
options Documentation
Release 1.4.9

Jonathan Eunice

Mar 14, 2019

Contents

1 Usage 3

2 An Example 5

3 Design Considerations 9

4 Setting and Unsetting 11

5 Leftovers 13

6 Magic Parameters 15

7 The Magic APIs 17

8 Subclassing 19

9 Transients and Internal Options 21

10 Flat Arguments 23

11 Choosing Option Names 25

12 Special Values 27

13 Loading From Configuration Files 29

14 Related Work 31

15 Notes 33

16 Installation 35
16.1 Testing . 35

17 Change Log 37

i

ii

options Documentation, Release 1.4.9

options sotres option and configuration data in a clean, high-function way. Changes can “overlay” defaults or earlier
settings.

For most code, options is flexibility overkill. Not everyone wants to be a world-class gymnast, yogi, or contortionist.
For most functions and classes, Python’s regular arguments, *args, **kwargs, and inheritance patterns are elegant
and sufficient. options is for the top 1% that need:

• extremely functional classes, functions, and methods,

• with many different features and options,

• the settings for which might be adjusted or overriden at any time,

• yet that need “reasonable” or “intelligent” defaults, and

• that yearn for a simple, unobtrusive API.

In those cases, Python’s built-in, inheritance-based model stops being the simple approach. Non-trivial argument-
management code and complexity begins to pervade. This is where options’s layered, delegation-based approach
begins to shine. Almost regardless of how varied the options it wrangles, or how much flexibility is required, code
complexity remains flat.

Python has very flexible arguments for functions and methods, and good connection of values from classes to sub-
classes to methods. It doesn’t, however, connect those very well to configuration files, module defaults, method

Contents 1

options Documentation, Release 1.4.9

parameters, and other uses. options, in contrast, seamlessly connects all of these varied layers and cases.

For more backstory, see this StackOverflow.com discussion of how to combat “configuration sprawl”. For examples
of options in use, see say, quoter, and show.

2 Contents

http://stackoverflow.com/questions/11702437/where-to-keep-options-values-paths-to-important-files-etc/11703813#11703813
https://pypi.org/project/say
https://pypi.org/project/quoter
https://pypi.org/project/show

CHAPTER 1

Usage

In a typical use of options, your highly-functional class defines default values. Subclasses can add, remove, or
override options. Instances use class defaults, but they can be overridden when each instance is created. For any
option an instance doesn’t override, the class default “shines through.”

So far, this isn’t very different from a typical use of Python’s standard instance and class variables. The next step is
where options gets interesting.

Individual method calls can similarly override instance and class defaults. The options stated in each method call
obtain only for the duration of the method’s execution. If the call doesn’t set a value, the instance value applies. If the
instance didn’t set a value, the class default applies (and so on, to its superclasses, if any).

One step further, Python’s with statement can be used to set option values for just a specific duration. As soon as the
with block exists, the option values automagically fall back to what they were before the block. (In general, if any
option is unset, its value falls back to what it was in the next higher layer.)

To recap: Python handles class, subclass, and instance settings. options handles these as well, but also adds method
and transient settings. By default when Python overrides a setting, it’s destructive; the value cannot be “unset” without
additional code. When a program using options overrides a setting, it does so non-destructively, layering the new
settings atop the previous ones. When attributes are unset, they immediately fall back to their prior value (at whatever
higher level it was last set).

