

 Navigation

 	
 index

 	opnfvdocs latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/opnfvdocs/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/opnfvdocs/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	opnfvdocs latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 userguide/index.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

OPNFV User Guide

		1. Abstract

		2. Introduction

		3. Feature Overview
		3.1. Feature Configuration Guides

		3.2. Feature User Guides

 © Copyright 2016.
 Created using Sphinx 1.3.5.

userguide/userguide.introduction.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

1. Abstract

OPNFV is a collaborative project aimed at providing a variety of virtualization
deployments intended to host applications serving the networking and carrier
industry. This document provides guidance and instructions for using platform
features designed to support these applications, made available in the OPNFV
Colorado release.

This document is not intended to replace or replicate documentation from other
open source projects such as OpenStack or OpenDaylight, rather highlight the
features and capabilities delivered through the OPNFV project.

2. Introduction

OPNFV provides a suite of scenarios, infrastructure depoyment options, which
are able to be installed to host virtualized network functions (VNFs).
This guide intends to help users of the platform leverage the features and
capabilities delivered by the OPNFV project in support of these applications.

OPNFV Continuous Integration builds, deploys and tests combinations of virtual
infrastructure components in what are defined as scenarios. A scenario may
include components such as OpenStack, OpenDaylight, OVS, KVM etc. where each
scenario will include different source components or configurations. Scenarios
are designed to enable specific features and capabilities in the platform that
can be leveraged by the OPNFV user community.

3. Feature Overview

The following links outline the feature deliveries from the participant OPNFV
projects in the Colorado release. Each of the participating projects provides
detailed descriptions about the delivered features. Including use cases,
implementation and configuration specifics on a per OPNFV project basis.

The following are Configuration Guides and User Guides and assume that the reader has already some
information about a given projects specifics and deliverables. These guides
are intended to be used following the installation of a given OPNFV installer
to allow a user to deploy and implement feature delivered by OPNFV.

If you are unsure about the specifics of a given project, please refer to the
OPNFV projects home page, found on http://wiki.opnfv.org, for specific details.

You can find project specific usage and configuration information below:

3.1. Feature Configuration Guides

		Armband configuration guide [http://artifacts.opnfv.org/armband/colorado/docs/installationprocedure/index.html]

		Copper configuration guide [http://artifacts.opnfv.org/copper/colorado/docs/installationprocedure/index.html]

		Doctor configuration guide [http://artifacts.opnfv.org/doctor/colorado/docs/installationprocedure/index.html]

		IPv6 configuration guide [http://artifacts.opnfv.org/ipv6/colorado/docs/installationprocedure/index.html]

		KVMforNFV configuration guide [http://artifacts.opnfv.org/kvmfornfv/colorado/docs/installationprocedure/index.html]

		Moon configuration guide [http://artifacts.opnfv.org/moon/colorado/docs/installationprocedure/index.html]

		Multisite configuration guide [http://artifacts.opnfv.org/multisite/colorado/installationprocedure/index.html]

		ONOSFW configuration guide [http://artifacts.opnfv.org/onosfw/colorado/installationprocedure/index.html]

		OVSNFV configuration guide [http://artifacts.opnfv.org/ovsnfv/colorado/docs/configguide-single/index.html]

		Promise configuration guide [http://artifacts.opnfv.org/promise/colorado/docs/installationprocedure/index.html]

		SFC configuration guide [http://artifacts.opnfv.org/sfc/colorado/docs/installationprocedure/index.html]

3.2. Feature User Guides

		Copper user guide [http://artifacts.opnfv.org/copper/colorado/docs/userguide/index.html]

		Doctor user guide [http://artifacts.opnfv.org/doctor/colorado/docs/userguide/index.html]

		Domino user guide [http://artifacts.opnfv.org/domino/docs/userguide/index.html]

		IPv6 user guide [http://artifacts.opnfv.org/ipv6/colorado/docs/userguide/index.html]

		KVMforNFV user guide [http://artifacts.opnfv.org/kvmfornfv/colorado/docs/userguide-single/index.html]

		Moon user guide [http://artifacts.opnfv.org/moon/colorado/docs/userguide/index.html]

		Multisite user guide [http://artifacts.opnfv.org/multisite/colorado/userguide/index.html]

		ONOSFW user guide [http://artifacts.opnfv.org/onosfw/colorado/userguide/index.html]

		OVSNFV user guide [http://artifacts.opnfv.org/ovsnfv/colorado/docs/userguide-single/index.html]

		Parser user guide [http://artifacts.opnfv.org/parser/colorado/docs/userguide/index.html]

		Promise user guide [http://artifacts.opnfv.org/promise/colorado/docs/userguide/index.html]

		SDNVPN user guide [http://artifacts.opnfv.org/sdnvpn/colorado/docs/userguide/index.html]

		SFC user guide [http://artifacts.opnfv.org/sfc/colorado/docs/userguide/index.html]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/weather-dash.jpg

_images/weather-overcast1.jpg

opnfvsecguide/contribution.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

How to Contribute

Anyone is welcome to make additions, raise bugs, and fix issues within this Documentation.
To do so, you will however need to first get an enviroment set up.

Development Environment

All project data such as formatting guidelines, and upstream mapping is documented via sphinx
which uses reStructuredText

It is recommended that you use a python virtualenv to keep things clean and contained.

VirtualEnv

Use of a virtual environment is recommended, as not only is it a quick easy form of
getting the needed modules in place, it isolates the module versions to a project.

From within your inspector directory, set up a new virtualenv:

virtualenv venv

Activate the new virtual environment:

source venv/bin/activate

Install requirements:

pip install -r requirements.txt

Sphinx Basics

To get started with sphinx, visit the main tutorial which will provide a primer http://sphinx-doc.org/tutorial.html

Hack your changes into opnfv-security-guide/source

To compile changes:

make html

From here you can run a basic python web server or just navigate to the
file:///<repo>/opnfv-security-guide/build/html/index.html in your browser

 © Copyright 2016.
 Created using Sphinx 1.3.5.

configurationguide/abstract.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Abstract

This document provides guidance for the configurations available in the
Colorado release of OPNFV.

The release includes four installer tools leveraging different
technologies; Apex, Compass4nfv, Fuel and JOID, which deploy
components of the platform.

This document also includes the selection of tools and
components including guidelines for how to deploy and configure
the platform to an operational state.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

opnfvsecguide/introduction.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Introduction

The OPNFV Security Guide is the collaborative work of many individuals,
involved in both the OPNFV Security Group and the wider OPNFV community.

The purpose of this guide is to provide the best practice security guidelines for
deploying the OPNFV platfornm. It is a living document that is updated as
new changes are merged into it’s repository.

		Background

		Acknowledgements

 © Copyright 2016.
 Created using Sphinx 1.3.5.

configurationguide/index.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

OPNFV Configuration Guide

Colorado 1.0

		Abstract

		Configuration Options
		OPNFV Scenarios

		Configuration of <feature>
		Pre-configuration activities

		Hardware configuration

		Scenario description

 © Copyright 2016.
 Created using Sphinx 1.3.5.

opnfvsecguide/compute.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Compute Security

		DAC & MAC Controls

		Trusted Compute
		Secure Boot

		Trusted Compute Pools

 © Copyright 2016.
 Created using Sphinx 1.3.5.

configurationguide/configuration.options.render.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Configuration Options

OPNFV provides a variety of virtual infrastructure deployments called scenarios designed to
host virtualised network functions (VNF’s). Each scenario provide specific capabilities and/or
components aimed to solve specific problems for the deployment of VNF’s. A scenario may include
components such as OpenStack, OpenDaylight, OVS, KVM etc. where each scenario will
include different source components or configurations.

OPNFV Scenarios

Each OPNFV scenario provides unique features and capabilities, it is important to understand
your target platform capabilities before installing and configuring your target scenario.
This configuration guide outlines how to install and configure components in order to enable
the features you require.

Scenarios are implemented as deployable compositions through integration with an installation tool.
OPNFV supports multiple installation tools and for any given release not all tools will support all
scenarios. While our target is to establish parity across the installation tools to ensure they
can provide all scenarios, the practical challenge of achieving that goal for any given feature and
release results in some disparity.

