

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

VSPERF Release Notes

	1. OPNFV Fraser Release

	2. OPNFV Euphrates Release

	3. OPNFV Danube Release

	4. OPNFV Colorado Release

	5. OPNFV Brahmaputra Release
	5.1. Release Data

	6. November 2015

	7. October 2015

	8. September 2015

	9. August 2015

	10. July 2015

	11. May 2015

Build date: Nov 13, 2018

1. OPNFV Fraser Release

	Supported Versions - DPDK:17.08, OVS:2.8.1, VPP:17.07, QEMU:2.9.1

	Pylint 1.8.2 code conformity

	Python virtualenv moved to python-3.

	LTD: Requirements specification for Soak/Long Duration Tests

	Performance Matrix functionality support

	Several bugfixes and minor improvements

	Documentation

	Configuration and installation of additional tools.

	Xena install document update.

	Installation prerequisites update

	Traffic Capture methods explained

	Virtual-Switches

	OVS: Configurable arguments for ovs-*ctl

	OVS: Fix vswitch shutdown process

	VPP: Define vppctl socket name

	VPP: Multiqueue support for VPP

	OVS and VPP: Improve add_phy_port error messages

	OVS and VPP: Updated to recent version

	Tools

	Support for Stressor-VMs as a Loadgen

	Support for collectd as one of the collectors

	Support for LLC management with Intel RMD

	Traffic Generators

	All Traffic-Gens: Postponed call of connect operation.

	Ixia: Added support of LISTs in TRAFFIC

	T-Rex: Version v2.38 support added.

	T-Rex: Support for T-Rex Traffic generator in a VM.

	T-Rex: Add logic for dealing with high speed cards.

	T-Rex: Improve error handling.

	T-Rex: Added support for traffic capture.

	T-Rex: RFC2544 verification functionality included.

	T-Rex: Added learning packet option.

	T-Rex: Added packet counts for reporting

	T-Rex: Added multistream support

	T-Rex: Added promiscuous option for SRIOV tests

	T-Rex: RFC2544 Throughput bugfixing

	Tests

	Tests with T-Rex in VM

	Improvements of step driven Testcases

	OVS/DPDK regression tests

	Traffic Capture testcases added.

	Installation Scripts

	Support for SLES15 and openSuse Tumbleweed

	Fedora installation script update

	rhel_path_fix: Fix pathing issue introduce by other commit

	Updated build scripts for Centos and RHEL to python34

	CI

	Update hugepages configuration

	Support disabling VPP tests, if required

2. OPNFV Euphrates Release

	Improvement of stepdriven testcases

	Support for graph plotting from vsperf results

	Support for vHost User client mode in OVS and VPP

	Support for DPDK 17.02

	Support for dpdk driver NIC binding by drivectl tool

	Support for openSUSE Leap 42.3

	Several bugfixes and small improvements

	vSwitches

	Support for VPP virtual switch

	OVS: Support for jumbo frames

	Traffic Generators:

	Support for Trex traffic generator

	Support for huge number of streams

	Ixia: L3, L4 or vlan headers can be turned off/on, support of 1 NIC connection
between DUT and Ixia, bugfixing

	MoonGen: fix multistream support

	Xena: option for final verification, JSON refactoring, support for xena
pairs topology and port removal options, bugfixes

	Guest specific:

	Support for additional QEMU cpu features

	Support for pinning of vCPU threads

	Integration tests:

	New VPP related testcases

	New multistream testcases focused on L3 and L4 performance of OVS and VPP

3. OPNFV Danube Release

	Support for testpmd as a vswitch for PVP scenario with vHost User

	Traffic type naming harmonized with RFC2544

	Support for step driven performance testcases

	Scripts with licenses not compatible with Apache 2.0 were isolated
in 3rd_party directory

	Several bugfixes, CI script and documentation updates

	Installation scripts:

	Support for Ubuntu 16.04 LTS and 16.10

	Support for RHEL7.3

	Support for CentOS7.3

	Support for openSUSE Leap 42.2

	Traffic Generators:

	Spirent Testcenter: Support for RFC2889 tests

	Xena: bugfixes and improvements of RFC2544 continuous accuracy

	MoonGen: bugfixes, code clean up and update of usage instructions

	Dummy: Support for preconfigured test results

	Ixia: bugfixes

	Integration tests:

	New tests for multi VM scenarios

	New test for numa vHost awareness feature

	Configuration changes:

	Support for OVS, DPDK or QEMU installed from binary packages

	Support for modification of any configuration parameter or traffic
detail via CLI option –test-params or via “Parameters” section
of testcase definition

	Guest specific:

	Support for multi VM scenarios with VM connected in serial or in parallel

	Support for VM with 1, 2, 4, 6… network interfaces

	Support for driver binding option

	Support for flexible testpmd configuration

	Support for configurable merge-buffers

	Support for configurable drive options

	Support for multi-queue with non testpmd options by Vanilla OVS

	Support for multi-queue with OVS 2.5.0 or less

	Remove support for vHost Cuse

4. OPNFV Colorado Release

	Support for DPDK v16.07

	Support for yardstick testing framework

	Support for stp/rstp configuration

	Support for veth ports and network namespaces

	Support for multi-queue usage by testpmd loopback app

	Support for reporting of test execution length

	Support for MoonGen traffic generator.

	Support for OVS version 2.5 + DPDK 2.2.

	Support for DPDK v16.04

	Support for Xena traffic generator.

	Support for Red Hat Enterprise Linux

	Support for mode of operation (trafficgen, trafficgen-off)

	Support for Integration tests for OVS with DPDK including:

	Physical ports.

	Virtual ports (vhost user and vhost cuse).

	Flow addition and removal tests.

	Overlay (VXLAN, GRE and NVGRE) encapsulation and decapsulation tests.

	Supporting configuration of OVS with DPDK through the OVS DB as well as the
legacy commandline arguments.

	Support for VM loopback (SR-IOV) benchmarking.

	Support for platform baseline benchmarking without a vswitch using testpmd.

	Support for Spirent Test Center REST APIs.

5. OPNFV Brahmaputra Release

Supports both OVS and OVS with DPDK.

Available tests:

	phy2phy_tput: LTD.Throughput.RFC2544.PacketLossRatio

	back2back: LTD.Throughput.RFC2544.BackToBackFrames

	phy2phy_tput_mod_vlan:LTD.Throughput.RFC2544.PacketLossRatioFrameModification

	phy2phy_cont: Phy2Phy Continuous Stream

	pvp_cont: PVP Continuous Stream

	pvvp_cont: PVVP Continuous Stream

	phy2phy_scalability:LTD.Scalability.RFC2544.0PacketLoss

	pvp_tput: LTD.Throughput.RFC2544.PacketLossRatio

	pvp_back2back: LTD.Throughput.RFC2544.BackToBackFrames

	pvvp_tput: LTD.Throughput.RFC2544.PacketLossRatio

	pvvp_back2back: LTD.Throughput.RFC2544.BackToBackFrames

	phy2phy_cpu_load: LTD.CPU.RFC2544.0PacketLoss

	phy2phy_mem_load: LTD.Memory.RFC2544.0PacketLoss

Supported deployment scenarios:

	Physical port -> vSwitch -> Physical port.

	Physical port -> vSwitch -> VNF -> vSwitch -> Physical port.

	Physical port -> vSwitch -> VNF -> vSwitch -> VNF -> vSwitch -> Physical port.

Loopback applications in the Guest can be:

	DPDK testpmd.

	Linux Bridge.

	l2fwd Kernel Module.

Supported traffic generators:

	Ixia: IxOS and IxNet.

	Spirent.

	Dummy.

5.1. Release Data

	Project

	vswitchperf

	Repo/tag

	brahmaputra.1.0

	Release designation

	Brahmaputra base release

	Release date

	February 26 2016

	Purpose of the delivery

	Brahmaputra base release

6. November 2015

	Support of opnfv_test_dashboard

7. October 2015

	Support of PVP and PVVP deployment scenarios using Vanilla OVS

8. September 2015

	Implementation of system statistics based upon pidstat command line tool.

	Support of PVVP deployment scenario using vhost-cuse and vhost user access
methods

9. August 2015

	Backport and enhancement of reporting

	PVP deployment scenario testing using vhost-cuse as guest access method

	Implementation of LTD.Scalability.RFC2544.0PacketLoss testcase

	Support for background load generation with command line tools like stress
and stress-ng

10. July 2015

	PVP deployment scenario testing using vhost-user as guest access method
- Verified on CentOS7 and Fedora 20
- Requires QEMU 2.2.0 and DPDK 2.0

11. May 2015

This is the initial release of a re-designed version of the software
based on community feedback. This initial release supports only the
Phy2Phy deployment scenario and the
LTD.Throughput.RFC2544.PacketLossRatio test - both described in the
OPNFV vswitchperf ‘CHARACTERIZE VSWITCH PERFORMANCE FOR TELCO NFV USE
CASES LEVEL TEST DESIGN’. The intention is that more test cases will
follow once the community has digested the initial release.

	Performance testing with continuous stream

	Vanilla OVS support added.

	Support for non-DPDK OVS build.

	Build and installation support through Makefile will be added via
next patch(Currently it is possible to manually build ovs and
setting it in vsperf configuration files).

	PvP scenario is not yet implemented.

	CentOS7 support

	Verified on CentOS7

	Install & Quickstart documentation

	Better support for mixing tests types with Deployment Scenarios

	Re-work based on community feedback of TOIT

	Framework support for other vSwitches

	Framework support for non-Ixia traffic generators

	Framework support for different VNFs

	Python3

	Support for biDirectional functionality for ixnet interface

OPNFV VSPERF Developer Guide

Introduction

VSPERF is an OPNFV testing project.

VSPERF provides an automated test-framework and comprehensive test suite based on Industry
Test Specifications for measuring NFVI data-plane performance. The data-path includes switching technologies with
physical and virtual network interfaces. The VSPERF architecture is switch and traffic generator agnostic and test
cases can be easily customized. VSPERF was designed to be independent of OpenStack therefore OPNFV installer scenarios
are not required. VSPERF can source, configure and deploy the device-under-test using specified software versions and
network topology. VSPERF is used as a development tool for optimizing switching technologies, qualification of packet
processing functions and for evaluation of data-path performance.

The Euphrates release adds new features and improvements that will help advance high performance packet processing
on Telco NFV platforms. This includes new test cases, flexibility in customizing test-cases, new results display
options, improved tool resiliency, additional traffic generator support and VPP support.

VSPERF provides a framework where the entire NFV Industry can learn about NFVI data-plane performance and try-out
new techniques together. A new IETF benchmarking specification (RFC8204) is based on VSPERF work contributed since
2015. VSPERF is also contributing to development of ETSI NFV test specifications through the Test and Open Source
Working Group.

	Wiki: https://wiki.opnfv.org/characterize_vswitch_performance_for_telco_nfv_use_cases

	Repository: https://git.opnfv.org/vswitchperf

	Artifacts: https://artifacts.opnfv.org/vswitchperf.html

	Continuous Integration: https://build.opnfv.org/ci/view/vswitchperf/

Design Guides

Traffic Gen Integration, VSPERF Design, Test Design, Test Plan

	1. Traffic Generator Integration Guide
	1.1. Intended Audience

	1.2. Step 1 - create a directory

	1.3. Step 2 - create a trafficgen module

	1.4. Step 3 - configuration

	1.5. Step 4 - generic functions

	1.6. Step 5 - supported traffic types

	1.7. Step 6 - passing back results

	2. VSPERF Design Document
	2.1. Intended Audience

	2.2. Usage

	2.3. Typical Test Sequence

	2.4. Configuration

	2.5. PXP Deployment

	2.6. VM, vSwitch, Traffic Generator Independence

	2.7. Routing Tables

	3. VSPERF LEVEL TEST DESIGN (LTD)
	3.1. Introduction

	3.2. Details of the Level Test Design

	4. VSPERF LEVEL TEST PLAN (LTP)
	4.1. Introduction

	4.2. Details of the Level Test Plan

IETF RFC 8204

The IETF Benchmarking Methodology Working Group (BMWG) was re-chartered in 2014 to include benchmarking for
Virtualized Network Functions (VNFs) and their infrastructure. A version of the VSPERF test specification was
summarized in an Internet Draft … Benchmarking Virtual Switches in OPNFV [https://tools.ietf.org/html/draft-ietf-bmwg-vswitch-opnfv-01] and contributed to the BMWG. In June 2017 the Internet Engineering Steering Group of the IETF
approved the most recent version of the draft for publication as a new test specification (RFC 8204).

VSPERF CI Test Cases

CI Test cases run daily on the VSPERF Pharos POD for master and stable branches.

./results/scenario.rst
./results/results.rst

1. Traffic Generator Integration Guide

1.1. Intended Audience

This document is intended to aid those who want to integrate new traffic
generator into the vsperf code. It is expected, that reader has already
read generic part of VSPERF Design Document.

Let us create a sample traffic generator called sample_tg, step by step.

1.2. Step 1 - create a directory

Implementation of trafficgens is located at tools/pkt_gen/ directory,
where every implementation has its dedicated sub-directory. It is
required to create a new directory for new traffic generator
implementations.

E.g.

$ mkdir tools/pkt_gen/sample_tg

1.3. Step 2 - create a trafficgen module

Every trafficgen class must inherit from generic ITrafficGenerator
interface class. VSPERF during its initialization scans content of pkt_gen
directory for all python modules, that inherit from ITrafficGenerator. These
modules are automatically added into the list of supported traffic generators.

Example:

Let us create a draft of tools/pkt_gen/sample_tg/sample_tg.py module.

from tools.pkt_gen import trafficgen

class SampleTG(trafficgen.ITrafficGenerator):
 """
 A sample traffic generator implementation
 """
 pass

VSPERF is immediately aware of the new class:

$./vsperf --list-trafficgen

Output should look like:

Classes derived from: ITrafficGenerator
======

* Dummy: A dummy traffic generator whose data is generated by the user.

* IxNet: A wrapper around IXIA IxNetwork applications.

* Ixia: A wrapper around the IXIA traffic generator.

* Moongen: Moongen Traffic generator wrapper.

* TestCenter: Spirent TestCenter

* Trex: Trex Traffic generator wrapper.

* Xena: Xena Traffic generator wrapper class

1.4. Step 3 - configuration

All configuration values, required for correct traffic generator function, are passed
from VSPERF to the traffic generator in a dictionary. Default values shared among
all traffic generators are defined in conf/03_traffic.conf within TRAFFIC
dictionary. Default values are loaded by ITrafficGenerator interface class
automatically, so it is not needed to load them explicitly. In case that there are
any traffic generator specific default values, then they should be set within class
specific __init__ function.

VSPERF passes test specific configuration within traffic dictionary to every
start and send function. So implementation of these functions must ensure,
that default values are updated with the testcase specific values. Proper merge
of values is assured by call of merge_spec function from conf module.

Example of merge_spec usage in tools/pkt_gen/sample_tg/sample_tg.py module:

from conf import merge_spec

def start_rfc2544_throughput(self, traffic=None, duration=30):
 self._params = {}
 self._params['traffic'] = self.traffic_defaults.copy()
 if traffic:
 self._params['traffic'] = merge_spec(
 self._params['traffic'], traffic)

1.5. Step 4 - generic functions

There are some generic functions, which every traffic generator should provide.
Although these functions are mainly optional, at least empty implementation must
be provided. This is required, so that developer is explicitly aware of these
functions.

The connect function is called from the traffic generator controller from its
__enter__ method. This function should assure proper connection initialization
between DUT and traffic generator. In case, that such implementation is not needed,
empty implementation is required.

The disconnect function should perform clean up of any connection specific
actions called from the connect function.

Example in tools/pkt_gen/sample_tg/sample_tg.py module:

def connect(self):
 pass

def disconnect(self):
 pass

1.6. Step 5 - supported traffic types

Currently VSPERF supports three different types of tests for traffic generators,
these are identified in vsperf through the traffic type, which include:

	
	RFC2544 throughput - Send fixed size packets at different rates, using

	traffic configuration, until minimum rate at which no packet loss is
detected is found. Methods with its implementation have suffix
_rfc2544_throughput.

	
	RFC2544 back2back - Send fixed size packets at a fixed rate, using traffic

	configuration, for specified time interval. Methods with its
implementation have suffix _rfc2544_back2back.

	
	continuous flow - Send fixed size packets at given framerate, using traffic

	configuration, for specified time interval. Methods with its
implementation have suffix _cont_traffic.

In general, both synchronous and asynchronous interfaces must be implemented
for each traffic type. Synchronous functions start with prefix send_.
Asynchronous with prefixes start_ and wait_ in case of throughput
and back2back and start_ and stop_ in case of continuous traffic type.

Example of synchronous interfaces:

def send_rfc2544_throughput(self, traffic=None, tests=1, duration=20,
 lossrate=0.0):
def send_rfc2544_back2back(self, traffic=None, tests=1, duration=20,
 lossrate=0.0):
def send_cont_traffic(self, traffic=None, duration=20):

Example of asynchronous interfaces:

def start_rfc2544_throughput(self, traffic=None, tests=1, duration=20,
 lossrate=0.0):
def wait_rfc2544_throughput(self):

def start_rfc2544_back2back(self, traffic=None, tests=1, duration=20,
 lossrate=0.0):
def wait_rfc2544_back2back(self):

def start_cont_traffic(self, traffic=None, duration=20):
def stop_cont_traffic(self):

Description of parameters used by send, start, wait and stop
functions:

	param traffic: A dictionary with detailed definition of traffic
pattern. It contains following parameters to be implemented by
traffic generator.

Note: Traffic dictionary has also virtual switch related parameters,
which are not listed below.

Note: There are parameters specific to testing of tunnelling protocols,
which are discussed in detail at Integration tests userguide.

Note: A detailed description of the TRAFFIC dictionary can be found at
Configuration of TRAFFIC dictionary.

	param traffic_type: One of the supported traffic types,
e.g. rfc2544_throughput, rfc2544_continuous,
rfc2544_back2back or burst.

	param bidir: Specifies if generated traffic will be full-duplex
(true) or half-duplex (false).

	param frame_rate: Defines desired percentage of frame
rate used during continuous stream tests.

	param burst_size: Defines a number of frames in the single burst,
which is sent by burst traffic type. Burst size is applied for each
direction, i.e. the total number of tx frames will be 2*burst_size
in case of bidirectional traffic.

	param multistream: Defines number of flows simulated by traffic
generator. Value 0 disables MultiStream feature.

	param stream_type: Stream Type defines ISO OSI network layer
used for simulation of multiple streams.
Supported values:

	L2 - iteration of destination MAC address

	L3 - iteration of destination IP address

	L4 - iteration of destination port of selected transport protocol

	param l2: A dictionary with data link layer details, e.g. srcmac,
dstmac and framesize.

	param l3: A dictionary with network layer details, e.g. srcip,
dstip, proto and l3 on/off switch enabled.

	param l4: A dictionary with transport layer details, e.g. srcport,
dstport and l4 on/off switch enabled.

	param vlan: A dictionary with vlan specific parameters,
e.g. priority, cfi, id and vlan on/off switch enabled.

	param scapy: A dictionary with definition of the frame content for both traffic
directions. The frame content is defined by a SCAPY notation.

	param tests: Number of times the test is executed.

	param duration: Duration of continuous test or per iteration duration
in case of RFC2544 throughput or back2back traffic types.

	param lossrate: Acceptable lossrate percentage.

1.7. Step 6 - passing back results

It is expected that methods send, wait and stop will return
values measured by traffic generator within a dictionary. Dictionary keys
are defined in ResultsConstants implemented in
core/results/results_constants.py. Please check sections for RFC2544
Throughput & Continuous and for Back2Back. The same key names should
be used by all traffic generator implementations.

2. VSPERF Design Document

2.1. Intended Audience

This document is intended to aid those who want to modify the vsperf code. Or
to extend it - for example to add support for new traffic generators,
deployment scenarios and so on.

2.2. Usage

2.2.1. Example Connectivity to DUT

Establish connectivity to the VSPERF DUT Linux host. If this is in an OPNFV lab
following the steps provided by Pharos [https://www.opnfv.org/community/projects/pharos]
to access the POD [https://wiki.opnfv.org/display/pharos/Pharos+Lab+Support]

The followign steps establish the VSPERF environment.

2.2.2. Example Command Lines

List all the cli options:

$./vsperf -h

Run all tests that have tput in their name - phy2phy_tput, pvp_tput etc.:

$./vsperf --tests 'tput'

As above but override default configuration with settings in ‘10_custom.conf’.
This is useful as modifying configuration directly in the configuration files
in conf/NN_*.py shows up as changes under git source control:

$./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf --tests 'tput'

Override specific test parameters. Useful for shortening the duration of tests
for development purposes:

$./vsperf --test-params 'TRAFFICGEN_DURATION=10;TRAFFICGEN_RFC2544_TESTS=1;' \
 'TRAFFICGEN_PKT_SIZES=(64,)' pvp_tput

2.3. Typical Test Sequence

This is a typical flow of control for a test.

[image: ../../../../_images/vsperf.png]

2.4. Configuration

The conf package contains the configuration files (*.conf) for all system
components, it also provides a settings object that exposes all of these
settings.

Settings are not passed from component to component. Rather they are available
globally to all components once they import the conf package.

from conf import settings
...
log_file = settings.getValue('LOG_FILE_DEFAULT')

Settings files (*.conf) are valid python code so can be set to complex
types such as lists and dictionaries as well as scalar types:

first_packet_size = settings.getValue('PACKET_SIZE_LIST')[0]

2.4.1. Configuration Procedure and Precedence

Configuration files follow a strict naming convention that allows them to be
processed in a specific order. All the .conf files are named NNx_name.conf,
where NN is a decimal number and x is an optional alphabetical suffix.
The files are processed in order from 00_name.conf to 99_name.conf
(and from 00a_name to 00z_name), so that if the name setting is given
in both a lower and higher numbered conf file then the higher numbered file
is the effective setting as it is processed after the setting in the lower
numbered file.

The values in the file specified by --conf-file takes precedence over all
the other configuration files and does not have to follow the naming
convention.

2.4.2. Configuration of PATHS dictionary

VSPERF uses external tools like Open vSwitch and Qemu for execution of testcases. These
tools may be downloaded and built automatically (see Installation)
or installed manually by user from binary packages. It is also possible to use a combination
of both approaches, but it is essential to correctly set paths to all required tools.
These paths are stored within a PATHS dictionary, which is evaluated before execution
of each testcase, in order to setup testcase specific environment. Values selected for testcase
execution are internally stored inside TOOLS dictionary, which is used by VSPERF to execute
external tools, load kernel modules, etc.

The default configuration of PATHS dictionary is spread among three different configuration files
to follow logical grouping of configuration options. Basic description of PATHS dictionary
is placed inside conf/00_common.conf. The configuration specific to DPDK and vswitches
is located at conf/02_vswitch.conf. The last part related to the Qemu is defined inside
conf/04_vnf.conf. Default configuration values can be used in case, that all required
tools were downloaded and built automatically by vsperf itself. In case, that some of
tools were installed manually from binary packages, then it will be necessary to modify
the content of PATHS dictionary accordingly.

Dictionary has a specific section of configuration options for every tool type, it means:

	PATHS['vswitch'] - contains a separate dictionary for each of vswitches supported by VSPEF

Example:

PATHS['vswitch'] = {
 'OvsDpdkVhost': { ... },
 'OvsVanilla' : { ... },
 ...
}

	PATHS['dpdk'] - contains paths to the dpdk sources, kernel modules and tools (e.g. testpmd)

Example:

PATHS['dpdk'] = {
 'type' : 'src',
 'src': {
 'path': os.path.join(ROOT_DIR, 'src/dpdk/dpdk/'),
 'modules' : ['uio', os.path.join(RTE_TARGET, 'kmod/igb_uio.ko')],
 'bind-tool': 'tools/dpdk*bind.py',
 'testpmd': os.path.join(RTE_TARGET, 'app', 'testpmd'),
 },
 ...
}

	PATHS['qemu'] - contains paths to the qemu sources and executable file

Example:

PATHS['qemu'] = {
 'type' : 'bin',
 'bin': {
 'qemu-system': 'qemu-system-x86_64'
 },
 ...
}

Every section specific to the particular vswitch, dpdk or qemu may contain following types
of configuration options:

	option type - is a string, which defines the type of configured paths (‘src’ or ‘bin’)
to be selected for a given section:

	value src means, that VSPERF will use vswitch, DPDK or QEMU built from sources
e.g. by execution of systems/build_base_machine.sh script during VSPERF
installation

	value bin means, that VSPERF will use vswitch, DPDK or QEMU binaries installed
directly in the operating system, e.g. via OS specific packaging system

	option path - is a string with a valid system path; Its content is checked for
existence, prefixed with section name and stored into TOOLS for later use
e.g. TOOLS['dpdk_src'] or TOOLS['vswitch_src']

	option modules - is list of strings with names of kernel modules; Every module name
from given list is checked for a ‘.ko’ suffix. In case that it matches and if it is not
an absolute path to the module, then module name is prefixed with value of path
option defined for the same section

Example:

"""
snippet of PATHS definition from the configuration file:
"""
PATHS['vswitch'] = {
 'OvsVanilla' = {
 'type' : 'src',
 'src': {
 'path': '/tmp/vsperf/src_vanilla/ovs/ovs/',
 'modules' : ['datapath/linux/openvswitch.ko'],
 ...
 },
 ...
 }
 ...
}

"""
Final content of TOOLS dictionary used during runtime:
"""
TOOLS['vswitch_modules'] = ['/tmp/vsperf/src_vanilla/ovs/ovs/datapath/linux/openvswitch.ko']

	all other options are strings with names and paths to specific tools; If a given string
contains a relative path and option path is defined for a given section, then string
content will be prefixed with content of the path. Otherwise the name of the tool will be
searched within standard system directories. In case that filename contains OS specific
wildcards, then they will be expanded to the real path. At the end of the processing, every
absolute path will be checked for its existence. In case that temporary path (i.e. path with
a _tmp suffix) does not exist, then log will be written and vsperf will continue. If any
other path will not exist, then vsperf execution will be terminated with a runtime error.

Example:

"""
snippet of PATHS definition from the configuration file:
"""
PATHS['vswitch'] = {
 'OvsDpdkVhost': {
 'type' : 'src',
 'src': {
 'path': '/tmp/vsperf/src_vanilla/ovs/ovs/',
 'ovs-vswitchd': 'vswitchd/ovs-vswitchd',
 'ovsdb-server': 'ovsdb/ovsdb-server',
 ...
 }
 ...
 }
 ...
}

"""
Final content of TOOLS dictionary used during runtime:
"""
TOOLS['ovs-vswitchd'] = '/tmp/vsperf/src_vanilla/ovs/ovs/vswitchd/ovs-vswitchd'
TOOLS['ovsdb-server'] = '/tmp/vsperf/src_vanilla/ovs/ovs/ovsdb/ovsdb-server'

Note: In case that bin type is set for DPDK, then TOOLS['dpdk_src'] will be set to
the value of PATHS['dpdk']['src']['path']. The reason is, that VSPERF uses downloaded
DPDK sources to copy DPDK and testpmd into the GUEST, where testpmd is built. In case,
that DPDK sources are not available, then vsperf will continue with test execution,
but testpmd can’t be used as a guest loopback. This is useful in case, that other guest
loopback applications (e.g. buildin or l2fwd) are used.

Note: In case of RHEL 7.3 OS usage, binary package configuration is required
for Vanilla OVS tests. With the installation of a supported rpm for OVS there is
a section in the conf\10_custom.conf file that can be used.

2.4.3. Configuration of TRAFFIC dictionary

TRAFFIC dictionary is used for configuration of traffic generator. Default values
can be found in configuration file conf/03_traffic.conf. These default values
can be modified by (first option has the highest priorty):

	Parameters section of testcase definition

	command line options specified by --test-params argument

	custom configuration file

It is to note, that in case of option 1 and 2, it is possible to specify only
values, which should be changed. In case of custom configuration file, it is
required to specify whole TRAFFIC dictionary with its all values or explicitly
call and update() method of TRAFFIC dictionary.

Detailed description of TRAFFIC dictionary items follows:

'traffic_type' - One of the supported traffic types.
 E.g. rfc2544_throughput, rfc2544_back2back,
 rfc2544_continuous or burst
 Data type: str
 Default value: "rfc2544_throughput".
'bidir' - Specifies if generated traffic will be full-duplex (True)
 or half-duplex (False)
 Data type: str
 Supported values: "True", "False"
 Default value: "False".
'frame_rate' - Defines desired percentage of frame rate used during
 continuous stream tests.
 Data type: int
 Default value: 100.
'burst_size' - Defines a number of frames in the single burst, which is sent
 by burst traffic type. Burst size is applied for each direction,
 i.e. the total number of tx frames will be 2*burst_size in case of
 bidirectional traffic.
 Data type: int
 Default value: 100.
'multistream' - Defines number of flows simulated by traffic generator.
 Value 0 disables multistream feature
 Data type: int
 Supported values: 0-65536 for 'L4' stream type
 unlimited for 'L2' and 'L3' stream types
 Default value: 0.
'stream_type' - Stream type is an extension of the "multistream" feature.
 If multistream is disabled, then stream type will be
 ignored. Stream type defines ISO OSI network layer used
 for simulation of multiple streams.
 Data type: str
 Supported values:
 "L2" - iteration of destination MAC address
 "L3" - iteration of destination IP address
 "L4" - iteration of destination port
 of selected transport protocol
 Default value: "L4".
'pre_installed_flows'
 - Pre-installed flows is an extension of the "multistream"
 feature. If enabled, it will implicitly insert a flow
 for each stream. If multistream is disabled, then
 pre-installed flows will be ignored.
 Data type: str
 Supported values:
 "Yes" - flows will be inserted into OVS
 "No" - flows won't be inserted into OVS
 Default value: "No".
'flow_type' - Defines flows complexity.
 Data type: str
 Supported values:
 "port" - flow is defined by ingress ports
 "IP" - flow is defined by ingress ports
 and src and dst IP addresses
 Default value: "port"
'flow_control' - Controls flow control support by traffic generator.
 Supported values:
 False - flow control is disabled
 True - flow control is enabled
 Default value: False
 Note: Currently it is supported by IxNet only
'learning_frames' - Controls learning frames support by traffic generator.
 Supported values:
 False - learning frames are disabled
 True - learning frames are enabled
 Default value: True
 Note: Currently it is supported by IxNet only
'l2' - A dictionary with l2 network layer details. Supported
 values are:
 'srcmac' - Specifies source MAC address filled by traffic generator.
 NOTE: It can be modified by vsperf in some scenarios.
 Data type: str
 Default value: "00:00:00:00:00:00".
 'dstmac' - Specifies destination MAC address filled by traffic generator.
 NOTE: It can be modified by vsperf in some scenarios.
 Data type: str
 Default value: "00:00:00:00:00:00".
 'framesize' - Specifies default frame size. This value should not be
 changed directly. It will be overridden during testcase
 execution by values specified by list TRAFFICGEN_PKT_SIZES.
 Data type: int
 Default value: 64
'l3' - A dictionary with l3 network layer details. Supported
 values are:
 'enabled' - Specifies if l3 layer should be enabled or disabled.
 Data type: bool
 Default value: True
 NOTE: Supported only by IxNet trafficgen class
 'srcip' - Specifies source MAC address filled by traffic generator.
 NOTE: It can be modified by vsperf in some scenarios.
 Data type: str
 Default value: "1.1.1.1".
 'dstip' - Specifies destination MAC address filled by traffic generator.
 NOTE: It can be modified by vsperf in some scenarios.
 Data type: str
 Default value: "90.90.90.90".
 'proto' - Specifies deflaut protocol type.
 Please check particular traffic generator implementation
 for supported protocol types.
 Data type: str
 Default value: "udp".
'l4' - A dictionary with l4 network layer details. Supported
 values are:
 'enabled' - Specifies if l4 layer should be enabled or disabled.
 Data type: bool
 Default value: True
 NOTE: Supported only by IxNet trafficgen class
 'srcport' - Specifies source port of selected transport protocol.
 NOTE: It can be modified by vsperf in some scenarios.
 Data type: int
 Default value: 3000
 'dstport' - Specifies destination port of selected transport protocol.
 NOTE: It can be modified by vsperf in some scenarios.
 Data type: int
 Default value: 3001
'vlan' - A dictionary with vlan encapsulation details. Supported
 values are:
 'enabled' - Specifies if vlan encapsulation should be enabled or
 disabled.
 Data type: bool
 Default value: False
 'id' - Specifies vlan id.
 Data type: int (NOTE: must fit to 12 bits)
 Default value: 0
 'priority' - Specifies a vlan priority (PCP header field).
 Data type: int (NOTE: must fit to 3 bits)
 Default value: 0
 'cfi' - Specifies if frames can or cannot be dropped during
 congestion (DEI header field).
 Data type: int (NOTE: must fit to 1 bit)
 Default value: 0
'capture' - A dictionary with traffic capture configuration.
 NOTE: It is supported only by T-Rex traffic generator.
 'enabled' - Specifies if traffic should be captured
 Data type: bool
 Default value: False
 'tx_ports' - A list of ports, where frames transmitted towards DUT will
 be captured. Ports have numbers 0 and 1. TX packet capture
 is disabled if list of ports is empty.
 Data type: list
 Default value: [0]
 'rx_ports' - A list of ports, where frames received from DUT will
 be captured. Ports have numbers 0 and 1. RX packet capture
 is disabled if list of ports is empty.
 Data type: list
 Default value: [1]
 'count' - A number of frames to be captured. The same count value
 is applied to both TX and RX captures.
 Data type: int
 Default value: 1
 'filter' - An expression used to filter TX and RX packets. It uses the same
 syntax as pcap library. See pcap-filter man page for additional
 details.
 Data type: str
 Default value: ''
 'scapy' - A dictionary with definition of a frame content for both traffic
 directions. The frame content is defined by a SCAPY notation.
 NOTE: It is supported only by the T-Rex traffic generator.
 Following keywords can be used to refer to the related parts of
 the TRAFFIC dictionary:
 Ether_src - refers to TRAFFIC['l2']['srcmac']
 Ether_dst - refers to TRAFFIC['l2']['dstmac']
 IP_proto - refers to TRAFFIC['l3']['proto']
 IP_PROTO - refers to upper case version of TRAFFIC['l3']['proto']
 IP_src - refers to TRAFFIC['l3']['srcip']
 IP_dst - refers to TRAFFIC['l3']['dstip']
 IP_PROTO_sport - refers to TRAFFIC['l4']['srcport']
 IP_PROTO_dport - refers to TRAFFIC['l4']['dstport']
 Dot1Q_prio - refers to TRAFFIC['vlan']['priority']
 Dot1Q_id - refers to TRAFFIC['vlan']['cfi']
 Dot1Q_vlan - refers to TRAFFIC['vlan']['id']
 '0' - A string with the frame definition for the 1st direction.
 Data type: str
 Default value: 'Ether(src={Ether_src}, dst={Ether_dst})/'
 'Dot1Q(prio={Dot1Q_prio}, id={Dot1Q_id}, vlan={Dot1Q_vlan})/'
 'IP(proto={IP_proto}, src={IP_src}, dst={IP_dst})/'
 '{IP_PROTO}(sport={IP_PROTO_sport}, dport={IP_PROTO_dport})'
 '1' - A string with the frame definition for the 2nd direction.
 Data type: str
 Default value: 'Ether(src={Ether_dst}, dst={Ether_src})/'
 'Dot1Q(prio={Dot1Q_prio}, id={Dot1Q_id}, vlan={Dot1Q_vlan})/'
 'IP(proto={IP_proto}, src={IP_dst}, dst={IP_src})/'
 '{IP_PROTO}(sport={IP_PROTO_dport}, dport={IP_PROTO_sport})',
'latency_histogram'
 - A dictionary with definition of a latency histogram provision in results.
 'enabled' - Specifies if the histogram provisioning is enabled or not.
 'type' - Defines how histogram is provided. Currenty only 'Default' is defined.
 'Default' - Default histogram as provided by the Traffic-generator.