3

options Documentation, Release 1.4.9

4 Chapter 1. Usage

CHAPTER 2

An Example

Because the capability of options is designed for high-end, edge-case situations, it’s hard to demonstrate its virtues
with simple code. But we’ll give it a shot.

from options import Options, attrs

class Shape(object):

options = Options(
name = None,
color = 'white',
height = 10,
width = 10,

)

def __init__(self, **kwargs):
self.options = Shape.options.push(kwargs)

def draw(self, **kwargs):
opts = self.options.push(kwargs)
print(attrs(opts))

one = Shape(name='one')
one.draw()
one.draw(color='red')
one.draw(color='green', width=22)

yielding:

color='white', width=10, name='one', height=10
color='red', width=10, name='one', height=10
color='green', width=22, name='one', height=10

So far we could do this with instance variables and standard arguments. It might look a bit like this:

5

options Documentation, Release 1.4.9

class ClassicShape(object):

def __init__(self, name=None, color='white', height=10, width=10):
self.name = name
self.color = color
self.height = height
self.width = width

but when we got to the draw method, things would be quite a bit messier.:

def draw(self, **kwargs):
name = kwargs.get('name', self.name)
color = kwargs.get('color', self.color)
height = kwargs.get('height', self.height)
width = kwargs.get('width', self.width)
print("color={0!r}, width={1}, name={2!r}, height={3}".format(color, width, name,

→˓height))

One problem here is that we broke apart the values provided to __init__() into separate instance variables, now
we need to re-assemble them into something unified. And we need to explicitly choose between the **kwargs and
the instance variables. It gets repetitive, and is not pretty. Another classic alternative, using native keyword arguments,
is no better:

def draw2(self, name=None, color=None, height=None, width=None):
name = name or self.name
color = color or self.color
height = height or self.height
width = width or self.width
print("color={0!r}, width={1}, name={2!r}, height={3}".format(color, width, name,

→˓height))

If we add just a few more instance variables, we’ve arrived at the Mr. Creosote of class design. For every instance
variable that might be overridden in a method call, that method needs one line of code to decide whether the override
is, in fact, in effect. And that line will appear in every method call needing to support such overrides. Suddenly,
dealing with parameters starts to be a full-time job and responsibility of every method. That’s neither elegant nor
scalable. Pretty soon we’re in “just one more wafer-thin mint. . . ” territory.

But with options, it’s easy. No matter how many configuration variables there are to be managed, each method
needs just one line of code to manage them:

opts = self.options.push(kwargs)

Changing things works simply and logically:

Shape.options.set(color='blue')
one.draw()
one.options.set(color='red')
one.draw(height=100)
one.draw(height=44, color='yellow')

yields:

color='blue', width=10, name='one', height=10
color='red', width=10, name='one', height=100
color='yellow', width=10, name='one', height=44

In one line, we reset the default color for all Shape objects. That’s visible in the next call to one.draw(). Then we

6 Chapter 2. An Example

http://en.wikipedia.org/wiki/Mr_Creosote

options Documentation, Release 1.4.9

set the instance color of one (all other Shape instances remain blue). Finally, we call one with a temporary override
of the color.

A common pattern makes this even easier:

class Shape(OptionsClass):
...

The OptionsClass base class will provide a set() method so that you don’t need Shape.options.set().
Shape.set() does the same thing, resulting in an even simpler API. The set() method is a “combomethod”
that will take either a class or an instance and “do the right thing.” OptionsClass also provides a settings()
method to easily handle transient with contexts (more on this in a minute), and a __repr__() method so that it
prints nicely.

The more options and settings a class has, the more unwieldy the class and instance variable approach becomes, and
the more desirable the delegation alternative. Inheritance is a great software pattern for many situations–but it’s poor
pattern for complex option and configuration handling.

For richly-featured APIs, options’s delegation pattern is simpler. As the number of options grows, delegation
imposes almost no additional coding, complexity, or failure modes. Options are consolidated in one place, providing
neat attribute-style access and keeping everything tidy. We can add new options or methods with confidence:

def is_tall(self, **kwargs):
opts = self.options.push(kwargs)
return opts.height > 100

Under the covers, options uses a variation on the ChainMap data structure (a multi-layer dictionary) to provide
option stacking. Every option set is stacked on top of previously set option sets, with lower-level values shining
through if they’re not set at higher levels. This stacking or overlay model resembles how local and global variables are
managed in many programming languages.

