Tags
https://wiki.openstreetmap.org/wiki/Elements
https://networkx.org/documentation/stable/reference/classes/multidigraph.html
https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL

OSMnx, Release 1.9.2

Topology Clean-Up

The simplification module automatically processes the network’s topology from the original raw OpenStreetMap
data, such that nodes represent intersections/dead-ends and edges represent the street segments that link them. This
takes two primary forms: graph simplification and intersection consolidation.

Graph simplification cleans up the graph’s topology so that nodes represent intersections or dead-ends and edges
represent street segments. This is important because in OpenStreetMap raw data, ways comprise sets of straight-line
segments between nodes: that is, nodes are vertices for streets’ curving line geometries, not just intersections and dead-
ends. By default, OSMnx simplifies this topology by discarding non-intersection/dead-end nodes while retaining the
complete true edge geometry as an edge attribute. When multiple OpenStreetMap ways are merged into a single graph
edge, the ways’ attribute values can be aggregated into a single value.

Intersection consolidation is important because many real-world street networks feature complex intersections and
traffic circles, resulting in a cluster of graph nodes where there is really just one true intersection as we would think
of it in transportation or urban design. Similarly, divided roads are often represented by separate centerline edges: the
intersection of two divided roads thus creates 4 nodes, representing where each edge intersects a perpendicular edge,
but these 4 nodes represent a single intersection in the real world. OSMnx can consolidate such complex intersections
into a single node and optionally rebuild the graph’s edge topology accordingly. When multiple OpenStreetMap nodes
are merged into a single graph node, the nodes’ attribute values can be aggregated into a single value.

Converting, Projecting, Saving

OSMnx’s convert module can convert a MultiDiGraph to a MultiGraph if you prefer an undirected representation
of the network, or to a DiGraph if you prefer a directed representation without any parallel edges. It can also convert
a MultiDiGraph to/from GeoPandas node and edge GeoDataFrames. The nodes GeoDataFrame is indexed by OSM
ID and the edges GeoDataFrame is multi-indexed by u, v, key just like a NetworkX edge. This allows you to load
arbitrary node/edge ShapeFiles or GeoPackage layers as GeoDataFrames then model them as a MultiDiGraph for graph
analysis.

You can easily project your graph to different coordinate reference systems using the projection module. If you’re
unsure which CRS you want to project to, OSMnx can automatically determine an appropriate UTM CRS for you.

Using the iomodule, you can save your graph to disk as a GraphML file (to load into other network analysis software),
a GeoPackage (to load into other GIS software), or an OSM XML file. Use the GraphML format whenever saving a
graph for later work with OSMnx.

Working with Elevation

The elevation module lets you automatically attach elevations to the graph’s nodes from a local raster file or a web
service like the Google Maps Elevation API. You can also calculate edge grades (i.e., rise-over-run) and analyze the
steepness of certain streets or routes.

Network Measures

You can use the stats module to calculate a variety of geometric and topological measures as well as street network
bearing and orientation statistics. These measures define streets as the edges in an undirected representation of the
graph to prevent double-counting bidirectional edges of a two-way street. You can easily generate common stats in
transportation studies, urban design, and network science, including intersection density, circuity, average node degree
(connectedness), betweenness centrality, and much more.

You can also use NetworkX directly to calculate additional topological network measures.

6.1. Getting Started 15

https://networkx.org/documentation/stable/reference/classes/multigraph.html
https://networkx.org/documentation/stable/reference/classes/digraph.html
https://geopandas.org/en/stable/docs/reference/geodataframe.html
https://en.wikipedia.org/wiki/Coordinate_reference_system
https://developers.google.com/maps/documentation/elevation

OSMnx, Release 1.9.2

Routing

The distance module can find the nearest node(s) or edge(s) to coordinates using a fast spatial index. The routing
module can solve shortest paths for network routing, parallelized with multiprocessing, using different weights (e.g.,
distance, travel time, elevation change, etc). It can also impute missing speeds to the graph edges. This imputation can
obviously be imprecise, so the user can override it by passing in arguments that define local speed limits. It can also
calculate free-flow travel times for each edge.

Visualization

You can plot graphs, routes, network figure-ground diagrams, building footprints, and street network orientation rose
diagrams (aka, polar histograms) with the plot module. You can also explore street networks, routes, or geospatial
features as interactive Folium web maps.

6.1.3 More Info

All of this functionality is demonstrated step-by-step in the OSMnx Examples Gallery, and usage is detailed in the
User Reference. More feature development details are in the Changelog. Consult the Further Reading resources for
additional technical details and research.

6.1.4 Frequently Asked Questions

How do I install OSMnx? Follow the Installation guide.

How do I use OSMnx? Check out the step-by-step tutorials in the OSMnx Examples Gallery.

How does this or that function work? Consult the User Reference.

What can I do with OSMnx? Check out recent projects that use OSMnx.

I have a usage question. Please ask it on StackOverflow.

Are there any usage limitations? Yes. Refer to the Nominatim Usage Policy and Overpass Commons documentation
for usage limitations and restrictions that you must adhere to at all times. If you use an alternative Nominatim/Overpass
instance, ensure you understand and obey their usage policies. If you need to exceed these limitations, consider installing
your own hosted instance and setting OSMnx to use it.

6.2 Installation

6.2.1 Conda

The official supported way to install OSMnx is with conda:

conda create -n ox -c conda-forge --strict-channel-priority osmnx

This creates a new conda environment and installs OSMnx into it, via the conda-forge channel. If you want other
packages, such as jupyterlab, installed in this environment as well, just add their names after osmnx above.

To upgrade OSMnx to a newer release, remove the conda environment you created and then create a new one again, as
above. Don’t just run “conda update” or you could get package conflicts. See the conda and conda-forge documentation
for more details.

16 Chapter 6. Documentation

https://python-visualization.github.io/folium/
https://github.com/gboeing/osmnx-examples
https://github.com/gboeing/osmnx/blob/main/CHANGELOG.md
https://github.com/gboeing/osmnx-examples
https://geoffboeing.com/2018/03/osmnx-features-roundup
https://stackoverflow.com/search?q=osmnx
https://operations.osmfoundation.org/policies/nominatim/
https://dev.overpass-api.de/overpass-doc/en/preface/commons.html
https://conda.io/
https://conda-forge.org/

OSMnx, Release 1.9.2

6.2.2 Docker

You can run OSMnx + JupyterLab directly from the official OSMnx Docker image.

6.2.3 Pip

You may be able to install OSMnx with pip but this is not officially supported. OSMnx is written in pure Python and its
installation alone is thus trivially simple if you already have all of its dependencies installed and tested on your system.
OSMnx depends on other packages written in C, and installing those dependencies with pip is sometimes challenging
depending on your specific system’s configuration. Therefore, if you’re not sure what you’re doing, just follow the
conda instructions above to avoid installation problems.

6.3 User Reference

This is the User Reference for the OSMnx package. If you are looking for an introduction to OSMnx, read the Getting
Started guide. This guide describes the usage of OSMnx’s public API.

OSMnx 2.0 is coming soon: read the migration guide.

6.3.1 osmnx.bearing module

Calculate graph edge bearings.

osmnx.bearing.add_edge_bearings(G, precision=None)
Add compass bearing attributes to all graph edges.

Vectorized function to calculate (initial) bearing from origin node to destination node for each edge in a directed,
unprojected graph then add these bearings as new edge attributes. Bearing represents angle in degrees (clock-
wise) between north and the geodesic line from the origin node to the destination node. Ignores self-loop edges
as their bearings are undefined.

Parameters

• G (networkx.MultiDiGraph) – unprojected graph

• precision (int) – deprecated, do not use

Returns
G – graph with edge bearing attributes

Return type
networkx.MultiDiGraph

osmnx.bearing.calculate_bearing(lat1, lon1, lat2, lon2)
Calculate the compass bearing(s) between pairs of lat-lon points.

Vectorized function to calculate initial bearings between two points’ coordinates or between arrays of points’
coordinates. Expects coordinates in decimal degrees. Bearing represents the clockwise angle in degrees between
north and the geodesic line from (lat1, lon1) to (lat2, lon2).

Parameters

• lat1 (float or numpy.array of float) – first point’s latitude coordinate

• lon1 (float or numpy.array of float) – first point’s longitude coordinate

• lat2 (float or numpy.array of float) – second point’s latitude coordinate

6.3. User Reference 17

https://hub.docker.com/r/gboeing/osmnx
https://pypi.org/project/osmnx/
https://github.com/gboeing/osmnx/issues/1123

OSMnx, Release 1.9.2

• lon2 (float or numpy.array of float) – second point’s longitude coordinate

Returns
bearing – the bearing(s) in decimal degrees

Return type
float or numpy.array of float

osmnx.bearing.orientation_entropy(Gu, num_bins=36, min_length=0, weight=None)
Calculate undirected graph’s orientation entropy.

Orientation entropy is the entropy of its edges’ bidirectional bearings across evenly spaced bins. Ignores self-loop
edges as their bearings are undefined.

For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network Orientation, Configuration, and
Entropy.” Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1

Parameters

• Gu (networkx.MultiGraph) – undirected, unprojected graph with bearing attributes on
each edge

• num_bins (int) – number of bins; for example, if num_bins=36 is provided, then each bin
will represent 10 degrees around the compass

• min_length (float) – ignore edges with length attributes less than min_length; useful to
ignore the noise of many very short edges

• weight (string) – if not None, weight edges’ bearings by this (non-null) edge attribute. for
example, if “length” is provided, this will return 1 bearing observation per meter per street,
which could result in a very large bearings array.

Returns
entropy – the graph’s orientation entropy

Return type
float

osmnx.bearing.plot_orientation(Gu, num_bins=36, min_length=0, weight=None, ax=None, figsize=(5, 5),
area=True, color='#003366', edgecolor='k', linewidth=0.5, alpha=0.7,
title=None, title_y=1.05, title_font=None, xtick_font=None)

Do not use: deprecated.

The plot_orientation function moved to the plot module. Calling it via the bearing module will raise an error
starting in the v2.0.0 release.

Parameters

• Gu (networkx.MultiGraph) – deprecated, do not use

• num_bins (int) – deprecated, do not use

• min_length (float) – deprecated, do not use

• weight (string) – deprecated, do not use

• ax (matplotlib.axes.PolarAxesSubplot) – deprecated, do not use

• figsize (tuple) – deprecated, do not use

• area (bool) – deprecated, do not use

• color (string) – deprecated, do not use

• edgecolor (string) – deprecated, do not use

18 Chapter 6. Documentation

https://doi.org/10.1007/s41109-019-0189-1

OSMnx, Release 1.9.2

• linewidth (float) – deprecated, do not use

• alpha (float) – deprecated, do not use

• title (string) – deprecated, do not use

• title_y (float) – deprecated, do not use

• title_font (dict) – deprecated, do not use

• xtick_font (dict) – deprecated, do not use

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

6.3.2 osmnx.convert module

Convert spatial graphs to/from different data types.

osmnx.convert.graph_from_gdfs(gdf_nodes, gdf_edges, graph_attrs=None)
Convert node and edge GeoDataFrames to a MultiDiGraph.

This function is the inverse of graph_to_gdfs and is designed to work in conjunction with it.

However, you can convert arbitrary node and edge GeoDataFrames as long as 1) gdf_nodes is uniquely indexed by
osmid, 2) gdf_nodes contains x and y coordinate columns representing node geometries, 3) gdf_edges is uniquely
multi-indexed by u, v, key (following normal MultiDiGraph structure). This allows you to load any node/edge
shapefiles or GeoPackage layers as GeoDataFrames then convert them to a MultiDiGraph for graph analysis.
Note that any geometry attribute on gdf_nodes is discarded since x and y provide the necessary node geometry
information instead.

Parameters

• gdf_nodes (geopandas.GeoDataFrame) – GeoDataFrame of graph nodes uniquely in-
dexed by osmid

• gdf_edges (geopandas.GeoDataFrame) – GeoDataFrame of graph edges uniquely multi-
indexed by u, v, key

• graph_attrs (dict) – the new G.graph attribute dict. if None, use crs from gdf_edges as
the only graph-level attribute (gdf_edges must have crs attribute set)

Returns
G

Return type
networkx.MultiDiGraph

osmnx.convert.graph_to_gdfs(G, nodes=True, edges=True, node_geometry=True, fill_edge_geometry=True)
Convert a MultiDiGraph to node and/or edge GeoDataFrames.

This function is the inverse of graph_from_gdfs.

Parameters

• G (networkx.MultiDiGraph) – input graph

• nodes (bool) – if True, convert graph nodes to a GeoDataFrame and return it

• edges (bool) – if True, convert graph edges to a GeoDataFrame and return it

6.3. User Reference 19

OSMnx, Release 1.9.2

• node_geometry (bool) – if True, create a geometry column from node x and y attributes

• fill_edge_geometry (bool) – if True, fill in missing edge geometry fields using nodes u
and v

Returns
gdf_nodes or gdf_edges or tuple of (gdf_nodes, gdf_edges). gdf_nodes is indexed by osmid and
gdf_edges is multi-indexed by u, v, key following normal MultiDiGraph structure.

Return type
geopandas.GeoDataFrame or tuple

osmnx.convert.to_digraph(G, weight='length')
Convert MultiDiGraph to DiGraph.

Chooses between parallel edges by minimizing weight attribute value. Note: see also to_undirected to convert
MultiDiGraph to MultiGraph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• weight (string) – attribute value to minimize when choosing between parallel edges

Return type
networkx.DiGraph

osmnx.convert.to_undirected(G)
Convert MultiDiGraph to undirected MultiGraph.

Maintains parallel edges only if their geometries differ. Note: see also to_digraph to convert MultiDiGraph to
DiGraph.

Parameters
G (networkx.MultiDiGraph) – input graph

Return type
networkx.MultiGraph

6.3.3 osmnx.distance module

Calculate distances and find nearest node/edge(s) to point(s).

osmnx.distance.add_edge_lengths(G, precision=None, edges=None)
Add length attribute (in meters) to each edge.

Vectorized function to calculate great-circle distance between each edge’s incident nodes. Ensure graph is in
unprojected coordinates, and unsimplified to get accurate distances.

Note: this function is run by all the graph.graph_from_x functions automatically to add length attributes to all
edges. It calculates edge lengths as the great-circle distance from node u to node v. When OSMnx automatically
runs this function upon graph creation, it does it before simplifying the graph: thus it calculates the straight-line
lengths of edge segments that are themselves all straight. Only after simplification do edges take on a (potentially)
curvilinear geometry. If you wish to calculate edge lengths later, you are calculating straight-line distances which
necessarily ignore the curvilinear geometry. You only want to run this function on a graph with all straight edges
(such as is the case with an unsimplified graph).

Parameters

• G (networkx.MultiDiGraph) – unprojected, unsimplified input graph

• precision (int) – deprecated, do not use

20 Chapter 6. Documentation

OSMnx, Release 1.9.2

• edges (tuple) – tuple of (u, v, k) tuples representing subset of edges to add length attributes
to. if None, add lengths to all edges.

Returns
G – graph with edge length attributes

Return type
networkx.MultiDiGraph

osmnx.distance.euclidean(y1, x1, y2, x2)
Calculate Euclidean distances between pairs of points.

Vectorized function to calculate the Euclidean distance between two points’ coordinates or between arrays of
points’ coordinates. For accurate results, use projected coordinates rather than decimal degrees.

Parameters

• y1 (float or numpy.array of float) – first point’s y coordinate

• x1 (float or numpy.array of float) – first point’s x coordinate

• y2 (float or numpy.array of float) – second point’s y coordinate

• x2 (float or numpy.array of float) – second point’s x coordinate

Returns
dist – distance from each (x1, y1) to each (x2, y2) in coordinates’ units

Return type
float or numpy.array of float

osmnx.distance.euclidean_dist_vec(y1, x1, y2, x2)
Do not use, deprecated.

The euclidean_dist_vec function has been renamed euclidean. Calling euclidean_dist_vec will raise an error in
the v2.0.0 release.

Parameters

• y1 (float or numpy.array of float) – first point’s y coordinate

• x1 (float or numpy.array of float) – first point’s x coordinate

• y2 (float or numpy.array of float) – second point’s y coordinate

• x2 (float or numpy.array of float) – second point’s x coordinate

Returns
dist – distance from each (x1, y1) to each (x2, y2) in coordinates’ units

Return type
float or numpy.array of float

osmnx.distance.great_circle(lat1, lon1, lat2, lon2, earth_radius=6371009)
Calculate great-circle distances between pairs of points.

Vectorized function to calculate the great-circle distance between two points’ coordinates or between arrays of
points’ coordinates using the haversine formula. Expects coordinates in decimal degrees.

Parameters

• lat1 (float or numpy.array of float) – first point’s latitude coordinate

• lon1 (float or numpy.array of float) – first point’s longitude coordinate

• lat2 (float or numpy.array of float) – second point’s latitude coordinate

6.3. User Reference 21

OSMnx, Release 1.9.2

• lon2 (float or numpy.array of float) – second point’s longitude coordinate

• earth_radius (float) – earth’s radius in units in which distance will be returned (default
is meters)

Returns
dist – distance from each (lat1, lon1) to each (lat2, lon2) in units of earth_radius

Return type
float or numpy.array of float

osmnx.distance.great_circle_vec(lat1, lng1, lat2, lng2, earth_radius=6371009)
Do not use, deprecated.

The great_circle_vec function has been renamed great_circle. Calling great_circle_vec will raise an error in the
v2.0.0 release.

Parameters

• lat1 (float or numpy.array of float) – first point’s latitude coordinate

• lng1 (float or numpy.array of float) – first point’s longitude coordinate

• lat2 (float or numpy.array of float) – second point’s latitude coordinate

• lng2 (float or numpy.array of float) – second point’s longitude coordinate

• earth_radius (float) – earth’s radius in units in which distance will be returned (default
is meters)

Returns
dist – distance from each (lat1, lng1) to each (lat2, lng2) in units of earth_radius

Return type
float or numpy.array of float

osmnx.distance.k_shortest_paths(G, orig, dest, k, weight='length')
Do not use, deprecated.

The k_shortest_paths function has moved to the routing module. Calling it via the distance module will raise an
error in the v2.0.0 release.

Parameters

• G (networkx.MultiDiGraph) – input graph

• orig (int) – origin node ID

• dest (int) – destination node ID

• k (int) – number of shortest paths to solve

• weight (string) – edge attribute to minimize when solving shortest paths. default is edge
length in meters.

Yields
path (list) – a generator of k shortest paths ordered by total weight. each path is a list of node
IDs.

osmnx.distance.nearest_edges(G, X, Y , interpolate=None, return_dist=False)
Find the nearest edge to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest edge to that point. If X and Y are lists of
coordinate values, this will return the nearest edge to each point. This function uses an R-tree spatial index and

22 Chapter 6. Documentation

OSMnx, Release 1.9.2

minimizes the euclidean distance from each point to the possible matches. For accurate results, use a projected
graph and points.

Parameters

• G (networkx.MultiDiGraph) – graph in which to find nearest edges

• X (float or list) – points’ x (longitude) coordinates, in same CRS/units as graph and
containing no nulls

• Y (float or list) – points’ y (latitude) coordinates, in same CRS/units as graph and con-
taining no nulls

• interpolate (float) – deprecated, do not use

• return_dist (bool) – optionally also return distance between points and nearest edges

Returns
ne or (ne, dist) – nearest edges as (u, v, key) or optionally a tuple where dist contains distances
between the points and their nearest edges

Return type
tuple or list

osmnx.distance.nearest_nodes(G, X, Y , return_dist=False)
Find the nearest node to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest node to that point. If X and Y are lists of
coordinate values, this will return the nearest node to each point.

If the graph is projected, this uses a k-d tree for euclidean nearest neighbor search, which requires that scipy
is installed as an optional dependency. If it is unprojected, this uses a ball tree for haversine nearest neighbor
search, which requires that scikit-learn is installed as an optional dependency.

Parameters

• G (networkx.MultiDiGraph) – graph in which to find nearest nodes

• X (float or list) – points’ x (longitude) coordinates, in same CRS/units as graph and
containing no nulls

• Y (float or list) – points’ y (latitude) coordinates, in same CRS/units as graph and con-
taining no nulls

• return_dist (bool) – optionally also return distance between points and nearest nodes

Returns
nn or (nn, dist) – nearest node IDs or optionally a tuple where dist contains distances between
the points and their nearest nodes

Return type
int/list or tuple

osmnx.distance.shortest_path(G, orig, dest, weight='length', cpus=1)
Do not use, deprecated.

The shortest_path function has moved to the routing module. Calling it via the distance module will raise an
error in the v2.0.0 release.

Parameters

• G (networkx.MultiDiGraph) – input graph

• orig (int or list) – origin node ID, or a list of origin node IDs

6.3. User Reference 23

OSMnx, Release 1.9.2

• dest (int or list) – destination node ID, or a list of destination node IDs

• weight (string) – edge attribute to minimize when solving shortest path

• cpus (int) – how many CPU cores to use; if None, use all available

Returns
path – list of node IDs constituting the shortest path, or, if orig and dest are lists, then a list of
path lists

Return type
list

6.3.4 osmnx.elevation module

Add node elevations from raster files or web APIs, and calculate edge grades.

osmnx.elevation.add_edge_grades(G, add_absolute=True, precision=None)
Add grade attribute to each graph edge.

Vectorized function to calculate the directed grade (ie, rise over run) for each edge in the graph and add it to the
edge as an attribute. Nodes must already have elevation attributes to use this function.

See also the add_node_elevations_raster and add_node_elevations_google functions.

Parameters

• G (networkx.MultiDiGraph) – input graph with elevation node attribute

• add_absolute (bool) – if True, also add absolute value of grade as grade_abs attribute

• precision (int) – deprecated, do not use

Returns
G – graph with edge grade (and optionally grade_abs) attributes

Return type
networkx.MultiDiGraph

osmnx.elevation.add_node_elevations_google(G, api_key=None, batch_size=350, pause=0,
max_locations_per_batch=None, precision=None,
url_template=None)

Add an elevation (meters) attribute to each node using a web service.

By default, this uses the Google Maps Elevation API but you can optionally use an equivalent API with the same
interface and response format, such as Open Topo Data, via the settings module’s elevation_url_template. The
Google Maps Elevation API requires an API key but other providers may not.

For a free local alternative see the add_node_elevations_raster function. See also the add_edge_grades function.

Parameters

• G (networkx.MultiDiGraph) – input graph

• api_key (string) – a valid API key, can be None if the API does not require a key

• batch_size (int) – max number of coordinate pairs to submit in each API call (if this is too
high, the server will reject the request because its character limit exceeds the max allowed)

• pause (float) – time to pause between API calls, which can be increased if you get rate
limited

• max_locations_per_batch (int) – deprecated, do not use

24 Chapter 6. Documentation

OSMnx, Release 1.9.2

• precision (int) – deprecated, do not use

• url_template (string) – deprecated, do not use

Returns
G – graph with node elevation attributes

Return type
networkx.MultiDiGraph

osmnx.elevation.add_node_elevations_raster(G, filepath, band=1, cpus=None)
Add elevation attribute to each node from local raster file(s).

If filepath is a list of paths, this will generate a virtual raster composed of the files at those paths as an intermediate
step.

See also the add_edge_grades function.

Parameters

• G (networkx.MultiDiGraph) – input graph, in same CRS as raster

• filepath (string or pathlib.Path or list of strings/Paths) – path (or list of
paths) to the raster file(s) to query

• band (int) – which raster band to query

• cpus (int) – how many CPU cores to use; if None, use all available

Returns
G – graph with node elevation attributes

Return type
networkx.MultiDiGraph

6.3.5 osmnx.features module

Download OpenStreetMap geospatial features’ geometries and attributes.

Retrieve points of interest, building footprints, transit lines/stops, or any other map features from OSM, including their
geometries and attribute data, then construct a GeoDataFrame of them. You can use this module to query for nodes,
ways, and relations (the latter of type “multipolygon” or “boundary” only) by passing a dictionary of desired OSM tags.

For more details, see https://wiki.openstreetmap.org/wiki/Map_features and https://wiki.openstreetmap.org/wiki/
Elements

Refer to the Getting Started guide for usage limitations.

osmnx.features.features_from_address(address, tags, dist=1000)
Create GeoDataFrame of OSM features within some distance N, S, E, W of address.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• address (string) – the address to geocode and use as the central point around which to get
the features

6.3. User Reference 25

https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Map_features

OSMnx, Release 1.9.2

• tags (dict) – Dict of tags used for finding elements in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

• dist (numeric) – distance in meters

Returns
gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_bbox(north=None, south=None, east=None, west=None, bbox=None,
tags=None)

Create a GeoDataFrame of OSM features within a N, S, E, W bounding box.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• north (float) – deprecated, do not use

• south (float) – deprecated, do not use

• east (float) – deprecated, do not use

• west (float) – deprecated, do not use

• bbox (tuple of floats) – bounding box as (north, south, east, west)

• tags (dict) – Dict of tags used for finding elements in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

Returns
gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_place(query, tags, which_result=None, buffer_dist=None)
Create GeoDataFrame of OSM features within boundaries of some place(s).

The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does not
have a polygon for this place, you can instead get features within it using the features_from_address function,
which geocodes the place name to a point and gets the features within some distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding it, try to vary the query string, pass
in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the

26 Chapter 6. Documentation

https://wiki.openstreetmap.org/wiki/Map_features

OSMnx, Release 1.9.2

OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to
the features_from_polygon function.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• query (string or dict or list) – the query or queries to geocode to get place bound-
ary polygon(s)

• tags (dict) – Dict of tags used for finding elements in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

• which_result (int) – which geocoding result to use. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one.

• buffer_dist (float) – deprecated, do not use

Returns
gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_point(center_point, tags, dist=1000)
Create GeoDataFrame of OSM features within some distance N, S, E, W of a point.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• center_point (tuple) – the (lat, lon) center point around which to get the features

• tags (dict) – Dict of tags used for finding elements in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

• dist (numeric) – distance in meters

Returns
gdf

Return type
geopandas.GeoDataFrame

6.3. User Reference 27

https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features

OSMnx, Release 1.9.2

osmnx.features.features_from_polygon(polygon, tags)
Create GeoDataFrame of OSM features within boundaries of a (multi)polygon.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• polygon (shapely.geometry.Polygon or shapely.geometry.MultiPolygon) –
geographic boundaries to fetch features within

• tags (dict) – Dict of tags used for finding elements in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

Returns
gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_xml(filepath, polygon=None, tags=None, encoding='utf-8')
Create a GeoDataFrame of OSM features in an OSM-formatted XML file.

Because this function creates a GeoDataFrame of features from an OSM-formatted XML file that has already
been downloaded (i.e. no query is made to the Overpass API) the polygon and tags arguments are not required.
If they are not supplied to the function, features_from_xml() will return features for all of the tagged elements in
the file. If they are supplied they will be used to filter the final GeoDataFrame.

For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• filepath (string or pathlib.Path) – path to file containing OSM XML data

• polygon (shapely.geometry.Polygon) – optional geographic boundary to filter ele-
ments

• tags (dict) – optional dict of tags for filtering elements from the XML. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

• encoding (string) – the XML file’s character encoding

Returns
gdf

Return type
geopandas.GeoDataFrame

28 Chapter 6. Documentation

https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features

OSMnx, Release 1.9.2

6.3.6 osmnx.geocoder module

Geocode place names or addresses or retrieve OSM elements by place name or ID.

This module uses the Nominatim API’s “search” and “lookup” endpoints. For more details see https://wiki.
openstreetmap.org/wiki/Elements and https://nominatim.org/.

osmnx.geocoder.geocode(query)
Geocode place names or addresses to (lat, lon) with the Nominatim API.

This geocodes the query via the Nominatim “search” endpoint.

Parameters
query (string) – the query string to geocode

Returns
point – the (lat, lon) coordinates returned by the geocoder

Return type
tuple

osmnx.geocoder.geocode_to_gdf(query, which_result=None, by_osmid=False, buffer_dist=None)
Retrieve OSM elements by place name or OSM ID with the Nominatim API.

If searching by place name, the query argument can be a string or structured dict, or a list of such strings/dicts to
send to the geocoder. This uses the Nominatim “search” endpoint to geocode the place name to the best-matching
OSM element, then returns that element and its attribute data.