2.4.4. Configuration of GUEST options

VSPERF is able to setup scenarios involving a number of VMs in series or in parallel.
All configuration options related to a particular VM instance are defined as
lists and prefixed with GUEST_ label. It is essential, that there is enough
items in all GUEST_ options to cover all VM instances involved in the test.
In case there is not enough items, then VSPERF will use the first item of
particular GUEST_ option to expand the list to required length.

Example of option expansion for 4 VMs:

"""
Original values:
"""
GUEST_SMP = ['2']
GUEST_MEMORY = ['2048', '4096']

"""
Values after automatic expansion:
"""
GUEST_SMP = ['2', '2', '2', '2']
GUEST_MEMORY = ['2048', '4096', '2048', '2048']

First option can contain macros starting with # to generate VM specific values.
These macros can be used only for options of list or str types with GUEST_
prefix.

Example of macros and their expansion for 2 VMs:

"""
Original values:
"""
GUEST_SHARE_DIR = ['/tmp/qemu#VMINDEX_share']
GUEST_BRIDGE_IP = ['#IP(1.1.1.5)/16']

"""
Values after automatic expansion:
"""
GUEST_SHARE_DIR = ['/tmp/qemu0_share', '/tmp/qemu1_share']
GUEST_BRIDGE_IP = ['1.1.1.5/16', '1.1.1.6/16']

Additional examples are available at 04_vnf.conf.

Note: In case, that macro is detected in the first item of the list, then
all other items are ignored and list content is created automatically.

Multiple macros can be used inside one configuration option definition, but macros
cannot be used inside other macros. The only exception is macro #VMINDEX, which
is expanded first and thus it can be used inside other macros.

Following macros are supported:

	#VMINDEX - it is replaced by index of VM being executed; This macro
is expanded first, so it can be used inside other macros.

Example:

GUEST_SHARE_DIR = ['/tmp/qemu#VMINDEX_share']

	#MAC(mac_address[, step]) - it will iterate given mac_address
with optional step. In case that step is not defined, then it is set to 1.
It means, that first VM will use the value of mac_address, second VM
value of mac_address increased by step, etc.

Example:

GUEST_NICS = [[{'mac' : '#MAC(00:00:00:00:00:01,2)'}]]

	#IP(ip_address[, step]) - it will iterate given ip_address
with optional step. In case that step is not defined, then it is set to 1.
It means, that first VM will use the value of ip_address, second VM
value of ip_address increased by step, etc.

Example:

GUEST_BRIDGE_IP = ['#IP(1.1.1.5)/16']

	#EVAL(expression) - it will evaluate given expression as python code;
Only simple expressions should be used. Call of the functions is not supported.

Example:

GUEST_CORE_BINDING = [('#EVAL(6+2*#VMINDEX)', '#EVAL(7+2*#VMINDEX)')]

2.4.5. Other Configuration

conf.settings also loads configuration from the command line and from the environment.

2.5. PXP Deployment

Every testcase uses one of the supported deployment scenarios to setup test environment.
The controller responsible for a given scenario configures flows in the vswitch to route
traffic among physical interfaces connected to the traffic generator and virtual
machines. VSPERF supports several deployments including PXP deployment, which can
setup various scenarios with multiple VMs.

These scenarios are realized by VswitchControllerPXP class, which can configure and
execute given number of VMs in serial or parallel configurations. Every VM can be
configured with just one or an even number of interfaces. In case that VM has more than
2 interfaces, then traffic is properly routed among pairs of interfaces.

Example of traffic routing for VM with 4 NICs in serial configuration:

 +--+
 | VM with 4 NICs |
 | +---------------+ +---------------+ |
 | | Application | | Application | |
 | +---------------+ +---------------+ |
 | ^ | ^ | |
 | | v | v |
 | +---------------+ +---------------+ |
 | | logical ports | | logical ports | |
 | | 0 1 | | 2 3 | |
 +--+---------------+----+---------------+--+
 ^ : ^ :
 | | | |
 : v : v
+-----------+---------------+----+---------------+----------+
| vSwitch | 0 1 | | 2 3 | |
| | logical ports | | logical ports | |
| previous +---------------+ +---------------+ next |
| VM or PHY ^ | ^ | VM or PHY|
| port -----+ +------------+ +---> port |
+---+

It is also possible to define different number of interfaces for each VM to better
simulate real scenarios.

Example of traffic routing for 2 VMs in serial configuration, where 1st VM has
4 NICs and 2nd VM 2 NICs:

 +--+ +---------------------+
 | 1st VM with 4 NICs | | 2nd VM with 2 NICs | | | | | | |
 | +---------------+ +---------------+ | | +---------------+ |
 | | Application | | Application | | | | Application | |
 | +---------------+ +---------------+ | | +---------------+ |
 | ^ | ^ | | | ^ | |
 | | v | v | | | v |
 | +---------------+ +---------------+ | | +---------------+ |
 | | logical ports | | logical ports | | | | logical ports | |
 | | 0 1 | | 2 3 | | | | 0 1 | |
 +--+---------------+----+---------------+--+ +--+---------------+--+
 ^ : ^ : ^ :
 | | | | | |
 : v : v : v
+-----------+---------------+----+---------------+-------+---------------+----------+
| vSwitch | 0 1 | | 2 3 | | 4 5 | |
| | logical ports | | logical ports | | logical ports | |
| previous +---------------+ +---------------+ +---------------+ next |
| VM or PHY ^ | ^ | ^ | VM or PHY|
| port -----+ +------------+ +---------------+ +----> port |
+---+

The number of VMs involved in the test and the type of their connection is defined
by deployment name as follows:

	pvvp[number] - configures scenario with VMs connected in series with
optional number of VMs. In case that number is not specified, then
2 VMs will be used.

Example of 2 VMs in a serial configuration:

+----------------------+ +----------------------+
1st VM		2nd VM				
+---------------+		+---------------+				
	Application				Application	
+---------------+		+---------------+				
^			^			
	v			v		
+---------------+		+---------------+				
	logical ports				logical ports	
	0 1				0 1	
+---+---------------+--+ +---+---------------+--+
 ^ : ^ :
 | | | |
 : v : v
+---+---------------+---------+---------------+--+
| | 0 1 | | 3 4 | |
| | logical ports | vSwitch | logical ports | |
| +---------------+ +---------------+ |
| ^ | ^ | |
| | +-----------------+ v |
| +--+ |
| | physical ports | |
| | 0 1 | |
+---+--+---+
 ^ :
 | |
 : v
+--+
| |
| traffic generator |
| |
+--+

	pvpv[number] - configures scenario with VMs connected in parallel with
optional number of VMs. In case that number is not specified, then
2 VMs will be used. Multistream feature is used to route traffic to particular
VMs (or NIC pairs of every VM). It means, that VSPERF will enable multistream
feature and sets the number of streams to the number of VMs and their NIC
pairs. Traffic will be dispatched based on Stream Type, i.e. by UDP port,
IP address or MAC address.

	Example of 2 VMs in a parallel configuration, where traffic is dispatched

	based on the UDP port.

+----------------------+ +----------------------+
1st VM		2nd VM				
+---------------+		+---------------+				
	Application				Application	
+---------------+		+---------------+				
^			^			
	v			v		
+---------------+		+---------------+				
	logical ports				logical ports	
	0 1				0 1	
+---+---------------+--+ +---+---------------+--+
 ^ : ^ :
 | | | |
 : v : v
+---+---------------+---------+---------------+--+
| | 0 1 | | 3 4 | |
| | logical ports | vSwitch | logical ports | |
| +---------------+ +---------------+ |
^	^ :	
: :	
UDP	UDP :	:
port	port: +--------------------+ :	
0	1 :	:
	: v v	
+--+		
	physical ports	
	0 1	
+---+--+---+
 ^ :
 | |
 : v
+--+
| |
| traffic generator |
| |
+--+

PXP deployment is backward compatible with PVP deployment, where pvp is
an alias for pvvp1 and it executes just one VM.

The number of interfaces used by VMs is defined by configuration option
GUEST_NICS_NR. In case that more than one pair of interfaces is defined
for VM, then:

	for pvvp (serial) scenario every NIC pair is connected in serial
before connection to next VM is created

	for pvpv (parallel) scenario every NIC pair is directly connected
to the physical ports and unique traffic stream is assigned to it

Examples:

	Deployment pvvp10 will start 10 VMs and connects them in series

	Deployment pvpv4 will start 4 VMs and connects them in parallel

	Deployment pvpv1 and GUEST_NICS_NR = [4] will start 1 VM with
4 interfaces and every NIC pair is directly connected to the
physical ports

	Deployment pvvp and GUEST_NICS_NR = [2, 4] will start 2 VMs;
1st VM will have 2 interfaces and 2nd VM 4 interfaces. These interfaces
will be connected in serial, i.e. traffic will flow as follows:
PHY1 -> VM1_1 -> VM1_2 -> VM2_1 -> VM2_2 -> VM2_3 -> VM2_4 -> PHY2

Note: In case that only 1 or more than 2 NICs are configured for VM,
then testpmd should be used as forwarding application inside the VM.
As it is able to forward traffic between multiple VM NIC pairs.

Note: In case of linux_bridge, all NICs are connected to the same
bridge inside the VM.

Note: In case that multistream feature is configured and pre_installed_flows
is set to Yes, then stream specific flows will be inserted only for connections
originating at physical ports. The rest of the flows will be based on port
numbers only. The same logic applies in case that flow_type TRAFFIC option
is set to ip. This configuration will avoid a testcase malfunction if frame headers
are modified inside VM (e.g. MAC swap or IP change).

2.6. VM, vSwitch, Traffic Generator Independence

VSPERF supports different VSwitches, Traffic Generators, VNFs
and Forwarding Applications by using standard object-oriented polymorphism:

	Support for vSwitches is implemented by a class inheriting from IVSwitch.

	Support for Traffic Generators is implemented by a class inheriting from
ITrafficGenerator.

	Support for VNF is implemented by a class inheriting from IVNF.

	Support for Forwarding Applications is implemented by a class inheriting
from IPktFwd.

By dealing only with the abstract interfaces the core framework can support
many implementations of different vSwitches, Traffic Generators, VNFs
and Forwarding Applications.

2.6.1. IVSwitch

class IVSwitch:
 start(self)
 stop(self)
 add_switch(switch_name)
 del_switch(switch_name)
 add_phy_port(switch_name)
 add_vport(switch_name)
 get_ports(switch_name)
 del_port(switch_name, port_name)
 add_flow(switch_name, flow)
 del_flow(switch_name, flow=None)

2.6.2. ITrafficGenerator

class ITrafficGenerator:
 connect()
 disconnect()

 send_burst_traffic(traffic, time)

 send_cont_traffic(traffic, time, framerate)
 start_cont_traffic(traffic, time, framerate)
 stop_cont_traffic(self):

 send_rfc2544_throughput(traffic, tests, duration, lossrate)
 start_rfc2544_throughput(traffic, tests, duration, lossrate)
 wait_rfc2544_throughput(self)

 send_rfc2544_back2back(traffic, tests, duration, lossrate)
 start_rfc2544_back2back(traffic, , tests, duration, lossrate)
 wait_rfc2544_back2back()

Note send_xxx() blocks whereas start_xxx() does not and must be followed by a subsequent call to wait_xxx().

2.6.3. IVnf

class IVnf:
 start(memory, cpus,
 monitor_path, shared_path_host,
 shared_path_guest, guest_prompt)
 stop()
 execute(command)
 wait(guest_prompt)
 execute_and_wait (command)

2.6.4. IPktFwd

class IPktFwd:
 start()
 stop()

2.6.5. Controllers

Controllers are used in conjunction with abstract interfaces as way
of decoupling the control of vSwtiches, VNFs, TrafficGenerators
and Forwarding Applications from other components.

The controlled classes provide basic primitive operations. The Controllers
sequence and co-ordinate these primitive operation in to useful actions. For
instance the vswitch_controller_p2p can be used to bring any vSwitch (that
implements the primitives defined in IVSwitch) into the configuration required
by the Phy-to-Phy Deployment Scenario.

In order to support a new vSwitch only a new implementation of IVSwitch needs
be created for the new vSwitch to be capable of fulfilling all the Deployment
Scenarios provided for by existing or future vSwitch Controllers.

Similarly if a new Deployment Scenario is required it only needs to be written
once as a new vSwitch Controller and it will immediately be capable of
controlling all existing and future vSwitches in to that Deployment Scenario.

Similarly the Traffic Controllers can be used to co-ordinate basic operations
provided by implementers of ITrafficGenerator to provide useful tests. Though
traffic generators generally already implement full test cases i.e. they both
generate suitable traffic and analyse returned traffic in order to implement a
test which has typically been predefined in an RFC document. However the
Traffic Controller class allows for the possibility of further enhancement -
such as iterating over tests for various packet sizes or creating new tests.

2.6.6. Traffic Controller’s Role

[image: ../../../../_images/traffic_controller.png]

2.6.7. Loader & Component Factory

The working of the Loader package (which is responsible for finding arbitrary
classes based on configuration data) and the Component Factory which is
responsible for choosing the correct class for a particular situation - e.g.
Deployment Scenario can be seen in this diagram.

[image: ../../../../_images/factory_and_loader.png]

2.7. Routing Tables

Vsperf uses a standard set of routing tables in order to allow tests to easily
mix and match Deployment Scenarios (PVP, P2P topology), Tuple Matching and
Frame Modification requirements.

The usage of routing tables is driven by configuration parameter OVS_ROUTING_TABLES.
Routing tables are disabled by default (i.e. parameter is set to False) for better
comparison of results among supported vSwitches (e.g. OVS vs. VPP).

+--------------+
| |
| Table 0 | table#0 - Match table. Flows designed to force 5 & 10
| | tuple matches go here.
| |
+--------------+
 |
 |
 v
+--------------+ table#1 - Routing table. Flow entries to forward
| | packets between ports goes here.
| Table 1 | The chosen port is communicated to subsequent tables by
| | setting the metadata value to the egress port number.
| | Generally this table is set-up by by the
+--------------+ vSwitchController.
 |
 |
 v
+--------------+ table#2 - Frame modification table. Frame modification
| | flow rules are isolated in this table so that they can
| Table 2 | be turned on or off without affecting the routing or
| | tuple-matching flow rules. This allows the frame
| | modification and tuple matching required by the tests
| | in the VSWITCH PERFORMANCE FOR TELCO NFV test
+--------------+ specification to be independent of the Deployment
 | Scenario set up by the vSwitchController.
 |
 v
+--------------+
| |
| Table 3 | table#3 - Egress table. Egress packets on the ports
| | setup in Table 1.
+--------------+

3. VSPERF LEVEL TEST DESIGN (LTD)

3.1. Introduction

The intention of this Level Test Design (LTD) document is to specify the set of
tests to carry out in order to objectively measure the current characteristics
of a virtual switch in the Network Function Virtualization Infrastructure
(NFVI) as well as the test pass criteria. The detailed test cases will be
defined in details-of-LTD, preceded by the doc-id-of-LTD and the scope-of-LTD.

This document is currently in draft form.

3.1.1. Document identifier

The document id will be used to uniquely
identify versions of the LTD. The format for the document id will be:
OPNFV_vswitchperf_LTD_REL_STATUS, where by the
status is one of: draft, reviewed, corrected or final. The document id
for this version of the LTD is:
OPNFV_vswitchperf_LTD_Brahmaputra_REVIEWED.

3.1.2. Scope

The main purpose of this project is to specify a suite of
performance tests in order to objectively measure the current packet
transfer characteristics of a virtual switch in the NFVI. The intent of
the project is to facilitate testing of any virtual switch. Thus, a
generic suite of tests shall be developed, with no hard dependencies to
a single implementation. In addition, the test case suite shall be
architecture independent.

The test cases developed in this project shall not form part of a
separate test framework, all of these tests may be inserted into the
Continuous Integration Test Framework and/or the Platform Functionality
Test Framework - if a vSwitch becomes a standard component of an OPNFV
release.

3.1.3. References

	RFC 1242 Benchmarking Terminology for Network Interconnection
Devices [http://www.ietf.org/rfc/rfc1242.txt]

	RFC 2544 Benchmarking Methodology for Network Interconnect
Devices [http://www.ietf.org/rfc/rfc2544.txt]

	RFC 2285 Benchmarking Terminology for LAN Switching
Devices [http://www.ietf.org/rfc/rfc2285.txt]

	RFC 2889 Benchmarking Methodology for LAN Switching
Devices [http://www.ietf.org/rfc/rfc2889.txt]

	RFC 3918 Methodology for IP Multicast
Benchmarking [http://www.ietf.org/rfc/rfc3918.txt]

	RFC 4737 Packet Reordering
Metrics [http://www.ietf.org/rfc/rfc4737.txt]

	RFC 5481 Packet Delay Variation Applicability
Statement [http://www.ietf.org/rfc/rfc5481.txt]

	RFC 6201 Device Reset
Characterization [http://tools.ietf.org/html/rfc6201]

3.2. Details of the Level Test Design

This section describes the features to be tested (FeaturesToBeTested-of-LTD), and
identifies the sets of test cases or scenarios (TestIdentification-of-LTD).

3.2.1. Features to be tested

Characterizing virtual switches (i.e. Device Under Test (DUT) in this document)
includes measuring the following performance metrics:

	Throughput

	Packet delay

	Packet delay variation

	Packet loss

	Burst behaviour

	Packet re-ordering

	Packet correctness

	Availability and capacity of the DUT

3.2.2. Test identification

3.2.2.1. Throughput tests

The following tests aim to determine the maximum forwarding rate that
can be achieved with a virtual switch. The list is not exhaustive but
should indicate the type of tests that should be required. It is
expected that more will be added.

3.2.2.1.1. Test ID: LTD.Throughput.RFC2544.PacketLossRatio

Title: RFC 2544 X% packet loss ratio Throughput and Latency Test

Prerequisite Test: N/A

Priority:

Description:

This test determines the DUT’s maximum forwarding rate with X% traffic
loss for a constant load (fixed length frames at a fixed interval time).
The default loss percentages to be tested are: - X = 0% - X = 10^-7%

Note: Other values can be tested if required by the user.

The selected frame sizes are those previously defined under
Default Test Parameters.
The test can also be used to determine the average latency of the traffic.

Under the RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt]
test methodology, the test duration will
include a number of trials; each trial should run for a minimum period
of 60 seconds. A binary search methodology must be applied for each
trial to obtain the final result.

Expected Result: At the end of each trial, the presence or absence
of loss determines the modification of offered load for the next trial,
converging on a maximum rate, or
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt] Throughput with X%
loss.
The Throughput load is re-used in related
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt] tests and other
tests.

Metrics Collected:

The following are the metrics collected for this test:

	The maximum forwarding rate in Frames Per Second (FPS) and Mbps of
the DUT for each frame size with X% packet loss.

	The average latency of the traffic flow when passing through the DUT
(if testing for latency, note that this average is different from the
test specified in Section 26.3 of
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt]).

	CPU and memory utilization may also be collected as part of this
test, to determine the vSwitch’s performance footprint on the system.

3.2.2.1.2. Test ID: LTD.Throughput.RFC2544.PacketLossRatioFrameModification

Title: RFC 2544 X% packet loss Throughput and Latency Test with
packet modification

Prerequisite Test: N/A

Priority:

Description:

This test determines the DUT’s maximum forwarding rate with X% traffic
loss for a constant load (fixed length frames at a fixed interval time).
The default loss percentages to be tested are: - X = 0% - X = 10^-7%

Note: Other values can be tested if required by the user.

The selected frame sizes are those previously defined under
Default Test Parameters.
The test can also be used to determine the average latency of the traffic.

Under the RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt]
test methodology, the test duration will
include a number of trials; each trial should run for a minimum period
of 60 seconds. A binary search methodology must be applied for each
trial to obtain the final result.

During this test, the DUT must perform the following operations on the
traffic flow:

	Perform packet parsing on the DUT’s ingress port.

	Perform any relevant address look-ups on the DUT’s ingress ports.

	Modify the packet header before forwarding the packet to the DUT’s
egress port. Packet modifications include:

	Modifying the Ethernet source or destination MAC address.

	Modifying/adding a VLAN tag. (Recommended).

	Modifying/adding a MPLS tag.

	Modifying the source or destination ip address.

	Modifying the TOS/DSCP field.

	Modifying the source or destination ports for UDP/TCP/SCTP.

	Modifying the TTL.

Expected Result: The Packet parsing/modifications require some
additional degree of processing resource, therefore the
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt]
Throughput is expected to be somewhat lower than the Throughput level
measured without additional steps. The reduction is expected to be
greatest on tests with the smallest packet sizes (greatest header
processing rates).

Metrics Collected:

The following are the metrics collected for this test:

	The maximum forwarding rate in Frames Per Second (FPS) and Mbps of
the DUT for each frame size with X% packet loss and packet
modification operations being performed by the DUT.

	The average latency of the traffic flow when passing through the DUT
(if testing for latency, note that this average is different from the
test specified in Section 26.3 of
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt]).

	The RFC5481 [https://www.rfc-editor.org/rfc/rfc5481.txt]
PDV form of delay variation on the traffic flow,
using the 99th percentile.

	CPU and memory utilization may also be collected as part of this
test, to determine the vSwitch’s performance footprint on the system.

3.2.2.1.3. Test ID: LTD.Throughput.RFC2544.Profile

Title: RFC 2544 Throughput and Latency Profile

Prerequisite Test: N/A

Priority:

Description:

This test reveals how throughput and latency degrades as the offered
rate varies in the region of the DUT’s maximum forwarding rate as
determined by LTD.Throughput.RFC2544.PacketLossRatio (0% Packet Loss).
For example it can be used to determine if the degradation of throughput
and latency as the offered rate increases is slow and graceful or sudden
and severe.

The selected frame sizes are those previously defined under
Default Test Parameters.

The offered traffic rate is described as a percentage delta with respect
to the DUT’s RFC 2544 Throughput as determined by
LTD.Throughput.RFC2544.PacketLoss Ratio (0% Packet Loss case). A delta
of 0% is equivalent to an offered traffic rate equal to the RFC 2544
Maximum Throughput; A delta of +50% indicates an offered rate half-way
between the Maximum RFC2544 Throughput and line-rate, whereas a delta of
-50% indicates an offered rate of half the RFC 2544 Maximum Throughput.
Therefore the range of the delta figure is natuarlly bounded at -100%
(zero offered traffic) and +100% (traffic offered at line rate).

The following deltas to the maximum forwarding rate should be applied:

	-50%, -10%, 0%, +10% & +50%

Expected Result: For each packet size a profile should be produced
of how throughput and latency vary with offered rate.

Metrics Collected:

The following are the metrics collected for this test:

	The forwarding rate in Frames Per Second (FPS) and Mbps of the DUT
for each delta to the maximum forwarding rate and for each frame
size.

	The average latency for each delta to the maximum forwarding rate and
for each frame size.

	CPU and memory utilization may also be collected as part of this
test, to determine the vSwitch’s performance footprint on the system.

	Any failures experienced (for example if the vSwitch crashes, stops
processing packets, restarts or becomes unresponsive to commands)
when the offered load is above Maximum Throughput MUST be recorded
and reported with the results.

3.2.2.1.4. Test ID: LTD.Throughput.RFC2544.SystemRecoveryTime

Title: RFC 2544 System Recovery Time Test

Prerequisite Test LTD.Throughput.RFC2544.PacketLossRatio

Priority:

Description:

The aim of this test is to determine the length of time it takes the DUT
to recover from an overload condition for a constant load (fixed length
frames at a fixed interval time). The selected frame sizes are those
previously defined under Default Test Parameters,
traffic should be sent to the DUT under normal conditions. During the
duration of the test and while the traffic flows are passing though the
DUT, at least one situation leading to an overload condition for the DUT
should occur. The time from the end of the overload condition to when
the DUT returns to normal operations should be measured to determine
recovery time. Prior to overloading the DUT, one should record the
average latency for 10,000 packets forwarded through the DUT.

The overload condition SHOULD be to transmit traffic at a very high
frame rate to the DUT (150% of the maximum 0% packet loss rate as
determined by LTD.Throughput.RFC2544.PacketLossRatio or line-rate
whichever is lower), for at least 60 seconds, then reduce the frame rate
to 75% of the maximum 0% packet loss rate. A number of time-stamps
should be recorded: - Record the time-stamp at which the frame rate was
reduced and record a second time-stamp at the time of the last frame
lost. The recovery time is the difference between the two timestamps. -
Record the average latency for 10,000 frames after the last frame loss
and continue to record average latency measurements for every 10,000
frames, when latency returns to within 10% of pre-overload levels record
the time-stamp.

Expected Result:

Metrics collected

The following are the metrics collected for this test:

	The length of time it takes the DUT to recover from an overload
condition.

	The length of time it takes the DUT to recover the average latency to
pre-overload conditions.

Deployment scenario:

	Physical → virtual switch → physical.

3.2.2.1.5. Test ID: LTD.Throughput.RFC2544.BackToBackFrames

Title: RFC2544 Back To Back Frames Test

Prerequisite Test: N

Priority:

Description:

The aim of this test is to characterize the ability of the DUT to
process back-to-back frames. For each frame size previously defined
under Default Test Parameters, a burst of traffic
is sent to the DUT with the minimum inter-frame gap between each frame.
If the number of received frames equals the number of frames that were
transmitted, the burst size should be increased and traffic is sent to
the DUT again. The value measured is the back-to-back value, that is the
maximum burst size the DUT can handle without any frame loss. Please note
a trial must run for a minimum of 2 seconds and should be repeated 50
times (at a minimum).

Expected Result:

Tests of back-to-back frames with physical devices have produced
unstable results in some cases. All tests should be repeated in multiple
test sessions and results stability should be examined.

Metrics collected

The following are the metrics collected for this test:

	The average back-to-back value across the trials, which is
the number of frames in the longest burst that the DUT will
handle without the loss of any frames.

	CPU and memory utilization may also be collected as part of this
test, to determine the vSwitch’s performance footprint on the system.

Deployment scenario:

	Physical → virtual switch → physical.

3.2.2.1.6. Test ID: LTD.Throughput.RFC2889.MaxForwardingRateSoak

Title: RFC 2889 X% packet loss Max Forwarding Rate Soak Test

Prerequisite Tests:

LTD.Throughput.RFC2544.PacketLossRatio will determine the offered load and
frame size for which the maximum theoretical throughput of the interface
has not been achieved. As described in RFC 2544 section 24, the final
determination of the benchmark SHOULD be conducted using a full length
trial, and for this purpose the duration is 5 minutes with zero loss ratio.

It is also essential to verify that the Traffic Generator has sufficient
stability to conduct Soak tests. Therefore, a prerequisite is to perform
this test with the DUT removed and replaced with a cross-over cable (or
other equivalent very low overhead method such as a loopback in a HW switch),
so that the traffic generator (and any other network involved) can be tested
over the Soak period. Note that this test may be challenging for software-
based traffic generators.

Priority:

Description:

The aim of this test is to understand the Max Forwarding Rate stability
over an extended test duration in order to uncover any outliers. To allow
for an extended test duration, the test should ideally run for 24 hours
or if this is not possible, for at least 6 hours.

For this test, one frame size must be sent at the highest frame rate with
X% packet loss ratio, as determined in the prerequisite test (a short trial).
The loss ratio shall be measured and recorded every 5 minutes during the test
(it may be sufficient to collect lost frame counts and divide by the number
of frames sent in 5 minutes to see if a threshold has been crossed,
and accept some small inaccuracy in the threshold evaluation, not the result).
The default loss ratio is X = 0% and loss ratio > 10^-7% is the default
threshold to terminate the test early (or inform the test operator of
the failure status).

Note: Other values of X and loss threshold can be tested if required by the user.

Expected Result:

Metrics Collected:

The following are the metrics collected for this test:

	Max Forwarding Rate stability of the DUT.

	This means reporting the number of packets lost per time interval
and reporting any time intervals with packet loss. The
RFC2889 [https://www.rfc-editor.org/rfc/rfc2289.txt]
Forwarding Rate shall be measured in each interval.
An interval of 300s is suggested.

	CPU and memory utilization may also be collected as part of this
test, to determine the vSwitch’s performance footprint on the system.

	The RFC5481 [https://www.rfc-editor.org/rfc/rfc5481.txt]
PDV form of delay variation on the traffic flow,
using the 99th percentile, may also be collected.

3.2.2.1.7. Test ID: LTD.Throughput.RFC2889.MaxForwardingRateSoakFrameModification

Title: RFC 2889 Max Forwarding Rate Soak Test with Frame Modification

Prerequisite Test:

LTD.Throughput.RFC2544.PacketLossRatioFrameModification (0% Packet Loss)
will determine the offered load and
frame size for which the maximum theoretical throughput of the interface
has not been achieved. As described in RFC 2544 section 24, the final
determination of the benchmark SHOULD be conducted using a full length
trial, and for this purpose the duration is 5 minutes with zero loss ratio.

It is also essential to verify that the Traffic Generator has sufficient
stability to conduct Soak tests. Therefore, a prerequisite is to perform
this test with the DUT removed and replaced with a cross-over cable (or
other equivalent very low overhead method such as a loopback in a HW switch),
so that the traffic generator (and any other network involved) can be tested
over the Soak period. Note that this test may be challenging for software-
based traffic generators.

Priority:

Description:

The aim of this test is to understand the Max Forwarding Rate stability over an
extended test duration in order to uncover any outliers. To allow for an
extended test duration, the test should ideally run for 24 hours or, if
this is not possible, for at least 6 hours.

For this test, one frame size must be sent at the highest frame rate with
X% packet loss ratio, as determined in the prerequisite test (a short trial).
The loss ratio shall be measured and recorded every 5 minutes during the test
(it may be sufficient to collect lost frame counts and divide by the number
of frames sent in 5 minutes to see if a threshold has been crossed,
and accept some small inaccuracy in the threshold evaluation, not the result).
The default loss ratio is X = 0% and loss ratio > 10^-7% is the default
threshold to terminate the test early (or inform the test operator of
the failure status).