This makes advanced use cases, such as temporary value changes, easy:

with one.settings(height=200, color='purple'):
one.draw()
if is_tall(one):

... # it is, but only within the ``with`` context

if is_tall(one): # nope, not here!
...

Note: You will still need to do some housekeeping in your class’s __init__() method, including creating a new
options layer. If you don’t wish to inherit from OptionsClass, you can manually add set() and settings()
methods to your own class. See the OptionsClass source code for details.

As one final feature, consider “magical” parameters. Add the following code to your class description:

options.magic(
height = lambda v, cur: cur.height + int(v) if isinstance(v, str) else v,
width = lambda v, cur: cur.width + int(v) if isinstance(v, str) else v

)

Now, in addition to absolute height and width parameters specified with int (integer/numeric) values, your
module auto-magically supports relative parameters for height and width given as string parameters.:

one.draw(width='+200')

7

options Documentation, Release 1.4.9

yields:

color='blue', width=210, name='one', height=10

Neat, huh?

For more backstory, see this StackOverflow.com discussion of how to combat “configuration sprawl”. For examples
of options in use, see say and show.

8 Chapter 2. An Example

http://stackoverflow.com/questions/11702437/where-to-keep-options-values-paths-to-important-files-etc/11703813#11703813
https://pypi.org/project/say/
https://pypi.org/project/show

CHAPTER 3

Design Considerations

options is not intended to replace every class’s or method’s parameter passing mechanisms–just the most highly-
optioned ones that multiplex a package’s functionality to a range of use cases. These are generally the highest-level,
most outward-facing classes, objects, and APIs. They will generally have at least four configuration variables (e.g.
kwargs used to create, configure, and define each instance).

In general, classes will define a set of methods that are “outwards facing”–methods called by external code when con-
suming the class’s functionality. Those methods should generally expose their options through **kwargs, creating a
local variable (say opts) that represents the sum of all options in use–the full stack of call, instance, and class options,
including any present magical interpretations.

Internal class methods–the sort that are not generally called by external code, and that by Python convention are often
prefixed by an underscore (_)–these generally do not need **kwargs. They should accept their options as a single
variable (say opts again) that the externally-facing methods will provide.

For example, if options didn’t provide the nice formatting function attrs, we might have designed our own:

def _attrs(self, opts):
nicekeys = [k for k in opts.keys() if not k.startswith('_')]
return ', '.join(["{}={}".format(k, repr(opts[k])) for k in nicekeys])

def draw(self, **kwargs):
opts = self.options.push(kwargs)
print(self._attrs(opts))

draw(), being the outward-facing API, accepts general arguments and manages their stacking (by push``ing
``kwargs onto the instance options). When the internal _attrs() method is called, it is handed a pre-digested
opts package of options.

A nice side-effect of making this distinction: Whenever you see a method with **kwargs, you know it’s outward-
facing. When you see a method with just opts, you know it’s internal.

Objects defined with options make excellent “callables.” Define the __call__ method, and you have a very nice
analog of function calls.

options has broad utility, but it’s not for every class or module. It best suits high-level front-end APIs that multiplex
lots of potential functionality, and wish/need to do it in a clean/simple way. Classes for which the set of instance

9

options Documentation, Release 1.4.9

variables is small, or functions/methods for which the set of known/possible parameters is limited–these work just fine
with classic Python calling conventions. For those, options is overkill. “Horses for courses.”

10 Chapter 3. Design Considerations

CHAPTER 4

Setting and Unsetting

Using options, objects often become “entry points” that represent both a set of capabilities and a set of configura-
tions for how that functionality will be used. As a result, you may want to be able to set the object’s values directly,
without referencing their underlying options. It’s convenient to add a set() method, then use it, as follows:

def set(self, **kwargs):
self.options.set(**kwargs)

one.set(width='*10', color='orange')
one.draw()

yields:

color='orange', width=100, name='one', height=10

one.set() is now the equivalent of one.options.set(). Or continue using the options attribute explicitly,
if you prefer that.

