
OPSPiggybacker Documentation
Release 0.1-dev

David W.H. Swenson

September 27, 2016





Contents

1 Installation 3

2 Overview 5

3 Partial input trajectories 7

4 Full input trajectories 9

5 API Reference 11

i



ii



OPSPiggybacker Documentation, Release 0.1-dev

OPSPiggybacker is a tool to assist importing other simulation records into OpenPathSampling for analysis. Because
of the extensive metadata that OPS tracks for each move, this isn’t completely trivial. The idea of OPSPiggybacker
is to request a reasonable set of inputs that a user of another path sampling simulation tool can give, and then create
from that a file that can use most of OPS’s standard analysis tools.

The current version, 0.1, only aims to cover one-way shooting moves in a single ensemble, as with TPS simulations.
See the roadmap for future plans.

Contents 1



OPSPiggybacker Documentation, Release 0.1-dev

2 Contents



CHAPTER 1

Installation

TODO

3



OPSPiggybacker Documentation, Release 0.1-dev

4 Chapter 1. Installation



CHAPTER 2

Overview

The overall approach is very similar to the setup of an OPS simulation. You use the standard OPS volume, collective
variable, network, and ensemble objects. The only things that change are the move scheme/path movers, and the
simulation object.

Instead of an OPS move scheme or OPS path movers, you build what we call a mover stub. Cur-
rently, the ShootingStub is the only mover stub supported. The ShootingStub is analogous to an
OneWayShootingMover in OpenPathSampling. It is initialized with an ensemble, a selector (only
UniformSelector is currently supported) and optionally an engine.

Once you’ve defined the mover stub, you create a pseudo-simulator. Currently, the only supported pseudo-simulator
is the ShootingPseudoSimulator. The pseudo-simulator plays the same role as a PathSampling object
in OpenPathSampling. It is initialized with a storage, a set of initial_conditions (in the form of an
openpathsampling.SampleSet), a network, and a mover stub called mover, which takes the place of the
move scheme used in OPS.

Once this is done, you simply use the run method of the ShootingPseudoSimulator to generate your file.
However, whereas the run method of the PathSampling object in OPS takes an integer with a number of steps, in
OPSPiggybacker, you must provide the output of your previous simulation to the run method of the pseudo-simulator.
The following subsection will describe the moves.

5



OPSPiggybacker Documentation, Release 0.1-dev

6 Chapter 2. Overview



CHAPTER 3

Partial input trajectories

7



OPSPiggybacker Documentation, Release 0.1-dev

8 Chapter 3. Partial input trajectories



CHAPTER 4

Full input trajectories

One of the input options for shooting moves is to use full input trajectories (pre_joined=True). In this case, the
input trajectory must be an OPS format trajectory for the full trial trajectory. In addition, the frames which are shared
with other trajectories must be identical in memory frames. Since this is quite hard to do, it is usually easier to use the
pre_joined=False version with partial input trajectories.

However, we full input trajectories, you don’t need to specify whether a given trial was forward or backward: the
OPSPiggybacker can figure that out for you.

This is in the format of a list of 4-tuples (replica, trial_trajectory, shooting_point_index,
accepted), where each 4-tuple represents a trial move. In detail, the elements of the tuple are:

• replica: the replica ID. Currently always the same (usually 0).

• trial_trajectory: the generated trial trajectory, as an openpathsampling.engine.Trajectory
object. Note that there are two tricky things here. First, this must be the entire trial trajectory (not just the part
generated during one-way shooting). Second, frames which are shared between two trajectories much actually
be the same object in memory. This means that you have to rebuild the shooting process for your trajectories.
(TODO: find ways to make this part easier on people)

• shooting_point_index: the frame number of the shooting point from the previous trajectory (counting
from 0).

• accepted: boolean as to whether this trial move was accepted.

That’s it! If you can make that tuple for each of your moves, you can import those moves into OPS for analysis.

9



OPSPiggybacker Documentation, Release 0.1-dev

10 Chapter 4. Full input trajectories



CHAPTER 5

API Reference

5.1 Mover Stubs

5.2 Simulation Stubs

11


	Installation
	Overview
	Partial input trajectories
	Full input trajectories
	API Reference

