

Oryx Linux

Oryx Linux is a Linux® distribution targeted at embedded applications and based
on the work of The Yocto Project [https://www.yoctoproject.org/] and
OpenEmbedded [https://www.openembedded.org/]. It incorporates a
lightweight container runtime engine to bring the benefits of
containerization to the embedded sector without disrupting existing developer
workflows. For further details, see the Motivation section of this
documentation.

This documentation covers the 0.5.0 version of Oryx Linux.

The latest version of the documentation is available online at the
Oryx ReadTheDocs site [https://oryx.readthedocs.io/en/latest/].

	Introduction
	Motivation

	Support

	Notation

	Glossary

	Copyright and Trademark notices

	Release History
	Oryx Linux

	oryx-apps

	Getting Started
	Supported Platforms

	Installation

	Logging In

	Adding Guest Containers

	Using oryxcmd
	Managing Sources

	Managing Guests

	oryxcmd Usage Modes

	Common oryxcmd Arguments

	Command Reference

	Building Oryx Linux Images
	System Profiles

	Application Profiles

	Preconfiguration and the Local Image Feed

	OpenEmbedded Recipes

	Using Integrated Sources

	Using meta-oryx as a Standalone Layer

	Mender Integration
	Building Native Mender Images

	Building a Host Image For Use With Mender Update Modules

	Building Guest Images For Use With Mender Update Modules

	How to Contribute
	Reporting Issues

	Contributing Code

Introduction

Motivation

The Oryx Linux project is primarily motivated by a desire to incorporate a
lightweight Linux container implementation into the OpenEmbedded build system
whilst maintaining the benefits of both systems. The key word here is
‘lightweight’: we’re avoiding fully-integrated systems such as Docker which are
targeted at cloud computing deployments rather than embedded deployments.
Instead we’re using runc, the lightweight container runtime which sits at
the heart of Docker, without any of the surrounding tools such as
containerd and docker itself. This gives us the flexibility to address
the needs of the embedded use-case.

One of the main aims of this project is to provide a developer workflow which
is familiar to existing OpenEmbedded users. You should not be required to learn
a new build system or method of creating images (such as Docker and its
corresponding Dockerfile syntax) in order to incorporate the benefits of
containers into an embedded Linux product. Keeping the focus on the
OpenEmbedded workflow ensures that we retain all the benefits of this system,
such as the excellent license compliance tooling, the extensible SDK and a
proper cross-compilation environment. Other methods of creating container-based
Linux systems are typically targeted at cloud computing deployments and don’t
address these issues that crop up when shipping an embedded Linux product.

The benefits of Linux containers have been discussed at length elsewhere so we
won’t cover the general benefits here. However, it’s worth mentioning the
additional benefits that we get in the embedded world:

	The ability to isolate applications requiring access to specialized hardware
from those which just use ‘normal’ Linux interfaces such as the network and
filesystems.

	The ability to mix legacy software which is dependent on specific older
versions of system libraries with an up-to-date and secure base system. This
is especially relevant in the embedded space where legacy applications
abound.

	The ability to update and restart a full application stack cleanly and
quickly by restarting a container guest instead of rebooting the whole
device. For devices with long startup times there can be significant
benefit here.

Support

Please report any bugs, feature requests or other feedback via the
Oryx issue tracker [https://gitlab.com/groups/oryx/-/issues].

Discussion about Oryx usage and development also occurs on the
Oryx mailing list [https://oryx.groups.io/g/devel].

Notation

The following notation is used for arguments:

	ARGUMENT: A required argument.

	[ARGUMENT]: An optional argument.

	ARGUMENTS...: One or more required arguments which are not parsed
further, typically used when these are passed through to another
application.

Glossary

	Application Profile

	An application profile defines the software to be installed into an Oryx
image along with any required configuration. For more details see
Application Profiles.

	System Profile

	A system profile defines the way that an Oryx image is deployed on a target,
which artifacts are needed for deployment and how the image is started on the
target device. For more details see System Profiles.

	System Profile Type

	System profiles are grouped into two types: native and guest. This
determines the type of Oryx image that will be built as defined below.

	Image Type

	Oryx images are grouped into two types, matching the corresponding system
profile types. These are defined below.

	Guest Image

	A guest image is essentially the template for an Oryx guest. It defines the
initial state of the rootfs within the guest, the Linux capabilities to be
assigned and the commands to run when the guest is started.

	Native Image

	A native image is installed directly onto a target device and so includes
components like the kernel and bootloader which are not needed in a guest
image.

	Source

	In the context of oryxcmd, a source is the location from which guest
images can be obtained. This can be a directory on the local filesystem, a
website accessible over HTTP/HTTPS, or any other supported type of location.

	Guest

	An Oryx guest is an application or service running within a Linux container
on an Oryx host system. The container isolation separates guests from each
other, from the host system and from hardware resources that they haven’t
been given explicit permission to access.

	Host

	An Oryx host system is typically built as a native image using the host
application profile. This system includes the oryxcmd application and the
runc lightweight container engine, allowing guests to be deployed and
managed within the system.

Copyright and Trademark notices

[image: Creative Commons Attribution 4.0 International License]
This work is licensed under a Creative Commons Attribution 4.0 International
License [https://creativecommons.org/licenses/by/4.0/].

Linux® is the registered trademark of Linus Torvalds in the U.S. and other
countries.

Release History

Oryx Linux

Release Series Status

	Release Series

	Yocto Project Branch

	Release Date

	End-of-life Date

	v0.6.x

	zeus

	Target Jan 2020

	TBC

	v0.5.x

	warrior

	Target Oct 2019

	2020-04-30

	v0.4.x

	sumo

	2018-05-22

	2019-05-31

	v0.3.x

	rocko

	2017-11-13

	2018-11-30

	v0.2.x

	pyro

	2017-06-18

	2018-05-31

	v0.1.x

	N/A

	2016-12-26

	Alpha release only

v0.5.0

Changes since v0.4.0:

	Updated to OpenEmbedded “warrior” stable release.

	Updated to oryx-apps v0.3.0. See the oryx-apps release notes for further
details.

	Updated to the Linux LTS release series 4.19.y for all supported platforms.

	Switched to a new oryx repository using git submodules instead of the
repo tool to pull together all the required components. The oryx-build
and documentation repositories are retired and their contents is merged
into the new top level. Local patches to the submodules are staged in the
patches directory.

	Updated the list of supported machines.

	Moved the build script to scripts/build.py, overhaul and expand. It is no
longer necessary to source build/conf/setenv before running the build
script. Support for capturing task logs and running clean builds has been
dropped. Support for several new arguments was added to the build script,
see the command reference for details.

	Support creation of a mirror archive containing all open source components
downloaded during the build. This may be used as part of the copyleft license
compliance process as well as allowing images to be re-built from source
without needing to re-download these components from their original location.

	It’s now possible to build multiple images in one run of the build script by
passing multiple -M and -T arguments. Each listed system profile and
application profile pair will be built for each listed machine.

	Added contribution guidelines.

	Switched to a Buildbot CI instance at https://bb.oryx-linux.org instead of
using GitLab CI.

	Switched to the systemd init system and the glibc C library.

	Added a new host-test application profile which extends the host
profile with various testing utilities.

	Added support for the creation of a local feed of guest images within the
root file system of a native image. This allows offline creation of guests on
the target device.

	Enabled security flags when building Oryx images.

	Greatly improved the documentation and published to
https://oryx.readthedocs.io.

	Added optional Mender.io Over-the-Air (OTA) update integration to support
reliable and remotely managed upgrade of native and guest software images.

The following platforms are supported in this release:

	qemux86

	qemux86-64

	qemuarm

	qemuarm64

	raspberrypi3

	raspberrypi3-64

This release is available in the following forms:

	Source code via git: See tag “v0.5.0” in the repository at
https://gitlab.com/oryx/oryx.git.

	Source code tarball: See
https://www.toganlabs.com/downloads/oryx/distro/0.5.0/oryx-0.5.0.tar.xz.

	Various compiled images: See files under
https://www.toganlabs.com/downloads/oryx/distro/0.5.0/.

v0.4.0

Changes since v0.3.1:

	Updated to OpenEmbedded “sumo” stable release.