Values can also be unset.:

from options import Unset

one.set(color=Unset)
one.draw()

yields:

color='blue', width=100, name='one', height=10

Because 'blue' was the color to which Shape had be most recently set. With the color of the instance unset, the
color of the class shines through.

Note: While options are ideally accessed with an attribute notion, the preferred of setting options is through method
calls: set() if accessing directly, or push() if stacking values as part of a method call. These perform the in-

11

options Documentation, Release 1.4.9

terpretation and unsetting magic; straight assignment does not. In the future, options may provide an equivalent
__setattr__() method to allow assignment–but not yet.

12 Chapter 4. Setting and Unsetting

CHAPTER 5

Leftovers

options expects you to define all feasible and legitimate options at the class level, and to give them reasonable
defaults.

None of the initial settings ever have magic applied. Much of the expected interpretation “magic” will be relative
settings, and relative settings require a baseline value. The top level is expected and demanded to provide a reasonable
baseline.

Any options set “further down” such as when an instance is created or a method called should set keys that were
already-defined at the class level.

However, there are cases where “extra” **kwargs values may be provided and make sense. Your object might
be a very high level entry point, for example, representing very large buckets of functionality, with many options.
Some of those options are relevant to the current instance, while others are intended as pass-throughs for lower-level
modules/objects. This may seem a doubly rarefied case–and it is, relatively speaking. But it does happen–and when
you need multi-level processing, it’s really, really super amazingly handy to have it.

options supports this in its core push() method by taking the values that are known to be part of the class’s
options, and deleting those from kwargs. Any values left over in the kwargs dict are either errors, or intended
for other recipients.

As yet, there is no automatic check for leftovers.

13

https://pypi.python.org/pypi/show

options Documentation, Release 1.4.9

14 Chapter 5. Leftovers

CHAPTER 6

Magic Parameters

Python’s *args variable-number of arguments and **kwargs keyword arguments are sometimes called “magic”
arguments. options takes this up a notch, allowing setters much like Python’s property function or @property
decorator. This allows arguments to be interpreted on the fly. This is useful, for instance, to provide relative rather
than just absolute values. As an example, say that we added this code after Shape.options was defined:

options.magic(
height = lambda v, cur: cur.height + int(v) if isinstance(v, str) else v,
width = lambda v, cur: cur.width + int(v) if isinstance(v, str) else v

)

Now, in addition to absolute height and width parameters which are provided by specifying int (integer/numeric)
values, your module auto-magically supports relative parameters for height and width.:

one.draw(width='+200')

yields:

color='blue', width=210, name='one', height=10

This can be as fancy as you like, defining an entire domain-specific expression language. But even small functions can
give you a great bump in expressive power. For example, add this and you get full relative arithmetic capability (+, -,
*, and /):

def relmath(value, currently):
if isinstance(value, str):

if value.startswith('*'):
return currently * int(value[1:])

elif value.startswith('/'):
return currently / int(value[1:])

else:
return currently + int(value)

else:
return value

(continues on next page)

15

options Documentation, Release 1.4.9

(continued from previous page)

...

options.magic(
height = lambda v, cur: relmath(v, cur.height),
width = lambda v, cur: relmath(v, cur.width)

)

Then:

one.draw(width='*4', height='/2')

yields:

color='blue', width=40, name='one', height=5

Magically interpreted parameters are the sort of thing that one doesn’t need very often or for every parameter–but
when they’re useful, they’re enormously useful and highly leveraged, leading to much simpler, much higher function
APIs.

We call them ‘magical’ here because of the “auto-magical” interpretation, but they are really just analogs of Python
object properties. The magic function is basically a “setter” for a dictionary element.

