Orcoursetrion Documentation
Release 0.1.1

MIT Office of Digital Learning

August 10, 2015

Contents

1 Quick Start 3
2 Optional 5
3 Table of Contents 7
3.1 Command Line e e e e e e e e 7
32 Design e 8
3.3 Orcoursetrion APIDocs e e e 12
4 Indices and Search 21
Python Module Index 23

Orcoursetrion Documentation, Release 0.1.1

Automatic course provisioning for the edx-platform using github and zendesk.

Contents 1

Orcoursetrion Documentation, Release 0.1.1

2 Contents

CHAPTER 1

Quick Start

To install the latest release, run pip install orcoursetrion.

If you want to be on the development edge (generally stable), clone the repository, and
run pip install . or just install directory from github.com with pip install
git+https://github.com/mitodl/orcoursetrion.

Once installed, create or acquire an OAUTH?2 token from github. That at least has the repo, write:repo_hook,
admin:org, and write:org permissions.

Add the environment variable ORC_GH_OAUTH2_TOKEN=<your token> to your environment, and run
orcoursetrion —-help for available commands and actions.

If you are adding an XML course, you will also need to define ORC_STAGING_GITRELOAD in your environment
for where Web hooks should be sent for push events.

https://help.github.com/articles/creating-an-access-token-for-command-line-use/

Orcoursetrion Documentation, Release 0.1.1

4 Chapter 1. Quick Start

CHAPTER 2

Optional

There are a few other environment variables to add if you want to use the release command, or if you would like
orcoursetrion’s commits to be from on particular user.

ORC_PRODUCTION_GITRELOAD for where Web hooks related to a production run of your course should be sent
for push events.

ORC_GH_NAME for how you want commits from orcoursetrion to be identified.

ORC_GH_EMATIL for what email address you want associated with commits from orcoursetrion.

Orcoursetrion Documentation, Release 0.1.1

6 Chapter 2. Optional

CHAPTER 3

Table of Contents

3.1 Command Line

There is an exposed command line interface that is available upon installation of the repository. It can be run with
orcoursetrion, and orcoursetrion --help will provide the most up to date help information.

The command allows you to run commands that correspond to actions, currently the only supported action
is create_export_repo, and if your configuration is setup correctly (see Configuration), and at least
minimally have set ORC_GH_OAUTHZ_TOKEN and you run orcoursetrion create_export_repo -t
Spring_2030 —-c DevOps.001 -d "My awesome class repo’ youshould see it respond with the URL
of the repo that it just created for you.

3.1.1 Available Actions

create_export_repo This will create a new repository with the content deployment team from
ORC_STUDIO_DEPLOY TEAM added to the repository.

rerun_studio This will remove all Web hooks from the course specified by term and then create a new
repo with the new_term, along with the ORC_STUDIO DEPLOY TEAM added.

release_studio This will add the production git Web hook to the course specified with
ORC_PRODUCTION_GITRELOAD.

create_xml_repo This will create a new repository with the ORC_XMI, DEPLOY TEAM and a command
line specified team added to repository. It will also set up a git hook to the URL specified with
ORC_STAGING_GITRELOAD. The membership of the team can also be specified, and will replace
the existing membership of the team if it already exists.

rerun_xml This will rerun an XML course. Currently this will just remove any Web hooks that are
currently attached to the repository.

release_xml This will add the production git Web hook to the course specified with
ORC_PRODUCTION_GITRELOAD.

put_team This will create or update a team specified in the specified organization. If the team doesn’t
exist, there is an option to give the team either push or pull access, otherwise the read_only flag
is ignored. It optionally takes a list of members of the team that should replace the existing team.

Orcoursetrion Documentation, Release 0.1.1

3.2 Design

3.2.1 Workflow, Design, And Architecture
Quite some time is lost to course provisioning and request management. This document both defines what course
provisioning is, and is a design for how to create software to assist in automating this process.

There are three major stories/workflows that occur in our course production/publishing architecture. While all three
occur for residential MITx, some of them also apply and could be used for use with MOOC/Open Education.