Brahmaputra scenario overeview

The following table provides an overview of the installation tools and available scenario’s
in the Brahmaputra release of OPNFV.

[image: OPNFV Brahmaputra Scenario Matrix]
Scenario status is indicated by a weather pattern icon. All scenarios listed with
a weather pattern are possible to deploy and run in your environment or a Pharos lab,
however they may have known limitations or issues as indicated by the icon.

Weather pattern icon legend:

		Weather Icon
		Scenario Status

		[image: ../_images/weather-clear.jpg]

		Stable, no known issues

		[image: ../_images/weather-few-clouds.jpg]

		Stable, documented limitations

		[image: ../_images/weather-overcast.jpg]

		Deployable, stability or feature limitations

		[image: ../_images/weather-dash.jpg]

		Not deployed with this installer

Scenarios that are not yet in a state of “Stable, no known issues” will continue to be stabilised
and updates will be made on the stable/brahmaputra branch. While we intend that all Brahmaputra
scenarios should be stable it is worth checking regularly to see the current status. Due to
our dependency on upstream communities and code some issues may not be resolved prior to the C release.

Scenario Naming

In OPNFV scenarios are identified by short scenario names, these names follow a scheme that
identifies the key components and behaviours of the scenario. The rules for scenario naming are as follows:

os-[controller]-[feature]-[mode]-[option]

		Details of the fields are

		
		os: mandatory
		Refers to the platform type used

		possible value: os (OpenStack)

		[controller]: mandatory

		Refers to the SDN controller integrated in the platform

		example values: nosdn, ocl, odl, onos

		[feature]: mandatory
		Refers to the feature projects supported by the scenario

		example values: nofeature, kvm, ovs, sfc

		[mode]: mandatory
		Refers to the deployment type, which may include for instance high availability

		possible values: ha, noha

		[option]: optional
		Used for the scenarios those do not fit into naming scheme.

		The optional field in the short scenario name should not be included if there is no optional scenario.

Some examples of supported scenario names are:

		os-nosdn-kvm-noha
		This is an OpenStack based deployment using neutron including the OPNFV enhanced KVM hypervisor

		os-onos-nofeature-ha
		This is an OpenStack deployment in high availability mode including ONOS as the SDN controller

		os-odl_l2-sfc
		This is an OpenStack deployment using OpenDaylight and OVS enabled with SFC features

Installing your scenario

There are two main methods of deploying your target scenario, one method is to follow this guide which will
walk you through the process of deploying to your hardware using scripts or ISO images, the other method is
to set up a Jenkins slave and connect your infrastructure to the OPNFV Jenkins master.

For the purposes of evaluation and development a number of Brahmaputra scenarios are able to be deployed
virtually to mitigate the requirements on physical infrastructure. Details and instructions on performing
virtual deployments can be found in the installer specific installation instructions.

To set up a Jenkins slave for automated deployment to your lab, refer to the Jenkins slave connect guide. [http://artifacts.opnfv.org/brahmaputra.1.0/docs/opnfv-jenkins-slave-connection.brahmaputra.1.0.html]

This document will describe how to install and configure your target OPNFV scenarios.
Remember to check the associated validation procedures section following your installation for
details of the use cases and tests that have been run.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

opnfvsecguide/index.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Welcome to OPNFV Security Guide

This guide seeks to inform operators who to secure and maintain the security of the OPNFV Platform and its components.

Contents:

		Introduction
		Background

		Acknowledgements

		Compute Security
		DAC & MAC Controls

		Trusted Compute

		Network Security
		Neutron Security

		How to Contribute
		Development Environment

		Audit
		Source information

 © Copyright 2016.
 Created using Sphinx 1.3.5.

configurationguide/feature.configuration.description.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Configuration of <feature>

Add a brief introduction to configure OPNFV with this specific feature including
dependancies on platform components, this description should be at a level that
will apply to any installer providing the pre-requisite components.

Pre-configuration activities

Describe specific pre-configuration activities. This should include ensuring the
right components are installed by the installation tools as required for your
feature to function. Refer to the previous installer configuration chapters,
installations guide and release notes

Hardware configuration

Describe the hardware configuration needed for this specific feature

 © Copyright 2016.
 Created using Sphinx 1.3.5.

opnfvsecguide/compute/trust.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Trusted Compute

Trusted compute is centered on insuring the complete lifecycle of a VM, and
the VM’s underlying infrastructure is of a ‘trustful’ state.

Trusted computing in a cloud environment

To ensure overall security in an OPNFV deployment, both the launch and the
operation of virtualized resources need to be secure. To build a trusted
computing in a cloud environment the following core features are essential:

		boot integrity - the hardware platform can guarantee a trustworthy RoT for the overall cloud environment

		secure management of VMs – to secure the launch and migration of VMs in the cloud environment

In this section we will cover some aspects of what is considered compute
security, such as secure/trusted boot, although of course these can be
extended to other actors such as neutron networking nodes.

Secure Boot

Secure boot, a UEFI-based feature that has become controversial lately,
ensures that nodes in an OPNFV deployment boot only software that is trusted
by the admin or end user.

In order to understand the secure boot procedure, we need to explain the related technology
and specification.

Unified Extensible Firmware Interface (UEFI)

UEFI is a specification intended to be the replacement and improvement on the
old BIOS (Basic Input/Output System).

One UEFI-based feature that has become controversial lately is the secure boot feature.

The UEFI specification is a standard that’s handled by a non-profit organization
with representatives of Intel, AMD, Microsoft, Apple, Dell, HP, IBM and others,
called the Unified EFI Forum.

UEFI supports 32 and 64 bit processors and can be used with Itanium, x86,
x64 and ARM processors.

Trusted Execution Environment (TEE) vs Trusted Platform Mobile (TPM)

Two main components of platform security:

		Trusted Execution Environment

		Trusted Platform Module

These are not designed as a replacement of the other. TEE is the bulletproof
safe, while TPM is the 128-digit combination lock for the safe. Both are
needed to ensure the safe is protected.

TPM is a dependency of TEE but not the other way around.

The TPM is where TEE will store the measurements - hash of components - of the platform.

If TEE is not supported by a platform but a TPM is still present you still have
all these features:

		Integrity measurement – securely measure the platform’s components (hashes stored within the TPM)

		Authenticated boot – a process by which a platform’s state (the sum of its
components) is reliably measured and stored

		SRTM - Static Root of Trust for Measurements

		Sealed Storage - encrypt data based on the current state of the platform
or in other words, what has been measured (the PCR hash values stored in the
TPM) - seal operation

		Attestation - securely report to other parties the state of the platform

Trusted Compute Pools

Trusted Boot

Trusted boot (tboot) is an open source, pre- kernel/VMM module that uses
Intel(R) Trusted Execution Technology (Intel(R) TXT) to perform a measured
and verified launch of an OS kernel/VMM. The root of trust is in the hardware
and a TPM is required. Compute nodes in an OPNFV deployment boot with Intel
TXT technology enabled.

Read more about Trusted Boot [http://www.trustedcomputinggroup.org/resources/trusted_boot] and
Trusted Computing. [http://www.trustedcomputinggroup.org/trusted_computing]

Trusted Execution Environments (TEE)

The Trusted Execution Environment is an isolated execution environment which
provides higher level of security such as isolated execution, integrity of
Trusted Applications along with confidentiality of their assets.

Goals of a Trusted Execution Environments:

		Isolated Execution

		Secure Storage

		Remote Attestation

		Secure Provisioning

		Trusted Path

TEE platforms/implementations

		Intel’s TXT (Trusted Execution Technology)

		AMD Secure Execution Environment

		ARM TrustZone

All three of these TEE implementations provide a virtualized Execution
Environment for the secure OS and applications.

To switch between the secure world and the normal world, Intel provides SMX
Instructions, while ARM uses SMC. Programmatically, they all achieve very
similar results.