	Updated to oryx-apps v0.2.4. See the oryx-apps release notes for further
details: http://downloads.toganlabs.com/oryx/oryx-apps/0.2.4/RELEASE_NOTES.txt.

	Use the Linux LTS release series 4.14.y for all supported platforms.

The following platforms are supported in this release:

	qemux86

	qemux86-64

	raspberrypi

	raspberrypi2

	raspberrypi3

	raspberrypi3-64

	beaglebone-yocto

This release is available in the following forms:

	Source code using repo tool: See tag “v0.4.0” in the git repository at
https://gitlab.com/oryx/oryx-manifest.git.

	Source code tarball: See
https://www.toganlabs.com/downloads/oryx/distro/0.4.0/oryx-0.4.0.tar.xz.

	Various compiled images: See files under
https://www.toganlabs.com/downloads/oryx/distro/0.4.0/.

v0.3.1

Changes since v0.3.0:

	Incorporated bugfixes and security patches accumulated on the “rocko” branch
of Yocto Project.

	Updated to oryx-apps v0.2.2. See the oryx-apps release notes for further
details:

	https://downloads.toganlabs.com/oryx/oryx-apps/0.2.2/RELEASE_NOTES.txt

	https://downloads.toganlabs.com/oryx/oryx-apps/0.2.1/RELEASE_NOTES.txt

	Added support for Beaglebone Black devices using the meta-yocto-bsp
layer.

	Added oryx-guests initscript to auto-start all enabled guests at boot and
stop all guests at shutdown.

	Allow configuration of Linux capabilities granted to guest containers.
Example application profiles intended for usage as guests (minimal and
full-cmdline profiles) select the capabilities needed to run sshd.

	Add a start-sshd script, used in minimal and full-cmdline example
application profiles to launch sshd with necessary initialization and output
logging.

	Drop obsolete demo application profile.

The following platforms are supported in this release:

	beaglebone

	qemux86

	qemux86-64

	raspberrypi

	raspberrypi2

	raspberrypi3

	raspberrypi3-64

This release is available in the following forms:

	Source code using repo tool: See tag “v0.3.1” in the git repository at
https://gitlab.com/oryx/oryx-manifest.git

	Source code tarball: See
https://www.toganlabs.com/downloads/oryx/distro/0.3.1/oryx-0.3.1.tar.xz

	Various compiled images: See files under
https://www.toganlabs.com/downloads/oryx/distro/0.3.1/

v0.3.0

Changes since v0.2.0:

	Updated to OpenEmbedded “rocko” stable release

	Updated to oryx-apps v0.2.0. See the oryx-apps release notes for further
details: http://downloads.toganlabs.com/oryx/oryx-apps/0.2.0/RELEASE_NOTES.txt.

	Added support for 64-bit demo platforms: qemux86-64 and
raspberrypi3-64.

	Dropped support for the arduino-yun platform and Oryx Lite. This was
holding back further integration of the core features we want to include in
Oryx so we had to let it go.

	Use the Linux LTS release series 4.9.y for all supported platforms.

	Switch guest image init system from oryx-guest-init to dumb-init.
This is a more widely deployed and better tested tiny init system written
in C.

	Add ca-certificates into the host application profile to support the use
of https source URLs.

	Allow the main service which runs when a guest image is started to be
specified via the ORYX_APPLICATION_COMMAND variable in an application
profile.

	Provide image.json file with all images including more detailed
information to support development of an image index.

The following platforms are supported in this release:

	qemux86

	qemux86-64

	raspberrypi

	raspberrypi2

	raspberrypi3

	raspberrypi3-64

This release is available in the following forms:

	Source code using repo tool: See tag “v0.3.0” in the git repository at
https://gitlab.com/oryx/oryx-manifest.git.

	Source code tarball: See
https://www.toganlabs.com/downloads/oryx/distro/0.3.0/oryx-0.3.0.tar.xz.

	Various compiled images: See files under
https://www.toganlabs.com/downloads/oryx/distro/0.3.0/.

v0.2.0

This release incorporates the following components:

	OpenEmbedded “pyro” stable release

	meta-oryx v0.2.0

	oryx-apps v0.1.1

The following platforms are supported in this release:

	qemux86

	raspberrypi

	raspberrypi3

	arduino-yun

This release is available in the following forms:

	Source code using repo tool: See tag “v0.2.0” in the git repository at
https://gitlab.com/oryx/oryx-manifest.git.

	Source code tarball: See
https://www.toganlabs.com/downloads/oryx/distro/0.2.0/oryx-0.2.0.tar.xz.

	Various compiled images: See files under
https://www.toganlabs.com/downloads/oryx/distro/0.2.0/.

v0.1.0

This was an initial alpha-quality release and is now only of historical
interest.

oryx-apps

v0.3.0

This is a feature release of the oryx-apps project. The following changes were
made since v0.2.5:

	Added preconfigure command which parses preconfiguration data from the
/usr/share/oryx/preconfig.d directory and sets up sources and guests
accordingly.

	Added startup and shutdown commands for the convenience of the
systemd service files.

	Ensured that the oryxcmd state file is always created with valid json data.

This release is available in the following forms:

	Source code via git: See tag “v0.3.0” in the git repository at
https://gitlab.com/oryx/oryx-apps.git

	Source code tarball: See
https://www.toganlabs.com/downloads/oryx/oryx-apps/0.3.0/oryx-apps-0.3.0.tar.xz

v0.2.5

This is a feature release of the oryx-apps project. The following features are
added:

	Support switch to systemd.

This release is available in the following forms:

	Source code via git: See tag “v0.2.5” in the git repository at
https://gitlab.com/oryx/oryx-apps.git

	Source code tarball: See
https://www.toganlabs.com/downloads/oryx/oryx-apps/0.2.5/oryx-apps-0.2.5.tar.xz

v0.2.4

This is a bugfix release of the oryx-apps project. The following bugs are
fixed:

	Version number was not updated correctly for previous release.

This release is available in the following forms:

	Source code via git: See tag “v0.2.4” in the git repository at
https://gitlab.com/oryx/oryx-apps.git

	Source code tarball: See
https://www.toganlabs.com/downloads/oryx/oryx-apps/0.2.4/oryx-apps-0.2.4.tar.xz

v0.2.3

This is a feature release of the oryx-apps project. The following features are
added:

	Add initial test suite.

This release is available in the following forms:

	Source code via git: See tag “v0.2.3” in the git repository at
https://gitlab.com/oryx/oryx-apps.git

	Source code tarball: See
https://www.toganlabs.com/downloads/oryx/oryx-apps/0.2.3/oryx-apps-0.2.3.tar.xz

v0.2.2

This is a feature release of the oryx-apps project. The following features are
added:

	Handle runc kill failure in oryxcmd stop_guest

	Add tmpfs mounts for guest containers

	Allow configuration of guest capabilities

This release is available in the following forms:

	Source code via git: See tag “v0.2.2” in the git repository at
https://gitlab.com/oryx/oryx-apps.git

	Source code tarball: See
https://www.toganlabs.com/downloads/oryx/oryx-apps/0.2.2/oryx-apps-0.2.2.tar.xz

v0.2.1

This is a feature release of the oryx-apps project. The following features are
added:

	Add oryx-guests initscript to autostart enabled guests at boot and autostop
guests at shutdown.

	Improve messages for autostart_all/autostop_all commands.

This release is available in the following forms:

	Source code via git: See tag “v0.2.1” in the git repository at
https://gitlab.com/oryx/oryx-apps.git

	Source code tarball: See
https://www.toganlabs.com/downloads/oryx/oryx-apps/0.2.1/oryx-apps-0.2.1.tar.xz

v0.2.0

This is a feature release of the oryx-apps project. The following features are
added:

	Drop oryx-guest-init, switch to dumb-init
(https://github.com/Yelp/dumb-init) for PID 1 inside guests.

	Add start_guest and stop_guest commands, allowing simple container
management without having to learn the exact arguments needed by runc. Guests
started via start_guest receive no input from the terminal and write all
output to a log file in the container’s directory under
/var/lib/oryx-guests.

