
OSMNames User Documentation
Release 2.0

Aug 03, 2017

Contents

1 Introduction 1
1.1 What can I do with OSMNames? . 2
1.2 Where to Start? . 2
1.3 Output Format . 2

2 Getting Started 4
2.1 System requirements . 4
2.2 Run OSMNames . 4
2.3 Extracting countries . 5

3 Components 6
3.1 Docker . 6
3.2 Imposm3 . 6
3.3 PostgreSQL . 6

4 Implementation 8
4.1 Initialize Database . 8
4.2 Import Wikipedia . 8
4.3 Import OSM . 9
4.4 Prepare Data . 9
4.5 Export OSMNames . 14

5 Development 17
5.1 Contributing / Issues . 17
5.2 Testing . 17
5.3 Logging . 19
5.4 Consistency Checks . 20
5.5 Tips . 20

6 Others 21
6.1 Performance . 21

i

CHAPTER 1

Introduction

OSMNames is an open source tool that allows creating geographical gazetteer data out of OpenStreetMap OSM files.

There is a need for a data set consisting of street names of the world. Such gazetteer data, however, is either not
available for every country (openaddresses.io) or is not in a suitable format. Furthermore, if such data exists, it is often
not for free. A global data set can be downloaded at https://osmnames.org.

A current implementation on how the data looks like in a geocoder is a available at https://osmnames.org

1

https://osmnames.org
https://osmnames.org

OSMNames User Documentation, Release 2.0

What can I do with OSMNames?

With OSMNames, you can create your own geocoder data set based on OpenStreetMap. It currently includes all
addresses available. For each feature, the hierarchy, as well as a Wikipedia-based importance, is calculated.

Where to Start?

To download the newest set of data go to https://osmnames.org.

To process OpenStreetMap data yourself, check out the Getting Started document.

If you want to have a look at the Source Code or contribute to the project, check out the Development documentation.
The source code is available in our GitHub Repository.

Output Format

The exported file geonames.tsv contains the following columns:

Column
name

Description

name The name of the feature (default language is en, others available are de, es, fr, ru, zh)
alterna-
tive_names

All other available and distinct names separated by commas

osm_type The OSM type of the feature (node, way, relation)
osm_id The unique osm_id as identifier for the house numbers in the second file housenumbers.tsv
class The class of the feature e.g. boundary
type The type of the feature e.g. administrative
lon The decimal degrees (WGS84) longitude of the centroid of the feature
lat The decimal degrees (WGS84) latitude of the centroid of the feature
place_rank Rank from 1-30 ascending, 1 being the highest. Calculated with the type and class of the feature.
importance Importance of the feature, ranging [0.0-1.0], 1.0 being the most important.
street The name of the street if the feature is some kind of street
city The name of the city of the feature, if it has one
county The name of the county of the feature, if it has one
state The name of the state of the feature, it it has one
country The name of the country of the feature
coun-
try_code

The ISO-3166 2-letter country code of the feature

dis-
play_name

The display name of the feature representing the hierarchy, if available in English

west The western decimal degrees (WGS84) longitude of the bounding box of the feature
south The southern decimal degrees (WGS84) latitude of the bounding box of the feature
east The eastern decimal degrees (WGS84) longitude of the bounding box of the feature
north The northern decimal degrees (WGS84) latitude of the bounding box of the feature
wikidata The wikidata associated with the feature
wikipedia The wikipedia URL associated with the feature
housenum-
bers

All house numbers, comma separated, associated to this element. Coordinates of the house
numbers are part of the second output file housenumbers.tsv

Note: All coordinates are rounded to seven digits after the decimal point.

1.1. What can I do with OSMNames? 2

https://osmnames.org
https://github.com/OSMNames/OSMNames/issues

OSMNames User Documentation, Release 2.0

Note: The housenumbers column is a redundant information of all house numbers contained in the file housenum-
bers.tsv. The redundancy is accepted due to advantages for the full-text search of geocoders.