Read more about Trusted Execution Environments here. [http://www.openvirtualization.org/open-source-arm-trustzone.html]

NIST SP800-147 [http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf]
, is a guidelines for firmware security, to ensure that the firmware itself is secure.

Read more about “Trusted compute pools”, in the
OpenStack Security Guide. [http://docs.openstack.org/admin-guide-cloud/compute-security.html]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

opnfvsecguide/introduction/acknowledgements.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Acknowledgements

 © Copyright 2016.
 Created using Sphinx 1.3.5.

opnfvsecguide/audit.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Audit

		Source information
		Requirements on Auditing framework

		Necessary auditable events

 © Copyright 2016.
 Created using Sphinx 1.3.5.

configurationguide/scenario.description.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Scenario description

This document will describe and link to the scenario installation instructions.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

opnfvsecguide/compute/dacmaccontrols.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

DAC & MAC Controls

 © Copyright 2016.
 Created using Sphinx 1.3.5.

how-to-use-docs/documentation-example.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

1. How to create documentation for your OPNFV project

1.1. Directory Structure

This is the directory structure of the docs/ directory which have to be placed
in the root of your project directory.

./how-to-use-docs/documentation-example.rst
./how-to-use-docs/index.rst

To create your own document, create any number of directories (depending
on your need, e.g. manual) under the docs/ and place an index.rst in each
directories.
The depth of all directory should be one, so that you can make sure that
all directory names are unique. If you want to have set of all documents in
your repo, create new docs/all/index.rst and list document links in OPNFV
artifact server (artifact.opnfv.org) instead of including all other rst files
or having docs/index.rst, in order to avoid having duplicated contents in
your documents.

Note:
You may have “docs/how-to-use-docs/” in you project repo. You can delete it,
since it is sample and master version is stored in opnfvdocs repo.

Note:
During the document build process, ‘docs_build’ and ‘docs_output’ will be
created in the project root directory. To avoid conflict, you should not
use those names and should add the following entries in ‘.gitignore’ file
so that git can ignore built files.

/docs_build/
/docs_output/

1.2. Index File

This index file must refence your other rst files in that directory.

Here is an example index.rst :

Documentation Title

.. toctree::
 :numbered:
 :maxdepth: 2

 documentation-example.rst

1.3. Source Files

Document source files have to be written in reStructuredText format (rst).
Each file would be build as an html page.

Here is an example source rst file :

=============
Chapter Title
=============

Section Title
=============

Hello!

1.4. Writing RST Markdown

See http://sphinx-doc.org/rest.html .

Hint:
You can add dedicated contents by using ‘only’ directive with build type
(‘html’ and ‘singlehtml’) for OPNFV document. But, this is not encouraged to
use since this may make different views.

.. only:: html
 This line will be shown only in html version.

1.5. Configuration

If you need to change the default configuration for document build, create
new conf.py in the document directory (e.g. ‘docs/how-to-use-docs/conf.py’)
that will be used in build process instead of default for OPNFV document
build.
During the build process, the following default parameters are automatically
added if they are not set in the conf.py.

		extensions =
[‘sphinxcontrib.httpdomain’,
‘sphinx.ext.autodoc’,
‘sphinx.ext.viewcode’,
‘sphinx.ext.napoleon’]

		needs_sphinx = ‘1.3’

		numfig = True

		master_doc = ‘index’

		pygments_style = ‘sphinx’

		html_use_index = False

		html_logo = ‘opnfv-logo.png’

		html_sidebars = {‘**’: [‘globaltoc.html’,
‘path to opnfvdocs dir/etc/pagemenu.html’,
‘searchbox.html’]}

		release = ‘git last tag name (git last commit hash)’

		version = ‘git last tag name (git last commit hash)’

		project = ‘git repo name‘

		copyright = ‘year, OPNFV’

		rst_epilog = ‘ Revision:git last commit hashn Build date:build date in year-month-date format‘

Note:
You can leave the file path for OPNFV logo image which will be prepared
before each document build.

1.6. Versioning

The relevant release and version information will be added to your documents
by using tags from your project’s git repository.
The tags will be applied by Releng Project.

1.7. Testing

You can test document build in your laptop by using build script which is
also used in document build jobs below:

$ sudo pip install virtualenv
$ cd /local/repo/path/to/project
$ git clone https://git.opnfv.org/opnfvdocs docs_build/_opnfvdocs
$./docs_build/_opnfvdocs/scripts/docs-build.sh

Then, you can see the docs in ‘docs_output’ directory if build succeeded.

If you have a problem of missing python package, you can make sure all
necessary packages are installed as follows:

$ sudo pip install Sphinx==1.3.1 doc8 sphinxcontrib-httpdomain

Note:
Developers are encouraged to use
“ssh://<username>@gerrit.opnfv.org:29418/opnfvdocs”
instead of “https://git.opnfv.org/opnfvdocs”, so that you can quickly start
development in opnfvdocs.
See https://wiki.opnfv.org/display/DEV/Developer+Getting+Started for more detail.

1.8. Jenkins Jobs

1.8.1. Enabling Jenkins Jobs

Jenkins in OPNFV infra performs the jobs to verify and update your documents.
To make your project repository watched by Jenkins to execute those jobs, you
have to add your project name in ‘project-pattern’ of the following jobs by
sending patch to update jjb/opnfv/opnfv-docs.yml [https://gerrit.opnfv.org/gerrit/gitweb?p=releng.git;a=blob;f=jjb/opnfv/opnfv-docs.yml;] on gerrit.

1.8.2. Verify Job

The verify job name is opnfv-docs-verify.

When you send document changes to gerrit, jenkins will create your documents
in HTML formats (normal and single-page) to verify that new document can be
built successfully. Please check the jenkins log and artifact carefully.
You can improve your document even though if the build job succeeded.

Documents will be uploaded to
http://artifacts.opnfv.org/review/<Change Number>/ for review.
Those documents will be replaced if you update the change by sending new
patch set to gerrit, and deleted after the change is merged.
Document link(s) can be found in your change page on gerrit as a review
comment.

1.8.3. Merge Job

The merge job name is opnfv-docs-merge.

Once you are happy with the look of your documentation, you can submit the
change. Then, the merge job will upload latest build documents to
http://artifacts.opnfv.org/<Project Name>/docs/ .
You can put links in your project wiki page, so that everyone can see the
latest document always.

1.9. Sphinx Extensions

You can see available sphinx extension(s) in opnfvdocs/etc/requirements.txt [https://gerrit.opnfv.org/gerrit/gitweb?p=opnfvdocs.git;a=blob;f=etc/requirements.txt;].

You can use other sphinx extensions to improve your documents.
To share such improvements, we encourage you to enable the extension in OPNFV infra
by asking releng and opnfvdocs teams to add new sphinx extension via gerrit
(proposing change in opnfvdocs/scripts/docs-build.sh [https://gerrit.opnfv.org/gerrit/gitweb?p=opnfvdocs.git;a=blob;f=scripts/docs-build.sh;] and opnfvdocs/etc/requirements.txt [https://gerrit.opnfv.org/gerrit/gitweb?p=opnfvdocs.git;a=blob;f=etc/requirements.txt;]).
After quick sanity checks, we’ll merge the patch to make it available in OPNFV
document build.

1.10. Hooks

The document builder script supports pre-hook. If you need to execute some
commands before starting to build process (e.g. generate API rst from codes),
create ‘<your repo>/docs/pre-hook.sh’ which will be executed (using ‘source’)
once before all document build start.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

opnfvsecguide/introduction/background.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Background

Pre-virtualization security protection was largely centered on the network.
Malicious attacks from hostile machines, would seek to exploit network based
operating systems and applications, with the goal of compromising their
target node.

Physical security had always been a much simpler business, with most focus on
the secure access of the data center hardware.
In-turn security was built up in layers (defense in depth) where machines
would be
daisy chained with network cables via security appliances to provide
controlled segmentation and isolation.
This form of security was built upon the principle of an ‘air gap’
being present,
whereby machines were separate physical units, joined largely by the
network stack.

