opticalmaterials Documentation

Release 0.1

Jean-Luc Tambasco

Jan 08, 2019
Contents

1 Introduction ... 3

2 Examples
 2.1 Example 1 .. 5

3 API documentation 7
 3.1 Materials ... 7

Python Module Index 45
Contents:
This documentation supports *opticalmaterialspy*, a library useful for storing and calculating common optical material parameters.
An example script.

2.1 Example 1

```python
import opticalmaterialsipy as mat

m = mat.SiO2()

# Refractive index @ 1550nm.
print('n(1.55e-6m):', m.n(1.55e-6))  # Knows 1.55e-6 must be [m].
print('n(1.55um):', m.n(1.55))      # Knows 1.55 must be [um].
print('n(1550nm):', m.n(1550))      # Knows 1550 must be [nm].

# Group velocity refractive index @ 900nm.
print('n_gv(900nm):', m.ng(900))

# Group velocity dispersion @ 808nm.
print('GVD(0.808um):', m.gvd(0.808))
```
3.1 Materials

3.1.1 Classes

Air

Al2O3(axis)

Bbo(axis)

BiB0(axis)

Chalcogenide(chalcogenideType)

Data(wls, ns) An object that facilitates importing materials from lists.

Ktp(axis)

Ln(axis[, temperatureCelcius])

LnMg(axis)

LnMgTemp(axis[, temperatureCelcius])

RefractiveIndexWeb(web_link) Object to create a _Material based on data from https://refractiveindex.info/.

SiO2()

Su8()

Tfln(axis[, temperatureCelcius])

TiO2(axis)

Air

class Air

 Bases: opticalmaterials.py._material_base._Material

Methods Summary
Methods Documentation

beta0 *(wavelength)*

The propagation constant with respect to wavelength.

Parameters

wavelength *(float, list, None)* – The wavelength(s) the propagation constant will be evaluated at.

Returns

The propagation constant at the target wavelength(s).

Return type

float, list

beta1 *(wavelength)*

The derivative of the propagation constant with respect to wavelength.

Parameters

wavelength *(float, list, None)* – The wavelength(s) the propagation constant will be evaluated at.

Returns

The propagation constant at the target wavelength(s).

Return type

float, list

beta2 *(wavelength)*

The second derivative of the propagation constant with respect to wavelength.

Parameters

wavelength *(float, list, None)* – The wavelength(s) the propagation constant will be evaluated at.

Returns

The propagation constant at the target wavelength(s).

Return type

float, list

convertWavelengthUnitsNm *

eps *(wavelength=None)*

The permittivity of the desired material.

Parameters

wavelength *(float, list, None)* – The wavelength the permittivity will be evaluated at.

Returns

The permittivity of the desired material.

Return type

float, list

gvd *(wavelength)*

The group velocity dispersion (GVD) with respect to wavelength.

Parameters

wavelength *(float, list, None)* – The wavelength(s) the group velocity will be evaluated at.

Returns

The group velocity dispersion at the target wavelength(s).

Return type

float, list

n *(wavelength)*

The refractive index of the desired material.

Parameters

wavelength *(float, list, None)* – The wavelength(s) the refractive index will be evaluated at.

Returns

The refractive index at the target wavelength(s).

Return type

float, list

nDer1 *(wavelength)*

The first derivative of the refractive index with respect to wavelength.

Parameters

wavelength *(float, list, None)* – The wavelength(s) the first derivative of the refractive index will be evaluated at.

Returns

The first derivative of the refractive index at the target wavelength(s).

Return type

float, list

nDer2 *(wavelength)*

The second derivative of the refractive index with respect to wavelength.

Parameters

wavelength *(float, list, None)* – The wavelength(s) the second derivative of the refractive index will be evaluated at.

Returns

The second derivative of the refractive index at the target wavelength(s).

Return type

float, list

ng *(wavelength)*

The group index with respect to wavelength.

Parameters

wavelength *(float, list, None)* – The wavelength(s) the group index will be evaluated at.

Returns

The group index at the target wavelength(s).

Return type

float, list

vg *(wavelength)*

The group velocities with respect to wavelength.

Parameters

wavelength *(float, list, None)* – The wavelength(s) the group velocities will be evaluated at.

Returns

The group velocities at the target wavelength(s).

Return type

float, list

z0 *(wavelength)*

The wave impedance assuming the material is dielectric (not lossy or magnetic).
Returns The permittivity at the target wavelength.
Return type float, list

gvd(wavelength)
The group velocity dispersion (GVD) with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the GVD will be evaluated at.
Returns The GVD at the target wavelength(s).
Return type float, list

n(wavelength=None)
The refractive index of the desired material.

Parameters wavelength (float, list, None) – The wavelength the refractive index will be evaluated at.
Returns The refractive index at the target wavelength.
Return type float, list

nDer1(wavelength)
The first derivative of the refractive index with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the derivative will be evaluated at.
Returns The refractive index at the target wavelength(s).
Return type float, list

nDer2(wavelength)
The second derivative of the refractive index with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the derivative will be evaluated at.
Returns The refractive index at the target wavelength(s).
Return type float, list

ng(wavelength)
The group index with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the group index will be evaluated at.
Returns The group index at the target wavelength(s).
Return type float, list

vg(wavelength)
The group velocities with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the group velocities will be evaluated at.
Returns The group velocities at the target wavelength(s).
Return type float, list

z0(wavelength)
The wave impedance assuming the material is dielectric (not lossy or magnetic).
Parameters `wavelength (float, list, None)` – The wavelength(s) the propagation constant will be evaluated at.

Returns The impedance of the material.

Return type float, list

Al2O3

class Al2O3 (axis)

Bases: `opticalmaterialspy._material_base._Material`

Methods Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>beta0(wavelength)</code></td>
<td>The propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td><code>beta1(wavelength)</code></td>
<td>The derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td><code>beta2(wavelength)</code></td>
<td>The second derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td><code>convertWavelengthUnitsNm()</code></td>
<td></td>
</tr>
<tr>
<td><code>eps([wavelength])</code></td>
<td>The permittivity of the desired material.</td>
</tr>
<tr>
<td><code>gvd([wavelength])</code></td>
<td>The group velocity dispersion (GVD) with respect to wavelength.</td>
</tr>
<tr>
<td><code>n([wavelength])</code></td>
<td>The refractive index of the desired material.</td>
</tr>
<tr>
<td><code>nDer1([wavelength])</code></td>
<td>The first derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td><code>nDer2([wavelength])</code></td>
<td>The second derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td><code>ng([wavelength])</code></td>
<td>The group index with respect to wavelength.</td>
</tr>
<tr>
<td><code>vg([wavelength])</code></td>
<td>The group velocities with respect to wavelength.</td>
</tr>
<tr>
<td><code>z0([wavelength])</code></td>
<td>The wave impedance assuming the material is dielectric (not lossy or magnetic).</td>
</tr>
</tbody>
</table>

Methods Documentation

beta0 (wavelength)

The propagation constant with respect to wavelength.

Parameters `wavelength (float, list, None)` – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

beta1 (wavelength)

The derivative of the propagation constant with respect to wavelength.

Parameters `wavelength (float, list, None)` – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list
beta2 (*wavelength*)

The second derivative of the propagation constant with respect to wavelength.

- **Parameters**
 - `wavelength` (*float, list, None*) – The wavelength(s) the propagation constant will be evaluated at.

- **Returns**
 - The propagation constant at the target wavelength(s).

- **Return type**
 - float, list

convertWavelengthUnitsNm()

eps (*wavelength=None*)

The permittivity of the desired material.

- **Parameters**
 - `wavelength` (*float, list, None*) – The wavelength the permittivity will be evaluated at.

- **Returns**
 - The permittivity at the target wavelength.

- **Return type**
 - float, list

gvd (*wavelength*)

The group velocity dispersion (GVD) with respect to wavelength.

- **Parameters**
 - `wavelength` (*float, list, None*) – The wavelength(s) the GVD will be evaluated at.