The second file housenumber.tsv contains the following columns:

Column name Description
osm_id The unique osm_id for debug purposes
street_id The osm_id of the element, the house number is associated to
street The name of the street it is associated to for debug purposes
housenumber The actual house number
lon The decimal degrees (WGS84) longitude of the centroid of the house number
lat The decimal degrees (WGS84) latitude of the centroid of the house number

1.3. Output Format 3

CHAPTER 2

Getting Started

System requirements

With the following set of commands one can easily setup OSMNames in a matter of minutes. Prerequisites are a
working installation of Docker https://www.docker.com/ along with Docker Compose.

Note: In order to increase the speed of the processing, an SSD disk is recommended. It is also recommended to tweak
the database settings to match the specficiations of your system.

Run OSMNames

To run OSMNames, follow these steps:

1. Checkout source from GitHub

git clone https://github.com/OSMNames/OSMNames.git

2. Specify the URL to the PBF file in the .env file

PBF_FILE_URL=http://download.geofabrik.de/europe/switzerland-latest.osm.
→˓pbf

Alternatively place a custom PBF file in the data/import directory and define it in the .env file

PBF_FILE=Zuerich.osm.pbf

If PBF_FILE is defined PBF_FILE_URL will be ignored.

3. Now run OSMNames

4

https://www.docker.com/

OSMNames User Documentation, Release 2.0

docker-compose run --rm osmnames

This command will:

1. Initialize the database inside a docker container

2. Download and import a wikipedia dump

3. Download and process the specified PBF file

4. Export the OSMNames data

The export files for example, switzerland_geonames.tsv.gz and switzerland_housenumbers.tsv.gz can be
found in the export directory data/export.

A more detailed and technical overview can be found in the documentation about the Implementation.

Note: The execution time is highly dependent from the size of the PBF file and the available hardware.
More details about the performance can be found in the corresponding documentation.

Extracting countries

The TSV file from the planet export includes more than 21‘000‘000 entries. The current data export can be downloaded
at https://osmnames.org. If one is only interested in a specific country, download the file and extract the information
with the following command:

awk -F $'\t' 'BEGIN {OFS = FS}{if (NR!=1) {if ($16 =="[country_code]")
→˓{print}} else {print}}' planet-latest.tsv > countryExtract.tsv

where [country_code] needs to be replaced with the ISO-3166 2-letter country code.

2.3. Extracting countries 5

https://osmnames.org

CHAPTER 3

Components

OSMNames consists of the following components:

Docker

OSMNames is built with Docker and is therefore shipped in containers. This allows to have an extra layer of abstraction
and avoids overhead of a real virtual machine. Specifically, it is built with docker-compose thus allowing to define a
multi-container architecture defined in a single file.

Imposm3

Imposm3 by Omniscale is a data importer for OpenStreetMap data. It reads PBF files and writes the data into the
PostgreSQL database. In OSMNames it is used in favor of osm2pgsql mainly because of its superior speed results. It
makes heavy use of parallel processing favoring multicore systems. Explicit tag filters are set in order to have only the
relevant data imported.

PostgreSQL

PostgreSQL is the open source database powering OMSNames.

OSMNames uses PostgreSQL for the following tasks:

• Storing OSM data read from PBF file.

• OSM data processing

• data export to TSV file

At this moment OSMNames runs PostgreSQL 9.6.x version.

6

https://www.docker.com/
https://docs.docker.com/compose/
https://imposm.org/docs/imposm3/latest/index.html
http://postgresql.org

OSMNames User Documentation, Release 2.0

PostGIS

PostGIS is the extension which adds spatial capabilities to PostgreSQL. It allows working with geospatial types or
running geospatial functions in PostgreSQL.

At this moment OSMNames runs PostGIS 2.3 version.

3.3. PostgreSQL 7

http://postgis.net

CHAPTER 4

Implementation

This document describes the implementational aspects of OSMNames.

OSMNames is written in Python. Whereas the main entry point is the file run.py. The script calls the necessary tasks
in the correct order. The following diagram shows the full process of OSMNames:

Details about the tasks can be found in the particular documents:

Initialize Database

The initialization of the database is skipped, if it is already present.