With the advent of virtualization (namely the hypervisor), new attack
vectors have
surfaced as the ‘air-gap’ is no longer key design aspect for security.
Further to this elements orchestation nodes and network controllers
lead to an even wider attack surface:

		Guests breaking isolation of the hypervisor.

		Unauthorized access and control of supporting orchestration nodes.

		Unauthorized access and control of supporting overlay network control systems.

The hypervisor and the overlay network have now become the ‘Achilles heel’
whereby all tenant data isolation is enforced within the hypervisor and its
abstraction
of hardware and the virtualized overlay network.

This guide has been formulated, in order to assist users of the OPNFV platform
in securing an Telco NFV / SDN environment.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

opnfvsecguide/network/neutron.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Neutron Security

 © Copyright 2016.
 Created using Sphinx 1.3.5.

glossary/index.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

OPNFV Glossary

Contents

This glossary provides a common definition of phrases and words commonly used in OPNFV.

A

Arno

A river running through Tuscany and the name of the first OPNFV release.

		API

		Application Programming Interface

B

Brahmaputra

A river running through Asia and the name of the Second OPNFV release.

C

Colorado

A river in Argentina and the name of the Third OPNFV release.

D

DPDK

Data Plane Development Kit

DPI

Deep Packet Inspection

DSCP

Differentiated Services Code Point

I

IGMP

Internet Group Management Protocol

IOPS

Input/Output Operations Per Second

N

NFV

Network Functions Virtualisation, an industry initiative to leverage virtualisation technologies in carrier networks.

NFVI

Network Function Virtualization Infrastructure

NIC

Network Interface Controller

O

OPNFV

Open Platform for NFV, an open source project developing an NFV reference platform and features.

V

VLAN

A virtual local area network, typically an isolated ethernet network.

VM

Virtual machine, an emulation in software of a computer system.

VNF

Virtual network function, typically a networking application or function running in a virtual environment.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

opnfvsecguide/getting_started.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Getting Started

Development Environment

All project data such as formatting guidelines, and upstream mapping is documented via sphinx
which uses reStructuredText

VirtualEnv

Use of a virtual environment is recommended, as not only is it a quick easy form of
getting the needed modules in place, it isolates the module versions to a project.

From within your inspector directory, set up a new virtualenv:

virtualenv venv

Activate the new virtual environment:

source venv/bin/activate

Install requirements:

pip install -r requirements.txt

Sphinx Basics

To get started with sphinx, visit the main tutorial which will provide a primer
http://sphinx-doc.org/tutorial.html

Hack your changes into opnfv-security-guide/source

To compile changes:

make html

From here you can run a basic python web server or just navigate to the
file:///<repo>/opnfv-security-guide/build/html/index.html in your browser

 © Copyright 2016.
 Created using Sphinx 1.3.5.

testframework/framework.userguide.render.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

<test framework> userguide and reporting document

 © Copyright 2016.
 Created using Sphinx 1.3.5.

testframework/opnfv.testframework.overview.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Using the test frameworks in OPNFV

Testing is one of the key activities in OPNFV, validation can include component level testing,
system testing, automated deployment validation and performance characteristics testing.

The following section outlines how to use the test projects that are delivered on the
OPNFV platform for the purpose of testing components and VNFs in the context of a
Brahmaputra deployment.

Needs to be completed according to the testing WG needs.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

opnfvsecguide/network.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Network Security

		Neutron Security

 © Copyright 2016.
 Created using Sphinx 1.3.5.

feature.templates/userguide/feature.userguide.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

<Feature> description

<Feature> capabilities and usage

<Feature and API usage guidelines and example>

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

opnfvsecguide/audit/audit_reqs.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

 Requirements references related to OPNFV Audit

Source information

http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/003/01.01.01_60/gs_NFV-INF003v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/004/01.01.01_60/gs_NFV-INF004v010101p.pdf

		ETSI GS NFV-SEC 003 V1.1.1 (2014-12)
		Network Functions Virtualisation NFV);

		NFV Security; Security and Trust Guidance

		NFV-SEC-003 [http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/003/01.01.01_60/gs_NFV-SEC003v010101p.pdf].

		ETSI GS NFV 004 V1.1.1 (2013-10)
		Network Functions Virtualisation (NFV);

		Virtualisation Requirements

		NFV-SEC-004 [http://www.etsi.org/deliver/etsi_gs/NFV/001_099/004/01.01.01_60/gs_NFV004v010101p.pdf].

Requirements on Auditing framework

Audit records shall be maintained within protected binary logs so that the record of
malicious actions cannot be deleted from the logs.

Necessary auditable events

		access control management

		Adding a user account

		Modifying user account

		Deleting a user account

		login event

		logout event

		IP whitelisting update

		IP blacklisting update

		VNFC Creation

		The instantiation of a newly-defined VNFC

		The instantiation of a VNFC with pre-configured state

		The cloning of an existing VNFC

		VNFC Deletion

		The deletion of VNFC and of all of its instances (e.g. snapshots, backups, archives, cloned images)

		Software management

		patching e.g. opreating system, drivers, VM components

		dynamic updates to the configuration e.g. DNS, DHCP

		application software updates

		software component updates

		Data management

		Root level access to NFVI file system

		User level access to NFVI file system

		Secured wipe, disk and memory

		Verified destruction

		Certificate revocation

		VNFC Migration

		VNFC original host identity

		VNFC target host identity

		high availability

		recovery

		data-in-motion changes

		Other VNFC Operational State Changes

		Hibernation, sleep, resumption, abort, restore, suspension

		Power-on and power-off (either physical or virtual)

		Integrity verification failure, crash and OS compromise

		VNFC Topology Changes

		Network IP address and VLAN updates

		Service chaining

		Failover and disaster recovery

		traffic inspection

		enabling virtual port mirroring

		enabling hypervisor introspection

		enabling in-line traffic inspection

		application insertion

		initial provisioning of a public/private key pair

		Self-generation of key pairs for later validation by an external party:

		Certificate Authority

		VNFM

		Provision by trusted party

		network

		storage

		Injection by hypervisor

 © Copyright 2016.
 Created using Sphinx 1.3.5.

feature.templates/userguide/index.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

<feature> user guide

 © Copyright 2016.
 Created using Sphinx 1.3.5.

feature.templates/scenarios/scenario.name/index.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

<scenario> overview and description

		Introduction

		Scenario components and composition

		Scenario usage overview

		Limitations, Issues and Workarounds

		References

 © Copyright 2016.
 Created using Sphinx 1.3.5.

feature.templates/scenarios/scenario.name/scenario.description.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Introduction

Scenario components and composition

Scenario usage overview

Limitations, Issues and Workarounds

References

For more information on the OPNFV Colorado release, please visit
http://www.opnfv.org/colorado

 © Copyright 2016.
 Created using Sphinx 1.3.5.

testframework/framework.installation.procedure.render.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

<test framework> preparation and installation

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

scenario/scenariointro.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

OPNFV Scenarios

The OPNFV project provides an integration and deployment environment for a variety of components
that can make up a virtualisation platform. OPNFV identifies these variations on the composition of
the platform as scenarios.

A scenario in OPNFV can be defined as “a deployment of a specific set of platform components”. The
composition of a scenario may include specific SDN controller technologies, specific accelerate
switching technologies, or even specific configurations of components to achieve targeted platform
capabilities. Each scenario behaves differetly and it is important to understand the behaviour you
want in order to target the specific scenario you wish to deploy prior to working with the
OPNFV platform.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

testframework/index.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

OPNFV Test Framework document

		Using the test frameworks in OPNFV

		<test framework> preparation and installation

		<test framework> userguide and reporting document

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

scenario/scenariomatrix.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

 Scenarios are implemented as deployable compositions through integration with an installation tool.
OPNFV supports multiple installation tools and for any given release not all tools will support all
scenarios. While our target is to establish parity across the installation tools to ensure they
can provide all scenarios, the practical challenge of achieving that goal for any given feature and
release results in some disparity.

Brahmaputra scenario overeview

The following table provides an overview of the installation tools and available scenario’s
in the Brahmaputra release of OPNFV.