You can instead query by OSM ID by passing by_osmid=True. This uses the Nominatim “lookup” endpoint to
retrieve the OSM element with that ID. In this case, the function treats the query argument as an OSM ID (or list
of OSM IDs), which must be prepended with their types: node (N), way (W), or relation (R) in accordance with
the Nominatim API format. For example, query=[“R2192363”, “N240109189”, “W427818536”].

If query is a list, then which_result must be either a single value or a list with the same length as query. The
queries you provide must be resolvable to elements in the Nominatim database. The resulting GeoDataFrame’s
geometry column contains place boundaries if they exist.

Parameters

• query (string or dict or list of strings/dicts) – query string(s) or structured
dict(s) to geocode

• which_result (int) – which search result to return. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one. to get the top match regard-
less of geometry type, set which_result=1. ignored if by_osmid=True.

• by_osmid (bool) – if True, treat query as an OSM ID lookup rather than text search

• buffer_dist (float) – deprecated, do not use

Returns
gdf – a GeoDataFrame with one row for each query

Return type
geopandas.GeoDataFrame

6.3. User Reference 29

https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Elements
https://nominatim.org/

OSMnx, Release 1.9.2

6.3.7 osmnx.graph module

Download and create graphs from OpenStreetMap data.

This module uses filters to query the Overpass API: you can either specify a built-in network type or provide your own
custom filter with Overpass QL.

Refer to the Getting Started guide for usage limitations.

osmnx.graph.graph_from_address(address, dist=1000, dist_type='bbox', network_type='all_private',
simplify=True, retain_all=False, truncate_by_edge=False,
return_coords=None, clean_periphery=None, custom_filter=None)

Download and create a graph within some distance of an address.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

Parameters

• address (string) – the address to geocode and use as the central point around which to
construct the graph

• dist (int) – retain only those nodes within this many meters of the center of the graph

• dist_type (string {"network", "bbox"}) – if “bbox”, retain only those nodes within
a bounding box of the distance parameter. if “network”, retain only those nodes within some
network distance from the center-most node.

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter
is None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box

• return_coords (bool) – deprecated, do not use

• clean_periphery (bool) – deprecated, do not use

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Return type
networkx.MultiDiGraph or optionally (networkx.MultiDiGraph, (lat, lon))

30 Chapter 6. Documentation

OSMnx, Release 1.9.2

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_bbox(north=None, south=None, east=None, west=None, bbox=None,
network_type='all_private', simplify=True, retain_all=False,
truncate_by_edge=False, clean_periphery=None, custom_filter=None)

Download and create a graph within some bounding box.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

Parameters

• north (float) – deprecated, do not use

• south (float) – deprecated, do not use

• east (float) – deprecated, do not use

• west (float) – deprecated, do not use

• bbox (tuple of floats) – bounding box as (north, south, east, west)

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter
is None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box

• clean_periphery (bool) – deprecated, do not use

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns
G

Return type
networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_place(query, network_type='all_private', simplify=True, retain_all=False,
truncate_by_edge=False, which_result=None, buffer_dist=None,
clean_periphery=None, custom_filter=None)

Download and create a graph within the boundaries of some place(s).

6.3. User Reference 31

OSMnx, Release 1.9.2

The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does
not have a polygon for this place, you can instead get its street network using the graph_from_address function,
which geocodes the place name to a point and gets the network within some distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding it, try to vary the query string, pass
in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the
OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to
the graph_from_polygon function.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

Parameters

• query (string or dict or list) – the query or queries to geocode to get place bound-
ary polygon(s)

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter
is None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside boundary polygon if at least one
of node’s neighbors is within the polygon

• which_result (int) – which geocoding result to use. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one.

• buffer_dist (float) – deprecated, do not use

• clean_periphery (bool) – deprecated, do not use

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns
G

Return type
networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_point(center_point, dist=1000, dist_type='bbox', network_type='all_private',
simplify=True, retain_all=False, truncate_by_edge=False,
clean_periphery=None, custom_filter=None)

Download and create a graph within some distance of a (lat, lon) point.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

Parameters

32 Chapter 6. Documentation

OSMnx, Release 1.9.2

• center_point (tuple) – the (lat, lon) center point around which to construct the graph

• dist (int) – retain only those nodes within this many meters of the center of the graph, with
distance determined according to dist_type argument

• dist_type (string {"network", "bbox"}) – if “bbox”, retain only those nodes within
a bounding box of the distance parameter. if “network”, retain only those nodes within some
network distance from the center-most node.

• network_type (string, {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter
is None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box

• clean_periphery (bool,) – deprecated, do not use

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns
G

Return type
networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_polygon(polygon, network_type='all_private', simplify=True, retain_all=False,
truncate_by_edge=False, clean_periphery=None, custom_filter=None)

Download and create a graph within the boundaries of a (multi)polygon.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

Parameters

• polygon (shapely.geometry.Polygon or shapely.geometry.MultiPolygon) –
the shape to get network data within. coordinates should be in unprojected latitude-longitude
degrees (EPSG:4326).

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter
is None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

6.3. User Reference 33

OSMnx, Release 1.9.2

• truncate_by_edge (bool) – if True, retain nodes outside boundary polygon if at least one
of node’s neighbors is within the polygon

• clean_periphery (bool) – deprecated, do not use

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns
G

Return type
networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_xml(filepath, bidirectional=False, simplify=True, retain_all=False, encoding='utf-8')
Create a graph from data in a .osm formatted XML file.

Do not load an XML file generated by OSMnx: this use case is not supported and may not behave as expected. To
save/load graphs to/from disk for later use in OSMnx, use the io.save_graphml and io.load_graphml functions
instead.

Parameters

• filepath (string or pathlib.Path) – path to file containing OSM XML data

• bidirectional (bool) – if True, create bi-directional edges for one-way streets

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• encoding (string) – the XML file’s character encoding

Returns
G

Return type
networkx.MultiDiGraph

6.3.8 osmnx.io module

Serialize graphs to/from files on disk.

osmnx.io.load_graphml(filepath=None, graphml_str=None, node_dtypes=None, edge_dtypes=None,
graph_dtypes=None)

Load an OSMnx-saved GraphML file from disk or GraphML string.

This function converts node, edge, and graph-level attributes (serialized as strings) to their appropriate data
types. These can be customized as needed by passing in dtypes arguments providing types or custom con-
verter functions. For example, if you want to convert some attribute’s values to bool, consider using the built-in
ox.io._convert_bool_string function to properly handle “True”/”False” string literals as True/False booleans:
ox.load_graphml(fp, node_dtypes={my_attr: ox.io._convert_bool_string}).

34 Chapter 6. Documentation

OSMnx, Release 1.9.2

If you manually configured the all_oneway=True setting, you may need to manually specify here that edge
oneway attributes should be type str.

Note that you must pass one and only one of filepath or graphml_str. If passing graphml_str, you may need to
decode the bytes read from your file before converting to string to pass to this function.

Parameters

• filepath (string or pathlib.Path) – path to the GraphML file

• graphml_str (string) – a valid and decoded string representation of a GraphML file’s
contents

• node_dtypes (dict) – dict of node attribute names:types to convert values’ data types. the
type can be a python type or a custom string converter function.

• edge_dtypes (dict) – dict of edge attribute names:types to convert values’ data types. the
type can be a python type or a custom string converter function.

• graph_dtypes (dict) – dict of graph-level attribute names:types to convert values’ data
types. the type can be a python type or a custom string converter function.

Returns
G

Return type
networkx.MultiDiGraph

osmnx.io.save_graph_geopackage(G, filepath=None, encoding='utf-8', directed=False)
Save graph nodes and edges to disk as layers in a GeoPackage file.

Parameters

• G (networkx.MultiDiGraph) – input graph

• filepath (string or pathlib.Path) – path to the GeoPackage file including extension.
if None, use default data folder + graph.gpkg

• encoding (string) – the character encoding for the saved file

• directed (bool) – if False, save one edge for each undirected edge in the graph but retain
original oneway and to/from information as edge attributes; if True, save one edge for each
directed edge in the graph

Return type
None

osmnx.io.save_graph_shapefile(G, filepath=None, encoding='utf-8', directed=False)
Do not use: deprecated. Use the save_graph_geopackage function instead.

The Shapefile format is proprietary and outdated. Instead, use the superior GeoPackage file format via the
save_graph_geopackage function. See http://switchfromshapefile.org/ for more information.

Parameters

• G (networkx.MultiDiGraph) – input graph

• filepath (string or pathlib.Path) – path to the shapefiles folder (no file extension).
if None, use default data folder + graph_shapefile

• encoding (string) – the character encoding for the saved files

• directed (bool) – if False, save one edge for each undirected edge in the graph but retain
original oneway and to/from information as edge attributes; if True, save one edge for each
directed edge in the graph

6.3. User Reference 35

http://switchfromshapefile.org/

OSMnx, Release 1.9.2

Return type
None

osmnx.io.save_graph_xml(data, filepath=None, node_tags=None, node_attrs=None, edge_tags=None,
edge_attrs=None, oneway=None, merge_edges=None, edge_tag_aggs=None,
api_version=None, precision=None, way_tag_aggs=None)

Save graph to disk as an OSM-formatted XML .osm file.

This function exists only to allow serialization to the .osm file format for applications that require it, and has con-
straints to conform to that. As such, this function has a limited use case which does not include saving/loading
graphs for subsequent OSMnx analysis. To save/load graphs to/from disk for later use in OSMnx, use the
io.save_graphml and io.load_graphml functions instead. To load a graph from a .osm file that you have down-
loaded or generated elsewhere, use the graph.graph_from_xml function.

Parameters

• data (networkx.MultiDiGraph) – the input graph

• filepath (string or pathlib.Path) – do not use, deprecated

• node_tags (list) – do not use, deprecated

• node_attrs (list) – do not use, deprecated

• edge_tags (list) – do not use, deprecated

• edge_attrs (list) – do not use, deprecated

• oneway (bool) – do not use, deprecated

• merge_edges (bool) – do not use, deprecated

• edge_tag_aggs (tuple) – do not use, deprecated

• api_version (float) – do not use, deprecated

• precision (int) – do not use, deprecated

• way_tag_aggs (dict) – Keys are OSM way tag keys and values are aggregation functions
(anything accepted as an argument by pandas.agg). Allows user to aggregate graph edge
attribute values into single OSM way values. If None, or if some tag’s key does not exist in
the dict, the way attribute will be assigned the value of the first edge of the way.

Return type
None

osmnx.io.save_graphml(G, filepath=None, gephi=False, encoding='utf-8')
Save graph to disk as GraphML file.

Parameters

• G (networkx.MultiDiGraph) – input graph

• filepath (string or pathlib.Path) – path to the GraphML file including extension.
if None, use default data folder + graph.graphml

• gephi (bool) – if True, give each edge a unique key/id to work around Gephi’s interpretation
of the GraphML specification

• encoding (string) – the character encoding for the saved file

Return type
None

36 Chapter 6. Documentation

OSMnx, Release 1.9.2

6.3.9 osmnx.plot module

Visualize street networks, routes, orientations, and geospatial features.

osmnx.plot.get_colors(n, cmap='viridis', start=0.0, stop=1.0, alpha=1.0, return_hex=None)
Get n evenly-spaced colors from a matplotlib colormap.

Parameters

• n (int) – number of colors

• cmap (string) – name of a matplotlib colormap

• start (float) – where to start in the colorspace

• stop (float) – where to end in the colorspace

• alpha (float) – If None, return colors as HTML-like hex triplet “#rrggbb” RGB strings. If
float, return as “#rrggbbaa” RGBa strings.

• return_hex (bool) – deprecated, do not use

Returns
color_list

Return type
list

osmnx.plot.get_edge_colors_by_attr(G, attr, num_bins=None, cmap='viridis', start=0, stop=1,
na_color='none', equal_size=False)

Get colors based on edge attribute values.

Parameters

• G (networkx.MultiDiGraph) – input graph

• attr (string) – name of a numerical edge attribute

• num_bins (int) – if None, linearly map a color to each value. otherwise, assign values to
this many bins then assign a color to each bin.

• cmap (string) – name of a matplotlib colormap

• start (float) – where to start in the colorspace

• stop (float) – where to end in the colorspace

• na_color (string) – what color to assign edges with missing attr values

• equal_size (bool) – ignored if num_bins is None. if True, bin into equal-sized quantiles
(requires unique bin edges). if False, bin into equal-spaced bins.

Returns
edge_colors – series labels are edge IDs (u, v, key) and values are colors

Return type
pandas.Series

osmnx.plot.get_node_colors_by_attr(G, attr, num_bins=None, cmap='viridis', start=0, stop=1,
na_color='none', equal_size=False)

Get colors based on node attribute values.

Parameters

• G (networkx.MultiDiGraph) – input graph

6.3. User Reference 37

OSMnx, Release 1.9.2

• attr (string) – name of a numerical node attribute

• num_bins (int) – if None, linearly map a color to each value. otherwise, assign values to
this many bins then assign a color to each bin.

• cmap (string) – name of a matplotlib colormap

• start (float) – where to start in the colorspace

• stop (float) – where to end in the colorspace

• na_color (string) – what color to assign nodes with missing attr values

• equal_size (bool) – ignored if num_bins is None. if True, bin into equal-sized quantiles
(requires unique bin edges). if False, bin into equal-spaced bins.

Returns
node_colors – series labels are node IDs and values are colors

Return type
pandas.Series

osmnx.plot.plot_figure_ground(G=None, address=None, point=None, dist=805,
network_type='drive_service', street_widths=None, default_width=4,
color='w', edge_color=None, smooth_joints=None, **pg_kwargs)

Plot a figure-ground diagram of a street network.

Parameters

• G (networkx.MultiDiGraph) – input graph, must be unprojected

• address (string) – deprecated, do not use

• point (tuple) – deprecated, do not use

• dist (numeric) – how many meters to extend north, south, east, west from center point

• network_type (string) – deprecated, do not use

• street_widths (dict) – dict keys are street types and values are widths to plot in pixels

• default_width (numeric) – fallback width in pixels for any street type not in street_widths

• color (string) – color of the streets

• edge_color (string) – deprecated, do not use

• smooth_joints (bool) – deprecated, do not use

• pg_kwargs – keyword arguments to pass to plot_graph

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

osmnx.plot.plot_footprints(gdf , ax=None, figsize=(8, 8), color='orange', edge_color='none',
edge_linewidth=0, alpha=None, bgcolor='#111111', bbox=None, save=False,
show=True, close=False, filepath=None, dpi=600)

Visualize a GeoDataFrame of geospatial features’ footprints.

Parameters

• gdf (geopandas.GeoDataFrame) – GeoDataFrame of footprints (shapely Polygons and
MultiPolygons)

38 Chapter 6. Documentation

OSMnx, Release 1.9.2

• ax (axis) – if not None, plot on this preexisting axis

• figsize (tuple) – if ax is None, create new figure with size (width, height)

• color (string) – color of the footprints

• edge_color (string) – color of the edge of the footprints

• edge_linewidth (float) – width of the edge of the footprints

• alpha (float) – opacity of the footprints

• bgcolor (string) – background color of the plot

• bbox (tuple) – bounding box as (north, south, east, west). if None, will calculate from the
spatial extents of the geometries in gdf

• save (bool) – if True, save the figure to disk at filepath

• show (bool) – if True, call pyplot.show() to show the figure

• close (bool) – if True, call pyplot.close() to close the figure

• filepath (string) – if save is True, the path to the file. file format determined from ex-
tension. if None, use settings.imgs_folder/image.png

• dpi (int) – if save is True, the resolution of saved file

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

osmnx.plot.plot_graph(G, ax=None, figsize=(8, 8), bgcolor='#111111', node_color='w', node_size=15,
node_alpha=None, node_edgecolor='none', node_zorder=1, edge_color='#999999',
edge_linewidth=1, edge_alpha=None, show=True, close=False, save=False,
filepath=None, dpi=300, bbox=None)

Visualize a graph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• ax (matplotlib axis) – if not None, plot on this preexisting axis

• figsize (tuple) – if ax is None, create new figure with size (width, height)

• bgcolor (string) – background color of plot

• node_color (string or list) – color(s) of the nodes

• node_size (int) – size of the nodes: if 0, then skip plotting the nodes

• node_alpha (float) – opacity of the nodes, note: if you passed RGBA values to
node_color, set node_alpha=None to use the alpha channel in node_color

• node_edgecolor (string) – color of the nodes’ markers’ borders

• node_zorder (int) – zorder to plot nodes: edges are always 1, so set node_zorder=0 to plot
nodes below edges

• edge_color (string or list) – color(s) of the edges’ lines

• edge_linewidth (float) – width of the edges’ lines: if 0, then skip plotting the edges

• edge_alpha (float) – opacity of the edges, note: if you passed RGBA values to edge_color,
set edge_alpha=None to use the alpha channel in edge_color

6.3. User Reference 39

OSMnx, Release 1.9.2

• show (bool) – if True, call pyplot.show() to show the figure

• close (bool) – if True, call pyplot.close() to close the figure

• save (bool) – if True, save the figure to disk at filepath

• filepath (string) – if save is True, the path to the file. file format determined from ex-
tension. if None, use settings.imgs_folder/image.png

• dpi (int) – if save is True, the resolution of saved file

• bbox (tuple) – bounding box as (north, south, east, west). if None, will calculate from
spatial extents of plotted geometries.

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

osmnx.plot.plot_graph_route(G, route, route_color='r', route_linewidth=4, route_alpha=0.5,
orig_dest_size=100, ax=None, **pg_kwargs)

Visualize a route along a graph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• route (list) – route as a list of node IDs

• route_color (string) – color of the route

• route_linewidth (int) – width of the route line

• route_alpha (float) – opacity of the route line

• orig_dest_size (int) – size of the origin and destination nodes

• ax (matplotlib axis) – if not None, plot route on this preexisting axis instead of creating
a new fig, ax and drawing the underlying graph

• pg_kwargs – keyword arguments to pass to plot_graph

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

osmnx.plot.plot_graph_routes(G, routes, route_colors='r', route_linewidths=4, **pgr_kwargs)
Visualize several routes along a graph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• routes (list) – routes as a list of lists of node IDs

• route_colors (string or list) – if string, 1 color for all routes. if list, the colors for
each route.

• route_linewidths (int or list) – if int, 1 linewidth for all routes. if list, the linewidth
for each route.

• pgr_kwargs – keyword arguments to pass to plot_graph_route

40 Chapter 6. Documentation

OSMnx, Release 1.9.2

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

osmnx.plot.plot_orientation(Gu, num_bins=36, min_length=0, weight=None, ax=None, figsize=(5, 5),
area=True, color='#003366', edgecolor='k', linewidth=0.5, alpha=0.7,
title=None, title_y=1.05, title_font=None, xtick_font=None)

Plot a polar histogram of a spatial network’s bidirectional edge bearings.

Ignores self-loop edges as their bearings are undefined.

For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network Orientation, Configuration, and
Entropy.” Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1

Parameters

• Gu (networkx.MultiGraph) – undirected, unprojected graph with bearing attributes on
each edge

• num_bins (int) – number of bins; for example, if num_bins=36 is provided, then each bin
will represent 10 degrees around the compass

• min_length (float) – ignore edges with length attributes less than min_length

• weight (string) – if not None, weight edges’ bearings by this (non-null) edge attribute

• ax (matplotlib.axes.PolarAxesSubplot) – if not None, plot on this preexisting axis;
must have projection=polar

• figsize (tuple) – if ax is None, create new figure with size (width, height)

• area (bool) – if True, set bar length so area is proportional to frequency, otherwise set bar
length so height is proportional to frequency

• color (string) – color of histogram bars

• edgecolor (string) – color of histogram bar edges

• linewidth (float) – width of histogram bar edges

• alpha (float) – opacity of histogram bars

• title (string) – title for plot

• title_y (float) – y position to place title

• title_font (dict) – the title’s fontdict to pass to matplotlib

• xtick_font (dict) – the xtick labels’ fontdict to pass to matplotlib

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

6.3. User Reference 41

https://doi.org/10.1007/s41109-019-0189-1

OSMnx, Release 1.9.2

6.3.10 osmnx.projection module

Project a graph, GeoDataFrame, or geometry to a different CRS.

osmnx.projection.is_projected(crs)
Determine if a coordinate reference system is projected or not.

Parameters
crs (string or pyproj.CRS) – the identifier of the coordinate reference system, which can be
anything accepted by pyproj.CRS.from_user_input() such as an authority string or a WKT string

Returns
projected – True if crs is projected, otherwise False

Return type
bool

osmnx.projection.project_gdf(gdf , to_crs=None, to_latlong=False)
Project a GeoDataFrame from its current CRS to another.

If to_latlong is True, this projects the GeoDataFrame to the CRS defined by settings.default_crs, otherwise it
projects it to the CRS defined by to_crs. If to_crs is None, it projects it to the CRS of an appropriate UTM zone
given gdf ’s bounds.

Parameters

• gdf (geopandas.GeoDataFrame) – the GeoDataFrame to be projected

• to_crs (string or pyproj.CRS) – if None, project to an appropriate UTM zone, other-
wise project to this CRS

• to_latlong (bool) – if True, project to settings.default_crs and ignore to_crs

Returns
gdf_proj – the projected GeoDataFrame

Return type
geopandas.GeoDataFrame

osmnx.projection.project_geometry(geometry, crs=None, to_crs=None, to_latlong=False)
Project a Shapely geometry from its current CRS to another.

If to_latlong is True, this projects the GeoDataFrame to the CRS defined by settings.default_crs, otherwise it
projects it to the CRS defined by to_crs. If to_crs is None, it projects it to the CRS of an appropriate UTM zone
given geometry’s bounds.

Parameters

• geometry (shapely geometry) – the geometry to be projected

• crs (string or pyproj.CRS) – the initial CRS of geometry. if None, it will be set to
settings.default_crs

• to_crs (string or pyproj.CRS) – if None, project to an appropriate UTM zone, other-
wise project to this CRS

• to_latlong (bool) – if True, project to settings.default_crs and ignore to_crs

Returns
geometry_proj, crs – the projected geometry and its new CRS

Return type
tuple

42 Chapter 6. Documentation

OSMnx, Release 1.9.2

osmnx.projection.project_graph(G, to_crs=None, to_latlong=False)
Project a graph from its current CRS to another.

If to_latlong is True, this projects the GeoDataFrame to the CRS defined by settings.default_crs, otherwise it
projects it to the CRS defined by to_crs. If to_crs is None, it projects it to the CRS of an appropriate UTM zone
given G’s bounds.

Parameters

• G (networkx.MultiDiGraph) – the graph to be projected

• to_crs (string or pyproj.CRS) – if None, project to an appropriate UTM zone, other-
wise project to this CRS

• to_latlong (bool) – if True, project to settings.default_crs and ignore to_crs

Returns
G_proj – the projected graph

Return type
networkx.MultiDiGraph

6.3.11 osmnx.routing module

Calculate weighted shortest paths between graph nodes.

osmnx.routing.add_edge_speeds(G, hwy_speeds=None, fallback=None, precision=None, agg=numpy.mean)
Add edge speeds (km per hour) to graph as new speed_kph edge attributes.

By default, this imputes free-flow travel speeds for all edges via the mean maxspeed value of the edges of each
highway type. For highway types in the graph that have no maxspeed value on any edge, it assigns the mean of
all maxspeed values in graph.

This default mean-imputation can obviously be imprecise, and the user can override it by passing in hwy_speeds
and/or fallback arguments that correspond to local speed limit standards. The user can also specify a different
aggregation function (such as the median) to impute missing values from the observed values.

If edge maxspeed attribute has “mph” in it, value will automatically be converted from miles per hour to km
per hour. Any other speed units should be manually converted to km per hour prior to running this function,
otherwise there could be unexpected results. If “mph” does not appear in the edge’s maxspeed attribute string,
then function assumes kph, per OSM guidelines: https://wiki.openstreetmap.org/wiki/Map_Features/Units

Parameters

• G (networkx.MultiDiGraph) – input graph

• hwy_speeds (dict) – dict keys = OSM highway types and values = typical speeds (km per
hour) to assign to edges of that highway type for any edges missing speed data. Any edges
with highway type not in hwy_speeds will be assigned the mean preexisting speed value of
all edges of that highway type.

• fallback (numeric) – default speed value (km per hour) to assign to edges whose highway
type did not appear in hwy_speeds and had no preexisting speed values on any edge

• precision (int) – deprecated, do not use

• agg (function) – aggregation function to impute missing values from observed val-
ues. the default is numpy.mean, but you might also consider for example numpy.median,
numpy.nanmedian, or your own custom function

Returns
G – graph with speed_kph attributes on all edges

6.3. User Reference 43

https://wiki.openstreetmap.org/wiki/Map_Features/Units

OSMnx, Release 1.9.2

Return type
networkx.MultiDiGraph

osmnx.routing.add_edge_travel_times(G, precision=None)
Add edge travel time (seconds) to graph as new travel_time edge attributes.

Calculates free-flow travel time along each edge, based on length and speed_kph attributes. Note: run
add_edge_speeds first to generate the speed_kph attribute. All edges must have length and speed_kph attributes
and all their values must be non-null.

Parameters

• G (networkx.MultiDiGraph) – input graph

• precision (int) – deprecated, do not use

Returns
G – graph with travel_time attributes on all edges

Return type
networkx.MultiDiGraph

osmnx.routing.k_shortest_paths(G, orig, dest, k, weight='length')
Solve k shortest paths from an origin node to a destination node.

Uses Yen’s algorithm. See also shortest_path to solve just the one shortest path.

Parameters

• G (networkx.MultiDiGraph) – input graph

• orig (int) – origin node ID

• dest (int) – destination node ID

• k (int) – number of shortest paths to solve

• weight (string) – edge attribute to minimize when solving shortest paths. default is edge
length in meters.

Yields
path (list) – a generator of k shortest paths ordered by total weight. each path is a list of node
IDs.

osmnx.routing.route_to_gdf(G, route, weight='length')
Return a GeoDataFrame of the edges in a path, in order.

Parameters

• G (networkx.MultiDiGraph) – input graph

• route (list) – list of node IDs constituting the path

• weight (string) – if there are parallel edges between two nodes, choose lowest weight

Returns
gdf_edges – GeoDataFrame of the edges

Return type
geopandas.GeoDataFrame

osmnx.routing.shortest_path(G, orig, dest, weight='length', cpus=1)
Solve shortest path from origin node(s) to destination node(s).

Uses Dijkstra’s algorithm. If orig and dest are single node IDs, this will return a list of the nodes constituting
the shortest path between them. If orig and dest are lists of node IDs, this will return a list of lists of the nodes

44 Chapter 6. Documentation

OSMnx, Release 1.9.2

constituting the shortest path between each origin-destination pair. If a path cannot be solved, this will return
None for that path. You can parallelize solving multiple paths with the cpus parameter, but be careful to not
exceed your available RAM.

See also k_shortest_paths to solve multiple shortest paths between a single origin and destination. For additional
functionality or different solver algorithms, use NetworkX directly.

Parameters

• G (networkx.MultiDiGraph) – input graph

• orig (int or list) – origin node ID, or a list of origin node IDs

• dest (int or list) – destination node ID, or a list of destination node IDs

• weight (string) – edge attribute to minimize when solving shortest path

• cpus (int) – how many CPU cores to use; if None, use all available

Returns
path – list of node IDs constituting the shortest path, or, if orig and dest are lists, then a list of
path lists

Return type
list

6.3.12 osmnx.settings module

Global settings that can be configured by the user.

all_oneway
[bool] Only use if specifically saving to .osm XML file with the save_graph_xml function. If True, forces all
ways to be loaded as oneway ways, preserving the original order of nodes stored in the OSM way XML. This
also retains original OSM string values for oneway attribute values, rather than converting them to a True/False
bool. Default is False.

bidirectional_network_types
[list] Network types for which a fully bidirectional graph will be created. Default is [“walk”].

cache_folder
[str or pathlib.Path] Path to folder in which to save/load HTTP response cache, if the use_cache setting equals
True. Default is “./cache”.

cache_only_mode
[bool] If True, download network data from Overpass then raise a CacheOnlyModeInterrupt error for user to
catch. This prevents graph building from taking place and instead just saves OSM response data to cache. Useful
for sequentially caching lots of raw data (as you can only query Overpass one request at a time) then using the
local cache to quickly build many graphs simultaneously with multiprocessing. Default is False.

data_folder
[str or pathlib.Path] Path to folder in which to save/load graph files by default. Default is “./data”.

default_accept_language
[str] Do not use, deprecated. Use http_accept_language instead.

default_access
[str] Default filter for OSM “access” key. Default is ‘[“access”!~”private”]’. Note that also filtering out “ac-
cess=no” ways prevents including transit-only bridges (e.g., Tilikum Crossing) from appearing in drivable road
network (e.g., ‘[“access”!~”private|no”]’). However, some drivable tollroads have “access=no” plus a “ac-
cess:conditional” key to clarify when it is accessible, so we can’t filter out all “access=no” ways by default.