	Add enable_guest and disable_guest commands, allowing guests to be
configured for automatic start on boot of the host system.

	Add autostart_all and autostop_all commands, intended for use within
an initscript to start all enabled guests during system boot and stop all
running guests during system shutdown.

	Allow the main command within a guest to be chosen during image creation.

This release is available in the following forms:

	Source code via git: See tag “v0.2.0” in the git repository at
https://gitlab.com/oryx/oryx-apps.git.

	Source code tarball: See
https://www.toganlabs.com/downloads/oryx/oryx-apps/0.2.0/oryx-apps-0.2.0.tar.xz.

v0.1.1

This is a bugfix release of the oryx-apps project. The following bugs are
fixed:

	oryxcmd failed to create the /var/lib/oryx-guests directory on the
first command invocation.

This release is available in the following forms:

	Source code via git: See tag “v0.1.1” in the git repository at
https://gitlab.com/oryx/oryx-apps.git.

	Source code tarball: See
https://www.toganlabs.com/downloads/oryx/oryx-apps/0.1.1/oryx-apps-0.1.1.tar.xz.

v0.1.0

This initial release contains the following applications:

	oryx-guest-init: A cut-down init system suitable for use in a guest
container.

	oryxcmd: A command-line tool for managing guest containers within an Oryx
Linux host system. The following features are supported:

	Add sources which define the locations where container images may be
downloaded from.

	Create new guest containers using images available from the defined
sources.

	Remove defined sources and guests.

	List and show defined sources and guests.

	Use runc to execute defined guests.

This release is available in the following forms:

	Source code via git: See tag “v0.1.0” in the git repository at
https://gitlab.com/oryx/oryx-apps.git.

	Source code tarball: See
https://www.toganlabs.com/downloads/oryx/oryx-apps/0.1.0/oryx-apps-0.1.0.tar.xz.

Getting Started

This section describes how to install and use Oryx Linux on an embedded device.

Supported Platforms

This release of Oryx Linux supports all features on the following demonstration
platforms:

	Emulated QEMU systems:

	qemuarm: 32-bit emulated ARM system.

	qemuarm64: 64-bit emulated ARM system.

	qemux86: 32-bit emulated x86 system.

	qemux86-64: 64-bit emulated x86-64 system.

	Raspberry Pi 3 ARM based systems:

	raspberrypi3: Raspberry Pi 3 in 32-bit mode.

	raspberrypi3-64: Raspberry Pi 3 in 64-bit mode.

Installation

QEMU Systems

Download the appropriate rootfs and kernel images for the desired QEMU platform
from the v0.5.0 release:

	x86:
Rootfs image [https://downloads.toganlabs.com/oryx/distro/0.5.0/qemux86/native/host/oryx-native-host-qemux86.ext4.xz],
Kernel image [https://downloads.toganlabs.com/oryx/distro/0.5.0/qemux86/native/host/bzImage-qemux86.bin]

	x86-64:
Rootfs image [https://downloads.toganlabs.com/oryx/distro/0.5.0/qemux86-64/native/host/oryx-native-host-qemux86-64.ext4.xz],
Kernel image [https://downloads.toganlabs.com/oryx/distro/0.5.0/qemux86-64/native/host/bzImage-qemux86-64.bin]

	32-bit ARM:
Rootfs image [https://downloads.toganlabs.com/oryx/distro/0.5.0/qemuarm/native/host/oryx-native-host-qemuarm.ext4.xz],
Kernel image [https://downloads.toganlabs.com/oryx/distro/0.5.0/qemuarm/native/host/zImage-qemuarm.bin]

	64-bit ARM:
Rootfs image [https://downloads.toganlabs.com/oryx/distro/0.5.0/qemuarm64/native/host/oryx-native-host-qemuarm64.ext4.xz],
Kernel image [https://downloads.toganlabs.com/oryx/distro/0.5.0/qemuarm64/native/host/Image-qemuarm64.bin]

The rootfs image must first be decompressed:

unxz oryx-native-host-qemux86.ext4.xz

To launch qemu (example for qemux86 target):

qemu-system-i386 -kernel bzImage-qemux86.bin -hda oryx-native-host-qemux86.ext4 \
 -append "root=/dev/hda"

For further details on the configuration and use of qemu, see the qemu
documentation.

Raspberry Pi 3

Download the appropriate SD card image and BMAP file for the Raspberry Pi 3
from the v0.5.0 release:

	32-bit:
SD card image [https://downloads.toganlabs.com/oryx/distro/0.5.0/raspberrypi3/native/host/oryx-native-host-raspberrypi3.wic.xz],
BMAP file [https://downloads.toganlabs.com/oryx/distro/0.5.0/raspberrypi3/native/host/oryx-native-host-raspberrypi3.wic.bmap]

	64-bit:
SD card image [https://downloads.toganlabs.com/oryx/distro/0.5.0/raspberrypi3-64/native/host/oryx-native-host-raspberrypi3-64.wic.xz],
BMAP file [https://downloads.toganlabs.com/oryx/distro/0.5.0/raspberrypi3-64/native/host/oryx-native-host-raspberrypi3-64.wic.bmap]

Once the appropriate SD card image has been downloaded, it may be written to
an SD card using bmaptool (in this example the target SD card appears in the
system as /dev/sdb but this should be replaced by the correct path for
the system in use):

bmaptool copy oryx-native-host-raspberrypi3.wic.xz /dev/sdb

The SD card may then be removed and placed into the Raspberry Pi device itself.

Logging In

After installation you can login as root with the default password
oryx.

Adding Guest Containers

One the Oryx Linux host system has been set up, the oryxcmd tool may be
used to create guest containers.

Firstly, the appropriate official source for this release should be configured:

	qemux86:

oryxcmd add_source oryx \
 http://downloads.toganlabs.com/oryx/distro/0.5.0/qemux86

	qemux86-64:

oryxcmd add_source oryx \
 http://downloads.toganlabs.com/oryx/distro/0.5.0/qemux86-64

	qemuarm:

oryxcmd add_source oryx \
 http://downloads.toganlabs.com/oryx/distro/0.5.0/qemuarm

	qemuarm64:

oryxcmd add_source oryx \
 http://downloads.toganlabs.com/oryx/distro/0.5.0/qemuarm64

	raspberrypi3:

oryxcmd add_source oryx \
 http://downloads.toganlabs.com/oryx/distro/0.5.0/raspberrypi3

	raspberrypi3-64:

oryxcmd add_source oryx \
 http://downloads.toganlabs.com/oryx/distro/0.5.0/raspberrypi3-64

Once this source is configured, a guest container can be created from one of
the following images:

	minimal image:

oryxcmd add_guest test oryx:minimal

	full-cmdline image:

oryxcmd add_guest test oryx:full-cmdline

The guest image may then be booted using runc as follows:

oryxcmd start_guest test

For further details, see the Using oryxcmd section.

Using oryxcmd

oryxcmd is the core of the “host” application profile within Oryx Linux.
It is responsible for the management of guest containers and the sources from
which container images may be obtained. As a command-line application it has
both an interactive mode and a non-interactive mode.

Managing Sources

To create a guest within Oryx we first need to configure one or more sources.
These sources represent collections of images compatible with the target
device. Each source is identified by a name and has a single configuration
value - the URL where the collection of images is published. This URL may use
the file protocol when the images are stored directly on the target device or
on removable media which can be accessed locallay. Alternatively the URL will
use the HTTP or HTTPS protocols where images are retrieved over the network.

To define a new source we use oryxcmd add_source, giving the name we will
use to identify the source and the URL from which images will be obtained. For
example, to add the collection of images for the raspberrypi3 provided with
the v0.5.0 release:

$ oryxcmd add_source oryx https://downloads.toganlabs.com/oryx/distro/0.5.0/raspberrypi3
Added source "oryx" with URL "http://downloads.toganlabs.com/oryx/distro/0.5.0/raspberrypi3"

This new source may be inspected by using oryxcmd show_source, giving the
name of the source to inspect. Currently this will just show the URL
configured for the source. For example, to show the configuration for the
‘oryx’ source we created above:

$ oryxcmd show_source oryx
{
 "url": "http://downloads.toganlabs.com/oryx/distro/0.5.0/raspberrypi3"
}

The full list of sources currently configured can be shown by using oryxcmd
list_sources. For example:

$ oryxcmd list_sources
oryx

A source that is no longer needed can be removed by using oryxcmd
remove_source, giving the name of the source to remove. For example, to
remove the ‘oryx’ source we created above:

$ oryxcmd remove_source oryx
Removed source "oryx"

Managing Guests

A guest is created from an image provided by a source which has already been
defined on the target device.