[image: OPNFV Brahmaputra Scenario Matrix]
Scenario status is indicated by a weather pattern icon. All scenarios listed with
a weather pattern are possible to deploy and run in your environment or a Pharos lab,
however they may have known limitations or issues as indicated by the icon.

Weather pattern icon legend:

		Weather Icon
		Scenario Status

		[image: ../_images/weather-clear1.jpg]

		Stable, no known issues

		[image: ../_images/weather-few-clouds1.jpg]

		Stable, documented limitations

		[image: ../_images/weather-overcast1.jpg]

		Deployable, stability or feature limitations

		[image: ../_images/weather-dash1.jpg]

		Not deployed with this installer

Scenarios that are not yet in a state of “Stable, no known issues” will continue to be stabilised
and updates will be made on the stable/brahmaputra branch. While we intend that all Brahmaputra
scenarios should be stable it is worth checking regularly to see the current status. Due to
our dependency on upstream communities and code some issues may not be resolved prior to the C release.

Scenario Naming

In OPNFV scenarios are identified by short scenario names, these names follow a scheme that
identifies the key components and behaviours of the scenario. The rules for scenario naming are as follows:

os-[controller]-[feature]-[mode]-[option]

		Details of the fields are

		
		os: mandatory
		Refers to the platform type used

		possible value: os (OpenStack)

		[controller]: mandatory

		Refers to the SDN controller integrated in the platform

		example values: nosdn, ocl, odl, onos

		[feature]: mandatory
		Refers to the feature projects supported by the scenario

		example values: nofeature, kvm, ovs, sfc

		[mode]: mandatory
		Refers to the deployment type, which may include for instance high availability

		possible values: ha, noha

		[option]: optional
		Used for the scenarios those do not fit into naming scheme.

		The optional field in the short scenario name should not be included if there is no optional scenario.

Some examples of supported scenario names are:

		os-nosdn-kvm-noha
		This is an OpenStack based deployment using neutron including the OPNFV enhanced KVM hypervisor

		os-onos-nofeature-ha
		This is an OpenStack deployment in high availability mode including ONOS as the SDN controller

		os-odl_l2-sfc
		This is an OpenStack deployment using OpenDaylight and OVS enabled with SFC features

Installing your scenario

There are two main methods of deploying your target scenario, one method is to follow this guide which will
walk you through the process of deploying to your hardware using scripts or ISO images, the other method is
to set up a Jenkins slave and connect your infrastructure to the OPNFV Jenkins master.

For the purposes of evaluation and development a number of Brahmaputra scenarios are able to be deployed
virtually to mitigate the requirements on physical infrastructure. Details and instructions on performing
virtual deployments can be found in the installer specific installation instructions.

To set up a Jenkins slave for automated deployment to your lab, refer to the Jenkins slave connect guide. [http://artifacts.opnfv.org/brahmaputra.1.0/docs/opnfv-jenkins-slave-connection.brahmaputra.1.0.html]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

scenario/featurematrix.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

 Each scenario provides a set of platform capabilities and features that it supports. It is
possible to identify which features are provided by reviewing the scenario name, however
not all features and capabilities are discernible from the name itself.

Brahmaputra feature support matrix

The following table provides an overview of the available scenarios and supported features
in the Brahmaputra release of OPNFV.

[image: OPNFV Brahmaputra Feature Matrix]
The table above provides an overview of which scenarios will support certain feature capabilities.
The table does not indicate if the feature or scenario has limitations. Refer to the
Configuration Guide [http://artifacts.opnfv.org/opnfvdocs/brahmaputra/docs/configguide/configoptions.html#opnfv-scenarios]
for details on the state of each scenario and further information.

Feature development in the Brahmaputra release often consisted of the development of specific
requirements and the further integration and validation of those requirements. This results in some
features only being supported on the platform when a specific scenario, providing the
capabilities necessary to run the feature, is deployed.

Scenario Naming

In OPNFV, scenarios are identified by short scenario names. These names follow a scheme that
identifies the key components and behaviours of the scenario, the rules for scenario naming are as follows:

os-[controller]-[feature]-[mode]-[option]

For example: os-nosdn-kvm-noha provides an OpenStack based deployment using neutron including
the OPNFV enhanced KVM hypervisor.

The [feature] tag in the scenario name describes the main feature provided by the scenario.
This scenario may also provide support for features, such as advanced fault management, which are
not apparent in the scenario name.
The following section describes the features available in each scenario.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

scenario/scenariovalidation.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment-close.png

_static/comment.png

how-to-use-docs/index.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Example Documentation

		1. How to create documentation for your OPNFV project
		1.1. Directory Structure

		1.2. Index File

		1.3. Source Files

		1.4. Writing RST Markdown

		1.5. Configuration

		1.6. Versioning

		1.7. Testing

		1.8. Jenkins Jobs

		1.9. Sphinx Extensions

		1.10. Hooks

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

_static/minus.png

documentation/index.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

OPNFV Documentation

Colorado Release Documentation

OPNFV release documentation is structured with brief platform-level documents referencing
more detailed installation instructions and descriptive documentation.

Platform documentation

		OPNFV platform overview document [http://artifacts.opnfv.org/opnfvdocs/colorado/docs/overview/index.html]

		OPNFV Installation instruction [http://artifacts.opnfv.org/opnfvdocs/colorado/docs/installationprocedure/index.html]

		OPNFV user guide [http://artifacts.opnfv.org/opnfvdocs/colorado/docs/userguide/index.html]

Installation instructions

		Apex installation instruction [http://artifacts.opnfv.org/apex/colorado/docs/installationprocedure/index.html]

		Apex release notes [http://artifacts.opnfv.org/apex/colorado/docs/releasenotes/index.html]

		Compass installation instruction [http://artifacts.opnfv.org/compass4nfv/colorado/docs/installationprocedure/index.html]

		Compass release notes [http://artifacts.opnfv.org/compass4nfv/colorado/docs/releasenotes/index.html]

		Fuel installation instruction [http://artifacts.opnfv.org/fuel/colorado/docs/installationprocedure/index.html]

		Fuel release notes [http://artifacts.opnfv.org/fuel/colorado/docs/releasenotes/index.html]

		Joid installation instruction [http://artifacts.opnfv.org/joid/colorado/docs/installationprocedure/index.html]

		Joid release notes [http://artifacts.opnfv.org/joid/colorado/docs/releasenotes/index.html]

Feature project documentation

ARMband project

		Installation instruction [http://artifacts.opnfv.org/armband/colorado/docs/installationprocedure/index.html]

		Release notes [http://artifacts.opnfv.org/armband/colorado/docs/releasenotes/index.html]

Copper release documentation

		Design documentation [http://artifacts.opnfv.org/copper/colorado/docs/design/index.html]

		Installation instruction [http://artifacts.opnfv.org/copper/colorado/docs/installationprocedure/index.html]

		User guide [http://artifacts.opnfv.org/copper/colorado/docs/userguide/index.html]

		Release notes [http://artifacts.opnfv.org/copper/colorado/docs/releasenotes/index.html]

Doctor features and capabilities

		Project overview [http://artifacts.opnfv.org/doctor/colorado/docs/platformoverview/index.html]

		User guide [http://artifacts.opnfv.org/doctor/colorado/docs/userguide/index.html]

		Release notes [http://artifacts.opnfv.org/doctor/colorado/docs/releasenotes/index.html]

Domino features and capabilities

		User guide [http://artifacts.opnfv.org/domino/colorado/docs/userguide/index.html]

FastDataStacks feature and scenario documentation

		OpenDaylight integrated fd.io scenario description [http://artifacts.opnfv.org/fds/colorado/scenarios_os-odl_l2-fdio-noha/index.html]

IPv6 platform support and capability

		Configuration guide [http://artifacts.opnfv.org/ipv6/colorado/docs/installationprocedure/index.html]

		User guide [http://artifacts.opnfv.org/ipv6/colorado/docs/userguide/index.html]

KVM for NFV

		Installation instruction [http://artifacts.opnfv.org/kvmfornfv/colorado/docs/installationprocedure/index.html]