Note: Other values of X and loss threshold can be tested if required by the user.

During this test, the DUT must perform the following operations on the
traffic flow:

	Perform packet parsing on the DUT’s ingress port.

	Perform any relevant address look-ups on the DUT’s ingress ports.

	Modify the packet header before forwarding the packet to the DUT’s
egress port. Packet modifications include:

	Modifying the Ethernet source or destination MAC address.

	Modifying/adding a VLAN tag (Recommended).

	Modifying/adding a MPLS tag.

	Modifying the source or destination ip address.

	Modifying the TOS/DSCP field.

	Modifying the source or destination ports for UDP/TCP/SCTP.

	Modifying the TTL.

Expected Result:

Metrics Collected:

The following are the metrics collected for this test:

	Max Forwarding Rate stability of the DUT.

	This means reporting the number of packets lost per time interval
and reporting any time intervals with packet loss. The
RFC2889 [https://www.rfc-editor.org/rfc/rfc2289.txt]
Forwarding Rate shall be measured in each interval.
An interval of 300s is suggested.

	CPU and memory utilization may also be collected as part of this
test, to determine the vSwitch’s performance footprint on the system.

	The RFC5481 [https://www.rfc-editor.org/rfc/rfc5481.txt]
PDV form of delay variation on the traffic flow, using the 99th
percentile, may also be collected.

3.2.2.1.8. Test ID: LTD.Throughput.RFC6201.ResetTime

Title: RFC 6201 Reset Time Test

Prerequisite Test: N/A

Priority:

Description:

The aim of this test is to determine the length of time it takes the DUT
to recover from a reset.

Two reset methods are defined - planned and unplanned. A planned reset
requires stopping and restarting the virtual switch by the usual
‘graceful’ method defined by it’s documentation. An unplanned reset
requires simulating a fatal internal fault in the virtual switch - for
example by using kill -SIGKILL on a Linux environment.

Both reset methods SHOULD be exercised.

For each frame size previously defined under Default Test Parameters,
traffic should be sent to the DUT under
normal conditions. During the duration of the test and while the traffic
flows are passing through the DUT, the DUT should be reset and the Reset
time measured. The Reset time is the total time that a device is
determined to be out of operation and includes the time to perform the
reset and the time to recover from it (cf. RFC6201 [https://www.rfc-editor.org/rfc/rfc6201.txt]).

RFC6201 [https://www.rfc-editor.org/rfc/rfc6201.txt] defines two methods
to measure the Reset time:

	Frame-Loss Method: which requires the monitoring of the number of
lost frames and calculates the Reset time based on the number of
frames lost and the offered rate according to the following
formula:

 Frames_lost (packets)
Reset_time = -------------------------------------
 Offered_rate (packets per second)

	Timestamp Method: which measures the time from which the last frame
is forwarded from the DUT to the time the first frame is forwarded
after the reset. This involves time-stamping all transmitted frames
and recording the timestamp of the last frame that was received prior
to the reset and also measuring the timestamp of the first frame that
is received after the reset. The Reset time is the difference between
these two timestamps.

According to RFC6201 [https://www.rfc-editor.org/rfc/rfc6201.txt] the
choice of method depends on the test tool’s capability; the Frame-Loss
method SHOULD be used if the test tool supports:

	Counting the number of lost frames per stream.

	Transmitting test frame despite the physical link status.

whereas the Timestamp method SHOULD be used if the test tool supports:

	Timestamping each frame.

	Monitoring received frame’s timestamp.

	Transmitting frames only if the physical link status is up.

Expected Result:

Metrics collected

The following are the metrics collected for this test:

	Average Reset Time over the number of trials performed.

Results of this test should include the following information:

	The reset method used.

	Throughput in Fps and Mbps.

	Average Frame Loss over the number of trials performed.

	Average Reset Time in milliseconds over the number of trials performed.

	Number of trials performed.

	Protocol: IPv4, IPv6, MPLS, etc.

	Frame Size in Octets

	Port Media: Ethernet, Gigabit Ethernet (GbE), etc.

	Port Speed: 10 Gbps, 40 Gbps etc.

	Interface Encapsulation: Ethernet, Ethernet VLAN, etc.

Deployment scenario:

	Physical → virtual switch → physical.

3.2.2.1.9. Test ID: LTD.Throughput.RFC2889.MaxForwardingRate

Title: RFC2889 Forwarding Rate Test

Prerequisite Test: LTD.Throughput.RFC2544.PacketLossRatio

Priority:

Description:

This test measures the DUT’s Max Forwarding Rate when the Offered Load
is varied between the throughput and the Maximum Offered Load for fixed
length frames at a fixed time interval. The selected frame sizes are
those previously defined under Default Test Parameters.
The throughput is the maximum offered
load with 0% frame loss (measured by the prerequisite test), and the
Maximum Offered Load (as defined by
RFC2285 [https://www.rfc-editor.org/rfc/rfc2285.txt]) is “the highest
number of frames per second that an external source can transmit to a
DUT/SUT for forwarding to a specified output interface or interfaces”.

Traffic should be sent to the DUT at a particular rate (TX rate)
starting with TX rate equal to the throughput rate. The rate of
successfully received frames at the destination counted (in FPS). If the
RX rate is equal to the TX rate, the TX rate should be increased by a
fixed step size and the RX rate measured again until the Max Forwarding
Rate is found.

The trial duration for each iteration should last for the period of time
needed for the system to reach steady state for the frame size being
tested. Under RFC2889 [https://www.rfc-editor.org/rfc/rfc2289.txt]
(Sec. 5.6.3.1) test methodology, the test
duration should run for a minimum period of 30 seconds, regardless
whether the system reaches steady state before the minimum duration
ends.

Expected Result: According to
RFC2889 [https://www.rfc-editor.org/rfc/rfc2289.txt] The Max Forwarding
Rate is the highest forwarding rate of a DUT taken from an iterative set of
forwarding rate measurements. The iterative set of forwarding rate measurements
are made by setting the intended load transmitted from an external source and
measuring the offered load (i.e what the DUT is capable of forwarding). If the
Throughput == the Maximum Offered Load, it follows that Max Forwarding Rate is
equal to the Maximum Offered Load.

Metrics Collected:

The following are the metrics collected for this test:

	The Max Forwarding Rate for the DUT for each packet size.

	CPU and memory utilization may also be collected as part of this
test, to determine the vSwitch’s performance footprint on the system.

Deployment scenario:

	Physical → virtual switch → physical. Note: Full mesh tests with
multiple ingress and egress ports are a key aspect of RFC 2889
benchmarks, and scenarios with both 2 and 4 ports should be tested.
In any case, the number of ports used must be reported.

3.2.2.1.10. Test ID: LTD.Throughput.RFC2889.ForwardPressure

Title: RFC2889 Forward Pressure Test

Prerequisite Test: LTD.Throughput.RFC2889.MaxForwardingRate

Priority:

Description:

The aim of this test is to determine if the DUT transmits frames with an
inter-frame gap that is less than 12 bytes. This test overloads the DUT
and measures the output for forward pressure. Traffic should be
transmitted to the DUT with an inter-frame gap of 11 bytes, this will
overload the DUT by 1 byte per frame. The forwarding rate of the DUT
should be measured.

Expected Result: The forwarding rate should not exceed the maximum
forwarding rate of the DUT collected by
LTD.Throughput.RFC2889.MaxForwardingRate.

Metrics collected

The following are the metrics collected for this test:

	Forwarding rate of the DUT in FPS or Mbps.

	CPU and memory utilization may also be collected as part of this
test, to determine the vSwitch’s performance footprint on the system.

Deployment scenario:

	Physical → virtual switch → physical.

3.2.2.1.11. Test ID: LTD.Throughput.RFC2889.ErrorFramesFiltering

Title: RFC2889 Error Frames Filtering Test

Prerequisite Test: N/A

Priority:

Description:

The aim of this test is to determine whether the DUT will propagate any
erroneous frames it receives or whether it is capable of filtering out
the erroneous frames. Traffic should be sent with erroneous frames
included within the flow at random intervals. Illegal frames that must
be tested include: - Oversize Frames. - Undersize Frames. - CRC Errored
Frames. - Dribble Bit Errored Frames - Alignment Errored Frames

The traffic flow exiting the DUT should be recorded and checked to
determine if the erroneous frames where passed through the DUT.

Expected Result: Broken frames are not passed!

Metrics collected

No Metrics are collected in this test, instead it determines:

	Whether the DUT will propagate erroneous frames.

	Or whether the DUT will correctly filter out any erroneous frames
from traffic flow with out removing correct frames.

Deployment scenario:

	Physical → virtual switch → physical.

3.2.2.1.12. Test ID: LTD.Throughput.RFC2889.BroadcastFrameForwarding

Title: RFC2889 Broadcast Frame Forwarding Test

Prerequisite Test: N

Priority:

Description:

The aim of this test is to determine the maximum forwarding rate of the
DUT when forwarding broadcast traffic. For each frame previously defined
under Default Test Parameters, the traffic should
be set up as broadcast traffic. The traffic throughput of the DUT should
be measured.

The test should be conducted with at least 4 physical ports on the DUT.
The number of ports used MUST be recorded.

As broadcast involves forwarding a single incoming packet to several
destinations, the latency of a single packet is defined as the average
of the latencies for each of the broadcast destinations.

The incoming packet is transmitted on each of the other physical ports,
it is not transmitted on the port on which it was received. The test MAY
be conducted using different broadcasting ports to uncover any
performance differences.

Expected Result:

Metrics collected:

The following are the metrics collected for this test:

	The forwarding rate of the DUT when forwarding broadcast traffic.

	The minimum, average & maximum packets latencies observed.

Deployment scenario:

	Physical → virtual switch 3x physical. In the Broadcast rate testing,
four test ports are required. One of the ports is connected to the test
device, so it can send broadcast frames and listen for miss-routed frames.

3.2.2.1.13. Test ID: LTD.Throughput.RFC2544.WorstN-BestN

Title: Modified RFC 2544 X% packet loss ratio Throughput and Latency Test

Prerequisite Test: N/A

Priority:

Description:

This test determines the DUT’s maximum forwarding rate with X% traffic
loss for a constant load (fixed length frames at a fixed interval time).
The default loss percentages to be tested are: X = 0%, X = 10^-7%

Modified RFC 2544 throughput benchmarking methodology aims to quantify
the throughput measurement variations observed during standard RFC 2544
benchmarking measurements of virtual switches and VNFs. The RFC2544
binary search algorithm is modified to use more samples per test trial
to drive the binary search and yield statistically more meaningful
results. This keeps the heart of the RFC2544 methodology, still relying
on the binary search of throughput at specified loss tolerance, while
providing more useful information about the range of results seen in
testing. Instead of using a single traffic trial per iteration step,
each traffic trial is repeated N times and the success/failure of the
iteration step is based on these N traffic trials. Two types of revised
tests are defined - Worst-of-N and Best-of-N.

Worst-of-N

Worst-of-N indicates the lowest expected maximum throughput for (
packet size, loss tolerance) when repeating the test.

	Repeat the same test run N times at a set packet rate, record each
result.

	Take the WORST result (highest packet loss) out of N result samples,
called the Worst-of-N sample.

	If Worst-of-N sample has loss less than the set loss tolerance, then
the step is successful - increase the test traffic rate.

	If Worst-of-N sample has loss greater than the set loss tolerance
then the step failed - decrease the test traffic rate.

	Go to step 1.

Best-of-N

Best-of-N indicates the highest expected maximum throughput for (
packet size, loss tolerance) when repeating the test.

	Repeat the same traffic run N times at a set packet rate, record
each result.

	Take the BEST result (least packet loss) out of N result samples,
called the Best-of-N sample.

	If Best-of-N sample has loss less than the set loss tolerance, then
the step is successful - increase the test traffic rate.

	If Best-of-N sample has loss greater than the set loss tolerance,
then the step failed - decrease the test traffic rate.

	Go to step 1.

Performing both Worst-of-N and Best-of-N benchmark tests yields lower
and upper bounds of expected maximum throughput under the operating
conditions, giving a very good indication to the user of the
deterministic performance range for the tested setup.

Expected Result: At the end of each trial series, the presence or
absence of loss determines the modification of offered load for the
next trial series, converging on a maximum rate, or
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt] Throughput
with X% loss.
The Throughput load is re-used in related
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt] tests and other
tests.

Metrics Collected:

The following are the metrics collected for this test:

	The maximum forwarding rate in Frames Per Second (FPS) and Mbps of
the DUT for each frame size with X% packet loss.

	The average latency of the traffic flow when passing through the DUT
(if testing for latency, note that this average is different from the
test specified in Section 26.3 of
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt]).

	Following may also be collected as part of this test, to determine
the vSwitch’s performance footprint on the system:

	CPU core utilization.

	CPU cache utilization.

	Memory footprint.

	System bus (QPI, PCI, …) utilization.

	CPU cycles consumed per packet.

3.2.2.1.14. Test ID: LTD.Throughput.Overlay.Network.<tech>.RFC2544.PacketLossRatio

Title: <tech> Overlay Network RFC 2544 X% packet loss ratio Throughput and Latency Test

NOTE: Throughout this test, four interchangeable overlay technologies are covered by the
same test description. They are: VXLAN, GRE, NVGRE and GENEVE.

Prerequisite Test: N/A

Priority:

Description:
This test evaluates standard switch performance benchmarks for the scenario where an
Overlay Network is deployed for all paths through the vSwitch. Overlay Technologies covered
(replacing <tech> in the test name) include:

	VXLAN

	GRE

	NVGRE

	GENEVE

Performance will be assessed for each of the following overlay network functions:

	Encapsulation only

	De-encapsulation only

	Both Encapsulation and De-encapsulation

For each native packet, the DUT must perform the following operations:

	Examine the packet and classify its correct overlay net (tunnel) assignment

	Encapsulate the packet

	Switch the packet to the correct port

For each encapsulated packet, the DUT must perform the following operations:

	Examine the packet and classify its correct native network assignment

	De-encapsulate the packet, if required

	Switch the packet to the correct port

The selected frame sizes are those previously defined under
Default Test Parameters.

Thus, each test comprises an overlay technology, a network function,
and a packet size with overlay network overhead included
(but see also the discussion at
https://etherpad.opnfv.org/p/vSwitchTestsDrafts).

The test can also be used to determine the average latency of the traffic.

Under the RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt]
test methodology, the test duration will
include a number of trials; each trial should run for a minimum period
of 60 seconds. A binary search methodology must be applied for each
trial to obtain the final result for Throughput.

Expected Result: At the end of each trial, the presence or absence
of loss determines the modification of offered load for the next trial,
converging on a maximum rate, or
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt] Throughput with X%
loss (where the value of X is typically equal to zero).
The Throughput load is re-used in related
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt] tests and other
tests.

Metrics Collected:
The following are the metrics collected for this test:

	The maximum Throughput in Frames Per Second (FPS) and Mbps of
the DUT for each frame size with X% packet loss.

	The average latency of the traffic flow when passing through the DUT
and VNFs (if testing for latency, note that this average is different from the
test specified in Section 26.3 of
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt]).

	CPU and memory utilization may also be collected as part of this
test, to determine the vSwitch’s performance footprint on the system.

3.2.2.1.15. Test ID: LTD.Throughput.RFC2544.MatchAction.PacketLossRatio

Title: RFC 2544 X% packet loss ratio match action Throughput and Latency Test

Prerequisite Test: LTD.Throughput.RFC2544.PacketLossRatio

Priority:

Description:

The aim of this test is to determine the cost of carrying out match
action(s) on the DUT’s RFC2544 Throughput with X% traffic loss for
a constant load (fixed length frames at a fixed interval time).

Each test case requires:

	selection of a specific match action(s),

	specifying a percentage of total traffic that is elligible
for the match action,

	determination of the specific test configuration (number
of flows, number of test ports, presence of an external
controller, etc.), and

	measurement of the RFC 2544 Throughput level with X% packet
loss: Traffic shall be bi-directional and symmetric.

Note: It would be ideal to verify that all match action-elligible
traffic was forwarded to the correct port, and if forwarded to
an unintended port it should be considered lost.

A match action is an action that is typically carried on a frame
or packet that matches a set of flow classification parameters
(typically frame/packet header fields). A match action may or may
not modify a packet/frame. Match actions include [1]:

	output : outputs a packet to a particular port.

	normal: Subjects the packet to traditional L2/L3 processing
(MAC learning).

	flood: Outputs the packet on all switch physical ports
other than the port on which it was received and any ports
on which flooding is disabled.

	all: Outputs the packet on all switch physical ports other
than the port on which it was received.

	local: Outputs the packet on the local port, which
corresponds to the network device that has the same name as
the bridge.

	in_port: Outputs the packet on the port from which it was
received.

	Controller: Sends the packet and its metadata to the
OpenFlow controller as a packet in message.

	enqueue: Enqueues the packet on the specified queue
within port.

	drop: discard the packet.

Modifications include [1]:

	mod vlan: covered by LTD.Throughput.RFC2544.PacketLossRatioFrameModification

	mod_dl_src: Sets the source Ethernet address.

	mod_dl_dst: Sets the destination Ethernet address.

	mod_nw_src: Sets the IPv4 source address.

	mod_nw_dst: Sets the IPv4 destination address.

	mod_tp_src: Sets the TCP or UDP or SCTP source port.

	mod_tp_dst: Sets the TCP or UDP or SCTP destination port.

	mod_nw_tos: Sets the DSCP bits in the IPv4 ToS/DSCP or
IPv6 traffic class field.

	mod_nw_ecn: Sets the ECN bits in the appropriate IPv4 or
IPv6 field.

	mod_nw_ttl: Sets the IPv4 TTL or IPv6 hop limit field.

Note: This comprehensive list requires extensive traffic generator
capabilities.

The match action(s) that were applied as part of the test should be
reported in the final test report.

During this test, the DUT must perform the following operations on
the traffic flow:

	Perform packet parsing on the DUT’s ingress port.

	Perform any relevant address look-ups on the DUT’s ingress
ports.

	Carry out one or more of the match actions specified above.

The default loss percentages to be tested are: - X = 0% - X = 10^-7%
Other values can be tested if required by the user. The selected
frame sizes are those previously defined under
Default Test Parameters.

The test can also be used to determine the average latency of the
traffic when a match action is applied to packets in a flow. Under
the RFC2544 test methodology, the test duration will include a
number of trials; each trial should run for a minimum period of 60
seconds. A binary search methodology must be applied for each
trial to obtain the final result.

Expected Result:

At the end of each trial, the presence or absence of loss
determines the modification of offered load for the next trial,
converging on a maximum rate, or RFC2544Throughput with X% loss.
The Throughput load is re-used in related RFC2544 tests and other
tests.

Metrics Collected:

The following are the metrics collected for this test:

	The RFC 2544 Throughput in Frames Per Second (FPS) and Mbps
of the DUT for each frame size with X% packet loss.

	The average latency of the traffic flow when passing through
the DUT (if testing for latency, note that this average is
different from the test specified in Section 26.3 ofRFC2544).

	CPU and memory utilization may also be collected as part of
this test, to determine the vSwitch’s performance footprint
on the system.

The metrics collected can be compared to that of the prerequisite
test to determine the cost of the match action(s) in the pipeline.

Deployment scenario:

	Physical → virtual switch → physical (and others are possible)

	[1] ovs-ofctl - administer OpenFlow switches

	[http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt]

3.2.2.2. Packet Latency tests

These tests will measure the store and forward latency as well as the packet
delay variation for various packet types through the virtual switch. The
following list is not exhaustive but should indicate the type of tests
that should be required. It is expected that more will be added.

3.2.2.2.1. Test ID: LTD.PacketLatency.InitialPacketProcessingLatency

Title: Initial Packet Processing Latency

Prerequisite Test: N/A

Priority:

Description:

In some virtual switch architectures, the first packets of a flow will
take the system longer to process than subsequent packets in the flow.
This test determines the latency for these packets. The test will
measure the latency of the packets as they are processed by the
flow-setup-path of the DUT. There are two methods for this test, a
recommended method and a nalternative method that can be used if it is
possible to disable the fastpath of the virtual switch.

Recommended method: This test will send 64,000 packets to the DUT, each
belonging to a different flow. Average packet latency will be determined
over the 64,000 packets.

Alternative method: This test will send a single packet to the DUT after
a fixed interval of time. The time interval will be equivalent to the
amount of time it takes for a flow to time out in the virtual switch
plus 10%. Average packet latency will be determined over 1,000,000
packets.

This test is intended only for non-learning virtual switches; For learning
virtual switches use RFC2889.

For this test, only unidirectional traffic is required.

Expected Result: The average latency for the initial packet of all
flows should be greater than the latency of subsequent traffic.

Metrics Collected:

The following are the metrics collected for this test:

	Average latency of the initial packets of all flows that are
processed by the DUT.

Deployment scenario:

	Physical → Virtual Switch → Physical.

3.2.2.2.2. Test ID: LTD.PacketDelayVariation.RFC3393.Soak

Title: Packet Delay Variation Soak Test

Prerequisite Tests:

LTD.Throughput.RFC2544.PacketLossRatio will determine the offered load and
frame size for which the maximum theoretical throughput of the interface
has not been achieved. As described in RFC 2544 section 24, the final
determination of the benchmark SHOULD be conducted using a full length
trial, and for this purpose the duration is 5 minutes with zero loss ratio.

It is also essential to verify that the Traffic Generator has sufficient
stability to conduct Soak tests. Therefore, a prerequisite is to perform
this test with the DUT removed and replaced with a cross-over cable (or
other equivalent very low overhead method such as a loopback in a HW switch),
so that the traffic generator (and any other network involved) can be tested
over the Soak period. Note that this test may be challenging for software-
based traffic generators.

Priority:

Description:

The aim of this test is to understand the distribution of packet delay
variation for different frame sizes over an extended test duration and
to determine if there are any outliers. To allow for an extended test
duration, the test should ideally run for 24 hours or, if this is not
possible, for at least 6 hours.

For this test, one frame size must be sent at the highest frame rate with
X% packet loss ratio, as determined in the prerequisite test (a short trial).
The loss ratio shall be measured and recorded every 5 minutes during the test
(it may be sufficient to collect lost frame counts and divide by the number
of frames sent in 5 minutes to see if a threshold has been crossed,
and accept some small inaccuracy in the threshold evaluation, not the result).
The default loss ratio is X = 0% and loss ratio > 10^-7% is the default
threshold to terminate the test early (or inform the test operator of
the failure status).

Note: Other values of X and loss threshold can be tested if required by the user.

Expected Result:

Metrics Collected:

The following are the metrics collected for this test:

	The packet delay variation value for traffic passing through the DUT.

	The RFC5481 [https://www.rfc-editor.org/rfc/rfc5481.txt]
PDV form of delay variation on the traffic flow,
using the 99th percentile, for each 300s interval during the test.

	CPU and memory utilization may also be collected as part of this
test, to determine the vSwitch’s performance footprint on the system.

3.2.2.3. Scalability tests

The general aim of these tests is to understand the impact of large flow
table size and flow lookups on throughput. The following list is not
exhaustive but should indicate the type of tests that should be required.
It is expected that more will be added.

3.2.2.3.1. Test ID: LTD.Scalability.Flows.RFC2544.0PacketLoss

Title: RFC 2544 0% loss Flow Scalability throughput test

Prerequisite Test: LTD.Throughput.RFC2544.PacketLossRatio, IF the
delta Throughput between the single-flow RFC2544 test and this test with
a variable number of flows is desired.

Priority:

Description:

The aim of this test is to measure how throughput changes as the number
of flows in the DUT increases. The test will measure the throughput
through the fastpath, as such the flows need to be installed on the DUT
before passing traffic.

For each frame size previously defined under Default Test Parameters
and for each of the following number of flows:

	1,000

	2,000

	4,000

	8,000

	16,000

	32,000

	64,000

	Max supported number of flows.

This test will be conducted under two conditions following the
establishment of all flows as required by RFC 2544, regarding the flow
expiration time-out:

	The time-out never expires during each trial.

2) The time-out expires for all flows periodically. This would require a
short time-out compared with flow re-appearance for a small number of
flows, and may not be possible for all flow conditions.

The maximum 0% packet loss Throughput should be determined in a manner
identical to LTD.Throughput.RFC2544.PacketLossRatio.

Expected Result:

Metrics Collected:

The following are the metrics collected for this test:

	The maximum number of frames per second that can be forwarded at the
specified number of flows and the specified frame size, with zero
packet loss.

3.2.2.3.2. Test ID: LTD.MemoryBandwidth.RFC2544.0PacketLoss.Scalability

Title: RFC 2544 0% loss Memory Bandwidth Scalability test

Prerequisite Tests: LTD.Throughput.RFC2544.PacketLossRatio, IF the
delta Throughput between an undisturbed RFC2544 test and this test with
the Throughput affected by cache and memory bandwidth contention is desired.

Priority:

Description:

The aim of this test is to understand how the DUT’s performance is
affected by cache sharing and memory bandwidth between processes.

During the test all cores not used by the vSwitch should be running a
memory intensive application. This application should read and write
random data to random addresses in unused physical memory. The random
nature of the data and addresses is intended to consume cache, exercise
main memory access (as opposed to cache) and exercise all memory buses
equally. Furthermore:

	the ratio of reads to writes should be recorded. A ratio of 1:1
SHOULD be used.

	the reads and writes MUST be of cache-line size and be cache-line aligned.

	in NUMA architectures memory access SHOULD be local to the core’s node.
Whether only local memory or a mix of local and remote memory is used
MUST be recorded.

	the memory bandwidth (reads plus writes) used per-core MUST be recorded;
the test MUST be run with a per-core memory bandwidth equal to half the
maximum system memory bandwidth divided by the number of cores. The test
MAY be run with other values for the per-core memory bandwidth.

	the test MAY also be run with the memory intensive application running
on all cores.

Under these conditions the DUT’s 0% packet loss throughput is determined
as per LTD.Throughput.RFC2544.PacketLossRatio.

Expected Result:

Metrics Collected:

The following are the metrics collected for this test:

	The DUT’s 0% packet loss throughput in the presence of cache sharing and
memory bandwidth between processes.

3.2.2.3.3. Test ID: LTD.Scalability.VNF.RFC2544.PacketLossRatio

	Title: VNF Scalability RFC 2544 X% packet loss ratio Throughput and

	Latency Test

Prerequisite Test: N/A

Priority:

Description:

This test determines the DUT’s throughput rate with X% traffic loss for
a constant load (fixed length frames at a fixed interval time) when the
number of VNFs on the DUT increases. The default loss percentages
to be tested are: - X = 0% - X = 10^-7% . The minimum number of
VNFs to be tested are 3.

Flow classification should be conducted with L2, L3 and L4 matching
to understand the matching and scaling capability of the vSwitch. The
matching fields which were used as part of the test should be reported
as part of the benchmark report.

The vSwitch is responsible for forwarding frames between the VNFs

The SUT (vSwitch and VNF daisy chain) operation should be validated
before running the test. This may be completed by running a burst or
continuous stream of traffic through the SUT to ensure proper operation
before a test.

Note: The traffic rate used to validate SUT operation should be low
enough not to stress the SUT.

Note: Other values can be tested if required by the user.

Note: The same VNF should be used in the “daisy chain” formation.
Each addition of a VNF should be conducted in a new test setup (The DUT
is brought down, then the DUT is brought up again). An atlernative approach
would be to continue to add VNFs without bringing down the DUT. The
approach used needs to be documented as part of the test report.

The selected frame sizes are those previously defined under
Default Test Parameters.
The test can also be used to determine the average latency of the traffic.

Under the RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt]
test methodology, the test duration will
include a number of trials; each trial should run for a minimum period
of 60 seconds. A binary search methodology must be applied for each
trial to obtain the final result for Throughput.

Expected Result: At the end of each trial, the presence or absence
of loss determines the modification of offered load for the next trial,
converging on a maximum rate, or
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt] Throughput with X%
loss.
The Throughput load is re-used in related
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt] tests and other
tests.

If the test VNFs are rather light-weight in terms of processing, the test
provides a view of multiple passes through the vswitch on logical
interfaces. In other words, the test produces an optimistic count of
daisy-chained VNFs, but the cumulative effect of traffic on the vSwitch is
“real” (assuming that the vSwitch has some dedicated resources, and the
effects on shared resources is understood).

Metrics Collected:
The following are the metrics collected for this test:

	The maximum Throughput in Frames Per Second (FPS) and Mbps of
the DUT for each frame size with X% packet loss.

	The average latency of the traffic flow when passing through the DUT
and VNFs (if testing for latency, note that this average is different from the
test specified in Section 26.3 of
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt]).

	CPU and memory utilization may also be collected as part of this
test, to determine the vSwitch’s performance footprint on the system.

3.2.2.3.4. Test ID: LTD.Scalability.VNF.RFC2544.PacketLossProfile

Title: VNF Scalability RFC 2544 Throughput and Latency Profile

Prerequisite Test: N/A

Priority:

Description:

This test reveals how throughput and latency degrades as the number
of VNFs increases and offered rate varies in the region of the DUT’s
maximum forwarding rate as determined by
LTD.Throughput.RFC2544.PacketLossRatio (0% Packet Loss).
For example it can be used to determine if the degradation of throughput
and latency as the number of VNFs and offered rate increases is slow
and graceful, or sudden and severe. The minimum number of VNFs to
be tested is 3.

The selected frame sizes are those previously defined under
Default Test Parameters.

The offered traffic rate is described as a percentage delta with respect
to the DUT’s RFC 2544 Throughput as determined by
LTD.Throughput.RFC2544.PacketLoss Ratio (0% Packet Loss case). A delta
of 0% is equivalent to an offered traffic rate equal to the RFC 2544
Throughput; A delta of +50% indicates an offered rate half-way
between the Throughput and line-rate, whereas a delta of
-50% indicates an offered rate of half the maximum rate. Therefore the
range of the delta figure is natuarlly bounded at -100% (zero offered
traffic) and +100% (traffic offered at line rate).

The following deltas to the maximum forwarding rate should be applied:

	-50%, -10%, 0%, +10% & +50%

Note: Other values can be tested if required by the user.

Note: The same VNF should be used in the “daisy chain” formation.
Each addition of a VNF should be conducted in a new test setup (The DUT
is brought down, then the DUT is brought up again). An atlernative approach
would be to continue to add VNFs without bringing down the DUT. The
approach used needs to be documented as part of the test report.

Flow classification should be conducted with L2, L3 and L4 matching
to understand the matching and scaling capability of the vSwitch. The
matching fields which were used as part of the test should be reported
as part of the benchmark report.

The SUT (vSwitch and VNF daisy chain) operation should be validated
before running the test. This may be completed by running a burst or
continuous stream of traffic through the SUT to ensure proper operation
before a test.

Note: the traffic rate used to validate SUT operation should be low
enough not to stress the SUT

Expected Result: For each packet size a profile should be produced
of how throughput and latency vary with offered rate.

Metrics Collected:

The following are the metrics collected for this test:

	The forwarding rate in Frames Per Second (FPS) and Mbps of the DUT
for each delta to the maximum forwarding rate and for each frame
size.

	The average latency for each delta to the maximum forwarding rate and
for each frame size.

	CPU and memory utilization may also be collected as part of this
test, to determine the vSwitch’s performance footprint on the system.

	Any failures experienced (for example if the vSwitch crashes, stops
processing packets, restarts or becomes unresponsive to commands)
when the offered load is above Maximum Throughput MUST be recorded
and reported with the results.

3.2.2.4. Activation tests

The general aim of these tests is to understand the capacity of the
and speed with which the vswitch can accommodate new flows.

3.2.2.4.1. Test ID: LTD.Activation.RFC2889.AddressCachingCapacity

Title: RFC2889 Address Caching Capacity Test

Prerequisite Test: N/A

Priority:

Description:

Please note this test is only applicable to virtual switches that are capable of
MAC learning. The aim of this test is to determine the address caching
capacity of the DUT for a constant load (fixed length frames at a fixed
interval time). The selected frame sizes are those previously defined
under Default Test Parameters.

In order to run this test the aging time, that is the maximum time the
DUT will keep a learned address in its flow table, and a set of initial
addresses, whose value should be >= 1 and <= the max number supported by
the implementation must be known. Please note that if the aging time is
configurable it must be longer than the time necessary to produce frames
from the external source at the specified rate. If the aging time is
fixed the frame rate must be brought down to a value that the external
source can produce in a time that is less than the aging time.

Learning Frames should be sent from an external source to the DUT to
install a number of flows. The Learning Frames must have a fixed
destination address and must vary the source address of the frames. The
DUT should install flows in its flow table based on the varying source
addresses. Frames should then be transmitted from an external source at
a suitable frame rate to see if the DUT has properly learned all of the
addresses. If there is no frame loss and no flooding, the number of
addresses sent to the DUT should be increased and the test is repeated
until the max number of cached addresses supported by the DUT
determined.