- **Returns**
 - The GVD at the target wavelength(s).

- **Return type**
 - float, list

n (*wavelength=None*)

The refractive index of the desired material.

- **Parameters**
 - `wavelength` (*float, list, None*) – The wavelength the refractive index will be evaluated at.

- **Returns**
 - The refractive index at the target wavelength.

- **Return type**
 - float, list

nDer1 (*wavelength*)

The first derivative of the refractive index with respect to wavelength.

- **Parameters**
 - `wavelength` (*float, list, None*) – The wavelength(s) the derivative will be evaluated at.

- **Returns**
 - The refractive index at the target wavelength(s).

- **Return type**
 - float, list

nDer2 (*wavelength*)

The second derivative of the refractive index with respect to wavelength.

- **Parameters**
 - `wavelength` (*float, list, None*) – The wavelength(s) the derivative will be evaluated at.

- **Returns**
 - The refractive index at the target wavelength(s).

- **Return type**
 - float, list

ng (*wavelength*)

The group index with respect to wavelength.

- **Parameters**
 - `wavelength` (*float, list, None*) – The wavelength(s) the group index will be evaluated at.
Returns The group index at the target wavelength(s).

Return type float, list

vg (wavelength)
The group velocities with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the group velocities will be evaluated at.

Returns The group velocities at the target wavelength(s).

Return type float, list

z0 (wavelength)
The wave impedance assuming the material is dielectric (not lossy or magnetic).

Parameters wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns The impedance of the material.

Return type float, list

Bbo

class Bbo (axis)
Bases: opticalmaterialspy._material_base._Material

Methods Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta0 (wavelength)</td>
<td>The propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>beta1 (wavelength)</td>
<td>The derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>beta2 (wavelength)</td>
<td>The second derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>convertWavelengthUnitsNm()</td>
<td></td>
</tr>
<tr>
<td>eps ([wavelength])</td>
<td>The permittivity of the desired material.</td>
</tr>
<tr>
<td>gvd (wavelength)</td>
<td>The group velocity dispersion (GVD) with respect to wavelength.</td>
</tr>
<tr>
<td>n ([wavelength])</td>
<td>The refractive index of the desired material.</td>
</tr>
<tr>
<td>nDer1 (wavelength)</td>
<td>The first derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>nDer2 (wavelength)</td>
<td>The second derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>ng (wavelength)</td>
<td>The group index with respect to wavelength.</td>
</tr>
<tr>
<td>vg (wavelength)</td>
<td>The group velocities with respect to wavelength.</td>
</tr>
<tr>
<td>z0 (wavelength)</td>
<td>The wave impedance assuming the material is dielectric (not lossy or magnetic).</td>
</tr>
</tbody>
</table>

Methods Documentation

beta0 (wavelength)
The propagation constant with respect to wavelength.
Parameters `wavelength (float, list, None)`: The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

beta1 (wavelength)

The derivative of the propagation constant with respect to wavelength.

Parameters `wavelength (float, list, None)`: The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

beta2 (wavelength)

The second derivative of the propagation constant with respect to wavelength.

Parameters `wavelength (float, list, None)`: The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

convertWavelengthUnitsNm ()

**eps (wavelength=None)

The permittivity of the desired material.

Parameters `wavelength (float, list, None)`: The wavelength the permittivity will be evaluated at.

Returns The permittivity at the target wavelength.

Return type float, list

gvd (wavelength)

The group velocity dispersion (GVD) with respect to wavelength.

Parameters `wavelength (float, list, None)`: The wavelength(s) the GVD will be evaluated at.

Returns The GVD at the target wavelength(s).

Return type float, list

n (wavelength=None)

The refractive index of the desired material.

Parameters `wavelength (float, list, None)`: The wavelength the refractive index will be evaluated at.

Returns The refractive index at the target wavelength.

Return type float, list

nDer1 (wavelength)

The first derivative of the refractive index with respect to wavelength.

Parameters `wavelength (float, list, None)`: The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).
Return type: float, list

nDer2 (wavelength)
The second derivative of the refractive index with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).

Return type: float, list

ng (wavelength)
The group index with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the group index will be evaluated at.

Returns The group index at the target wavelength(s).

Return type: float, list

vg (wavelength)
The group velocities with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the group velocities will be evaluated at.

Returns The group velocities at the target wavelength(s).

Return type: float, list

z0 (wavelength)
The wave impedance assuming the material is dielectric (not lossy or magnetic).

Parameters wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns The impedance of the material.

Return type: float, list

Bibo
class Bibo (axis)
 Bases: opticalmaterials.Bbo

Methods Summary

 beta0(wavelength) The propagation constant with respect to wavelength.
 beta1(wavelength) The derivative of the propagation constant with respect to wavelength.
 beta2(wavelength) The second derivative of the propagation constant with respect to wavelength.
 convertWavelengthUnitsNm()
 eps([wavelength]) The permittivity of the desired material.
Table 5 – continued from previous page

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gvd</td>
<td>The group velocity dispersion (GVD) with respect to wavelength.</td>
</tr>
<tr>
<td>n</td>
<td>The refractive index of the desired material.</td>
</tr>
<tr>
<td>nDer1</td>
<td>The first derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>nDer2</td>
<td>The second derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>ng</td>
<td>The group index with respect to wavelength.</td>
</tr>
<tr>
<td>vg</td>
<td>The group velocities with respect to wavelength.</td>
</tr>
<tr>
<td>z0</td>
<td>The wave impedance assuming the material is dielectric (not lossy or magnetic).</td>
</tr>
</tbody>
</table>

Methods Documentation

beta0 *(wavelength)*
The propagation constant with respect to wavelength.

Parameters **wavelength** *(float, list, None)* – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

beta1 *(wavelength)*
The derivative of the propagation constant with respect to wavelength.

Parameters **wavelength** *(float, list, None)* – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

beta2 *(wavelength)*
The second derivative of the propagation constant with respect to wavelength.

Parameters **wavelength** *(float, list, None)* – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

convertWavelengthUnitsNm ()

eps *(wavelength=None)*
The permittivity of the desired material.

Parameters **wavelength** *(float, list, None)* – The wavelength the permittivity will be evaluated at.

Returns The permittivity at the target wavelength.

Return type float, list

gvd *(wavelength)*
The group velocity dispersion (GVD) with respect to wavelength.

Parameters **wavelength** *(float, list, None)* – The wavelength(s) the GVD will be evaluated at.
Returns The GVD at the target wavelength(s).

Return type float, list

\textbf{n} (\texttt{wavelength=None})
The refractive index of the desired material.

Parameters \texttt{wavelength} (float, list, None) – The wavelength the refractive index will be evaluated at.

Returns The refractive index at the target wavelength.

Return type float, list

\textbf{nDer1} (\texttt{wavelength})
The first derivative of the refractive index with respect to wavelength.

Parameters \texttt{wavelength} (float, list, None) – The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).

Return type float, list

\textbf{nDer2} (\texttt{wavelength})
The second derivative of the refractive index with respect to wavelength.

Parameters \texttt{wavelength} (float, list, None) – The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).

Return type float, list

\textbf{ng} (\texttt{wavelength})
The group index with respect to wavelength.

Parameters \texttt{wavelength} (float, list, None) – The wavelength(s) the group index will be evaluated at.

Returns The group index at the target wavelength(s).

Return type float, list

\textbf{vg} (\texttt{wavelength})
The group velocities with respect to wavelength.

Parameters \texttt{wavelength} (float, list, None) – The wavelength(s) the group velocities will be evaluated at.

Returns The group velocities at the target wavelength(s).

Return type float, list

\textbf{z0} (\texttt{wavelength})
The wave impedance assuming the material is dielectric (not lossy or magnetic).

Parameters \texttt{wavelength} (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns The impedance of the material.