		Configuration guide [http://artifacts.opnfv.org/kvmfornfv/colorado/docs/configurationguide/index.html]

		User guide [http://artifacts.opnfv.org/kvmfornfv/colorado/docs/userguide/index.html]

		Release notes [http://artifacts.opnfv.org/kvmfornfv/colorado/docs/releasenotes/index.html]

MOON security management for NFV

		Project and Scenario overview [http://artifacts.opnfv.org/moon/colorado/docs/colorado_scenarios_os-odl_l2-moon-ha/index.html]

		Installation instruction [http://artifacts.opnfv.org/moon/colorado/docs/installationprocedure/index.html]

		Configuration guide [http://artifacts.opnfv.org/moon/colorado/docs/configurationguide/index.html]

		User guide [http://artifacts.opnfv.org/moon/colorado/docs/userguide/index.html]

		Release notes [http://artifacts.opnfv.org/moon/colorado/docs/releasenotes/index.html]

Multisite datacenter project

		Installation instruction [http://artifacts.opnfv.org/multisite/colorado/installationprocedure/index.html]

		User guide [http://artifacts.opnfv.org/multisite/colorado/userguide/index.html]

		Release notes [http://artifacts.opnfv.org/multisite/colorado/releasenotes/index.html]

Network readiness project

		Requirements document [http://artifacts.opnfv.org/netready/colorado/docs/requirements/index.html]

ONOS framework project

		Installation instruction [http://artifacts.opnfv.org/onosfw/colorado/docs/installationprocedure/index.html]

		User guide [http://artifacts.opnfv.org/onosfw/colorado/docs/userguide/index.html]

OVSNFV release documentation

		OVS for NFV scenario description [http://artifacts.opnfv.org/ovsnfv/colorado/docs/scenarios_os-nosdn-ovs/index.html]

		Configuration guide [http://artifacts.opnfv.org/ovsnfv/colorado/docs/configguide/index.html]

		User guide [http://artifacts.opnfv.org/ovsnfv/colorado/docs/userguide/index.html]

Parser project

		Parser release documentation [http://artifacts.opnfv.org/parser/colorado/docs/parser_docs/index.html]

		Installation instruction [http://artifacts.opnfv.org/parser/colorado/docs/installationprocedure/index.html]

		User guide [http://artifacts.opnfv.org/parser/colorado/docs/userguide/index.html]

Pharos

		Pharos specification [http://artifacts.opnfv.org/pharos/colorado/docs/specification/index.html]

		Configuration guide [http://artifacts.opnfv.org/pharos/colorado/docs/configguide/index.html]

Promise

		Requirement specification [http://artifacts.opnfv.org/promise/colorado/docs/requirements/index.html]

		Installation and configuration guide [http://artifacts.opnfv.org/promise/colorado/docs/installationprocedure/index.html]

		User guide [http://artifacts.opnfv.org/promise/colorado/docs/userguide/index.html]

SDNVPN

		BGPVPN scenario description [http://artifacts.opnfv.org/sdnvpn/colorado/docs/scenarios_os-odl_l2-bgpvpn/index.html]

		User guide [http://artifacts.opnfv.org/sdnvpn/colorado/docs/userguide/index.html]

		Release notes [http://artifacts.opnfv.org/sdnvpn/colorado/docs/release-notes/index.html]

SFC

		Design documentation [http://artifacts.opnfv.org/sfc/colorado/docs/design/index.html]

		SFC scenario description [http://artifacts.opnfv.org/sfc/colorado/docs/scenarios_os-odl_l2-sfc-noha/index.html]

		High availability SFC scenario description [http://artifacts.opnfv.org/sfc/colorado/docs/scenarios_os-odl_l2-sfc-ha/index.html]

		Installation instruction [http://artifacts.opnfv.org/sfc/colorado/docs/installationprocedure/index.html]

		User guide [http://artifacts.opnfv.org/sfc/colorado/docs/userguide/index.html]

		Release notes [http://artifacts.opnfv.org/sfc/colorado/docs/releasenotes/index.html]

Software fast-path quality metrics documentation

		Release and development documentation [http://artifacts.opnfv.org/fastpathmetrics/colorado/index.html]

Test Project documentation

Bottlenecks documentation

		Installation instruction [http://artifacts.opnfv.org/bottlenecks/colorado/docs/installationprocedure/index.html]

		Release notes [http://artifacts.opnfv.org/bottlenecks/docs/releasenotes/index.html]

Functest documentation

		Configuration guide [http://artifacts.opnfv.org/functest/colorado/docs/configguide/index.html]

		User guide [http://artifacts.opnfv.org/functest/colorado/docs/userguide/index.html]

		Developer guide [http://artifacts.opnfv.org/functest/colorado/docs/devguide/index.html]

		Release notes [http://artifacts.opnfv.org/functest/colorado/docs/release-notes/functest-release.html]

vSwitchPerf documentation

		Release and development documentation [http://artifacts.opnfv.org/vswitchperf/colorado/docs/index.html]

Yardstick documentation

		User guide [http://artifacts.opnfv.org/yardstick/colorado/docs/userguide/index.html]

		Release notes [http://artifacts.opnfv.org/yardstick/colorado/docs/release/index.html]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/comment-bright.png

overview/overview.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

Introduction

Network Functions Virtualization (NFV) is transforming the networking industry via
software-defined infrastructures and open source is the proven method for developing
software quickly for commercial products and services that can move markets.
Open Platform for NFV (OPNFV) facilitates the development and evolution of NFV
components across various open source ecosystems. Through system level integration,
deployment and testing, OPNFV constructs a reference NFV platform to accelerate the
transformation of enterprise and service provider networks.
As an open source project, OPNFV is uniquely positioned to bring together the work
of standards bodies, open source communities, and commercial suppliers to deliver a
de facto NFV platform for the industry.

By integrating components from upstream projects, the community is able to conduct performance
and use case-based testing on a variety of solutions to ensure the platform’s suitability for
NFV use cases. OPNFV also works upstream with other open source communities to bring both contributions
and learnings from its work directly to those communities in the form of blueprints, patches,
and new code.

OPNFV initially focused on building NFV Infrastructure (NFVI) and Virtualised Infrastructure
Management (VIM) by integrating components from upstream projects such as OpenDaylight,
OpenStack, Ceph Storage, KVM, Open vSwitch, and Linux.
More recently, OPNFV has extended its portfolio of forwarding solutions to include fd.io and ODP,
is able to run on both Intel and ARM commercial and white-box hardware, and includes
Management and Network Orchestration MANO components primarily for application composition
and management in the Colorado release.

These capabilities, along with application programmable interfaces (APIs) to other NFV
elements, form the basic infrastructure required for Virtualized Network Functions (VNF)
and MANO components.

Concentrating on these components while also considering proposed projects on additional
topics (such as the MANO components and applications themselves), OPNFV aims to enhance
NFV services by increasing performance and power efficiency improving reliability,
availability and serviceability, and delivering comprehensive platform instrumentation.

OPNFV Platform Architecture

The OPNFV project addresses a number of aspects in the development of a consistent virtualisation
platform including common hardware requirements, software architecture, MANO and applications.

OPNFV Platform Overview Diagram

[image: Overview infographic of the opnfv platform and projects.]
To address these areas effectively, the OPNFV platform architecture can be decomposed
into the following basic building blocks:

		Hardware: with the Infra working group, Pharos project and associated activities

		Software Platform: through the platform integration and deployment projects

		MANO: through the MANO working group and associated projects

		Applications: which affect all other areas and drive requirements for OPNFV

OPNFV Lab Infrastructure

The infrastructure working group oversees such topics as lab management, workflow,
definitions, metrics and tools for OPNFV infrastructure.

Fundamental to the WG is the Pharos Project [https://www.opnfv.org/developers/pharos]
which provides a set of defined lab infrastructures over a geographically and technically
diverse federated global OPNFV lab.

Labs may instantiate bare-metal and virtual environments that are accessed remotely by the
community and used for OPNFV platform and feature development, build, deploy and testing.
No two labs are the same and the heterogeneity of the Pharos environment provides the ideal
platform for establishing hardware and software abstractions providing well understood
performance characteristics.