Expected Result:

Metrics collected:

The following are the metrics collected for this test:

	Number of cached addresses supported by the DUT.

	CPU and memory utilization may also be collected as part of this
test, to determine the vSwitch’s performance footprint on the system.

Deployment scenario:

	Physical → virtual switch → 2 x physical (one receiving, one listening).

3.2.2.4.2. Test ID: LTD.Activation.RFC2889.AddressLearningRate

Title: RFC2889 Address Learning Rate Test

Prerequisite Test: LTD.Memory.RFC2889.AddressCachingCapacity

Priority:

Description:

Please note this test is only applicable to virtual switches that are capable of
MAC learning. The aim of this test is to determine the rate of address
learning of the DUT for a constant load (fixed length frames at a fixed
interval time). The selected frame sizes are those previously defined
under Default Test Parameters, traffic should be
sent with each IPv4/IPv6 address incremented by one. The rate at which
the DUT learns a new address should be measured. The maximum caching
capacity from LTD.Memory.RFC2889.AddressCachingCapacity should be taken
into consideration as the maximum number of addresses for which the
learning rate can be obtained.

Expected Result: It may be worthwhile to report the behaviour when
operating beyond address capacity - some DUTs may be more friendly to
new addresses than others.

Metrics collected:

The following are the metrics collected for this test:

	The address learning rate of the DUT.

Deployment scenario:

	Physical → virtual switch → 2 x physical (one receiving, one listening).

3.2.2.5. Coupling between control path and datapath Tests

The following tests aim to determine how tightly coupled the datapath
and the control path are within a virtual switch. The following list
is not exhaustive but should indicate the type of tests that should be
required. It is expected that more will be added.

3.2.2.5.1. Test ID: LTD.CPDPCouplingFlowAddition

Title: Control Path and Datapath Coupling

Prerequisite Test:

Priority:

Description:

The aim of this test is to understand how exercising the DUT’s control
path affects datapath performance.

Initially a certain number of flow table entries are installed in the
vSwitch. Then over the duration of an RFC2544 throughput test
flow-entries are added and removed at the rates specified below. No
traffic is ‘hitting’ these flow-entries, they are simply added and
removed.

The test MUST be repeated with the following initial number of
flow-entries installed: - < 10 - 1000 - 100,000 - 10,000,000 (or the
maximum supported number of flow-entries)

The test MUST be repeated with the following rates of flow-entry
addition and deletion per second: - 0 - 1 (i.e. 1 addition plus 1
deletion) - 100 - 10,000

Expected Result:

Metrics Collected:

The following are the metrics collected for this test:

	The maximum forwarding rate in Frames Per Second (FPS) and Mbps of
the DUT.

	The average latency of the traffic flow when passing through the DUT
(if testing for latency, note that this average is different from the
test specified in Section 26.3 of
RFC2544 [https://www.rfc-editor.org/rfc/rfc2544.txt]).

	CPU and memory utilization may also be collected as part of this
test, to determine the vSwitch’s performance footprint on the system.

Deployment scenario:

	Physical → virtual switch → physical.

3.2.2.6. CPU and memory consumption

The following tests will profile a virtual switch’s CPU and memory
utilization under various loads and circumstances. The following
list is not exhaustive but should indicate the type of tests that
should be required. It is expected that more will be added.

3.2.2.6.1. Test ID: LTD.Stress.RFC2544.0PacketLoss

Title: RFC 2544 0% Loss CPU OR Memory Stress Test

Prerequisite Test:

Priority:

Description:

The aim of this test is to understand the overall performance of the
system when a CPU or Memory intensive application is run on the same DUT as
the Virtual Switch. For each frame size, an
LTD.Throughput.RFC2544.PacketLossRatio (0% Packet Loss) test should be
performed. Throughout the entire test a CPU or Memory intensive application
should be run on all cores on the system not in use by the Virtual Switch.
For NUMA system only cores on the same NUMA node are loaded.

It is recommended that stress-ng be used for loading the non-Virtual
Switch cores but any stress tool MAY be used.

Expected Result:

Metrics Collected:

The following are the metrics collected for this test:

	Memory and CPU utilization of the cores running the Virtual Switch.

	The number of identity of the cores allocated to the Virtual Switch.

	The configuration of the stress tool (for example the command line
parameters used to start it.)

	Note: Stress in the test ID can be replaced with the name of the

	component being stressed, when reporting the results:
LTD.CPU.RFC2544.0PacketLoss or LTD.Memory.RFC2544.0PacketLoss

3.2.2.7. Summary List of Tests

	Throughput tests

	Test ID: LTD.Throughput.RFC2544.PacketLossRatio

	Test ID: LTD.Throughput.RFC2544.PacketLossRatioFrameModification

	Test ID: LTD.Throughput.RFC2544.Profile

	Test ID: LTD.Throughput.RFC2544.SystemRecoveryTime

	Test ID: LTD.Throughput.RFC2544.BackToBackFrames

	Test ID: LTD.Throughput.RFC2889.Soak

	Test ID: LTD.Throughput.RFC2889.SoakFrameModification

	Test ID: LTD.Throughput.RFC6201.ResetTime

	Test ID: LTD.Throughput.RFC2889.MaxForwardingRate

	Test ID: LTD.Throughput.RFC2889.ForwardPressure

	Test ID: LTD.Throughput.RFC2889.ErrorFramesFiltering

	Test ID: LTD.Throughput.RFC2889.BroadcastFrameForwarding

	Test ID: LTD.Throughput.RFC2544.WorstN-BestN

	Test ID: LTD.Throughput.Overlay.Network.<tech>.RFC2544.PacketLossRatio

	Packet Latency tests

	Test ID: LTD.PacketLatency.InitialPacketProcessingLatency

	Test ID: LTD.PacketDelayVariation.RFC3393.Soak

	Scalability tests

	Test ID: LTD.Scalability.Flows.RFC2544.0PacketLoss

	Test ID: LTD.MemoryBandwidth.RFC2544.0PacketLoss.Scalability

	LTD.Scalability.VNF.RFC2544.PacketLossProfile

	LTD.Scalability.VNF.RFC2544.PacketLossRatio

	Activation tests

	Test ID: LTD.Activation.RFC2889.AddressCachingCapacity

	Test ID: LTD.Activation.RFC2889.AddressLearningRate

	Coupling between control path and datapath Tests

	Test ID: LTD.CPDPCouplingFlowAddition

	CPU and memory consumption

	Test ID: LTD.Stress.RFC2544.0PacketLoss

4. VSPERF LEVEL TEST PLAN (LTP)

4.1. Introduction

The objective of the OPNFV project titled
Characterize vSwitch Performance for Telco NFV Use Cases, is to
evaluate the performance of virtual switches to identify its suitability for a
Telco Network Function Virtualization (NFV) environment. The intention of this
Level Test Plan (LTP) document is to specify the scope, approach, resources,
and schedule of the virtual switch performance benchmarking activities in
OPNFV. The test cases will be identified in a separate document called the
Level Test Design (LTD) document.

This document is currently in draft form.

4.1.1. Document identifier

The document id will be used to uniquely identify versions of the LTP. The
format for the document id will be: OPNFV_vswitchperf_LTP_REL_STATUS, where
by the status is one of: draft, reviewed, corrected or final. The document id
for this version of the LTP is: OPNFV_vswitchperf_LTP_Colorado_REVIEWED.

4.1.2. Scope

The main purpose of this project is to specify a suite of
performance tests in order to objectively measure the current packet
transfer characteristics of a virtual switch in the NFVI. The intent of
the project is to facilitate the performance testing of any virtual switch.
Thus, a generic suite of tests shall be developed, with no hard dependencies to
a single implementation. In addition, the test case suite shall be
architecture independent.

The test cases developed in this project shall not form part of a
separate test framework, all of these tests may be inserted into the
Continuous Integration Test Framework and/or the Platform Functionality
Test Framework - if a vSwitch becomes a standard component of an OPNFV
release.

4.1.3. References

	RFC 1242 Benchmarking Terminology for Network Interconnection
Devices [http://www.ietf.org/rfc/rfc1242.txt]

	RFC 2544 Benchmarking Methodology for Network Interconnect
Devices [http://www.ietf.org/rfc/rfc2544.txt]

	RFC 2285 Benchmarking Terminology for LAN Switching
Devices [http://www.ietf.org/rfc/rfc2285.txt]

	RFC 2889 Benchmarking Methodology for LAN Switching
Devices [http://www.ietf.org/rfc/rfc2889.txt]

	RFC 3918 Methodology for IP Multicast
Benchmarking [http://www.ietf.org/rfc/rfc3918.txt]

	RFC 4737 Packet Reordering
Metrics [http://www.ietf.org/rfc/rfc4737.txt]

	RFC 5481 Packet Delay Variation Applicability
Statement [http://www.ietf.org/rfc/rfc5481.txt]

	RFC 6201 Device Reset
Characterization [http://tools.ietf.org/html/rfc6201]

4.1.4. Level in the overall sequence

The level of testing conducted by vswitchperf in the overall testing sequence (among
all the testing projects in OPNFV) is the performance benchmarking of a
specific component (the vswitch) in the OPNFV platfrom. It’s expected that this
testing will follow on from the functional and integration testing conducted by
other testing projects in OPNFV, namely Functest and Yardstick.

4.1.5. Test classes and overall test conditions

A benchmark is defined by the IETF as: A standardized test that serves as a
basis for performance evaluation and comparison. It’s important to note that
benchmarks are not Functional tests. They do not provide PASS/FAIL criteria,
and most importantly ARE NOT performed on live networks, or performed with live
network traffic.

In order to determine the packet transfer characteristics of a virtual switch,
the benchmarking tests will be broken down into the following categories:

	Throughput Tests to measure the maximum forwarding rate (in
frames per second or fps) and bit rate (in Mbps) for a constant load
(as defined by RFC1242 [https://www.rfc-editor.org/rfc/rfc1242.txt])
without traffic loss.

	Packet and Frame Delay Tests to measure average, min and max
packet and frame delay for constant loads.

	Stream Performance Tests (TCP, UDP) to measure bulk data transfer
performance, i.e. how fast systems can send and receive data through
the virtual switch.

	Request/Response Performance Tests (TCP, UDP) the measure the
transaction rate through the virtual switch.

	Packet Delay Tests to understand latency distribution for
different packet sizes and over an extended test run to uncover
outliers.

	Scalability Tests to understand how the virtual switch performs
as the number of flows, active ports, complexity of the forwarding
logic’s configuration… it has to deal with increases.

	Control Path and Datapath Coupling Tests, to understand how
closely coupled the datapath and the control path are as well as the
effect of this coupling on the performance of the DUT.

	CPU and Memory Consumption Tests to understand the virtual
switch’s footprint on the system, this includes:

	CPU core utilization.

	CPU cache utilization.

	Memory footprint.

	System bus (QPI, PCI, ..) utilization.

	Memory lanes utilization.

	CPU cycles consumed per packet.

	Time To Establish Flows Tests.

	Noisy Neighbour Tests, to understand the effects of resource
sharing on the performance of a virtual switch.

Note: some of the tests above can be conducted simultaneously where
the combined results would be insightful, for example Packet/Frame Delay
and Scalability.

4.2. Details of the Level Test Plan

This section describes the following items:
* Test items and their identifiers (TestItems)
* Test Traceability Matrix (TestMatrix)
* Features to be tested (FeaturesToBeTested)
* Features not to be tested (FeaturesNotToBeTested)
* Approach (Approach)
* Item pass/fail criteria (PassFailCriteria)
* Suspension criteria and resumption requirements (SuspensionResumptionReqs)

4.2.1. Test items and their identifiers

The test item/application vsperf is trying to test are virtual switches and in
particular their performance in an nfv environment. vsperf will first try to
measure the maximum achievable performance by a virtual switch and then it will
focus in on usecases that are as close to real life deployment scenarios as
possible.

4.2.2. Test Traceability Matrix

vswitchperf leverages the “3x3” matrix (introduced in
https://tools.ietf.org/html/draft-ietf-bmwg-virtual-net-02) to achieve test
traceability. The matrix was expanded to 3x4 to accommodate scale metrics when
displaying the coverage of many metrics/benchmarks). Test case covreage in the
LTD is tracked using the following catagories:

	
	SPEED

	ACCURACY

	RELIABILITY

	SCALE

	Activation

	X

	X

	X

	X

	Operation

	X

	X

	X

	X

	De-activation

	
	
	
	

X = denotes a test catagory that has 1 or more test cases defined.

4.2.3. Features to be tested

Characterizing virtual switches (i.e. Device Under Test (DUT) in this document)
includes measuring the following performance metrics:

	Throughput as defined by RFC1242 [https://www.rfc-editor.org/rfc/rfc1242.txt]: The maximum rate at which
none of the offered frames are dropped by the DUT. The maximum frame
rate and bit rate that can be transmitted by the DUT without any error
should be recorded. Note there is an equivalent bit rate and a specific
layer at which the payloads contribute to the bits. Errors and
improperly formed frames or packets are dropped.

	Packet delay introduced by the DUT and its cumulative effect on
E2E networks. Frame delay can be measured equivalently.

	Packet delay variation: measured from the perspective of the
VNF/application. Packet delay variation is sometimes called “jitter”.
However, we will avoid the term “jitter” as the term holds different
meaning to different groups of people. In this document we will
simply use the term packet delay variation. The preferred form for this
metric is the PDV form of delay variation defined in RFC5481 [https://www.rfc-editor.org/rfc/rfc5481.txt]. The most relevant
measurement of PDV considers the delay variation of a single user flow,
as this will be relevant to the size of end-system buffers to compensate
for delay variation. The measurement system’s ability to store the
delays of individual packets in the flow of interest is a key factor
that determines the specific measurement method. At the outset, it is
ideal to view the complete PDV distribution. Systems that can capture
and store packets and their delays have the freedom to calculate the
reference minimum delay and to determine various quantiles of the PDV
distribution accurately (in post-measurement processing routines).
Systems without storage must apply algorithms to calculate delay and
statistical measurements on the fly. For example, a system may store
temporary estimates of the mimimum delay and the set of (100) packets
with the longest delays during measurement (to calculate a high quantile,
and update these sets with new values periodically.
In some cases, a limited number of delay histogram bins will be
available, and the bin limits will need to be set using results from
repeated experiments. See section 8 of RFC5481 [https://www.rfc-editor.org/rfc/rfc5481.txt].

	Packet loss (within a configured waiting time at the receiver): All
packets sent to the DUT should be accounted for.

	Burst behaviour: measures the ability of the DUT to buffer packets.

	Packet re-ordering: measures the ability of the device under test to
maintain sending order throughout transfer to the destination.

	Packet correctness: packets or Frames must be well-formed, in that
they include all required fields, conform to length requirements, pass
integrity checks, etc.

	Availability and capacity of the DUT i.e. when the DUT is fully “up”
and connected, following measurements should be captured for
DUT without any network packet load:

	Includes average power consumption of the CPUs (in various power states) and
system over specified period of time. Time period should not be less
than 60 seconds.

	Includes average per core CPU utilization over specified period of time.
Time period should not be less than 60 seconds.

	Includes the number of NIC interfaces supported.

	Includes headroom of VM workload processing cores (i.e. available
for applications).

4.2.4. Features not to be tested

vsperf doesn’t intend to define or perform any functional tests. The aim is to
focus on performance.

4.2.5. Approach

The testing approach adoped by the vswitchperf project is black box testing,
meaning the test inputs can be generated and the outputs captured and
completely evaluated from the outside of the System Under Test. Some metrics
can be collected on the SUT, such as cpu or memory utilization if the
collection has no/minimal impact on benchmark.
This section will look at the deployment scenarios and the general methodology
used by vswitchperf. In addition, this section will also specify the details of
the Test Report that must be collected for each of the test cases.

4.2.5.1. Deployment Scenarios

The following represents possible deployment test scenarios which can
help to determine the performance of both the virtual switch and the
datapaths to physical ports (to NICs) and to logical ports (to VNFs):

4.2.5.1.1. Physical port → vSwitch → physical port

 _
+--+ |
| +--------------------+ | |
| | | | |
| | v | | Host
| +--------------+ +--------------+ | |
| | phy port | vSwitch | phy port | | |
+---+--------------+------------+--------------+---+ _|
 ^ :
 | |
 : v
+--+
| |
| traffic generator |
| |
+--+

4.2.5.1.2. Physical port → vSwitch → VNF → vSwitch → physical port

 _
+---+ |
+---+			
	Application		
+---+			
^ :			
: v			
+---------------+ +---------------+			
	logical port 0		logical port 1
+---+---------------+-----------+---------------+---+ _|
 ^ :
 | |
 : v _
+---+---------------+----------+---------------+---+ |
	logical port 0		logical port 1		
+---------------+ +---------------+					
^ :					
				Host	
: v					
+--------------+ +--------------+					
	phy port	vSwitch	phy port		
+---+--------------+------------+--------------+---+ _|
 ^ :
 | |
 : v
+--+
| |
| traffic generator |
| |
+--+

4.2.5.1.3. Physical port → vSwitch → VNF → vSwitch → VNF → vSwitch → physical port

 _
+----------------------+ +----------------------+ |
Guest 1		Guest 2					
+---------------+		+---------------+					
	Application				Application		
+---------------+		+---------------+					
^			^				
	v			v		Guests	
+---------------+		+---------------+					
	logical ports				logical ports		
	0 1				0 1		
+---+---------------+--+ +---+---------------+--+ _|
 ^ : ^ :
 | | | |
 : v : v _
+---+---------------+---------+---------------+--+ |
	0 1		3 4		
	logical ports		logical ports		
+---------------+ +---------------+					
^	^			Host	
	L-----------------+ v				
+--------------+ +--------------+					
	phy ports	vSwitch	phy ports		
+---+--------------+----------+--------------+---+ _|
 ^ ^ : :
 | | | |
 : : v v
+--+
| |
| traffic generator |
| |
+--+

4.2.5.1.4. Physical port → VNF → vSwitch → VNF → physical port

 _
+----------------------+ +----------------------+ |
Guest 1		Guest 2					
+-------------------+		+-------------------+					
	Application				Application		
+-------------------+		+-------------------+					
^			^			Guests	
	v			v			
+-------------------+		+-------------------+					
	logical ports				logical ports		
	0 1				0 1		
++--------------------++ ++--------------------++ _|
 ^ : ^ :
(PCI passthrough) | | (PCI passthrough)
 | v : | _
+--------++------------+-+------------++---------+ |
			0		1				
			logical port		logical port				
		+------------+ +------------+							
			^						
		L-----------------+							
						Host			
		vSwitch							
	+-----------------------------+								
	v								
+--------------+ +--------------+									
	phy port/VF		phy port/VF						
+-+--------------+--------------+--------------+-+ _|
 ^ :
 | |
 : v
+--+
| |
| traffic generator |
| |
+--+

4.2.5.1.5. Physical port → vSwitch → VNF

 _
+---+ |
+---+			
	Application		
+---+			
^			
			Guest
:			
+---------------+			
	logical port 0		
+---+---------------+-------------------------------+ _|
 ^
 |
 : _
+---+---------------+------------------------------+ |
	logical port 0		
+---------------+			
^			
			Host
:			
+--------------+			
	phy port	vSwitch	
+---+--------------+------------ -------------- ---+ _|
 ^
 |
 :
+--+
| |
| traffic generator |
| |
+--+

4.2.5.1.6. VNF → vSwitch → physical port

 _
+---+ |
+---+			
	Application		
+---+			
:			
			Guest
v			
+---------------+			
	logical port		
+-------------------------------+---------------+---+ _|
 :
 |
 v _
+------------------------------+---------------+---+ |
	logical port		
+---------------+			
:			
			Host
v			
+--------------+			
vSwitch	phy port		
+-------------------------------+--------------+---+ _|
 :
 |
 v
+--+
| |
| traffic generator |
| |
+--+

4.2.5.1.7. VNF → vSwitch → VNF → vSwitch

 _
+-------------------------+ +-------------------------+ |
Guest 1		Guest 2					
+-----------------+		+-----------------+					
	Application				Application		
+-----------------+		+-----------------+					
:		^					
						Guest	
v		:					
+---------------+		+---------------+					
	logical port 0				logical port 0		
+-----+---------------+---+ +---+---------------+-----+ _|
 : ^
 | |
 v : _
+----+---------------+------------+---------------+-----+ |
	port 0		port 1		
+---------------+ +---------------+					
: ^					
				Host	
+--------------------+					
vswitch					
+---+ _|

HOST 1(Physical port → virtual switch → VNF → virtual switch → Physical port)
→ HOST 2(Physical port → virtual switch → VNF → virtual switch → Physical port)

4.2.5.1.8. HOST 1 (PVP) → HOST 2 (PVP)

 _
+----------------------+ +----------------------+ |
Guest 1		Guest 2					
+---------------+		+---------------+					
	Application				Application		
+---------------+		+---------------+					
^			^				
	v			v		Guests	
+---------------+		+---------------+					
	logical ports				logical ports		
	0 1				0 1		
+---+---------------+--+ +---+---------------+--+ _|
 ^ : ^ :
 | | | |
 : v : v _
+---+---------------+--+ +---+---------------+--+ |
	0 1				3 4		
	logical ports				logical ports		
+---------------+		+---------------+					
^			^			Hosts	
	v			v			
+--------------+		+--------------+					
	phy ports				phy ports		
+---+--------------+---+ +---+--------------+---+ _|
 ^ : : :
 | +-----------------+ |
 : v
+--+
| |
| traffic generator |
| |
+--+

Note: For tests where the traffic generator and/or measurement
receiver are implemented on VM and connected to the virtual switch
through vNIC, the issues of shared resources and interactions between
the measurement devices and the device under test must be considered.

Note: Some RFC 2889 tests require a full-mesh sending and receiving
pattern involving more than two ports. This possibility is illustrated in the
Physical port → vSwitch → VNF → vSwitch → VNF → vSwitch → physical port
diagram above (with 2 sending and 2 receiving ports, though all ports
could be used bi-directionally).

Note: When Deployment Scenarios are used in RFC 2889 address learning
or cache capacity testing, an additional port from the vSwitch must be
connected to the test device. This port is used to listen for flooded
frames.

4.2.5.2. General Methodology:

To establish the baseline performance of the virtual switch, tests would
initially be run with a simple workload in the VNF (the recommended
simple workload VNF would be DPDK [http://www.dpdk.org/]’s testpmd
application forwarding packets in a VM or vloop_vnf a simple kernel
module that forwards traffic between two network interfaces inside the
virtualized environment while bypassing the networking stack).
Subsequently, the tests would also be executed with a real Telco
workload running in the VNF, which would exercise the virtual switch in
the context of higher level Telco NFV use cases, and prove that its
underlying characteristics and behaviour can be measured and validated.
Suitable real Telco workload VNFs are yet to be identified.

4.2.5.2.1. Default Test Parameters

The following list identifies the default parameters for suite of
tests:

	Reference application: Simple forwarding or Open Source VNF.

	Frame size (bytes): 64, 128, 256, 512, 1024, 1280, 1518, 2K, 4k OR
Packet size based on use-case (e.g. RTP 64B, 256B) OR Mix of packet sizes as
maintained by the Functest project <https://wiki.opnfv.org/traffic_profile_management>.

	Reordering check: Tests should confirm that packets within a flow are
not reordered.

	Duplex: Unidirectional / Bidirectional. Default: Full duplex with
traffic transmitting in both directions, as network traffic generally
does not flow in a single direction. By default the data rate of
transmitted traffic should be the same in both directions, please
note that asymmetric traffic (e.g. downlink-heavy) tests will be
mentioned explicitly for the relevant test cases.

	Number of Flows: Default for non scalability tests is a single flow.
For scalability tests the goal is to test with maximum supported
flows but where possible will test up to 10 Million flows. Start with
a single flow and scale up. By default flows should be added
sequentially, tests that add flows simultaneously will explicitly
call out their flow addition behaviour. Packets are generated across
the flows uniformly with no burstiness. For multi-core tests should
consider the number of packet flows based on vSwitch/VNF multi-thread
implementation and behavior.

	Traffic Types: UDP, SCTP, RTP, GTP and UDP traffic.

	Deployment scenarios are:

	Physical → virtual switch → physical.

	Physical → virtual switch → VNF → virtual switch → physical.

	Physical → virtual switch → VNF → virtual switch → VNF → virtual
switch → physical.

	Physical → VNF → virtual switch → VNF → physical.

	Physical → virtual switch → VNF.

	VNF → virtual switch → Physical.

	VNF → virtual switch → VNF.

Tests MUST have these parameters unless otherwise stated. Test cases
with non default parameters will be stated explicitly.

Note: For throughput tests unless stated otherwise, test
configurations should ensure that traffic traverses the installed flows
through the virtual switch, i.e. flows are installed and have an appropriate
time out that doesn’t expire before packet transmission starts.

4.2.5.2.2. Flow Classification

Virtual switches classify packets into flows by processing and matching
particular header fields in the packet/frame and/or the input port where
the packets/frames arrived. The vSwitch then carries out an action on
the group of packets that match the classification parameters. Thus a
flow is considered to be a sequence of packets that have a shared set of
header field values or have arrived on the same port and have the same
action applied to them. Performance results can vary based on the
parameters the vSwitch uses to match for a flow. The recommended flow
classification parameters for L3 vSwitch performance tests are: the
input port, the source IP address, the destination IP address and the
Ethernet protocol type field. It is essential to increase the flow
time-out time on a vSwitch before conducting any performance tests that
do not measure the flow set-up time. Normally the first packet of a
particular flow will install the flow in the vSwitch which adds an
additional latency, subsequent packets of the same flow are not subject
to this latency if the flow is already installed on the vSwitch.

4.2.5.2.3. Test Priority

Tests will be assigned a priority in order to determine which tests
should be implemented immediately and which tests implementations
can be deferred.

Priority can be of following types: - Urgent: Must be implemented
immediately. - High: Must be implemented in the next release. - Medium:
May be implemented after the release. - Low: May or may not be
implemented at all.

4.2.5.2.4. SUT Setup

The SUT should be configured to its “default” state. The
SUT’s configuration or set-up must not change between tests in any way
other than what is required to do the test. All supported protocols must
be configured and enabled for each test set up.

4.2.5.2.5. Port Configuration

The DUT should be configured with n ports where
n is a multiple of 2. Half of the ports on the DUT should be used as
ingress ports and the other half of the ports on the DUT should be used
as egress ports. Where a DUT has more than 2 ports, the ingress data
streams should be set-up so that they transmit packets to the egress
ports in sequence so that there is an even distribution of traffic
across ports. For example, if a DUT has 4 ports 0(ingress), 1(ingress),
2(egress) and 3(egress), the traffic stream directed at port 0 should
output a packet to port 2 followed by a packet to port 3. The traffic
stream directed at port 1 should also output a packet to port 2 followed
by a packet to port 3.

4.2.5.2.6. Frame Formats

Frame formats Layer 2 (data link layer) protocols

	Ethernet II

+---------------------------+-----------+
| Ethernet Header | Payload | Check Sum |
+-----------------+---------+-----------+
|_________________|_________|___________|
 14 Bytes 46 - 1500 4 Bytes
 Bytes

Layer 3 (network layer) protocols

	IPv4

+-----------------+-----------+---------+-----------+
| Ethernet Header | IP Header | Payload | Checksum |
+-----------------+-----------+---------+-----------+
|_________________|___________|_________|___________|
 14 Bytes 20 bytes 26 - 1480 4 Bytes
 Bytes

	IPv6

+-----------------+-----------+---------+-----------+
| Ethernet Header | IP Header | Payload | Checksum |
+-----------------+-----------+---------+-----------+
|_________________|___________|_________|___________|
 14 Bytes 40 bytes 26 - 1460 4 Bytes
 Bytes

Layer 4 (transport layer) protocols

	TCP

	UDP

	SCTP

+-----------------+-----------+-----------------+---------+-----------+
| Ethernet Header | IP Header | Layer 4 Header | Payload | Checksum |
+-----------------+-----------+-----------------+---------+-----------+
|_________________|___________|_________________|_________|___________|
 14 Bytes 40 bytes 20 Bytes 6 - 1460 4 Bytes
 Bytes

Layer 5 (application layer) protocols

	RTP

	GTP

+-----------------+-----------+-----------------+---------+-----------+
| Ethernet Header | IP Header | Layer 4 Header | Payload | Checksum |
+-----------------+-----------+-----------------+---------+-----------+
|_________________|___________|_________________|_________|___________|
 14 Bytes 20 bytes 20 Bytes >= 6 Bytes 4 Bytes

4.2.5.2.7. Packet Throughput

There is a difference between an Ethernet frame,
an IP packet, and a UDP datagram. In the seven-layer OSI model of
computer networking, packet refers to a data unit at layer 3 (network
layer). The correct term for a data unit at layer 2 (data link layer) is
a frame, and at layer 4 (transport layer) is a segment or datagram.

Important concepts related to 10GbE performance are frame rate and
throughput. The MAC bit rate of 10GbE, defined in the IEEE standard 802
.3ae, is 10 billion bits per second. Frame rate is based on the bit rate
and frame format definitions. Throughput, defined in IETF RFC 1242, is
the highest rate at which the system under test can forward the offered
load, without loss.

The frame rate for 10GbE is determined by a formula that divides the 10
billion bits per second by the preamble + frame length + inter-frame
gap.

The maximum frame rate is calculated using the minimum values of the
following parameters, as described in the IEEE 802 .3ae standard:

	Preamble: 8 bytes * 8 = 64 bits

	Frame Length: 64 bytes (minimum) * 8 = 512 bits

	Inter-frame Gap: 12 bytes (minimum) * 8 = 96 bits

Therefore, Maximum Frame Rate (64B Frames)
= MAC Transmit Bit Rate / (Preamble + Frame Length + Inter-frame Gap)
= 10,000,000,000 / (64 + 512 + 96)
= 10,000,000,000 / 672
= 14,880,952.38 frame per second (fps)

4.2.5.3. RFCs for testing virtual switch performance

The starting point for defining the suite of tests for benchmarking the
performance of a virtual switch is to take existing RFCs and standards
that were designed to test their physical counterparts and adapting them
for testing virtual switches. The rationale behind this is to establish
a fair comparison between the performance of virtual and physical
switches. This section outlines the RFCs that are used by this
specification.

4.2.5.3.1. RFC 1242 Benchmarking Terminology for Network Interconnection

Devices RFC 1242 defines the terminology that is used in describing
performance benchmarking tests and their results. Definitions and
discussions covered include: Back-to-back, bridge, bridge/router,
constant load, data link frame size, frame loss rate, inter frame gap,
latency, and many more.

4.2.5.3.2. RFC 2544 Benchmarking Methodology for Network Interconnect Devices

RFC 2544 outlines a benchmarking methodology for network Interconnect
Devices. The methodology results in performance metrics such as latency,
frame loss percentage, and maximum data throughput.

In this document network “throughput” (measured in millions of frames
per second) is based on RFC 2544, unless otherwise noted. Frame size
refers to Ethernet frames ranging from smallest frames of 64 bytes to
largest frames of 9K bytes.

Types of tests are:

	Throughput test defines the maximum number of frames per second
that can be transmitted without any error, or 0% loss ratio.
In some Throughput tests (and those tests with long duration),
evaluation of an additional frame loss ratio is suggested. The
current ratio (10^-7 %) is based on understanding the typical
user-to-user packet loss ratio needed for good application
performance and recognizing that a single transfer through a
vswitch must contribute a tiny fraction of user-to-user loss.
Further, the ratio 10^-7 % also recognizes practical limitations
when measuring loss ratio.

	Latency test measures the time required for a frame to travel from
the originating device through the network to the destination device.
Please note that RFC2544 Latency measurement will be superseded with
a measurement of average latency over all successfully transferred
packets or frames.

	Frame loss test measures the network’s
response in overload conditions - a critical indicator of the
network’s ability to support real-time applications in which a
large amount of frame loss will rapidly degrade service quality.

	Burst test assesses the buffering capability of a virtual switch. It
measures the maximum number of frames received at full line rate
before a frame is lost. In carrier Ethernet networks, this
measurement validates the excess information rate (EIR) as defined in
many SLAs.

	System recovery to characterize speed of recovery from an overload
condition.

	Reset to characterize speed of recovery from device or software
reset. This type of test has been updated by RFC6201 [https://www.rfc-editor.org/rfc/rfc6201.txt] as such,
the methodology defined by this specification will be that of RFC 6201.

Although not included in the defined RFC 2544 standard, another crucial
measurement in Ethernet networking is packet delay variation. The
definition set out by this specification comes from
RFC5481 [https://www.rfc-editor.org/rfc/rfc5481.txt].