The three major process flows are:
* Creating a brand new course
* Publishing a course to our student facing LMS

e Rerunning an already existing course

3.2.2 Creating a Brand New Course

Form .
] - Ny
| ""...-:_ _’ Create Help
validate] Desk Ticket
| want a ‘
new course Sh Id |
ou
allow this?
L O
Course Requests ”

Update Ticket Close ticket
with URLs & request removed

Add Course
Team to LMS

'-----‘

Git Import Add Staging I Setup Jenkins 1 Make REF}.D

Course Git Hook : Cl for Course I L

LB B B B N

Fig. 3.1: New Course

Areas of note

* Setting up Jenkins CI for the course is doable, but is left in cutout in the diagram as it is a quite complex and not
required for course provisioning.

8 Chapter 3. Table of Contents

Orcoursetrion Documentation, Release 0.1.1

* The form needs to both programmatically validate course team members, and the course id entered (i.e.
8.01r). It is intended that the validation for course id will either use the edX-Platform course listing API
directly to check for duplicates, or maintain a (mostly) complete list of all current courses internally

* A fully automatic mode could be supported without the help desk ticket approval step.

3.2.3 Moving a Course from Staging to Production

Forrn ’-----‘

Create Help

want s . ec esk Ticke
| t st My Courses Check Desk Ticket
to see my a m i o
course - Course Test Should |
Course lma .
AbOUE Page allow this?

Close ticket w/ reason
& request removed

Git Hooks

Update Ticket

wi Link Export to Git

Git Import
to
Production

Add Course
Team

M a kE l_ i ve
from Default

Fig. 3.2: Moving a Course

Areas of note

* The course quality check could potentially be done by a jenkins job, or ACPx could provide that feature itself
since it will already have to be somewhat courseware capable.

» Similar to a new course, the approval process can be skipped here

3.2. Design 9

Orcoursetrion Documentation, Release 0.1.1

3.2.4 Rerunning a Course

Form

Remowve All Delete from Delete from
Git Hooks Production Staging

My Courses:

| want to rerun
my course

Export to Git

Create New
Export Repo

Copy Repo
S - - -,y Change Course wio commits
] Key
|

Setup Jenkins 1
Cl for Course

Add Staging
Git Hook

L. N B N

ot Git Import
Help Ticket Course

Add Cour
Team to LMS

Fig. 3.3: Rerunning a Course

Areas of note

* This is pretty much a blend of the move and rerun flows, and only adds the rerun edX platform call, the deletions,
and the giturl update.

¢ As an option, instead of doing the split rerun function above, we could potentially use the same flow as the git
course by deleting it, modifying the course XML (and using an XML cleanup script i.e. Piotr’s Cleanup Script,

and re-importing.

3.2.5 System Architecture

Areas of note

* None of the APIs for edx-platform currently exist and will likely have to be replaced with instruction updates to
the helpdesk tickets instructing the agent to perform the requested task and provide instructions that make it as
quickj and easy as possible for the agent to do so, and mark them complete.

10 Chapter 3. Table of Contents

https://github.com/pmitros/edxml-tools

Orcoursetrion Documentation, Release 0.1.1

n Load Balancers "

Python Application Container (Virtualenv)

_

New Course

Django 1.7

For Admin, ORM, Authentication, Forms, Celery)

Course Rerun

Create Course Maodify Course
from
Template

XML
(Course Key)

Course Move

PostgreSQL

Data
Persistence

.

APls
-

GitHub

ZenDesk

Make Repo

Delete Course

Split Rerun

Update Settings

N SQL/Postgres

Authentication

LDAP and CAS

A

Fig. 3.4: System Architecture diagram

3.2. Design

11

Orcoursetrion Documentation, Release 0.1.1

* We have two of the eight needed API calls implemented in a feature branch:
— Import Tar

— Course List and we can likely easily add the rest if that feature branch is merged.

3.2.6 Data Structure/Entity Relationship Diagram

Below is an Oracle style ERD diagram, but I do not presuppose the database choice, and do not think it is neccessary
to use a traditional RDBMS as the persistance layer in the application. The persistence area is a flexible area within
the architecture since even a simple document store would likely be adequate.

S
e

Team Member >

Course Title Desired Completion
Reguest Time
Status

Instructor Username

Git Repo
Course ID

during Term

Fig. 3.5: Entity Relationship Diagram

3.3 Orcoursetrion API Docs

For convenient reference in development, here are the Orcoursetrion API docs.