6.3. User Reference 45

OSMnx, Release 1.9.2

Best to be permissive here then remove complicated combinations of tags programatically after the full graph is
downloaded and constructed.

default_crs
[str] Default coordinate reference system to set when creating graphs. Default is “epsg:4326”.

default_referer
[str] Do not use, deprecated. Use http_referer instead.

default_user_agent
[str] Do not use, deprecated. Use http_user_agent instead.

doh_url_template
[str] Endpoint to resolve DNS-over-HTTPS if local DNS resolution fails. Set to None to disable DoH, but see
downloader._config_dns documentation for caveats. Default is: “https://8.8.8.8/resolve?name={hostname}”

elevation_url_template
[str] Endpoint of the Google Maps Elevation API (or equivalent), containing exactly two parameters: locations
and key. Default is: “https://maps.googleapis.com/maps/api/elevation/json?locations={locations}&key={key}”
One example of an alternative equivalent would be Open Topo Data:
“https://api.opentopodata.org/v1/aster30m?locations={locations}&key={key}”

http_accept_language
[str] HTTP header accept-language. Default is “en”. Note that Nominatim’s default language is “en” and it can
sort result importance scores differently if a different language is specified.

http_referer
[str] HTTP header referer. Default is “OSMnx Python package (https://github.com/gboeing/osmnx)”.

http_user_agent
[str] HTTP header user-agent. Default is “OSMnx Python package (https://github.com/gboeing/osmnx)”.

imgs_folder
[str or pathlib.Path] Path to folder in which to save plotted images by default. Default is “./images”.

log_file
[bool] If True, save log output to a file in logs_folder. Default is False.

log_filename
[str] Name of the log file, without file extension. Default is “osmnx”.

log_console
[bool] If True, print log output to the console (terminal window). Default is False.

log_level
[int] One of Python’s logger.level constants. Default is logging.INFO.

log_name
[str] Name of the logger. Default is “OSMnx”.

logs_folder
[str or pathlib.Path] Path to folder in which to save log files. Default is “./logs”.

max_query_area_size
[int] Maximum area for any part of the geometry in meters: any polygon bigger than this will get divided up for
multiple queries to the API. Default is 2500000000.

memory
[int] Do not use, deprecated. Use overpass_memory instead.

nominatim_endpoint
[str] Do not use, deprecated. Use nominatim_url instead.

46 Chapter 6. Documentation

OSMnx, Release 1.9.2

nominatim_key
[str] Your Nominatim API key, if you are using an API instance that requires one. Default is None.

nominatim_url
[str] The base API url to use for Nominatim queries. Default is “https://nominatim.openstreetmap.org/”.

osm_xml_node_attrs
[list] Do not use, deprecated.

osm_xml_node_tags
[list] Do not use, deprecated.

osm_xml_way_attrs
[list] Do not use, deprecated.

osm_xml_way_tags
[list] Do not use, deprecated.

overpass_endpoint
[str] Do not use, deprecated. Use overpass_url instead.

overpass_memory
[int | None] Overpass server memory allocation size for the query, in bytes. If None, server will choose its default
allocation size. Use with caution. Default is None.

overpass_rate_limit
[bool] If True, check the Overpass server status endpoint for how long to pause before making request. Necessary
if server uses slot management, but can be set to False if you are running your own overpass instance without
rate limiting. Default is True.

overpass_settings
[str] Settings string for Overpass queries. Default is “[out:json][timeout:{timeout}]{maxsize}”. By default, the
{timeout} and {maxsize} values are set dynamically by OSMnx when used. To query, for example, historical
OSM data as of a certain date: ‘[out:json][timeout:90][date:”2019-10-28T19:20:00Z”]’. Use with caution.

overpass_url
[str] The base API url to use for Overpass queries. Default is “https://overpass-api.de/api”.

requests_kwargs
[dict] Optional keyword args to pass to the requests package when connecting to APIs, for example to configure
authentication or provide a path to a local certificate file. More info on options such as auth, cert, verify, and
proxies can be found in the requests package advanced docs. Default is {}.

requests_timeout
[int] The timeout interval in seconds for HTTP requests, and (when applicable) for Overpass server to use for
executing the query. Default is 180.

timeout
[int] Do not use, deprecated. Use requests_timeout instead.

use_cache
[bool] If True, cache HTTP responses locally instead of calling API repeatedly for the same request. Default is
True.

useful_tags_node
[list] OSM “node” tags to add as graph node attributes, when present in the data retrieved from OSM. Default is
[“ref”, “highway”].

useful_tags_way
[list] OSM “way” tags to add as graph edge attributes, when present in the data retrieved from OSM. Default
is [“bridge”, “tunnel”, “oneway”, “lanes”, “ref”, “name”, “highway”, “maxspeed”, “service”, “access”,
“area”, “landuse”, “width”, “est_width”, “junction”].

6.3. User Reference 47

OSMnx, Release 1.9.2

6.3.13 osmnx.simplification module

Simplify, correct, and consolidate network topology.

osmnx.simplification.consolidate_intersections(G, tolerance=10, rebuild_graph=True,
dead_ends=False, reconnect_edges=True)

Consolidate intersections comprising clusters of nearby nodes.

Merges nearby nodes and returns either their centroids or a rebuilt graph with consolidated intersections and
reconnected edge geometries. The tolerance argument should be adjusted to approximately match street design
standards in the specific street network, and you should always use a projected graph to work in meaningful and
consistent units like meters. Note the tolerance represents a per-node buffering radius: for example, to consolidate
nodes within 10 meters of each other, use tolerance=5.

When rebuild_graph=False, it uses a purely geometrical (and relatively fast) algorithm to identify “geometrically
close” nodes, merge them, and return just the merged intersections’ centroids. When rebuild_graph=True, it uses
a topological (and slower but more accurate) algorithm to identify “topologically close” nodes, merge them, then
rebuild/return the graph. Returned graph’s node IDs represent clusters rather than osmids. Refer to nodes’ os-
mid_original attributes for original osmids. If multiple nodes were merged together, the osmid_original attribute
is a list of merged nodes’ osmids.

Divided roads are often represented by separate centerline edges. The intersection of two divided roads thus
creates 4 nodes, representing where each edge intersects a perpendicular edge. These 4 nodes represent a single
intersection in the real world. A similar situation occurs with roundabouts and traffic circles. This function
consolidates nearby nodes by buffering them to an arbitrary distance, merging overlapping buffers, and taking
their centroid.

Parameters

• G (networkx.MultiDiGraph) – a projected graph

• tolerance (float) – nodes are buffered to this distance (in graph’s geometry’s units) and
subsequent overlaps are dissolved into a single node

• rebuild_graph (bool) – if True, consolidate the nodes topologically, rebuild the graph,
and return as networkx.MultiDiGraph. if False, consolidate the nodes geometrically and
return the consolidated node points as geopandas.GeoSeries

• dead_ends (bool) – if False, discard dead-end nodes to return only street-intersection points

• reconnect_edges (bool) – ignored if rebuild_graph is not True. if True, reconnect edges
and their geometries in rebuilt graph to the consolidated nodes and update edge length at-
tributes; if False, returned graph has no edges (which is faster if you just need topologically
consolidated intersection counts).

Returns
if rebuild_graph=True, returns MultiDiGraph with consolidated intersections and reconnected
edge geometries. if rebuild_graph=False, returns GeoSeries of shapely Points representing the
centroids of street intersections

Return type
networkx.MultiDiGraph or geopandas.GeoSeries

osmnx.simplification.simplify_graph(G, strict=None, edge_attrs_differ=None, endpoint_attrs=None,
remove_rings=True, track_merged=False)

Simplify a graph’s topology by removing interstitial nodes.

This simplifies graph topology by removing all nodes that are not intersections or dead-ends, by creating an edge
directly between the end points that encapsulate them while retaining the full geometry of the original edges,
saved as a new geometry attribute on the new edge.

48 Chapter 6. Documentation

OSMnx, Release 1.9.2

Note that only simplified edges receive a geometry attribute. Some of the resulting consolidated edges may
comprise multiple OSM ways, and if so, their multiple attribute values are stored as a list. Optionally, the
simplified edges can receive a merged_edges attribute that contains a list of all the (u, v) node pairs that were
merged together.

Use the edge_attrs_differ parameter to relax simplification strictness. For example, edge_attrs_differ=[‘osmid’]
will retain every node whose incident edges have different OSM IDs. This lets you keep nodes at elbow two-way
intersections (but be aware that sometimes individual blocks have multiple OSM IDs within them too). You
could also use this parameter to retain nodes where sidewalks or bike lanes begin/end in the middle of a block.

Parameters

• G (networkx.MultiDiGraph) – input graph

• strict (bool) – deprecated, do not use

• edge_attrs_differ (iterable) – An iterable of edge attribute names for relaxing the
strictness of endpoint determination. If not None, a node is an endpoint if its incident edges
have different values then each other for any of the edge attributes in edge_attrs_differ.

• endpoint_attrs (iterable) – deprecated, do not use

• remove_rings (bool) – if True, remove isolated self-contained rings that have no endpoints

• track_merged (bool) – if True, add merged_edges attribute on simplified edges, containing
a list of all the (u, v) node pairs that were merged together

Returns
G – topologically simplified graph, with a new geometry attribute on each simplified edge

Return type
networkx.MultiDiGraph

6.3.14 osmnx.speed module

Calculate graph edge speeds and travel times.

osmnx.speed.add_edge_speeds(G, hwy_speeds=None, fallback=None, precision=None, agg=numpy.mean)
Do not use: deprecated.

Use the routing.add_edge_speeds function instead.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• hwy_speeds (dict) – deprecated, do not use

• fallback (numeric) – deprecated, do not use

• precision (int) – deprecated, do not use

• agg (function) – deprecated, do not use

Returns
G

Return type
networkx.MultiDiGraph

osmnx.speed.add_edge_travel_times(G, precision=None)
Do not use: deprecated.

Use the routing.add_edge_travel_times function instead.

6.3. User Reference 49

OSMnx, Release 1.9.2

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• precision (int) – deprecated, do not use

Returns
G

Return type
networkx.MultiDiGraph

6.3.15 osmnx.stats module

Calculate geometric and topological network measures.

This module defines streets as the edges in an undirected representation of the graph. Using undirected graph edges
prevents double-counting bidirectional edges of a two-way street, but may double-count a divided road’s separate
centerlines with different end point nodes. If clean_periphery=True when the graph was created (which is the default
parameterization), then you will get accurate node degrees (and in turn streets-per-node counts) even at the periphery
of the graph.

You can use NetworkX directly for additional topological network measures.

osmnx.stats.basic_stats(G, area=None, clean_int_tol=None)
Calculate basic descriptive geometric and topological measures of a graph.

Density measures are only calculated if area is provided and clean intersection measures are only calculated if
clean_int_tol is provided.

Parameters

• G (networkx.MultiDiGraph) – input graph

• area (float) – if not None, calculate density measures and use this value (in square meters)
as the denominator

• clean_int_tol (float) – if not None, calculate consolidated intersections count (and
density, if area is also provided) and use this tolerance value; refer to the simplifica-
tion.consolidate_intersections function documentation for details

Returns

stats –

dictionary containing the following keys

• circuity_avg - see circuity_avg function documentation

• clean_intersection_count - see clean_intersection_count function documentation

• clean_intersection_density_km - clean_intersection_count per sq km

• edge_density_km - edge_length_total per sq km

• edge_length_avg - edge_length_total / m

• edge_length_total - see edge_length_total function documentation

• intersection_count - see intersection_count function documentation

• intersection_density_km - intersection_count per sq km

• k_avg - graph’s average node degree (in-degree and out-degree)

50 Chapter 6. Documentation

OSMnx, Release 1.9.2

• m - count of edges in graph

• n - count of nodes in graph

• node_density_km - n per sq km

• self_loop_proportion - see self_loop_proportion function documentation

• street_density_km - street_length_total per sq km

• street_length_avg - street_length_total / street_segment_count

• street_length_total - see street_length_total function documentation

• street_segment_count - see street_segment_count function documentation

• streets_per_node_avg - see streets_per_node_avg function documentation

• streets_per_node_counts - see streets_per_node_counts function documentation

• streets_per_node_proportions - see streets_per_node_proportions function documenta-
tion

Return type
dict

osmnx.stats.circuity_avg(Gu)
Calculate average street circuity using edges of undirected graph.

Circuity is the sum of edge lengths divided by the sum of straight-line distances between edge endpoints. Cal-
culates straight-line distance as euclidean distance if projected or great-circle distance if unprojected.

Parameters
Gu (networkx.MultiGraph) – undirected input graph

Returns
circuity_avg – the graph’s average undirected edge circuity

Return type
float

osmnx.stats.count_streets_per_node(G, nodes=None)
Count how many physical street segments connect to each node in a graph.

This function uses an undirected representation of the graph and special handling of self-loops to accurately count
physical streets rather than directed edges. Note: this function is automatically run by all the graph.graph_from_x
functions prior to truncating the graph to the requested boundaries, to add accurate street_count attributes to each
node even if some of its neighbors are outside the requested graph boundaries.

Parameters

• G (networkx.MultiDiGraph) – input graph

• nodes (list) – which node IDs to get counts for. if None, use all graph nodes, otherwise
calculate counts only for these node IDs

Returns
streets_per_node – counts of how many physical streets connect to each node, with keys = node
ids and values = counts

Return type
dict

6.3. User Reference 51

OSMnx, Release 1.9.2

osmnx.stats.edge_length_total(G)
Calculate graph’s total edge length.

Parameters
G (networkx.MultiDiGraph) – input graph

Returns
length – total length (meters) of edges in graph

Return type
float

osmnx.stats.intersection_count(G=None, min_streets=2)
Count the intersections in a graph.

Intersections are defined as nodes with at least min_streets number of streets incident on them.

Parameters

• G (networkx.MultiDiGraph) – input graph

• min_streets (int) – a node must have at least min_streets incident on them to count as an
intersection

Returns
count – count of intersections in graph

Return type
int

osmnx.stats.self_loop_proportion(Gu)
Calculate percent of edges that are self-loops in a graph.

A self-loop is defined as an edge from node u to node v where u==v.

Parameters
Gu (networkx.MultiGraph) – undirected input graph

Returns
proportion – proportion of graph edges that are self-loops

Return type
float

osmnx.stats.street_length_total(Gu)
Calculate graph’s total street segment length.

Parameters
Gu (networkx.MultiGraph) – undirected input graph

Returns
length – total length (meters) of streets in graph

Return type
float

osmnx.stats.street_segment_count(Gu)
Count the street segments in a graph.

Parameters
Gu (networkx.MultiGraph) – undirected input graph

Returns
count – count of street segments in graph

52 Chapter 6. Documentation

OSMnx, Release 1.9.2

Return type
int

osmnx.stats.streets_per_node(G)
Count streets (undirected edges) incident on each node.

Parameters
G (networkx.MultiDiGraph) – input graph

Returns
spn – dictionary with node ID keys and street count values

Return type
dict

osmnx.stats.streets_per_node_avg(G)
Calculate graph’s average count of streets per node.

Parameters
G (networkx.MultiDiGraph) – input graph

Returns
spna – average count of streets per node

Return type
float

osmnx.stats.streets_per_node_counts(G)
Calculate streets-per-node counts.

Parameters
G (networkx.MultiDiGraph) – input graph

Returns
spnc – dictionary keyed by count of streets incident on each node, and with values of how many
nodes in the graph have this count

Return type
dict

osmnx.stats.streets_per_node_proportions(G)
Calculate streets-per-node proportions.

Parameters
G (networkx.MultiDiGraph) – input graph

Returns
spnp – dictionary keyed by count of streets incident on each node, and with values of what
proportion of nodes in the graph have this count

Return type
dict

6.3. User Reference 53

OSMnx, Release 1.9.2

6.3.16 osmnx.truncate module

Truncate graph by distance, bounding box, or polygon.

osmnx.truncate.largest_component(G, strongly=False)
Get subgraph of G’s largest weakly/strongly connected component.

Parameters

• G (networkx.MultiDiGraph) – input graph

• strongly (bool) – if True, return the largest strongly instead of weakly connected compo-
nent

Returns
G – the largest connected component subgraph of the original graph

Return type
networkx.MultiDiGraph

osmnx.truncate.truncate_graph_bbox(G, north=None, south=None, east=None, west=None, bbox=None,
truncate_by_edge=False, retain_all=False, quadrat_width=None,
min_num=None)

Remove every node in graph that falls outside a bounding box.

Parameters

• G (networkx.MultiDiGraph) – input graph

• north (float) – deprecated, do not use

• south (float) – deprecated, do not use

• east (float) – deprecated, do not use

• west (float) – deprecated, do not use

• bbox (tuple of floats) – bounding box as (north, south, east, west)

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• quadrat_width (float) – deprecated, do not use

• min_num (int) – deprecated, do not use

Returns
G – the truncated graph

Return type
networkx.MultiDiGraph

osmnx.truncate.truncate_graph_dist(G, source_node, max_dist=1000, weight='length', retain_all=False)
Remove every node farther than some network distance from source_node.

This function can be slow for large graphs, as it must calculate shortest path distances between source_node and
every other graph node.

Parameters

• G (networkx.MultiDiGraph) – input graph

54 Chapter 6. Documentation

OSMnx, Release 1.9.2

• source_node (int) – node in graph from which to measure network distances to other
nodes

• max_dist (float) – remove every node in the graph that is greater than this distance (in
same units as weight attribute) along the network from source_node

• weight (string) – graph edge attribute to use to measure distance

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

Returns
G – the truncated graph

Return type
networkx.MultiDiGraph

osmnx.truncate.truncate_graph_polygon(G, polygon, retain_all=False, truncate_by_edge=False,
quadrat_width=None, min_num=None)

Remove every node in graph that falls outside a (Multi)Polygon.

Parameters

• G (networkx.MultiDiGraph) – input graph

• polygon (shapely.geometry.Polygon or shapely.geometry.MultiPolygon) –
only retain nodes in graph that lie within this geometry

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside boundary polygon if at least one
of node’s neighbors is within the polygon

• quadrat_width (float) – deprecated, do not use

• min_num (int) – deprecated, do not use

Returns
G – the truncated graph

Return type
networkx.MultiDiGraph

6.3.17 osmnx.utils module

General utility functions.

osmnx.utils.citation(style='bibtex')
Print the OSMnx package’s citation information.

Boeing, G. (2017). OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Com-
plex Street Networks. Computers, Environment and Urban Systems, 65, 126-139. https://doi.org/10.1016/j.
compenvurbsys.2017.05.004

Parameters
style (string {"apa", "bibtex", "ieee"}) – citation format, either APA or BibTeX or
IEEE

Return type
None

6.3. User Reference 55

https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1016/j.compenvurbsys.2017.05.004

OSMnx, Release 1.9.2

osmnx.utils.config(all_oneway=False, bidirectional_network_types=['walk'], cache_folder='./cache',
cache_only_mode=False, data_folder='./data', default_accept_language=None,
default_access='["access"!~"private"]', default_crs='epsg:4326', default_referer=None,
default_user_agent=None, imgs_folder='./images', log_console=False, log_file=False,
log_filename='osmnx', log_level=20, log_name='OSMnx', logs_folder='./logs',
max_query_area_size=2500000000, memory=None, nominatim_endpoint=None,
nominatim_key=None, osm_xml_node_attrs=None, osm_xml_node_tags=None,
osm_xml_way_attrs=None, osm_xml_way_tags=None, overpass_endpoint=None,
overpass_rate_limit=True, overpass_settings='[out:json][timeout:{timeout}]{maxsize}',
requests_kwargs={}, timeout=None, use_cache=True, useful_tags_node=['ref', 'highway'],
useful_tags_way=['bridge', 'tunnel', 'oneway', 'lanes', 'ref', 'name', 'highway', 'maxspeed',
'service', 'access', 'area', 'landuse', 'width', 'est_width', 'junction'])

Do not use: deprecated. Use the settings module directly.

Parameters

• all_oneway (bool) – deprecated

• bidirectional_network_types (list) – deprecated

• cache_folder (string or pathlib.Path) – deprecated

• data_folder (string or pathlib.Path) – deprecated

• cache_only_mode (bool) – deprecated

• default_accept_language (string) – deprecated

• default_access (string) – deprecated

• default_crs (string) – deprecated

• default_referer (string) – deprecated

• default_user_agent (string) – deprecated

• imgs_folder (string or pathlib.Path) – deprecated

• log_file (bool) – deprecated

• log_filename (string) – deprecated

• log_console (bool) – deprecated

• log_level (int) – deprecated

• log_name (string) – deprecated

• logs_folder (string or pathlib.Path) – deprecated

• max_query_area_size (int) – deprecated

• memory (int) – deprecated

• nominatim_endpoint (string) – deprecated

• nominatim_key (string) – deprecated

• osm_xml_node_attrs (list) – deprecated

• osm_xml_node_tags (list) – deprecated

• osm_xml_way_attrs (list) – deprecated

• osm_xml_way_tags (list) – deprecated

• overpass_endpoint (string) – deprecated

56 Chapter 6. Documentation

OSMnx, Release 1.9.2

• overpass_rate_limit (bool) – deprecated

• overpass_settings (string) – deprecated

• requests_kwargs (dict) – deprecated

• timeout (int) – deprecated

• use_cache (bool) – deprecated

• useful_tags_node (list) – deprecated

• useful_tags_way (list) – deprecated

Return type
None

osmnx.utils.log(message, level=None, name=None, filename=None)
Write a message to the logger.

This logs to file and/or prints to the console (terminal), depending on the current configuration of settings.log_file
and settings.log_console.

Parameters

• message (string) – the message to log

• level (int) – one of Python’s logger.level constants

• name (string) – name of the logger

• filename (string) – name of the log file, without file extension

Return type
None

osmnx.utils.ts(style='datetime', template=None)
Return current local timestamp as a string.

Parameters

• style (string {"datetime", "date", "time"}) – format the timestamp with this
built-in style

• template (string) – if not None, format the timestamp with this format string instead of
one of the built-in styles

Returns
ts – local timestamp string

Return type
string

6.3.18 osmnx.utils_geo module

Geospatial utility functions.

osmnx.utils_geo.bbox_from_point(point, dist=1000, project_utm=False, return_crs=False)
Create a bounding box around a (lat, lon) point.

Create a bounding box some distance (in meters) in each direction (north, south, east, and west) from the center
point and optionally project it.

Parameters

6.3. User Reference 57

OSMnx, Release 1.9.2

• point (tuple) – the (lat, lon) center point to create the bounding box around

• dist (int) – bounding box distance in meters from the center point

• project_utm (bool) – if True, return bounding box as UTM-projected coordinates

• return_crs (bool) – if True, and project_utm=True, return the projected CRS too

Returns
bbox or bbox, crs – (north, south, east, west) or ((north, south, east, west), crs)

Return type
tuple or tuple, crs

osmnx.utils_geo.bbox_to_poly(north=None, south=None, east=None, west=None, bbox=None)
Convert bounding box coordinates to shapely Polygon.

Parameters

• north (float) – deprecated, do not use

• south (float) – deprecated, do not use

• east (float) – deprecated, do not use

• west (float) – deprecated, do not use

• bbox (tuple of floats) – bounding box as (north, south, east, west)

Return type
shapely.geometry.Polygon

osmnx.utils_geo.interpolate_points(geom, dist)
Interpolate evenly spaced points along a LineString.

The spacing is approximate because the LineString’s length may not be evenly divisible by it.

Parameters

• geom (shapely.geometry.LineString) – a LineString geometry

• dist (float) – spacing distance between interpolated points, in same units as geom. smaller
values accordingly generate more points.

Yields
points (generator) – tuples of (x, y) floats of the interpolated points’ coordinates

osmnx.utils_geo.round_geometry_coords(geom, precision)
Do not use: deprecated.

Parameters

• geom (shapely.geometry.geometry {Point, MultiPoint, LineString,
MultiLineString, Polygon, MultiPolygon}) – deprecated, do not use

• precision (int) – deprecated, do not use

Return type
shapely.geometry.geometry

osmnx.utils_geo.sample_points(G, n)
Randomly sample points constrained to a spatial graph.

This generates a graph-constrained uniform random sample of points. Unlike typical spatially uniform random
sampling, this method accounts for the graph’s geometry. And unlike equal-length edge segmenting, this method
guarantees uniform randomness.

58 Chapter 6. Documentation

OSMnx, Release 1.9.2

Parameters

• G (networkx.MultiGraph) – graph from which to sample points. should be undirected (to
avoid oversampling bidirectional edges) and projected (for accurate point interpolation)

• n (int) – how many points to sample

Returns
points – the sampled points, multi-indexed by (u, v, key) of the edge from which each point was
drawn

Return type
geopandas.GeoSeries

6.3.19 osmnx.utils_graph module

Graph utility functions.

osmnx.utils_graph.get_digraph(G, weight='length')
Do not use: deprecated.

Use the convert.to_digraph function instead.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• weight (string) – deprecated, do not use

Return type
networkx.DiGraph

osmnx.utils_graph.get_largest_component(G, strongly=False)
Do not use: deprecated.

Use the truncate.largest_component function instead.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• strongly (bool) – deprecated, do not use

Returns
G

Return type
networkx.MultiDiGraph

osmnx.utils_graph.get_route_edge_attributes(G, route, attribute=None, minimize_key='length',
retrieve_default=None)

Do not use: deprecated.

Use the routing.route_to_gdf function instead.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• route (list) – deprecated, do not use

• attribute (string) – deprecated, do not use

• minimize_key (string) – deprecated, do not use

6.3. User Reference 59

OSMnx, Release 1.9.2

• retrieve_default (Callable[Tuple[Any, Any], Any]) – deprecated, do not use

Returns
attribute_values

Return type
list

osmnx.utils_graph.get_undirected(G)
Do not use: deprecated.

Use the convert.to_undirected function instead.

Parameters
G (networkx.MultiDiGraph) – deprecated, do not use

Return type
networkx.MultiGraph

osmnx.utils_graph.graph_from_gdfs(gdf_nodes, gdf_edges, graph_attrs=None)
Do not use: deprecated.

Use the convert.graph_from_gdfs function instead.

Parameters

• gdf_nodes (geopandas.GeoDataFrame) – deprecated, do not use

• gdf_edges (geopandas.GeoDataFrame) – deprecated, do not use

• graph_attrs (dict) – deprecated, do not use

Returns
G

Return type
networkx.MultiDiGraph

osmnx.utils_graph.graph_to_gdfs(G, nodes=True, edges=True, node_geometry=True,
fill_edge_geometry=True)

Do not use: deprecated.

Use the convert.graph_to_gdfs function instead.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• nodes (bool) – deprecated, do not use

• edges (bool) – deprecated, do not use

• node_geometry (bool) – deprecated, do not use

• fill_edge_geometry (bool) – deprecated, do not use

Return type
geopandas.GeoDataFrame or tuple

osmnx.utils_graph.remove_isolated_nodes(G, warn=True)
Do not use: deprecated.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

60 Chapter 6. Documentation

OSMnx, Release 1.9.2

• warn (bool) – deprecated, do not use

Returns
G

Return type
networkx.MultiDiGraph

osmnx.utils_graph.route_to_gdf(G, route, weight='length')
Do not use: deprecated.

Use the routing.route_to_gdf function instead.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• route (list) – deprecated, do not use

• weight (string) – deprecated, do not use

Returns
gdf_edges

Return type
geopandas.GeoDataFrame

6.4 Internals Reference

This is the complete OSMnx internals reference for developers, including private internal modules and functions. If
you are instead looking for a user guide to OSMnx’s public API, see the User Reference.

6.4.1 osmnx._api module

Expose most common parts of public API directly in package namespace.