4.2.5.3.3. RFC 2285 Benchmarking Terminology for LAN Switching Devices

RFC 2285 defines the terminology that is used to describe the
terminology for benchmarking a LAN switching device. It extends RFC
1242 and defines: DUTs, SUTs, Traffic orientation and distribution,
bursts, loads, forwarding rates, etc.

4.2.5.3.4. RFC 2889 Benchmarking Methodology for LAN Switching

RFC 2889 outlines a benchmarking methodology for LAN switching, it
extends RFC 2544. The outlined methodology gathers performance
metrics for forwarding, congestion control, latency, address handling
and finally filtering.

4.2.5.3.5. RFC 3918 Methodology for IP Multicast Benchmarking

RFC 3918 outlines a methodology for IP Multicast benchmarking.

4.2.5.3.6. RFC 4737 Packet Reordering Metrics

RFC 4737 describes metrics for identifying and counting re-ordered
packets within a stream, and metrics to measure the extent each
packet has been re-ordered.

4.2.5.3.7. RFC 5481 Packet Delay Variation Applicability Statement

RFC 5481 defined two common, but different forms of delay variation
metrics, and compares the metrics over a range of networking
circumstances and tasks. The most suitable form for vSwitch
benchmarking is the “PDV” form.

4.2.5.3.8. RFC 6201 Device Reset Characterization

RFC 6201 extends the methodology for characterizing the speed of
recovery of the DUT from device or software reset described in RFC
2544.

4.2.6. Item pass/fail criteria

vswitchperf does not specify Pass/Fail criteria for the tests in terms of a
threshold, as benchmarks do not (and should not do this). The results/metrics
for a test are simply reported. If it had to be defined, a test is considered
to have passed if it succesfully completed and a relavent metric was
recorded/reported for the SUT.

4.2.7. Suspension criteria and resumption requirements

In the case of a throughput test, a test should be suspended if a virtual
switch is failing to forward any traffic. A test should be restarted from a
clean state if the intention is to carry out the test again.

4.2.8. Test deliverables

Each test should produce a test report that details SUT information as well as
the test results. There are a number of parameters related to the system, DUT
and tests that can affect the repeatability of a test results and should be
recorded. In order to minimise the variation in the results of a test,
it is recommended that the test report includes the following information:

	Hardware details including:

	Platform details.

	Processor details.

	Memory information (see below)

	Number of enabled cores.

	Number of cores used for the test.

	Number of physical NICs, as well as their details (manufacturer,
versions, type and the PCI slot they are plugged into).

	NIC interrupt configuration.

	BIOS version, release date and any configurations that were
modified.

	Software details including:

	OS version (for host and VNF)

	Kernel version (for host and VNF)

	GRUB boot parameters (for host and VNF).

	Hypervisor details (Type and version).

	Selected vSwitch, version number or commit id used.

	vSwitch launch command line if it has been parameterised.

	Memory allocation to the vSwitch – which NUMA node it is using,
and how many memory channels.

	Where the vswitch is built from source: compiler details including
versions and the flags that were used to compile the vSwitch.

	DPDK or any other SW dependency version number or commit id used.

	Memory allocation to a VM - if it’s from Hugpages/elsewhere.

	VM storage type: snapshot/independent persistent/independent
non-persistent.

	Number of VMs.

	Number of Virtual NICs (vNICs), versions, type and driver.

	Number of virtual CPUs and their core affinity on the host.

	Number vNIC interrupt configuration.

	Thread affinitization for the applications (including the vSwitch
itself) on the host.

	Details of Resource isolation, such as CPUs designated for
Host/Kernel (isolcpu) and CPUs designated for specific processes
(taskset).

	Memory Details

	Total memory

	Type of memory

	Used memory

	Active memory

	Inactive memory

	Free memory

	Buffer memory

	Swap cache

	Total swap

	Used swap

	Free swap

	Test duration.

	Number of flows.

	Traffic Information:

	Traffic type - UDP, TCP, IMIX / Other.

	Packet Sizes.

	Deployment Scenario.

Note: Tests that require additional parameters to be recorded will
explicitly specify this.

4.2.9. Test management

This section will detail the test activities that will be conducted by vsperf
as well as the infrastructure that will be used to complete the tests in OPNFV.

4.2.10. Planned activities and tasks; test progression

A key consideration when conducting any sort of benchmark is trying to
ensure the consistency and repeatability of test results between runs.
When benchmarking the performance of a virtual switch there are many
factors that can affect the consistency of results. This section
describes these factors and the measures that can be taken to limit
their effects. In addition, this section will outline some system tests
to validate the platform and the VNF before conducting any vSwitch
benchmarking tests.

System Isolation:

When conducting a benchmarking test on any SUT, it is essential to limit
(and if reasonable, eliminate) any noise that may interfere with the
accuracy of the metrics collected by the test. This noise may be
introduced by other hardware or software (OS, other applications), and
can result in significantly varying performance metrics being collected
between consecutive runs of the same test. In the case of characterizing
the performance of a virtual switch, there are a number of configuration
parameters that can help increase the repeatability and stability of
test results, including:

	OS/GRUB configuration:

	maxcpus = n where n >= 0; limits the kernel to using ‘n’
processors. Only use exactly what you need.

	isolcpus: Isolate CPUs from the general scheduler. Isolate all
CPUs bar one which will be used by the OS.

	use taskset to affinitize the forwarding application and the VNFs
onto isolated cores. VNFs and the vSwitch should be allocated
their own cores, i.e. must not share the same cores. vCPUs for the
VNF should be affinitized to individual cores also.

	Limit the amount of background applications that are running and
set OS to boot to runlevel 3. Make sure to kill any unnecessary
system processes/daemons.

	Only enable hardware that you need to use for your test – to
ensure there are no other interrupts on the system.

	Configure NIC interrupts to only use the cores that are not
allocated to any other process (VNF/vSwitch).

	NUMA configuration: Any unused sockets in a multi-socket system
should be disabled.

	CPU pinning: The vSwitch and the VNF should each be affinitized to
separate logical cores using a combination of maxcpus, isolcpus and
taskset.

	BIOS configuration: BIOS should be configured for performance where
an explicit option exists, sleep states should be disabled, any
virtualization optimization technologies should be enabled, and
hyperthreading should also be enabled, turbo boost and overclocking
should be disabled.

System Validation:

System validation is broken down into two sub-categories: Platform
validation and VNF validation. The validation test itself involves
verifying the forwarding capability and stability for the sub-system
under test. The rationale behind system validation is two fold. Firstly
to give a tester confidence in the stability of the platform or VNF that
is being tested; and secondly to provide base performance comparison
points to understand the overhead introduced by the virtual switch.

	Benchmark platform forwarding capability: This is an OPTIONAL test
used to verify the platform and measure the base performance (maximum
forwarding rate in fps and latency) that can be achieved by the
platform without a vSwitch or a VNF. The following diagram outlines
the set-up for benchmarking Platform forwarding capability:

 __
+--+ |
| +--+ | |
| | | | |
| | l2fw or DPDK L2FWD app | | Host
+--+			
	NIC		
+---+--+---+ __|
 ^ :
 | |
 : v
+--+
| |
| traffic generator |
| |
+--+

	Benchmark VNF forwarding capability: This test is used to verify
the VNF and measure the base performance (maximum forwarding rate in
fps and latency) that can be achieved by the VNF without a vSwitch.
The performance metrics collected by this test will serve as a key
comparison point for NIC passthrough technologies and vSwitches. VNF
in this context refers to the hypervisor and the VM. The following
diagram outlines the set-up for benchmarking VNF forwarding
capability:

 __
+--+ |
+--+			
	VNF		
+--+			
	Passthrough/SR-IOV		Host
+--+			
	NIC		
+---+--+---+ __|
 ^ :
 | |
 : v
+--+
| |
| traffic generator |
| |
+--+

Methodology to benchmark Platform/VNF forwarding capability

The recommended methodology for the platform/VNF validation and
benchmark is: - Run RFC2889 [https://www.rfc-editor.org/rfc/rfc2289.txt]
Maximum Forwarding Rate test, this test will produce maximum
forwarding rate and latency results that will serve as the
expected values. These expected values can be used in
subsequent steps or compared with in subsequent validation tests. -
Transmit bidirectional traffic at line rate/max forwarding rate
(whichever is higher) for at least 72 hours, measure throughput (fps)
and latency. - Note: Traffic should be bidirectional. - Establish a
baseline forwarding rate for what the platform can achieve. - Additional
validation: After the test has completed for 72 hours run bidirectional
traffic at the maximum forwarding rate once more to see if the system is
still functional and measure throughput (fps) and latency. Compare the
measure the new obtained values with the expected values.

NOTE 1: How the Platform is configured for its forwarding capability
test (BIOS settings, GRUB configuration, runlevel…) is how the
platform should be configured for every test after this

NOTE 2: How the VNF is configured for its forwarding capability test
(# of vCPUs, vNICs, Memory, affinitization…) is how it should be
configured for every test that uses a VNF after this.

Methodology to benchmark the VNF to vSwitch to VNF deployment scenario

vsperf has identified the following concerns when benchmarking the VNF to
vSwitch to VNF deployment scenario:

	The accuracy of the timing synchronization between VNFs/VMs.

	The clock accuracy of a VNF/VM if they were to be used as traffic generators.

	VNF traffic generator/receiver may be using resources of the system under
test, causing at least three forms of workload to increase as the traffic
load increases (generation, switching, receiving).

The recommendation from vsperf is that tests for this sceanario must
include an external HW traffic generator to act as the tester/traffic transmitter
and receiver. The perscribed methodology to benchmark this deployment scanrio with
an external tester involves the following three steps:

#. Determine the forwarding capability and latency through the virtual interface
connected to the VNF/VM.

[image: ../../../../_images/vm2vm_virtual_interface_benchmark.png]
Virtual interfaces performance benchmark

	Determine the forwarding capability and latency through the VNF/hypervisor.

[image: ../../../../_images/vm2vm_hypervisor_benchmark.png]
Hypervisor performance benchmark

	Determine the forwarding capability and latency for the VNF to vSwitch to VNF
taking the information from the previous two steps into account.

[image: ../../../../_images/vm2vm_benchmark.png]
VNF to vSwitch to VNF performance benchmark

vsperf also identified an alternative configuration for the final step:

[image: ../../../../_images/vm2vm_alternative_benchmark.png]
VNF to vSwitch to VNF alternative performance benchmark

4.2.11. Environment/infrastructure

VSPERF CI jobs are run using the OPNFV lab infrastructure as described by the
‘Pharos Project <https://www.opnfv.org/community/projects/pharos>`_ .
A VSPERF POD is described here https://wiki.opnfv.org/display/pharos/VSPERF+in+Intel+Pharos+Lab+-+Pod+12

4.2.11.1. vsperf CI

vsperf CI jobs are broken down into:

	Daily job:

	Runs everyday takes about 10 hours to complete.

	TESTCASES_DAILY=’phy2phy_tput back2back phy2phy_tput_mod_vlan
phy2phy_scalability pvp_tput pvp_back2back pvvp_tput pvvp_back2back’.

	TESTPARAM_DAILY=’–test-params TRAFFICGEN_PKT_SIZES=(64,128,512,1024,1518)’.

	Merge job:

	Runs whenever patches are merged to master.

	Runs a basic Sanity test.

	Verify job:

	Runs every time a patch is pushed to gerrit.

	Builds documentation.

4.2.11.2. Scripts:

There are 2 scripts that are part of VSPERFs CI:

	build-vsperf.sh: Lives in the VSPERF repository in the ci/ directory and is
used to run vsperf with the appropriate cli parameters.

	vswitchperf.yml: YAML description of our jenkins job. lives in the RELENG
repository.

More info on vsperf CI can be found here:
https://wiki.opnfv.org/display/vsperf/VSPERF+CI

4.2.12. Responsibilities and authority

The group responsible for managing, designing, preparing and executing the
tests listed in the LTD are the vsperf committers and contributors. The vsperf
committers and contributors should work with the relavent OPNFV projects to
ensure that the infrastructure is in place for testing vswitches, and that the
results are published to common end point (a results database).

IETF benchmarking specification RFC8204

The directory /ietf_draft was used to store draft versions of the VSPERF test specification proposed
as an Internet Draft and subsequently approved for publication as RFC8204. The draft versions have
been removed. “Benchmarking Virtual Switches in the Open Platform for NFV (OPNFV)” is an
informational RFC published by the IETF available here https://tools.ietf.org/html/rfc8204.

For more information about VSPERF refer to:

	Wiki: https://wiki.opnfv.org/characterize_vswitch_performance_for_telco_nfv_use_cases

	Repository: https://git.opnfv.org/vswitchperf

	Artifacts: https://artifacts.opnfv.org/vswitchperf.html

	Continuous Integration: https://build.opnfv.org/ci/view/vswitchperf/

VSPERF Results

	1. VSPERF Test Scenarios

	2. OPNFV Test Results

2. OPNFV Test Results

VSPERF CI jobs are run daily and sample results can be found at
https://wiki.opnfv.org/display/vsperf/Vsperf+Results

Testcase names shown in the dashboard are combination of orignal testcase
name from VSPERF framework and indication of used vswitch.

Example:

Testcase phy2phy_tput is executed for three vSwitch types: OvsDpdkVhost,
OvsVanilla and VppDpdkVhost. In this case, following testcase names
will be used in the dashboard: phy2phy_tput_ovsdpdkvhost,
phy2phy_tput_ovsvanilla and phy2phy_tput_vppdpdkvhost.

In case of RFC2544 Throughput test, the recorded metric is FPS (frames per
second) without packet loss. For RFC2544 Back2Back test, the recorded metric
is back-to-back value (number of frames) without packet loss.

The loopback application in the VNF used for PVP and PVVP scenarios was DPDK
testpmd.

Guest interface types are vhost-user for OvsDpdkVhost and VppDpdkVhost
and virtio-net for OvsVanilla.

1. VSPERF Test Scenarios

Predefined Tests suitable for automated execution with CI:

	Test

	Definition

	phy2phy_tput

	PacketLossRatio for Phy2Phy

	back2back

	BackToBackFrames for Phy2Phy

	phy2phy_tput_mod_vlan

	PacketLossRatioFrameModification for Phy2Phy

	phy2phy_cont

	Phy2Phy blast vswitch at x% TX rate and measure throughput

	pvp_cont

	PVP blast vswitch at x% TX rate and measure throughput

	pvvp_cont

	PVVP blast vswitch at x% TX rate and measure throughput

	phy2phy_scalability

	Scalability0PacketLoss for Phy2Phy

	pvp_tput

	PacketLossRatio for PVP

	pvp_back2back

	BackToBackFrames for PVP

	pvvp_tput

	PacketLossRatio for PVVP

	pvvp_back2back

	BackToBackFrames for PVVP

	phy2phy_cpu_load

	CPU0PacketLoss for Phy2Phy

	phy2phy_mem_load

	Same as CPU0PacketLoss but using a memory intensive app

Deployment topologies:

	Phy2Phy: Physical port -> vSwitch -> Physical port.

	PVP: Physical port -> vSwitch -> VNF -> vSwitch -> Physical port.

	PVVP: Physical port -> vSwitch -> VNF -> vSwitch -> VNF -> vSwitch ->
Physical port.

Loopback applications in the Guest:

	DPDK testpmd [http://dpdk.org/doc/guides/testpmd_app_ug/index.html].

	Linux Bridge.

	l2fwd Kernel Module

Supported traffic generators:

	Spirent Testcenter

	Ixia: IxOS and IxNet.

	Xena

	MoonGen

	Dummy

	T-Rex

VSPERF Configuration and User Guide

Introduction

VSPERF is an OPNFV testing project.

VSPERF provides an automated test-framework and comprehensive test suite based on Industry
Test Specifications for measuring NFVI data-plane performance. The data-path includes switching technologies with
physical and virtual network interfaces. The VSPERF architecture is switch and traffic generator agnostic and test
cases can be easily customized. VSPERF was designed to be independent of OpenStack therefore OPNFV installer scenarios
are not required. VSPERF can source, configure and deploy the device-under-test using specified software versions and
network topology. VSPERF is used as a development tool for optimizing switching technologies, qualification of packet
processing functions and for evaluation of data-path performance.

The Euphrates release adds new features and improvements that will help advance high performance packet processing
on Telco NFV platforms. This includes new test cases, flexibility in customizing test-cases, new results display
options, improved tool resiliency, additional traffic generator support and VPP support.

VSPERF provides a framework where the entire NFV Industry can learn about NFVI data-plane performance and try-out
new techniques together. A new IETF benchmarking specification (RFC8204) is based on VSPERF work contributed since
2015. VSPERF is also contributing to development of ETSI NFV test specifications through the Test and Open Source
Working Group.

	Wiki: https://wiki.opnfv.org/characterize_vswitch_performance_for_telco_nfv_use_cases

	Repository: https://git.opnfv.org/vswitchperf

	Artifacts: https://artifacts.opnfv.org/vswitchperf.html

	Continuous Integration: https://build.opnfv.org/ci/view/vswitchperf/

VSPERF Install and Configuration

VSPERF Install, Upgrade, Traffic Generator Guide

	1. Installing vswitchperf
	1.1. Downloading vswitchperf

	1.2. Supported Operating Systems

	1.3. Supported vSwitches

	1.4. Supported Hypervisors

	1.5. Supported VNFs

	1.6. Installation

	1.7. Using vswitchperf

	1.8. Hugepage Configuration

	1.9. Tuning Considerations

	2. Upgrading vswitchperf
	2.1. Generic

	2.2. Colorado to Danube upgrade notes

	3. ‘vsperf’ Traffic Gen Guide
	3.1. Overview

	3.2. Background Information

	3.3. Dummy

	3.4. Ixia

	3.5. Spirent Setup

	3.6. Xena Networks

	3.7. MoonGen

	3.8. Trex

	4. ‘vsperf’ Additional Tools Configuration Guide
	4.1. Overview

	4.2. Infrastructure Metrics Collection

	4.3. Load Generation

	4.4. Last Level Cache Management

VSPERF Test Guide

VSPERF Test Execution

	1. vSwitchPerf test suites userguide
	1.1. General

	1.2. VSPERF Installation

	1.3. Traffic Generator Setup

	1.4. Cloning and building src dependencies

	1.5. Configure the ./conf/10_custom.conf file

	1.6. Using a custom settings file

	1.7. Evaluation of configuration parameters

	1.8. Overriding values defined in configuration files

	1.9. Referencing parameter values

	1.10. vloop_vnf

	1.11. l2fwd Kernel Module

	1.12. Additional Tools Setup

	1.13. Executing tests

	1.14. Executing Vanilla OVS tests

	1.15. Executing tests with VMs

	1.16. Executing tests with VMs using Vanilla OVS

	1.17. Executing VPP tests

	1.18. Using vfio_pci with DPDK

	1.19. Using SRIOV support

	1.20. Using QEMU with PCI passthrough support

	1.21. Selection of loopback application for tests with VMs

	1.22. Mergable Buffers Options with QEMU

	1.23. Selection of dpdk binding driver for tests with VMs

	1.24. Guest Core and Thread Binding

	1.25. Qemu CPU features

	1.26. Multi-Queue Configuration

	1.27. Jumbo Frame Testing

	1.28. Executing Packet Forwarding tests

	1.29. Executing Packet Forwarding tests with one guest

	1.30. VSPERF modes of operation

	1.31. Performance Matrix

	1.32. Code change verification by pylint

	1.33. GOTCHAs:

	1.34. More information

	2. Step driven tests
	2.1. Test objects and their functions

	2.2. Test Macros

	2.3. HelloWorld and other basic Testcases

	3. Integration tests
	3.1. Executing Integration Tests

	3.2. Executing Tunnel encapsulation tests

	3.3. Executing VXLAN decapsulation tests

	3.4. Executing GRE decapsulation tests

	3.5. Executing GENEVE decapsulation tests

	3.6. Executing Native/Vanilla OVS VXLAN decapsulation tests

	3.7. Executing Native/Vanilla OVS GRE decapsulation tests

	3.8. Executing Native/Vanilla OVS GENEVE decapsulation tests

	3.9. Executing Tunnel encapsulation+decapsulation tests

	4. Execution of vswitchperf testcases by Yardstick
	4.1. General

	4.2. Yardstick Installation

	4.3. VM image with vswitchperf

	4.4. Testcase execution

	4.5. Testcase customization

	5. List of vswitchperf testcases
	5.1. Performance testcases

	5.2. Integration testcases

	5.3. OVS/DPDK Regression TestCases

	5.4. T-Rex in VM TestCases

1. Installing vswitchperf

1.1. Downloading vswitchperf

The vswitchperf can be downloaded from its official git repository, which is
hosted by OPNFV. It is necessary to install a git at your DUT before downloading
vswitchperf. Installation of git is specific to the packaging system used by
Linux OS installed at DUT.

Example of installation of GIT package and its dependencies:

	in case of OS based on RedHat Linux:

sudo yum install git

	in case of Ubuntu or Debian:

sudo apt-get install git

After the git is successfully installed at DUT, then vswitchperf can be downloaded
as follows:

git clone http://git.opnfv.org/vswitchperf

The last command will create a directory vswitchperf with a local copy of vswitchperf
repository.

1.2. Supported Operating Systems

	CentOS 7.3

	Fedora 24 (kernel 4.8 requires DPDK 16.11 and newer)

	Fedora 25 (kernel 4.9 requires DPDK 16.11 and newer)

	openSUSE 42.2

	openSUSE 42.3

	openSUSE Tumbleweed

	SLES 15

	RedHat 7.2 Enterprise Linux

	RedHat 7.3 Enterprise Linux

	RedHat 7.5 Enterprise Linux

	Ubuntu 14.04

	Ubuntu 16.04

	Ubuntu 16.10 (kernel 4.8 requires DPDK 16.11 and newer)

1.3. Supported vSwitches

The vSwitch must support Open Flow 1.3 or greater.

	Open vSwitch

	Open vSwitch with DPDK support

	TestPMD application from DPDK (supports p2p and pvp scenarios)

	Cisco VPP

1.4. Supported Hypervisors

	Qemu version 2.3 or greater (version 2.5.0 is recommended)

1.5. Supported VNFs

In theory, it is possible to use any VNF image, which is compatible
with supported hypervisor. However such VNF must ensure, that appropriate
number of network interfaces is configured and that traffic is properly
forwarded among them. For new vswitchperf users it is recommended to start
with official vloop-vnf image, which is maintained by vswitchperf community.

1.5.1. vloop-vnf

The official VM image is called vloop-vnf and it is available for free download
from OPNFV artifactory. This image is based on Linux Ubuntu distribution and it
supports following applications for traffic forwarding:

	DPDK testpmd

	Linux Bridge

	Custom l2fwd module

The vloop-vnf can be downloaded to DUT, for example by wget:

wget http://artifacts.opnfv.org/vswitchperf/vnf/vloop-vnf-ubuntu-14.04_20160823.qcow2

NOTE: In case that wget is not installed at your DUT, you could install it at RPM
based system by sudo yum install wget or at DEB based system by sudo apt-get install
wget.

Changelog of vloop-vnf:

	vloop-vnf-ubuntu-14.04_20160823 [http://artifacts.opnfv.org/vswitchperf/vnf/vloop-vnf-ubuntu-14.04_20160823.qcow2]

	ethtool installed

	only 1 NIC is configured by default to speed up boot with 1 NIC setup

	security updates applied

	vloop-vnf-ubuntu-14.04_20160804 [http://artifacts.opnfv.org/vswitchperf/vnf/vloop-vnf-ubuntu-14.04_20160804.qcow2]

	Linux kernel 4.4.0 installed

	libnuma-dev installed

	security updates applied

	vloop-vnf-ubuntu-14.04_20160303 [http://artifacts.opnfv.org/vswitchperf/vnf/vloop-vnf-ubuntu-14.04_20160303.qcow2]

	snmpd service is disabled by default to avoid error messages during VM boot

	security updates applied

	vloop-vnf-ubuntu-14.04_20151216 [http://artifacts.opnfv.org/vswitchperf/vnf/vloop-vnf-ubuntu-14.04_20151216.qcow2]

	version with development tools required for build of DPDK and l2fwd

1.6. Installation

The test suite requires Python 3.3 or newer and relies on a number of other
system and python packages. These need to be installed for the test suite
to function.

Updated kernel and certain development packages are required by DPDK,
OVS (especially Vanilla OVS) and QEMU. It is necessary to check if the
versions of these packages are not being held-back and if the
DNF/APT/YUM configuration does not prevent their modification, by
enforcing settings such as “exclude-kernel”.

Installation of required packages, preparation of Python 3 virtual
environment and compilation of OVS, DPDK and QEMU is performed by
script systems/build_base_machine.sh. It should be executed under the
user account, which will be used for vsperf execution.

NOTE: Password-less sudo access must be configured for given
user account before the script is executed.

$ cd systems
$./build_base_machine.sh

NOTE: you don’t need to go into any of the systems subdirectories,
simply run the top level build_base_machine.sh, your OS will be detected
automatically.

Script build_base_machine.sh will install all the vsperf dependencies
in terms of system packages, Python 3.x and required Python modules.
In case of CentOS 7 or RHEL it will install Python 3.3 from an additional
repository provided by Software Collections (a link [http://www.softwarecollections.org/en/scls/rhscl/python33/]). The installation script
will also use virtualenv [https://virtualenv.readthedocs.org/en/latest/] to create a vsperf virtual environment, which is
isolated from the default Python environment, using the Python3 package located
in /usr/bin/python3. This environment will reside in a directory called
vsperfenv in $HOME. It will ensure, that system wide Python installation

is not modified or broken by VSPERF installation. The complete list of Python

packages installed inside virtualenv can be found in the file
requirements.txt, which is located at the vswitchperf repository.

NOTE: For RHEL 7.3 Enterprise and CentOS 7.3 OVS Vanilla is not
built from upstream source due to kernel incompatibilities. Please see the
instructions in the vswitchperf_design document for details on configuring
OVS Vanilla for binary package usage.

NOTE: For RHEL 7.5 Enterprise DPDK and Openvswitch are not built from
upstream sources due to kernel incompatibilities. Please use subscription
channels to obtain binary equivalents of openvswitch and dpdk packages or
build binaries using instructions from openvswitch.org and dpdk.org.

1.6.1. VPP installation

VPP installation is now included as part of the VSPerf installation scripts.

In case of an error message about a missing file such as
“Couldn’t open file /etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-7” you can resolve this
issue by simply downloading the file.

$ wget https://dl.fedoraproject.org/pub/epel/RPM-GPG-KEY-EPEL-7

1.7. Using vswitchperf

You will need to activate the virtual environment every time you start a
new shell session. Its activation is specific to your OS:

	CentOS 7 and RHEL

$ scl enable rh-python34 bash
$ source $HOME/vsperfenv/bin/activate

	Fedora and Ubuntu

$ source $HOME/vsperfenv/bin/activate

After the virtual environment is configued, then VSPERF can be used.
For example:

(vsperfenv) $ cd vswitchperf
(vsperfenv) $./vsperf --help

1.7.1. Gotcha

In case you will see following error during environment activation:

$ source $HOME/vsperfenv/bin/activate
Badly placed ()'s.

then check what type of shell you are using:

$ echo $SHELL
/bin/tcsh

See what scripts are available in $HOME/vsperfenv/bin

$ ls $HOME/vsperfenv/bin/
activate activate.csh activate.fish activate_this.py

source the appropriate script

$ source bin/activate.csh

1.7.2. Working Behind a Proxy

If you’re behind a proxy, you’ll likely want to configure this before
running any of the above. For example:

export http_proxy=proxy.mycompany.com:123
export https_proxy=proxy.mycompany.com:123

1.7.3. Bind Tools DPDK

VSPerf supports the default DPDK bind tool, but also supports driverctl. The
driverctl tool is a new tool being used that allows driver binding to be
persistent across reboots. The driverctl tool is not provided by VSPerf, but can
be downloaded from upstream sources. Once installed set the bind tool to
driverctl to allow VSPERF to correctly bind cards for DPDK tests.

PATHS['dpdk']['src']['bind-tool'] = 'driverctl'

1.8. Hugepage Configuration

Systems running vsperf with either dpdk and/or tests with guests must configure
hugepage amounts to support running these configurations. It is recommended
to configure 1GB hugepages as the pagesize.

The amount of hugepages needed depends on your configuration files in vsperf.
Each guest image requires 2048 MB by default according to the default settings
in the 04_vnf.conf file.

GUEST_MEMORY = ['2048']

The dpdk startup parameters also require an amount of hugepages depending on
your configuration in the 02_vswitch.conf file.

DPDK_SOCKET_MEM = ['1024', '0']

NOTE: Option DPDK_SOCKET_MEM is used by all vSwitches with DPDK support.
It means Open vSwitch, VPP and TestPMD.

VSPerf will verify hugepage amounts are free before executing test
environments. In case of hugepage amounts not being free, test initialization
will fail and testing will stop.

NOTE: In some instances on a test failure dpdk resources may not
release hugepages used in dpdk configuration. It is recommended to configure a
few extra hugepages to prevent a false detection by VSPerf that not enough free
hugepages are available to execute the test environment. Normally dpdk would use
previously allocated hugepages upon initialization.

Depending on your OS selection configuration of hugepages may vary. Please refer
to your OS documentation to set hugepages correctly. It is recommended to set
the required amount of hugepages to be allocated by default on reboots.

Information on hugepage requirements for dpdk can be found at
http://dpdk.org/doc/guides/linux_gsg/sys_reqs.html

You can review your hugepage amounts by executing the following command

cat /proc/meminfo | grep Huge

If no hugepages are available vsperf will try to automatically allocate some.
Allocation is controlled by HUGEPAGE_RAM_ALLOCATION configuration parameter in
02_vswitch.conf file. Default is 2GB, resulting in either 2 1GB hugepages
or 1024 2MB hugepages.

1.9. Tuning Considerations

With the large amount of tuning guides available online on how to properly
tune a DUT, it becomes difficult to achieve consistent numbers for DPDK testing.
VSPerf recommends a simple approach that has been tested by different companies
to achieve proper CPU isolation.

The idea behind CPU isolation when running DPDK based tests is to achieve as few
interruptions to a PMD process as possible. There is now a utility available on
most Linux Systems to achieve proper CPU isolation with very little effort and
customization. The tool is called tuned-adm and is most likely installed by
default on the Linux DUT

VSPerf recommends the latest tuned-adm package, which can be downloaded from the
following location:

http://www.tuned-project.org/2017/04/27/tuned-2-8-0-released/

Follow the instructions to install the latest tuned-adm onto your system. For
current RHEL customers you should already have the most current version. You
just need to install the cpu-partitioning profile.

yum install -y tuned-profiles-cpu-partitioning.noarch

Proper CPU isolation starts with knowing what NUMA your NIC is installed onto.
You can identify this by checking the output of the following command

cat /sys/class/net/<NIC NAME>/device/numa_node

You can then use utilities such as lscpu or cpu_layout.py which is located in
the src dpdk area of VSPerf. These tools will show the CPU layout of which
cores/hyperthreads are located on the same NUMA.

Determine which CPUS/Hyperthreads will be used for PMD threads and VCPUs for
VNFs. Then modify the /etc/tuned/cpu-partitioning-variables.conf and add the
CPUs into the isolated_cores variable in some form of x-y or x,y,z or x-y,z,
etc. Then apply the profile.

tuned-adm profile cpu-partitioning

After applying the profile, reboot your system.

After rebooting the DUT, you can verify the profile is active by running

tuned-adm active

Now you should have proper CPU isolation active and can achieve consistent
results with DPDK based tests.

The last consideration is when running TestPMD inside of a VNF, it may make
sense to enable enough cores to run a PMD thread on separate core/HT. To achieve
this, set the number of VCPUs to 3 and enable enough nb-cores in the TestPMD
config. You can modify options in the conf files.

GUEST_SMP = ['3']
GUEST_TESTPMD_PARAMS = ['-l 0,1,2 -n 4 --socket-mem 512 -- '
 '--burst=64 -i --txqflags=0xf00 '
 '--disable-hw-vlan --nb-cores=2']

Verify you set the VCPU core locations appropriately on the same NUMA as with
your PMD mask for OVS-DPDK.

4. ‘vsperf’ Additional Tools Configuration Guide

4.1. Overview

VSPERF supports the following categories additional tools:

	Infrastructure Metrics Collectors

	Load Generators

	L3 Cache Management

Under each category, there are one or more tools supported by VSPERF.
This guide provides the details of how to install (if required)
and configure the above mentioned tools.

4.2. Infrastructure Metrics Collection

VSPERF supports following two tools for collecting and reporting the metrics:

	pidstat

	collectd

pidstat is a command in linux systems, which is used for monitoring individual
tasks currently being managed by Linux kernel. In VSPERF this command is used to
monitor ovs-vswitchd, ovsdb-server and kvm processes.

collectd is linux application that collects, stores and transfers various system
metrics. For every category of metrics, there is a separate plugin in collectd. For
example, CPU plugin and Interface plugin provides all the cpu metrics and interface
metrics, respectively. CPU metrics may include user-time, system-time, etc., whereas
interface metrics may include received-packets, dropped-packets, etc.