3.3.1 Actions

The actions that are available to use. Action library access

orcoursetrion.actions.create_export_repo (course, term, description=None)
Creates a studio based course repo at ORC_GH_API URL with key ORC_GH_OAUTHZ2_TOKEN, at organiza-
tion ORC_STUDIO_ORG, and with collabarator ORC_STUDIO_DEPLOY TEAM

Raises

* requests.RequestException

12 Chapter 3. Table of Contents

http://docs.oracle.com/cd/A87860_01/doc/java.817/a81358/05_dev1.htm

Orcoursetrion Documentation, Release 0.1.1

* orcoursetrion.lib.GitHubUnknownError

* orcoursetrion.lib.GitHubNoTeamFound

* orcoursetrion.lib.GitHubRepoExists
Parameters

* course (str) — Course name to be used to name repo (i.e. 6.004r)

* term (str) — Term the course is expected to run (i.e. 2015_Spring)

* description (str) — Optional description for repo to show up on github
Returns Github dictionary of a repo (https://developer.github.com/v3/repos/#create)
Return type dict

orcoursetrion.actions.rerun_studio (course, term, new_term, description=None)
Run any actions needed to re-run a Studio course.

This will remove the hooks from the specified term, and then create a new export repo for the new_term.
It finds the repo based on ORC_STUDIO_ORG as the organization, ORC_COURSE_PREFIX as the prefix,
replacing all the dots in course and appending “-term”.

Parameters

* course (str) — Course name to be used to name repo (i.e. 6.004r)

* term (str) — Term the course is last run (i.e. 2015_Spring)

* new_term (str) — Term the course is expected to run again (i.e. 2018_Spring)

* description (str) — Optional description for repo to show up on github
Raises

* requests.RequestException

* orcoursetrion.lib.GitHubRepoDoesNotExist

* orcoursetrion.lib.GitHubUnknownError
Returns Github dictionary of the newly created repo (https://developer.github.com/v3/repos/#create)
Return type dict

orcoursetrion.actions.release_studio (course, term)
Moves a studio course to be ready for production.

Currently this will just add a hook to the production server, but it will eventually take care of everything else
needed for a transfer as well.

Parameters
* course (str) — Course name of the repo to release to production (i.e. 6.001)
* term (str) — Term the course is currently running in (i.e. 2015_Spring)
Raises
* requests.RequestException
* orcoursetrion.lib.GitHubUnknownError
Returns Nothing returned, raises on failure

Return type None

3.3. Orcoursetrion API Docs 13

https://developer.github.com/v3/repos/#create
https://developer.github.com/v3/repos/#create

Orcoursetrion Documentation, Release 0.1.1

orcoursetrion.actions.create_xml_repo (course, term, team=None, members=None, descrip-

tion=None)
Creates a course repo at ORC_GH_API_URL with key ORC_GH_OAUTHZ_TOKEN and at organization

ORC_XMI,_ORG, and with team as a collaborator (Along with ORC_XMI, DEPLOY_TEAM).
If team is not provided, then it will be generated with ORC_COURSE_PREFIX, course, and term

If members is provided, the team membership will be replaced with the members listed. It will also create
the team if it doesn’t already exist regardless of the value of members.

This also adds a github Web hook to the course development environment gitreload server via
ORC_STAGING_GITRELOAD.

Raises
* requests.RequestException
* orcoursetrion.lib.GitHubUnknownError
* orcoursetrion.lib.GitHubNoTeamFound
e orcoursetrion.lib.GitHubRepoExists
Parameters
* course (str) — Course name to be used to name repo (i.e. 6.004r)
* term (str) — Term the course is expected to run (i.e. 2015_Spring)

* team (str) — Name of an organizational team that already exists to add read/write access to
this repo.

* members (list) — Exclusive list of usernames that should be on the team.

* description (str) — Optional description for repo to show up on github
Returns Github dictionary of a repo (https://developer.github.com/v3/repos/#create)
Return type dict

orcoursetrion.actions.rerun_xml (course, term)
Run any actions needed to re-run an XML course.

Currently this only deletes the Web hooks, but eventually it will also copy the repo to a history clean one,
and setup up that new one with hooks. It finds the repo based on ORC_XMI, ORG as the organization,
ORC_COURSE_PREFIX as the prefix, replacing all the dots in course and appending “-term”.