The database is created with the template template_postgis. The user and password are set via the environment
variables DB_USER and DB_PASSWORD. The default values are osm and password.

Import Wikipedia

To have an importance value for each feature, a wikipedia helper table is downloaded from a Nominatim server. This
is the same information Nominatim uses to determine the importance. It was decided to take this pre-calculated data
instead of calculating it due to longer processing times (up to several days!). Also, the same calculations are applied,
to achieve the same results. The initialization of the database is skipped, if it is already present.

The download and import of the wikipedia dump are skipped, if it is already present. Since the dump was created with
the username brian, a temporary user is created to restore the dump, which is dropped after transferring the ownership
to the osm user.

8

https://github.com/philippks/OSMNames/blob/master/run.py

OSMNames User Documentation, Release 2.0

Import OSM

The PBF file can be set with the environment variable PBF_FILE_URL or PBF_FILE. When defining the URL, the
file is download, if not already present in the import directory. When the file is defined directly, the download is
skipped.

Before importing the PBF file with Imposm, the database is sanitized by dropping all previously imported tables.

To import the PBF file Imposm3 is used, which is an importer for OpenStreetMap data. The corresponding mapping
can be found here. After the import, the following tables will be created:

• osm_linestring

• osm_polygon

• osm_point

• osm_housenumber

• osm_relation

• osm_relation_member

More details about the columns of the tables can be found in the mapping of Impsom3. Additionally, will the tables
be extended with custom columns when preparing the data.

Import Helper Tables

Besides the OpenStreetMap data, are the following tables imported:

Table Description
country_osm_grid Contains the country code and geometries for all countries.
country_name Contains the country code and country names of all countries.

The tables are later used to enrich the imported data. Both are provided by Nominatim.

Prepare Data

The preparation of the imported OpenStreetMap data for the export is the heart of OSMNames. Missing names are
completed, a hierarchy is created, unusable entries are removed and more. In this document are all involved steps
explained in detail. The following diagram shows the full process of preparing the data:

4.3. Import OSM 9

https://imposm.org/docs/imposm3/latest/
https://github.com/OSMNames/OSMNames/blob/master/data/import/mapping.yml
https://github.com/OSMNames/OSMNames/blob/master/data/import/mapping.yml
https://github.com/openstreetmap/Nominatim

OSMNames User Documentation, Release 2.0

configure for preparation

This step configures the database for the other steps. This involves:

• Dropping unused indexes for better performance

• Add custom columns, necessary for the preparation, to tables imported in import_osm. The added columns can
be found here.

• Set tables to unlogged for better performance

set names

The following approaches are used to complete the name and alternative_names attribute on polygons, linestrings and
points.

set names from tags

All tags of polygons, linestrings and points imported. On some elements is the name not set with the key name but
with a different key, e.g. name:en. The value of the name attribute is tried to set with following approaches, whereas
the order matches the priority:

1. Set the name to the imported name if present.

2. Set the name to the first present value of these keys, whereas the order matches the priority:

(a) name:en

(b) name:fr

(c) name:de

(d) name:es

(e) name:ru

(f) name:zh

3. If still no name is found, take the first alternative name.

Additionally is the attribute alternative_names set with all available names, except the value of the name attribute.
The value of alternative_names is a comma separated string.

Note: All available names for the alternative names are determined by the keys of the tags. Keys starting with name:
and others are considered. Details about the relevant keys can be found in the corresponding query.

Note: Tabs in the name or alternative_names are replaced with spaces, since the final export format is TSV.

4.4. Prepare Data 10

https://github.com/OSMNames/OSMNames/blob/master/osmnames/import_osm/create_custom_columns.sql
https://github.com/OSMNames/OSMNames/blob/master/osmnames/prepare_data/set_names/set_names_from_tags.sql

OSMNames User Documentation, Release 2.0

Example

A node was imported with following attributes:

Attribute Value
name NULL
all_tags { “name:de”: “Matterhorn”, “name:fr”: “Cervin”, “name:it”: “Cervino” }

After running set_names_from_tags, the following values are set:

Attribute Value Explanation
name Cervin The French name from all_tags because the name attribute was empty and

French has a higher priority then German
alterna-
tive_names

Matterhorn,
Cervino

All remaining names from all_tags, except the French, since it was set as name

set linestring names from relations

Sometimes is the name not set on a linestring directly, but on the relation, where the linestring is a member. If so, the
name is set to the name of the relation.