4.2.1. Installation

No installation is required for pidstat, whereas, collectd has to be installed
separately. For installation of collectd, we recommend to follow the process described
in OPNFV-Barometer project, which can be found here Barometer-Euphrates [http://docs.opnfv.org/en/stable-euphrates/submodules/barometer/docs/release/userguide/feature.userguide.html#building-all-barometer-upstreamed-plugins-from-scratch] or the most
recent release.

VSPERF assumes that collectd is installed and configured to send metrics over localhost.
The metrics sent should be for the following categories: CPU, Processes, Interface,
OVS, DPDK, Intel-RDT.

4.2.2. Configuration

The configuration file for the collectors can be found in conf/05_collector.conf.
pidstat specific configuration includes:

	PIDSTAT_MONITOR - processes to be monitored by pidstat

	PIDSTAT_OPTIONS - options which will be passed to pidstat command

	PIDSTAT_SAMPLE_INTERVAL - sampling interval used by pidstat to collect statistics

	LOG_FILE_PIDSTAT - prefix of pidstat’s log file

The collectd configuration option includes:

	COLLECTD_IP - IP address where collectd is running

	COLLECTD_PORT - Port number over which collectd is sending the metrics

	COLLECTD_SECURITY_LEVEL - Security level for receiving metrics

	COLLECTD_AUTH_FILE - Authentication file for receiving metrics

	LOG_FILE_COLLECTD - Prefix for collectd’s log file.

	COLLECTD_CPU_KEYS - Interesting metrics from CPU

	COLLECTD_PROCESSES_KEYS - Interesting metrics from processes

	COLLECTD_INTERFACE_KEYS - Interesting metrics from interface

	COLLECTD_OVSSTAT_KEYS - Interesting metrics from OVS

	COLLECTD_DPDKSTAT_KEYS - Interesting metrics from DPDK.

	COLLECTD_INTELRDT_KEYS - Interesting metrics from Intel-RDT

	COLLECTD_INTERFACE_XKEYS - Metrics to exclude from Interface

	COLLECTD_INTELRDT_XKEYS - Metrics to exclude from Intel-RDT

4.3. Load Generation

In VSPERF, load generation refers to creating background cpu and memory loads to
study the impact of these loads on system under test. There are two options to
create loads in VSPERF. These options are used for different use-cases. The options are:

	stress or stress-ng

	Stressor-VMs

stress and stress-ng are linux tools to stress the system in various ways.
It can stress different subsystems such as CPU and memory. stress-ng is the
improvised version of stress. StressorVMs are custom build virtual-machines
for the noisy-neighbor use-cases.

4.3.1. Installation

stress and stress-ng can be installed through standard linux installation process.
Information about stress-ng, including the steps for installing can be found
here: stress-ng [https://github.com/ColinIanKing/stress-ng]

There are two options for StressorVMs - one is VMs based on stress-ng and second
is VM based on Spirent’s cloudstress. VMs based on stress-ng can be found in this
link [https://github.com/opensource-tnbt/stressng-images] . Spirent’s cloudstress
based VM can be downloaded from this site [https://github.com/spirent/cloudstress]

These stressorVMs are of OSV based VMs, which are very small in size. Download
these VMs and place it in appropriate location, and this location will used in
the configuration - as mentioned below.

4.3.2. Configuration

The configuration file for loadgens can be found in conf/07_loadgen.conf.
There are no specific configurations for stress and stress-ng commands based
load-generation. However, for StressorVMs, following configurations apply:

	NN_COUNT - Number of stressor VMs required.

	NN_MEMORY - Comma separated memory configuration for each VM

	NN_SMP - Comma separated configuration for each VM

	NN_IMAGE - Comma separated list of Paths for each VM image

	NN_SHARED_DRIVE_TYPE - Comma separated list of shaed drive type for each VM

	NN_BOOT_DRIVE_TYPE - Comma separated list of boot drive type for each VM

	NN_CORE_BINDING - Comma separated lists of list specifying the cores associated with each VM.

	NN_NICS_NR - Comma seprated list of number of NICS for each VM

	NN_BASE_VNC_PORT - Base VNC port Index.

	NN_LOG_FILE - Name of the log file

4.4. Last Level Cache Management

VSPERF support last-level cache management using Intel’s RDT tool(s) - the
relavant ones are Intel CAT-CMT [https://github.com/intel/intel-cmt-cat] and
Intel RMD [https://github.com/intel/rmd]. RMD is a linux daemon that runs on
individual hosts, and provides a REST API for control/orchestration layer to
request LLC for the VMs/Containers/Applications. RDT receives resource policy
form orchestration layer - in this case, from VSPERF - and enforce it on the host.
It achieves this enforcement via kernel interfaces such as resctrlfs and libpqos.
The resource here refer to the last-level cache. User can configure policies to
define how much of cache a CPU can get. The policy configuration is described below.

4.4.1. Installation

For installation of RMD tool, please install CAT-CMT first and then install RMD.
The details of installation can be found here: Intel CAT-CMT [https://github.com/intel/intel-cmt-cat]
and Intel RMD [https://github.com/intel/rmd]

4.4.2. Configuration

The configuration file for cache management can be found in conf/08_llcmanagement.conf.

VSPERF provides following configuration options, for user to define and enforce policies via RMD.

	LLC_ALLOCATION - Enable or Disable LLC management.

	RMD_PORT - RMD port (port number on which API server is listening)

	RMD_SERVER_IP - IP address where RMD is running. Currently only localhost.

	RMD_API_VERSION - RMD version. Currently it is ‘v1’

	POLICY_TYPE - Specify how the policy is defined - either COS or CUSTOM

	VSWITCH_COS - Class of service (CoS for Vswitch. CoS can be gold, silver-bf or bronze-shared.

	VNF_COS - Class of service for VNF

	PMD_COS - Class of service for PMD

	NOISEVM_COS - Class of service of Noisy VM.

	VSWITCH_CA - [min-cache-value, maxi-cache-value] for vswitch

	VNF_CA - [min-cache-value, max-cache-value] for VNF

	PMD_CA - [min-cache-value, max-cache-value] for PMD

	NOISEVM_CA - [min-cache-value, max-cache-value] for Noisy VM

3. ‘vsperf’ Traffic Gen Guide

3.1. Overview

VSPERF supports the following traffic generators:

	Dummy (DEFAULT)

	Ixia

	Spirent TestCenter

	Xena Networks

	MoonGen

	Trex

To see the list of traffic gens from the cli:

$./vsperf --list-trafficgens

This guide provides the details of how to install
and configure the various traffic generators.

3.2. Background Information

The traffic default configuration can be found in conf/03_traffic.conf,
and is configured as follows:

TRAFFIC = {
 'traffic_type' : 'rfc2544_throughput',
 'frame_rate' : 100,
 'burst_size' : 100,
 'bidir' : 'True', # will be passed as string in title format to tgen
 'multistream' : 0,
 'stream_type' : 'L4',
 'pre_installed_flows' : 'No', # used by vswitch implementation
 'flow_type' : 'port', # used by vswitch implementation
 'flow_control' : False, # supported only by IxNet
 'learning_frames' : True, # supported only by IxNet
 'l2': {
 'framesize': 64,
 'srcmac': '00:00:00:00:00:00',
 'dstmac': '00:00:00:00:00:00',
 },
 'l3': {
 'enabled': True,
 'proto': 'udp',
 'srcip': '1.1.1.1',
 'dstip': '90.90.90.90',
 },
 'l4': {
 'enabled': True,
 'srcport': 3000,
 'dstport': 3001,
 },
 'vlan': {
 'enabled': False,
 'id': 0,
 'priority': 0,
 'cfi': 0,
 },
 'capture': {
 'enabled': False,
 'tx_ports' : [0],
 'rx_ports' : [1],
 'count': 1,
 'filter': '',
 },
 'scapy': {
 'enabled': False,
 '0' : 'Ether(src={Ether_src}, dst={Ether_dst})/'
 'Dot1Q(prio={Dot1Q_prio}, id={Dot1Q_id}, vlan={Dot1Q_vlan})/'
 'IP(proto={IP_proto}, src={IP_src}, dst={IP_dst})/'
 '{IP_PROTO}(sport={IP_PROTO_sport}, dport={IP_PROTO_dport})',
 '1' : 'Ether(src={Ether_dst}, dst={Ether_src})/'
 'Dot1Q(prio={Dot1Q_prio}, id={Dot1Q_id}, vlan={Dot1Q_vlan})/'
 'IP(proto={IP_proto}, src={IP_dst}, dst={IP_src})/'
 '{IP_PROTO}(sport={IP_PROTO_dport}, dport={IP_PROTO_sport})',
 },
 'latency_histogram': {
 'enabled': False,
 'type': 'Default',
 },
}

A detailed description of the TRAFFIC dictionary can be found at
Configuration of TRAFFIC dictionary.

The framesize parameter can be overridden from the configuration
files by adding the following to your custom configuration file
10_custom.conf:

TRAFFICGEN_PKT_SIZES = (64, 128,)

OR from the commandline:

$./vsperf --test-params "TRAFFICGEN_PKT_SIZES=(x,y)" $TESTNAME

You can also modify the traffic transmission duration and the number
of tests run by the traffic generator by extending the example
commandline above to:

$./vsperf --test-params "TRAFFICGEN_PKT_SIZES=(x,y);TRAFFICGEN_DURATION=10;" \
 "TRAFFICGEN_RFC2544_TESTS=1" $TESTNAME

3.3. Dummy

The Dummy traffic generator can be used to test VSPERF installation or
to demonstrate VSPERF functionality at DUT without connection
to a real traffic generator.

You could also use the Dummy generator in case, that your external
traffic generator is not supported by VSPERF. In such case you could
use VSPERF to setup your test scenario and then transmit the traffic.
After the transmission is completed you could specify values for all
collected metrics and VSPERF will use them to generate final reports.

3.3.1. Setup

To select the Dummy generator please add the following to your
custom configuration file 10_custom.conf.

TRAFFICGEN = 'Dummy'

OR run vsperf with the --trafficgen argument

$./vsperf --trafficgen Dummy $TESTNAME

Where $TESTNAME is the name of the vsperf test you would like to run.
This will setup the vSwitch and the VNF (if one is part of your test)
print the traffic configuration and prompt you to transmit traffic
when the setup is complete.

Please send 'continuous' traffic with the following stream config:
30mS, 90mpps, multistream False
and the following flow config:
{
 "flow_type": "port",
 "l3": {
 "enabled": True,
 "srcip": "1.1.1.1",
 "proto": "udp",
 "dstip": "90.90.90.90"
 },
 "traffic_type": "rfc2544_continuous",
 "multistream": 0,
 "bidir": "True",
 "vlan": {
 "cfi": 0,
 "priority": 0,
 "id": 0,
 "enabled": False
 },
 "l4": {
 "enabled": True,
 "srcport": 3000,
 "dstport": 3001,
 },
 "frame_rate": 90,
 "l2": {
 "dstmac": "00:00:00:00:00:00",
 "srcmac": "00:00:00:00:00:00",
 "framesize": 64
 }
}
What was the result for 'frames tx'?

When your traffic generator has completed traffic transmission and provided
the results please input these at the VSPERF prompt. VSPERF will try
to verify the input:

Is '$input_value' correct?

Please answer with y OR n.

VSPERF will ask you to provide a value for every of collected metrics. The list
of metrics can be found at traffic-type-metrics.
Finally vsperf will print out the results for your test and generate the
appropriate logs and report files.

3.3.2. Metrics collected for supported traffic types

Below you could find a list of metrics collected by VSPERF for each of supported
traffic types.

RFC2544 Throughput and Continuous:

	frames tx

	frames rx

	min latency

	max latency

	avg latency

	frameloss

RFC2544 Back2back:

	b2b frames

	b2b frame loss %

3.3.3. Dummy result pre-configuration

In case of a Dummy traffic generator it is possible to pre-configure the test
results. This is useful for creation of demo testcases, which do not require
a real traffic generator. Such testcase can be run by any user and it will still
generate all reports and result files.

Result values can be specified within TRAFFICGEN_DUMMY_RESULTS dictionary,
where every of collected metrics must be properly defined. Please check the list
of traffic-type-metrics.

Dictionary with dummy results can be passed by CLI argument --test-params
or specified in Parameters section of testcase definition.

Example of testcase execution with dummy results defined by CLI argument:

$./vsperf back2back --trafficgen Dummy --test-params \
 "TRAFFICGEN_DUMMY_RESULTS={'b2b frames':'3000','b2b frame loss %':'0.0'}"

Example of testcase definition with pre-configured dummy results:

{
 "Name": "back2back",
 "Traffic Type": "rfc2544_back2back",
 "Deployment": "p2p",
 "biDirectional": "True",
 "Description": "LTD.Throughput.RFC2544.BackToBackFrames",
 "Parameters" : {
 'TRAFFICGEN_DUMMY_RESULTS' : {'b2b frames':'3000','b2b frame loss %':'0.0'}
 },
},

NOTE: Pre-configured results for the Dummy traffic generator will be used only
in case, that the Dummy traffic generator is used. Otherwise the option
TRAFFICGEN_DUMMY_RESULTS will be ignored.

3.4. Ixia

VSPERF can use both IxNetwork and IxExplorer TCL servers to control Ixia chassis.
However, usage of IxNetwork TCL server is a preferred option. The following sections
will describe installation and configuration of IxNetwork components used by VSPERF.

3.4.1. Installation

On the system under the test you need to install IxNetworkTclClient$(VER_NUM)Linux.bin.tgz.

On the IXIA client software system you need to install IxNetwork TCL server. After its
installation you should configure it as follows:

	Find the IxNetwork TCL server app (start -> All Programs -> IXIA ->
IxNetwork -> IxNetwork_$(VER_NUM) -> IxNetwork TCL Server)

	Right click on IxNetwork TCL Server, select properties - Under shortcut tab in
the Target dialogue box make sure there is the argument “-tclport xxxx”
where xxxx is your port number (take note of this port number as you will
need it for the 10_custom.conf file).

[image: ../../../_images/TCLServerProperties.png]

	Hit Ok and start the TCL server application

3.4.2. VSPERF configuration

There are several configuration options specific to the IxNetwork traffic generator
from IXIA. It is essential to set them correctly, before the VSPERF is executed
for the first time.

Detailed description of options follows:

	TRAFFICGEN_IXNET_MACHINE - IP address of server, where IxNetwork TCL Server is running

	TRAFFICGEN_IXNET_PORT - PORT, where IxNetwork TCL Server is accepting connections from
TCL clients

	TRAFFICGEN_IXNET_USER - username, which will be used during communication with IxNetwork
TCL Server and IXIA chassis

	TRAFFICGEN_IXIA_HOST - IP address of IXIA traffic generator chassis

	TRAFFICGEN_IXIA_CARD - identification of card with dedicated ports at IXIA chassis

	TRAFFICGEN_IXIA_PORT1 - identification of the first dedicated port at TRAFFICGEN_IXIA_CARD
at IXIA chassis; VSPERF uses two separated ports for traffic generation. In case of
unidirectional traffic, it is essential to correctly connect 1st IXIA port to the 1st NIC
at DUT, i.e. to the first PCI handle from WHITELIST_NICS list. Otherwise traffic may not
be able to pass through the vSwitch.
NOTE: In case that TRAFFICGEN_IXIA_PORT1 and TRAFFICGEN_IXIA_PORT2 are set to the
same value, then VSPERF will assume, that there is only one port connection between IXIA
and DUT. In this case it must be ensured, that chosen IXIA port is physically connected to the
first NIC from WHITELIST_NICS list.

	TRAFFICGEN_IXIA_PORT2 - identification of the second dedicated port at TRAFFICGEN_IXIA_CARD
at IXIA chassis; VSPERF uses two separated ports for traffic generation. In case of
unidirectional traffic, it is essential to correctly connect 2nd IXIA port to the 2nd NIC
at DUT, i.e. to the second PCI handle from WHITELIST_NICS list. Otherwise traffic may not
be able to pass through the vSwitch.
NOTE: In case that TRAFFICGEN_IXIA_PORT1 and TRAFFICGEN_IXIA_PORT2 are set to the
same value, then VSPERF will assume, that there is only one port connection between IXIA
and DUT. In this case it must be ensured, that chosen IXIA port is physically connected to the
first NIC from WHITELIST_NICS list.

	TRAFFICGEN_IXNET_LIB_PATH - path to the DUT specific installation of IxNetwork TCL API

	TRAFFICGEN_IXNET_TCL_SCRIPT - name of the TCL script, which VSPERF will use for
communication with IXIA TCL server

	TRAFFICGEN_IXNET_TESTER_RESULT_DIR - folder accessible from IxNetwork TCL server,
where test results are stored, e.g. c:/ixia_results; see test-results-share

	TRAFFICGEN_IXNET_DUT_RESULT_DIR - directory accessible from the DUT, where test
results from IxNetwork TCL server are stored, e.g. /mnt/ixia_results; see
test-results-share

3.4.3. Test results share

VSPERF is not able to retrieve test results via TCL API directly. Instead, all test
results are stored at IxNetwork TCL server. Results are stored at folder defined by
TRAFFICGEN_IXNET_TESTER_RESULT_DIR configuration parameter. Content of this
folder must be shared (e.g. via samba protocol) between TCL Server and DUT, where
VSPERF is executed. VSPERF expects, that test results will be available at directory
configured by TRAFFICGEN_IXNET_DUT_RESULT_DIR configuration parameter.

Example of sharing configuration:

	Create a new folder at IxNetwork TCL server machine, e.g. c:\ixia_results

	Modify sharing options of ixia_results folder to share it with everybody

	Create a new directory at DUT, where shared directory with results
will be mounted, e.g. /mnt/ixia_results

	Update your custom VSPERF configuration file as follows:

TRAFFICGEN_IXNET_TESTER_RESULT_DIR = 'c:/ixia_results'
TRAFFICGEN_IXNET_DUT_RESULT_DIR = '/mnt/ixia_results'

NOTE: It is essential to use slashes ‘/’ also in path
configured by TRAFFICGEN_IXNET_TESTER_RESULT_DIR parameter.

	Install cifs-utils package.

e.g. at rpm based Linux distribution:

yum install cifs-utils

	Mount shared directory, so VSPERF can access test results.

e.g. by adding new record into /etc/fstab

mount -t cifs //_TCL_SERVER_IP_OR_FQDN_/ixia_results /mnt/ixia_results
 -o file_mode=0777,dir_mode=0777,nounix

It is recommended to verify, that any new file inserted into c:/ixia_results folder
is visible at DUT inside /mnt/ixia_results directory.

3.5. Spirent Setup

Spirent installation files and instructions are available on the
Spirent support website at:

http://support.spirent.com

Select a version of Spirent TestCenter software to utilize. This example
will use Spirent TestCenter v4.57 as an example. Substitute the appropriate
version in place of ‘v4.57’ in the examples, below.

3.5.1. On the CentOS 7 System

Download and install the following:

Spirent TestCenter Application, v4.57 for 64-bit Linux Client

3.5.2. Spirent Virtual Deployment Service (VDS)

Spirent VDS is required for both TestCenter hardware and virtual
chassis in the vsperf environment. For installation, select the version
that matches the Spirent TestCenter Application version. For v4.57,
the matching VDS version is 1.0.55. Download either the ova (VMware)
or qcow2 (QEMU) image and create a VM with it. Initialize the VM
according to Spirent installation instructions.

3.5.3. Using Spirent TestCenter Virtual (STCv)

STCv is available in both ova (VMware) and qcow2 (QEMU) formats. For
VMware, download:

Spirent TestCenter Virtual Machine for VMware, v4.57 for Hypervisor - VMware ESX.ESXi

Virtual test port performance is affected by the hypervisor configuration. For
best practice results in deploying STCv, the following is suggested:

	Create a single VM with two test ports rather than two VMs with one port each

	Set STCv in DPDK mode

	Give STCv 2*n + 1 cores, where n = the number of ports. For vsperf, cores = 5.

	Turning off hyperthreading and pinning these cores will improve performance

	Give STCv 2 GB of RAM

To get the highest performance and accuracy, Spirent TestCenter hardware is
recommended. vsperf can run with either stype test ports.

3.5.4. Using STC REST Client

The stcrestclient package provides the stchttp.py ReST API wrapper module.
This allows simple function calls, nearly identical to those provided by
StcPython.py, to be used to access TestCenter server sessions via the
STC ReST API. Basic ReST functionality is provided by the resthttp module,
and may be used for writing ReST clients independent of STC.

	Project page: <https://github.com/Spirent/py-stcrestclient>

	Package download: <http://pypi.python.org/pypi/stcrestclient>

To use REST interface, follow the instructions in the Project page to
install the package. Once installed, the scripts named with ‘rest’ keyword
can be used. For example: testcenter-rfc2544-rest.py can be used to run
RFC 2544 tests using the REST interface.

3.5.5. Configuration:

	The Labserver and license server addresses. These parameters applies to
all the tests, and are mandatory for all tests.

TRAFFICGEN_STC_LAB_SERVER_ADDR = " "
TRAFFICGEN_STC_LICENSE_SERVER_ADDR = " "
TRAFFICGEN_STC_PYTHON2_PATH = " "
TRAFFICGEN_STC_TESTCENTER_PATH = " "
TRAFFICGEN_STC_TEST_SESSION_NAME = " "
TRAFFICGEN_STC_CSV_RESULTS_FILE_PREFIX = " "

	For RFC2544 tests, the following parameters are mandatory

TRAFFICGEN_STC_EAST_CHASSIS_ADDR = " "
TRAFFICGEN_STC_EAST_SLOT_NUM = " "
TRAFFICGEN_STC_EAST_PORT_NUM = " "
TRAFFICGEN_STC_EAST_INTF_ADDR = " "
TRAFFICGEN_STC_EAST_INTF_GATEWAY_ADDR = " "
TRAFFICGEN_STC_WEST_CHASSIS_ADDR = ""
TRAFFICGEN_STC_WEST_SLOT_NUM = " "
TRAFFICGEN_STC_WEST_PORT_NUM = " "
TRAFFICGEN_STC_WEST_INTF_ADDR = " "
TRAFFICGEN_STC_WEST_INTF_GATEWAY_ADDR = " "
TRAFFICGEN_STC_RFC2544_TPUT_TEST_FILE_NAME

	RFC2889 tests: Currently, the forwarding, address-caching, and
address-learning-rate tests of RFC2889 are supported.
The testcenter-rfc2889-rest.py script implements the rfc2889 tests.
The configuration for RFC2889 involves test-case definition, and parameter
definition, as described below. New results-constants, as shown below, are
added to support these tests.

Example of testcase definition for RFC2889 tests:

{
 "Name": "phy2phy_forwarding",
 "Deployment": "p2p",
 "Description": "LTD.Forwarding.RFC2889.MaxForwardingRate",
 "Parameters" : {
 "TRAFFIC" : {
 "traffic_type" : "rfc2889_forwarding",
 },
 },
}

For RFC2889 tests, specifying the locations for the monitoring ports is mandatory.
Necessary parameters are:

TRAFFICGEN_STC_RFC2889_TEST_FILE_NAME
TRAFFICGEN_STC_EAST_CHASSIS_ADDR = " "
TRAFFICGEN_STC_EAST_SLOT_NUM = " "
TRAFFICGEN_STC_EAST_PORT_NUM = " "
TRAFFICGEN_STC_EAST_INTF_ADDR = " "
TRAFFICGEN_STC_EAST_INTF_GATEWAY_ADDR = " "
TRAFFICGEN_STC_WEST_CHASSIS_ADDR = ""
TRAFFICGEN_STC_WEST_SLOT_NUM = " "
TRAFFICGEN_STC_WEST_PORT_NUM = " "
TRAFFICGEN_STC_WEST_INTF_ADDR = " "
TRAFFICGEN_STC_WEST_INTF_GATEWAY_ADDR = " "
TRAFFICGEN_STC_VERBOSE = "True"
TRAFFICGEN_STC_RFC2889_LOCATIONS="//10.1.1.1/1/1,//10.1.1.1/2/2"

Other Configurations are :

TRAFFICGEN_STC_RFC2889_MIN_LR = 1488
TRAFFICGEN_STC_RFC2889_MAX_LR = 14880
TRAFFICGEN_STC_RFC2889_MIN_ADDRS = 1000
TRAFFICGEN_STC_RFC2889_MAX_ADDRS = 65536
TRAFFICGEN_STC_RFC2889_AC_LR = 1000

The first 2 values are for address-learning test where as other 3 values are
for the Address caching capacity test. LR: Learning Rate. AC: Address Caching.
Maximum value for address is 16777216. Whereas, maximum for LR is 4294967295.

Results for RFC2889 Tests: Forwarding tests outputs following values:

TX_RATE_FPS : "Transmission Rate in Frames/sec"
THROUGHPUT_RX_FPS: "Received Throughput Frames/sec"
TX_RATE_MBPS : " Transmission rate in MBPS"
THROUGHPUT_RX_MBPS: "Received Throughput in MBPS"
TX_RATE_PERCENT: "Transmission Rate in Percentage"
FRAME_LOSS_PERCENT: "Frame loss in Percentage"
FORWARDING_RATE_FPS: " Maximum Forwarding Rate in FPS"

Whereas, the address caching test outputs following values,

CACHING_CAPACITY_ADDRS = 'Number of address it can cache'
ADDR_LEARNED_PERCENT = 'Percentage of address successfully learned'

and address learning test outputs just a single value:

OPTIMAL_LEARNING_RATE_FPS = 'Optimal learning rate in fps'

Note that ‘FORWARDING_RATE_FPS’, ‘CACHING_CAPACITY_ADDRS’,
‘ADDR_LEARNED_PERCENT’ and ‘OPTIMAL_LEARNING_RATE_FPS’ are the new
result-constants added to support RFC2889 tests.

4. Latency Histogram. To enable latency histogram as in results,
enable latency_histogram in conf/03_traffic.conf.

'Latency_hisotgram':
{
 "enabled": True,
 "tpe": "Default,
}

Once, enabled, a ‘Histogram.csv’ file will be generated in the results folder.
The Histogram.csv will include latency histogram in the following order.
(a) Packet size (b) Ranges in 10ns (c) Packet counts. These set of 3 lines,
will be repeated for every packet-sizes.

3.6. Xena Networks

3.6.1. Installation

Xena Networks traffic generator requires specific files and packages to be
installed. It is assumed the user has access to the Xena2544.exe file which
must be placed in VSPerf installation location under the tools/pkt_gen/xena
folder. Contact Xena Networks for the latest version of this file. The user
can also visit www.xenanetworks/downloads to obtain the file with a valid
support contract.

Note VSPerf has been fully tested with version v2.43 of Xena2544.exe

To execute the Xena2544.exe file under Linux distributions the mono-complete
package must be installed. To install this package follow the instructions
below. Further information can be obtained from
http://www.mono-project.com/docs/getting-started/install/linux/

rpm --import "http://keyserver.ubuntu.com/pks/lookup?op=get&search=0x3FA7E0328081BFF6A14DA29AA6A19B38D3D831EF"
yum-config-manager --add-repo http://download.mono-project.com/repo/centos/
yum -y install mono-complete-5.8.0.127-0.xamarin.3.epel7.x86_64

To prevent gpg errors on future yum installation of packages the mono-project
repo should be disabled once installed.

yum-config-manager --disable download.mono-project.com_repo_centos_

3.6.2. Configuration

Connection information for your Xena Chassis must be supplied inside the
10_custom.conf or 03_custom.conf file. The following parameters must be
set to allow for proper connections to the chassis.

TRAFFICGEN_XENA_IP = ''
TRAFFICGEN_XENA_PORT1 = ''
TRAFFICGEN_XENA_PORT2 = ''
TRAFFICGEN_XENA_USER = ''
TRAFFICGEN_XENA_PASSWORD = ''
TRAFFICGEN_XENA_MODULE1 = ''
TRAFFICGEN_XENA_MODULE2 = ''

3.6.3. RFC2544 Throughput Testing

Xena traffic generator testing for rfc2544 throughput can be modified for
different behaviors if needed. The default options for the following are
optimized for best results.

TRAFFICGEN_XENA_2544_TPUT_INIT_VALUE = '10.0'
TRAFFICGEN_XENA_2544_TPUT_MIN_VALUE = '0.1'
TRAFFICGEN_XENA_2544_TPUT_MAX_VALUE = '100.0'
TRAFFICGEN_XENA_2544_TPUT_VALUE_RESOLUTION = '0.5'
TRAFFICGEN_XENA_2544_TPUT_USEPASS_THRESHHOLD = 'false'
TRAFFICGEN_XENA_2544_TPUT_PASS_THRESHHOLD = '0.0'

Each value modifies the behavior of rfc 2544 throughput testing. Refer to your
Xena documentation to understand the behavior changes in modifying these
values.

Xena RFC2544 testing inside VSPerf also includes a final verification option.
This option allows for a faster binary search with a longer final verification
of the binary search result. This feature can be enabled in the configuration
files as well as the length of the final verification in seconds.

..code-block:: python

TRAFFICGEN_XENA_RFC2544_VERIFY = False
TRAFFICGEN_XENA_RFC2544_VERIFY_DURATION = 120

If the final verification does not pass the test with the lossrate specified
it will continue the binary search from its previous point. If the smart search
option is enabled the search will continue by taking the current pass rate minus
the minimum and divided by 2. The maximum is set to the last pass rate minus the
threshold value set.

For example if the settings are as follows

..code-block:: python

TRAFFICGEN_XENA_RFC2544_BINARY_RESTART_SMART_SEARCH = True
TRAFFICGEN_XENA_2544_TPUT_MIN_VALUE = ‘0.5’
TRAFFICGEN_XENA_2544_TPUT_VALUE_RESOLUTION = ‘0.5’

and the verification attempt was 64.5, smart search would take 64.5 - 0.5 / 2.
This would continue the search at 32 but still have a maximum possible value of
64.

If smart is not enabled it will just resume at the last pass rate minus the
threshold value.

3.6.4. Continuous Traffic Testing

Xena continuous traffic by default does a 3 second learning preemption to allow
the DUT to receive learning packets before a continuous test is performed. If
a custom test case requires this learning be disabled, you can disable the option
or modify the length of the learning by modifying the following settings.

TRAFFICGEN_XENA_CONT_PORT_LEARNING_ENABLED = False
TRAFFICGEN_XENA_CONT_PORT_LEARNING_DURATION = 3

3.6.5. Multistream Modifier

Xena has a modifier maximum value or 64k in size. For this reason when specifying
Multistream values of greater than 64k for Layer 2 or Layer 3 it will use two
modifiers that may be modified to a value that can be square rooted to create the
two modifiers. You will see a log notification for the new value that was calculated.

3.7. MoonGen

3.7.1. Installation

MoonGen architecture overview and general installation instructions
can be found here:

https://github.com/emmericp/MoonGen

	Note: Today, MoonGen with VSPERF only supports 10Gbps line speeds.

For VSPERF use, MoonGen should be cloned from here (as opposed to the
previously mentioned GitHub):

git clone https://github.com/atheurer/lua-trafficgen

and use the master branch:

git checkout master

VSPERF uses a particular Lua script with the MoonGen project:

trafficgen.lua

Follow MoonGen set up and execution instructions here:

https://github.com/atheurer/lua-trafficgen/blob/master/README.md

Note one will need to set up ssh login to not use passwords between the server
running MoonGen and the device under test (running the VSPERF test
infrastructure). This is because VSPERF on one server uses ‘ssh’ to
configure and run MoonGen upon the other server.

One can set up this ssh access by doing the following on both servers:

ssh-keygen -b 2048 -t rsa
ssh-copy-id <other server>

3.7.2. Configuration

Connection information for MoonGen must be supplied inside the
10_custom.conf or 03_custom.conf file. The following parameters must be
set to allow for proper connections to the host with MoonGen.

TRAFFICGEN_MOONGEN_HOST_IP_ADDR = ""
TRAFFICGEN_MOONGEN_USER = ""
TRAFFICGEN_MOONGEN_BASE_DIR = ""
TRAFFICGEN_MOONGEN_PORTS = ""
TRAFFICGEN_MOONGEN_LINE_SPEED_GBPS = ""

3.8. Trex

3.8.1. Installation

Trex architecture overview and general installation instructions
can be found here:

https://trex-tgn.cisco.com/trex/doc/trex_stateless.html

You can directly download from GitHub:

git clone https://github.com/cisco-system-traffic-generator/trex-core

and use the same Trex version for both server and client API.