To create a new guest we use oryxcmd add_guest, giving the name we will use
to identify the guest and the image from which it will be created. The image is
identified by the appropriate source name and the image name, separated by a
colon. During guest creation, the selected image will be downloaded (if
needed), extracted and a configuration file for the runc container runtime
will be created. For example, to create a new guest from the ‘minimal’ image
provided by the ‘oryx’ source we created in the previous section:

$ oryxcmd add_guest test oryx:minimal
Added guest "test" from image "oryx:minimal"

The new guest may be inspected by using oryxcmd show_guest, giving the name
of the guest to inspect. This will show the source name and image name used to
create the guest as well as the autostart status for the guest. For example, to
show the configuration for the ‘test’ guest we created above:

$ oryxcmd show_guest test
{
 "autostart_enabled": 0,
 "image": {
 "APPLICATION_PROFILE": "minimal",
 "CAPABILITIES": [
 "CAP_AUDIT_WRITE",
 "CAP_KILL",
 "CAP_NET_BIND_SERVICE",
 "CAP_SYS_CHROOT",
 "CAP_SETGID",
 "CAP_SETUID"
],
 "COMMAND": "/sbin/start-sshd",
 "DISTRO": "oryx",
 "MACHINE": "raspberrypi3",
 "ROOTFS": "oryx-guest-minimal-raspberrypi3.tar.xz",
 "SYSTEM_PROFILE": "guest",
 "SYSTEM_PROFILE_TYPE": "guest",
 "VERSION": "0.5.0"
 },
 "image_name": "minimal",
 "path": "/var/lib/oryx-guests/test",
 "source": {
 "url": "http://downloads.toganlabs.com/oryx/distro/0.5.0/raspberrypi3"
 },
 "source_name": "oryx"
}

The full list of guests currently configured can be shown by using oryxcmd
list_guests. For example:

$ oryxcmd list_guests
test

A guest may be started by using oryxcmd start_guest, giving the name of
the guest to start. This works much the same way as starting a systemd service,
starting the guest in the background. A runc container will be created for
the guest and the main command (which was defined when the corresponding
image was built) will be executed. The guest will be automatically allocated
an IP address in the 172.19.0.0/24 network by using netns. For example, to
start the ‘test’ guest we created above:

$ oryxcmd start_guest test
Started guest "test"

A running guest may be stopped by using oryxcmd stop_guest, giving the
name of the guest to stop. This works much the same way as stopping a systemd
service. The SIGTERM signal will be sent to the appropriate runc container,
followed by the SIGKILL signal to shut it down. For example, to stop the
‘test’ guest we created above:

$ oryxcmd stop_guest test
Stopped guest "test"

A guest may be configured to start automatically (‘autostart’) when the
device is booted by using oryxcmd enable_guest, giving the name of the
guest for which to enable autostart. This works much the same way as enabling
a systemd service. The autostart status for a guest can be seen in the
autostart_enabled value when inspecting the guest configuration. For
example, to enable autostart for the ‘test’ guest we created above:

$ oryxcmd enable_guest test
Enabled guest "test"

A guest may be configured not to start automatically when the device is
booted by using oryxcmd disable_guest, giving the name of the guest for
which to disable autostart. This works much the same ways as disabling a
systemd service. For example, to disable autostart for the ‘test’ guest we
created above:

$ oryxcmd disable_guest test
Disabled guest "test"

A guest that is no longer required can be removed by using oryxcmd
remove_guest, giving the name of the guest to remove. For example, to remove
the ‘test’ guest we created above:

$ oryxcmd remove_guest test
Removed guest "test"

oryxcmd Usage Modes

oryxcmd may be used in either interactive mode or non-interactive mode as
described below. The usage descriptions in the previous section showed the
non-interactive mode for convenience.

Interactive Mode

In the interactive mode, oryxcmd is started without specifying a command:

$ oryxcmd
Welcome to oryxcmd (oryx-apps v0.3.0)
oryxcmd>

At the oryxcmd prompt, any of the supported commands may be executed. For
example:

oryxcmd> list_sources
oryx

To leave interactive mode, use the exit command:

oryxcmd> exit

Non-interactive Mode

In the non-interactive mode, oryxcmd is executed with a command specified
as an argument. The specified command will be executed and then oryxcmd
will exit. For example:

$ oryxcmd list_sources
oryx

Any of the supported commands may be executed in this way.

Common oryxcmd Arguments

The following command line arguments are supported by oryxcmd:

	-v, --verbose: Print verbose debug messages during operation. This
argument is usable for both interactive and non-interactive mode.

	-h, --help: Print help messages and exit.

	-V, --version: Print version string and exit.

Command Reference

add_source

Register a new source from which images may be fetched.

Usage:

add_source NAME URL

Arguments:

	NAME: An identifier which may be used to reference this source in future
commands.

	URL: The root URL under which image archives may be found.

Example:

oryxcmd> add_source oryx http://downloads.toganlabs.com/oryx/distro/0.5.0/raspberrypi3
Added source "oryx" with URL "http://downloads.toganlabs.com/oryx/distro/0.5.0/raspberrypi3"

remove_source

Remove a previously registered source.

Usage:

remove_source NAME

Arguments:

	NAME: The identifier of the source to remove.

Example:

oryxcmd> remove_source oryx
Removed source "oryx"

list_sources

List all currently registered sources.

Usage:

list_sources

This command has no arguments.

Example:

oryxcmd> list_sources
oryx

show_source

Show details of a previously registered source in JSON format.

Usage:

show_source NAME

Arguments:

	NAME: The identifier of the source to show.

Example:

oryxcmd> show_source oryx
{
 "url": "http://downloads.toganlabs.com/oryx/distro/0.5.0/raspberrypi3"
}

add_guest

Create a new guest container from an image.

Usage:

add_guest NAME IMAGE

Arguments:

	NAME: An identifier which may be used to reference this source in future
commands.

	IMAGE: A fully-qualified reference to an image which is available from
one of the sources which has been configured. The format of this reference
is <source>:<image_name>:

	source: The identifier of a registered source.

	image_name: The name of an image which is available within the
identified source. The image name typically matches the name of an
Application Profile which has been built for
the system on which oryxcmd is running.

Example:

oryxcmd> add_guest test oryx:minimal
Added guest "test" from image "oryx:minimal"

remove_guest

Delete an existing guest container.

Usage:

remove_guest NAME

Arguments:

	NAME: The identifier of the guest container to remove.

Example:

oryxcmd> remove_guest test
Removed guest "test"

list_guests

List all currently registered guests.

Usage:

list_guests

This command has no arguments.

Example:

oryxcmd> list_guests
test

show_guest

Show details of a previously registered guest in JSON format.

Usage:

show_guest NAME

Arguments:

	NAME: The identifier of the guest to show.

Example:

oryxcmd> show_guest test
{
 "autostart_enabled": 0,
 "image": {
 "APPLICATION_PROFILE": "minimal",
 "CAPABILITIES": [
 "CAP_AUDIT_WRITE",
 "CAP_KILL",
 "CAP_NET_BIND_SERVICE",
 "CAP_SYS_CHROOT",
 "CAP_SETGID",
 "CAP_SETUID"
],
 "COMMAND": "/sbin/start-sshd",
 "DISTRO": "oryx",
 "MACHINE": "raspberrypi3",
 "ROOTFS": "oryx-guest-minimal-raspberrypi3.tar.xz",
 "SYSTEM_PROFILE": "guest",
 "SYSTEM_PROFILE_TYPE": "guest",
 "VERSION": "0.5.0"
 },
 "image_name": "minimal",
 "path": "/var/lib/oryx-guests/test",
 "source": {
 "url": "http://downloads.toganlabs.com/oryx/distro/0.5.0/raspberrypi3"
 },
 "source_name": "oryx"
}

enable_guest

Enable auto-start of a previously registered guest during system boot.