16 Chapter 6. Magic Parameters

CHAPTER 7

The Magic APIs

The callables (usually functions, lambda expressions, static methods, or methods) called to preform magical interpre-
tation can be called with 1, 2, or 3 parameters. options inquires as to how many parameters the callable accepts.
If it accepts only 1, it will be the value passed in. Cleanups like “convert to upper case” can be done, but no relative
interpretation. If it accepts 2 arguments, it will be called with the value and the current option mapping, in that order.
(NB this order reverses the way you may think logical. Caution advised.) If the callable requires 3 parameters, it
will be None, value, current mapping. This supports method calls, though has the defect of not really passing in the
current instance.

A decorator form, magical() is also supported. It must be given the name of the key exactly:

@options.magical('name')
def capitalize_name(self, v, cur):

return ' '.join(w.capitalize() for w in v.split())

The net is that you can provide just about any kind of callable. But the meta-programming of the magic interpretation
API could use a little work.

17

options Documentation, Release 1.4.9

18 Chapter 7. The Magic APIs

CHAPTER 8

Subclassing

Subclass options may differ from superclass options. Usually they will share many options, but some may be added,
and others removed. To modify the set of available options, the subclass defines its options with the add() method
to the superclass options. This creates a layered effect, just like push() for an instance. The difference is, push()
does not allow new options (keys) to be defined; add() does. It is also possible to assign the special null object
Prohibited, which will disallow instances of the subclass from setting those values.:

options = Superclass.options.add(
func = None,
prefix = Prohibited, # was available in superclass, but not here
suffix = Prohibited, # ditto

)

Because some of the “additions” can be prohibitions (i.e. removing particular options from being set or used), this is
“adding to” the superclass’s options in the sense of “adding a layer onto” rather than strict “adding options.”

An alternative is to copy (or restate) the superclass’s options. That suits “unlinked” cases–where the subclass is highly
independent, and where changes to the superclass’s options should not effect the subclass’s options. With add(),
they remain linked in the same way as instances and classes are.

19

options Documentation, Release 1.4.9

20 Chapter 8. Subclassing

CHAPTER 9

Transients and Internal Options

Some options do not make sense as permanent values–they are needed only as transient settings in the context of
individual method calls. The special null value Transient can be assigned as an option value to signal this.

Other options are useful, but only internal to your class. They are not meant to be exposed as part of the external API.
In this case, they can be signified by prefixing with an underscore, such as _cached_value. This is consistent with
Python naming practice.

21

options Documentation, Release 1.4.9

22 Chapter 9. Transients and Internal Options

CHAPTER 10

Flat Arguments

Sometimes it’s more elegant to provide some arguments as flat, sequential values rather than by keyword. In this case,
use the addflat() method:

def __init__(self, *args, **kwargs):
self.options = Quoter.options.push(kwargs)
self.options.addflat(args, ['prefix', 'suffix'])

to consume optional prefix and suffix flat arguments. This makes the following equivalent:

q1 = Quoter('[', ']')
q2 = Quoter(prefix='[', suffix=']')

An explicit addflat()method is provided not as much for Zen of Python reasons (“Explicit is better than implicit.”),
but because flat arguments are commonly combined with abbreviation/shorthand conventions, which may require some
logic to implement. For example, if only a prefix is given as a flat argument, you may want to use the same value
to implicitly set the suffix. To this end, addflat returns the set of keys that it consumed:

if args:
used = self.options.addflat(args, ['prefix', 'suffix'])
if 'suffix' not in used:

self.options.suffix = self.options.prefix

23

options Documentation, Release 1.4.9

24 Chapter 10. Flat Arguments

CHAPTER 11

Choosing Option Names

You can choose pretty much any option name that is a legitimate Python keyword argument. The exceptions: Names
that are already defined by methods of Options or OptionsChain. To wit: add, addflat, clear, copy,
fromkeys, get, items, iteritems, iterkeys, itervalues, keys, magic, magical, new_child,
parents, pop, popitem, push, read, set, setdefault, update, values, and write are off-limits.