6.4.2 osmnx.bearing module

Calculate graph edge bearings.

osmnx.bearing._bearings_distribution(Gu, num_bins, min_length=0, weight=None)
Compute distribution of bearings across evenly spaced bins.

Prevents bin-edge effects around common values like 0 degrees and 90 degrees by initially creating twice as
many bins as desired, then merging them in pairs. For example, if num_bins=36 is provided, then each bin will
represent 10 degrees around the compass, with the first bin representing 355 degrees to 5 degrees.

Parameters

• Gu (networkx.MultiGraph) – undirected, unprojected graph with bearing attributes on
each edge

• num_bins (int) – number of bins for the bearings histogram

• min_length (float) – ignore edges with length attributes less than min_length; useful to
ignore the noise of many very short edges

6.4. Internals Reference 61

OSMnx, Release 1.9.2

• weight (string) – if not None, weight edges’ bearings by this (non-null) edge attribute. for
example, if “length” is provided, this will return 1 bearing observation per meter per street,
which could result in a very large bearings array.

Returns
bin_counts, bin_edges – counts of bearings per bin and the bins edges

Return type
tuple of numpy.array

osmnx.bearing._extract_edge_bearings(Gu, min_length=0, weight=None)
Extract undirected graph’s bidirectional edge bearings.

For example, if an edge has a bearing of 90 degrees then we will record bearings of both 90 degrees and 270
degrees for this edge.

Parameters

• Gu (networkx.MultiGraph) – undirected, unprojected graph with bearing attributes on
each edge

• min_length (float) – ignore edges with length attributes less than min_length; useful to
ignore the noise of many very short edges

• weight (string) – if not None, weight edges’ bearings by this (non-null) edge attribute. for
example, if “length” is provided, this will return 1 bearing observation per meter per street,
which could result in a very large bearings array.

Returns
bearings – the graph’s bidirectional edge bearings

Return type
numpy.array

osmnx.bearing.add_edge_bearings(G, precision=None)
Add compass bearing attributes to all graph edges.

Vectorized function to calculate (initial) bearing from origin node to destination node for each edge in a directed,
unprojected graph then add these bearings as new edge attributes. Bearing represents angle in degrees (clock-
wise) between north and the geodesic line from the origin node to the destination node. Ignores self-loop edges
as their bearings are undefined.

Parameters

• G (networkx.MultiDiGraph) – unprojected graph

• precision (int) – deprecated, do not use

Returns
G – graph with edge bearing attributes

Return type
networkx.MultiDiGraph

osmnx.bearing.calculate_bearing(lat1, lon1, lat2, lon2)
Calculate the compass bearing(s) between pairs of lat-lon points.

Vectorized function to calculate initial bearings between two points’ coordinates or between arrays of points’
coordinates. Expects coordinates in decimal degrees. Bearing represents the clockwise angle in degrees between
north and the geodesic line from (lat1, lon1) to (lat2, lon2).

Parameters

• lat1 (float or numpy.array of float) – first point’s latitude coordinate

62 Chapter 6. Documentation

OSMnx, Release 1.9.2

• lon1 (float or numpy.array of float) – first point’s longitude coordinate

• lat2 (float or numpy.array of float) – second point’s latitude coordinate

• lon2 (float or numpy.array of float) – second point’s longitude coordinate

Returns
bearing – the bearing(s) in decimal degrees

Return type
float or numpy.array of float

osmnx.bearing.orientation_entropy(Gu, num_bins=36, min_length=0, weight=None)
Calculate undirected graph’s orientation entropy.

Orientation entropy is the entropy of its edges’ bidirectional bearings across evenly spaced bins. Ignores self-loop
edges as their bearings are undefined.

For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network Orientation, Configuration, and
Entropy.” Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1

Parameters

• Gu (networkx.MultiGraph) – undirected, unprojected graph with bearing attributes on
each edge

• num_bins (int) – number of bins; for example, if num_bins=36 is provided, then each bin
will represent 10 degrees around the compass

• min_length (float) – ignore edges with length attributes less than min_length; useful to
ignore the noise of many very short edges

• weight (string) – if not None, weight edges’ bearings by this (non-null) edge attribute. for
example, if “length” is provided, this will return 1 bearing observation per meter per street,
which could result in a very large bearings array.

Returns
entropy – the graph’s orientation entropy

Return type
float

osmnx.bearing.plot_orientation(Gu, num_bins=36, min_length=0, weight=None, ax=None, figsize=(5, 5),
area=True, color='#003366', edgecolor='k', linewidth=0.5, alpha=0.7,
title=None, title_y=1.05, title_font=None, xtick_font=None)

Do not use: deprecated.

The plot_orientation function moved to the plot module. Calling it via the bearing module will raise an error
starting in the v2.0.0 release.

Parameters

• Gu (networkx.MultiGraph) – deprecated, do not use

• num_bins (int) – deprecated, do not use

• min_length (float) – deprecated, do not use

• weight (string) – deprecated, do not use

• ax (matplotlib.axes.PolarAxesSubplot) – deprecated, do not use

• figsize (tuple) – deprecated, do not use

• area (bool) – deprecated, do not use

6.4. Internals Reference 63

https://doi.org/10.1007/s41109-019-0189-1

OSMnx, Release 1.9.2

• color (string) – deprecated, do not use

• edgecolor (string) – deprecated, do not use

• linewidth (float) – deprecated, do not use

• alpha (float) – deprecated, do not use

• title (string) – deprecated, do not use

• title_y (float) – deprecated, do not use

• title_font (dict) – deprecated, do not use

• xtick_font (dict) – deprecated, do not use

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

6.4.3 osmnx.convert module

Convert spatial graphs to/from different data types.

osmnx.convert._is_duplicate_edge(data1, data2)
Check if two graph edge data dicts have the same osmid and geometry.

Parameters

• data1 (dict) – the first edge’s data

• data2 (dict) – the second edge’s data

Returns
is_dupe

Return type
bool

osmnx.convert._is_same_geometry(ls1, ls2)
Determine if two LineString geometries are the same (in either direction).

Check both the normal and reversed orders of their constituent points.

Parameters

• ls1 (shapely.geometry.LineString) – the first LineString geometry

• ls2 (shapely.geometry.LineString) – the second LineString geometry

Return type
bool

osmnx.convert._update_edge_keys(G)
Increment key of one edge of parallel edges that differ in geometry.

For example, two streets from u to v that bow away from each other as separate streets, rather than opposite
direction edges of a single street. Increment one of these edge’s keys so that they do not match across u, v, k or
v, u, k so we can add both to an undirected MultiGraph.

Parameters
G (networkx.MultiDiGraph) – input graph

64 Chapter 6. Documentation

OSMnx, Release 1.9.2

Returns
G

Return type
networkx.MultiDiGraph

osmnx.convert.graph_from_gdfs(gdf_nodes, gdf_edges, graph_attrs=None)
Convert node and edge GeoDataFrames to a MultiDiGraph.

This function is the inverse of graph_to_gdfs and is designed to work in conjunction with it.

However, you can convert arbitrary node and edge GeoDataFrames as long as 1) gdf_nodes is uniquely indexed by
osmid, 2) gdf_nodes contains x and y coordinate columns representing node geometries, 3) gdf_edges is uniquely
multi-indexed by u, v, key (following normal MultiDiGraph structure). This allows you to load any node/edge
shapefiles or GeoPackage layers as GeoDataFrames then convert them to a MultiDiGraph for graph analysis.
Note that any geometry attribute on gdf_nodes is discarded since x and y provide the necessary node geometry
information instead.

Parameters

• gdf_nodes (geopandas.GeoDataFrame) – GeoDataFrame of graph nodes uniquely in-
dexed by osmid

• gdf_edges (geopandas.GeoDataFrame) – GeoDataFrame of graph edges uniquely multi-
indexed by u, v, key

• graph_attrs (dict) – the new G.graph attribute dict. if None, use crs from gdf_edges as
the only graph-level attribute (gdf_edges must have crs attribute set)

Returns
G

Return type
networkx.MultiDiGraph

osmnx.convert.graph_to_gdfs(G, nodes=True, edges=True, node_geometry=True, fill_edge_geometry=True)
Convert a MultiDiGraph to node and/or edge GeoDataFrames.

This function is the inverse of graph_from_gdfs.

Parameters

• G (networkx.MultiDiGraph) – input graph

• nodes (bool) – if True, convert graph nodes to a GeoDataFrame and return it

• edges (bool) – if True, convert graph edges to a GeoDataFrame and return it

• node_geometry (bool) – if True, create a geometry column from node x and y attributes

• fill_edge_geometry (bool) – if True, fill in missing edge geometry fields using nodes u
and v

Returns
gdf_nodes or gdf_edges or tuple of (gdf_nodes, gdf_edges). gdf_nodes is indexed by osmid and
gdf_edges is multi-indexed by u, v, key following normal MultiDiGraph structure.

Return type
geopandas.GeoDataFrame or tuple

osmnx.convert.to_digraph(G, weight='length')
Convert MultiDiGraph to DiGraph.

6.4. Internals Reference 65

OSMnx, Release 1.9.2

Chooses between parallel edges by minimizing weight attribute value. Note: see also to_undirected to convert
MultiDiGraph to MultiGraph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• weight (string) – attribute value to minimize when choosing between parallel edges

Return type
networkx.DiGraph

osmnx.convert.to_undirected(G)
Convert MultiDiGraph to undirected MultiGraph.

Maintains parallel edges only if their geometries differ. Note: see also to_digraph to convert MultiDiGraph to
DiGraph.

Parameters
G (networkx.MultiDiGraph) – input graph

Return type
networkx.MultiGraph

6.4.4 osmnx.distance module

Calculate distances and find nearest node/edge(s) to point(s).

osmnx.distance.add_edge_lengths(G, precision=None, edges=None)
Add length attribute (in meters) to each edge.

Vectorized function to calculate great-circle distance between each edge’s incident nodes. Ensure graph is in
unprojected coordinates, and unsimplified to get accurate distances.

Note: this function is run by all the graph.graph_from_x functions automatically to add length attributes to all
edges. It calculates edge lengths as the great-circle distance from node u to node v. When OSMnx automatically
runs this function upon graph creation, it does it before simplifying the graph: thus it calculates the straight-line
lengths of edge segments that are themselves all straight. Only after simplification do edges take on a (potentially)
curvilinear geometry. If you wish to calculate edge lengths later, you are calculating straight-line distances which
necessarily ignore the curvilinear geometry. You only want to run this function on a graph with all straight edges
(such as is the case with an unsimplified graph).

Parameters

• G (networkx.MultiDiGraph) – unprojected, unsimplified input graph

• precision (int) – deprecated, do not use

• edges (tuple) – tuple of (u, v, k) tuples representing subset of edges to add length attributes
to. if None, add lengths to all edges.

Returns
G – graph with edge length attributes

Return type
networkx.MultiDiGraph

osmnx.distance.euclidean(y1, x1, y2, x2)
Calculate Euclidean distances between pairs of points.

Vectorized function to calculate the Euclidean distance between two points’ coordinates or between arrays of
points’ coordinates. For accurate results, use projected coordinates rather than decimal degrees.

66 Chapter 6. Documentation

OSMnx, Release 1.9.2

Parameters

• y1 (float or numpy.array of float) – first point’s y coordinate

• x1 (float or numpy.array of float) – first point’s x coordinate

• y2 (float or numpy.array of float) – second point’s y coordinate

• x2 (float or numpy.array of float) – second point’s x coordinate

Returns
dist – distance from each (x1, y1) to each (x2, y2) in coordinates’ units

Return type
float or numpy.array of float

osmnx.distance.euclidean_dist_vec(y1, x1, y2, x2)
Do not use, deprecated.

The euclidean_dist_vec function has been renamed euclidean. Calling euclidean_dist_vec will raise an error in
the v2.0.0 release.

Parameters

• y1 (float or numpy.array of float) – first point’s y coordinate

• x1 (float or numpy.array of float) – first point’s x coordinate

• y2 (float or numpy.array of float) – second point’s y coordinate

• x2 (float or numpy.array of float) – second point’s x coordinate

Returns
dist – distance from each (x1, y1) to each (x2, y2) in coordinates’ units

Return type
float or numpy.array of float

osmnx.distance.great_circle(lat1, lon1, lat2, lon2, earth_radius=6371009)
Calculate great-circle distances between pairs of points.

Vectorized function to calculate the great-circle distance between two points’ coordinates or between arrays of
points’ coordinates using the haversine formula. Expects coordinates in decimal degrees.

Parameters

• lat1 (float or numpy.array of float) – first point’s latitude coordinate

• lon1 (float or numpy.array of float) – first point’s longitude coordinate

• lat2 (float or numpy.array of float) – second point’s latitude coordinate

• lon2 (float or numpy.array of float) – second point’s longitude coordinate

• earth_radius (float) – earth’s radius in units in which distance will be returned (default
is meters)

Returns
dist – distance from each (lat1, lon1) to each (lat2, lon2) in units of earth_radius

Return type
float or numpy.array of float

6.4. Internals Reference 67

OSMnx, Release 1.9.2

osmnx.distance.great_circle_vec(lat1, lng1, lat2, lng2, earth_radius=6371009)
Do not use, deprecated.

The great_circle_vec function has been renamed great_circle. Calling great_circle_vec will raise an error in the
v2.0.0 release.

Parameters

• lat1 (float or numpy.array of float) – first point’s latitude coordinate

• lng1 (float or numpy.array of float) – first point’s longitude coordinate

• lat2 (float or numpy.array of float) – second point’s latitude coordinate

• lng2 (float or numpy.array of float) – second point’s longitude coordinate

• earth_radius (float) – earth’s radius in units in which distance will be returned (default
is meters)

Returns
dist – distance from each (lat1, lng1) to each (lat2, lng2) in units of earth_radius

Return type
float or numpy.array of float

osmnx.distance.k_shortest_paths(G, orig, dest, k, weight='length')
Do not use, deprecated.

The k_shortest_paths function has moved to the routing module. Calling it via the distance module will raise an
error in the v2.0.0 release.

Parameters

• G (networkx.MultiDiGraph) – input graph

• orig (int) – origin node ID

• dest (int) – destination node ID

• k (int) – number of shortest paths to solve

• weight (string) – edge attribute to minimize when solving shortest paths. default is edge
length in meters.

Yields
path (list) – a generator of k shortest paths ordered by total weight. each path is a list of node
IDs.

osmnx.distance.nearest_edges(G, X, Y , interpolate=None, return_dist=False)
Find the nearest edge to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest edge to that point. If X and Y are lists of
coordinate values, this will return the nearest edge to each point. This function uses an R-tree spatial index and
minimizes the euclidean distance from each point to the possible matches. For accurate results, use a projected
graph and points.

Parameters

• G (networkx.MultiDiGraph) – graph in which to find nearest edges

• X (float or list) – points’ x (longitude) coordinates, in same CRS/units as graph and
containing no nulls

• Y (float or list) – points’ y (latitude) coordinates, in same CRS/units as graph and con-
taining no nulls

68 Chapter 6. Documentation

OSMnx, Release 1.9.2

• interpolate (float) – deprecated, do not use

• return_dist (bool) – optionally also return distance between points and nearest edges

Returns
ne or (ne, dist) – nearest edges as (u, v, key) or optionally a tuple where dist contains distances
between the points and their nearest edges

Return type
tuple or list

osmnx.distance.nearest_nodes(G, X, Y , return_dist=False)
Find the nearest node to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest node to that point. If X and Y are lists of
coordinate values, this will return the nearest node to each point.

If the graph is projected, this uses a k-d tree for euclidean nearest neighbor search, which requires that scipy
is installed as an optional dependency. If it is unprojected, this uses a ball tree for haversine nearest neighbor
search, which requires that scikit-learn is installed as an optional dependency.

Parameters

• G (networkx.MultiDiGraph) – graph in which to find nearest nodes

• X (float or list) – points’ x (longitude) coordinates, in same CRS/units as graph and
containing no nulls

• Y (float or list) – points’ y (latitude) coordinates, in same CRS/units as graph and con-
taining no nulls

• return_dist (bool) – optionally also return distance between points and nearest nodes

Returns
nn or (nn, dist) – nearest node IDs or optionally a tuple where dist contains distances between
the points and their nearest nodes

Return type
int/list or tuple

osmnx.distance.shortest_path(G, orig, dest, weight='length', cpus=1)
Do not use, deprecated.

The shortest_path function has moved to the routing module. Calling it via the distance module will raise an
error in the v2.0.0 release.

Parameters

• G (networkx.MultiDiGraph) – input graph

• orig (int or list) – origin node ID, or a list of origin node IDs

• dest (int or list) – destination node ID, or a list of destination node IDs

• weight (string) – edge attribute to minimize when solving shortest path

• cpus (int) – how many CPU cores to use; if None, use all available

Returns
path – list of node IDs constituting the shortest path, or, if orig and dest are lists, then a list of
path lists

Return type
list

6.4. Internals Reference 69

OSMnx, Release 1.9.2

6.4.5 osmnx._downloader module

Handle HTTP requests to web APIs.

osmnx._downloader._config_dns(url)
Force socket.getaddrinfo to use IP address instead of hostname.

Resolves the URL’s domain to an IP address so that we use the same server for both 1) checking the necessary
pause duration and 2) sending the query itself even if there is round-robin redirecting among multiple server
machines on the server-side. Mutates the getaddrinfo function so it uses the same IP address everytime it finds
the hostname in the URL.

For example, the server overpass-api.de just redirects to one of the other servers (currently gall.openstreetmap.de
and lambert.openstreetmap.de). So if we check the status endpoint of overpass-api.de, we may see results for
server gall, but when we submit the query itself it gets redirected to server lambert. This could result in violating
server lambert’s slot management timing.

Parameters
url (string) – the URL to consistently resolve the IP address of

Return type
None

osmnx._downloader._get_http_headers(user_agent=None, referer=None, accept_language=None)
Update the default requests HTTP headers with OSMnx info.

Parameters

• user_agent (string) – the user agent string, if None will set with OSMnx default

• referer (string) – the referer string, if None will set with OSMnx default

• accept_language (string) – make accept-language explicit e.g. for consistent nominatim
result sorting

Returns
headers

Return type
dict

osmnx._downloader._hostname_from_url(url)
Extract the hostname (domain) from a URL.

Parameters
url (string) – the url from which to extract the hostname

Returns
hostname – the extracted hostname (domain)

Return type
string

osmnx._downloader._parse_response(response)
Parse JSON from a requests response and log the details.

Parameters
response (requests.response) – the response object

Returns
response_json

70 Chapter 6. Documentation

OSMnx, Release 1.9.2

Return type
dict

osmnx._downloader._resolve_host_via_doh(hostname)
Resolve hostname to IP address via Google’s public DNS-over-HTTPS API.

Necessary fallback as socket.gethostbyname will not always work when using a proxy. See https://developers.
google.com/speed/public-dns/docs/doh/json If the user has set settings.doh_url_template=None or if resolution
fails (e.g., due to local network blocking DNS-over-HTTPS) the hostname itself will be returned instead. Note
that this means that server slot management may be violated: see _config_dns documentation for details.

Parameters
hostname (string) – the hostname to consistently resolve the IP address of

Returns
ip_address – resolved IP address of host, or hostname itself if resolution failed

Return type
string

osmnx._downloader._retrieve_from_cache(url, check_remark=True)
Retrieve a HTTP response JSON object from the cache, if it exists.

Parameters

• url (string) – the URL of the request

• check_remark (string) – if True, only return filepath if cached response does not have a
remark key indicating a server warning

Returns
response_json – cached response for url if it exists in the cache, otherwise None

Return type
dict

osmnx._downloader._save_to_cache(url, response_json, ok)
Save a HTTP response JSON object to a file in the cache folder.

Function calculates the checksum of url to generate the cache file’s name. If the request was sent to server via
POST instead of GET, then URL should be a GET-style representation of request. Response is only saved to a
cache file if settings.use_cache is True, response_json is not None, and ok is True.

Users should always pass OrderedDicts instead of dicts of parameters into request functions, so the parameters
remain in the same order each time, producing the same URL string, and thus the same hash. Otherwise the cache
will eventually contain multiple saved responses for the same request because the URL’s parameters appeared in
a different order each time.

Parameters

• url (string) – the URL of the request

• response_json (dict) – the JSON response

• ok (bool) – requests response.ok value

Return type
None

osmnx._downloader._url_in_cache(url)
Determine if a URL’s response exists in the cache.

Calculates the checksum of url to determine the cache file’s name.

6.4. Internals Reference 71

https://developers.google.com/speed/public-dns/docs/doh/json
https://developers.google.com/speed/public-dns/docs/doh/json

OSMnx, Release 1.9.2

Parameters
url (string) – the URL to look for in the cache

Returns
filepath – path to cached response for url if it exists, otherwise None

Return type
pathlib.Path

6.4.6 osmnx.elevation module

Add node elevations from raster files or web APIs, and calculate edge grades.

osmnx.elevation._elevation_request(url, pause)
Send a HTTP GET request to Google Maps-style Elevation API.

Parameters

• url (string) – URL for API endpoint populated with request data

• pause (float) – how long to pause in seconds before request

Returns
response_json

Return type
dict

osmnx.elevation._query_raster(nodes, filepath, band)
Query a raster for values at coordinates in a DataFrame’s x/y columns.

Parameters

• nodes (pandas.DataFrame) – DataFrame indexed by node ID and with two columns: x
and y

• filepath (string or pathlib.Path) – path to the raster file or VRT to query

• band (int) – which raster band to query

Returns
nodes_values – zipped node IDs and corresponding raster values

Return type
zip

osmnx.elevation.add_edge_grades(G, add_absolute=True, precision=None)
Add grade attribute to each graph edge.

Vectorized function to calculate the directed grade (ie, rise over run) for each edge in the graph and add it to the
edge as an attribute. Nodes must already have elevation attributes to use this function.

See also the add_node_elevations_raster and add_node_elevations_google functions.

Parameters

• G (networkx.MultiDiGraph) – input graph with elevation node attribute

• add_absolute (bool) – if True, also add absolute value of grade as grade_abs attribute

• precision (int) – deprecated, do not use

Returns
G – graph with edge grade (and optionally grade_abs) attributes

72 Chapter 6. Documentation

OSMnx, Release 1.9.2

Return type
networkx.MultiDiGraph

osmnx.elevation.add_node_elevations_google(G, api_key=None, batch_size=350, pause=0,
max_locations_per_batch=None, precision=None,
url_template=None)

Add an elevation (meters) attribute to each node using a web service.

By default, this uses the Google Maps Elevation API but you can optionally use an equivalent API with the same
interface and response format, such as Open Topo Data, via the settings module’s elevation_url_template. The
Google Maps Elevation API requires an API key but other providers may not.

For a free local alternative see the add_node_elevations_raster function. See also the add_edge_grades function.

Parameters

• G (networkx.MultiDiGraph) – input graph

• api_key (string) – a valid API key, can be None if the API does not require a key

• batch_size (int) – max number of coordinate pairs to submit in each API call (if this is too
high, the server will reject the request because its character limit exceeds the max allowed)

• pause (float) – time to pause between API calls, which can be increased if you get rate
limited

• max_locations_per_batch (int) – deprecated, do not use

• precision (int) – deprecated, do not use

• url_template (string) – deprecated, do not use

Returns
G – graph with node elevation attributes

Return type
networkx.MultiDiGraph

osmnx.elevation.add_node_elevations_raster(G, filepath, band=1, cpus=None)
Add elevation attribute to each node from local raster file(s).

If filepath is a list of paths, this will generate a virtual raster composed of the files at those paths as an intermediate
step.

See also the add_edge_grades function.

Parameters

• G (networkx.MultiDiGraph) – input graph, in same CRS as raster

• filepath (string or pathlib.Path or list of strings/Paths) – path (or list of
paths) to the raster file(s) to query

• band (int) – which raster band to query

• cpus (int) – how many CPU cores to use; if None, use all available

Returns
G – graph with node elevation attributes

Return type
networkx.MultiDiGraph

6.4. Internals Reference 73

OSMnx, Release 1.9.2

6.4.7 osmnx._errors module

Define custom errors and exceptions.

exception osmnx._errors.CacheOnlyInterruptError

Exception for settings.cache_only_mode=True interruption.

exception osmnx._errors.GraphSimplificationError

Exception for a problem with graph simplification.

exception osmnx._errors.InsufficientResponseError

Exception for empty or too few results in server response.

exception osmnx._errors.ResponseStatusCodeError

Exception for an unhandled server response status code.

6.4.8 osmnx.features module

Download OpenStreetMap geospatial features’ geometries and attributes.

Retrieve points of interest, building footprints, transit lines/stops, or any other map features from OSM, including their
geometries and attribute data, then construct a GeoDataFrame of them. You can use this module to query for nodes,
ways, and relations (the latter of type “multipolygon” or “boundary” only) by passing a dictionary of desired OSM tags.

For more details, see https://wiki.openstreetmap.org/wiki/Map_features and https://wiki.openstreetmap.org/wiki/
Elements

Refer to the Getting Started guide for usage limitations.

osmnx.features._assemble_multipolygon_component_polygons(element, geometries)
Assemble a MultiPolygon from its component LineStrings and Polygons.

The OSM wiki suggests an algorithm for assembling multipolygon geometries https://wiki.openstreetmap.org/
wiki/Relation:multipolygon/Algorithm. This method takes a simpler approach relying on the accurate tagging
of component ways with ‘inner’ and ‘outer’ roles as required on this page https://wiki.openstreetmap.org/wiki/
Relation:multipolygon.

Parameters

• element (dict) – element type “relation” from overpass response JSON

• geometries (dict) – dict containing all linestrings and polygons generated from OSM ways

Returns
geometry – a single MultiPolygon object

Return type
shapely.geometry.MultiPolygon

osmnx.features._buffer_invalid_geometries(gdf)
Buffer any invalid geometries remaining in the GeoDataFrame.

Invalid geometries in the GeoDataFrame (which may accurately reproduce invalid geometries in OpenStreetMap)
can cause the filtering to the query polygon and other subsequent geometric operations to fail. This function logs
the ids of the invalid geometries and applies a buffer of zero to try to make them valid.

Note: the resulting geometries may differ from the originals - please check them against OpenStreetMap

Parameters
gdf (geopandas.GeoDataFrame) – a GeoDataFrame with possibly invalid geometries

74 Chapter 6. Documentation

https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Relation:multipolygon/Algorithm
https://wiki.openstreetmap.org/wiki/Relation:multipolygon/Algorithm
https://wiki.openstreetmap.org/wiki/Relation:multipolygon
https://wiki.openstreetmap.org/wiki/Relation:multipolygon

OSMnx, Release 1.9.2

Returns
gdf – the GeoDataFrame with .buffer(0) applied to invalid geometries

Return type
geopandas.GeoDataFrame

osmnx.features._create_gdf(response_jsons, polygon, tags)
Parse JSON responses from the Overpass API to a GeoDataFrame.

Note: the polygon and tags arguments can both be None and the GeoDataFrame will still be created but it won’t
be filtered at the end i.e. the final GeoDataFrame will contain all tagged features in the response_jsons.

Parameters

• response_jsons (list) – list of JSON responses from from the Overpass API

• polygon (shapely.geometry.Polygon) – geographic boundary used for filtering the final
GeoDataFrame

• tags (dict) – dict of tags used for filtering the final GeoDataFrame

Returns
gdf – GeoDataFrame of features and their associated tags

Return type
geopandas.GeoDataFrame

osmnx.features._filter_gdf_by_polygon_and_tags(gdf , polygon, tags)
Filter the GeoDataFrame to the requested bounding polygon and tags.

Filters GeoDataFrame to query polygon and tags. Removes columns of all NaNs (that held values only in rows
removed by the filters). Resets the index of GeoDataFrame, writing it into a new column called ‘unique_id’.