NOTE: The Trex API version used by VSPERF is defined by variable TREX_TAG
in file src/package-list.mk.

git checkout v2.38

or Trex latest release you can download from here:

wget --no-cache http://trex-tgn.cisco.com/trex/release/latest

After download, Trex repo has to be built:

cd trex-core/linux_dpdk
./b configure (run only once)
./b build

Next step is to create a minimum configuration file. It can be created by script dpdk_setup_ports.py.
The script with parameter -i will run in interactive mode and it will create file /etc/trex_cfg.yaml.

cd trex-core/scripts
sudo ./dpdk_setup_ports.py -i

Or example of configuration file can be found at location below, but it must be updated manually:

cp trex-core/scripts/cfg/simple_cfg /etc/trex_cfg.yaml

For additional information about configuration file see official documentation (chapter 3.1.2):

https://trex-tgn.cisco.com/trex/doc/trex_manual.html#_creating_minimum_configuration_file

After compilation and configuration it is possible to run trex server in stateless mode.
It is neccesary for proper connection between Trex server and VSPERF.

cd trex-core/scripts/
./t-rex-64 -i

NOTE: Please check your firewall settings at both DUT and T-Rex server.
Firewall must allow a connection from DUT (VSPERF) to the T-Rex server running
at TCP port 4501.

NOTE: For high speed cards it may be advantageous to start T-Rex with more transmit queues/cores.

cd trex-cores/scripts/
./t-rex-64 -i -c 10

For additional information about Trex stateless mode see Trex stateless documentation:

https://trex-tgn.cisco.com/trex/doc/trex_stateless.html

NOTE: One will need to set up ssh login to not use passwords between the server
running Trex and the device under test (running the VSPERF test
infrastructure). This is because VSPERF on one server uses ‘ssh’ to
configure and run Trex upon the other server.

One can set up this ssh access by doing the following on both servers:

ssh-keygen -b 2048 -t rsa
ssh-copy-id <other server>

3.8.2. Configuration

Connection information for Trex must be supplied inside the custom configuration
file. The following parameters must be set to allow for proper connections to the host with Trex.
Example of this configuration is in conf/03_traffic.conf or conf/10_custom.conf.

TRAFFICGEN_TREX_HOST_IP_ADDR = ''
TRAFFICGEN_TREX_USER = ''
TRAFFICGEN_TREX_BASE_DIR = ''

TRAFFICGEN_TREX_USER has to have sudo permission and password-less access.
TRAFFICGEN_TREX_BASE_DIR is the place, where is stored ‘t-rex-64’ file.

It is possible to specify the accuracy of RFC2544 Throughput measurement.
Threshold below defines maximal difference between frame rate of successful
(i.e. defined frameloss was reached) and unsuccessful (i.e. frameloss was
exceeded) iterations.

Default value of this parameter is defined in conf/03_traffic.conf as follows:

TRAFFICGEN_TREX_RFC2544_TPUT_THRESHOLD = ''

T-Rex can have learning packets enabled. For certain tests it may be beneficial
to send some packets before starting test traffic to allow switch learning to take
place. This can be adjusted with the following configurations:

TRAFFICGEN_TREX_LEARNING_MODE=True
TRAFFICGEN_TREX_LEARNING_DURATION=5

Latency measurements have impact on T-Rex performance. Thus vswitchperf uses a separate
latency stream for each direction with limited speed. This workaround is used for RFC2544
Throughput and Continuous traffic types. In case of Burst traffic type,
the latency statistics are measured for all frames in the burst. Collection of latency
statistics is driven by configuration option TRAFFICGEN_TREX_LATENCY_PPS as follows:

	value 0 - disables latency measurements

	
	non zero integer value - enables latency measurements; In case of Throughput

	and Continuous traffic types, it specifies a speed of latency specific stream
in PPS. In case of burst traffic type, it enables latency measurements for all frames.

TRAFFICGEN_TREX_LATENCY_PPS = 1000

3.8.3. SR-IOV and Multistream layer 2

T-Rex by default only accepts packets on the receive side if the destination mac matches the
MAC address specified in the /etc/trex-cfg.yaml on the server side. For SR-IOV this creates
challenges with modifying the MAC address in the traffic profile to correctly flow packets
through specified VFs. To remove this limitation enable promiscuous mode on T-Rex to allow
all packets regardless of the destination mac to be accepted.

This also creates problems when doing multistream at layer 2 since the source macs will be
modified. Enable Promiscuous mode when doing multistream at layer 2 testing with T-Rex.

TRAFFICGEN_TREX_PROMISCUOUS=True

3.8.4. Card Bandwidth Options

T-Rex API will attempt to retrieve the highest possible speed from the card using internal
calls to port information. If you are using two separate cards then it will take the lowest
of the two cards as the max speed. If necessary you can try to force the API to use a
specific maximum speed per port. The below configurations can be adjusted to enable this.

TRAFFICGEN_TREX_FORCE_PORT_SPEED = True
TRAFFICGEN_TREX_PORT_SPEED = 40000 # 40 gig

Note:: Setting higher than possible speeds will result in unpredictable behavior when running
tests such as duration inaccuracy and/or complete test failure.

3.8.5. RFC2544 Validation

T-Rex can perform a verification run for a longer duration once the binary search of the
RFC2544 trials have completed. This duration should be at least 60 seconds. This is similar
to other traffic generator functionality where a more sustained time can be attempted to
verify longer runs from the result of the search. This can be configured with the following
params

TRAFFICGEN_TREX_VERIFICATION_MODE = False
TRAFFICGEN_TREX_VERIFICATION_DURATION = 60
TRAFFICGEN_TREX_MAXIMUM_VERIFICATION_TRIALS = 10

The duration and maximum number of attempted verification trials can be set to change the
behavior of this step. If the verification step fails, it will resume the binary search
with new values where the maximum output will be the last attempted frame rate minus the
current set thresh hold.

3.8.6. Scapy frame definition

It is possible to use a SCAPY frame definition to generate various network protocols
by the T-Rex traffic generator. In case that particular network protocol layer
is disabled by the TRAFFIC dictionary (e.g. TRAFFIC[‘vlan’][‘enabled’] = False),
then disabled layer will be removed from the scapy format definition by VSPERF.

The scapy frame definition can refer to values defined by the TRAFFIC dictionary
by following keywords. These keywords are used in next examples.

	Ether_src - refers to TRAFFIC['l2']['srcmac']

	Ether_dst - refers to TRAFFIC['l2']['dstmac']

	IP_proto - refers to TRAFFIC['l3']['proto']

	IP_PROTO - refers to upper case version of TRAFFIC['l3']['proto']

	IP_src - refers to TRAFFIC['l3']['srcip']

	IP_dst - refers to TRAFFIC['l3']['dstip']

	IP_PROTO_sport - refers to TRAFFIC['l4']['srcport']

	IP_PROTO_dport - refers to TRAFFIC['l4']['dstport']

	Dot1Q_prio - refers to TRAFFIC['vlan']['priority']

	Dot1Q_id - refers to TRAFFIC['vlan']['cfi']

	Dot1Q_vlan - refers to TRAFFIC['vlan']['id']

In following examples of SCAPY frame definition only relevant parts of TRAFFIC
dictionary are shown. The rest of the TRAFFIC dictionary is set to default values
as they are defined in conf/03_traffic.conf.

Please check official documentation of SCAPY project for details about SCAPY frame
definition and supported network layers at: http://www.secdev.org/projects/scapy

	Generate ICMP frames:

'scapy': {
 'enabled': True,
 '0' : 'Ether(src={Ether_src}, dst={Ether_dst})/IP(proto="icmp", src={IP_src}, dst={IP_dst})/ICMP()',
 '1' : 'Ether(src={Ether_dst}, dst={Ether_src})/IP(proto="icmp", src={IP_dst}, dst={IP_src})/ICMP()',
}

	Generate IPv6 ICMP Echo Request

'l3' : {
 'srcip': 'feed::01',
 'dstip': 'feed::02',
},
'scapy': {
 'enabled': True,
 '0' : 'Ether(src={Ether_src}, dst={Ether_dst})/IPv6(src={IP_src}, dst={IP_dst})/ICMPv6EchoRequest()',
 '1' : 'Ether(src={Ether_dst}, dst={Ether_src})/IPv6(src={IP_dst}, dst={IP_src})/ICMPv6EchoRequest()',
}

	Generate TCP frames:

Example uses default SCAPY frame definition, which can reflect TRAFFIC['l3']['proto'] settings.

'l3' : {
 'proto' : 'tcp',
},

2. Upgrading vswitchperf

2.1. Generic

In case, that VSPERF is cloned from git repository, then it is easy to
upgrade it to the newest stable version or to the development version.

You could get a list of stable releases by git command. It is necessary
to update local git repository first.

NOTE: Git commands must be executed from directory, where VSPERF repository
was cloned, e.g. vswitchperf.

Update of local git repository:

$ git pull

List of stable releases:

$ git tag

brahmaputra.1.0
colorado.1.0
colorado.2.0
colorado.3.0
danube.1.0
euphrates.1.0

You could select which stable release should be used. For example, select danube.1.0:

$ git checkout danube.1.0

Development version of VSPERF can be selected by:

$ git checkout master

2.2. Colorado to Danube upgrade notes

2.2.1. Obsoleted features

Support of vHost Cuse interface has been removed in Danube release. It means,
that it is not possible to select QemuDpdkVhostCuse as a VNF anymore. Option
QemuDpdkVhostUser should be used instead. Please check you configuration files
and definition of your testcases for any occurrence of:

VNF = "QemuDpdkVhostCuse"

or

"VNF" : "QemuDpdkVhostCuse"

In case that QemuDpdkVhostCuse is found, it must be modified to QemuDpdkVhostUser.

NOTE: In case that execution of VSPERF is automated by scripts (e.g. for
CI purposes), then these scripts must be checked and updated too. It means,
that any occurrence of:

./vsperf --vnf QemuDpdkVhostCuse

must be updated to:

./vsperf --vnf QemuDpdkVhostUser

2.2.2. Configuration

Several configuration changes were introduced during Danube release. The most
important changes are discussed below.

2.2.2.1. Paths to DPDK, OVS and QEMU

VSPERF uses external tools for proper testcase execution. Thus it is important
to properly configure paths to these tools. In case that tools are installed
by installation scripts and are located inside ./src directory inside
VSPERF home, then no changes are needed. On the other hand, if path settings
was changed by custom configuration file, then it is required to update configuration
accordingly. Please check your configuration files for following configuration
options:

OVS_DIR
OVS_DIR_VANILLA
OVS_DIR_USER
OVS_DIR_CUSE

RTE_SDK_USER
RTE_SDK_CUSE

QEMU_DIR
QEMU_DIR_USER
QEMU_DIR_CUSE
QEMU_BIN

In case that any of these options is defined, then configuration must be updated.
All paths to the tools are now stored inside PATHS dictionary. Please
refer to the Configuration of PATHS dictionary and update your configuration where necessary.

2.2.2.2. Configuration change via CLI

In previous releases it was possible to modify selected configuration options
(mostly VNF specific) via command line interface, i.e. by --test-params
argument. This concept has been generalized in Danube release and it is
possible to modify any configuration parameter via CLI or via Parameters
section of the testcase definition. Old configuration options were obsoleted
and it is required to specify configuration parameter name in the same form
as it is defined inside configuration file, i.e. in uppercase. Please
refer to the Overriding values defined in configuration files for additional details.

NOTE: In case that execution of VSPERF is automated by scripts (e.g. for
CI purposes), then these scripts must be checked and updated too. It means,
that any occurrence of

guest_loopback
vanilla_tgen_port1_ip
vanilla_tgen_port1_mac
vanilla_tgen_port2_ip
vanilla_tgen_port2_mac
tunnel_type

shall be changed to the uppercase form and data type of entered values must
match to data types of original values from configuration files.

In case that guest_nic1_name or guest_nic2_name is changed,
then new dictionary GUEST_NICS must be modified accordingly.
Please see Configuration of GUEST options and conf/04_vnf.conf for additional
details.

2.2.2.3. Traffic configuration via CLI

In previous releases it was possible to modify selected attributes of generated
traffic via command line interface. This concept has been enhanced in Danube
release and it is now possible to modify all traffic specific options via
CLI or by TRAFFIC dictionary in configuration file. Detailed description
is available at Configuration of TRAFFIC dictionary section of documentation.

Please check your automated scripts for VSPERF execution for following CLI
parameters and update them according to the documentation:

bidir
duration
frame_rate
iload
lossrate
multistream
pkt_sizes
pre-installed_flows
rfc2544_tests
stream_type
traffic_type

VSPERF Test Guide

VSPERF Test Execution

	1. vSwitchPerf test suites userguide
	1.1. General

	1.2. VSPERF Installation

	1.3. Traffic Generator Setup

	1.4. Cloning and building src dependencies

	1.5. Configure the ./conf/10_custom.conf file

	1.6. Using a custom settings file

	1.7. Evaluation of configuration parameters

	1.8. Overriding values defined in configuration files

	1.9. Referencing parameter values

	1.10. vloop_vnf

	1.11. l2fwd Kernel Module

	1.12. Additional Tools Setup

	1.13. Executing tests

	1.14. Executing Vanilla OVS tests

	1.15. Executing tests with VMs

	1.16. Executing tests with VMs using Vanilla OVS

	1.17. Executing VPP tests

	1.18. Using vfio_pci with DPDK

	1.19. Using SRIOV support

	1.20. Using QEMU with PCI passthrough support

	1.21. Selection of loopback application for tests with VMs

	1.22. Mergable Buffers Options with QEMU

	1.23. Selection of dpdk binding driver for tests with VMs

	1.24. Guest Core and Thread Binding

	1.25. Qemu CPU features

	1.26. Multi-Queue Configuration

	1.27. Jumbo Frame Testing

	1.28. Executing Packet Forwarding tests

	1.29. Executing Packet Forwarding tests with one guest

	1.30. VSPERF modes of operation

	1.31. Performance Matrix

	1.32. Code change verification by pylint

	1.33. GOTCHAs:

	1.34. More information

	2. Step driven tests
	2.1. Test objects and their functions

	2.2. Test Macros

	2.3. HelloWorld and other basic Testcases

	3. Integration tests
	3.1. Executing Integration Tests

	3.2. Executing Tunnel encapsulation tests

	3.3. Executing VXLAN decapsulation tests

	3.4. Executing GRE decapsulation tests

	3.5. Executing GENEVE decapsulation tests

	3.6. Executing Native/Vanilla OVS VXLAN decapsulation tests

	3.7. Executing Native/Vanilla OVS GRE decapsulation tests

	3.8. Executing Native/Vanilla OVS GENEVE decapsulation tests

	3.9. Executing Tunnel encapsulation+decapsulation tests

	1. Traffic Capture
	1.1. Traffic Capture inside of a VM

	1.2. Traffic Capture for testing NICs with HW offloading/acceleration

	1.3. Traffic Capture on the Traffic Generator

	4. Execution of vswitchperf testcases by Yardstick
	4.1. General

	4.2. Yardstick Installation

	4.3. VM image with vswitchperf

	4.4. Testcase execution

	4.5. Testcase customization

	5. List of vswitchperf testcases
	5.1. Performance testcases

	5.2. Integration testcases

	5.3. OVS/DPDK Regression TestCases

	5.4. T-Rex in VM TestCases

3. Integration tests

VSPERF includes a set of integration tests defined in conf/integration.
These tests can be run by specifying –integration as a parameter to vsperf.
Current tests in conf/integration include switch functionality and Overlay
tests.

Tests in the conf/integration can be used to test scaling of different switch
configurations by adding steps into the test case.

For the overlay tests VSPERF supports VXLAN, GRE and GENEVE tunneling protocols.
Testing of these protocols is limited to unidirectional traffic and
P2P (Physical to Physical scenarios).

NOTE: The configuration for overlay tests provided in this guide is for
unidirectional traffic only.

NOTE: The overlay tests require an IxNet traffic generator. The tunneled traffic
is configured by ixnetrfc2544v2.tcl script. This script can be used
with all supported deployment scenarios for generation of frames with VXLAN, GRE
or GENEVE protocols. In that case options “Tunnel Operation” and
“TRAFFICGEN_IXNET_TCL_SCRIPT” must be properly configured at testcase definition.

3.1. Executing Integration Tests

To execute integration tests VSPERF is run with the integration parameter. To
view the current test list simply execute the following command:

./vsperf --integration --list

The standard tests included are defined inside the
conf/integration/01_testcases.conf file.

3.2. Executing Tunnel encapsulation tests

The VXLAN OVS DPDK encapsulation tests requires IPs, MAC addresses,
bridge names and WHITELIST_NICS for DPDK.

NOTE: Only Ixia traffic generators currently support the execution of the tunnel
encapsulation tests. Support for other traffic generators may come in a future
release.

Default values are already provided. To customize for your environment, override
the following variables in you user_settings.py file:

Variables defined in conf/integration/02_vswitch.conf
Tunnel endpoint for Overlay P2P deployment scenario
used for br0
VTEP_IP1 = '192.168.0.1/24'

Used as remote_ip in adding OVS tunnel port and
to set ARP entry in OVS (e.g. tnl/arp/set br-ext 192.168.240.10 02:00:00:00:00:02
VTEP_IP2 = '192.168.240.10'

Network to use when adding a route for inner frame data
VTEP_IP2_SUBNET = '192.168.240.0/24'

Bridge names
TUNNEL_INTEGRATION_BRIDGE = 'vsperf-br0'
TUNNEL_EXTERNAL_BRIDGE = 'vsperf-br-ext'

IP of br-ext
TUNNEL_EXTERNAL_BRIDGE_IP = '192.168.240.1/24'

vxlan|gre|geneve
TUNNEL_TYPE = 'vxlan'

Variables defined conf/integration/03_traffic.conf
For OP2P deployment scenario
TRAFFICGEN_PORT1_MAC = '02:00:00:00:00:01'
TRAFFICGEN_PORT2_MAC = '02:00:00:00:00:02'
TRAFFICGEN_PORT1_IP = '1.1.1.1'
TRAFFICGEN_PORT2_IP = '192.168.240.10'

To run VXLAN encapsulation tests:

./vsperf --conf-file user_settings.py --integration \
 --test-params 'TUNNEL_TYPE=vxlan' overlay_p2p_tput

To run GRE encapsulation tests:

./vsperf --conf-file user_settings.py --integration \
 --test-params 'TUNNEL_TYPE=gre' overlay_p2p_tput

To run GENEVE encapsulation tests:

./vsperf --conf-file user_settings.py --integration \
 --test-params 'TUNNEL_TYPE=geneve' overlay_p2p_tput

To run OVS NATIVE tunnel tests (VXLAN/GRE/GENEVE):

	Install the OVS kernel modules

cd src/ovs/ovs
sudo -E make modules_install

	Set the following variables:

VSWITCH = 'OvsVanilla'
Specify vport_* kernel module to test.
PATHS['vswitch']['OvsVanilla']['src']['modules'] = [
 'vport_vxlan',
 'vport_gre',
 'vport_geneve',
 'datapath/linux/openvswitch.ko',
]

NOTE: In case, that Vanilla OVS is installed from binary package, then
please set PATHS['vswitch']['OvsVanilla']['bin']['modules'] instead.

	Run tests:

./vsperf --conf-file user_settings.py --integration \
 --test-params 'TUNNEL_TYPE=vxlan' overlay_p2p_tput

3.3. Executing VXLAN decapsulation tests

To run VXLAN decapsulation tests:

	Set the variables used in “Executing Tunnel encapsulation tests”

	Run test:

./vsperf --conf-file user_settings.py --integration overlay_p2p_decap_cont

If you want to use different values for your VXLAN frame, you may set:

VXLAN_FRAME_L3 = {'proto': 'udp',
 'packetsize': 64,
 'srcip': TRAFFICGEN_PORT1_IP,
 'dstip': '192.168.240.1',
 }
VXLAN_FRAME_L4 = {'srcport': 4789,
 'dstport': 4789,
 'vni': VXLAN_VNI,
 'inner_srcmac': '01:02:03:04:05:06',
 'inner_dstmac': '06:05:04:03:02:01',
 'inner_srcip': '192.168.0.10',
 'inner_dstip': '192.168.240.9',
 'inner_proto': 'udp',
 'inner_srcport': 3000,
 'inner_dstport': 3001,
 }

3.4. Executing GRE decapsulation tests

To run GRE decapsulation tests:

	Set the variables used in “Executing Tunnel encapsulation tests”

	Run test:

./vsperf --conf-file user_settings.py --test-params 'TUNNEL_TYPE=gre' \
 --integration overlay_p2p_decap_cont

If you want to use different values for your GRE frame, you may set:

GRE_FRAME_L3 = {'proto': 'gre',
 'packetsize': 64,
 'srcip': TRAFFICGEN_PORT1_IP,
 'dstip': '192.168.240.1',
 }

GRE_FRAME_L4 = {'srcport': 0,
 'dstport': 0
 'inner_srcmac': '01:02:03:04:05:06',
 'inner_dstmac': '06:05:04:03:02:01',
 'inner_srcip': '192.168.0.10',
 'inner_dstip': '192.168.240.9',
 'inner_proto': 'udp',
 'inner_srcport': 3000,
 'inner_dstport': 3001,
 }

3.5. Executing GENEVE decapsulation tests

IxNet 7.3X does not have native support of GENEVE protocol. The
template, GeneveIxNetTemplate.xml_ClearText.xml, should be imported
into IxNET for this testcase to work.

To import the template do:

	Run the IxNetwork TCL Server

	Click on the Traffic menu

	Click on the Traffic actions and click Edit Packet Templates

	On the Template editor window, click Import. Select the template
located at 3rd_party/ixia/GeneveIxNetTemplate.xml_ClearText.xml
and click import.

	Restart the TCL Server.

To run GENEVE decapsulation tests:

	Set the variables used in “Executing Tunnel encapsulation tests”

	Run test:

./vsperf --conf-file user_settings.py --test-params 'tunnel_type=geneve' \
 --integration overlay_p2p_decap_cont

If you want to use different values for your GENEVE frame, you may set:

GENEVE_FRAME_L3 = {'proto': 'udp',
 'packetsize': 64,
 'srcip': TRAFFICGEN_PORT1_IP,
 'dstip': '192.168.240.1',
 }

GENEVE_FRAME_L4 = {'srcport': 6081,
 'dstport': 6081,
 'geneve_vni': 0,
 'inner_srcmac': '01:02:03:04:05:06',
 'inner_dstmac': '06:05:04:03:02:01',
 'inner_srcip': '192.168.0.10',
 'inner_dstip': '192.168.240.9',
 'inner_proto': 'udp',
 'inner_srcport': 3000,
 'inner_dstport': 3001,
 }

3.6. Executing Native/Vanilla OVS VXLAN decapsulation tests

To run VXLAN decapsulation tests:

	Set the following variables in your user_settings.py file:

PATHS['vswitch']['OvsVanilla']['src']['modules'] = [
 'vport_vxlan',
 'datapath/linux/openvswitch.ko',
]

TRAFFICGEN_PORT1_IP = '172.16.1.2'
TRAFFICGEN_PORT2_IP = '192.168.1.11'

VTEP_IP1 = '172.16.1.2/24'
VTEP_IP2 = '192.168.1.1'
VTEP_IP2_SUBNET = '192.168.1.0/24'
TUNNEL_EXTERNAL_BRIDGE_IP = '172.16.1.1/24'
TUNNEL_INT_BRIDGE_IP = '192.168.1.1'

VXLAN_FRAME_L2 = {'srcmac':
 '01:02:03:04:05:06',
 'dstmac':
 '06:05:04:03:02:01',
 }

VXLAN_FRAME_L3 = {'proto': 'udp',
 'packetsize': 64,
 'srcip': TRAFFICGEN_PORT1_IP,
 'dstip': '172.16.1.1',
 }

VXLAN_FRAME_L4 = {
 'srcport': 4789,
 'dstport': 4789,
 'protocolpad': 'true',
 'vni': 99,
 'inner_srcmac': '01:02:03:04:05:06',
 'inner_dstmac': '06:05:04:03:02:01',
 'inner_srcip': '192.168.1.2',
 'inner_dstip': TRAFFICGEN_PORT2_IP,
 'inner_proto': 'udp',
 'inner_srcport': 3000,
 'inner_dstport': 3001,
 }

NOTE: In case, that Vanilla OVS is installed from binary package, then
please set PATHS['vswitch']['OvsVanilla']['bin']['modules'] instead.

	Run test:

./vsperf --conf-file user_settings.py --integration \
 --test-params 'tunnel_type=vxlan' overlay_p2p_decap_cont

3.7. Executing Native/Vanilla OVS GRE decapsulation tests

To run GRE decapsulation tests:

	Set the following variables in your user_settings.py file:

PATHS['vswitch']['OvsVanilla']['src']['modules'] = [
 'vport_gre',
 'datapath/linux/openvswitch.ko',
]

TRAFFICGEN_PORT1_IP = '172.16.1.2'
TRAFFICGEN_PORT2_IP = '192.168.1.11'

VTEP_IP1 = '172.16.1.2/24'
VTEP_IP2 = '192.168.1.1'
VTEP_IP2_SUBNET = '192.168.1.0/24'
TUNNEL_EXTERNAL_BRIDGE_IP = '172.16.1.1/24'
TUNNEL_INT_BRIDGE_IP = '192.168.1.1'

GRE_FRAME_L2 = {'srcmac':
 '01:02:03:04:05:06',
 'dstmac':
 '06:05:04:03:02:01',
 }

GRE_FRAME_L3 = {'proto': 'udp',
 'packetsize': 64,
 'srcip': TRAFFICGEN_PORT1_IP,
 'dstip': '172.16.1.1',
 }

GRE_FRAME_L4 = {
 'srcport': 4789,
 'dstport': 4789,
 'protocolpad': 'true',
 'inner_srcmac': '01:02:03:04:05:06',
 'inner_dstmac': '06:05:04:03:02:01',
 'inner_srcip': '192.168.1.2',
 'inner_dstip': TRAFFICGEN_PORT2_IP,
 'inner_proto': 'udp',
 'inner_srcport': 3000,
 'inner_dstport': 3001,
 }

NOTE: In case, that Vanilla OVS is installed from binary package, then
please set PATHS['vswitch']['OvsVanilla']['bin']['modules'] instead.

	Run test:

./vsperf --conf-file user_settings.py --integration \
 --test-params 'tunnel_type=gre' overlay_p2p_decap_cont

3.8. Executing Native/Vanilla OVS GENEVE decapsulation tests

To run GENEVE decapsulation tests:

	Set the following variables in your user_settings.py file:

PATHS['vswitch']['OvsVanilla']['src']['modules'] = [
 'vport_geneve',
 'datapath/linux/openvswitch.ko',
]

TRAFFICGEN_PORT1_IP = '172.16.1.2'
TRAFFICGEN_PORT2_IP = '192.168.1.11'

VTEP_IP1 = '172.16.1.2/24'
VTEP_IP2 = '192.168.1.1'
VTEP_IP2_SUBNET = '192.168.1.0/24'
TUNNEL_EXTERNAL_BRIDGE_IP = '172.16.1.1/24'
TUNNEL_INT_BRIDGE_IP = '192.168.1.1'

GENEVE_FRAME_L2 = {'srcmac':
 '01:02:03:04:05:06',
 'dstmac':
 '06:05:04:03:02:01',
 }

GENEVE_FRAME_L3 = {'proto': 'udp',
 'packetsize': 64,
 'srcip': TRAFFICGEN_PORT1_IP,
 'dstip': '172.16.1.1',
 }

GENEVE_FRAME_L4 = {'srcport': 6081,
 'dstport': 6081,
 'protocolpad': 'true',
 'geneve_vni': 0,
 'inner_srcmac': '01:02:03:04:05:06',
 'inner_dstmac': '06:05:04:03:02:01',
 'inner_srcip': '192.168.1.2',
 'inner_dstip': TRAFFICGEN_PORT2_IP,
 'inner_proto': 'udp',
 'inner_srcport': 3000,
 'inner_dstport': 3001,
 }

NOTE: In case, that Vanilla OVS is installed from binary package, then
please set PATHS['vswitch']['OvsVanilla']['bin']['modules'] instead.

	Run test:

./vsperf --conf-file user_settings.py --integration \
 --test-params 'tunnel_type=geneve' overlay_p2p_decap_cont

3.9. Executing Tunnel encapsulation+decapsulation tests

The OVS DPDK encapsulation/decapsulation tests requires IPs, MAC addresses,
bridge names and WHITELIST_NICS for DPDK.

The test cases can test the tunneling encap and decap without using any ingress
overlay traffic as compared to above test cases. To achieve this the OVS is
configured to perform encap and decap in a series on the same traffic stream as
given below.