Usage:

enable_guest NAME

Arguments:

	NAME: The identifier of the guest to enable.

Example:

oryxcmd> enable_guest test
Enabled guest "test"

disable_guest

Disable auto-start of a previously registered guest during system boot.

Usage:

disable_guest NAME

Arguments:

	NAME: The identifier of the guest to disable.

Example:

oryxcmd> disable_guest test
Disabled guest "test"

start_guest

Start an existing guest container. The container is launched in the background,
without access to the terminal where start_guest was executed.

Usage:

start_guest NAME

Arguments:

	NAME: The identifier of the guest container to start.

Example:

oryxcmd> start_guest test
Started guest "test"

stop_guest

Stop a running guest container. SIGTERM is sent to the container so that it can
shutdown cleanly. After 10 seconds, the container is halted.

Usage:

stop_guest NAME

Arguments:

	NAME: The identifier of the guest container to stop.

Example:

oryxcmd> stop_guest test
Stopped guest "test"

autostart_all

Start all containers which have autostart enabled.

Usage:

autostart_all

This command has no arguments.

Example:

oryxcmd> autostart_all
Started guest "test"
Started 1 of 1 enabled guests

autostop_all

Stop all currently running containers.

Usage:

autostop_all

This command has no arguments.

Example:

oryxcmd> autostop_all
Stopped guest "test"
Stopped 1 of 1 guests

preconfigure

Read pre-configuration data from /usr/share/oryx/preconfig.d and add the
listed sources and guests.

Usage:

preconfigure

This command has no arguments.

Example:

oryxcmd> preconfigure
Added source "local" with URL "file:///usr/share/oryx/local-feed"
Added guest "preconfig-test" from image "local:minimal"
Enabled guest "preconfig-test"

startup

Convenience function for use in systemd service file. Runs ‘preconfigure’
then ‘autostart_all’.

Usage:

startup

This command has no arguments.

Example:

oryxcmd> startup
Started guest "preconfig-test"
Started 1 of 1 enabled guests

shutdown

Convenience function for use in systemd service file. Runs ‘autostop_all’.

Usage:

shutdown

This command has no arguments.

Example:

oryxcmd> shutdown
Stopped guest "preconfig-test"
Stopped 1 of 1 guests

runc

Execute runc for an existing guest container. See the documentation of
runc for further details.

Usage:

runc NAME ARGS...

Arguments:

	NAME: The identifier of the guest container for which ‘runc’ will be
executed.

	ARGS...: Command line arguments passed through to the ‘runc’ application.

help

List available commands with “help” or detailed help with “help cmd”.

Usage:

help [CMD]

Arguments:

	CMD: The name of a supported command. If this argument is given, detailed
help for the chosen command is printed.

Example:

oryxcmd> help

Documented commands (type help <topic>):
==
add_guest disable_guest list_guests remove_source shutdown version
add_source enable_guest list_sources runc start_guest
autostart_all exit preconfigure show_guest startup
autostop_all help remove_guest show_source stop_guest

Miscellaneous help topics:
==========================
arguments

version

Display version information.

Usage:

version

This command has no arguments.

Example:

oryxcmd> version
oryxcmd (oryx-apps v0.3.0)

exit

Exit the interactive oryxcmd shell.

Usage:

exit

This command has no arguments.

Example:

oryxcmd> exit

Building Oryx Linux Images

Oryx Linux introduces two major new concepts to the OpenEmbedded build system:
these are System Profiles and Application Profiles. This section will
also discuss how these concepts are integrated into the OpenEmbedded
Recipes in the meta-oryx layer.

System Profiles

A system profile complements the OpenEmbedded machine selection and essentially
specifies how the image we are building will be deployed onto the selected
machine. Many platforms may be booted in multiple ways (local boot from flash
memory vs remote boot via tftp for instance) and a system profile may be used
to specify a boot mechanism. Additionally, an image may run under different
virtualization methods on a given platform and a system profile may be used
to specify the chosen method. In each case the system profile will ensure
that the correct build artifacts are produced to match how the image will be
used. As system profiles are orthogonal to machine selection, consistent boot
or virtualization methods may be enforced across multiple platforms.

The following system profiles are provided in this release:

	native: This profile indicates that the image will run “bare metal” on
the chosen platform. Build artifacts suitable for writing to an SD card,
USB stick or embedded flash memory are produced and are then compressed to
save space. When possible, u-boot is enabled to provide greater boot-time
flexibility.

	native-mender: This profile extends the native system profile to add
integration with the Mender.io OTA update system. See the section on
Mender Integration for details on how to use this system profile.

	guest: This profile indicates that the image will run as a container
guest under runc. No bootloader or kernel is compiled for this profile.
Build artifacts are always compressed tar archives of a rootfs, ready for
installation onto a host system.

	guest-mender-update-module: This profile extends the guest system
profile to add integration with the Mender.io Update Modules feature. See
the section on Mender Integration for details on how to use this
system profile.

The system profile is determined by the ORYX_SYSTEM_PROFILE variable.

Porting the Native System Profile

When porting Oryx Linux to new target platforms it is usually necessary to
modify the native system profile. The following variables need to be correctly
defined for each target platform:

	IMAGE_FSTYPES: This variable determines the format of the rootfs image
which is created. For physical devices this is usually a complete image,
including kernel and bootloader, ready to be directly copied into flash
memory or onto an SD Card or USB stick. However for emulated targets this
may simply be a filesystem image. For officially supported platforms,
xz compression is usually used to reduce the storage and bandwidth
requirements on our servers.

	ORYX_ROOTFS_IMAGE: This is the filename of the main rootfs image as
produced by bitbake for the target platform. The existing values
for supported platforms may be used for reference as the filename typically
only differs in the extension (which is determined by the value of
IMAGE_FSTYPES). However, the filename can be changed completely if the
rootfs artifact for the target platform is not named in the usual way.

	ORYX_KERNEL_IMAGE: The is the filename of the kernel image as produced by
bitbake for the target platforms. Where the rootfs image contains the kernel
and bootloader this is usually left empty.

Most platforms can be supported with modification of just the above variables.
If further customization is needed, see the following section on Writing
System Profiles.

Writing System Profiles

The existing native and guest system profiles are suitable for most use
cases but it may occasionally be necessary to create new profiles.

The key variables in a system profile are as follows:

	ORYX_SYSTEM_PROFILE_PACKAGES: This is the list of additional packages to
install into the rootfs for this system profile.

	ORYX_SYSTEM_PROFILE_OUTPUT_DEPENDS: This is the list of bitbake tasks to
be completed before collecting artifacts for output to the images directory,
in addition to building oryx-image.

	ORYX_SYSTEM_PROFILE_OUTPUT_FILES: This is the list of files to output to
the images directory, in addition to the image json file. It typically
contains the rootfs image and any supporting files (such as a kernel image,
bootloader image, etc).

	ORYX_SYSTEM_PROFILE_TYPE: This selects how the resulting image will be
used and must be set to one of the following options. These match the two
core system profiles included with Oryx, allowing additional customized
native and guest system profiles to be defined with different names.

	native: The resulting image will run directly on the target hardware.

	guest: The resulting image will run as a container managed by
oryxcmd.

Application Profiles

An application profile specifies the use-case of a given image and typically
corresponds to a particular software package or package group. The
configurability here is greater than a traditional OpenEmbedded image recipe
though, as the application profile may set PACKAGECONFIG values and other
options to be applied to all components within an image. So it’s possible to
build a lightweight configuration of a library for one application profile but
then enable additional options when building for a different application
profile.

An Oryx Linux image is built with only one application profile. The expected
use case is to deploy the host application profile using the native
system profile onto a device and build additional images using the guest
system profile for each required application profile. With this method each
application profile corresponds to a separate container within the host
system resulting in a more secure and manageable device.