If you try to define options with verboten names, a BadOptionName exception will be raised. This will save you
grief down the road; getting back a wrong thing at runtime is vastly harder to debug than fielding an early exception.

25

options Documentation, Release 1.4.9

26 Chapter 11. Choosing Option Names

CHAPTER 12

Special Values

Some special values (“sentinels” values) are defined:

Prohibited This option cannot be used (set or accessed). Useful primarily in subclasses, to “turn off” options that
apply in the superclass, but not the subclass.

Transient Option is not set initially or on a per-instance basis, but may be invoked on a call-by-call basis.

Reserved Not used, but explicitly marked as reserved for future use.

Unset If an option is set to Unset, the current value is removed, letting values from higher up the option chain
shine through.

27

http://en.wikipedia.org/wiki/Sentinel_value

options Documentation, Release 1.4.9

28 Chapter 12. Special Values

CHAPTER 13

Loading From Configuration Files

options values can be easily writen to, or read from, configuration files. E.g. reading from JSON and YAML with
a low-level approach:

import json
o = Options()
jdata = json.load(open('config.json'))
o.update(jdata)

Or for YAML:

import yaml
o = Options()
ydata = yaml.load(open('config.yml').read())
o.update(ydata)

At a higher level, Options objects contain a write method that will directly write the object to a JSON file, and a
read class method that will construct an Options object from a JSON file.

29

options Documentation, Release 1.4.9

30 Chapter 13. Loading From Configuration Files

CHAPTER 14

Related Work

A huge amount of work, both in Python and beyond, has gone into the effective management of configuration infor-
mation.

• Program defaults. Values pre-established by developers, often as ALL_UPPERCASE_IDENTIFIERS or as
keyword default to functions.

• Configuration file format parsers/formatters. Huge amounts of the INI, JSON, XML, and YAML specifications
and toolchains, for example, are configuration-related. There are many. anyconfig is perhaps of interest for its
flexibility. You could probably lump into this group binary data marshaling schemes such as pickle.

• Command-line argument parsers. These are all about taking configuration information from the command line.
argh is one I particularly like for its simple, declarative nature. (aaargh is similar.)

• System and environment introspection. The best known of these would be sys.argv and os.environ to
get command line arguments and the values of operating system environment variables (especially when running
on Unixy platforms). But any code that asks “Where am I running?” or “What is my IP address?” or otherwise
inspects its current execution environment and configures itself accordingly is doing a form of configuration
discovery.

• Attribute-accessible dictionary objects. It is incredibly easy to create simple versions of this idea in Python–and
rather tricky to create robust, full-featured versions. Caveat emptor. stuf and treedict are cream-of-the-crop
implementations of this idea. I have not tried confetti or Yaco, but they look like interesting variations on the
same theme.

• The portion of Web frameworks concerned with getting and setting cookies, URL query and hash attributes, form
variables, and/or HTML5 local storage. Not that these are particularly secure, scalable, or robust sources. . . but
they’re important configuration information nonetheless.

• While slightly afield, database interface modules are often used for querying configuration information from
SQL or NoSQL databases.

• Some object metaprogramming systems. That’s a mouthful, right? Well some modules implement metaclasses
that change the basic behavior of objects. value for example provides very common-sense treatment of object in-
stantiation with out all the Javaesque self.x = x; self.y = y; self.z = z repetition. options
similarly redesigns how parameters should be passed and object values stored.

31

https://pypi.org/project/anyconfig
https://pypi.org/project/argh
https://pypi.org/project/aaargh
https://pypi.org/project/stuf
https://pypi.org/project/treedict
https://pypi.org/project/confetti
https://pypi.org/project/Yaco
https://pypi.org/project/value

options Documentation, Release 1.4.9

• Combomatics. Many configuration-related modules combine two or more of these approaches. E.g. yconf
combines YAML config file parsing with argparse command line parsing. In the future, options will
also follow this path. There’s no need to take programmer time and attention for several different low-level
configuration-related tasks.