Community labs are hosted by OPNFV member companies on a voluntary basis.
The Linux Foundation also hosts an OPNFV lab that provides centralized CI
and other production resources which are linked to community labs.
Future lab capabilities will include the ability easily automate deploy and test of any
OPNFV install scenario in any lab environment as well as on a nested “lab as a service”
virtual infrastructure.

OPNFV Software Platform Architecture

The OPNFV software platform is comprised exclusively of open source implementations of
platform component pieces. OPNFV is able to draw from the rich ecosystem of NFV related
technologies available in open-source then integrate, test, measure and improve these
components in conjunction with our source communities.

While the composition of the OPNFV software platform is highly complex and constituted of many
projects and components, a subset of these projects gain the most attention from the OPNFV community
to drive the development of new technologies and capabilities.

Virtual Infrastructure Management

OPNFV derives it’s virtual infrastructure management from one of our largest upstream ecosystems
OpenStack. OpenStack provides a complete reference cloud management system and associated technologies.
While the OpenStack community sustains a broad set of projects, not all technologies are relevant in
an NFV domain, the OPNFV community consumes a sub-set of OpenStack projects where the usage and
composition may vary depending on the installer and scenario.

For details on the scenarios available in OPNFV and the specific composition of components
refer to the OPNFV installation instruction:
https://artifacts.opnfv.org/opnfvdocs/colorado/docs/installationprocedure/index.rst

Operating Systems

OPNFV currently uses Linux on all target machines, this can include Ubuntu, Centos or SUSE linux. The
specific version of Linux used for any deployment is documented in the installation guide.

Networking Technologies

SDN Controllers

OPNFV, as an NFV focused project, has a significant investment on networking technologies
and provides a broad variety of integrated open source reference solutions. The diversity
of controllers able to be used in OPNFV is supported by a similarly diverse set of
forwarding technologies.

There are many SDN controllers available today relevant to virtual environments
where the OPNFV community supports and contributes to a number of these. The controllers
being worked on by the community during this release of OPNFV include:

		Neutron: an OpenStack project to provide “network connectivity as a service” between
interface devices (e.g., vNICs) managed by other OpenStack services (e.g., nova).

		OpenDaylight: addresses multivendor, traditional and greenfield networks, establishing the
industry’s de facto SDN platform and providing the foundation for networks of the future.

		ONOS: a carrier-grade SDN network operating system designed for high availability,
performance, scale-out.

Data Plane

OPNFV extends Linux virtual networking capabilities by using virtual switching
and routing components. The OPNFV community proactively engages with these source
communities to address performance, scale and resiliency needs apparent in carrier
networks.

		FD.io (Fast data - Input/Output): a collection of several projects and libraries to
amplify the transformation that began with Data Plane Development Kit (DPDK) to support
flexible, programmable and composable services on a generic hardware platform.

		Open vSwitch: a production quality, multilayer virtual switch designed to enable
massive network automation through programmatic extension, while still supporting standard
management interfaces and protocols.

Deployment Architecture

A typical OPNFV deployment starts with three controller nodes running in a high availability
configuration including control plane components from OpenStack, SDN, etc. and a minimum
of two compute nodes for deployment of workloads (VNFs).
A detailed description of the hardware requirements required to support the 5 node configuration
can be found in pharos specification: https://artifacts.opnfv.org/pharos/colorado/docs/specification/index.rst

In addition to the deployment on a highly available physical infrastructure, OPNFV can be
deployed for development and lab purposes in a virtual environment. In this case each of the hosts
is provided by a virtual machine and allows control and workload placement using nested virtualization.

The initial deployment is done using a staging server, referred to as the “jumphost”.
This server-either physical or virtual-is first installed with the installation program
that then installs OpenStack and other components on the controller nodes and compute nodes.
See the OPNFV User Guide [http://artifacts.opnfv.org/opnfvdocs/colorado/docs/userguide] for more details.

The OPNFV Testing Ecosystem

The OPNFV community has set out to address the needs of virtualization in the carrier
network and as such platform validation and measurements are a cornerstone to the
iterative releases and objectives.

To simplify the complex task of feature, component and platform validation and characterization
the testing community has established a fully automated method for addressing all key areas of
platform validation. This required the integration of a variety of testing frameworks in our CI
systems, real time and automated analysis of results, storage and publication of key facts for
each run.

Release Verification

The OPNFV community relies on its testing community to establish release criteria for each OPNFV
release. Each release cycle the testing criteria become more stringent and better representative
of our feature and resiliency requirements.

As each OPNFV release establishes a set of deployment scenarios to validate, the testing
infrastructure and test suites need to accommodate these features and capabilities. It’s not
only in the validation of the scenarios themselves where complexity increases, there are test
cases that require multiple datacenters to execute when evaluating features, including multisite
and distributed datacenter solutions.

The release criteria as established by the testing teams include passing a set of test cases
derived from the functional testing project ‘functest,’ a set of test cases derived from our
platform system and performance test project ‘yardstick,’ and a selection of test cases for
feature capabilities derived from other test projects such as bottlenecks, vsperf, cperf and
storperf. The scenario needs to be able to be deployed, pass these tests, and be removed from
the infrastructure iteratively (no less that 4 times) in order to fulfill the release criteria.

Functest

Functest provides a functional testing framework incorporating a number of test suites
and test cases that test and verify OPNFV platform functionality.
The scope of Functest and relevant test cases can be found in its
user guide [http://artifacts.opnfv.org/functest/colorado/docs/userguide/index.html].

Functest provides both feature project and component test suite integration, leveraging
OpenStack and SDN controllers testing frameworks to verify the key components of the OPNFV
platform are running successfully.

Yardstick

Yardstick is a testing project for verifying the infrastructure compliance when running VNF applications.
Yardstick benchmarks a number of characteristics and performance vectors on the infrastructure making it
a valuable pre-deployment NFVI testing tools.

Yardstick provides a flexible testing framework for launching other OPNFV testing projects.

There are two types of test cases in Yardstick:

		Yardstick generic test cases and OPNFV feature test cases;
including basic characteristics benchmarking in compute/storage/network area.

		OPNFV feature test cases include basic telecom feature testing from OPNFV projects;
for example nfv-kvm, sfc, ipv6, Parser, Availability and SDN VPN

System Evaluation and compliance testing

The OPNFV community is developing a set of test suites intended to evaluate a set of reference
behaviors and capabilities for NFV systems developed externally from the OPNFV ecosystem to
evaluate and measure their ability to provide the features and capabilities developed in the
OPNFV ecosystem.

The Dovetail project will provide a test framework and methodology able to be used on any NFV platform,
including an agreed set of test cases establishing an evaluation criteria for exercising
an OPNFV compatible system. The Dovetail project has begun establishing the test framework
and will provide a preliminary methodology for the Colorado release. Work will continue to
develop these test cases to establish a stand alone compliance evaluation solution
in future releases.

Additional Testing

Besides the test suites and cases for release verification, additional testing is performed to validate
specific features or characteristics of the OPNFV platform.
These testing framework and test cases may include some specific needs; such as extended measurements,
additional testing stimuli, or tests simulating environmental disturbances or failures.

These additional testing activities provide a more complete evaluation of the OPNFV platform.
Some of the projects focused on these testing areas include:

VSPERF

VSPERF provides a generic and architecture agnostic vSwitch testing framework and associated tests.
This serves as a basis for validating the suitability of different vSwitch implementations and deployments.

Bottlenecks

Bottlenecks provides a framework to find system limitations and bottlenecks, providing
root cause isolation capabilities to facilitate system evaluation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

overview/index.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

OPNFV Platform Overview Document

		Introduction

		OPNFV Platform Architecture
		OPNFV Lab Infrastructure

		OPNFV Software Platform Architecture
		Virtual Infrastructure Management

		Operating Systems

		Networking Technologies
		SDN Controllers

		Data Plane

		Deployment Architecture

		The OPNFV Testing Ecosystem
		Release Verification
		Functest

		Yardstick

		System Evaluation and compliance testing

		Additional Testing
		VSPERF

		Bottlenecks

 © Copyright 2016.
 Created using Sphinx 1.3.5.

installationprocedure/installation.introduction.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

1. Abstract

The following document provides an overview of the instructions required for the installation
of the Colorado release of OPNFV.