Implemented with Issue #106.

delete unusable entries

Elements are unusable and deleted if:

• Name attribute of polygons, points or linestrings is still empty.

• Geometry of polygons is empty.

set place ranks

The place rank indicates how important a element is (lower means more important). A continent for example has a
place_rank of 2, which is the lowest place_rank possible. The place_rank is either the double of the admin_level, if
the admin_level is set, or a value depending on the type of the element. The mapping can be found here.

set country codes

To determine the country of a element, the country_code must be present on each polygon. It is only necessary
for polygons since the country code of all other elements can be determined based on the hierarchically associated
polygon.

If present the imported country_code is taken. Otherwise is the country code set based on the country_osm_grid.

determine linked places

In order to determine linked places (points linked with polygons) additional tags about the relations are imported.
Specifically, the role values admin_centre and label are of interest.

This information is later on used in the export mainly to rule out point features linked to their polygon features as well
as determining city types instead of administrative types.

4.4. Prepare Data 11

https://github.com/OSMNames/OSMNames/issues/106
https://github.com/OSMNames/OSMNames/blob/master/osmnames/import_osm/set_place_ranks.sql

OSMNames User Documentation, Release 2.0

For example the relation Kreuzberg is linked to the member node Kreuzberg with the role label. Since they are linked,
only the polygon will be exported.

create hierarchy

The hierarchy of the elements is created based on their geometries. The process is as simple as this:

1. Set the parent id of each element within a polygon, with the place rank 22, to the id of the polygon. Polygons
with the place rank 22 have the admin level 11 or the type neighbourhood or residential.

Note: The parent id of a polygon is only set if the place rank is higher than the place rank of the parent. This prevents
a meaningless hierarchy.

2. When all polygons with the place rank 22 are processed, the same step is done with all polygons with the place
rank 21, 20, 19 and so forth.

3. It ends with the place rank 2, which corresponds to polygons of the type continent.

Note: If a element is contained in a polygon, is determined with the PostGIS function st_contains. Since it only
returns true if a geometry is fully contained in another geometry, the child elements are determined only with the
center of a geometry and not the full geometry. The centers of geometries are set here.

Note: Polygons of the type water, desert, bay and reservoir are ignored, since it makes no sense to assign them as
parents of other elements.

merge corresponding linestrings

Linestrings are merged to one linestring if all of these conditions are met:

• They have the same name

• They have the same polygon as parent

• They are at least 1000 meters near each other

When merging the linestring a new table osm_merged_linestring is created, which contains, besides the shared at-
tributes of the sub-linestrings, following attributes:

Attribute Description
osm_id Smallest id of the sub-linestring ids.
member_ids The ids of the sub-linestrings.
type Types of the sub-linestrings, comma separated.
geometry Combination of the sub-linestring geometries.

Note: The geometry of the merged linestring is sligthly simplified with the PostGIS function st_simplify, see Issue
#90

After creating the table osm_merged_linestring, the attribute merged_into of the original linestrings in the table
osm_linestring are updated to the osm_id of the linestring they have been merged into.

4.4. Prepare Data 12

http://www.openstreetmap.org/relation/55765
http://www.openstreetmap.org/node/262328235
http://postgis.net/docs/manual-1.4/ST_Contains.html
https://github.com/OSMNames/OSMNames/blob/master/osmnames/import_osm/create_hierarchy/set_geometry_centers.sql
https://postgis.net/docs/ST_Simplify.html
https://github.com/OSMNames/OSMNames/issues/90
https://github.com/OSMNames/OSMNames/issues/90

OSMNames User Documentation, Release 2.0

Examples

For example the linestrings with the OSM IDs 26085954, 289620118, 289620119 are merged to one linestring.