Parameters
* course (str) — Course name to be used to name repo (i.e. 6.004r)
* term (str) — Term the course is expected to run (i.e. 2015_Spring)
Raises
* requests.RequestException
* orcoursetrion.lib.GitHubUnknownError
Returns Number of hooks removed
Return type int

orcoursetrion.actions.release_xml (course, term)
Moves an XML course to be ready for production.

Currently this will just add a hook to the production server, but it will eventually take care of everything else
needed for a transfer as well (i.e. making live branch, import it to Ims...).

14 Chapter 3. Table of Contents

https://github.com/mitodl/gitreload
https://developer.github.com/v3/repos/#create

Orcoursetrion Documentation, Release 0.1.1

Parameters
* course (str) — Course name of the repo to release to production (i.e. 6.001)
* term (str) — Term the course is currently running in (i.e. 2015_Spring)
Raises
* requests.RequestException
* orcoursetrion.lib.GitHubUnknownError
Returns Nothing returned, raises on failure
Return type None

orcoursetrion.actions.put_team (org, team, read_only, members)
Create or update a team with the list of members.

If members is None, the team will be created if it doesn’t exist, but membership will not be changed.
Parameters
* org (str) — Organization that owns/should own the team.
* team (str) — Name of the team.
* read_only (bool) — True if pull access, False if push access
* members (list) — Exclusive list of usernames that should be on the team.
Raises
* requests.RequestException
* orcoursetrion.lib.GitHubUnknownError
* orcoursetrion.lib.GitHubRepoExists
Returns Github team dictionary (https://developer.github.com/v3/orgs/teams/#response-1)

Return type dict

3.3.2 Library

API libraries. Orchestrion library

class orcoursetrion.lib.GitHub (api_url, oauth2_token)
Bases: object

API class for handling calls to github
Initialize a requests session for use with this class by specifying the base API endpoint and key.
Parameters
* api_url (str) — Github API URL such as https://api.github.com/
¢ oauth2_token (str) — Github OAUTH2 token for v3

add_repo_file (org, repo, committer, message, path, contents)
Adds the contents provided to the path in the repo specified and committed by the commiter pa-
rameters provided.

https://developer.github.com/v3/repos/contents/#create-a-file

Note: This commits directly to the default branch of the repo.

3.3. Orcoursetrion API Docs 15

https://developer.github.com/v3/orgs/teams/#response-1
https://api.github.com/
https://developer.github.com/v3/repos/contents/#create-a-file

Orcoursetrion Documentation, Release 0.1.1

Parameters
* org (str) — Organization the repo lives in.
* repo (str) — The name of the repo.

e committer (dict) — { ‘name’: ..., ‘email’: ...} for the name and e-mail to use in the initial
commit of the destination repo.

* message (str) — Commit message to use for the addition.
* path (str) — The content path, i.e. docs/.gitignore
* contents (str) — The actual string Contents of the file.

Raises
* requests.exceptions.RequestException
* GitHubRepoDoesNotExist
* GitHubUnknownError

Returns None

add_team_repo (org, repo, team)
Add a repo to an existing team (by name) in the specified org.

We first look up the team to get its ID (https://developer.github.com/v3/orgs/teams/#list-teams), and then
add the repo to that team (https://developer.github.com/v3/orgs/teams/#add-team-repo).

Parameters
* org (str) — Organization to create the repo in.
* repo (str) — Name of the repo to create.
¢ team (str) — Name of team to add.
Raises
* GitHubNoTeamFound
e GitHubUnknownError
* requests.exceptions.RequestException

add_web_hook (org, repo, url)
Adds an active hook to a github repository.

This utilizes https://developer.github.com/v3/repos/hooks/#create-a-hook to create a form type Web hook
that responds to push events (basically all the defaults).