The following application profiles are provided in this release:

	full-cmdline: This profile simply includes the OpenEmbedded full-cmdline
packagegroup along with the SSH server. It is a good demonstration
container as it has a user-friendly set of command line tools installed
with documentation.

	minimal: This profile provides the minimal software needed to boot and
run a system along with the SSH server. It is a good starting point for
developing new application profiles.

	host: This profile includes runc and other tools needed to setup Linux
containers. It provides a host environment for images built using the guest
system profile described above.

	host-test: This profile includes everything in the host application
profile plus additional testing and debug tools. It is primarily used in the
development of Oryx itself.

	host-mender-update-modules: This profiles includes everything in the
host application profile plus additional support for updating guests
using Mender Update Modules. See the section on Mender Integration
for details on how to use this application profile.

It’s expected that Oryx will be enhanced by the addition of many more
application profiles in future releases.

The application profile is determined by the ORYX_APPLICATION_PROFILE
variable.

Writing Application Profiles

A new application profile is typically written for each application or service
which is to be deployed in Oryx Linux.

The key variables in an application profile are as follows:

	ORYX_APPLICATION_PROFILE_PACKAGES: This is the list of additional
packages to install into the rootfs for this application profile.

When the guest system profile is selected, the following additional
variables are used to configure the guest container:

	ORYX_GUEST_CAPABILITIES: This is the list of Linux capabilities to grant
to the container. It defaults to the minimal capability set of
CAP_AUDIT_WRITE, CAP_KILL and CAP_NET_BIND_SERVICE and typically
you will just need to extend this list with any additional capabilities
needed. For details on the available capabilities, see the Linux
capabilities(8) manual page.

	ORYX_APPLICATION_COMMAND: This is the main application command to execute
when the guest container is started. The command line is tokenized into
separate arguments however no further parsing is performed (so for example
environment variables cannot be used). The best practice is to create a start
script which performs any necessary initialization and then starts the main
service or application. For an example of a start script see the
start-sshd script and recipe in the meta-oryx layer.

Preconfiguration and the Local Image Feed

Oryx Linux supports the preconfiguration of sources and guests defined at build
time so that these do not need to be created by manually invoking oryxcmd at
runtime. This is done by writing recipes which install preconfiguration files
into /usr/share/oryx/preconfig.d where the oryxcmd will process them on
first boot. These files are parsed in alphanumeric sort order so it’s
recommended to use a 2 digit prefix on all file names to enforce the desired
processing order. Once parsed, the options creating sources are handled first
followed by the options creating guests.

The syntax of preconfiguration files is based on the INI configuration file
format with sections for each source or guest that should be created on first
boot.

Preconfiguring Sources

A section with a heading of the format [source:NAME] defines a source with
the given name.

The following options are required to preconfigure a source:

	url: This is equivalent to the URL argument to the
add_source oryxcmd action.

Preconfiguring Guests

A section with a heading of the format [guest:NAME] defines a guest with
the given name.

The following options are required to preconfigure a guest:

	image: This is equivalent to the IMAGE argument to the
add_guest oryxcmd action.

The following options may also be set as desired:

	enable: If this option is true then the guest in enabled after creation
so that it starts automatically on boot. This is equivalent to running
oryxcmd enable_guest after the guest is created.

Preconfiguration Example

The following example illustrates how sources and guests can be preconfigured.
If this text is placed in a file under /usr/share/oryx/preconfig.d by a
recipe then on first boot on the target the defined items will be created:

[source:onsite]
url = http://192.168.1.10/oryx/qemux86

[guest:test]
image = onsite:minimal
enable = True

This is equivalent to running the following commands on the target on the first
boot:

oryxcmd add_source onsite http://192.168.1.10/oryx/qemux86
oryxcmd add_guest test onsite:minimal
oryxcmd enable_guest test

Using the Local Feed

The recipe oryx-local-feed builds on the preconfiguration support to define
a local feed with images stored in /usr/share/oryx/local-feed. This allows
guests to be created on the first boot of a device without requiring any
network access to a remote source. The preconfiguration file to define the
local source is installed as part of this recipe and so it is not
necessary to implement this yourself.

All images which will be placed in the local feed must have already been built
before the final native image is built.

The local feed is configured by setting the following variables, typically in
the application profile which will be used to build the final image:

	ORYX_LOCAL_FEED_IMAGE: A whitespace separated list of images to include
in the local feed. Each entry is of the form
SYSTEM_PROFILE:APPLICATION_PROFILE, for example guest:minimal to
include the image built from the guest system profile and the
minimal application profile. These images will be copied into the local
feed directory in the final image.

For an example of how the local feed is used, see the host-test application
profile.

OpenEmbedded Recipes

oryx-image

The concept of an application profile effectively supersedes the OpenEmbedded
concept of an image recipe. Therefore we only make use of one image recipe
within Oryx and this is the oryx-image recipe. This recipe pulls in the
packages needed by the chosen application and system profiles.

The oryx-image recipe also ensures that an extended os-release file is
included in the image. This os-release file includes the usual information
such as the distro name, version and home URL as well as Oryx-specific
information such as the selected system profile, application profile and
machine.

To simplify deployment of Oryx images and prevent artifacts being overwritten
by subsequent builds for different machine, system profile or application
profile settings, the output files are collected into an images directory
(usually placed in build/images). Within this images directory, a
hierarchy of subdirectories is created for each machine, system profile and
application profile. As only those files required by the boot or installation
method used with a given system profile are copied into the new directory,
there is no clutter or confusion.

In normal usage, the top-level bitbake recipe used to build an Oryx image will
therefore be oryx-image.

image-json-file

The image-json-file recipe creates a JSON formatted data file for the
current image which is used by Using oryxcmd when downloading the image onto a
host system.

Using Integrated Sources

The recommended way to build Oryx Linux images is to use the integrated source
tree which combines the meta-oryx layer and a pre-configured build
environment with the OpenEmbedded build system. This is the method which is
used for Oryx Linux releases and is regularly tested as part of the
Continuous Integration (CI) system.

The full contents of the integrated Oryx Linux sources is as follows:

	The base openembedded-core layer.

	The corresponding version of bitbake.

	Additional supporting layers: meta-openembedded and
meta-virtualization.

	Additional BSP layers: meta-raspberrypi.

	The Oryx Linux distro layer: meta-oryx.

	Pre-configured build environment consisting of build/conf/local.conf and
build/conf/bblayers.conf files which typically do not require further
modification.

	Build script scripts/build.py.

Fetching and Updating Sources

Integrated sources may be obtained either from a source release in .tar.xz
format, or from git.

Using a Source Release

Each point release of Oryx Linux includes a source tarball alongside the
compiled images. This integrated source release contains all OpenEmbedded
layers needed to build Oryx Linux images and is essentially a point-in-time
snapshot of the sources which may be obtained from git.

For the v0.5.0 release, this source release may be obtained from
https://downloads.toganlabs.com/oryx/distro/0.5.0/oryx-0.5.0.tar.xz.

Once a source release has been downloaded, it simply needs to be extracted
before using the Build Script.

Using git

The Oryx git repository uses submodues to download and track the other git
repositories that it depends on so it must be cloned using the
--recurse-submodues flag.

	To use the master branch of Oryx Linux:

git clone --recurse-submodules https://gitlab.com/oryx/oryx.git

The master branch is the active development branch and so may incorporate
breaking changes at any time. Follow the master branch at your own risk!

	To use a formal release of Oryx Linux, such as the v0.5.0 release:

git clone --recurse-submodules https://gitlab.com/oryx/oryx.git \
 -b v0.5.0

The git submodules should be periodically updated with the following command:

git submodule update

Build Script

Once you have the Oryx sources, you can use the build script
scripts/build.py to build images. This script uses bitbake to build the
recipe specified by oryx-image and so places output files into the
images directory.

Building Single Images

The build script can be used most straightforwardly to build a single Oryx
Linux image along with any associated collateral (such as the
image_native.json or image_guest.json file as appropriate).