• Dependency injection frameworks are all about providing configuration information from outside code modules.
They tend to be rather abstract and have a high “activation energy,” but the more complex and composed-of-
many-different-components your system is, the more valuable the “DI pattern” becomes.

• Other things. conflib, uses dictionary updates to stack default, global, and local settings; it also provides a
measure of validation.

This diversity, while occasionally frustrating, makes some sense. Configuration data, after all, is just “state,” and
“managing state” is pretty much what all computing is about. Pretty much every program has to do it. That so many
use so many different, home-grown ways is why there’s such a good opportunity.

Flask’s documentation is a real-world example of how “spread everywhere” this can be, with some data coming from
the program, some from files, some from environment variables, some from Web-JSON, etc.

32 Chapter 14. Related Work

https://pypi.org/project/yconf
https://pypi.org/project/conflib
http://flask.pocoo.org/docs/config/#configuring-from-files

CHAPTER 15

Notes

• Automated multi-version testing managed with pytest, pytest-cov, coverage, and tox. Packaging linting with
pyroma.

• Version 1.4.4 updates testing for early 2017 Python versions. Successfully packaged for, and tested against, all
late-model versions of Python: 2.6, 2.7, 3.3, 3.4, 3.5, and 3.6, as well as PyPy 5.6.0 (based on 2.7.12) and PyPy3
5.5.0 (based on 3.3.5).

• The author, Jonathan Eunice or @jeunice on Twitter welcomes your comments and suggestions. If you’re using
options in your own code, drop me a line!

33

http://pypi.org/project/pytest
http://pypi.org/project/pytest-cov
https://pypi.org/project/coverage/4.0b1
http://pypi.org/project/tox
https://pypi.org/project/pyroma
mailto:jonathan.eunice@gmail.com
http://twitter.com/jeunice

options Documentation, Release 1.4.9

34 Chapter 15. Notes

CHAPTER 16

Installation

To install or upgrade to the latest version:

pip install -U options

To easy_install under a specific Python version (3.3 in this example):

python3.3 -m easy_install --upgrade options

(You may need to prefix these with sudo to authorize installation. In environments without super-user privileges, you
may want to use pip’s --user option, to install only for a single user, rather than system-wide.)

16.1 Testing

If you wish to run the module tests locally, you’ll need to install pytest and tox. For full testing, you will also need
pytest-cov and coverage. Then run one of these commands:

tox # normal run - speed optimized
tox -e py27 # run for a specific version only (e.g. py27, py34)
tox -c toxcov.ini # run full coverage tests

35

options Documentation, Release 1.4.9

36 Chapter 16. Installation

CHAPTER 17

Change Log

1.4.9 (March 14, 2019)

Refresh testing matrix, pushing older version testing to Travis CI and adding Python 3.6 and 3.7 as primary
testing platforms.

Freshened/updated requirements, esp. for chainmap.

Updated docs, e.g. with new PyPI URL.

1.4.7 (May 15, 2017)

More updates to method update scheme.

1.4.6 (May 15, 2017)

Updated mechanism for method-specific option setting. Still work in progress, but code now much
cleaner.

1.4.5 (January 31, 2017)

Retfined testing matrix, esp for coverage.

1.4.4 (January 23, 2017)

Updates testing. Newly qualified under 2.7.13 and 3.6, as well as most recent builds of pypy and pypy3.
Drops Python 3.2 support; should still work, but no longer in testing matrix.

1.4.2 (September 15, 2015)

Updated testing with PyPy 2.6.1 (based on 2.7.10).

1.4.1 (September 14, 2015)

Updated testing matrix with 3.5.0 final.