Other examples can be found in the issues #74 and #85.

prepare housenumbers

The goal of preparing the house numbers is, to connect each geometry, which has an house number as attribute, to a
corresponding street or place. All geometries with an house number are imported into the osm_housenumber table.
Some of them have already the street attribute set, with the name of a street. Others do only have the housenumber
attribute and nothing else set. For these house numbers multiple approaches are applied to complete the missing street
attributes. The steps are shown by the following diagram:

Note: The individual steps are sorted according to their costs. It is for example fast to determine the missing street
attribute from a relation, if one exists. But it is slow and costly to find the nearest street depending on the geometry.

set street attributes by street relation members

If a house number is part of a relation, where another member has the role street or associatedStreet, set the street_id
and the street to the osm_id and name of this member.

set street names by relation attributes

If a house number is part of a relation with the type street or associatedStreet, set the street to the street or name
attribute of this relation.

normalize street names

To match house numbers with streets by the street name, the attributes normalized_street and normalized_name of
house numbers and linestrings are set to a normalized version of the street and name. The name is normalized by:

• removing all white spaces and dashes

• lower casing the name

• removing accents

Some examples for normalized names and streets:

Name / Street Normalized Name / Street
Bietinger Weg bietingerweg
Cité Préville citepreville
Chemin du Pra-de-Villars chemindupradevillars
Rue de’Gare ruedegare

4.4. Prepare Data 13

http://www.openstreetmap.org/way/26085954
http://www.openstreetmap.org/way/289620118
http://www.openstreetmap.org/way/289620119
https://github.com/OSMNames/OSMNames/issues/74
https://github.com/OSMNames/OSMNames/issues/85

OSMNames User Documentation, Release 2.0

set street ids by street name

It is tried to set the street_id of the house numbers to the osm_id of a linestring, which has the same parent_id and a
matching name. These approaches are executed in the given order:

1. Find a linestring with the same parent_id and the exactly same name as the street of the house number.

2. Find a within 1000 meters and the exactly same name as the street of the house number.

3. Find a linestring with the same parent_id and the most similar name. This approach makes use of the Post-
greSQL module pg_trgm.

4. Find a within 1000 meters and the most similar name. This approach makes use of the PostgreSQL module
pg_trgm.

Note: The approaches are executed in this order because the more accurate and best performing approaches are
executed first. If still no street was found, the restrictions are softened.

Here some examples for the matching street names. Note that in the queries the matching is done with the normalized
name.

House number street Linestring name
Haldenweg Haldenweg
Bochslenrasse Bochslenstrasse
Cité Préville 19 Cité Préville

set street attributes by nearest street

Still not all house numbers will have a street assigned at this point. As the last approach will the nearest street be
assigned to the house number. Note that this is very slow, expensive and inaccurate and therefore is only executed if
no street was found with the previous approaches.

Export OSMNames

When exporting OSMNames the output files get created. This documents describes the implementation of the export.
Details about the output format can be found in the introduction.

create functions

This step creates the SQL functions later used for the export.

Besides the following descriptions of the functions are the unit tests of Python a good entry point to understand how
the functions work.

determine_class

Returns a class for a given type. For example, the type city leads to the class place.

The full mapping can be found in the code.

4.5. Export OSMNames 14

https://www.postgresql.org/docs/9.6/static/pgtrgm.html
https://www.postgresql.org/docs/9.6/static/pgtrgm.html
https://www.postgresql.org/docs/9.6/static/pgtrgm.html
https://www.postgresql.org/docs/9.6/static/pgtrgm.html
https://github.com/OSMNames/OSMNames/tree/master/tests/export_osmnames
https://github.com/OSMNames/OSMNames/blob/master/osmnames/export_osmnames/functions.sql

OSMNames User Documentation, Release 2.0

get_parent_info

This function makes use of the hierarchy and the place rank to return the following information for an element:

• city

• county

• state

• country_code

• display name

Whereas the display name is a concatenation of the name of the element and all other information.