Return type float, list
Chalcogenide

class Chalcogenide(chalcogenideType)
 Bases: opticalmaterialspy._material_base._Material

Methods Summary

beta0(wavelength) The propagation constant with respect to wavelength.
betal1(wavelength) The derivative of the propagation constant with respect to wavelength.
beta2(wavelength) The second derivative of the propagation constant with respect to wavelength.
convertWavelengthUnitsNm()
eps([wavelength]) The permittivity of the desired material.
gvd(wavelength) The group velocity dispersion (GVD) with respect to wavelength.
n([wavelength]) The refractive index of the desired material.
nDer1(wavelength) The first derivative of the refractive index with respect to wavelength.
nDer2(wavelength) The second derivative of the refractive index with respect to wavelength.
ng(wavelength) The group index with respect to wavelength.
vg(wavelength) The group velocities with respect to wavelength.
z0(wavelength) The wave impedance assuming the material is dielectric (not lossy or magnetic).

Methods Documentation

beta0 (wavelength)
The propagation constant with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

betal1 (wavelength)
The derivative of the propagation constant with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

beta2 (wavelength)
The second derivative of the propagation constant with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).
Return type float, list

convertWavelengthUnitsNm()

eps(wavelength=None)
The permittivity of the desired material.

Parameters wavelength (float, list, None) – The wavelength the permittivity will be evaluated at.

Returns The permittivity at the target wavelength.

Return type float, list

gvd(wavelength)
The group velocity dispersion (GVD) with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the GVD will be evaluated at.

Returns The GVD at the target wavelength(s).

Return type float, list

n(wavelength=None)
The refractive index of the desired material.

Parameters wavelength (float, list, None) – The wavelength the refractive index will be evaluated at.

Returns The refractive index at the target wavelength.

Return type float, list

nDer1(wavelength)
The first derivative of the refractive index with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).

Return type float, list

nDer2(wavelength)
The second derivative of the refractive index with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).

Return type float, list

ng(wavelength)
The group index with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the group index will be evaluated at.

Returns The group index at the target wavelength(s).

Return type float, list

vg(wavelength)
The group velocities with respect to wavelength.
Parameters `wavelength (float, list, None)` – The wavelength(s) the group velocities will be evaluated at.

Returns The group velocities at the target wavelength(s).

Return type float, list

\(z_0 (\text{wavelength}) \)

The wave impedance assuming the material is dielectric (not lossy or magnetic).

Parameters `wavelength (float, list, None)` – The wavelength(s) the propagation constant will be evaluated at.

Returns The impedance of the material.

Return type float, list

Data

```python
class Data(wls, ns)
    Bases: opticalmaterialspy._material_base._Material
```

An object that facilitates importing materials from lists.

Parameters

- `wls (list)` – List of wavelengths.
- `ns (list)` – List of refractive indices at the corresponding `wls`. Should be the same size as `wls`.

Methods Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0 (\text{wavelength}))</td>
<td>The propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>(\beta_1 (\text{wavelength}))</td>
<td>The derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>(\beta_2 (\text{wavelength}))</td>
<td>The second derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td><code>convertWavelengthUnitsNm()</code></td>
<td></td>
</tr>
<tr>
<td>(\varepsilon (\text{wavelength}))</td>
<td>The permittivity of the desired material.</td>
</tr>
<tr>
<td>(gvd (\text{wavelength}))</td>
<td>The group velocity dispersion (GVD) with respect to wavelength.</td>
</tr>
<tr>
<td>(n (\text{wavelength}))</td>
<td>The refractive index of the desired material.</td>
</tr>
<tr>
<td>(nDer1 (\text{wavelength}))</td>
<td>The first derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>(nDer2 (\text{wavelength}))</td>
<td>The second derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>(ng (\text{wavelength}))</td>
<td>The group index with respect to wavelength.</td>
</tr>
<tr>
<td>(vg (\text{wavelength}))</td>
<td>The group velocities with respect to wavelength.</td>
</tr>
<tr>
<td>(z0 (\text{wavelength}))</td>
<td>The wave impedance assuming the material is dielectric (not lossy or magnetic).</td>
</tr>
</tbody>
</table>
Methods Documentation

\textbf{beta0}(\textit{wavelength})

The propagation constant with respect to wavelength.

\textbf{Parameters} \textit{wavelength}(float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

\textbf{Returns} The propagation constant at the target wavelength(s).

\textbf{Return type} float, list

\textbf{beta1}(\textit{wavelength})

The derivative of the propagation constant with respect to wavelength.

\textbf{Parameters} \textit{wavelength}(float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

\textbf{Returns} The propagation constant at the target wavelength(s).

\textbf{Return type} float, list

\textbf{beta2}(\textit{wavelength})

The second derivative of the propagation constant with respect to wavelength.

\textbf{Parameters} \textit{wavelength}(float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

\textbf{Returns} The propagation constant at the target wavelength(s).

\textbf{Return type} float, list

\textbf{convertWavelengthUnitsNm}(\textit{})

\textbf{eps}(\textit{wavelength=\textit{None}})

The permittivity of the desired material.

\textbf{Parameters} \textit{wavelength}(float, list, None) – The wavelength the permittivity will be evaluated at.

\textbf{Returns} The permittivity at the target wavelength.

\textbf{Return type} float, list

\textbf{gvd}(\textit{wavelength})

The group velocity dispersion (GVD) with respect to wavelength.

\textbf{Parameters} \textit{wavelength}(float, list, None) – The wavelength(s) the GVD will be evaluated at.

\textbf{Returns} The GVD at the target wavelength(s).

\textbf{Return type} float, list

\textbf{n}(\textit{wavelength=\textit{None}})

The refractive index of the desired material.

\textbf{Parameters} \textit{wavelength}(float, list, None) – The wavelength the refractive index will be evaluated at.

\textbf{Returns} The refractive index at the target wavelength.

\textbf{Return type} float, list

\textbf{nDer1}(\textit{wavelength})

The first derivative of the refractive index with respect to wavelength.
Parameters `wavelength` *(float, list, None)* – The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).

Return type float, list

`nDer2` *(wavelength)*
The second derivative of the refractive index with respect to wavelength.

Parameters `wavelength` *(float, list, None)* – The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).

Return type float, list

`ng` *(wavelength)*
The group index with respect to wavelength.

Parameters `wavelength` *(float, list, None)* – The wavelength(s) the group index will be evaluated at.

Returns The group index at the target wavelength(s).

Return type float, list

`vg` *(wavelength)*
The group velocities with respect to wavelength.

Parameters `wavelength` *(float, list, None)* – The wavelength(s) the group velocities will be evaluated at.

Returns The group velocities at the target wavelength(s).

Return type float, list

`z0` *(wavelength)*
The wave impedance assuming the material is dielectric (not lossy or magnetic).

Parameters `wavelength` *(float, list, None)* – The wavelength(s) the propagation constant will be evaluated at.

Returns The impedance of the material.

Return type float, list

Ktp

class Ktp *(axis)*
Bases: opticalmaterialsipy._material_base._Material

Methods Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>beta0</code></td>
<td>The propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td><code>beta1</code></td>
<td>The derivative of the propagation constant with respect to wavelength.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 8 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_2) (\textit{wavelength})</td>
<td>The second derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>(\text{convertWavelengthUnitsNm}())</td>
<td>The permittivity of the desired material.</td>
</tr>
<tr>
<td>(\varepsilon) (\textit{wavelength})</td>
<td>The group velocity dispersion (GVD) with respect to wavelength.</td>
</tr>
<tr>
<td>(n) (\textit{wavelength})</td>
<td>The refractive index of the desired material.</td>
</tr>
<tr>
<td>(n_{Der1}) (\textit{wavelength})</td>
<td>The first derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>(n_{Der2}) (\textit{wavelength})</td>
<td>The second derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>(n_g) (\textit{wavelength})</td>
<td>The group index with respect to wavelength.</td>
</tr>
<tr>
<td>(v_g) (\textit{wavelength})</td>
<td>The group velocities with respect to wavelength.</td>
</tr>
<tr>
<td>(z_0) (\textit{wavelength})</td>
<td>The wave impedance assuming the material is dielectric (not lossy or magnetic).</td>
</tr>
</tbody>
</table>

Methods Documentation

\(\beta_0 \) (\textit{wavelength})

The propagation constant with respect to wavelength.