The Colorado release can be installed using a variety of technologies provided by the
integration projects participating in OPNFV: Apex, Compass4Nfv, Fuel and JOID.
Each installer provides the ability to install a common OPNFV platform as well as integrating
additional features delivered through a variety of scenarios by the OPNFV community.

2. Introduction

The OPNFV platform is comprised of a variety of upstream components that may be deployed on your physical
infrastructure. A composition of components, tools and configurations is identified in OPNFV as a
deployment scenario.
The various OPNFV scenarios provide unique features and capabilities that you may want to leverage,
it is important to understand your required target platform capabilities before installing and
configuring your target scenario.

An OPNFV installation requires either a physical, or virtual, infrastructure environment as defined
in the Pharos specification [http://artifacts.opnfv.org/pharos/colorado/docs/specification/index.html].
When configuring a physical infrastructure it is strongly advised to follow the Pharos configuration guidelines.

3. Scenarios

OPNFV scenarios are designed to host virtualised network functions (VNF’s) in a variety of deployment
architectures and locations. Each scenario provides specific capabilities and/or components aimed to
solve specific problems for the deployment of VNF’s.
A scenario may, for instance, include components such as OpenStack, OpenDaylight, OVS, KVM etc...
where each scenario will include different source components or configurations.

To learn more about the scenarios supported in the Colorado release refer to the scenario
description documents provided:

		Accelerated OVS os-nosdn-ovs [http://artifacts.opnfv.org/ovsnfv/colorado/docs/scenarios_os-nosdn-ovs/index.html]

		Layer 3 overlay using opendaylight os-odl-l2-bgpvpn [http://artifacts.opnfv.org/sdnvpn/colorado/docs/scenarios_os-odl_l2-bgpvpn/index.html]

		FD.io based forwarding using opendaylight SDN os-odl-12-fdio-noha [http://artifacts.opnfv.org/fds/colorado/scenarios_os-odl_l2-fdio-noha/index.html]

		High availability service function chaining os-odl-l2-sfc-ha [http://artifacts.opnfv.org/sfc/colorado/docs/scenarios_os-odl_l2-sfc-ha/index.html]

		Service function chaining os-odl-l2-sfc-noha [http://artifacts.opnfv.org/sfc/colorado/docs/scenarios_os-odl_l2-sfc-noha/index.html]

		Accelerated KVM hypervisor os-nosdn-kvm-ha [http://artifacts.opnfv.org/kvmfornfv/colorado/docs/scenarios_os-nosdn-kvm-ha-single/index.html]

		LXD container hypervisor os-nosdn-lxd-noha [http://artifacts.opnfv.org/joid/colorado/docs/scenarios_os-nosdn-lxd-noha/index.html]

		High Availability LXD container hypervisor os-nosdn-lxd-ha [http://artifacts.opnfv.org/joid/colorado/docs/scenarios_os-nosdn-lxd-ha/index.html]

4. Installation Procedure

Detailed step by step instructions for working with an installation toolchain and installing
the required scenario are provided by each installation project. The four projects providing installation
support for the OPNFV Colorado release are; Apex, Compass4nfv, Fuel and Joid.

The instructions for each toolchain can be found in these links:

		Apex installation instruction [http://artifacts.opnfv.org/apex/colorado/docs/installationprocedure/index.html]

		Compass4nfv installation instruction [http://artifacts.opnfv.org/compass4nfv/colorado/docs/installationprocedure/index.html]

		Fuel installation instruction [http://artifacts.opnfv.org/fuel/colorado/docs/installationprocedure/index.html]

		Joid installation instruction [http://artifacts.opnfv.org/joid/colorado/docs/installationprocedure/index.html]

5. OPNFV Test Frameworks

If you have elected to install the OPNFV platform using the deployment toolchain provided by OPNFV
your system will have been validated once the installation is completed.
The basic deployment validation only addresses a small component of the capability provided in
the platform and you may desire to execute more exhaustive tests. Some investigation is required to
select the right test suites to run on your platform from the available projects and suites.

Many of the OPNFV test project provide user-guide documentation and installation instructions as provided below:

		Functest user guide [http://artifacts.opnfv.org/functest/colorado/docs/userguide/index.html]

		Yardstick user guide [http://artifacts.opnfv.org/yardstick/colorado/docs/userguide/index.html]

		vSwitchPerf user guide [http://artifacts.opnfv.org/vswitchperf/colorado/index.html]

		Software Fastpath Service Quality Metrics (SFQM) user guide [http://artifacts.opnfv.org/fastpathmetrics/colorado/index.html]

		Bottlenecks user guide [http://artifacts.opnfv.org/bottlenecks/colorado/docs/installationprocedure/index.html]

		Storage Performance Benchmarking for NFVI (StorPerf) user guide [http://artifacts.opnfv.org/storperf/colorado/docs/userguide/index.html]

6. Security Notes

The following patches were applied to fix security issues discovered in opnfv
projects, during the c-release cycle.

		Removal of private keys: [https://gerrit.opnfv.org/gerrit/#/c/21995/]

		Fix security issues of eval-s in testapi: [https://gerrit.opnfv.org/gerrit/#/c/20751/]

		Implements use of yaml.safe_load: [https://gerrit.opnfv.org/gerrit/#/c/20911/]

		Fix security issues reported by the security audit: [https://gerrit.opnfv.org/gerrit/#/c/20693/]

		Fix issues found in security review: [https://gerrit.opnfv.org/gerrit/#/c/21541/]

		Removing OpenSteak Project: [https://gerrit.opnfv.org/gerrit/#/c/22139/]

		Remove unsed files in open-contrail role: [https://gerrit.opnfv.org/gerrit/#/c/21997/]

		Get rid of private key in repo: [https://gerrit.opnfv.org/gerrit/#/c/21985]

		Handling file loads and tmp dirs differently [https://gerrit.opnfv.org/gerrit/#/c/21499]

		Remove `Debug = True when run Flask and add logger [https://gerrit.opnfv.org/gerrit/#/c/21799/]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

installationprocedure/index.html

 Navigation

 		
 index

 		opnfvdocs latest documentation »

OPNFV Installation Instruction

		1. Abstract

		2. Introduction

		3. Scenarios

		4. Installation Procedure

		5. OPNFV Test Frameworks

		6. Security Notes

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/weather-dash1.jpg

_images/weather-overcast.jpg

_images/brahmaputrascenariomatrix1.jpg
b4 Scenario
Support Matrix

Apex Compass Fuel

maw
odl_2-ha o < ‘
odl_I3-ha & 2 ¢
odl_I2-sfc - - e
onosha o T B
ovs-ha = = -

kym-ha = 22 e

beovon. - - @

11166k

_images/opnfvplatformgraphic.png
*:0PNFV

New Features

Compute Storage Network
Virtualization Virtualization Virtualization I

Control Control Control
Upstream Project Continuous Integration / Continuous Deploymes

Collaboration ——

I
-
|

_images/weather-few-clouds.jpg
a2

_images/brahmaputrafeaturematrix.jpg
Feature
Support Matrix

Doctor W6 lmnv owfy Pomse SFC SONVPN Copper

nosdn-ha Aex < 8 o
odli2-ha Aeex < v Jop
odl_B-ha | Aeex < Fuel
odl_l2-sfc | Avex v

onos-ha Apex 0", Jo

ovs-ha O

kvm-ha v

v

bepven.

_images/brahmaputrascenariomatrix.jpg
b4 Scenario
Support Matrix

Apex Compass Fuel

maw
odl_2-ha o < ‘
odl_I3-ha & 2 ¢
odl_I2-sfc - - e
onosha o T B
ovs-ha = = -

kym-ha = 22 e

beovon. - - @

11166k

_images/weather-few-clouds1.jpg
a2

_images/weather-clear1.jpg

_images/weather-clear.jpg