Note: More information about the impelementation of the function can be found in the PR #82

Example

These elements exists:

Type ID Name Parent ID
Linestring 1 Oberseestrasse 2
Polygon 2 Rapperswil-Jona 3
Polygon 3 Wahlkreis See-Gaster 4
Polygon 4 Sankt Gallen 5
Polygon 5 Schweiz -

When calling the function get_parent_info with the parent id and the name of linestring Oberseestrasse following
information will be returned:

Attribute Value
city Rapperswil-Jona
county Wahlkreis See-Gaster
state Sankt Gallen
country_code ch
display name Oberseestrasse, Rapperswil-Jona, Wahlkreis See-Gaster, Sankt Gallen, Switzerland

Note: The decision which polygon is the city, county or state is based on the corresponding place rank.

get_country_name

Returns the name of a country for a given country code. The name will be returned in the first language present,
following the precedence: [English -> native name -> French -> German -> Spanish -> Russian -> Chinese].

The names are read from the helper table country_name (see Import Helper Tables).

get_importance

This function returns an importance for an element by its URL to a wikipedia article if present or its place rank.

If a feature has a wikipedia URL a matching entry in the wikipedia helper table is taken for calculating the importance
with the following formula:

importance = log (totalcount) / log(max(totalcount))

4.5. Export OSMNames 15

https://github.com/OSMNames/OSMNames/pull/82

OSMNames User Documentation, Release 2.0

where totalcount is the number of references to the article from other wikipedia articles. In case there is no wikipedia
information or no match was found, the following formula is applied:

importance = 0.75 - (place_rank/40)

Since every feature has a rank, it is ensured that every feature also has an importance.

get_country_language_code

Returns the default language for a country. The value is read from the helper table country_name (see Import Helper
Tables).

get_housenumbers

Returns a comma separated string of all house numbers, associated to the given osm_id.

get_bounding_box

This functions takes a geometry, a country code and an admin_level as attribute and determines a bounding box. It is
only used for polygons to handle these special cases:

• Some countries do have colonies where are big bounding box is returned. Since this is inconvenient from a user
perspective, a smaller bounding box, only covering the main country is returned. See Issue #57 for more details.

• When a polygons intersects the antimeridian, a unintuitive bounding box is returned. In this case the bounding
box is shifted manually. See Issue #94 for more details.

create views

This function creates the views, which are later used to export the geonames and house numbers. The columns of the
views equals the output format of OSMNames.

export geonames

This function exports all rows of the polygon, linestring and point view to the file <import-file-name>_geonames.tsv.
This by making use of the PostgreSQL function COPY.

export housenumbers

This function exports all rows of house number view to the file <import-file-name>_housenumbers.tsv. This by
making use of the PostgreSQL function COPY.

Note: House numbers unable to associated to a street or place when preparing the data, are not exported.

gzip tsv files

This function finally uses gzip to compress the tsv files created before.

4.5. Export OSMNames 16

https://github.com/OSMNames/OSMNames/issues/57
https://github.com/OSMNames/OSMNames/issues/94
https://www.postgresql.org/docs/current/static/sql-copy.html
https://www.postgresql.org/docs/current/static/sql-copy.html
http://www.gzip.org/

CHAPTER 5

Development

Contributing / Issues

If you like to contribute feel free to create an issue on the OSMNames GitHub repository. It is optimal if the issue
description includes some real examples, like OSM IDs of existing OpenStreetMap elements. Additionally should
each new functionality or bugfix be covered by a new test case (see Testing).

Keep in mind that the following styleguides should be respected:

• PEP8 <https://www.python.org/dev/peps/pep-0008/>_ for Python code

• SQL Style Guide <http://www.sqlstyle.guide/>_ for SQL

Testing

To have a sustainable code base, tests are indispensable. OSMNames uses the Python testing framework pytest for
testing.

The tests run inside a docker container and uses the same docker container for the database, as the main process of
OSMNames. To run the tests, following command can be executed:

docker-compose run --rm osmnames bash run_tests.sh

This executes the script run_tests.sh inside the docker container.