Parameters \(\text{wavelength} \) (\textit{float, list, None}) – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

\(\beta_1 \) (\textit{wavelength})

The derivative of the propagation constant with respect to wavelength.

Parameters \(\text{wavelength} \) (\textit{float, list, None}) – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

\(\beta_2 \) (\textit{wavelength})

The second derivative of the propagation constant with respect to wavelength.

Parameters \(\text{wavelength} \) (\textit{float, list, None}) – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

\(\text{convertWavelengthUnitsNm}() \)

eps (\textit{wavelength=\text{None}})

The permittivity of the desired material.

Parameters \(\text{wavelength} \) (\textit{float, list, None}) – The wavelength the permittivity will be evaluated at.

Returns The permittivity at the target wavelength.

Return type float, list
gvd *(wavelength)*

The group velocity dispersion (GVD) with respect to wavelength.

Parameters

- **wavelength** *(float, list, None)* – The wavelength(s) the GVD will be evaluated at.

Returns

The GVD at the target wavelength(s).

Return type

float, list

n *(wavelength=None)*

The refractive index of the desired material.

Parameters

- **wavelength** *(float, list, None)* – The wavelength the refractive index will be evaluated at.

Returns

The refractive index at the target wavelength.

Return type

float, list

nDer1 *(wavelength)*

The first derivative of the refractive index with respect to wavelength.

Parameters

- **wavelength** *(float, list, None)* – The wavelength(s) the derivative will be evaluated at.

Returns

The refractive index at the target wavelength(s).

Return type

float, list

nDer2 *(wavelength)*

The second derivative of the refractive index with respect to wavelength.

Parameters

- **wavelength** *(float, list, None)* – The wavelength(s) the derivative will be evaluated at.

Returns

The refractive index at the target wavelength(s).

Return type

float, list

ng *(wavelength)*

The group index with respect to wavelength.

Parameters

- **wavelength** *(float, list, None)* – The wavelength(s) the group index will be evaluated at.

Returns

The group index at the target wavelength(s).

Return type

float, list

vg *(wavelength)*

The group velocities with respect to wavelength.

Parameters

- **wavelength** *(float, list, None)* – The wavelength(s) the group velocities will be evaluated at.

Returns

The group velocities at the target wavelength(s).

Return type

float, list

z0 *(wavelength)*

The wave impedance assuming the material is dielectric (not lossy or magnetic).

Parameters

- **wavelength** *(float, list, None)* – The wavelength(s) the propagation constant will be evaluated at.

Returns

The impedance of the material.
Return type float, list

Ln

class Ln (axis, temperatureCelcius=20.0)
 Bases: opticalmaterialspy._material_base._Material

Methods Summary

- **beta0**(wavelength) The propagation constant with respect to wavelength.
- **beta1**(wavelength) The derivative of the propagation constant with respect to wavelength.
- **beta2**(wavelength) The second derivative of the propagation constant with respect to wavelength.
- **convertWavelengthUnitsNm**()
- **eps**(wavelength) The permittivity of the desired material.
- **gvd**(wavelength) The group velocity dispersion (GVD) with respect to wavelength.
- **n**(wavelength) The refractive index of the desired material.
- **nDer1**(wavelength) The first derivative of the refractive index with respect to wavelength.
- **nDer2**(wavelength) The second derivative of the refractive index with respect to wavelength.
- **ng**(wavelength) The group index with respect to wavelength.
- **vg**(wavelength) The group velocities with respect to wavelength.
- **z0**(wavelength) The wave impedance assuming the material is dielectric (not lossy or magnetic).

Methods Documentation

beta0(wavelength)
 The propagation constant with respect to wavelength.

 Parameters
 wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

 Returns
 The propagation constant at the target wavelength(s).

 Return type float, list

beta1(wavelength)
 The derivative of the propagation constant with respect to wavelength.

 Parameters
 wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

 Returns
 The propagation constant at the target wavelength(s).

 Return type float, list

beta2(wavelength)
 The second derivative of the propagation constant with respect to wavelength.
Parameters \texttt{wavelength} ($\texttt{float, list, None}$) – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

c\texttt{onvertWavelengthUnitsNm}()

e\texttt{ps} \texttt{(wavelength=\texttt{None})}
The permittivity of the desired material.

Parameters \texttt{wavelength} ($\texttt{float, list, None}$) – The wavelength the permittivity will be evaluated at.

Returns The permittivity at the target wavelength.

Return type float, list

g\texttt{vd} \texttt{(wavelength)}
The group velocity dispersion (GVD) with respect to wavelength.

Parameters \texttt{wavelength} ($\texttt{float, list, None}$) – The wavelength(s) the GVD will be evaluated at.

Returns The GVD at the target wavelength(s).

Return type float, list

n \texttt{(wavelength=\texttt{None})}
The refractive index of the desired material.

Parameters \texttt{wavelength} ($\texttt{float, list, None}$) – The wavelength the refractive index will be evaluated at.

Returns The refractive index at the target wavelength.

Return type float, list

n\texttt{Der1} \texttt{(wavelength)}
The first derivative of the refractive index with respect to wavelength.

Parameters \texttt{wavelength} ($\texttt{float, list, None}$) – The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).

Return type float, list

n\texttt{Der2} \texttt{(wavelength)}
The second derivative of the refractive index with respect to wavelength.

Parameters \texttt{wavelength} ($\texttt{float, list, None}$) – The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).

Return type float, list

ng \texttt{(wavelength)}
The group index with respect to wavelength.

Parameters \texttt{wavelength} ($\texttt{float, list, None}$) – The wavelength(s) the group index will be evaluated at.

Returns The group index at the target wavelength(s).
Return type float, list

vg (wavelength)
The group velocities with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the group velocities will be evaluated at.

Returns The group velocities at the target wavelength(s).

Return type float, list

z0 (wavelength)
The wave impedance assuming the material is dielectric (not lossy or magnetic).

Parameters wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns The impedance of the material.

LnMg

class LnMg (axis)
Bases: opticalmaterialspy._material_base._Material

Methods Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta0(wavelength)</td>
<td>The propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>beta1(wavelength)</td>
<td>The derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>beta2(wavelength)</td>
<td>The second derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>convertWavelengthUnitsNm()</td>
<td>The permittivity of the desired material.</td>
</tr>
<tr>
<td>gvd(wavelength)</td>
<td>The group velocity dispersion (GVD) with respect to wavelength.</td>
</tr>
<tr>
<td>n(wavelength)</td>
<td>The refractive index of the desired material.</td>
</tr>
<tr>
<td>nDer1(wavelength)</td>
<td>The first derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>nDer2(wavelength)</td>
<td>The second derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>ng(wavelength)</td>
<td>The group index with respect to wavelength.</td>
</tr>
<tr>
<td>vg(wavelength)</td>
<td>The group velocities with respect to wavelength.</td>
</tr>
<tr>
<td>z0(wavelength)</td>
<td>The wave impedance assuming the material is dielectric (not lossy or magnetic).</td>
</tr>
</tbody>
</table>

Methods Documentation

beta0 (wavelength)
The propagation constant with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the propagation
constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

$\beta_1 (wavelength)$
The derivative of the propagation constant with respect to wavelength.

Parameters $wavelength$ (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

$\beta_2 (wavelength)$
The second derivative of the propagation constant with respect to wavelength.

Parameters $wavelength$ (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

$convertWavelengthUnitsNm ()$

$\varepsilon (wavelength=None)$
The permittivity of the desired material.

Parameters $wavelength$ (float, list, None) – The wavelength the permittivity will be evaluated at.

Returns The permittivity at the target wavelength.