Parameters

• gdf (geopandas.GeoDataFrame) – the GeoDataFrame to filter

• polygon (shapely.geometry.Polygon) – polygon defining the boundary of the requested
area

• tags (dict) – the tags requested

Returns
gdf – final filtered GeoDataFrame

Return type
geopandas.GeoDataFrame

6.4. Internals Reference 75

OSMnx, Release 1.9.2

osmnx.features._is_closed_way_a_polygon(element, polygon_features={'aeroway': {'polygon': 'blocklist',
'values': ['taxiway']}, 'amenity': {'polygon': 'all'}, 'area':
{'polygon': 'all'}, 'area:highway': {'polygon': 'all'}, 'barrier':
{'polygon': 'passlist', 'values': ['city_wall', 'ditch', 'hedge',
'retaining_wall', 'spikes']}, 'boundary': {'polygon': 'all'},
'building': {'polygon': 'all'}, 'building:part': {'polygon': 'all'},
'craft': {'polygon': 'all'}, 'golf': {'polygon': 'all'}, 'highway':
{'polygon': 'passlist', 'values': ['services', 'rest_area', 'escape',
'elevator']}, 'historic': {'polygon': 'all'}, 'indoor': {'polygon':
'all'}, 'landuse': {'polygon': 'all'}, 'leisure': {'polygon': 'all'},
'man_made': {'polygon': 'blocklist', 'values': ['cutline',
'embankment', 'pipeline']}, 'military': {'polygon': 'all'}, 'natural':
{'polygon': 'blocklist', 'values': ['coastline', 'cliff', 'ridge', 'arete',
'tree_row']}, 'office': {'polygon': 'all'}, 'place': {'polygon': 'all'},
'power': {'polygon': 'passlist', 'values': ['plant', 'substation',
'generator', 'transformer']}, 'public_transport': {'polygon': 'all'},
'railway': {'polygon': 'passlist', 'values': ['station', 'turntable',
'roundhouse', 'platform']}, 'ruins': {'polygon': 'all'}, 'shop':
{'polygon': 'all'}, 'tourism': {'polygon': 'all'}, 'waterway':
{'polygon': 'passlist', 'values': ['riverbank', 'dock', 'boatyard',
'dam']}})

Determine whether a closed OSM way represents a Polygon, not a LineString.

Closed OSM ways may represent LineStrings (e.g. a roundabout or hedge round a field) or Polygons (e.g. a
building footprint or land use area) depending on the tags applied to them.

The starting assumption is that it is not a polygon, however any polygon type tagging will return a polygon unless
explicitly tagged with area:no.

It is possible for a single closed OSM way to have both LineString and Polygon type tags (e.g. both barrier=fence
and landuse=agricultural). OSMnx will return a single Polygon for elements tagged in this way. For more
information see: https://wiki.openstreetmap.org/wiki/One_feature,_one_OSM_element)

Parameters

• element (dict) – closed element type “way” from overpass response JSON

• polygon_features (dict) – dict of tag keys with associated values and blocklist/passlist

Returns
is_polygon – True if the tags are for a polygon type geometry

Return type
bool

osmnx.features._parse_node_to_coords(element)
Parse coordinates from a node in the overpass response.

The coords are only used to create LineStrings and Polygons.

Parameters
element (dict) – element type “node” from overpass response JSON

Returns
coords – dict of latitude/longitude coordinates

Return type
dict

76 Chapter 6. Documentation

https://wiki.openstreetmap.org/wiki/One_feature,_one_OSM_element

OSMnx, Release 1.9.2

osmnx.features._parse_node_to_point(element)
Parse point from a tagged node in the overpass response.

The points are geometries in their own right.

Parameters
element (dict) – element type “node” from overpass response JSON

Returns
point – dict of OSM ID, OSM element type, tags and geometry

Return type
dict

osmnx.features._parse_relation_to_multipolygon(element, geometries)
Parse multipolygon from OSM relation (type:MultiPolygon).

See more information about relations from OSM documentation: https://wiki.openstreetmap.org/wiki/Relation

Parameters

• element (dict) – element type “relation” from overpass response JSON

• geometries (dict) – dict containing all linestrings and polygons generated from OSM ways

Returns
multipolygon – dict of tags and geometry for a single multipolygon

Return type
dict

osmnx.features._parse_way_to_linestring_or_polygon(element, coords)
Parse open LineString, closed LineString or Polygon from OSM ‘way’.

Please see https://wiki.openstreetmap.org/wiki/Overpass_turbo/Polygon_Features for more information on
which tags should be parsed to polygons

Parameters

• element (dict) – element type “way” from overpass response JSON

• coords (dict) – dict of node IDs and their latitude/longitude coordinates

Returns
linestring_or_polygon – dict of OSM ID, OSM element type, nodes, tags and geometry

Return type
dict

osmnx.features._subtract_inner_polygons_from_outer_polygons(element, outer_polygons,
inner_polygons)

Subtract inner polygons from outer polygons.

Creates a Polygon or MultiPolygon with holes.

Parameters

• element (dict) – element type “relation” from overpass response JSON

• outer_polygons (list) – list of outer polygons that are part of a multipolygon

• inner_polygons (list) – list of inner polygons that are part of a multipolygon

Returns
geometry – a single Polygon or MultiPolygon

6.4. Internals Reference 77

https://wiki.openstreetmap.org/wiki/Relation
https://wiki.openstreetmap.org/wiki/Overpass_turbo/Polygon_Features

OSMnx, Release 1.9.2

Return type
shapely.geometry.Polygon or shapely.geometry.MultiPolygon

osmnx.features.features_from_address(address, tags, dist=1000)
Create GeoDataFrame of OSM features within some distance N, S, E, W of address.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• address (string) – the address to geocode and use as the central point around which to get
the features

• tags (dict) – Dict of tags used for finding elements in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

• dist (numeric) – distance in meters

Returns
gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_bbox(north=None, south=None, east=None, west=None, bbox=None,
tags=None)

Create a GeoDataFrame of OSM features within a N, S, E, W bounding box.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• north (float) – deprecated, do not use

• south (float) – deprecated, do not use

• east (float) – deprecated, do not use

• west (float) – deprecated, do not use

• bbox (tuple of floats) – bounding box as (north, south, east, west)

• tags (dict) – Dict of tags used for finding elements in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

78 Chapter 6. Documentation

https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features

OSMnx, Release 1.9.2

Returns
gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_place(query, tags, which_result=None, buffer_dist=None)
Create GeoDataFrame of OSM features within boundaries of some place(s).

The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does not
have a polygon for this place, you can instead get features within it using the features_from_address function,
which geocodes the place name to a point and gets the features within some distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding it, try to vary the query string, pass
in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the
OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to
the features_from_polygon function.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• query (string or dict or list) – the query or queries to geocode to get place bound-
ary polygon(s)

• tags (dict) – Dict of tags used for finding elements in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

• which_result (int) – which geocoding result to use. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one.

• buffer_dist (float) – deprecated, do not use

Returns
gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_point(center_point, tags, dist=1000)
Create GeoDataFrame of OSM features within some distance N, S, E, W of a point.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• center_point (tuple) – the (lat, lon) center point around which to get the features

• tags (dict) – Dict of tags used for finding elements in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict

6.4. Internals Reference 79

https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features

OSMnx, Release 1.9.2

values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

• dist (numeric) – distance in meters

Returns
gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_polygon(polygon, tags)
Create GeoDataFrame of OSM features within boundaries of a (multi)polygon.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• polygon (shapely.geometry.Polygon or shapely.geometry.MultiPolygon) –
geographic boundaries to fetch features within

• tags (dict) – Dict of tags used for finding elements in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

Returns
gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_xml(filepath, polygon=None, tags=None, encoding='utf-8')
Create a GeoDataFrame of OSM features in an OSM-formatted XML file.

Because this function creates a GeoDataFrame of features from an OSM-formatted XML file that has already
been downloaded (i.e. no query is made to the Overpass API) the polygon and tags arguments are not required.
If they are not supplied to the function, features_from_xml() will return features for all of the tagged elements in
the file. If they are supplied they will be used to filter the final GeoDataFrame.

For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• filepath (string or pathlib.Path) – path to file containing OSM XML data

• polygon (shapely.geometry.Polygon) – optional geographic boundary to filter ele-
ments

• tags (dict) – optional dict of tags for filtering elements from the XML. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict

80 Chapter 6. Documentation

https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features

OSMnx, Release 1.9.2

values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

• encoding (string) – the XML file’s character encoding

Returns
gdf

Return type
geopandas.GeoDataFrame

6.4.9 osmnx.folium module

Create interactive Leaflet web maps of graphs and routes via folium.

This module is deprecated. Do not use. It will be removed in the v2.0.0 release. You can generate and explore interactive
web maps of graph nodes, edges, and/or routes automatically using GeoPandas.GeoDataFrame.explore instead, for
example like: ox.graph_to_gdfs(G, nodes=False).explore(). See the OSMnx examples gallery for complete details and
demonstrations.

osmnx.folium._make_folium_polyline(geom, popup_val=None, **kwargs)
Turn LineString geometry into a folium PolyLine with attributes.

Parameters

• geom (shapely LineString) – geometry of the line

• popup_val (string) – text to display in pop-up when a line is clicked, if None, no popup

• kwargs – keyword arguments to pass to folium.PolyLine()

Returns
pl

Return type
folium.PolyLine

osmnx.folium._plot_folium(gdf , m, popup_attribute, tiles, zoom, fit_bounds, **kwargs)
Plot a GeoDataFrame of LineStrings on a folium map object.

Parameters

• gdf (geopandas.GeoDataFrame) – a GeoDataFrame of LineString geometries and at-
tributes

• m (folium.folium.Map or folium.FeatureGroup) – if not None, plot on this preexist-
ing folium map object

• popup_attribute (string) – attribute to display in pop-up on-click, if None, no popup

• tiles (string) – name of a folium tileset

• zoom (int) – initial zoom level for the map

• fit_bounds (bool) – if True, fit the map to gdf’s boundaries

• kwargs – keyword arguments to pass to folium.PolyLine()

Returns
m

6.4. Internals Reference 81

OSMnx, Release 1.9.2

Return type
folium.folium.Map

osmnx.folium.plot_graph_folium(G, graph_map=None, popup_attribute=None, tiles='cartodbpositron',
zoom=1, fit_bounds=True, **kwargs)

Do not use: deprecated.

You can generate and explore interactive web maps of graph nodes, edges, and/or routes automatically using
GeoPandas.GeoDataFrame.explore instead, for example like: ox.graph_to_gdfs(G, nodes=False).explore(). See
the OSMnx examples gallery for complete details and demonstrations.

Parameters

• G (networkx.MultiDiGraph) – deprecated

• graph_map (folium.folium.Map) – deprecated

• popup_attribute (string) – deprecated

• tiles (string) – deprecated

• zoom (int) – deprecated

• fit_bounds (bool) – deprecated

• kwargs – deprecated

Return type
folium.folium.Map

osmnx.folium.plot_route_folium(G, route, route_map=None, popup_attribute=None, tiles='cartodbpositron',
zoom=1, fit_bounds=True, **kwargs)

Do not use: deprecated.

You can generate and explore interactive web maps of graph nodes, edges, and/or routes automatically using
GeoPandas.GeoDataFrame.explore instead, for example like: ox.graph_to_gdfs(G, nodes=False).explore(). See
the OSMnx examples gallery for complete details and demonstrations.

Parameters

• G (networkx.MultiDiGraph) – deprecated

• route (list) – deprecated

• route_map (folium.folium.Map) – deprecated

• popup_attribute (string) – deprecated

• tiles (string) – deprecated

• zoom (int) – deprecated

• fit_bounds (bool) – deprecated

• kwargs – deprecated

Return type
folium.folium.Map

82 Chapter 6. Documentation

OSMnx, Release 1.9.2

6.4.10 osmnx.geocoder module

Geocode place names or addresses or retrieve OSM elements by place name or ID.

This module uses the Nominatim API’s “search” and “lookup” endpoints. For more details see https://wiki.
openstreetmap.org/wiki/Elements and https://nominatim.org/.

osmnx.geocoder._geocode_query_to_gdf(query, which_result, by_osmid)
Geocode a single place query to a GeoDataFrame.

Parameters

• query (string or dict) – query string or structured dict to geocode

• which_result (int) – which geocoding result to use. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one. to get the top match regard-
less of geometry type, set which_result=1. ignored if by_osmid=True.

• by_osmid (bool) – if True, handle query as an OSM ID for lookup rather than text search

Returns
gdf – a GeoDataFrame with one row containing the result of geocoding

Return type
geopandas.GeoDataFrame

osmnx.geocoder._get_first_polygon(results, query)
Choose first result of geometry type (Multi)Polygon from list of results.

Parameters

• results (list) – list of results from _downloader._osm_place_download

• query (str) – the query string or structured dict that was geocoded

Returns
result – the chosen result

Return type
dict

osmnx.geocoder.geocode(query)
Geocode place names or addresses to (lat, lon) with the Nominatim API.

This geocodes the query via the Nominatim “search” endpoint.

Parameters
query (string) – the query string to geocode

Returns
point – the (lat, lon) coordinates returned by the geocoder

Return type
tuple

osmnx.geocoder.geocode_to_gdf(query, which_result=None, by_osmid=False, buffer_dist=None)
Retrieve OSM elements by place name or OSM ID with the Nominatim API.

If searching by place name, the query argument can be a string or structured dict, or a list of such strings/dicts to
send to the geocoder. This uses the Nominatim “search” endpoint to geocode the place name to the best-matching
OSM element, then returns that element and its attribute data.

You can instead query by OSM ID by passing by_osmid=True. This uses the Nominatim “lookup” endpoint to
retrieve the OSM element with that ID. In this case, the function treats the query argument as an OSM ID (or list

6.4. Internals Reference 83

https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Elements
https://nominatim.org/

OSMnx, Release 1.9.2

of OSM IDs), which must be prepended with their types: node (N), way (W), or relation (R) in accordance with
the Nominatim API format. For example, query=[“R2192363”, “N240109189”, “W427818536”].

If query is a list, then which_result must be either a single value or a list with the same length as query. The
queries you provide must be resolvable to elements in the Nominatim database. The resulting GeoDataFrame’s
geometry column contains place boundaries if they exist.

Parameters

• query (string or dict or list of strings/dicts) – query string(s) or structured
dict(s) to geocode

• which_result (int) – which search result to return. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one. to get the top match regard-
less of geometry type, set which_result=1. ignored if by_osmid=True.

• by_osmid (bool) – if True, treat query as an OSM ID lookup rather than text search

• buffer_dist (float) – deprecated, do not use

Returns
gdf – a GeoDataFrame with one row for each query

Return type
geopandas.GeoDataFrame

6.4.11 osmnx.geometries module

Do not use: deprecated.

The geometries module has been renamed the features module. The geometries module is deprecated and will be
removed in the v2.0.0 release.

osmnx.geometries.geometries_from_address(address, tags, dist=1000)
Do not use: deprecated.

The geometries module and geometries_from_X functions have been renamed the features module and fea-
tures_from_X functions. Use these instead. The geometries module and functions are deprecated and will be
removed in the v2.0.0 release.

Parameters

• address (string) – Do not use: deprecated.

• tags (dict) – Do not use: deprecated.

• dist (numeric) – Do not use: deprecated.

Returns
gdf

Return type
geopandas.GeoDataFrame

osmnx.geometries.geometries_from_bbox(north, south, east, west, tags)
Do not use: deprecated.

The geometries module and geometries_from_X functions have been renamed the features module and fea-
tures_from_X functions. Use these instead. The geometries module and functions are deprecated and will be
removed in the v2.0.0 release.

Parameters

84 Chapter 6. Documentation

OSMnx, Release 1.9.2

• north (float) – Do not use: deprecated.

• south (float) – Do not use: deprecated.

• east (float) – Do not use: deprecated.

• west (float) – Do not use: deprecated.

• tags (dict) – Do not use: deprecated.

Returns
gdf

Return type
geopandas.GeoDataFrame

osmnx.geometries.geometries_from_place(query, tags, which_result=None, buffer_dist=None)
Do not use: deprecated.

The geometries module and geometries_from_X functions have been renamed the features module and fea-
tures_from_X functions. Use these instead. The geometries module and functions are deprecated and will be
removed in the v2.0.0 release.

Parameters

• query (string or dict or list) – Do not use: deprecated.

• tags (dict) – Do not use: deprecated.

• which_result (int) – Do not use: deprecated.

• buffer_dist (float) – Do not use: deprecated.

Returns
gdf

Return type
geopandas.GeoDataFrame

osmnx.geometries.geometries_from_point(center_point, tags, dist=1000)
Do not use: deprecated.

The geometries module and geometries_from_X functions have been renamed the features module and fea-
tures_from_X functions. Use these instead. The geometries module and functions are deprecated and will be
removed in the v2.0.0 release.

Parameters

• center_point (tuple) – Do not use: deprecated.

• tags (dict) – Do not use: deprecated.

• dist (numeric) – Do not use: deprecated.

Returns
gdf

Return type
geopandas.GeoDataFrame

osmnx.geometries.geometries_from_polygon(polygon, tags)
Do not use: deprecated.

The geometries module and geometries_from_X functions have been renamed the features module and fea-
tures_from_X functions. Use these instead. The geometries module and functions are deprecated and will be
removed in the v2.0.0 release.

6.4. Internals Reference 85

OSMnx, Release 1.9.2

Parameters

• polygon (shapely.geometry.Polygon or shapely.geometry.MultiPolygon) –
Do not use: deprecated.

• tags (dict) – Do not use: deprecated.

Returns
gdf

Return type
geopandas.GeoDataFrame

osmnx.geometries.geometries_from_xml(filepath, polygon=None, tags=None)
Do not use: deprecated.

The geometries module and geometries_from_X functions have been renamed the features module and fea-
tures_from_X functions. Use these instead. The geometries module and functions are deprecated and will be
removed in the v2.0.0 release.

Parameters

• filepath (string or pathlib.Path) – Do not use: deprecated.

• polygon (shapely.geometry.Polygon) – Do not use: deprecated.

• tags (dict) – Do not use: deprecated.

Returns
gdf

Return type
geopandas.GeoDataFrame

6.4.12 osmnx.graph module

Download and create graphs from OpenStreetMap data.

This module uses filters to query the Overpass API: you can either specify a built-in network type or provide your own
custom filter with Overpass QL.

Refer to the Getting Started guide for usage limitations.

osmnx.graph._add_paths(G, paths, bidirectional=False)
Add a list of paths to the graph as edges.

Parameters

• G (networkx.MultiDiGraph) – graph to add paths to

• paths (list) – list of paths’ tag:value attribute data dicts

• bidirectional (bool) – if True, create bi-directional edges for one-way streets

Return type
None

osmnx.graph._convert_node(element)
Convert an OSM node element into the format for a networkx node.

Parameters
element (dict) – an OSM node element

86 Chapter 6. Documentation

OSMnx, Release 1.9.2

Returns
node

Return type
dict

osmnx.graph._convert_path(element)
Convert an OSM way element into the format for a networkx path.

Parameters
element (dict) – an OSM way element

Returns
path

Return type
dict

osmnx.graph._create_graph(response_jsons, retain_all=False, bidirectional=False)
Create a networkx MultiDiGraph from Overpass API responses.

Adds length attributes in meters (great-circle distance between endpoints) to all of the graph’s (pre-simplified,
straight-line) edges via the distance.add_edge_lengths function.

Parameters

• response_jsons (iterable) – iterable of dicts of JSON responses from from the Overpass
API

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• bidirectional (bool) – if True, create bi-directional edges for one-way streets

Returns
G

Return type
networkx.MultiDiGraph

osmnx.graph._is_path_one_way(path, bidirectional, oneway_values)
Determine if a path of nodes allows travel in only one direction.

Parameters

• path (dict) – a path’s tag:value attribute data

• bidirectional (bool) – whether this is a bi-directional network type

• oneway_values (set) – the values OSM uses in its ‘oneway’ tag to denote True

Return type
bool

osmnx.graph._is_path_reversed(path, reversed_values)
Determine if the order of nodes in a path should be reversed.

Parameters

• path (dict) – a path’s tag:value attribute data

• reversed_values (set) – the values OSM uses in its ‘oneway’ tag to denote travel can
only occur in the opposite direction of the node order

6.4. Internals Reference 87

OSMnx, Release 1.9.2

Return type
bool

osmnx.graph._parse_nodes_paths(response_json)
Construct dicts of nodes and paths from an Overpass response.

Parameters
response_json (dict) – JSON response from the Overpass API

Returns
nodes, paths – dicts’ keys = osmid and values = dict of attributes

Return type
tuple of dicts

osmnx.graph.graph_from_address(address, dist=1000, dist_type='bbox', network_type='all_private',
simplify=True, retain_all=False, truncate_by_edge=False,
return_coords=None, clean_periphery=None, custom_filter=None)

Download and create a graph within some distance of an address.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

Parameters

• address (string) – the address to geocode and use as the central point around which to
construct the graph

• dist (int) – retain only those nodes within this many meters of the center of the graph

• dist_type (string {"network", "bbox"}) – if “bbox”, retain only those nodes within
a bounding box of the distance parameter. if “network”, retain only those nodes within some
network distance from the center-most node.

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter
is None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box

• return_coords (bool) – deprecated, do not use

• clean_periphery (bool) – deprecated, do not use

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Return type
networkx.MultiDiGraph or optionally (networkx.MultiDiGraph, (lat, lon))

88 Chapter 6. Documentation

OSMnx, Release 1.9.2

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_bbox(north=None, south=None, east=None, west=None, bbox=None,
network_type='all_private', simplify=True, retain_all=False,
truncate_by_edge=False, clean_periphery=None, custom_filter=None)

Download and create a graph within some bounding box.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

Parameters

• north (float) – deprecated, do not use

• south (float) – deprecated, do not use

• east (float) – deprecated, do not use

• west (float) – deprecated, do not use

• bbox (tuple of floats) – bounding box as (north, south, east, west)

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter
is None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box

• clean_periphery (bool) – deprecated, do not use

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns
G

Return type
networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_place(query, network_type='all_private', simplify=True, retain_all=False,
truncate_by_edge=False, which_result=None, buffer_dist=None,
clean_periphery=None, custom_filter=None)

Download and create a graph within the boundaries of some place(s).

6.4. Internals Reference 89

OSMnx, Release 1.9.2

The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does
not have a polygon for this place, you can instead get its street network using the graph_from_address function,
which geocodes the place name to a point and gets the network within some distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding it, try to vary the query string, pass
in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the
OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to
the graph_from_polygon function.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

Parameters

• query (string or dict or list) – the query or queries to geocode to get place bound-
ary polygon(s)

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter
is None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside boundary polygon if at least one
of node’s neighbors is within the polygon

• which_result (int) – which geocoding result to use. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one.

• buffer_dist (float) – deprecated, do not use

• clean_periphery (bool) – deprecated, do not use

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns
G

Return type
networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_point(center_point, dist=1000, dist_type='bbox', network_type='all_private',
simplify=True, retain_all=False, truncate_by_edge=False,
clean_periphery=None, custom_filter=None)

Download and create a graph within some distance of a (lat, lon) point.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

Parameters

90 Chapter 6. Documentation

OSMnx, Release 1.9.2

• center_point (tuple) – the (lat, lon) center point around which to construct the graph

• dist (int) – retain only those nodes within this many meters of the center of the graph, with
distance determined according to dist_type argument

• dist_type (string {"network", "bbox"}) – if “bbox”, retain only those nodes within
a bounding box of the distance parameter. if “network”, retain only those nodes within some
network distance from the center-most node.

• network_type (string, {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter
is None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box

• clean_periphery (bool,) – deprecated, do not use

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns
G

Return type
networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_polygon(polygon, network_type='all_private', simplify=True, retain_all=False,
truncate_by_edge=False, clean_periphery=None, custom_filter=None)

Download and create a graph within the boundaries of a (multi)polygon.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings.

Parameters

• polygon (shapely.geometry.Polygon or shapely.geometry.MultiPolygon) –
the shape to get network data within. coordinates should be in unprojected latitude-longitude
degrees (EPSG:4326).

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter
is None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

6.4. Internals Reference 91

OSMnx, Release 1.9.2

• truncate_by_edge (bool) – if True, retain nodes outside boundary polygon if at least one
of node’s neighbors is within the polygon

• clean_periphery (bool) – deprecated, do not use

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns
G

Return type
networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_xml(filepath, bidirectional=False, simplify=True, retain_all=False, encoding='utf-8')
Create a graph from data in a .osm formatted XML file.

Do not load an XML file generated by OSMnx: this use case is not supported and may not behave as expected. To
save/load graphs to/from disk for later use in OSMnx, use the io.save_graphml and io.load_graphml functions
instead.

Parameters

• filepath (string or pathlib.Path) – path to file containing OSM XML data

• bidirectional (bool) – if True, create bi-directional edges for one-way streets

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• encoding (string) – the XML file’s character encoding

Returns
G

Return type
networkx.MultiDiGraph

6.4.13 osmnx.io module

Serialize graphs to/from files on disk.

osmnx.io._convert_bool_string(value)
Convert a “True” or “False” string literal to corresponding boolean type.

This is necessary because Python will otherwise parse the string “False” to the boolean value True, that is,
bool(“False”) == True. This function raises a ValueError if a value other than “True” or “False” is passed.

If the value is already a boolean, this function just returns it, to accommodate usage when the value was originally
inside a stringified list.

92 Chapter 6. Documentation

OSMnx, Release 1.9.2

Parameters
value (string {"True", "False"}) – the value to convert

Return type
bool

osmnx.io._convert_edge_attr_types(G, dtypes=None)
Convert graph edges’ attributes using a dict of data types.

Parameters

• G (networkx.MultiDiGraph) – input graph

• dtypes (dict) – dict of edge attribute names:types

Returns
G

Return type
networkx.MultiDiGraph

osmnx.io._convert_graph_attr_types(G, dtypes=None)
Convert graph-level attributes using a dict of data types.

Parameters

• G (networkx.MultiDiGraph) – input graph

• dtypes (dict) – dict of graph-level attribute names:types

Returns
G

Return type
networkx.MultiDiGraph

osmnx.io._convert_node_attr_types(G, dtypes=None)
Convert graph nodes’ attributes using a dict of data types.

Parameters

• G (networkx.MultiDiGraph) – input graph

• dtypes (dict) – dict of node attribute names:types

Returns
G

Return type
networkx.MultiDiGraph

osmnx.io._stringify_nonnumeric_cols(gdf)
Make every non-numeric GeoDataFrame column (besides geometry) a string.

This allows proper serializing via Fiona of GeoDataFrames with mixed types such as strings and ints in the same
column.

Parameters
gdf (geopandas.GeoDataFrame) – gdf to stringify non-numeric columns of

Returns
gdf – gdf with non-numeric columns stringified

Return type
geopandas.GeoDataFrame

6.4. Internals Reference 93

OSMnx, Release 1.9.2

osmnx.io.load_graphml(filepath=None, graphml_str=None, node_dtypes=None, edge_dtypes=None,
graph_dtypes=None)

Load an OSMnx-saved GraphML file from disk or GraphML string.

This function converts node, edge, and graph-level attributes (serialized as strings) to their appropriate data
types. These can be customized as needed by passing in dtypes arguments providing types or custom con-
verter functions. For example, if you want to convert some attribute’s values to bool, consider using the built-in
ox.io._convert_bool_string function to properly handle “True”/”False” string literals as True/False booleans:
ox.load_graphml(fp, node_dtypes={my_attr: ox.io._convert_bool_string}).

If you manually configured the all_oneway=True setting, you may need to manually specify here that edge
oneway attributes should be type str.

Note that you must pass one and only one of filepath or graphml_str. If passing graphml_str, you may need to
decode the bytes read from your file before converting to string to pass to this function.

Parameters

• filepath (string or pathlib.Path) – path to the GraphML file

• graphml_str (string) – a valid and decoded string representation of a GraphML file’s
contents

• node_dtypes (dict) – dict of node attribute names:types to convert values’ data types. the
type can be a python type or a custom string converter function.

• edge_dtypes (dict) – dict of edge attribute names:types to convert values’ data types. the
type can be a python type or a custom string converter function.

• graph_dtypes (dict) – dict of graph-level attribute names:types to convert values’ data
types. the type can be a python type or a custom string converter function.

Returns
G

Return type
networkx.MultiDiGraph

osmnx.io.save_graph_geopackage(G, filepath=None, encoding='utf-8', directed=False)
Save graph nodes and edges to disk as layers in a GeoPackage file.

Parameters

• G (networkx.MultiDiGraph) – input graph

• filepath (string or pathlib.Path) – path to the GeoPackage file including extension.
if None, use default data folder + graph.gpkg

• encoding (string) – the character encoding for the saved file

• directed (bool) – if False, save one edge for each undirected edge in the graph but retain
original oneway and to/from information as edge attributes; if True, save one edge for each
directed edge in the graph

Return type
None

osmnx.io.save_graph_shapefile(G, filepath=None, encoding='utf-8', directed=False)
Do not use: deprecated. Use the save_graph_geopackage function instead.