Alternatively can a path be added as argument to execute a specific test:

docker-compose run --rm osmnames bash run_tests.sh tests/prepare_data/test_delete_
→˓unusable_entries.py

Some important notes about the architecture of the tests:

• The tests can be found in the directory tests/

17

https://github.com/OSMNames/OSMNames/issues
https://docs.pytest.org/en/latest/

OSMNames User Documentation, Release 2.0

• The name of the Python test files and the name of the functions must have the prefix test_ to be executed by
pytest.

• When including the pytest fixture session in a test method, the test database is dropped and recreated before the
test. The fixture is defined here.

• A good way to structure a test, is to import a SQL dump with the necessary schema, after the database was
recreated by the session fixture.

• To create rows in Python code, the helper class Tables can be used.

Example for a Test

The following code tests the functionality of the function delete_unusable_entries. For better understanding are some
parts of the file conftest.py also listed.

tests/conftest.py:

...

@pytest.fixture(scope="module")
def engine():

wait_for_database()
_recreate_database()

yield connection.engine

connection.engine.dispose()

@pytest.fixture(scope="function")
def session(engine):

session = Session(engine)

yield session

session.close()

@pytest.fixture(scope="module")
def tables(engine):

return Tables(engine)

...

tests/prepare_data/test_delete_unusuable_entries.py:

...

@pytest.fixture(scope="module")
def schema():

current_directory = os.path.dirname(os.path.realpath(__file__))
exec_sql_from_file('fixtures/test_prepare_imported_data.sql.dump', cwd=current_

→˓directory)

def test_osm_polygon_with_blank_names_get_deleted(session, schema, tables):
session.add(tables.osm_polygon(name="gugus"))
session.add(tables.osm_polygon(name=""))
session.commit()

5.2. Testing 18

https://github.com/OSMNames/OSMNames/blob/master/tests/conftest.py
https://github.com/OSMNames/OSMNames/blob/master/osmnames/database/tables.py

OSMNames User Documentation, Release 2.0

delete_unusable_entries()

assert session.query(tables.osm_polygon).count(), 1

def test_osm_polygon_with_null_names_get_deleted(session, schema, tables):
session.add(tables.osm_polygon(name="gugus"))
session.add(tables.osm_polygon())
session.commit()

delete_unusable_entries()

assert session.query(tables.osm_polygon).count(), 1

...

The method test_osm_polygon_with_blank_names_get_deleted includes the fixtures session, schema and tables. The
fixture engine is also included indirectly, since the fixture session in conftest includes it. The fixture schema will be
executed after the database was recreated and restores the SQL dump fixtures/test_prepare_imported_data.sql.dump
which contains relevant database schema for the test. The following diagram visualizes this process:

Note: Since the fixture engine and schema are in the scope module they are only executed once per file and not for
each test.

Logging

To analyze the progress of OSMNames multiple ways of logging are available.

Python Logs

To write logging messages from Python code, a logger can be used, which is implemented here. It makes use of the
logging facility of Python. It can be defined and called like this:

log = logger.setup(__name__)

#...
def some_method():
log.debug('some method called')
#...
log.error('some method failed')

The log entries are sent to the default output and to a log file inside the directory data/logs/.

5.3. Logging 19

https://github.com/OSMNames/OSMNames/blob/master/osmnames/logger.py
https://docs.python.org/2/library/logging.html

OSMNames User Documentation, Release 2.0

Python Profiling

Besides the logger is also the profiling facility of Python used. In the file run.py is the profiler started at the beginning
and the statistics are written after the whole process. This results in a file with the suffix .cprofile in the directory
data/logs. It contains statistics how often and for how long various parts of the program have been executed.

A simple way to look at these data is the tool RunSnakeRun, which results in a GUI like this:

PostgreSQL Logs

The simplest way to have a look at the log files of PostgreSQL is by using the logging capabilities of docker-compose.
The following command follows the log files of PostgreSQL:

docker-compose logs -f -t postgres

Consistency Checks

Consistency checks do some checking while processing the data to get a feedback how well the preparation is working.
For example, after running the function set_parent_ids, when creating the hierarchy, a consistency check writes to the
log how many elements still have no parent id set. This could be because of a wrong functionality or invalid input
from OpenStreetMap (e.g. missing attributes which should be set, invalid geometries, spelling mistakes and so forth).