1.4.0 (August 31, 2015)

Major reorganization of implementation. The two-level Options and OptionsChain strategy re-
placed with single-level Options based directly on ChainMap (or more precisely, on an attribute-
accessible subclass of it). It’s now turtles all the way down.

37

options Documentation, Release 1.4.9

Systematic enough change that by traditional versioning standards this would be a 2.0 release. But fol-
lowing Semantic Versioning, while the class structure changes, the effective API seen by using modules
does not change, so 1.4.0 is enough.

Correctness of this systematic roto-tilling confirmed by test suite. Testing now extended to 100% line
coverage (and 99% branch coverage). Some edge case issues were discovered and corrected. Thank you
to coverage testing for ferreting those out.

No longer depends on stuf. Coupled with a new supporting chainmap polyfill, decisively returns com-
patibility for Python 2.6 in a way that doesn’t depend on the release schedule or priorities of external
modules.

1.3.2 (August 26, 2015)

Reorganized documentation structure.

1.3.0 (August 25, 2015)

Added test branch metrics to coverage evaluation. Line coverage now 93%; branch coverage 92%.

Integrated reading/writing of options data to JSON files now operational and tested.

1.2.5 (August 17, 2015)

Inaugurated automated test coverage analysis. Extended a few tests and cleaned up some code as a result.
Published with coverage at 88%.

1.2.2 (August 11, 2015)

Simplified setup.

1.2.1 (August 4, 2015)

Added wheel distribution format. Updated test matrix.

Moved from BSD to Apache Software License.

Moved status to production/stable from beta.

1.2.0 (July 22, 2015)

Doc and config tweaks.

Python 2.6 support wavering, primarily because of failure of stuf 0.9.16 to build there. 0.9.14 works
fine. But either stuf support will have to improve (I’ve submitted a pull request that fixes the problem),
or we’ll have to swap stuf out, or we’‘ll have to decomit py26.

1.1.7 (December 16, 2014)

Added snazzy badges to PyPI readme

1.1.5 (December 16, 2014)

Changed dependencies to utilize new nulltype package (unbundling it). Ensured tested on all lastest
Python versions.

1.1.1 (October 29, 2013)

Added OptionsClass base class. If client classes inherit from this, they automatically get ‘ set()‘‘ and
settings() methods.

1.0.7 (October 25, 2103)

Mainly doc tweaks.

1.0.4 (October 24, 2013)

38 Chapter 17. Change Log

https://pypi.python.org/pypi/stuf
https://pypi.python.org/pypi/chainmap

options Documentation, Release 1.4.9

When bad option names are defined (“bad” here meaning “conflicts with names already chosen for pre-
existing methods”), a BadOptionName exception will be raised.

Tweaked docs, adding comparison chart.

1.0.3 (September 23, 2013)

Switched to local version of chainstuf until bug with generator values in stuf.chainstuf can be
tracked down and corrected. This was blocking a downstream feature-release of say.

1.0.2 (September 19, 2013)

Improved setdefault and update methods, and added tests, primarily in effort to work around bug
that appears in stuf, orderedstuf, or chainstuf when a mapping value is a generator.

Documentation improved.

1.0.1 (September 14, 2013)

Moved main documentation to Sphinx format in ./docs, and hosted the long-form documentation on
readthedocs.org. README.rst now an abridged version/teaser for the module.

1.0.0 (September 10, 2013)

Cleaned up source for better PEP8 conformance

Bumped version number to 1.0 as part of move to semantic versioning, or at least enough of it so as to
not screw up Python installation procedures (which don’t seem to understand 0.401 is a lesser version that
0.5, because 401 > 5).

39

http://semver.org

	Usage
	An Example
	Design Considerations
	Setting and Unsetting
	Leftovers
	Magic Parameters
	The Magic APIs
	Subclassing
	Transients and Internal Options
	Flat Arguments
	Choosing Option Names
	Special Values
	Loading From Configuration Files
	Related Work
	Notes
	Installation
	Testing

	Change Log