Return type float, list

$gvd (wavelength)$
The group velocity dispersion (GVD) with respect to wavelength.

Parameters $wavelength$ (float, list, None) – The wavelength(s) the GVD will be evaluated at.

Returns The GVD at the target wavelength(s).

Return type float, list

$n (wavelength=None)$
The refractive index of the desired material.

Parameters $wavelength$ (float, list, None) – The wavelength the refractive index will be evaluated at.

Returns The refractive index at the target wavelength.

Return type float, list

$nDer1 (wavelength)$
The first derivative of the refractive index with respect to wavelength.

Parameters $wavelength$ (float, list, None) – The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).

Return type float, list
nDer2 *(wavelength)*

The second derivative of the refractive index with respect to wavelength.

Parameters

- **wavelength** *(float, list, None)* – The wavelength(s) the derivative will be evaluated at.

Returns

The refractive index at the target wavelength(s).

Return type

float, list

ng *(wavelength)*

The group index with respect to wavelength.

Parameters

- **wavelength** *(float, list, None)* – The wavelength(s) the group index will be evaluated at.

Returns

The group index at the target wavelength(s).

Return type

float, list

vg *(wavelength)*

The group velocities with respect to wavelength.

Parameters

- **wavelength** *(float, list, None)* – The wavelength(s) the group velocities will be evaluated at.

Returns

The group velocities at the target wavelength(s).

Return type

float, list

z0 *(wavelength)*

The wave impedance assuming the material is dielectric (not lossy or magnetic).

Parameters

- **wavelength** *(float, list, None)* – The wavelength(s) the propagation constant will be evaluated at.

Returns

The impedance of the material.

Return type

float, list

LnMgTemp

class LnMgTemp(axis, temperatureCelcius=20.0)

Bases: opticalmaterialspy._material_base._Material

Methods Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta0 (wavelength)</td>
<td>The propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>beta1 (wavelength)</td>
<td>The derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>beta2 (wavelength)</td>
<td>The second derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>convertWavelengthUnitsNm()</td>
<td></td>
</tr>
<tr>
<td>eps (wavelength)</td>
<td>The permittivity of the desired material.</td>
</tr>
<tr>
<td>gvd (wavelength)</td>
<td>The group velocity dispersion (GVD) with respect to wavelength.</td>
</tr>
<tr>
<td>n (wavelength)</td>
<td>The refractive index of the desired material.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 11 – continued from previous page

<table>
<thead>
<tr>
<th>nDer1(wavelength)</th>
<th>The first derivative of the refractive index with respect to wavelength.</th>
</tr>
</thead>
<tbody>
<tr>
<td>nDer2(wavelength)</td>
<td>The second derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>ng(wavelength)</td>
<td>The group index with respect to wavelength.</td>
</tr>
<tr>
<td>vg(wavelength)</td>
<td>The group velocities with respect to wavelength.</td>
</tr>
<tr>
<td>z0(wavelength)</td>
<td>The wave impedance assuming the material is dielectric (not lossy or magnetic).</td>
</tr>
</tbody>
</table>

Methods Documentation

beta0 (wavelength)

The propagation constant with respect to wavelength.

- **Parameters** `wavelength (float, list, None)` – The wavelength(s) the propagation constant will be evaluated at.

- **Returns** The propagation constant at the target wavelength(s).

- **Return type** float, list

beta1 (wavelength)

The derivative of the propagation constant with respect to wavelength.

- **Parameters** `wavelength (float, list, None)` – The wavelength(s) the propagation constant will be evaluated at.

- **Returns** The propagation constant at the target wavelength(s).

- **Return type** float, list

beta2 (wavelength)

The second derivative of the propagation constant with respect to wavelength.

- **Parameters** `wavelength (float, list, None)` – The wavelength(s) the propagation constant will be evaluated at.

- **Returns** The propagation constant at the target wavelength(s).

- **Return type** float, list

convertWavelengthUnitsNm ()

eps (wavelength=None)

The permittivity of the desired material.

- **Parameters** `wavelength (float, list, None)` – The wavelength the permittivity will be evaluated at.

- **Returns** The permittivity at the target wavelength.

- **Return type** float, list

gvd (wavelength)

The group velocity dispersion (GVD) with respect to wavelength.

- **Parameters** `wavelength (float, list, None)` – The wavelength(s) the GVD will be evaluated at.

- **Returns** The GVD at the target wavelength(s).

- **Return type** float, list

3.1. Materials
n (wavelength=None)
The refractive index of the desired material.

Parameters wavelength (float, list, None) – The wavelength the refractive index will be evaluated at.

Returns The refractive index at the target wavelength.

Return type float, list

nDer1 (wavelength)
The first derivative of the refractive index with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).

Return type float, list

nDer2 (wavelength)
The second derivative of the refractive index with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).

Return type float, list

ng (wavelength)
The group index with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the group index will be evaluated at.

Returns The group index at the target wavelength(s).

Return type float, list

vg (wavelength)
The group velocities with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the group velocities will be evaluated at.

Returns The group velocities at the target wavelength(s).

Return type float, list

z0 (wavelength)
The wave impedance assuming the material is dielectric (not lossy or magnetic).

Parameters wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns The impedance of the material.

Return type float, list

RefractiveIndexWeb

class RefractiveIndexWeb (web_link)
Bases: opticalmaterialspy.material.Data
Object to create a `_Material` based on data from https://refractiveindex.info/.

Parameters `web_link (str)` – The web link to the material. As an example, for GaAs by Aspnes et al. 1986 the one should use ‘https://refractiveindex.info/?shelf=main&book=GaAs&page=Aspnes’.

Methods Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>beta0(wavelength)</code></td>
<td>The propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td><code>beta1(wavelength)</code></td>
<td>The derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td><code>beta2(wavelength)</code></td>
<td>The second derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td><code>convertWavelengthUnitsNm()</code></td>
<td>The permittivity of the desired material.</td>
</tr>
<tr>
<td><code>eps([wavelength])</code></td>
<td>The group velocity dispersion (GVD) with respect to wavelength.</td>
</tr>
<tr>
<td><code>gvd(wavelength)</code></td>
<td>The refractive index of the desired material.</td>
</tr>
<tr>
<td><code>n([wavelength])</code></td>
<td>The first derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td><code>nDer1(wavelength)</code></td>
<td>The second derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td><code>nDer2(wavelength)</code></td>
<td>The group index with respect to wavelength.</td>
</tr>
<tr>
<td><code>ng(wavelength)</code></td>
<td>The group velocities with respect to wavelength.</td>
</tr>
<tr>
<td><code>vg(wavelength)</code></td>
<td>The wave impedance assuming the material is dielectric (not lossy or magnetic).</td>
</tr>
</tbody>
</table>

Methods Documentation

`beta0 (wavelength)`

The propagation constant with respect to wavelength.

Parameters `wavelength (float, list, None)` – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

`beta1 (wavelength)`

The derivative of the propagation constant with respect to wavelength.

Parameters `wavelength (float, list, None)` – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

`beta2 (wavelength)`

The second derivative of the propagation constant with respect to wavelength.

Parameters `wavelength (float, list, None)` – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).
Return type float, list

\texttt{convertWavelengthUnitsNm()}

\texttt{eps(wavelength=\texttt{None})}
The permittivity of the desired material.

\textbf{Parameters} \texttt{wavelength (float, list, None)} – The wavelength the permittivity will be evaluated at.

\textbf{Returns} The permittivity at the target wavelength.

\textbf{Return type} float, list

\texttt{gvd(wavelength)}
The group velocity dispersion (GVD) with respect to wavelength.

\textbf{Parameters} \texttt{wavelength (float, list, None)} – The wavelength(s) the GVD will be evaluated at.

\textbf{Returns} The GVD at the target wavelength(s).

\textbf{Return type} float, list

\texttt{n(wavelength=\texttt{None})}
The refractive index of the desired material.

\textbf{Parameters} \texttt{wavelength (float, list, None)} – The wavelength the refractive index will be evaluated at.