The build script defaults to selecting the qemux86 machine, the native
system profile and the host application profile when building images. To
build an image for this combination, simply invoke the build script with no
arguments:

./scripts/build.py

Additional arguments may be passed to the build script to change the selected
machine (-M or --machine argument), system profile (-S or
--system-profile argument) and application profile (-A or
--application-profile argument). For example, to build an image for the
Raspberry Pi 3 device using the guest system profile and the minimal
application profile:

./scripts/build.py -M raspberrypi3 -S guest -A minimal

As an alternative to the above form, the -T argument can be used with a
colon-separated system profile and application profile pair such as
native:host or guest:minimal. For example, the above build can also be
performed using the following command:

./scripts/build.py -M raspberrypi3 -T guest:minimal

Building Multiple Images in One Step

The build script is also capable of building multiple images in a single
execution, running bitbake more than once as necessary.

Repeating the -S and -A arguments with different system profile or
application profile selections would be ambiguous as it would not be clear how
to pair up entries in the list of system profiles with entries in the list of
application profiles. Instead, the -T argument must be used to specify
multiple system profile and application profile pairs. The build script adds
these pairs to an ordered list in the order that they are specified on the
command line and this determines the order in which these builds are performed.
This ordering may be important where one build depends on the results of
another, such as when building the host-test application profile which
requires a minimal guest image to have already been built for the same machine.
For example, the following command can be used to successfully build this
test image for the Raspberry Pi 3 device:

./scripts/build.py -M raspberrypi3 -T guest:minimal -T native:host-test

Note that this build may fail if -T native:host-test appeared first on the
command line as the required guest image would not have been built.

It is also possible to build images for multiple target machines by using the
-M argument more than once. Alternatively, the --all-machines argument
may be passed to build images for all officially supported machines. For
example, the following command can be used to build the native host image for
both x86 and x86-64 QEMU machines:

./scripts/build.py -M qemux86 -M qemux86-64 -S native -A host

If both multiple machines and multiple system profile and application profile
pairs are provided, each profile pair is built for each machine listed on the
command line. For example, the following command can be used to build the
minimal and full-cmdline guest images for both the 32-bit and 64-bit ARM QEMU
machines:

./scripts/build.py -M qemuarm -M qemuarm64 -T guest:minimal \
 -T guest:full-cmdline

As a further example, the following command can be used to build the host and
host-test native images, along with the minimal guest image required by the
host-test application profile, for all supported machines:

./scripts/build.py --all-machines -T guest:minimal -T native:host \
 -T native:host-test

Building Documentation

The sources for this documentation are included in the Oryx repository under
the docs directory. The Sphinx documentation generator [http://www.sphinx-doc.org/en/master/] is used to build HTML and PDF output
from the reStructuredText and Markdown source files.

Sphinx requires Python version 3.5 or later along with the pip tool. To
install Sphinx and the required modules for building the Oryx documentation
the requirements.txt file included with the documentation sources may be
used as follows:

pip install -r docs/requirements.txt

The following command may then be used to build the documentation:

./scripts/build.py --docs --no-bitbake

The resulting HTML and PDF artifacts are placed in the docs directory
within the output directory.

Starting a Development Shell

During development it may be desirable to use bitbake directly, for example to
build a particular recipe rather than a whole image. This can be achieved by
starting a development shell using the build script with the --shell
argument. The -M, -S, -A and -T arguments can be used to
select the machine, system profile and application profile that will be used
for the build. However, note that it is not possible to invoke a development
shell for more than one machine or more than one system profile and
application profile pair at a time. In this mode of operation the build
script will setup the required environment variables for an Oryx build and
then start the bash shell.

For example, to start a development shell with the raspberrypi3 machine,
native system profile and host-test application profile selected:

./scripts/build.py -M raspberrypi3 -S native -A host-test --shell

Please note that the user and system bashrc files will be parsed by the new
shell instance and this may interfere with the required environment variables
set by the build script. If problems are observed when using the development
shell but not when bitbake is directly invoked by the build script then the
appropriate bashrc files should be examined.

When the development shell is no longer needed, remember to end the session by
using exit.

Argument Reference

The build script understands the following arguments:

	-V VERSION, --build-version VERSION: Sets the version string used to
identify this build. The default value is dev.

	-S SYSTEM_PROFILE, --system-profile SYSTEM_PROFILE: Sets the system
profile to be built. See the System Profiles section for details on
how system profiles work, and what options are available. The default value
is native.

	-A APPLICATION_PROFILE, --application-profile APPLICATION_PROFILE:
Sets the application profile to be built. See the Application Profiles
section for details on application profiles, as well as the options
available. The default value is host.

	-T SYSTEM_PROFILE:APPLICATION_PROFILE,
--target-pair SYSTEM_PROFILE:APPLICATION_PROFILE: Sets the system profile
and application profile to be built. This is an alternative to specifying the
-S and -A arguments separately. This argument may be specified more
than once to build multiple images in one invocation of the build script
(which is not possible when using the -S and -A arguments). The
images are built in the order that they are given on the command line and
for each specified machine.

	-M MACHINE, --machine MACHINE: Sets the target machine for which the
image will be built. Supported machines are: qemux86, qemux86-64,
qemuarm, qemuarm64, ``raspberrypi3 and raspberrypi3-64. The
default value is “qemux86”. This argument may be specified more than once
to build multiple images in one invocation of the build script.

	-k, --continue: Continue as far as possible after an error. This is
equivalent to the -k argument to bitbake.

	--oryx-base ORYX_BASE: Set the base directory of the Oryx source tree.
The default value is the current directory so this argument is only useful
in special cases.

	--shell: Start a development shell instead of running bitbake directly.
This allows more control over the invocation of bitbake and is typically
useful in development and in debugging failed builds.

	-o OUTPUT_DIR, --output-dir OUTPUT_DIR: Set the output directory
where build artifacts will be placed. The default value is
build/images.

	--all-machines: Build images for all supported target machines. This is
an alternative to manually specifying the full list with multiple -M
arguments. See the release notes for the current list of supported
machines.

	--rm-work: Remove temporary files after building each recipe to save disk
space. This enables the rm_work bbclass.

	--mirror-archive: Populate a download mirror for all open source
components included in the image. This is placed in the mirror directory
within the output directory. It can be published and used as a mirror or a
premirror for subsequent builds.

	--enable-mender: Enable the inclusion of Mender layers in BBLAYERS. These
layers are required to build Mender images but prevent the building of
non-Mender images. This option is typically used along with a system profile
which is configured for Mender integration.

	--dl-dir DL_DIR: Set the path for the downloads directory. The default
value is build/downloads.

	--sstate-dir SSTATE_DIR: Set the path for the sstate cache directory. The
default value is build/sstate-cache.

	--docs: Build the documentation in HTML and PDF formats. The resulting
artifacts are placed in the docs directory within the output directory.

	--source-archive: Create an archive of the complete Oryx Project sources
including Bitbake and all Yocto Project layers. The archive is placed in the
output directory. This requires that the sources have been obtained from git
and not from a previously made source archive.

	--checksum: Create SHA256SUMS checksum files in each subdirectory
within the output directory that contains files.

	--release: Perform a full release of the Oryx Project. This is equivalent
to passing the following arguments:

-T guest:minimal -T guest:full-cmdline -T native:host -T native:host-test \
--all-machines --docs --mirror-archive --source-archive --checksum

	--no-bitbake: Disable bitbake invocation so that no images are built.
This argument is useful if you only want to build the documentation, create
a source archive or similar.

Using meta-oryx as a Standalone Layer

Although the above method of Using Integrated Sources is preferred as this
is the tested and supported method, it’s also possible to use the
meta-oryx layer as a traditional OpenEmbedded layer. This layer may be
obtained from the git repository at https://gitlab.com/oryx/meta-oryx and
added into an OpenEmbedded build environment as normal.

Once the meta-oryx layer has been added to the OpenEmbedded build
environment, the following variables should be set in conf/local.conf or
another appropriate location to fully configure the Oryx Linux distribution:

	Set the distro: DISTRO = "oryx".

	Set the Oryx Linux version: ORYX_VERSION = "custom". Using a unique
version string here will help identify this build.

	Choose a System Profile:
ORYX_SYSTEM_PROFILE = "native".

	Choose an Application Profile:
ORYX_APPLICATION_PROFILE = "minimal".