Parameters
* org (str) — Organization to create the repo in.
* repo (str) — Name of the repo the hook will live in.
e url (str) — URL of the hook to add.
Raises
e GitHubUnknownError

* requests.exceptions.RequestException

16 Chapter 3. Table of Contents

https://developer.github.com/v3/orgs/teams/#list-teams
https://developer.github.com/v3/orgs/teams/#add-team-repo
https://developer.github.com/v3/repos/hooks/#create-a-hook

Orcoursetrion Documentation, Release 0.1.1

Returns Github dictionary of a hook (https://developer.github.com/v3/repos/hooks/#response-2)

Return type dict

create_repo (org, repo, description)
Creates a new github repository or raises exceptions

Parameters
* org (str) — Organization to create the repo in.
* repo (str) — Name of the repo to create.

* description (str) — Description of repo to use.

Raises
* GitHubRepoExists
* GitHubUnknownError
* requests.exceptions.RequestException

Returns Github dictionary of a repo (https://developer.github.com/v3/repos/#create)

Return type dict

delete_web_hooks (org, repo)
Delete all the Web hooks for a repository

Uses https://developer.github.com/v3/repos/hooks/#list-hooks to get a list of all hooks, and then runs
https://developer.github.com/v3/repos/hooks/#delete-a-hook to remove each of them. :param org: Organi-
zation to create the repo in. :type org: str :param repo: Name of the repo to remove hooks from. :type

repo: str
Raises
e GitHubUnknownError
* GitHubRepoDoesNotExist
* requests.exceptions.RequestException

Returns Number of hooks removed

Return type int

put_team (org, team_name, read_only, members)
Create a team in a github organization.

Utilize https://developer.github.com/v3/orgs/teams/#list-teams, https://developer.github.com/v3/orgs/teams/#create-
team, https://developer.github.com/v3/orgs/teams/#list-team-members, https://developer.github.com/v3/orgs/teams/#add-
team-membership, and https://developer.github.com/v3/orgs/teams/#remove-team-membership. to create
a team and/or replace an existing team’s membership with the members list.
Parameters
* org (str) — Organization to create the repo in.
¢ team_name (str) — Name of team to create.
* read_only (bool) - If false, read/write, if true read_only.
* members (list) — List of github usernames to add to the team. If none, membership

changes won’t occur

Raises

3.3.

Orcoursetrion API Docs 17

https://developer.github.com/v3/repos/hooks/#response-2
https://developer.github.com/v3/repos/#create
https://developer.github.com/v3/repos/hooks/#list-hooks
https://developer.github.com/v3/repos/hooks/#delete-a-hook
https://developer.github.com/v3/orgs/teams/#list-teams
https://developer.github.com/v3/orgs/teams/#create-team
https://developer.github.com/v3/orgs/teams/#create-team
https://developer.github.com/v3/orgs/teams/#list-team-members
https://developer.github.com/v3/orgs/teams/#add-team-membership
https://developer.github.com/v3/orgs/teams/#add-team-membership
https://developer.github.com/v3/orgs/teams/#remove-team-membership

Orcoursetrion Documentation, Release 0.1.1

* GitHubUnknownError

* requests.RequestException
Returns The team dictionary (https://developer.github.com/v3/orgs/teams/#response-1)
Return type dict

static shallow_copy_repo (src_repo, dst_repo, committer, branch=None)
Copies one branch repo’s contents to a new repo in the same organization without history.

Danger: This will overwrite the destination repo’s default branch and rewrite its history.

The basic workflow is:
*Clone source repo
*Remove source repo . git folder
eInitialize as new git repo
*Set identity
*Add everything and commit

*Force push to destination repo

Parameters
* src_repo (str) — Full git url to source repo.
* dst_repo (str) — Full git url to destination repo.

e committer (dict) - {‘name’: ..., ‘email’: ...} for the name and e-mail to use in the initial
commit of the destination repo.

* branch (str) — Option branch, if not specified default is used.
Raises sh.ErrorReturnCode
Returns None
exception orcoursetrion.lib.GitHubException
Bases: exceptions.Exception
Base exception class others inherit.

exception orcoursetrion.lib.GitHubRepoExists
Bases: orcoursetrion.lib.github.GitHubException

Repo exists, and thus cannot be created.

exception orcoursetrion.lib.GitHubRepoDoesNotExist
Bases: orcoursetrion.lib.github.GitHubException

Repo does not exist, and therefore actions can’t be taken on it.

exception orcoursetrion.lib.GitHubUnknownError
Bases: orcoursetrion.lib.github.GitHubException