\textbf{Returns} The refractive index at the target wavelength.

\textbf{Return type} float, list

\texttt{nDer1 (wavelength)}
The first derivative of the refractive index with respect to wavelength.

\textbf{Parameters} \texttt{wavelength (float, list, None)} – The wavelength(s) the derivative will be evaluated at.

\textbf{Returns} The refractive index at the target wavelength(s).

\textbf{Return type} float, list

\texttt{nDer2 (wavelength)}
The second derivative of the refractive index with respect to wavelength.

\textbf{Parameters} \texttt{wavelength (float, list, None)} – The wavelength(s) the derivative will be evaluated at.

\textbf{Returns} The refractive index at the target wavelength(s).

\textbf{Return type} float, list

\texttt{ng(wavelength)}
The group index with respect to wavelength.

\textbf{Parameters} \texttt{wavelength (float, list, None)} – The wavelength(s) the group index will be evaluated at.

\textbf{Returns} The group index at the target wavelength(s).

\textbf{Return type} float, list

\texttt{vg(wavelength)}
The group velocities with respect to wavelength.
Parameters `wavelength` *(float, list, None)* – The wavelength(s) the group velocities will be evaluated at.

Returns The group velocities at the target wavelength(s).

Return type float, list

\(z_0 \) *(wavelength)*

The wave impedance assuming the material is dielectric (not lossy or magnetic).

Parameters `wavelength` *(float, list, None)* – The wavelength(s) the propagation constant will be evaluated at.

Returns The impedance of the material.

Return type float, list

SiO2

class SiO2

Bases: `opticalmaterialspy._material_base._Material`

Methods Summary

- `beta0(wavelength)`
 - The propagation constant with respect to wavelength.
- `beta1(wavelength)`
 - The derivative of the propagation constant with respect to wavelength.
- `beta2(wavelength)`
 - The second derivative of the propagation constant with respect to wavelength.
- `convertWavelengthUnitsNm()`
- `eps([wavelength])`
 - The permittivity of the desired material.
- `gvd(wavelength)`
 - The group velocity dispersion (GVD) with respect to wavelength.
- `n([wavelength])`
 - The refractive index of the desired material.
- `nDer1(wavelength)`
 - The first derivative of the refractive index with respect to wavelength.
- `nDer2(wavelength)`
 - The second derivative of the refractive index with respect to wavelength.
- `ng(wavelength)`
 - The group index with respect to wavelength.
- `vg(wavelength)`
 - The group velocities with respect to wavelength.
- `z0(wavelength)`
 - The wave impedance assuming the material is dielectric (not lossy or magnetic).

Methods Documentation

beta0 (wavelength)

The propagation constant with respect to wavelength.

Parameters `wavelength` *(float, list, None)* – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

3.1. Materials
beta1 (*wavelength*)
The derivative of the propagation constant with respect to wavelength.

- **Parameters**
 - `wavelength (float, list, None)` – The wavelength(s) the propagation constant will be evaluated at.

- **Returns**
 - The propagation constant at the target wavelength(s).

- **Return type**
 - float, list

beta2 (*wavelength*)
The second derivative of the propagation constant with respect to wavelength.

- **Parameters**
 - `wavelength (float, list, None)` – The wavelength(s) the propagation constant will be evaluated at.

- **Returns**
 - The propagation constant at the target wavelength(s).

- **Return type**
 - float, list

convertWavelengthUnitsNm ()

eps (*wavelength=None*)
The permittivity of the desired material.

- **Parameters**
 - `wavelength (float, list, None)` – The wavelength the permittivity will be evaluated at.

- **Returns**
 - The permittivity at the target wavelength.

- **Return type**
 - float, list

gvd (*wavelength*)
The group velocity dispersion (GVD) with respect to wavelength.

- **Parameters**
 - `wavelength (float, list, None)` – The wavelength(s) the GVD will be evaluated at.

- **Returns**
 - The GVD at the target wavelength(s).

- **Return type**
 - float, list

n (*wavelength=None*)
The refractive index of the desired material.

- **Parameters**
 - `wavelength (float, list, None)` – The wavelength the refractive index will be evaluated at.

- **Returns**
 - The refractive index at the target wavelength.

- **Return type**
 - float, list

nDer1 (*wavelength*)
The first derivative of the refractive index with respect to wavelength.

- **Parameters**
 - `wavelength (float, list, None)` – The wavelength(s) the derivative will be evaluated at.

- **Returns**
 - The refractive index at the target wavelength(s).

- **Return type**
 - float, list

nDer2 (*wavelength*)
The second derivative of the refractive index with respect to wavelength.

- **Parameters**
 - `wavelength (float, list, None)` – The wavelength(s) the derivative will be evaluated at.
Returns The refractive index at the target wavelength(s).

Return type float, list

\texttt{ng}(wavelength)
The group index with respect to wavelength.

Parameters

\texttt{wavelength} (float, list, None) – The wavelength(s) the group index will be evaluated at.

Returns The group index at the target wavelength(s).

Return type float, list

\texttt{vg}(wavelength)
The group velocities with respect to wavelength.

Parameters

\texttt{wavelength} (float, list, None) – The wavelength(s) the group velocities will be evaluated at.

Returns The group velocities at the target wavelength(s).

Return type float, list

\texttt{z0}(wavelength)
The wave impedance assuming the material is dielectric (not lossy or magnetic).

Parameters

\texttt{wavelength} (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns The impedance of the material.

Return type float, list

\texttt{Su8}

\texttt{class Su8}

\texttt{Bases: opticalmaterials.py._material_base._Material}

\texttt{Methods Summary}

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{beta0}(wavelength)</td>
<td>The propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>\texttt{beta1}(wavelength)</td>
<td>The derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>\texttt{beta2}(wavelength)</td>
<td>The second derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>\texttt{convertWavelengthUnitsNm()}</td>
<td></td>
</tr>
<tr>
<td>\texttt{eps}(wavelength)</td>
<td>The permittivity of the desired material.</td>
</tr>
<tr>
<td>\texttt{gvd}(wavelength)</td>
<td>The group velocity dispersion (GVD) with respect to wavelength.</td>
</tr>
<tr>
<td>\texttt{nt}(wavelength)</td>
<td>The refractive index of the desired material.</td>
</tr>
<tr>
<td>\texttt{nDer1}(wavelength)</td>
<td>The first derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>\texttt{nDer2}(wavelength)</td>
<td>The second derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>\texttt{ng}(wavelength)</td>
<td>The group index with respect to wavelength.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 14 – continued from previous page

| $vg(wavelength)$ | The group velocities with respect to wavelength. |
| $z_0(wavelength)$ | The wave impedance assuming the material is dielectric (not lossy or magnetic). |

Methods Documentation

beta0 (wavelength)
The propagation constant with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

beta1 (wavelength)
The derivative of the propagation constant with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

beta2 (wavelength)
The second derivative of the propagation constant with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns The propagation constant at the target wavelength(s).

Return type float, list

convertWavelengthUnitsNm ()

eps (wavelength=None)
The permittivity of the desired material.

Parameters wavelength (float, list, None) – The wavelength the permittivity will be evaluated at.

Returns The permittivity at the target wavelength.

Return type float, list

gvd (wavelength)
The group velocity dispersion (GVD) with respect to wavelength.

Parameters wavelength (float, list, None) – The wavelength(s) the GVD will be evaluated at.

Returns The GVD at the target wavelength(s).

Return type float, list

n (wavelength=None)
The refractive index of the desired material.

Parameters wavelength (float, list, None) – The wavelength the refractive index will be evaluated at.
Returns The refractive index at the target wavelength.

Return type float, list

\textbf{\texttt{nDer1}(wavelength)}

The first derivative of the refractive index with respect to wavelength.

\textbf{Parameters} \texttt{wavelength(float, list, None)} – The wavelength(s) the derivative will be evaluated at.