Once these variables are set appropriately, bitbake may be executed as
normal. As discussed in the section on OpenEmbedded Recipes, the top-level
command to build an Oryx Linux image is typically bitbake oryx-image.

Mender Integration

With version 0.5.0 of Oryx Linux we have added integration with the Mender.io
Over-The-Air (OTA) update system. Further Mender documentation can be found at
https://docs.mender.io.

Building Native Mender Images

Native Mender images can be built using the native-mender system profile.
These images include redundant rootfs partitions as well as a data partition as
required by the Mender update system. To use this system profile, the
--enable-mender argument must be passed to the build script to enable use
of the Mender layers.

For example, to build a native Mender image for the Raspberry Pi 3 device using
the host application profile:

./scripts/build.py --enable-mender -M raspberrypi3 -S native-mender -A host

When using the native-mender system profile, the image filename extension
is typically .sdimg.xz or .uefiimg.xz instead of the usual
.wic.xz used by Oryx Linux. The sdimg format images may be directly
written to an SD card in the same was as wic images.

Additionally, update artifacts with the filename extension .mender are
produced for each image. These artifacts are suitable for upload to a Mender
server instance to be pushed out as updates to a fleet of devices.
Alternatively, they can be used directly with mender on the command line
on a target device to install the updated rootfs image.

Testing With The Mender Demo Server

Testing with the Mender demo server requires the default HTTPS certificates
and the demo server IP to be baked into an image at build time. These
modifications are performed when the meta-mender-demo layer is included in
BBLAYERS. Therefore this extra layer must be disabled for normal builds and
enabled for demo builds.

Enabling the meta-mender-demo layer is currently a manual process,
requiring minor additions to both the bblayers.conf and local.conf
files in the build/conf directory. Once these additions have been made,
follow the instructions above to build a native Mender image for the desired
target device.

To enable the required layer, add the following line to bblayers.conf:

BBLAYERS += "${ORYX_BASE}/meta-mender/meta-mender-demo"

Assuming the demo server IP address is 192.168.0.100, add the following line to
local.conf:

MENDER_DEMO_HOST_IP_ADDRESS = "192.168.0.100"

The IP address in the above assignment should obviously be changed to match
your local test environment.

After building and booting and image with these changes, the target device
should contact the demo server automatically.

Building a Host Image For Use With Mender Update Modules

To update guest images using the Mender Update Modules support, the host
image must be built with the host-mender-update-modules application
profile. To use this application profile, the --enable-mender argument
must be passed to the build script to enable use of the Mender layers.

For example, to build a host image for the Raspberry Pi 3 supporting both
Mender integration for rootfs updates and Mender Update Modules integration
for guest updates:

./scripts/build.py --enable-mender -M raspberrypi3 -S native-mender -A host-mender-update-modules

Building Guest Images For Use With Mender Update Modules

For guest images to be updated using the Mender Update Modules support, they
need to be packaged correctly into .mender artifacts. This packaging is
provided by the oryx-mender-update-module recipe used by the
guest-mender-update-module system profile. To use this system profile,
the --enable-mender argument must be passed to the build script to enable
use of the Mender layers.

For example, to build a minimal guest image for the Raspberry Pi 3 for use
with Mender Update Modules:

./scripts/build.py --enable-mender -M raspberrypi3 -S guest-mender-update-module -A minimal

How to Contribute

Oryx accepts contributions via Gitlab pull requests. Here we outline some of
the conventions on development workflow, commit message formatting, contact
points and other resources to make it easier to get your contribution
accepted.

The components within Oryx are licensed as follows:

	Recipes and build scripts: MIT License [https://opensource.org/licenses/MIT]

	Documentation: Creative Commons Attribution 4.0 International License [https://creativecommons.org/licenses/by/4.0/]

	Patches to third-party software: Distributed under the same license as the
software being patched

By contributing to this project you agree to the
Developer Certificate of Origin (DCO).
This document was created by the Linux Kernel community and is a simple
statement that you, as a contributor, have the legal right to make the
contribution. See the DCO text at the end of this file for details.

Reporting Issues

Bugs and feature requests may be reported via our
issue tracker [https://gitlab.com/oryx/oryx/issues].

Please do not use our public issue tracker to report security bugs or other
sensitive issues, instead please report these by email to
security@oryx-linux.org.

Contributing Code

	Fork the repository on Gitlab

	Read the Yocto Project Community Guidelines [https://wiki.yoctoproject.org/wiki/Community_Guidelines]

	Play with the project, submit bugs, submit patches!

Contribution Flow

This is an outline of what a contributor’s workflow looks like:

	Create a topic branch from where you want to base your work (usually master).

	Make commits of logical units.

	Make sure your commit messages are in the proper format (see below).

	Push your changes to a topic branch in your fork of the repository.

	Submit a pull request to the original repository.

Thanks for your contributions!

Format of the Commit Message

See the OpenEmbedded patch guidelines [https://www.openembedded.org/wiki/Commit_Patch_Message_Guidelines].

See the OpenEmbedded styleguide [https://www.openembedded.org/wiki/Styleguide]

Developer Certificate of Origin

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
660 York Street, Suite 102,
San Francisco, CA 94110 USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

(b) The contribution is based upon previous work that, to the best
 of my knowledge, is covered under an appropriate open source
 license and I have the right under that license to submit that
 work with modifications, whether created in whole or in part
 by me, under the same open source license (unless I am
 permitted to submit under a different license), as indicated
 in the file; or

(c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

(d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/cc_by.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Oryx Linux

 		
 Introduction

 		
 Motivation

 		
 Support

 		
 Notation

 		
 Glossary

 		
 Copyright and Trademark notices

 		
 Release History

 		
 Oryx Linux

 		
 Release Series Status

 		
 v0.5.0

 		
 v0.4.0

 		
 v0.3.1

 		
 v0.3.0

 		
 v0.2.0

 		
 v0.1.0

 		
 oryx-apps

 		
 v0.3.0

 		
 v0.2.5

 		
 v0.2.4

 		
 v0.2.3

 		
 v0.2.2

 		
 v0.2.1

 		
 v0.2.0

 		
 v0.1.1

 		
 v0.1.0

 		
 Getting Started

 		
 Supported Platforms

 		
 Installation

 		
 QEMU Systems

 		
 Raspberry Pi 3

 		
 Logging In

 		
 Adding Guest Containers

 		
 Using oryxcmd

 		
 Managing Sources

 		
 Managing Guests

 		
 oryxcmd Usage Modes

 		
 Interactive Mode

 		
 Non-interactive Mode

 		
 Common oryxcmd Arguments

 		
 Command Reference

 		
 add_source

 		
 remove_source

 		
 list_sources

 		
 show_source

 		
 add_guest

 		
 remove_guest

 		
 list_guests

 		
 show_guest

 		
 enable_guest

 		
 disable_guest

 		
 start_guest

 		
 stop_guest

 		
 autostart_all

 		
 autostop_all

 		
 preconfigure

 		
 startup

 		
 shutdown

 		
 runc

 		
 help

 		
 version

 		
 exit

 		
 Building Oryx Linux Images

 		
 System Profiles

 		
 Porting the Native System Profile

 		
 Writing System Profiles

 		
 Application Profiles

 		
 Writing Application Profiles

 		
 Preconfiguration and the Local Image Feed

 		
 Preconfiguring Sources

 		
 Preconfiguring Guests

 		
 Preconfiguration Example

 		
 Using the Local Feed

 		
 OpenEmbedded Recipes

 		
 oryx-image

 		
 image-json-file

 		
 Using Integrated Sources

 		
 Fetching and Updating Sources

 		
 Build Script

 		
 Using meta-oryx as a Standalone Layer

 		
 Mender Integration

 		
 Building Native Mender Images

 		
 Testing With The Mender Demo Server

 		
 Building a Host Image For Use With Mender Update Modules

 		
 Building Guest Images For Use With Mender Update Modules

 		
 How to Contribute

 		
 Reporting Issues

 		
 Contributing Code

 		
 Contribution Flow

 		
 Format of the Commit Message

 		
 Developer Certificate of Origin

_static/up.png

_static/up-pressed.png