The Shapefile format is proprietary and outdated. Instead, use the superior GeoPackage file format via the
save_graph_geopackage function. See http://switchfromshapefile.org/ for more information.

Parameters

94 Chapter 6. Documentation

http://switchfromshapefile.org/

OSMnx, Release 1.9.2

• G (networkx.MultiDiGraph) – input graph

• filepath (string or pathlib.Path) – path to the shapefiles folder (no file extension).
if None, use default data folder + graph_shapefile

• encoding (string) – the character encoding for the saved files

• directed (bool) – if False, save one edge for each undirected edge in the graph but retain
original oneway and to/from information as edge attributes; if True, save one edge for each
directed edge in the graph

Return type
None

osmnx.io.save_graph_xml(data, filepath=None, node_tags=None, node_attrs=None, edge_tags=None,
edge_attrs=None, oneway=None, merge_edges=None, edge_tag_aggs=None,
api_version=None, precision=None, way_tag_aggs=None)

Save graph to disk as an OSM-formatted XML .osm file.

This function exists only to allow serialization to the .osm file format for applications that require it, and has con-
straints to conform to that. As such, this function has a limited use case which does not include saving/loading
graphs for subsequent OSMnx analysis. To save/load graphs to/from disk for later use in OSMnx, use the
io.save_graphml and io.load_graphml functions instead. To load a graph from a .osm file that you have down-
loaded or generated elsewhere, use the graph.graph_from_xml function.

Parameters

• data (networkx.MultiDiGraph) – the input graph

• filepath (string or pathlib.Path) – do not use, deprecated

• node_tags (list) – do not use, deprecated

• node_attrs (list) – do not use, deprecated

• edge_tags (list) – do not use, deprecated

• edge_attrs (list) – do not use, deprecated

• oneway (bool) – do not use, deprecated

• merge_edges (bool) – do not use, deprecated

• edge_tag_aggs (tuple) – do not use, deprecated

• api_version (float) – do not use, deprecated

• precision (int) – do not use, deprecated

• way_tag_aggs (dict) – Keys are OSM way tag keys and values are aggregation functions
(anything accepted as an argument by pandas.agg). Allows user to aggregate graph edge
attribute values into single OSM way values. If None, or if some tag’s key does not exist in
the dict, the way attribute will be assigned the value of the first edge of the way.

Return type
None

osmnx.io.save_graphml(G, filepath=None, gephi=False, encoding='utf-8')
Save graph to disk as GraphML file.

Parameters

• G (networkx.MultiDiGraph) – input graph

6.4. Internals Reference 95

OSMnx, Release 1.9.2

• filepath (string or pathlib.Path) – path to the GraphML file including extension.
if None, use default data folder + graph.graphml

• gephi (bool) – if True, give each edge a unique key/id to work around Gephi’s interpretation
of the GraphML specification

• encoding (string) – the character encoding for the saved file

Return type
None

6.4.14 osmnx._nominatim module

Tools to work with the Nominatim API.

osmnx._nominatim._download_nominatim_element(query, by_osmid=False, limit=1, polygon_geojson=1)
Retrieve an OSM element from the Nominatim API.

Parameters

• query (string or dict) – query string or structured query dict

• by_osmid (bool) – if True, treat query as an OSM ID lookup rather than text search

• limit (int) – max number of results to return

• polygon_geojson (int) – retrieve the place’s geometry from the API, 0=no, 1=yes

Returns
response_json – JSON response from the Nominatim server

Return type
dict

osmnx._nominatim._nominatim_request(params, request_type='search', pause=1, error_pause=60)
Send a HTTP GET request to the Nominatim API and return response.

Parameters

• params (OrderedDict) – key-value pairs of parameters

• request_type (string {"search", "reverse", "lookup"}) – which Nominatim
API endpoint to query

• pause (float) – how long to pause before request, in seconds. per the nominatim usage
policy: “an absolute maximum of 1 request per second” is allowed

• error_pause (float) – how long to pause in seconds before re-trying request if error

Returns
response_json

Return type
dict

96 Chapter 6. Documentation

OSMnx, Release 1.9.2

6.4.15 osmnx.osm_xml module

Read/write .osm formatted XML files.

class osmnx.osm_xml._OSMContentHandler

SAX content handler for OSM XML.

Used to build an Overpass-like response JSON object in self.object. For format notes, see https://wiki.
openstreetmap.org/wiki/OSM_XML and https://overpass-api.de

endElement(name)
Signals the end of an element in non-namespace mode.

The name parameter contains the name of the element type, just as with the startElement event.

startElement(name, attrs)
Signals the start of an element in non-namespace mode.

The name parameter contains the raw XML 1.0 name of the element type as a string and the attrs parameter
holds an instance of the Attributes class containing the attributes of the element.

osmnx.osm_xml._append_edges_xml_tree(root, gdf_edges, edge_attrs, edge_tags, edge_tag_aggs,
merge_edges)

Append edges to an XML tree.

Parameters

• root (ElementTree.Element) – xml tree

• gdf_edges (geopandas.GeoDataFrame) – GeoDataFrame of graph edges

• edge_attrs (list) – osm way attributes to include in output OSM XML

• edge_tags (list) – osm way tags to include in output OSM XML

• edge_tag_aggs (list of length-2 string tuples) – useful only if merge_edges is
True, this argument allows the user to specify edge attributes to aggregate such that the
merged OSM way entry tags accurately represent the sum total of their component edge
attributes. For example, if the user wants the OSM way to have a “length” attribute, the user
must specify edge_tag_aggs=[(‘length’, ‘sum’)] in order to tell this method to aggregate the
lengths of the individual component edges. Otherwise, the length attribute will simply reflect
the length of the first edge associated with the way.

• merge_edges (bool) – if True merges graph edges such that each OSM way has one entry
and one entry only in the OSM XML. Otherwise, every OSM way will have a separate entry
for each node pair it contains.

Returns
root – XML tree with edges appended

Return type
ElementTree.Element

osmnx.osm_xml._append_merged_edge_attrs(xml_edge, sample_edge, all_edges_df , edge_tags,
edge_tag_aggs)

Extract edge attributes and append to XML edge.

Parameters

• xml_edge (ElementTree.SubElement) – XML representation of an output graph edge

• sample_edge (pandas.Series) – sample row from the the dataframe of way edges

6.4. Internals Reference 97

https://wiki.openstreetmap.org/wiki/OSM_XML
https://wiki.openstreetmap.org/wiki/OSM_XML
https://overpass-api.de

OSMnx, Release 1.9.2

• all_edges_df (pandas.DataFrame) – a dataframe with one row for each edge in an OSM
way

• edge_tags (list) – osm way tags to include in output OSM XML

• edge_tag_aggs (list of length-2 string tuples) – useful only if merge_edges is
True, this argument allows the user to specify edge attributes to aggregate such that the
merged OSM way entry tags accurately represent the sum total of their component edge
attributes. For example if the user wants the OSM way to have a length attribute, the user
must specify edge_tag_aggs=[(‘length’, ‘sum’)] to tell this method to aggregate the lengths
of the individual component edges. Otherwise, the length attribute will simply reflect the
length of the first edge associated with the way.

osmnx.osm_xml._append_nodes_as_edge_attrs(xml_edge, sample_edge, all_edges_df)
Extract list of ordered nodes and append as attributes of XML edge.

Parameters

• xml_edge (ElementTree.SubElement) – XML representation of an output graph edge

• sample_edge (pandas.Series) – sample row from the the dataframe of way edges

• all_edges_df (pandas.DataFrame) – a dataframe with one row for each edge in an OSM
way

osmnx.osm_xml._append_nodes_xml_tree(root, gdf_nodes, node_attrs, node_tags)
Append nodes to an XML tree.

Parameters

• root (ElementTree.Element) – xml tree

• gdf_nodes (geopandas.GeoDataFrame) – GeoDataFrame of graph nodes

• node_attrs (list) – osm way attributes to include in output OSM XML

• node_tags (list) – osm way tags to include in output OSM XML

Returns
root – xml tree with nodes appended

Return type
ElementTree.Element

osmnx.osm_xml._create_way_for_each_edge(root, gdf_edges, edge_attrs, edge_tags)
Append a new way to an empty XML tree graph for each edge in way.

This will generate separate OSM ways for each network edge, even if the edges are all part of the same original
OSM way. As such, each way will be composed of two nodes, and there will be many ways with the same OSM
ID. This does not conform to the OSM XML schema standard, but the data will still comprise a valid network
and will be readable by most OSM tools.

Parameters

• root (ElementTree.Element) – an empty XML tree

• gdf_edges (geopandas.GeoDataFrame) – GeoDataFrame of graph edges

• edge_attrs (list) – osm way attributes to include in output OSM XML

• edge_tags (list) – osm way tags to include in output OSM XML

98 Chapter 6. Documentation

OSMnx, Release 1.9.2

osmnx.osm_xml._get_unique_nodes_ordered_from_way(df_way_edges)
Recover original node order from edges associated with a single OSM way.

Parameters
df_way_edges (pandas.DataFrame) – Dataframe containing columns ‘u’ and ‘v’ correspond-
ing to origin/destination nodes.

Returns
unique_ordered_nodes – An ordered list of unique node IDs. If the edges do not all connect
(e.g. [(1, 2), (2,3), (10, 11), (11, 12), (12, 13)]), then this method will return only those nodes
associated with the largest component of connected edges, even if subsequent connected chunks
are contain more total nodes. This ensures a proper topological representation of nodes in the
XML way records because if there are unconnected components, the sorting algorithm cannot re-
cover their original order. We would not likely ever encounter this kind of disconnected structure
of nodes within a given way, but it is not explicitly forbidden in the OSM XML design schema.

Return type
list

osmnx.osm_xml._overpass_json_from_file(filepath, encoding)
Read OSM XML from file and return Overpass-like JSON.

Parameters

• filepath (string or pathlib.Path) – path to file containing OSM XML data

• encoding (string) – the XML file’s character encoding

Return type
OSMContentHandler object

osmnx.osm_xml._save_graph_xml(data, filepath, node_tags, node_attrs, edge_tags, edge_attrs, oneway,
merge_edges, edge_tag_aggs, api_version, precision, way_tag_aggs)

Save graph to disk as an OSM-formatted UTF-8 encoded XML .osm file.

Parameters

• data (networkx.MultiDiGraph) – the input graph

• filepath (string or pathlib.Path) – do not use, deprecated

• node_tags (list) – do not use, deprecated

• node_attrs (list) – do not use, deprecated

• edge_tags (list) – do not use, deprecated

• edge_attrs (list) – do not use, deprecated

• oneway (bool) – do not use, deprecated

• merge_edges (bool) – do not use, deprecated

• edge_tag_aggs (tuple) – do not use, deprecated

• api_version (float) – do not use, deprecated

• precision (int) – do not use, deprecated

• way_tag_aggs (dict) – Keys are OSM way tag keys and values are aggregation functions
(anything accepted as an argument by pandas.agg). Allows user to aggregate graph edge
attribute values into single OSM way values. If None, or if some tag’s key does not exist in
the dict, the way attribute will be assigned the value of the first edge of the way.

6.4. Internals Reference 99

OSMnx, Release 1.9.2

Return type
None

osmnx.osm_xml.save_graph_xml(data, filepath=None, node_tags=None, node_attrs=None, edge_tags=None,
edge_attrs=None, oneway=None, merge_edges=None, edge_tag_aggs=None,
api_version=None, precision=None, way_tag_aggs=None)

Do not use: deprecated.

The save_graph_xml has moved from the osm_xml module to the io module. osm_xml.save_graph_xml has been
deprecated and will be removed in the v2.0.0 release. Access the function via the io module instead.

Parameters

• data (networkx.MultiDiGraph) – do not use, deprecated

• filepath (string or pathlib.Path) – do not use, deprecated

• node_tags (list) – do not use, deprecated

• node_attrs (list) – do not use, deprecated

• edge_tags (list) – do not use, deprecated

• edge_attrs (list) – do not use, deprecated

• oneway (bool) – do not use, deprecated

• merge_edges (bool) – do not use, deprecated

• edge_tag_aggs (tuple) – do not use, deprecated

• api_version (float) – do not use, deprecated

• precision (int) – do not use, deprecated

• way_tag_aggs (dict) – do not use, deprecated

Return type
None

6.4.16 osmnx._overpass module

Tools to work with the Overpass API.

osmnx._overpass._create_overpass_query(polygon_coord_str, tags)
Create an Overpass features query string based on passed tags.

Parameters

• polygon_coord_str (list) – list of lat lon coordinates

• tags (dict) – dict of tags used for finding elements in the search area

Returns
query

Return type
string

osmnx._overpass._download_overpass_features(polygon, tags)
Retrieve OSM features within boundary from the Overpass API.

Parameters

• polygon (shapely.geometry.Polygon) – boundaries to fetch elements within

100 Chapter 6. Documentation

OSMnx, Release 1.9.2

• tags (dict) – dict of tags used for finding elements in the selected area

Yields
response_json (dict) – a generator of JSON responses from the Overpass server

osmnx._overpass._download_overpass_network(polygon, network_type, custom_filter)
Retrieve networked ways and nodes within boundary from the Overpass API.

Parameters

• polygon (shapely.geometry.Polygon or shapely.geometry.MultiPolygon) –
boundary to fetch the network ways/nodes within

• network_type (string) – what type of street network to get if custom_filter is None

• custom_filter (string) – a custom “ways” filter to be used instead of the network_type
presets

Yields
response_json (dict) – a generator of JSON responses from the Overpass server

osmnx._overpass._get_osm_filter(network_type)
Create a filter to query OSM for the specified network type.

Parameters
network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get

Return type
string

osmnx._overpass._get_overpass_pause(base_endpoint, recursive_delay=5, default_duration=60)
Retrieve a pause duration from the Overpass API status endpoint.

Check the Overpass API status endpoint to determine how long to wait until the next slot is available. You can
disable this via the settings module’s overpass_rate_limit setting.

Parameters

• base_endpoint (string) – base Overpass API url (without “/status” at the end)

• recursive_delay (int) – how long to wait between recursive calls if the server is currently
running a query

• default_duration (int) – if fatal error, fall back on returning this value

Returns
pause

Return type
int

osmnx._overpass._make_overpass_polygon_coord_strs(polygon)
Subdivide query polygon and return list of coordinate strings.

Project to utm, divide polygon up into sub-polygons if area exceeds a max size (in meters), project back to lat-lon,
then get a list of polygon(s) exterior coordinates. Ignore interior (“holes”) coordinates.

Parameters
polygon (shapely.geometry.Polygon or shapely.geometry.MultiPolygon) – poly-
gon to convert to exterior coordinate strings

Returns
coord_strs – list of strings of exterior coordinates of polygon(s)

6.4. Internals Reference 101

OSMnx, Release 1.9.2

Return type
list

osmnx._overpass._make_overpass_settings()

Make settings string to send in Overpass query.

Return type
string

osmnx._overpass._overpass_request(data, pause=None, error_pause=60)
Send a HTTP POST request to the Overpass API and return response.

Parameters

• data (OrderedDict) – key-value pairs of parameters

• pause (float) – how long to pause in seconds before request, if None, will query API status
endpoint to find when next slot is available

• error_pause (float) – how long to pause in seconds (in addition to pause) before re-trying
request if error

Returns
response_json

Return type
dict

6.4.17 osmnx.plot module

Visualize street networks, routes, orientations, and geospatial features.

osmnx.plot._config_ax(ax, crs, bbox, padding)
Configure axis for display.

Parameters

• ax (matplotlib axis) – the axis containing the plot

• crs (dict or string or pyproj.CRS) – the CRS of the plotted geometries

• bbox (tuple) – bounding box as (north, south, east, west)

• padding (float) – relative padding to add around the plot’s bbox

Returns
ax – the configured/styled axis

Return type
matplotlib axis

osmnx.plot._get_colors_by_value(vals, num_bins, cmap, start, stop, na_color, equal_size)
Map colors to the values in a series.

Parameters

• vals (pandas.Series) – series labels are node/edge IDs and values are attribute values

• num_bins (int) – if None, linearly map a color to each value. otherwise, assign values to
this many bins then assign a color to each bin.

• cmap (string) – name of a matplotlib colormap

• start (float) – where to start in the colorspace

102 Chapter 6. Documentation

OSMnx, Release 1.9.2

• stop (float) – where to end in the colorspace

• na_color (string) – what color to assign to missing values

• equal_size (bool) – ignored if num_bins is None. if True, bin into equal-sized quantiles
(requires unique bin edges). if False, bin into equal-spaced bins.

Returns
color_series – series labels are node/edge IDs and values are colors

Return type
pandas.Series

osmnx.plot._save_and_show(fig, ax, save=False, show=True, close=True, filepath=None, dpi=300)
Save a figure to disk and/or show it, as specified by args.

Parameters

• fig (figure) – matplotlib figure

• ax (axis) – matplotlib axis

• save (bool) – if True, save the figure to disk at filepath

• show (bool) – if True, call pyplot.show() to show the figure

• close (bool) – if True, call pyplot.close() to close the figure

• filepath (string) – if save is True, the path to the file. file format determined from ex-
tension. if None, use settings.imgs_folder/image.png

• dpi (int) – if save is True, the resolution of saved file

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

osmnx.plot._verify_mpl()

Verify that matplotlib is installed and successfully imported.

Return type
None

osmnx.plot.get_colors(n, cmap='viridis', start=0.0, stop=1.0, alpha=1.0, return_hex=None)
Get n evenly-spaced colors from a matplotlib colormap.

Parameters

• n (int) – number of colors

• cmap (string) – name of a matplotlib colormap

• start (float) – where to start in the colorspace

• stop (float) – where to end in the colorspace

• alpha (float) – If None, return colors as HTML-like hex triplet “#rrggbb” RGB strings. If
float, return as “#rrggbbaa” RGBa strings.

• return_hex (bool) – deprecated, do not use

Returns
color_list

6.4. Internals Reference 103

OSMnx, Release 1.9.2

Return type
list

osmnx.plot.get_edge_colors_by_attr(G, attr, num_bins=None, cmap='viridis', start=0, stop=1,
na_color='none', equal_size=False)

Get colors based on edge attribute values.

Parameters

• G (networkx.MultiDiGraph) – input graph

• attr (string) – name of a numerical edge attribute

• num_bins (int) – if None, linearly map a color to each value. otherwise, assign values to
this many bins then assign a color to each bin.

• cmap (string) – name of a matplotlib colormap

• start (float) – where to start in the colorspace

• stop (float) – where to end in the colorspace

• na_color (string) – what color to assign edges with missing attr values

• equal_size (bool) – ignored if num_bins is None. if True, bin into equal-sized quantiles
(requires unique bin edges). if False, bin into equal-spaced bins.

Returns
edge_colors – series labels are edge IDs (u, v, key) and values are colors

Return type
pandas.Series

osmnx.plot.get_node_colors_by_attr(G, attr, num_bins=None, cmap='viridis', start=0, stop=1,
na_color='none', equal_size=False)

Get colors based on node attribute values.

Parameters

• G (networkx.MultiDiGraph) – input graph

• attr (string) – name of a numerical node attribute

• num_bins (int) – if None, linearly map a color to each value. otherwise, assign values to
this many bins then assign a color to each bin.

• cmap (string) – name of a matplotlib colormap

• start (float) – where to start in the colorspace

• stop (float) – where to end in the colorspace

• na_color (string) – what color to assign nodes with missing attr values

• equal_size (bool) – ignored if num_bins is None. if True, bin into equal-sized quantiles
(requires unique bin edges). if False, bin into equal-spaced bins.

Returns
node_colors – series labels are node IDs and values are colors

Return type
pandas.Series

104 Chapter 6. Documentation

OSMnx, Release 1.9.2

osmnx.plot.plot_figure_ground(G=None, address=None, point=None, dist=805,
network_type='drive_service', street_widths=None, default_width=4,
color='w', edge_color=None, smooth_joints=None, **pg_kwargs)

Plot a figure-ground diagram of a street network.

Parameters

• G (networkx.MultiDiGraph) – input graph, must be unprojected

• address (string) – deprecated, do not use

• point (tuple) – deprecated, do not use

• dist (numeric) – how many meters to extend north, south, east, west from center point

• network_type (string) – deprecated, do not use

• street_widths (dict) – dict keys are street types and values are widths to plot in pixels

• default_width (numeric) – fallback width in pixels for any street type not in street_widths

• color (string) – color of the streets

• edge_color (string) – deprecated, do not use

• smooth_joints (bool) – deprecated, do not use

• pg_kwargs – keyword arguments to pass to plot_graph

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

osmnx.plot.plot_footprints(gdf , ax=None, figsize=(8, 8), color='orange', edge_color='none',
edge_linewidth=0, alpha=None, bgcolor='#111111', bbox=None, save=False,
show=True, close=False, filepath=None, dpi=600)

Visualize a GeoDataFrame of geospatial features’ footprints.

Parameters

• gdf (geopandas.GeoDataFrame) – GeoDataFrame of footprints (shapely Polygons and
MultiPolygons)

• ax (axis) – if not None, plot on this preexisting axis

• figsize (tuple) – if ax is None, create new figure with size (width, height)

• color (string) – color of the footprints

• edge_color (string) – color of the edge of the footprints

• edge_linewidth (float) – width of the edge of the footprints

• alpha (float) – opacity of the footprints

• bgcolor (string) – background color of the plot

• bbox (tuple) – bounding box as (north, south, east, west). if None, will calculate from the
spatial extents of the geometries in gdf

• save (bool) – if True, save the figure to disk at filepath

• show (bool) – if True, call pyplot.show() to show the figure

• close (bool) – if True, call pyplot.close() to close the figure

6.4. Internals Reference 105

OSMnx, Release 1.9.2

• filepath (string) – if save is True, the path to the file. file format determined from ex-
tension. if None, use settings.imgs_folder/image.png

• dpi (int) – if save is True, the resolution of saved file

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

osmnx.plot.plot_graph(G, ax=None, figsize=(8, 8), bgcolor='#111111', node_color='w', node_size=15,
node_alpha=None, node_edgecolor='none', node_zorder=1, edge_color='#999999',
edge_linewidth=1, edge_alpha=None, show=True, close=False, save=False,
filepath=None, dpi=300, bbox=None)

Visualize a graph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• ax (matplotlib axis) – if not None, plot on this preexisting axis

• figsize (tuple) – if ax is None, create new figure with size (width, height)

• bgcolor (string) – background color of plot

• node_color (string or list) – color(s) of the nodes

• node_size (int) – size of the nodes: if 0, then skip plotting the nodes

• node_alpha (float) – opacity of the nodes, note: if you passed RGBA values to
node_color, set node_alpha=None to use the alpha channel in node_color

• node_edgecolor (string) – color of the nodes’ markers’ borders

• node_zorder (int) – zorder to plot nodes: edges are always 1, so set node_zorder=0 to plot
nodes below edges

• edge_color (string or list) – color(s) of the edges’ lines

• edge_linewidth (float) – width of the edges’ lines: if 0, then skip plotting the edges

• edge_alpha (float) – opacity of the edges, note: if you passed RGBA values to edge_color,
set edge_alpha=None to use the alpha channel in edge_color

• show (bool) – if True, call pyplot.show() to show the figure

• close (bool) – if True, call pyplot.close() to close the figure

• save (bool) – if True, save the figure to disk at filepath

• filepath (string) – if save is True, the path to the file. file format determined from ex-
tension. if None, use settings.imgs_folder/image.png

• dpi (int) – if save is True, the resolution of saved file

• bbox (tuple) – bounding box as (north, south, east, west). if None, will calculate from
spatial extents of plotted geometries.

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

106 Chapter 6. Documentation

OSMnx, Release 1.9.2

osmnx.plot.plot_graph_route(G, route, route_color='r', route_linewidth=4, route_alpha=0.5,
orig_dest_size=100, ax=None, **pg_kwargs)

Visualize a route along a graph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• route (list) – route as a list of node IDs

• route_color (string) – color of the route

• route_linewidth (int) – width of the route line

• route_alpha (float) – opacity of the route line

• orig_dest_size (int) – size of the origin and destination nodes

• ax (matplotlib axis) – if not None, plot route on this preexisting axis instead of creating
a new fig, ax and drawing the underlying graph

• pg_kwargs – keyword arguments to pass to plot_graph

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

osmnx.plot.plot_graph_routes(G, routes, route_colors='r', route_linewidths=4, **pgr_kwargs)
Visualize several routes along a graph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• routes (list) – routes as a list of lists of node IDs

• route_colors (string or list) – if string, 1 color for all routes. if list, the colors for
each route.

• route_linewidths (int or list) – if int, 1 linewidth for all routes. if list, the linewidth
for each route.

• pgr_kwargs – keyword arguments to pass to plot_graph_route

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

osmnx.plot.plot_orientation(Gu, num_bins=36, min_length=0, weight=None, ax=None, figsize=(5, 5),
area=True, color='#003366', edgecolor='k', linewidth=0.5, alpha=0.7,
title=None, title_y=1.05, title_font=None, xtick_font=None)

Plot a polar histogram of a spatial network’s bidirectional edge bearings.

Ignores self-loop edges as their bearings are undefined.

For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network Orientation, Configuration, and
Entropy.” Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1

Parameters

• Gu (networkx.MultiGraph) – undirected, unprojected graph with bearing attributes on
each edge

6.4. Internals Reference 107

https://doi.org/10.1007/s41109-019-0189-1

OSMnx, Release 1.9.2

• num_bins (int) – number of bins; for example, if num_bins=36 is provided, then each bin
will represent 10 degrees around the compass

• min_length (float) – ignore edges with length attributes less than min_length

• weight (string) – if not None, weight edges’ bearings by this (non-null) edge attribute

• ax (matplotlib.axes.PolarAxesSubplot) – if not None, plot on this preexisting axis;
must have projection=polar

• figsize (tuple) – if ax is None, create new figure with size (width, height)

• area (bool) – if True, set bar length so area is proportional to frequency, otherwise set bar
length so height is proportional to frequency

• color (string) – color of histogram bars

• edgecolor (string) – color of histogram bar edges

• linewidth (float) – width of histogram bar edges

• alpha (float) – opacity of histogram bars

• title (string) – title for plot

• title_y (float) – y position to place title

• title_font (dict) – the title’s fontdict to pass to matplotlib

• xtick_font (dict) – the xtick labels’ fontdict to pass to matplotlib

Returns
fig, ax – matplotlib figure, axis

Return type
tuple

6.4.18 osmnx.projection module

Project a graph, GeoDataFrame, or geometry to a different CRS.

osmnx.projection.is_projected(crs)
Determine if a coordinate reference system is projected or not.

Parameters
crs (string or pyproj.CRS) – the identifier of the coordinate reference system, which can be
anything accepted by pyproj.CRS.from_user_input() such as an authority string or a WKT string

Returns
projected – True if crs is projected, otherwise False

Return type
bool

osmnx.projection.project_gdf(gdf , to_crs=None, to_latlong=False)
Project a GeoDataFrame from its current CRS to another.

If to_latlong is True, this projects the GeoDataFrame to the CRS defined by settings.default_crs, otherwise it
projects it to the CRS defined by to_crs. If to_crs is None, it projects it to the CRS of an appropriate UTM zone
given gdf ’s bounds.

Parameters

• gdf (geopandas.GeoDataFrame) – the GeoDataFrame to be projected

108 Chapter 6. Documentation

OSMnx, Release 1.9.2

• to_crs (string or pyproj.CRS) – if None, project to an appropriate UTM zone, other-
wise project to this CRS

• to_latlong (bool) – if True, project to settings.default_crs and ignore to_crs

Returns
gdf_proj – the projected GeoDataFrame

Return type
geopandas.GeoDataFrame

osmnx.projection.project_geometry(geometry, crs=None, to_crs=None, to_latlong=False)
Project a Shapely geometry from its current CRS to another.

If to_latlong is True, this projects the GeoDataFrame to the CRS defined by settings.default_crs, otherwise it
projects it to the CRS defined by to_crs. If to_crs is None, it projects it to the CRS of an appropriate UTM zone
given geometry’s bounds.