\textbf{Returns} The refractive index at the target wavelength(s).

\textbf{Return type} float, list

\textbf{\texttt{nDer2}(wavelength)}

The second derivative of the refractive index with respect to wavelength.

\textbf{Parameters} \texttt{wavelength(float, list, None)} – The wavelength(s) the derivative will be evaluated at.

\textbf{Returns} The refractive index at the target wavelength(s).

\textbf{Return type} float, list

\textbf{\texttt{ng}(wavelength)}

The group index with respect to wavelength.

\textbf{Parameters} \texttt{wavelength(float, list, None)} – The wavelength(s) the group index will be evaluated at.

\textbf{Returns} The group index at the target wavelength(s).

\textbf{Return type} float, list

\textbf{\texttt{vg}(wavelength)}

The group velocities with respect to wavelength.

\textbf{Parameters} \texttt{wavelength(float, list, None)} – The wavelength(s) the group velocities will be evaluated at.

\textbf{Returns} The group velocities at the target wavelength(s).

\textbf{Return type} float, list

\textbf{\texttt{z0}(wavelength)}

The wave impedance assuming the material is dielectric (not lossy or magnetic).

\textbf{Parameters} \texttt{wavelength(float, list, None)} – The wavelength(s) the propagation constant will be evaluated at.

\textbf{Returns} The impedance of the material.

\textbf{Return type} float, list

\textbf{Tfln}

class \texttt{Tfln}(axis, temperatureCelcius=20.0)

Bases: \texttt{opticalmaterialspy.material.Ln}

Methods Summary
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta0(wavelength)</td>
<td>The propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>beta1(wavelength)</td>
<td>The derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>beta2(wavelength)</td>
<td>The second derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>convertWavelengthUnitsNm()</td>
<td></td>
</tr>
<tr>
<td>eps(wavelength)</td>
<td>The permittivity of the desired material.</td>
</tr>
<tr>
<td>gvd(wavelength)</td>
<td>The group velocity dispersion (GVD) with respect to wavelength.</td>
</tr>
<tr>
<td>n(wavelength)</td>
<td>The refractive index of the desired material.</td>
</tr>
<tr>
<td>nDer1(wavelength)</td>
<td>The first derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>nDer2(wavelength)</td>
<td>The second derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>ng(wavelength)</td>
<td>The group index with respect to wavelength.</td>
</tr>
<tr>
<td>vg(wavelength)</td>
<td>The group velocities with respect to wavelength.</td>
</tr>
<tr>
<td>z0(wavelength)</td>
<td>The wave impedance assuming the material is dielectric (not lossy or magnetic).</td>
</tr>
</tbody>
</table>

Methods Documentation

beta0 (wavelength)

The propagation constant with respect to wavelength.

- **Parameters**
 - wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

- **Returns**
 - The propagation constant at the target wavelength(s).

- **Return type**
 - float, list

beta1 (wavelength)

The derivative of the propagation constant with respect to wavelength.

- **Parameters**
 - wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

- **Returns**
 - The propagation constant at the target wavelength(s).

- **Return type**
 - float, list

beta2 (wavelength)

The second derivative of the propagation constant with respect to wavelength.

- **Parameters**
 - wavelength (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

- **Returns**
 - The propagation constant at the target wavelength(s).

- **Return type**
 - float, list

convertWavelengthUnitsNm()

eps (wavelength=None)

The permittivity of the desired material.

- **Parameters**
 - wavelength (float, list, None) – The wavelength the permittivity will be evaluated at.
Returns The permittivity at the target wavelength.

Return type float, list

\textbf{gvd}(\textit{wavelength})

The group velocity dispersion (GVD) with respect to wavelength.

Parameters \textbf{wavelength} (\textit{float, list, None}) – The wavelength(s) the GVD will be evaluated at.

Returns The GVD at the target wavelength(s).

Return type float, list

\textbf{n}(\textit{wavelength=None})

The refractive index of the desired material.

Parameters \textbf{wavelength} (\textit{float, list, None}) – The wavelength the refractive index will be evaluated at.

Returns The refractive index at the target wavelength.

Return type float, list

\textbf{nDer1}(\textit{wavelength})

The first derivative of the refractive index with respect to wavelength.

Parameters \textbf{wavelength} (\textit{float, list, None}) – The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).

Return type float, list

\textbf{nDer2}(\textit{wavelength})

The second derivative of the refractive index with respect to wavelength.

Parameters \textbf{wavelength} (\textit{float, list, None}) – The wavelength(s) the derivative will be evaluated at.

Returns The refractive index at the target wavelength(s).

Return type float, list

\textbf{ng}(\textit{wavelength})

The group index with respect to wavelength.

Parameters \textbf{wavelength} (\textit{float, list, None}) – The wavelength(s) the group index will be evaluated at.

Returns The group index at the target wavelength(s).

Return type float, list

\textbf{vg}(\textit{wavelength})

The group velocities with respect to wavelength.

Parameters \textbf{wavelength} (\textit{float, list, None}) – The wavelength(s) the group velocities will be evaluated at.

Returns The group velocities at the target wavelength(s).

Return type float, list

\textbf{z0}(\textit{wavelength})

The wave impedance assuming the material is dielectric (not lossy or magnetic).
Parameters: \texttt{wavelength} (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns: The impedance of the material.

Return type: float, list

\texttt{TiO2}

class \texttt{TiO2} (axis)

Bases: \texttt{opticalmaterialspy._material_base._Material}

\textbf{Methods Summary}

<table>
<thead>
<tr>
<th>Method name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{beta0(wavelength)}</td>
<td>The propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>\texttt{beta1(wavelength)}</td>
<td>The derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>\texttt{beta2(wavelength)}</td>
<td>The second derivative of the propagation constant with respect to wavelength.</td>
</tr>
<tr>
<td>\texttt{convertWavelengthUnitsNm()}</td>
<td></td>
</tr>
<tr>
<td>\texttt{eps([wavelength])}</td>
<td>The permittivity of the desired material.</td>
</tr>
<tr>
<td>\texttt{gvd(wavelength)}</td>
<td>The group velocity dispersion (GVD) with respect to wavelength.</td>
</tr>
<tr>
<td>\texttt{n([wavelength])}</td>
<td>The refractive index of the desired material.</td>
</tr>
<tr>
<td>\texttt{nDer1(wavelength)}</td>
<td>The first derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>\texttt{nDer2(wavelength)}</td>
<td>The second derivative of the refractive index with respect to wavelength.</td>
</tr>
<tr>
<td>\texttt{ng(wavelength)}</td>
<td>The group index with respect to wavelength.</td>
</tr>
<tr>
<td>\texttt{vg(wavelength)}</td>
<td>The group velocities with respect to wavelength.</td>
</tr>
<tr>
<td>\texttt{z0(wavelength)}</td>
<td>The wave impedance assuming the material is dielectric (not lossy or magnetic).</td>
</tr>
</tbody>
</table>

\textbf{Methods Documentation}

\texttt{beta0(wavelength)}

The propagation constant with respect to wavelength.

Parameters: \texttt{wavelength} (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns: The propagation constant at the target wavelength(s).

Return type: float, list

\texttt{beta1(wavelength)}

The derivative of the propagation constant with respect to wavelength.

Parameters: \texttt{wavelength} (float, list, None) – The wavelength(s) the propagation constant will be evaluated at.

Returns: The propagation constant at the target wavelength(s).

Return type: float, list
beta2 *(wavelength)*

The second derivative of the propagation constant with respect to wavelength.

Parameters
- **wavelength** *(float, list, None)* – The wavelength(s) the propagation constant will be evaluated at.

Returns
The propagation constant at the target wavelength(s).

Return type
float, list

convertWavelengthUnitsNm ()

eps *(wavelength=None)*

The permittivity of the desired material.

Parameters
- **wavelength** *(float, list, None)* – The wavelength the permittivity will be evaluated at.

Returns
The permittivity at the target wavelength.