Unexpected status code exception

exception orcoursetrion.lib.GitHubNoTeamFound
Bases: orcoursetrion.lib.github.GitHubException

Name team not found in list

18 Chapter 3. Table of Contents

https://developer.github.com/v3/orgs/teams/#response-1

Orcoursetrion Documentation, Release 0.1.1

3.3.3 Configuration

Configuration options Configuration needed for Orchestrion to function (i.e. API keys)
config.ORC_GH_OAUTH2_TOKEN = GitHub OAUTH2 Token
config.ORC_GH_API_URL = GitHub API URL

config.ORC_GH_NAME = Git committer name to use.

config.ORC_GH_EMAIL = Git committer e-mail to use
config.ORC_COURSE_PREFIX = Prefix to use in repository name
config.ORC_STUDIO_ORG = Organization to use for Studio export repos
config.ORC_STUDIO_DEPLOY_TEAM = Deployment team for Studio Export repos
config.ORC_XML_ORG = Organization to use for XML/latex2edx courses
config.ORC_XML_DEPLOY_ TEAM = Deployment team for XML/latex2edx courses
config.ORC_STAGING_GITRELOAD = ‘gitreload <https://github.com/mitodl/gitreload>‘_ server URL (including username a

config.ORC_PRODUCTION_ GITRELOAD = ‘gitreload <https://github.com/mitodl/gitreload>‘_ server URL (including usernas

3.3. Orcoursetrion API Docs 19

Orcoursetrion Documentation, Release 0.1.1

20 Chapter 3. Table of Contents

CHAPTER 4

Indices and Search

¢ genindex
* modindex

e search

21

Orcoursetrion Documentation, Release 0.1.1

22 Chapter 4. Indices and Search

Python Module Index

o

orcoursetrion.actions, 12
orcoursetrion.config, 19
orcoursetrion.lib, 15

23

Orcoursetrion Documentation, Release 0.1.1

24 Python Module Index

Index

A

add_repo_file() (orcoursetrion.lib.GitHub method), 15
add_team_repo() (orcoursetrion.lib.GitHub method), 16
add_web_hook() (orcoursetrion.lib.GitHub method), 16

C

create_export_repo() (in module orcoursetrion.actions),
12

create_repo() (orcoursetrion.lib.GitHub method), 17

create_xml_repo() (in module orcoursetrion.actions), 13

D

delete_web_hooks() (orcoursetrion.lib.GitHub method),
17

G

GitHub (class in orcoursetrion.lib), 15
GitHubException, 18
GitHubNoTeamFound, 18
GitHubRepoDoesNotExist, 18
GitHubRepoEKxists, 18
GitHubUnknownError, 18

O

ORC_COURSE_PREFIX
tribute), 19
ORC_GH_API_URL (orcoursetrion.config attribute), 19
ORC_GH_EMAIL (orcoursetrion.config attribute), 19
ORC_GH_NAME (orcoursetrion.config attribute), 19
ORC_GH_OAUTH2_TOKEN (orcoursetrion.config at-
tribute), 19
ORC_PRODUCTION_GITRELOAD
coursetrion.config attribute), 19
ORC_STAGING_GITRELOAD (orcoursetrion.config at-
tribute), 19
ORC_STUDIO_DEPLOY_TEAM (orcoursetrion.config
attribute), 19
ORC_STUDIO_ORG (orcoursetrion.config attribute), 19
ORC_XML_DEPLOY_TEAM (orcoursetrion.config at-
tribute), 19

(orcoursetrion.config at-

(or-

ORC_XML_ORG (orcoursetrion.config attribute), 19
orcoursetrion.actions (module), 12
orcoursetrion.config (module), 19

orcoursetrion.lib (module), 15

P

put_team() (in module orcoursetrion.actions), 15
put_team() (orcoursetrion.lib.GitHub method), 17

R

release_studio() (in module orcoursetrion.actions), 13
release_xml() (in module orcoursetrion.actions), 14
rerun_studio() (in module orcoursetrion.actions), 13
rerun_xml() (in module orcoursetrion.actions), 14

S

shallow_copy_repo()
method), 18

(orcoursetrion.lib.GitHub static

25

	Quick Start
	Optional
	Table of Contents
	Command Line
	Design
	Orcoursetrion API Docs

	Indices and Search
	Python Module Index