Parameters

• geometry (shapely geometry) – the geometry to be projected

• crs (string or pyproj.CRS) – the initial CRS of geometry. if None, it will be set to
settings.default_crs

• to_crs (string or pyproj.CRS) – if None, project to an appropriate UTM zone, other-
wise project to this CRS

• to_latlong (bool) – if True, project to settings.default_crs and ignore to_crs

Returns
geometry_proj, crs – the projected geometry and its new CRS

Return type
tuple

osmnx.projection.project_graph(G, to_crs=None, to_latlong=False)
Project a graph from its current CRS to another.

If to_latlong is True, this projects the GeoDataFrame to the CRS defined by settings.default_crs, otherwise it
projects it to the CRS defined by to_crs. If to_crs is None, it projects it to the CRS of an appropriate UTM zone
given G’s bounds.

Parameters

• G (networkx.MultiDiGraph) – the graph to be projected

• to_crs (string or pyproj.CRS) – if None, project to an appropriate UTM zone, other-
wise project to this CRS

• to_latlong (bool) – if True, project to settings.default_crs and ignore to_crs

Returns
G_proj – the projected graph

Return type
networkx.MultiDiGraph

6.4. Internals Reference 109

OSMnx, Release 1.9.2

6.4.19 osmnx.routing module

Calculate weighted shortest paths between graph nodes.

osmnx.routing._clean_maxspeed(maxspeed, agg=numpy.mean, convert_mph=True)
Clean a maxspeed string and convert mph to kph if necessary.

If present, splits maxspeed on “|” (which denotes that the value contains different speeds per lane) then aggregates
the resulting values. Invalid inputs return None. See https://wiki.openstreetmap.org/wiki/Key:maxspeed for
details on values and formats.

Parameters

• maxspeed (string) – a valid OpenStreetMap way maxspeed value

• agg (function) – aggregation function if maxspeed contains multiple values (default is
numpy.mean)

• convert_mph (bool) – if True, convert miles per hour to km per hour

Returns
clean_value

Return type
string

osmnx.routing._collapse_multiple_maxspeed_values(value, agg)
Collapse a list of maxspeed values to a single value.

Parameters

• value (list or string) – an OSM way maxspeed value, or a list of them

• agg (function) – the aggregation function to reduce the list to a single value

Returns
agg_value – an integer representation of the aggregated value in the list, converted to kph if
original value was in mph.

Return type
int

osmnx.routing._single_shortest_path(G, orig, dest, weight)
Solve the shortest path from an origin node to a destination node.

This function is a convenience wrapper around networkx.shortest_path, with exception handling for unsolvable
paths. It uses Dijkstra’s algorithm.

Parameters

• G (networkx.MultiDiGraph) – input graph

• orig (int) – origin node ID

• dest (int) – destination node ID

• weight (string) – edge attribute to minimize when solving shortest path

Returns
path – list of node IDs constituting the shortest path

Return type
list

110 Chapter 6. Documentation

https://wiki.openstreetmap.org/wiki/Key:maxspeed

OSMnx, Release 1.9.2

osmnx.routing._verify_edge_attribute(G, attr)
Verify attribute values are numeric and non-null across graph edges.

Raises a ValueError if attribute contains non-numeric values and raises a warning if attribute is missing or null
on any edges.

Parameters

• G (networkx.MultiDiGraph) – input graph

• attr (string) – edge attribute to verify

Return type
None

osmnx.routing.add_edge_speeds(G, hwy_speeds=None, fallback=None, precision=None, agg=numpy.mean)
Add edge speeds (km per hour) to graph as new speed_kph edge attributes.

By default, this imputes free-flow travel speeds for all edges via the mean maxspeed value of the edges of each
highway type. For highway types in the graph that have no maxspeed value on any edge, it assigns the mean of
all maxspeed values in graph.

This default mean-imputation can obviously be imprecise, and the user can override it by passing in hwy_speeds
and/or fallback arguments that correspond to local speed limit standards. The user can also specify a different
aggregation function (such as the median) to impute missing values from the observed values.

If edge maxspeed attribute has “mph” in it, value will automatically be converted from miles per hour to km
per hour. Any other speed units should be manually converted to km per hour prior to running this function,
otherwise there could be unexpected results. If “mph” does not appear in the edge’s maxspeed attribute string,
then function assumes kph, per OSM guidelines: https://wiki.openstreetmap.org/wiki/Map_Features/Units

Parameters

• G (networkx.MultiDiGraph) – input graph

• hwy_speeds (dict) – dict keys = OSM highway types and values = typical speeds (km per
hour) to assign to edges of that highway type for any edges missing speed data. Any edges
with highway type not in hwy_speeds will be assigned the mean preexisting speed value of
all edges of that highway type.

• fallback (numeric) – default speed value (km per hour) to assign to edges whose highway
type did not appear in hwy_speeds and had no preexisting speed values on any edge

• precision (int) – deprecated, do not use

• agg (function) – aggregation function to impute missing values from observed val-
ues. the default is numpy.mean, but you might also consider for example numpy.median,
numpy.nanmedian, or your own custom function

Returns
G – graph with speed_kph attributes on all edges

Return type
networkx.MultiDiGraph

osmnx.routing.add_edge_travel_times(G, precision=None)
Add edge travel time (seconds) to graph as new travel_time edge attributes.

Calculates free-flow travel time along each edge, based on length and speed_kph attributes. Note: run
add_edge_speeds first to generate the speed_kph attribute. All edges must have length and speed_kph attributes
and all their values must be non-null.

Parameters

6.4. Internals Reference 111

https://wiki.openstreetmap.org/wiki/Map_Features/Units

OSMnx, Release 1.9.2

• G (networkx.MultiDiGraph) – input graph

• precision (int) – deprecated, do not use

Returns
G – graph with travel_time attributes on all edges

Return type
networkx.MultiDiGraph

osmnx.routing.k_shortest_paths(G, orig, dest, k, weight='length')
Solve k shortest paths from an origin node to a destination node.

Uses Yen’s algorithm. See also shortest_path to solve just the one shortest path.

Parameters

• G (networkx.MultiDiGraph) – input graph

• orig (int) – origin node ID

• dest (int) – destination node ID

• k (int) – number of shortest paths to solve

• weight (string) – edge attribute to minimize when solving shortest paths. default is edge
length in meters.

Yields
path (list) – a generator of k shortest paths ordered by total weight. each path is a list of node
IDs.

osmnx.routing.route_to_gdf(G, route, weight='length')
Return a GeoDataFrame of the edges in a path, in order.

Parameters

• G (networkx.MultiDiGraph) – input graph

• route (list) – list of node IDs constituting the path

• weight (string) – if there are parallel edges between two nodes, choose lowest weight

Returns
gdf_edges – GeoDataFrame of the edges

Return type
geopandas.GeoDataFrame

osmnx.routing.shortest_path(G, orig, dest, weight='length', cpus=1)
Solve shortest path from origin node(s) to destination node(s).

Uses Dijkstra’s algorithm. If orig and dest are single node IDs, this will return a list of the nodes constituting
the shortest path between them. If orig and dest are lists of node IDs, this will return a list of lists of the nodes
constituting the shortest path between each origin-destination pair. If a path cannot be solved, this will return
None for that path. You can parallelize solving multiple paths with the cpus parameter, but be careful to not
exceed your available RAM.

See also k_shortest_paths to solve multiple shortest paths between a single origin and destination. For additional
functionality or different solver algorithms, use NetworkX directly.

Parameters

• G (networkx.MultiDiGraph) – input graph

• orig (int or list) – origin node ID, or a list of origin node IDs

112 Chapter 6. Documentation

OSMnx, Release 1.9.2

• dest (int or list) – destination node ID, or a list of destination node IDs

• weight (string) – edge attribute to minimize when solving shortest path

• cpus (int) – how many CPU cores to use; if None, use all available

Returns
path – list of node IDs constituting the shortest path, or, if orig and dest are lists, then a list of
path lists

Return type
list

6.4.20 osmnx.settings module

Global settings that can be configured by the user.

all_oneway
[bool] Only use if specifically saving to .osm XML file with the save_graph_xml function. If True, forces all
ways to be loaded as oneway ways, preserving the original order of nodes stored in the OSM way XML. This
also retains original OSM string values for oneway attribute values, rather than converting them to a True/False
bool. Default is False.

bidirectional_network_types
[list] Network types for which a fully bidirectional graph will be created. Default is [“walk”].

cache_folder
[str or pathlib.Path] Path to folder in which to save/load HTTP response cache, if the use_cache setting equals
True. Default is “./cache”.

cache_only_mode
[bool] If True, download network data from Overpass then raise a CacheOnlyModeInterrupt error for user to
catch. This prevents graph building from taking place and instead just saves OSM response data to cache. Useful
for sequentially caching lots of raw data (as you can only query Overpass one request at a time) then using the
local cache to quickly build many graphs simultaneously with multiprocessing. Default is False.

data_folder
[str or pathlib.Path] Path to folder in which to save/load graph files by default. Default is “./data”.

default_accept_language
[str] Do not use, deprecated. Use http_accept_language instead.

default_access
[str] Default filter for OSM “access” key. Default is ‘[“access”!~”private”]’. Note that also filtering out “ac-
cess=no” ways prevents including transit-only bridges (e.g., Tilikum Crossing) from appearing in drivable road
network (e.g., ‘[“access”!~”private|no”]’). However, some drivable tollroads have “access=no” plus a “ac-
cess:conditional” key to clarify when it is accessible, so we can’t filter out all “access=no” ways by default.
Best to be permissive here then remove complicated combinations of tags programatically after the full graph is
downloaded and constructed.

default_crs
[str] Default coordinate reference system to set when creating graphs. Default is “epsg:4326”.

default_referer
[str] Do not use, deprecated. Use http_referer instead.

default_user_agent
[str] Do not use, deprecated. Use http_user_agent instead.

6.4. Internals Reference 113

OSMnx, Release 1.9.2

doh_url_template
[str] Endpoint to resolve DNS-over-HTTPS if local DNS resolution fails. Set to None to disable DoH, but see
downloader._config_dns documentation for caveats. Default is: “https://8.8.8.8/resolve?name={hostname}”

elevation_url_template
[str] Endpoint of the Google Maps Elevation API (or equivalent), containing exactly two parameters: locations
and key. Default is: “https://maps.googleapis.com/maps/api/elevation/json?locations={locations}&key={key}”
One example of an alternative equivalent would be Open Topo Data:
“https://api.opentopodata.org/v1/aster30m?locations={locations}&key={key}”

http_accept_language
[str] HTTP header accept-language. Default is “en”. Note that Nominatim’s default language is “en” and it can
sort result importance scores differently if a different language is specified.

http_referer
[str] HTTP header referer. Default is “OSMnx Python package (https://github.com/gboeing/osmnx)”.

http_user_agent
[str] HTTP header user-agent. Default is “OSMnx Python package (https://github.com/gboeing/osmnx)”.

imgs_folder
[str or pathlib.Path] Path to folder in which to save plotted images by default. Default is “./images”.

log_file
[bool] If True, save log output to a file in logs_folder. Default is False.

log_filename
[str] Name of the log file, without file extension. Default is “osmnx”.

log_console
[bool] If True, print log output to the console (terminal window). Default is False.

log_level
[int] One of Python’s logger.level constants. Default is logging.INFO.

log_name
[str] Name of the logger. Default is “OSMnx”.

logs_folder
[str or pathlib.Path] Path to folder in which to save log files. Default is “./logs”.

max_query_area_size
[int] Maximum area for any part of the geometry in meters: any polygon bigger than this will get divided up for
multiple queries to the API. Default is 2500000000.

memory
[int] Do not use, deprecated. Use overpass_memory instead.

nominatim_endpoint
[str] Do not use, deprecated. Use nominatim_url instead.

nominatim_key
[str] Your Nominatim API key, if you are using an API instance that requires one. Default is None.

nominatim_url
[str] The base API url to use for Nominatim queries. Default is “https://nominatim.openstreetmap.org/”.

osm_xml_node_attrs
[list] Do not use, deprecated.

osm_xml_node_tags
[list] Do not use, deprecated.

114 Chapter 6. Documentation

OSMnx, Release 1.9.2

osm_xml_way_attrs
[list] Do not use, deprecated.

osm_xml_way_tags
[list] Do not use, deprecated.

overpass_endpoint
[str] Do not use, deprecated. Use overpass_url instead.

overpass_memory
[int | None] Overpass server memory allocation size for the query, in bytes. If None, server will choose its default
allocation size. Use with caution. Default is None.

overpass_rate_limit
[bool] If True, check the Overpass server status endpoint for how long to pause before making request. Necessary
if server uses slot management, but can be set to False if you are running your own overpass instance without
rate limiting. Default is True.

overpass_settings
[str] Settings string for Overpass queries. Default is “[out:json][timeout:{timeout}]{maxsize}”. By default, the
{timeout} and {maxsize} values are set dynamically by OSMnx when used. To query, for example, historical
OSM data as of a certain date: ‘[out:json][timeout:90][date:”2019-10-28T19:20:00Z”]’. Use with caution.

overpass_url
[str] The base API url to use for Overpass queries. Default is “https://overpass-api.de/api”.

requests_kwargs
[dict] Optional keyword args to pass to the requests package when connecting to APIs, for example to configure
authentication or provide a path to a local certificate file. More info on options such as auth, cert, verify, and
proxies can be found in the requests package advanced docs. Default is {}.

requests_timeout
[int] The timeout interval in seconds for HTTP requests, and (when applicable) for Overpass server to use for
executing the query. Default is 180.

timeout
[int] Do not use, deprecated. Use requests_timeout instead.

use_cache
[bool] If True, cache HTTP responses locally instead of calling API repeatedly for the same request. Default is
True.

useful_tags_node
[list] OSM “node” tags to add as graph node attributes, when present in the data retrieved from OSM. Default is
[“ref”, “highway”].

useful_tags_way
[list] OSM “way” tags to add as graph edge attributes, when present in the data retrieved from OSM. Default
is [“bridge”, “tunnel”, “oneway”, “lanes”, “ref”, “name”, “highway”, “maxspeed”, “service”, “access”,
“area”, “landuse”, “width”, “est_width”, “junction”].

6.4. Internals Reference 115

OSMnx, Release 1.9.2

6.4.21 osmnx.simplification module

Simplify, correct, and consolidate network topology.

osmnx.simplification._build_path(G, endpoint, endpoint_successor, endpoints)
Build a path of nodes from one endpoint node to next endpoint node.

Parameters

• G (networkx.MultiDiGraph) – input graph

• endpoint (int) – the endpoint node from which to start the path

• endpoint_successor (int) – the successor of endpoint through which the path to the next
endpoint will be built

• endpoints (set) – the set of all nodes in the graph that are endpoints

Returns
path – the first and last items in the resulting path list are endpoint nodes, and all other items are
interstitial nodes that can be removed subsequently

Return type
list

osmnx.simplification._consolidate_intersections_rebuild_graph(G, tolerance=10,
reconnect_edges=True)

Consolidate intersections comprising clusters of nearby nodes.

Merge nodes and return a rebuilt graph with consolidated intersections and reconnected edge geometries.

The tolerance argument should be adjusted to approximately match street design standards in the specific street
network, and you should always use a projected graph to work in meaningful and consistent units like meters.

Returned graph’s node IDs represent clusters rather than osmids. Refer to nodes’ osmid_original attributes for
original osmids. If multiple nodes were merged together, the osmid_original attribute is a list of merged nodes’
osmids.

Parameters

• G (networkx.MultiDiGraph) – a projected graph

• tolerance (float) – nodes are buffered to this distance (in graph’s geometry’s units) and
subsequent overlaps are dissolved into a single node

• reconnect_edges (bool) – ignored if rebuild_graph is not True. if True, reconnect edges
and their geometries in rebuilt graph to the consolidated nodes and update edge length at-
tributes; if False, returned graph has no edges (which is faster if you just need topologically
consolidated intersection counts).

Returns
H – a rebuilt graph with consolidated intersections and reconnected edge geometries

Return type
networkx.MultiDiGraph

osmnx.simplification._get_paths_to_simplify(G, endpoint_attrs)
Generate all the paths to be simplified between endpoint nodes.

The path is ordered from the first endpoint, through the interstitial nodes, to the second endpoint.

Parameters

• G (networkx.MultiDiGraph) – input graph

116 Chapter 6. Documentation

OSMnx, Release 1.9.2

• endpoint_attrs (iterable) – An iterable of edge attribute names for relaxing the strict-
ness of endpoint determination. If not None, a node is an endpoint if its incident edges have
different values then each other for any of the edge attributes in endpoint_attrs.

Yields
path_to_simplify (list) – a generator of paths to simplify

osmnx.simplification._is_endpoint(G, node, endpoint_attrs)
Determine if a node is a true endpoint of an edge.

Return True if the node is a “true” endpoint of an edge in the network, otherwise False. OpenStreetMap data
includes many nodes that exist only as geometric vertices to allow ways to curve. A true edge endpoint is a node
that satisfies at least 1 of the following 4 rules:

1) It is its own neighbor (ie, it self-loops).

2) Or, it has no incoming edges or no outgoing edges (ie, all its incident edges are inbound or all its incident
edges are outbound).

3) Or, it does not have exactly two neighbors and degree of 2 or 4.

4) Or, if endpoint_attrs is not None, and its incident edges have different values than each other for any of the
edge attributes in endpoint_attrs.

Parameters

• G (networkx.MultiDiGraph) – input graph

• node (int) – the node to examine

• endpoint_attrs (iterable) – An iterable of edge attribute names for relaxing the strict-
ness of endpoint determination. If not None, a node is an endpoint if its incident edges have
different values then each other for any of the edge attributes in endpoint_attrs.

Return type
bool

osmnx.simplification._merge_nodes_geometric(G, tolerance)
Geometrically merge nodes within some distance of each other.

Parameters

• G (networkx.MultiDiGraph) – a projected graph

• tolerance (float) – buffer nodes to this distance (in graph’s geometry’s units) then merge
overlapping polygons into a single polygon via a unary union operation

Returns
merged – the merged overlapping polygons of the buffered nodes

Return type
GeoSeries

osmnx.simplification._remove_rings(G, endpoint_attrs)
Remove all self-contained rings from a graph.

This identifies any connected components that form a self-contained ring without any endpoints, and removes
them from the graph.

Parameters

• G (networkx.MultiDiGraph) – input graph

6.4. Internals Reference 117

OSMnx, Release 1.9.2

• endpoint_attrs (iterable) – An iterable of edge attribute names for relaxing the strict-
ness of endpoint determination. If not None, a node is an endpoint if its incident edges have
different values then each other for any of the edge attributes in endpoint_attrs.

Returns
G – graph with self-contained rings removed

Return type
networkx.MultiDiGraph

osmnx.simplification.consolidate_intersections(G, tolerance=10, rebuild_graph=True,
dead_ends=False, reconnect_edges=True)

Consolidate intersections comprising clusters of nearby nodes.

Merges nearby nodes and returns either their centroids or a rebuilt graph with consolidated intersections and
reconnected edge geometries. The tolerance argument should be adjusted to approximately match street design
standards in the specific street network, and you should always use a projected graph to work in meaningful and
consistent units like meters. Note the tolerance represents a per-node buffering radius: for example, to consolidate
nodes within 10 meters of each other, use tolerance=5.

When rebuild_graph=False, it uses a purely geometrical (and relatively fast) algorithm to identify “geometrically
close” nodes, merge them, and return just the merged intersections’ centroids. When rebuild_graph=True, it uses
a topological (and slower but more accurate) algorithm to identify “topologically close” nodes, merge them, then
rebuild/return the graph. Returned graph’s node IDs represent clusters rather than osmids. Refer to nodes’ os-
mid_original attributes for original osmids. If multiple nodes were merged together, the osmid_original attribute
is a list of merged nodes’ osmids.

Divided roads are often represented by separate centerline edges. The intersection of two divided roads thus
creates 4 nodes, representing where each edge intersects a perpendicular edge. These 4 nodes represent a single
intersection in the real world. A similar situation occurs with roundabouts and traffic circles. This function
consolidates nearby nodes by buffering them to an arbitrary distance, merging overlapping buffers, and taking
their centroid.

Parameters

• G (networkx.MultiDiGraph) – a projected graph

• tolerance (float) – nodes are buffered to this distance (in graph’s geometry’s units) and
subsequent overlaps are dissolved into a single node

• rebuild_graph (bool) – if True, consolidate the nodes topologically, rebuild the graph,
and return as networkx.MultiDiGraph. if False, consolidate the nodes geometrically and
return the consolidated node points as geopandas.GeoSeries

• dead_ends (bool) – if False, discard dead-end nodes to return only street-intersection points

• reconnect_edges (bool) – ignored if rebuild_graph is not True. if True, reconnect edges
and their geometries in rebuilt graph to the consolidated nodes and update edge length at-
tributes; if False, returned graph has no edges (which is faster if you just need topologically
consolidated intersection counts).

Returns
if rebuild_graph=True, returns MultiDiGraph with consolidated intersections and reconnected
edge geometries. if rebuild_graph=False, returns GeoSeries of shapely Points representing the
centroids of street intersections

Return type
networkx.MultiDiGraph or geopandas.GeoSeries

osmnx.simplification.simplify_graph(G, strict=None, edge_attrs_differ=None, endpoint_attrs=None,
remove_rings=True, track_merged=False)

118 Chapter 6. Documentation

OSMnx, Release 1.9.2

Simplify a graph’s topology by removing interstitial nodes.

This simplifies graph topology by removing all nodes that are not intersections or dead-ends, by creating an edge
directly between the end points that encapsulate them while retaining the full geometry of the original edges,
saved as a new geometry attribute on the new edge.

Note that only simplified edges receive a geometry attribute. Some of the resulting consolidated edges may
comprise multiple OSM ways, and if so, their multiple attribute values are stored as a list. Optionally, the
simplified edges can receive a merged_edges attribute that contains a list of all the (u, v) node pairs that were
merged together.

Use the edge_attrs_differ parameter to relax simplification strictness. For example, edge_attrs_differ=[‘osmid’]
will retain every node whose incident edges have different OSM IDs. This lets you keep nodes at elbow two-way
intersections (but be aware that sometimes individual blocks have multiple OSM IDs within them too). You
could also use this parameter to retain nodes where sidewalks or bike lanes begin/end in the middle of a block.

Parameters

• G (networkx.MultiDiGraph) – input graph

• strict (bool) – deprecated, do not use

• edge_attrs_differ (iterable) – An iterable of edge attribute names for relaxing the
strictness of endpoint determination. If not None, a node is an endpoint if its incident edges
have different values then each other for any of the edge attributes in edge_attrs_differ.

• endpoint_attrs (iterable) – deprecated, do not use

• remove_rings (bool) – if True, remove isolated self-contained rings that have no endpoints

• track_merged (bool) – if True, add merged_edges attribute on simplified edges, containing
a list of all the (u, v) node pairs that were merged together

Returns
G – topologically simplified graph, with a new geometry attribute on each simplified edge

Return type
networkx.MultiDiGraph

6.4.22 osmnx.speed module

Calculate graph edge speeds and travel times.

osmnx.speed.add_edge_speeds(G, hwy_speeds=None, fallback=None, precision=None, agg=numpy.mean)
Do not use: deprecated.

Use the routing.add_edge_speeds function instead.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• hwy_speeds (dict) – deprecated, do not use

• fallback (numeric) – deprecated, do not use

• precision (int) – deprecated, do not use

• agg (function) – deprecated, do not use

Returns
G

6.4. Internals Reference 119

OSMnx, Release 1.9.2

Return type
networkx.MultiDiGraph

osmnx.speed.add_edge_travel_times(G, precision=None)
Do not use: deprecated.

Use the routing.add_edge_travel_times function instead.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• precision (int) – deprecated, do not use

Returns
G

Return type
networkx.MultiDiGraph

6.4.23 osmnx.stats module

Calculate geometric and topological network measures.

This module defines streets as the edges in an undirected representation of the graph. Using undirected graph edges
prevents double-counting bidirectional edges of a two-way street, but may double-count a divided road’s separate
centerlines with different end point nodes. If clean_periphery=True when the graph was created (which is the default
parameterization), then you will get accurate node degrees (and in turn streets-per-node counts) even at the periphery
of the graph.

You can use NetworkX directly for additional topological network measures.

osmnx.stats.basic_stats(G, area=None, clean_int_tol=None)
Calculate basic descriptive geometric and topological measures of a graph.

Density measures are only calculated if area is provided and clean intersection measures are only calculated if
clean_int_tol is provided.

Parameters

• G (networkx.MultiDiGraph) – input graph

• area (float) – if not None, calculate density measures and use this value (in square meters)
as the denominator

• clean_int_tol (float) – if not None, calculate consolidated intersections count (and
density, if area is also provided) and use this tolerance value; refer to the simplifica-
tion.consolidate_intersections function documentation for details

Returns

stats –

dictionary containing the following keys

• circuity_avg - see circuity_avg function documentation

• clean_intersection_count - see clean_intersection_count function documentation

• clean_intersection_density_km - clean_intersection_count per sq km

• edge_density_km - edge_length_total per sq km

• edge_length_avg - edge_length_total / m

120 Chapter 6. Documentation

OSMnx, Release 1.9.2

• edge_length_total - see edge_length_total function documentation

• intersection_count - see intersection_count function documentation

• intersection_density_km - intersection_count per sq km

• k_avg - graph’s average node degree (in-degree and out-degree)

• m - count of edges in graph

• n - count of nodes in graph

• node_density_km - n per sq km

• self_loop_proportion - see self_loop_proportion function documentation

• street_density_km - street_length_total per sq km

• street_length_avg - street_length_total / street_segment_count

• street_length_total - see street_length_total function documentation

• street_segment_count - see street_segment_count function documentation

• streets_per_node_avg - see streets_per_node_avg function documentation

• streets_per_node_counts - see streets_per_node_counts function documentation

• streets_per_node_proportions - see streets_per_node_proportions function documenta-
tion

Return type
dict

osmnx.stats.circuity_avg(Gu)
Calculate average street circuity using edges of undirected graph.

Circuity is the sum of edge lengths divided by the sum of straight-line distances between edge endpoints. Cal-
culates straight-line distance as euclidean distance if projected or great-circle distance if unprojected.

Parameters
Gu (networkx.MultiGraph) – undirected input graph

Returns
circuity_avg – the graph’s average undirected edge circuity

Return type
float

osmnx.stats.count_streets_per_node(G, nodes=None)
Count how many physical street segments connect to each node in a graph.

This function uses an undirected representation of the graph and special handling of self-loops to accurately count
physical streets rather than directed edges. Note: this function is automatically run by all the graph.graph_from_x
functions prior to truncating the graph to the requested boundaries, to add accurate street_count attributes to each
node even if some of its neighbors are outside the requested graph boundaries.

Parameters

• G (networkx.MultiDiGraph) – input graph

• nodes (list) – which node IDs to get counts for. if None, use all graph nodes, otherwise
calculate counts only for these node IDs

6.4. Internals Reference 121

OSMnx, Release 1.9.2

Returns
streets_per_node – counts of how many physical streets connect to each node, with keys = node
ids and values = counts

Return type
dict

osmnx.stats.edge_length_total(G)
Calculate graph’s total edge length.

Parameters
G (networkx.MultiDiGraph) – input graph

Returns
length – total length (meters) of edges in graph

Return type
float

osmnx.stats.intersection_count(G=None, min_streets=2)
Count the intersections in a graph.

Intersections are defined as nodes with at least min_streets number of streets incident on them.

Parameters

• G (networkx.MultiDiGraph) – input graph

• min_streets (int) – a node must have at least min_streets incident on them to count as an
intersection

Returns
count – count of intersections in graph

Return type
int

osmnx.stats.self_loop_proportion(Gu)
Calculate percent of edges that are self-loops in a graph.

A self-loop is defined as an edge from node u to node v where u==v.

Parameters
Gu (networkx.MultiGraph) – undirected input graph

Returns
proportion – proportion of graph edges that are self-loops

Return type
float

osmnx.stats.street_length_total(Gu)
Calculate graph’s total street segment length.

Parameters
Gu (networkx.MultiGraph) – undirected input graph

Returns
length – total length (meters) of streets in graph

Return type
float

122 Chapter 6. Documentation

OSMnx, Release 1.9.2

osmnx.stats.street_segment_count(Gu)
Count the street segments in a graph.