The consistency checks are defined here and called at the relevant position in the code.

Tips

These tips may help for efficient development:

• Use a small PBF file, for example your hometown, to test the your changes locally by running the full process.

• OSMNames vacuums the Postgres database a lot. This only makes sense when processing a large PBF file.
When running a small PBF file the environment variable SKIP_VACUUM can be set to True in the .env file.

• When working with a small file in development, one can forget about the performance influences for large files
easily. Some minutes more for small files can lead to a increased runtime of multiple hours for the whole planet.

5.4. Consistency Checks 20

https://docs.python.org/2/library/profile.html
http://www.vrplumber.com/programming/runsnakerun/
https://github.com/OSMNames/OSMNames/blob/master/osmnames/consistency_check.py
https://www.postgresql.org/docs/current/static/sql-vacuum.html

CHAPTER 6

Others

Performance

The following tips can help to improve the performance for processing large PBF files with OSMNames.

Database Configuration

For better performance, the database needs to be configured according to the resources of the host system, the process
runs on. A custom configuration can be added by creating a file /docker-entrypoint-initdb.d/alter_system.sh inside the
postgres container and marking it as executable. The script is executed when restarting the database container.

Here is an example for the content of the script:

#!/bin/bash
set -o errexit
set -o pipefail
set -o nounset

function alter_system() {
echo "Altering System parameters"
PGUSER="$POSTGRES_USER" psql --dbname="$POSTGRES_DB" <<-EOSQL
alter system set autovacuum_work_mem = '4GB';
alter system set checkpoint_completion_target = '0.9';
alter system set checkpoint_timeout = '20min';
alter system set datestyle = 'iso, mdy';
alter system set default_statistics_target = '500';
alter system set default_text_search_config = 'pg_catalog.english';
alter system set dynamic_shared_memory_type = 'posix';
alter system set effective_cache_size = '96GB';
alter system set fsync = 'off';
alter system set lc_messages = 'en_US.utf8';
alter system set lc_monetary = 'en_US.utf8';
alter system set lc_numeric = 'en_US.utf8';
alter system set lc_time = 'en_US.utf8';

21

OSMNames User Documentation, Release 2.0

alter system set listen_addresses = '*';
alter system set log_checkpoints = 'on';
alter system set log_temp_files = '1MB';
alter system set log_timezone = 'UTC';
alter system set maintenance_work_mem = '96GB';
alter system set max_connections = '20';
alter system set random_page_cost = '1.1';
alter system set shared_buffers = '96GB';
alter system set synchronous_commit = 'off';
alter system set temp_buffers = '120MB';
alter system set timezone = 'UTC';
alter system set track_counts = 'on';
alter system set wal_buffers = '16MB';
alter system set max_wal_size = '5GB';
alter system set work_mem = '6GB';
alter system set log_statement = 'all';

EOSQL
}

alter_system

Determining the best configuration for a host is not easy. A good starting point for that is PgTune.

tmpfs

To improve the performance of OSMNames the database can be hold in the RAM while processing. The easiest way
to do this, is by adding following line to the docker-compose.yml file:

...
postgres:

...
tmpfs: /var/lib/postgresql/data:size=300G

This only makes sense if the necessary amount of RAM is available. Additionally keep in mind that the data will be
lost when restarting the docker container.

6.1. Performance 22

http://pgtune.leopard.in.ua/

	Introduction
	What can I do with OSMNames?
	Where to Start?
	Output Format

	Getting Started
	System requirements
	Run OSMNames
	Extracting countries

	Components
	Docker
	Imposm3
	PostgreSQL

	Implementation
	Initialize Database
	Import Wikipedia
	Import OSM
	Prepare Data
	Export OSMNames

	Development
	Contributing / Issues
	Testing
	Logging
	Consistency Checks
	Tips

	Others
	Performance