Return type
float, list

gvd *(wavelength)*

The group velocity dispersion (GVD) with respect to wavelength.

Parameters
- **wavelength** *(float, list, None)* – The wavelength(s) the GVD will be evaluated at.

Returns
The GVD at the target wavelength(s).

Return type
float, list

n *(wavelength=None)*

The refractive index of the desired material.

Parameters
- **wavelength** *(float, list, None)* – The wavelength the refractive index will be evaluated at.

Returns
The refractive index at the target wavelength.

Return type
float, list

nDer1 *(wavelength)*

The first derivative of the refractive index with respect to wavelength.

Parameters
- **wavelength** *(float, list, None)* – The wavelength(s) the derivative will be evaluated at.

Returns
The refractive index at the target wavelength(s).

Return type
float, list

nDer2 *(wavelength)*

The second derivative of the refractive index with respect to wavelength.

Parameters
- **wavelength** *(float, list, None)* – The wavelength(s) the derivative will be evaluated at.

Returns
The refractive index at the target wavelength(s).

Return type
float, list

ng *(wavelength)*

The group index with respect to wavelength.

Parameters
- **wavelength** *(float, list, None)* – The wavelength(s) the group index will be evaluated at.
Returns The group index at the target wavelength(s).

Return type float, list

\textbf{vg} (\textit{wavelength})
The group velocities with respect to wavelength.

Parameters \textbf{wavelength} (\textit{float, list, None}) – The wavelength(s) the group velocities will be evaluated at.

Returns The group velocities at the target wavelength(s).

Return type float, list

\textbf{z0} (\textit{wavelength})
The wave impedance assuming the material is dielectric (not lossy or magnetic).

Parameters \textbf{wavelength} (\textit{float, list, None}) – The wavelength(s) the propagation constant will be evaluated at.

Returns The impedance of the material.

Return type float, list
3.1.2 Class Inheritance Diagram
Python Module Index

0

opticalmaterialsSpy.material, 7
Index

A
Air (class in opticalmaterialsPy.material), 7
Al2O3 (class in opticalmaterialsPy.material), 10

B
Bbo (class in opticalmaterialsPy.material), 12
beta0() (Air method), 8
beta0() (Al2O3 method), 10
beta0() (Bbo method), 12
beta0() (Bibo method), 15
beta0() (Chalcogenide method), 17
beta0() (Data method), 20
beta0() (Ktp method), 22
beta0() (Ln method), 24
beta0() (LnMg method), 26
beta0() (LnMgTemp method), 29
beta0() (RefractiveIndexWeb method), 31
beta0() (SiO2 method), 33
beta0() (Su8 method), 36
beta0() (Tfln method), 38
beta0() (TiO2 method), 40
beta1() (Air method), 8
beta1() (Al2O3 method), 10
beta1() (Bbo method), 13
beta1() (Bibo method), 15
beta1() (Chalcogenide method), 17
beta1() (Data method), 20
beta1() (Ktp method), 22
beta1() (Ln method), 24
beta1() (LnMg method), 27
beta1() (LnMgTemp method), 29
beta1() (RefractiveIndexWeb method), 31
beta1() (SiO2 method), 33
beta1() (Su8 method), 36
beta1() (Tfln method), 38
beta1() (TiO2 method), 40
beta2() (Bibo method), 15
beta2() (Chalcogenide method), 17
beta2() (Data method), 20
beta2() (Ktp method), 22
beta2() (Ln method), 24
beta2() (LnMg method), 27
beta2() (LnMgTemp method), 29
beta2() (RefractiveIndexWeb method), 31
beta2() (SiO2 method), 34
beta2() (Su8 method), 36
beta2() (Tfln method), 38
beta2() (TiO2 method), 40
Bibo (class in opticalmaterialsPy.material), 14

C
Chalcogenide (class in opticalmaterialsPy.material), 17
convertWavelengthUnitsNm() (Air method), 8
convertWavelengthUnitsNm() (Al2O3 method), 11
convertWavelengthUnitsNm() (Bbo method), 13
convertWavelengthUnitsNm() (Bibo method), 15
convertWavelengthUnitsNm() (Chalcogenide method), 18
convertWavelengthUnitsNm() (Data method), 20
convertWavelengthUnitsNm() (Ktp method), 22
convertWavelengthUnitsNm() (Ln method), 25
convertWavelengthUnitsNm() (LnMg method), 27
convertWavelengthUnitsNm() (LnMgTemp method), 29
convertWavelengthUnitsNm() (RefractiveIndexWeb method), 32
convertWavelengthUnitsNm() (SiO2 method), 34
convertWavelengthUnitsNm() (Su8 method), 36
convertWavelengthUnitsNm() (Tfln method), 38
convertWavelengthUnitsNm() (TiO2 method), 41

D
Data (class in opticalmaterialsPy.material), 19

E
eps() (Air method), 8
eps() (Al2O3 method), 11
eps() (Bbo method), 13
eps() (Bibo method), 15
eps() (Chalcogenide method), 18
eps() (Data method), 20
eps() (Ktp method), 22
eps() (Ln method), 25
eps() (LnMg method), 27
eps() (LnMgTemp method), 29
eps() (RefractiveIndexWeb method), 32
eps() (SiO2 method), 34
eps() (Su8 method), 36
eps() (Tfln method), 38
eps() (TiO2 method), 41

g
gvd() (Air method), 9
gvd() (Al2O3 method), 11
gvd() (Bbo method), 13
gvd() (Bibo method), 15
gvd() (Chalcogenide method), 18
gvd() (Data method), 20
gvd() (Ktp method), 22
gvd() (Ln method), 25
gvd() (LnMg method), 27
gvd() (LnMgTemp method), 29
gvd() (RefractiveIndexWeb method), 32
gvd() (SiO2 method), 34
gvd() (Su8 method), 36
gvd() (Tfln method), 39
gvd() (TiO2 method), 41

K
Ktp (class in opticalmaterialspy.material), 21

L
Ln (class in opticalmaterialspy.material), 24
LnMg (class in opticalmaterialspy.material), 26
LnMgTemp (class in opticalmaterialspy.material), 28

N
n() (Air method), 9
n() (Al2O3 method), 11
n() (Bbo method), 13
n() (Bibo method), 16
n() (Chalcogenide method), 18
n() (Data method), 20
n() (Ktp method), 23
n() (Ln method), 25
n() (LnMg method), 27
n() (LnMgTemp method), 29
n() (RefractiveIndexWeb method), 32
n() (SiO2 method), 34
n() (Su8 method), 36
n() (Tfln method), 39
n() (TiO2 method), 41

O
opticalmaterialspy.material (module), 7

R
RefractiveIndexWeb (class in opticalmaterial-
spy.material), 30

S
SiO2 (class in opticalmaterials.py), 33
Su8 (class in opticalmaterials.py), 35

T
TfIn (class in opticalmaterials.py), 37
TiO2 (class in opticalmaterials.py), 40

V
vg() (Air method), 9
vg() (Al2O3 method), 12
vg() (Bbo method), 14
vg() (Bibo method), 16
vg() (Chalcogenide method), 18
vg() (Data method), 21
vg() (Ktp method), 23
vg() (Ln method), 26
vg() (LnMg method), 28
vg() (LnMgTemp method), 30
vg() (RefractiveIndexWeb method), 32
vg() (SiO2 method), 35
vg() (Su8 method), 37
vg() (TfIn method), 39
vg() (TiO2 method), 42

Z
z0() (Air method), 9
z0() (Al2O3 method), 12
z0() (Bbo method), 14
z0() (Bibo method), 16
z0() (Chalcogenide method), 19
z0() (Data method), 21
z0() (Ktp method), 23
z0() (Ln method), 26
z0() (LnMg method), 28
z0() (LnMgTemp method), 30
z0() (RefractiveIndexWeb method), 33
z0() (SiO2 method), 35
z0() (Su8 method), 37
z0() (TfIn method), 39
z0() (TiO2 method), 42