Parameters
Gu (networkx.MultiGraph) – undirected input graph

Returns
count – count of street segments in graph

Return type
int

osmnx.stats.streets_per_node(G)
Count streets (undirected edges) incident on each node.

Parameters
G (networkx.MultiDiGraph) – input graph

Returns
spn – dictionary with node ID keys and street count values

Return type
dict

osmnx.stats.streets_per_node_avg(G)
Calculate graph’s average count of streets per node.

Parameters
G (networkx.MultiDiGraph) – input graph

Returns
spna – average count of streets per node

Return type
float

osmnx.stats.streets_per_node_counts(G)
Calculate streets-per-node counts.

Parameters
G (networkx.MultiDiGraph) – input graph

Returns
spnc – dictionary keyed by count of streets incident on each node, and with values of how many
nodes in the graph have this count

Return type
dict

osmnx.stats.streets_per_node_proportions(G)
Calculate streets-per-node proportions.

Parameters
G (networkx.MultiDiGraph) – input graph

Returns
spnp – dictionary keyed by count of streets incident on each node, and with values of what
proportion of nodes in the graph have this count

Return type
dict

6.4. Internals Reference 123

OSMnx, Release 1.9.2

6.4.24 osmnx.truncate module

Truncate graph by distance, bounding box, or polygon.

osmnx.truncate.largest_component(G, strongly=False)
Get subgraph of G’s largest weakly/strongly connected component.

Parameters

• G (networkx.MultiDiGraph) – input graph

• strongly (bool) – if True, return the largest strongly instead of weakly connected compo-
nent

Returns
G – the largest connected component subgraph of the original graph

Return type
networkx.MultiDiGraph

osmnx.truncate.truncate_graph_bbox(G, north=None, south=None, east=None, west=None, bbox=None,
truncate_by_edge=False, retain_all=False, quadrat_width=None,
min_num=None)

Remove every node in graph that falls outside a bounding box.

Parameters

• G (networkx.MultiDiGraph) – input graph

• north (float) – deprecated, do not use

• south (float) – deprecated, do not use

• east (float) – deprecated, do not use

• west (float) – deprecated, do not use

• bbox (tuple of floats) – bounding box as (north, south, east, west)

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• quadrat_width (float) – deprecated, do not use

• min_num (int) – deprecated, do not use

Returns
G – the truncated graph

Return type
networkx.MultiDiGraph

osmnx.truncate.truncate_graph_dist(G, source_node, max_dist=1000, weight='length', retain_all=False)
Remove every node farther than some network distance from source_node.

This function can be slow for large graphs, as it must calculate shortest path distances between source_node and
every other graph node.

Parameters

• G (networkx.MultiDiGraph) – input graph

124 Chapter 6. Documentation

OSMnx, Release 1.9.2

• source_node (int) – node in graph from which to measure network distances to other
nodes

• max_dist (float) – remove every node in the graph that is greater than this distance (in
same units as weight attribute) along the network from source_node

• weight (string) – graph edge attribute to use to measure distance

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

Returns
G – the truncated graph

Return type
networkx.MultiDiGraph

osmnx.truncate.truncate_graph_polygon(G, polygon, retain_all=False, truncate_by_edge=False,
quadrat_width=None, min_num=None)

Remove every node in graph that falls outside a (Multi)Polygon.

Parameters

• G (networkx.MultiDiGraph) – input graph

• polygon (shapely.geometry.Polygon or shapely.geometry.MultiPolygon) –
only retain nodes in graph that lie within this geometry

• retain_all (bool) – if True, return the entire graph even if it is not connected. otherwise,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside boundary polygon if at least one
of node’s neighbors is within the polygon

• quadrat_width (float) – deprecated, do not use

• min_num (int) – deprecated, do not use

Returns
G – the truncated graph

Return type
networkx.MultiDiGraph

6.4.25 osmnx.utils module

General utility functions.

osmnx.utils._get_logger(level, name, filename)
Create a logger or return the current one if already instantiated.

Parameters

• level (int) – one of Python’s logger.level constants

• name (string) – name of the logger

• filename (string) – name of the log file, without file extension

Returns
logger

Return type
logging.logger

6.4. Internals Reference 125

OSMnx, Release 1.9.2

osmnx.utils.citation(style='bibtex')
Print the OSMnx package’s citation information.

Boeing, G. (2017). OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Com-
plex Street Networks. Computers, Environment and Urban Systems, 65, 126-139. https://doi.org/10.1016/j.
compenvurbsys.2017.05.004

Parameters
style (string {"apa", "bibtex", "ieee"}) – citation format, either APA or BibTeX or
IEEE

Return type
None

osmnx.utils.config(all_oneway=False, bidirectional_network_types=['walk'], cache_folder='./cache',
cache_only_mode=False, data_folder='./data', default_accept_language=None,
default_access='["access"!~"private"]', default_crs='epsg:4326', default_referer=None,
default_user_agent=None, imgs_folder='./images', log_console=False, log_file=False,
log_filename='osmnx', log_level=20, log_name='OSMnx', logs_folder='./logs',
max_query_area_size=2500000000, memory=None, nominatim_endpoint=None,
nominatim_key=None, osm_xml_node_attrs=None, osm_xml_node_tags=None,
osm_xml_way_attrs=None, osm_xml_way_tags=None, overpass_endpoint=None,
overpass_rate_limit=True, overpass_settings='[out:json][timeout:{timeout}]{maxsize}',
requests_kwargs={}, timeout=None, use_cache=True, useful_tags_node=['ref', 'highway'],
useful_tags_way=['bridge', 'tunnel', 'oneway', 'lanes', 'ref', 'name', 'highway', 'maxspeed',
'service', 'access', 'area', 'landuse', 'width', 'est_width', 'junction'])

Do not use: deprecated. Use the settings module directly.

Parameters

• all_oneway (bool) – deprecated

• bidirectional_network_types (list) – deprecated

• cache_folder (string or pathlib.Path) – deprecated

• data_folder (string or pathlib.Path) – deprecated

• cache_only_mode (bool) – deprecated

• default_accept_language (string) – deprecated

• default_access (string) – deprecated

• default_crs (string) – deprecated

• default_referer (string) – deprecated

• default_user_agent (string) – deprecated

• imgs_folder (string or pathlib.Path) – deprecated

• log_file (bool) – deprecated

• log_filename (string) – deprecated

• log_console (bool) – deprecated

• log_level (int) – deprecated

• log_name (string) – deprecated

• logs_folder (string or pathlib.Path) – deprecated

• max_query_area_size (int) – deprecated

126 Chapter 6. Documentation

https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1016/j.compenvurbsys.2017.05.004

OSMnx, Release 1.9.2

• memory (int) – deprecated

• nominatim_endpoint (string) – deprecated

• nominatim_key (string) – deprecated

• osm_xml_node_attrs (list) – deprecated

• osm_xml_node_tags (list) – deprecated

• osm_xml_way_attrs (list) – deprecated

• osm_xml_way_tags (list) – deprecated

• overpass_endpoint (string) – deprecated

• overpass_rate_limit (bool) – deprecated

• overpass_settings (string) – deprecated

• requests_kwargs (dict) – deprecated

• timeout (int) – deprecated

• use_cache (bool) – deprecated

• useful_tags_node (list) – deprecated

• useful_tags_way (list) – deprecated

Return type
None

osmnx.utils.log(message, level=None, name=None, filename=None)
Write a message to the logger.

This logs to file and/or prints to the console (terminal), depending on the current configuration of settings.log_file
and settings.log_console.

Parameters

• message (string) – the message to log

• level (int) – one of Python’s logger.level constants

• name (string) – name of the logger

• filename (string) – name of the log file, without file extension

Return type
None

osmnx.utils.ts(style='datetime', template=None)
Return current local timestamp as a string.

Parameters

• style (string {"datetime", "date", "time"}) – format the timestamp with this
built-in style

• template (string) – if not None, format the timestamp with this format string instead of
one of the built-in styles

Returns
ts – local timestamp string

Return type
string

6.4. Internals Reference 127

OSMnx, Release 1.9.2

6.4.26 osmnx.utils_geo module

Geospatial utility functions.

osmnx.utils_geo._consolidate_subdivide_geometry(geometry)
Consolidate and subdivide some geometry.

Consolidate a geometry into a convex hull, then subdivide it into smaller sub-polygons if its area exceeds max
size (in geometry’s units). Configure the max size via max_query_area_size in the settings module.

When the geometry has a very large area relative to its vertex count, the resulting MultiPolygon’s boundary may
differ somewhat from the input, due to the way long straight lines are projected. You can interpolate additional
vertices along your input geometry’s exterior to mitigate this.

Parameters
geometry (shapely.geometry.Polygon or shapely.geometry.MultiPolygon) – the
projected (in meter units) geometry to consolidate and subdivide

Returns
geometry

Return type
shapely.geometry.MultiPolygon

osmnx.utils_geo._intersect_index_quadrats(geometries, polygon)
Identify geometries that intersect a (Multi)Polygon.

Uses an r-tree spatial index and cuts polygon up into smaller sub-polygons for r-tree acceleration. Ensure that
geometries and polygon are in the same coordinate reference system.

Parameters

• geometries (geopandas.GeoSeries) – the geometries to intersect with the polygon

• polygon (shapely.geometry.Polygon or shapely.geometry.MultiPolygon) –
the polygon to intersect with the geometries

Returns
geoms_in_poly – set of the index labels of the geometries that intersected the polygon

Return type
set

osmnx.utils_geo._quadrat_cut_geometry(geometry, quadrat_width)
Split a Polygon or MultiPolygon up into sub-polygons of a specified size.

Parameters

• geometry (shapely.geometry.Polygon or shapely.geometry.MultiPolygon) –
the geometry to split up into smaller sub-polygons

• quadrat_width (float) – width (in geometry’s units) of quadrat squares with which to
split up the geometry

Returns
geometry

Return type
shapely.geometry.MultiPolygon

osmnx.utils_geo._round_linestring_coords(ls, precision)
Round the coordinates of a shapely LineString to some decimal precision.

128 Chapter 6. Documentation

OSMnx, Release 1.9.2

Parameters

• ls (shapely.geometry.LineString) – the LineString to round the coordinates of

• precision (int) – decimal precision to round coordinates to

Return type
shapely.geometry.LineString

osmnx.utils_geo._round_multilinestring_coords(mls, precision)
Round the coordinates of a shapely MultiLineString to some decimal precision.

Parameters

• mls (shapely.geometry.MultiLineString) – the MultiLineString to round the coordi-
nates of

• precision (int) – decimal precision to round coordinates to

Return type
shapely.geometry.MultiLineString

osmnx.utils_geo._round_multipoint_coords(mpt, precision)
Round the coordinates of a shapely MultiPoint to some decimal precision.

Parameters

• mpt (shapely.geometry.MultiPoint) – the MultiPoint to round the coordinates of

• precision (int) – decimal precision to round coordinates to

Return type
shapely.geometry.MultiPoint

osmnx.utils_geo._round_multipolygon_coords(mp, precision)
Round the coordinates of a shapely MultiPolygon to some decimal precision.

Parameters

• mp (shapely.geometry.MultiPolygon) – the MultiPolygon to round the coordinates of

• precision (int) – decimal precision to round coordinates to

Return type
shapely.geometry.MultiPolygon

osmnx.utils_geo._round_point_coords(pt, precision)
Round the coordinates of a shapely Point to some decimal precision.

Parameters

• pt (shapely.geometry.Point) – the Point to round the coordinates of

• precision (int) – decimal precision to round coordinates to

Return type
shapely.geometry.Point

osmnx.utils_geo._round_polygon_coords(p, precision)
Round the coordinates of a shapely Polygon to some decimal precision.

Parameters

• p (shapely.geometry.Polygon) – the polygon to round the coordinates of

• precision (int) – decimal precision to round coordinates to

6.4. Internals Reference 129

OSMnx, Release 1.9.2

Return type
shapely.geometry.Polygon

osmnx.utils_geo.bbox_from_point(point, dist=1000, project_utm=False, return_crs=False)
Create a bounding box around a (lat, lon) point.

Create a bounding box some distance (in meters) in each direction (north, south, east, and west) from the center
point and optionally project it.

Parameters

• point (tuple) – the (lat, lon) center point to create the bounding box around

• dist (int) – bounding box distance in meters from the center point

• project_utm (bool) – if True, return bounding box as UTM-projected coordinates

• return_crs (bool) – if True, and project_utm=True, return the projected CRS too

Returns
bbox or bbox, crs – (north, south, east, west) or ((north, south, east, west), crs)

Return type
tuple or tuple, crs

osmnx.utils_geo.bbox_to_poly(north=None, south=None, east=None, west=None, bbox=None)
Convert bounding box coordinates to shapely Polygon.

Parameters

• north (float) – deprecated, do not use

• south (float) – deprecated, do not use

• east (float) – deprecated, do not use

• west (float) – deprecated, do not use

• bbox (tuple of floats) – bounding box as (north, south, east, west)

Return type
shapely.geometry.Polygon

osmnx.utils_geo.interpolate_points(geom, dist)
Interpolate evenly spaced points along a LineString.

The spacing is approximate because the LineString’s length may not be evenly divisible by it.

Parameters

• geom (shapely.geometry.LineString) – a LineString geometry

• dist (float) – spacing distance between interpolated points, in same units as geom. smaller
values accordingly generate more points.

Yields
points (generator) – tuples of (x, y) floats of the interpolated points’ coordinates

osmnx.utils_geo.round_geometry_coords(geom, precision)
Do not use: deprecated.

Parameters

• geom (shapely.geometry.geometry {Point, MultiPoint, LineString,
MultiLineString, Polygon, MultiPolygon}) – deprecated, do not use

130 Chapter 6. Documentation

OSMnx, Release 1.9.2

• precision (int) – deprecated, do not use

Return type
shapely.geometry.geometry

osmnx.utils_geo.sample_points(G, n)
Randomly sample points constrained to a spatial graph.

This generates a graph-constrained uniform random sample of points. Unlike typical spatially uniform random
sampling, this method accounts for the graph’s geometry. And unlike equal-length edge segmenting, this method
guarantees uniform randomness.

Parameters

• G (networkx.MultiGraph) – graph from which to sample points. should be undirected (to
avoid oversampling bidirectional edges) and projected (for accurate point interpolation)

• n (int) – how many points to sample

Returns
points – the sampled points, multi-indexed by (u, v, key) of the edge from which each point was
drawn

Return type
geopandas.GeoSeries

6.4.27 osmnx.utils_graph module

Graph utility functions.

osmnx.utils_graph.get_digraph(G, weight='length')
Do not use: deprecated.

Use the convert.to_digraph function instead.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• weight (string) – deprecated, do not use

Return type
networkx.DiGraph

osmnx.utils_graph.get_largest_component(G, strongly=False)
Do not use: deprecated.

Use the truncate.largest_component function instead.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• strongly (bool) – deprecated, do not use

Returns
G

Return type
networkx.MultiDiGraph

6.4. Internals Reference 131

OSMnx, Release 1.9.2

osmnx.utils_graph.get_route_edge_attributes(G, route, attribute=None, minimize_key='length',
retrieve_default=None)

Do not use: deprecated.

Use the routing.route_to_gdf function instead.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• route (list) – deprecated, do not use

• attribute (string) – deprecated, do not use

• minimize_key (string) – deprecated, do not use

• retrieve_default (Callable[Tuple[Any, Any], Any]) – deprecated, do not use

Returns
attribute_values

Return type
list

osmnx.utils_graph.get_undirected(G)
Do not use: deprecated.

Use the convert.to_undirected function instead.

Parameters
G (networkx.MultiDiGraph) – deprecated, do not use

Return type
networkx.MultiGraph

osmnx.utils_graph.graph_from_gdfs(gdf_nodes, gdf_edges, graph_attrs=None)
Do not use: deprecated.

Use the convert.graph_from_gdfs function instead.

Parameters

• gdf_nodes (geopandas.GeoDataFrame) – deprecated, do not use

• gdf_edges (geopandas.GeoDataFrame) – deprecated, do not use

• graph_attrs (dict) – deprecated, do not use

Returns
G

Return type
networkx.MultiDiGraph

osmnx.utils_graph.graph_to_gdfs(G, nodes=True, edges=True, node_geometry=True,
fill_edge_geometry=True)

Do not use: deprecated.

Use the convert.graph_to_gdfs function instead.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• nodes (bool) – deprecated, do not use

132 Chapter 6. Documentation

OSMnx, Release 1.9.2

• edges (bool) – deprecated, do not use

• node_geometry (bool) – deprecated, do not use

• fill_edge_geometry (bool) – deprecated, do not use

Return type
geopandas.GeoDataFrame or tuple

osmnx.utils_graph.remove_isolated_nodes(G, warn=True)
Do not use: deprecated.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• warn (bool) – deprecated, do not use

Returns
G

Return type
networkx.MultiDiGraph

osmnx.utils_graph.route_to_gdf(G, route, weight='length')
Do not use: deprecated.

Use the routing.route_to_gdf function instead.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• route (list) – deprecated, do not use

• weight (string) – deprecated, do not use

Returns
gdf_edges

Return type
geopandas.GeoDataFrame

6.4.28 osmnx._version module

OSMnx package version information.

6.5 Further Reading

Boeing, G. 2017. OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street
Networks. Computers, Environment and Urban Systems 65, 126-139.

This is the original paper introducing OSMnx and is the official citation for the project.

Boeing, G. 2020. The Right Tools for the Job: The Case for Spatial Science Tool-Building. Transactions in GIS 24
(5), 1299-1314.

This paper was presented as the 8th annual Transactions in GIS plenary address at the American Association of Geog-
raphers annual meeting in Washington, DC. It describes the development of OSMnx and reviews its use in scientific
research over the previous few years.

6.5. Further Reading 133

https://geoffboeing.com/publications/osmnx-complex-street-networks/
https://geoffboeing.com/publications/osmnx-complex-street-networks/
https://geoffboeing.com/publications/right-tools-for-job/

OSMnx, Release 1.9.2

Boeing, G. 2020. Planarity and Street Network Representation in Urban Form Analysis. Environment and Planning
B: Urban Analytics and City Science 47 (5), 855-869.

This paper discusses the importance of using nonplanar graphs when modeling urban street networks, which was one
of the original motivations for developing OSMnx.

Boeing, G. 2021. Street Network Models and Indicators for Every Urban Area in the World. Geographical Analysis
54 (3), 519-535.

This study uses OSMnx to model and analyze the street networks of every urban area in the world: over 160 million
OpenStreetMap street network nodes and over 320 million edges across 8,914 urban areas in 178 countries.

Boeing, G., C. Higgs, S. Liu, B. Giles-Corti, J.F. Sallis, E. Cerin, et al. 2022. Using Open Data and Open-Source
Software to Develop Spatial Indicators of Urban Design and Transport Features for Achieving Healthy and Sustainable
Cities. The Lancet Global Health 10 (6), 907-918.

This study by an international consortium of public health and urban planning researchers uses OSMnx to develop and
demonstrate a computational framework to benchmark and monitor urban accessibility around the world.

134 Chapter 6. Documentation

https://geoffboeing.com/publications/planarity-street-network-representation/
https://geoffboeing.com/publications/street-network-models-indicators-world/
https://doi.org/10.1016/S2214-109X(22)00072-9
https://doi.org/10.1016/S2214-109X(22)00072-9
https://doi.org/10.1016/S2214-109X(22)00072-9

CHAPTER

SEVEN

INDICES

• genindex

• modindex

• search

135

OSMnx, Release 1.9.2

136 Chapter 7. Indices

PYTHON MODULE INDEX

o
osmnx.bearing, 17
osmnx.convert, 19
osmnx.distance, 20
osmnx.elevation, 24
osmnx.features, 25
osmnx.geocoder, 29
osmnx.graph, 30
osmnx.io, 34
osmnx.plot, 37
osmnx.projection, 42
osmnx.routing, 43
osmnx.settings, 45
osmnx.simplification, 48
osmnx.speed, 49
osmnx.stats, 50
osmnx.truncate, 54
osmnx.utils, 55
osmnx.utils_geo, 57
osmnx.utils_graph, 59

137

OSMnx, Release 1.9.2

138 Python Module Index

INDEX

A
add_edge_bearings() (in module osmnx.bearing), 17
add_edge_grades() (in module osmnx.elevation), 24
add_edge_lengths() (in module osmnx.distance), 20
add_edge_speeds() (in module osmnx.routing), 43
add_edge_speeds() (in module osmnx.speed), 49
add_edge_travel_times() (in module osmnx.routing),

44
add_edge_travel_times() (in module osmnx.speed),

49
add_node_elevations_google() (in module

osmnx.elevation), 24
add_node_elevations_raster() (in module

osmnx.elevation), 25

B
basic_stats() (in module osmnx.stats), 50
bbox_from_point() (in module osmnx.utils_geo), 57
bbox_to_poly() (in module osmnx.utils_geo), 58

C
calculate_bearing() (in module osmnx.bearing), 17
circuity_avg() (in module osmnx.stats), 51
citation() (in module osmnx.utils), 55
config() (in module osmnx.utils), 55
consolidate_intersections() (in module

osmnx.simplification), 48
count_streets_per_node() (in module osmnx.stats),

51

E
edge_length_total() (in module osmnx.stats), 51
euclidean() (in module osmnx.distance), 21
euclidean_dist_vec() (in module osmnx.distance), 21

F
features_from_address() (in module

osmnx.features), 25
features_from_bbox() (in module osmnx.features), 26
features_from_place() (in module osmnx.features),

26

features_from_point() (in module osmnx.features),
27

features_from_polygon() (in module
osmnx.features), 27

features_from_xml() (in module osmnx.features), 28

G
geocode() (in module osmnx.geocoder), 29
geocode_to_gdf() (in module osmnx.geocoder), 29
get_colors() (in module osmnx.plot), 37
get_digraph() (in module osmnx.utils_graph), 59
get_edge_colors_by_attr() (in module osmnx.plot),

37
get_largest_component() (in module

osmnx.utils_graph), 59
get_node_colors_by_attr() (in module osmnx.plot),

37
get_route_edge_attributes() (in module

osmnx.utils_graph), 59
get_undirected() (in module osmnx.utils_graph), 60
graph_from_address() (in module osmnx.graph), 30
graph_from_bbox() (in module osmnx.graph), 31
graph_from_gdfs() (in module osmnx.convert), 19
graph_from_gdfs() (in module osmnx.utils_graph), 60
graph_from_place() (in module osmnx.graph), 31
graph_from_point() (in module osmnx.graph), 32
graph_from_polygon() (in module osmnx.graph), 33
graph_from_xml() (in module osmnx.graph), 34
graph_to_gdfs() (in module osmnx.convert), 19
graph_to_gdfs() (in module osmnx.utils_graph), 60
great_circle() (in module osmnx.distance), 21
great_circle_vec() (in module osmnx.distance), 22

I
interpolate_points() (in module osmnx.utils_geo),

58
intersection_count() (in module osmnx.stats), 52
is_projected() (in module osmnx.projection), 42

K
k_shortest_paths() (in module osmnx.distance), 22
k_shortest_paths() (in module osmnx.routing), 44

139

OSMnx, Release 1.9.2

L
largest_component() (in module osmnx.truncate), 54
load_graphml() (in module osmnx.io), 34
log() (in module osmnx.utils), 57

M
module

osmnx.bearing, 17
osmnx.convert, 19
osmnx.distance, 20
osmnx.elevation, 24
osmnx.features, 25
osmnx.geocoder, 29
osmnx.graph, 30
osmnx.io, 34
osmnx.plot, 37
osmnx.projection, 42
osmnx.routing, 43
osmnx.settings, 45
osmnx.simplification, 48
osmnx.speed, 49
osmnx.stats, 50
osmnx.truncate, 54
osmnx.utils, 55
osmnx.utils_geo, 57
osmnx.utils_graph, 59

N
nearest_edges() (in module osmnx.distance), 22
nearest_nodes() (in module osmnx.distance), 23

O
orientation_entropy() (in module osmnx.bearing),

18
osmnx.bearing
module, 17

osmnx.convert
module, 19

osmnx.distance
module, 20

osmnx.elevation
module, 24

osmnx.features
module, 25

osmnx.geocoder
module, 29

osmnx.graph
module, 30

osmnx.io
module, 34

osmnx.plot
module, 37

osmnx.projection

module, 42
osmnx.routing
module, 43

osmnx.settings
module, 45

osmnx.simplification
module, 48

osmnx.speed
module, 49

osmnx.stats
module, 50

osmnx.truncate
module, 54

osmnx.utils
module, 55

osmnx.utils_geo
module, 57

osmnx.utils_graph
module, 59

P
plot_figure_ground() (in module osmnx.plot), 38
plot_footprints() (in module osmnx.plot), 38
plot_graph() (in module osmnx.plot), 39
plot_graph_route() (in module osmnx.plot), 40
plot_graph_routes() (in module osmnx.plot), 40
plot_orientation() (in module osmnx.bearing), 18
plot_orientation() (in module osmnx.plot), 41
project_gdf() (in module osmnx.projection), 42
project_geometry() (in module osmnx.projection), 42
project_graph() (in module osmnx.projection), 42

R
remove_isolated_nodes() (in module

osmnx.utils_graph), 60
round_geometry_coords() (in module

osmnx.utils_geo), 58
route_to_gdf() (in module osmnx.routing), 44
route_to_gdf() (in module osmnx.utils_graph), 61

S
sample_points() (in module osmnx.utils_geo), 58
save_graph_geopackage() (in module osmnx.io), 35
save_graph_shapefile() (in module osmnx.io), 35
save_graph_xml() (in module osmnx.io), 36
save_graphml() (in module osmnx.io), 36
self_loop_proportion() (in module osmnx.stats), 52
shortest_path() (in module osmnx.distance), 23
shortest_path() (in module osmnx.routing), 44
simplify_graph() (in module osmnx.simplification), 48
street_length_total() (in module osmnx.stats), 52
street_segment_count() (in module osmnx.stats), 52
streets_per_node() (in module osmnx.stats), 53
streets_per_node_avg() (in module osmnx.stats), 53

140 Index

OSMnx, Release 1.9.2

streets_per_node_counts() (in module osmnx.stats),
53

streets_per_node_proportions() (in module
osmnx.stats), 53

T
to_digraph() (in module osmnx.convert), 20
to_undirected() (in module osmnx.convert), 20
truncate_graph_bbox() (in module osmnx.truncate),

54
truncate_graph_dist() (in module osmnx.truncate),

54
truncate_graph_polygon() (in module

osmnx.truncate), 55
ts() (in module osmnx.utils), 57

Index 141

	Citation
	Getting Started
	Installation
	Support
	License
	Documentation
	Getting Started
	Get Started in 4 Steps
	Introducing OSMnx
	Overview
	Configuration
	Geocoding and Querying
	Urban Amenities
	Modeling a Network
	Topology Clean-Up
	Converting, Projecting, Saving
	Working with Elevation
	Network Measures
	Routing
	Visualization

	More Info
	Frequently Asked Questions

	Installation
	Conda
	Docker
	Pip

	User Reference
	osmnx.bearing module
	osmnx.convert module
	osmnx.distance module
	osmnx.elevation module
	osmnx.features module
	osmnx.geocoder module
	osmnx.graph module
	osmnx.io module
	osmnx.plot module
	osmnx.projection module
	osmnx.routing module
	osmnx.settings module
	osmnx.simplification module
	osmnx.speed module
	osmnx.stats module
	osmnx.truncate module
	osmnx.utils module
	osmnx.utils_geo module
	osmnx.utils_graph module

	Internals Reference
	osmnx._api module
	osmnx.bearing module
	osmnx.convert module
	osmnx.distance module
	osmnx._downloader module
	osmnx.elevation module
	osmnx._errors module
	osmnx.features module
	osmnx.folium module
	osmnx.geocoder module
	osmnx.geometries module
	osmnx.graph module
	osmnx.io module
	osmnx._nominatim module
	osmnx.osm_xml module
	osmnx._overpass module
	osmnx.plot module
	osmnx.projection module
	osmnx.routing module
	osmnx.settings module
	osmnx.simplification module
	osmnx.speed module
	osmnx.stats module
	osmnx.truncate module
	osmnx.utils module
	osmnx.utils_geo module
	osmnx.utils_graph module
	osmnx._version module

	Further Reading

	Indices
	Python Module Index
	Index