TRAFFIC-IN –> [ENCAP] –> [MOD-PKT] –> [DECAP] –> TRAFFIC-OUT

Default values are already provided. To customize for your environment, override
the following variables in you user_settings.py file:

Variables defined in conf/integration/02_vswitch.conf

Bridge names
TUNNEL_EXTERNAL_BRIDGE1 = 'br-phy1'
TUNNEL_EXTERNAL_BRIDGE2 = 'br-phy2'
TUNNEL_MODIFY_BRIDGE1 = 'br-mod1'
TUNNEL_MODIFY_BRIDGE2 = 'br-mod2'

IP of br-mod1
TUNNEL_MODIFY_BRIDGE_IP1 = '10.0.0.1/24'

Mac of br-mod1
TUNNEL_MODIFY_BRIDGE_MAC1 = '00:00:10:00:00:01'

IP of br-mod2
TUNNEL_MODIFY_BRIDGE_IP2 = '20.0.0.1/24'

#Mac of br-mod2
TUNNEL_MODIFY_BRIDGE_MAC2 = '00:00:20:00:00:01'

vxlan|gre|geneve, Only VXLAN is supported for now.
TUNNEL_TYPE = 'vxlan'

To run VXLAN encapsulation+decapsulation tests:

./vsperf --conf-file user_settings.py --integration \
 overlay_p2p_mod_tput

5. List of vswitchperf testcases

5.1. Performance testcases

	Testcase Name

	Description

	phy2phy_tput

	LTD.Throughput.RFC2544.PacketLossRatio

	phy2phy_forwarding

	LTD.Forwarding.RFC2889.MaxForwardingRate

	phy2phy_learning

	LTD.AddrLearning.RFC2889.AddrLearningRate

	phy2phy_caching

	LTD.AddrCaching.RFC2889.AddrCachingCapacity

	back2back

	LTD.Throughput.RFC2544.BackToBackFrames

	phy2phy_tput_mod_vlan

	LTD.Throughput.RFC2544.PacketLossRatioFrameModification

	phy2phy_cont

	Phy2Phy Continuous Stream

	pvp_cont

	PVP Continuous Stream

	pvvp_cont

	PVVP Continuous Stream

	pvpv_cont

	Two VMs in parallel with Continuous Stream

	phy2phy_scalability

	LTD.Scalability.Flows.RFC2544.0PacketLoss

	pvp_tput

	LTD.Throughput.RFC2544.PacketLossRatio

	pvp_back2back

	LTD.Throughput.RFC2544.BackToBackFrames

	pvvp_tput

	LTD.Throughput.RFC2544.PacketLossRatio

	pvvp_back2back

	LTD.Throughput.RFC2544.BackToBackFrames

	phy2phy_cpu_load

	LTD.CPU.RFC2544.0PacketLoss

	phy2phy_mem_load

	LTD.Memory.RFC2544.0PacketLoss

	phy2phy_tput_vpp

	VPP: LTD.Throughput.RFC2544.PacketLossRatio

	phy2phy_cont_vpp

	VPP: Phy2Phy Continuous Stream

	phy2phy_back2back_vpp

	VPP: LTD.Throughput.RFC2544.BackToBackFrames

	pvp_tput_vpp

	VPP: LTD.Throughput.RFC2544.PacketLossRatio

	pvp_cont_vpp

	VPP: PVP Continuous Stream

	pvp_back2back_vpp

	VPP: LTD.Throughput.RFC2544.BackToBackFrames

	pvvp_tput_vpp

	VPP: LTD.Throughput.RFC2544.PacketLossRatio

	pvvp_cont_vpp

	VPP: PVP Continuous Stream

	pvvp_back2back_vpp

	VPP: LTD.Throughput.RFC2544.BackToBackFrames

List of performance testcases above can be obtained by execution of:

$./vsperf --list

5.2. Integration testcases

	Testcase Name

	Description

	vswitch_vports_add_del_flow

	vSwitch - configure switch with vports, add and delete flow

	vswitch_add_del_flows

	vSwitch - add and delete flows

	vswitch_p2p_tput

	vSwitch - configure switch and execute RFC2544 throughput test

	vswitch_p2p_back2back

	vSwitch - configure switch and execute RFC2544 back2back test

	vswitch_p2p_cont

	vSwitch - configure switch and execute RFC2544 continuous stream test

	vswitch_pvp

	vSwitch - configure switch and one vnf

	vswitch_vports_pvp

	vSwitch - configure switch with vports and one vnf

	vswitch_pvp_tput

	vSwitch - configure switch, vnf and execute RFC2544 throughput test

	vswitch_pvp_back2back

	vSwitch - configure switch, vnf and execute RFC2544 back2back test

	vswitch_pvp_cont

	vSwitch - configure switch, vnf and execute RFC2544 continuous stream test

	vswitch_pvp_all

	vSwitch - configure switch, vnf and execute all test types

	vswitch_pvvp

	vSwitch - configure switch and two vnfs

	vswitch_pvvp_tput

	vSwitch - configure switch, two chained vnfs and execute RFC2544 throughput test

	vswitch_pvvp_back2back

	vSwitch - configure switch, two chained vnfs and execute RFC2544 back2back test

	vswitch_pvvp_cont

	vSwitch - configure switch, two chained vnfs and execute RFC2544 continuous stream test

	vswitch_pvvp_all

	vSwitch - configure switch, two chained vnfs and execute all test types

	vswitch_p4vp_tput

	4 chained vnfs, execute RFC2544 throughput test, deployment pvvp4

	vswitch_p4vp_back2back

	4 chained vnfs, execute RFC2544 back2back test, deployment pvvp4

	vswitch_p4vp_cont

	4 chained vnfs, execute RFC2544 continuous stream test, deployment pvvp4

	vswitch_p4vp_all

	4 chained vnfs, execute RFC2544 throughput tests, deployment pvvp4

	2pvp_udp_dest_flows

	RFC2544 Continuous TC with 2 Parallel VMs, flows on UDP Dest Port, deployment pvpv2

	4pvp_udp_dest_flows

	RFC2544 Continuous TC with 4 Parallel VMs, flows on UDP Dest Port, deployment pvpv4

	6pvp_udp_dest_flows

	RFC2544 Continuous TC with 6 Parallel VMs, flows on UDP Dest Port, deployment pvpv6

	vhost_numa_awareness

	vSwitch DPDK - verify that PMD threads are served by the same NUMA slot as QEMU instances

	ixnet_pvp_tput_1nic

	PVP Scenario with 1 port towards IXIA

	vswitch_vports_add_del_connection_vpp

	VPP: vSwitch - configure switch with vports, add and delete connection

	p2p_l3_multi_IP_ovs

	OVS: P2P L3 multistream with unique flow for each IP stream

	p2p_l3_multi_IP_mask_ovs

	OVS: P2P L3 multistream with 1 flow for /8 net mask

	pvp_l3_multi_IP_mask_ovs

	OVS: PVP L3 multistream with 1 flow for /8 net mask

	pvvp_l3_multi_IP_mask_ovs

	OVS: PVVP L3 multistream with 1 flow for /8 net mask

	p2p_l4_multi_PORT_ovs

	OVS: P2P L4 multistream with unique flow for each IP stream

	p2p_l4_multi_PORT_mask_ovs

	OVS: P2P L4 multistream with 1 flow for /8 net and port mask

	pvp_l4_multi_PORT_mask_ovs

	OVS: PVP L4 multistream flows for /8 net and port mask

	pvvp_l4_multi_PORT_mask_ovs

	OVS: PVVP L4 multistream with flows for /8 net and port mask

	p2p_l3_multi_IP_arp_vpp

	VPP: P2P L3 multistream with unique ARP entry for each IP stream

	p2p_l3_multi_IP_mask_vpp

	VPP: P2P L3 multistream with 1 route for /8 net mask

	p2p_l3_multi_IP_routes_vpp

	VPP: P2P L3 multistream with unique route for each IP stream

	pvp_l3_multi_IP_mask_vpp

	VPP: PVP L3 multistream with route for /8 netmask

	pvvp_l3_multi_IP_mask_vpp

	VPP: PVVP L3 multistream with route for /8 netmask

	p2p_l4_multi_PORT_arp_vpp

	VPP: P2P L4 multistream with unique ARP entry for each IP stream and port check

	p2p_l4_multi_PORT_mask_vpp

	VPP: P2P L4 multistream with 1 route for /8 net mask and port check

	p2p_l4_multi_PORT_routes_vpp

	VPP: P2P L4 multistream with unique route for each IP stream and port check

	pvp_l4_multi_PORT_mask_vpp

	VPP: PVP L4 multistream with route for /8 net and port mask

	pvvp_l4_multi_PORT_mask_vpp

	VPP: PVVP L4 multistream with route for /8 net and port mask

	vxlan_multi_IP_mask_ovs

	OVS: VxLAN L3 multistream

	vxlan_multi_IP_arp_vpp

	VPP: VxLAN L3 multistream with unique ARP entry for each IP stream

	vxlan_multi_IP_mask_vpp

	VPP: VxLAN L3 multistream with 1 route for /8 netmask

List of integration testcases above can be obtained by execution of:

$./vsperf --integration --list

5.3. OVS/DPDK Regression TestCases

These regression tests verify several DPDK features used internally by Open vSwitch. Tests
can be used for verification of performance and correct functionality of upcoming DPDK
and OVS releases and release candidates.

These tests are part of integration testcases and they must be executed with
--integration CLI parameter.

Example of execution of all OVS/DPDK regression tests:

$./vsperf --integration --tests ovsdpdk_

Testcases are defined in the file conf/integration/01b_dpdk_regression_tests.conf. This file
contains a set of configuration options with prefix OVSDPDK_. These parameters can be used
for customization of regression tests and they will override some of standard VSPERF configuration
options. It is recommended to check OVSDPDK configuration parameters and modify them in accordance
with VSPERF configuration.

At least following parameters should be examined. Their values shall ensure, that DPDK and
QEMU threads are pinned to cpu cores of the same NUMA slot, where tested NICs are connected.

_OVSDPDK_1st_PMD_CORE
_OVSDPDK_2nd_PMD_CORE
_OVSDPDK_GUEST_5_CORES

5.3.1. DPDK NIC Support

A set of performance tests to verify support of DPDK accelerated network interface cards.
Testcases use standard physical to physical network scenario with several vSwitch and
traffic configurations, which includes one and two PMD threads, uni and bidirectional traffic
and RFC2544 Continuous or RFC2544 Throughput with 0% packet loss traffic types.

	Testcase Name

	Description

	ovsdpdk_nic_p2p_single_pmd_unidir_cont

	P2P with single PMD in OVS and unidirectional traffic.

	ovsdpdk_nic_p2p_single_pmd_bidir_cont

	P2P with single PMD in OVS and bidirectional traffic.

	ovsdpdk_nic_p2p_two_pmd_bidir_cont

	P2P with two PMDs in OVS and bidirectional traffic.

	ovsdpdk_nic_p2p_single_pmd_unidir_tput

	P2P with single PMD in OVS and unidirectional traffic.

	ovsdpdk_nic_p2p_single_pmd_bidir_tput

	P2P with single PMD in OVS and bidirectional traffic.

	ovsdpdk_nic_p2p_two_pmd_bidir_tput

	P2P with two PMDs in OVS and bidirectional traffic.

5.3.2. DPDK Hotplug Support

A set of functional tests to verify DPDK hotplug support. Tests verify, that it is possible
to use port, which was not bound to DPDK driver during vSwitch startup. There is also
a test which verifies a possibility to detach port from DPDK driver. However support
for manual detachment of a port from DPDK has been removed from recent OVS versions and
thus this testcase is expected to fail.

	Testcase Name

	Description

	ovsdpdk_hotplug_attach

	Ensure successful port-add after binding a device to igb_uio after
ovs-vswitchd is launched.

	ovsdpdk_hotplug_detach

	Same as ovsdpdk_hotplug_attach, but delete and detach the device
after the hotplug. Note Support of netdev-dpdk/detach has been
removed from OVS, so testcase will fail with recent OVS/DPDK
versions.

5.3.3. RX Checksum Support

A set of functional tests for verification of RX checksum calculation for tunneled traffic.
Open vSwitch enables RX checksum offloading by default if NIC supports it. It is to note,
that it is not possible to disable or enable RX checksum offloading. In order to verify
correct RX checksum calculation in software, user has to execute these testcases
at NIC without HW offloading capabilities.

Testcases utilize existing overlay physical to physical (op2p) network deployment
implemented in vsperf. This deployment expects, that traffic generator sends unidirectional
tunneled traffic (e.g. vxlan) and Open vSwitch performs data decapsulation and sends them
back to the traffic generator via second port.

	Testcase Name

	Description

	ovsdpdk_checksum_l3

	Test verifies RX IP header checksum (offloading) validation for
tunneling protocols.

	ovsdpdk_checksum_l4

	Test verifies RX UDP header checksum (offloading) validation for
tunneling protocols.

5.3.4. Flow Control Support

A set of functional testcases for the validation of flow control support in Open vSwitch
with DPDK support. If flow control is enabled in both OVS and Traffic Generator,
the network endpoint (OVS or TGEN) is not able to process incoming data and
thus it detects a RX buffer overflow. It then sends an ethernet pause frame (as defined at 802.3x)
to the TX side. This mechanism will ensure, that the TX side will slow down traffic transmission
and thus no data is lost at RX side.

Introduced testcases use physical to physical scenario to forward data between
traffic generator ports. It is expected that the processing of small frames in OVS is slower
than line rate. It means that with flow control disabled, traffic generator will
report a frame loss. On the other hand with flow control enabled, there should be 0%
frame loss reported by traffic generator.

	Testcase Name

	Description

	ovsdpdk_flow_ctrl_rx

	Test the rx flow control functionality of DPDK PHY ports.

	ovsdpdk_flow_ctrl_rx_dynamic

	Change the rx flow control support at run time and ensure the system
honored the changes.

5.3.5. Multiqueue Support

A set of functional testcases for validation of multiqueue support for both physical
and vHost User DPDK ports. Testcases utilize P2P and PVP network deployments and
native support of multiqueue configuration available in VSPERF.

	Testcase Name

	Description

	ovsdpdk_mq_p2p_rxqs

	Setup rxqs on NIC port.

	ovsdpdk_mq_p2p_rxqs_same_core_affinity

	Affinitize rxqs to the same core.

	ovsdpdk_mq_p2p_rxqs_multi_core_affinity

	Affinitize rxqs to separate cores.

	ovsdpdk_mq_pvp_rxqs

	Setup rxqs on vhost user port.

	ovsdpdk_mq_pvp_rxqs_linux_bridge

	Confirm traffic received over vhost RXQs with Linux virtio device in
guest.

	ovsdpdk_mq_pvp_rxqs_testpmd

	Confirm traffic received over vhost RXQs with DPDK device in guest.

5.3.6. Vhost User

A set of functional testcases for validation of vHost User Client and vHost User
Server modes in OVS.

NOTE: Vhost User Server mode is deprecated and it will be removed from OVS
in the future.

	Testcase Name

	Description

	ovsdpdk_vhostuser_client

	Test vhost-user client mode

	ovsdpdk_vhostuser_client_reconnect

	Test vhost-user client mode reconnect feature

	ovsdpdk_vhostuser_server

	Test vhost-user server mode

	ovsdpdk_vhostuser_sock_dir

	Verify functionality of vhost-sock-dir flag

5.3.7. Virtual Devices Support

A set of functional testcases for verification of correct functionality of virtual
device PMD drivers.

	Testcase Name

	Description

	ovsdpdk_vdev_add_null_pmd

	Test addition of port using the null DPDK PMD driver.

	ovsdpdk_vdev_del_null_pmd

	Test deletion of port using the null DPDK PMD driver.

	ovsdpdk_vdev_add_af_packet_pmd

	Test addition of port using the af_packet DPDK PMD driver.

	ovsdpdk_vdev_del_af_packet_pmd

	Test deletion of port using the af_packet DPDK PMD driver.

5.3.8. NUMA Support

A functional testcase for validation of NUMA awareness feature in OVS.

	Testcase Name

	Description

	ovsdpdk_numa

	Test vhost-user NUMA support. Vhostuser PMD threads should migrate to
the same numa slot, where QEMU is executed.

5.3.9. Jumbo Frame Support

A set of functional testcases for verification of jumbo frame support in OVS.
Testcases utilize P2P and PVP network deployments and native support of jumbo
frames available in VSPERF.

	Testcase Name

	Description

	ovsdpdk_jumbo_increase_mtu_phy_port_ovsdb

	Ensure that the increased MTU for a DPDK physical port is updated in
OVSDB.

	ovsdpdk_jumbo_increase_mtu_vport_ovsdb

	Ensure that the increased MTU for a DPDK vhost-user port is updated in
OVSDB.

	ovsdpdk_jumbo_reduce_mtu_phy_port_ovsdb

	Ensure that the reduced MTU for a DPDK physical port is updated in
OVSDB.

	ovsdpdk_jumbo_reduce_mtu_vport_ovsdb

	Ensure that the reduced MTU for a DPDK vhost-user port is updated in
OVSDB.

	ovsdpdk_jumbo_increase_mtu_phy_port_datapath

	Ensure that the MTU for a DPDK physical port is updated in the
datapath itself when increased to a valid value.

	ovsdpdk_jumbo_increase_mtu_vport_datapath

	Ensure that the MTU for a DPDK vhost-user port is updated in the
datapath itself when increased to a valid value.

	ovsdpdk_jumbo_reduce_mtu_phy_port_datapath

	Ensure that the MTU for a DPDK physical port is updated in the
datapath itself when decreased to a valid value.

	ovsdpdk_jumbo_reduce_mtu_vport_datapath

	Ensure that the MTU for a DPDK vhost-user port is updated in the
datapath itself when decreased to a valid value.

	ovsdpdk_jumbo_mtu_upper_bound_phy_port

	Verify that the upper bound limit is enforced for OvS DPDK Phy ports.

	ovsdpdk_jumbo_mtu_upper_bound_vport

	Verify that the upper bound limit is enforced for OvS DPDK vhost-user
ports.

	ovsdpdk_jumbo_mtu_lower_bound_phy_port

	Verify that the lower bound limit is enforced for OvS DPDK Phy ports.

	ovsdpdk_jumbo_mtu_lower_bound_vport

	Verify that the lower bound limit is enforced for OvS DPDK vhost-user
ports.

	ovsdpdk_jumbo_p2p

	Ensure that jumbo frames are received, processed and forwarded
correctly by DPDK physical ports.

	ovsdpdk_jumbo_pvp

	Ensure that jumbo frames are received, processed and forwarded
correctly by DPDK vhost-user ports.

	ovsdpdk_jumbo_p2p_upper_bound

	Ensure that jumbo frames above the configured Rx port’s MTU are not
accepted

5.3.10. Rate Limiting

A set of functional testcases for validation of rate limiting support. This feature
allows to configure an ingress policing for both physical and vHost User DPDK
ports.

NOTE: Desired maximum rate is specified in kilo bits per second and it defines
the rate of payload only.

	Testcase Name

	Description

	ovsdpdk_rate_create_phy_port

	Ensure a rate limiting interface can be created on a physical DPDK
port.

	ovsdpdk_rate_delete_phy_port

	Ensure a rate limiting interface can be destroyed on a physical DPDK
port.

	ovsdpdk_rate_create_vport

	Ensure a rate limiting interface can be created on a vhost-user port.

	ovsdpdk_rate_delete_vport

	Ensure a rate limiting interface can be destroyed on a vhost-user
port.

	ovsdpdk_rate_no_policing

	Ensure when a user attempts to create a rate limiting interface but
is missing policing rate argument, no rate limitiner is created.

	ovsdpdk_rate_no_burst

	Ensure when a user attempts to create a rate limiting interface but
is missing policing burst argument, rate limitiner is created.

	ovsdpdk_rate_p2p

	Ensure when a user creates a rate limiting physical interface that
the traffic is limited to the specified policer rate in a p2p setup.

	ovsdpdk_rate_pvp

	Ensure when a user creates a rate limiting vHost User interface that
the traffic is limited to the specified policer rate in a pvp setup.

	ovsdpdk_rate_p2p_multi_pkt_sizes

	Ensure that rate limiting works for various frame sizes.

5.3.11. Quality of Service

A set of functional testcases for validation of QoS support. This feature
allows to configure an egress policing for both physical and vHost User DPDK
ports.

NOTE: Desired maximum rate is specified in bytes per second and it defines
the rate of payload only.

	Testcase Name

	Description

	ovsdpdk_qos_create_phy_port

	Ensure a QoS policy can be created on a physical DPDK port

	ovsdpdk_qos_delete_phy_port

	Ensure an existing QoS policy can be destroyed on a physical DPDK
port.

	ovsdpdk_qos_create_vport

	Ensure a QoS policy can be created on a virtual vhost user port.

	ovsdpdk_qos_delete_vport

	Ensure an existing QoS policy can be destroyed on a vhost user port.

	ovsdpdk_qos_create_no_cir

	Ensure that a QoS policy cannot be created if the egress policer cir
argument is missing.

	ovsdpdk_qos_create_no_cbs

	Ensure that a QoS policy cannot be created if the egress policer cbs
argument is missing.

	ovsdpdk_qos_p2p

	In a p2p setup, ensure when a QoS egress policer is created that the
traffic is limited to the specified rate.

	ovsdpdk_qos_pvp

	In a pvp setup, ensure when a QoS egress policer is created that the
traffic is limited to the specified rate.

5.3.12. Custom Statistics

A set of functional testcases for validation of Custom Statistics support by OVS.
This feature allows Custom Statistics to be accessed by VSPERF.

These testcases require DPDK v17.11, the latest Open vSwitch(v2.9.90)
and the IxNet traffic-generator.

	ovsdpdk_custstat_check

	Test if custom statistics are supported.

	ovsdpdk_custstat_rx_error

	Test bad ethernet CRC counter ‘rx_crc_errors’ exposed by custom
statistics.

5.4. T-Rex in VM TestCases

A set of functional testcases, which use T-Rex running in VM as a traffic generator.
These testcases require a VM image with T-Rex server installed. An example of such
image is a vloop-vnf image with T-Rex available for download at:

http://artifacts.opnfv.org/vswitchperf/vnf/vloop-vnf-ubuntu-16.04_trex_20180209.qcow2

This image can be used for both T-Rex VM and loopback VM in vm2vm testcases.

NOTE: The performance of T-Rex running inside the VM is lower if compared to T-Rex
execution on bare-metal. The user should perform a calibration of the VM maximum FPS
capability, to ensure this limitation is understood.

	trex_vm_cont

	T-Rex VM - execute RFC2544 Continuous Stream from T-Rex VM and loop
it back through Open vSwitch.

	trex_vm_tput

	T-Rex VM - execute RFC2544 Throughput from T-Rex VM and loop it back
through Open vSwitch.

	trex_vm2vm_cont

	T-Rex VM2VM - execute RFC2544 Continuous Stream from T-Rex VM and
loop it back through 2nd VM.

	trex_vm2vm_tput

	T-Rex VM2VM - execute RFC2544 Throughput from T-Rex VM and loop it back
through 2nd VM.

2. Step driven tests

In general, test scenarios are defined by a deployment used in the particular
test case definition. The chosen deployment scenario will take care of the vSwitch
configuration, deployment of VNFs and it can also affect configuration of a traffic
generator. In order to allow a more flexible way of testcase scripting, VSPERF supports
a detailed step driven testcase definition. It can be used to configure and
program vSwitch, deploy and terminate VNFs, execute a traffic generator,
modify a VSPERF configuration, execute external commands, etc.

Execution of step driven tests is done on a step by step work flow starting
with step 0 as defined inside the test case. Each step of the test increments
the step number by one which is indicated in the log.

(testcases.integration) - Step 0 'vswitch add_vport ['br0']' start

Test steps are defined as a list of steps within a TestSteps item of test
case definition. Each step is a list with following structure:

'[' [optional-alias ','] test-object ',' test-function [',' optional-function-params] '],'

Step driven tests can be used for both performance and integration testing.
In case of integration test, each step in the test case is validated. If a step
does not pass validation the test will fail and terminate. The test will continue
until a failure is detected or all steps pass. A csv report file is generated after
a test completes with an OK or FAIL result.

NOTE: It is possible to suppress validation process of given step by prefixing
it by ! (exclamation mark).
In following example test execution won’t fail if all traffic is dropped:

['!trafficgen', 'send_traffic', {}]

In case of performance test, the validation of steps is not performed and
standard output files with results from traffic generator and underlying OS
details are generated by vsperf.

Step driven testcases can be used in two different ways:

	# description of full testcase - in this case clean deployment is used

	to indicate that vsperf should neither configure vSwitch nor deploy any VNF.
Test shall perform all required vSwitch configuration and programming and
deploy required number of VNFs.

	# modification of existing deployment - in this case, any of supported

	deployments can be used to perform initial vSwitch configuration and
deployment of VNFs. Additional actions defined by TestSteps can be used
to alter vSwitch configuration or deploy additional VNFs. After the last
step is processed, the test execution will continue with traffic execution.

2.1. Test objects and their functions

Every test step can call a function of one of the supported test objects. In general
any existing function of supported test object can be called by test step. In case
that step validation is required (valid for integration test steps, which are not
suppressed), then appropriate validate_ method must be implemented.

The list of supported objects and their most common functions is listed below. Please
check implementation of test objects for full list of implemented functions and their
parameters.

	vswitch - provides functions for vSwitch configuration

List of supported functions:

	add_switch br_name - creates a new switch (bridge) with given br_name

	del_switch br_name - deletes switch (bridge) with given br_name

	add_phy_port br_name - adds a physical port into bridge specified by br_name

	add_vport br_name - adds a virtual port into bridge specified by br_name

	del_port br_name port_name - removes physical or virtual port specified by
port_name from bridge br_name

	add_flow br_name flow - adds flow specified by flow dictionary into
the bridge br_name; Content of flow dictionary will be passed to the vSwitch.
In case of Open vSwitch it will be passed to the ovs-ofctl add-flow command.
Please see Open vSwitch documentation for the list of supported flow parameters.

	del_flow br_name [flow] - deletes flow specified by flow dictionary from
bridge br_name; In case that optional parameter flow is not specified
or set to an empty dictionary {}, then all flows from bridge br_name
will be deleted.

	dump_flows br_name - dumps all flows from bridge specified by br_name

	enable_stp br_name - enables Spanning Tree Protocol for bridge br_name

	disable_stp br_name - disables Spanning Tree Protocol for bridge br_name

	enable_rstp br_name - enables Rapid Spanning Tree Protocol for bridge br_name

	disable_rstp br_name - disables Rapid Spanning Tree Protocol for bridge br_name

	restart - restarts switch, which is useful for failover testcases

Examples:

['vswitch', 'add_switch', 'int_br0']

['vswitch', 'del_switch', 'int_br0']

['vswitch', 'add_phy_port', 'int_br0']

['vswitch', 'del_port', 'int_br0', '#STEP[2][0]']

['vswitch', 'add_flow', 'int_br0', {'in_port': '1', 'actions': ['output:2'],
 'idle_timeout': '0'}],

['vswitch', 'enable_rstp', 'int_br0']

	vnf[ID] - provides functions for deployment and termination of VNFs; Optional
alfanumerical ID is used for VNF identification in case that testcase
deploys multiple VNFs.

List of supported functions:

	start - starts a VNF based on VSPERF configuration

	stop - gracefully terminates given VNF

	execute command [delay] - executes command cmd inside VNF; Optional
delay defines number of seconds to wait before next step is executed. Method
returns command output as a string.

	execute_and_wait command [timeout] [prompt] - executes command cmd inside
VNF; Optional timeout defines number of seconds to wait until prompt is detected.
Optional prompt defines a string, which is used as detection of successful command
execution. In case that prompt is not defined, then content of GUEST_PROMPT_LOGIN
parameter will be used. Method returns command output as a string.

Examples:

['vnf1', 'start'],
['vnf2', 'start'],
['vnf1', 'execute_and_wait', 'ifconfig eth0 5.5.5.1/24 up'],
['vnf2', 'execute_and_wait', 'ifconfig eth0 5.5.5.2/24 up', 120, 'root.*#'],
['vnf2', 'execute_and_wait', 'ping -c1 5.5.5.1'],
['vnf2', 'stop'],
['vnf1', 'stop'],

	VNF[ID] - provides access to VNFs deployed automatically by testcase deployment
scenario. For Example pvvp deployment automatically starts two VNFs before any
TestStep is executed. It is possible to access these VNFs by VNF0 and VNF1 labels.

List of supported functions is identical to vnf[ID] option above except functions
start and stop.

Examples:

['VNF0', 'execute_and_wait', 'ifconfig eth2 5.5.5.1/24 up'],
['VNF1', 'execute_and_wait', 'ifconfig eth2 5.5.5.2/24 up', 120, 'root.*#'],
['VNF2', 'execute_and_wait', 'ping -c1 5.5.5.1'],

	trafficgen - triggers traffic generation

List of supported functions:

	send_traffic traffic - starts a traffic based on the vsperf configuration
and given traffic dictionary. More details about traffic dictionary
and its possible values are available at Traffic Generator Integration Guide

	get_results - returns dictionary with results collected from previous execution
of send_traffic

Examples:

['trafficgen', 'send_traffic', {'traffic_type' : 'rfc2544_throughput'}]

['trafficgen', 'send_traffic', {'traffic_type' : 'rfc2544_back2back', 'bidir' : 'True'}],
['trafficgen', 'get_results'],
['tools', 'assert', '#STEP[-1][0]["frame_loss_percent"] < 0.05'],

	settings - reads or modifies VSPERF configuration

List of supported functions:

	getValue param - returns value of given param

	setValue param value - sets value of param to given value

	resetValue param - if param was overridden by TEST_PARAMS (e.g. by “Parameters”
section of the test case definition), then it will be set to its original value.

Examples:

['settings', 'getValue', 'TOOLS']

['settings', 'setValue', 'GUEST_USERNAME', ['root']]

['settings', 'resetValue', 'WHITELIST_NICS'],

It is possible and more convenient to access any VSPERF configuration option directly
via $NAME notation. Option evaluation is done during runtime and vsperf will
automatically translate it to the appropriate call of settings.getValue.
If the referred parameter does not exist, then vsperf will keep $NAME
string untouched and it will continue with testcase execution. The reason is to
avoid test execution failure in case that $ sign has been used from different
reason than vsperf parameter evaluation.

NOTE: It is recommended to use ${NAME} notation for any shell parameters
used within Exec_Shell call to avoid a clash with configuration parameter
evaluation.

NOTE: It is possible to refer to vsperf parameter value by #PARAM() macro
(see Overriding values defined in configuration files. However #PARAM() macro is
evaluated at the beginning of vsperf execution and it will not reflect any changes
made to the vsperf configuration during runtime. On the other hand $NAME
notation is evaluated during test execution and thus it contains any modifications
to the configuration parameter made by vsperf (e.g. TOOLS and NICS
dictionaries) or by testcase definition (e.g. TRAFFIC dictionary).

Examples:

['tools', 'exec_shell', "$TOOLS['ovs-vsctl'] show"]

['settings', 'setValue', 'TRAFFICGEN_IXIA_PORT2', '$TRAFFICGEN_IXIA_PORT1'],

['vswitch', 'add_flow', 'int_br0',
 {'in_port': '#STEP[1][1]',
 'dl_type': '0x800',
 'nw_proto': '17',
 'nw_dst': '$TRAFFIC["l3"]["dstip"]/8',
 'actions': ['output:#STEP[2][1]']
 }
]

	namespace - creates or modifies network namespaces

List of supported functions:

	create_namespace name - creates new namespace with given name

	delete_namespace name - deletes namespace specified by its name

	assign_port_to_namespace port name [port_up] - assigns NIC specified by port
into given namespace name; If optional parameter port_up is set to True,
then port will be brought up.

	add_ip_to_namespace_eth port name addr cidr - assigns an IP address addr/cidr
to the NIC specified by port within namespace name

	reset_port_to_root port name - returns given port from namespace name back
to the root namespace

Examples:

['namespace', 'create_namespace', 'testns']

['namespace', 'assign_port_to_namespace', 'eth0', 'testns']

	veth - manipulates with eth and veth devices

List of supported functions:

	add_veth_port port peer_port - adds a pair of veth ports named port and
peer_port

	del_veth_port port peer_port - deletes a veth port pair specified by port
and peer_port

	bring_up_eth_port eth_port [namespace] - brings up eth_port in (optional)
namespace

Examples:

['veth', 'add_veth_port', 'veth', 'veth1']

['veth', 'bring_up_eth_port', 'eth1']

	tools - provides a set of helper functions

List of supported functions:

	Assert condition - evaluates given condition and raises AssertionError
in case that condition is not True

	Eval expression - evaluates given expression as a python code and returns
its result

	Exec_Shell command - executes a shell command and wait until it finishes

	Exec_Shell_Background command - executes a shell command at background;
Command will be automatically terminated at the end of testcase execution.

	Exec_Python code - executes a python code

Examples:

['tools', 'exec_shell', 'numactl -H', 'available: ([0-9]+)']
['tools', 'assert', '#STEP[-1][0]>1']

	wait - is used for test case interruption. This object doesn’t have
any functions. Once reached, vsperf will pause test execution and waits
for press of Enter key. It can be used during testcase design
for debugging purposes.

Examples:

['wait']

	sleep - is used to pause testcase execution for defined number of seconds.

Examples:

['sleep', '60']

	log level message - is used to log message of given level into vsperf output.
Level is one of info, debug, warning or error.

Examples:

['log', 'error', 'tools $TOOLS']

	pdb - executes python debugger

Examples:

['pdb']

2.2. Test Macros

Test profiles can include macros as part of the test step. Each step in the
profile may return a value such as a port name. Recall macros use #STEP to
indicate the recalled value inside the return structure. If the method the
test step calls returns a value it can be later recalled, for example:

{
 "Name": "vswitch_add_del_vport",
 "Deployment": "clean",
 "Description": "vSwitch - add and delete virtual port",
 "TestSteps": [
 ['vswitch', 'add_switch', 'int_br0'], # STEP 0
 ['vswitch', 'add_vport', 'int_br0'], # STEP 1
 ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'], # STEP 2
 ['vswitch', 'del_switch', 'int_br0'], # STEP 3
]
}

This test profile uses the vswitch add_vport method which returns a string
value of the port added. This is later called by the del_port method using the
name from step 1.

It is also possible to use negative indexes in step macros. In that case
#STEP[-1] will refer to the result from previous step, #STEP[-2]
will refer to result of step called before previous step, etc. It means,
that you could change STEP 2 from previous example to achieve the same
functionality:

['vswitch', 'del_port', 'int_br0', '#STEP[-1][0]'], # STEP 2

Another option to refer to previous values, is to define an alias for given step
by its first argument with ‘#’ prefix. Alias must be unique and it can’t be a number.
Example of step alias usage:

['#port1', 'vswitch', 'add_vport', 'int_br0'],
['vswitch', 'del_port', 'int_br0', '#STEP[port1][0]'],

Also commonly used steps can be created as a separate profile.

STEP_VSWITCH_PVP_INIT = [
 ['vswitch', 'add_switch', 'int_br0'], # STEP 0
 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
 ['vswitch', 'add_vport', 'int_br0'], # STEP 3
 ['vswitch', 'add_vport', 'int_br0'], # STEP 4
]

This profile can then be used inside other testcases

{
 "Name": "vswitch_pvp",
 "Deployment": "clean",
 "Description": "vSwitch - configure switch and one vnf",
 "TestSteps": STEP_VSWITCH_PVP_INIT +
 [
 ['vnf', 'start'],
 ['vnf', 'stop'],
] +
 STEP_VSWITCH_PVP_FINIT
}

It is possible to refer to vsperf configuration parameters within step macros. Please
see step-driven-tests-variable-usage for more details.

In case that step returns a string or list of strings, then it is possible to
filter such output by regular expression. This optional filter can be specified
as a last step parameter with prefix ‘|’. Output will be split into separate lines
and only matching records will be returned. It is also possible to return a specified
group of characters from the matching lines, e.g. by regex |ID (\d+).

Examples:

['tools', 'exec_shell', "sudo $TOOLS['ovs-appctl'] dpif-netdev/pmd-rxq-show",
 '|dpdkvhostuser0\s+queue-id: \d'],
['tools', 'assert', 'len(#STEP[-1])==1'],

['vnf', 'execute_and_wait', 'ethtool -L eth0 combined 2'],
['vnf', 'execute_and_wait', 'ethtool -l eth0', '|Combined:\s+2'],
['tools', 'assert', 'len(#STEP[-1])==2']

2.3. HelloWorld and other basic Testcases

The following examples are for demonstration purposes.
You can run them by copying and pasting into the
conf/integration/01_testcases.conf file.
A command-line instruction is shown at the end of each
example.

2.3.1. HelloWorld

The first example is a HelloWorld testcase.
It simply creates a bridge with 2 physical ports, then sets up a flow to drop
incoming packets from the port that was instantiated at the STEP #1.
There’s no interaction with the traffic generator.
Then the flow, the 2 ports and the bridge are deleted.
‘add_phy_port’ method creates a ‘dpdk’ type interface that will manage the
physical port. The string value returned is the port name that will be referred
by ‘del_port’ later on.

{
 "Name": "HelloWorld",
 "Description": "My first testcase",
 "Deployment": "clean",
 "TestSteps": [
 ['vswitch', 'add_switch', 'int_br0'], # STEP 0
 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
 'actions': ['drop'], 'idle_timeout': '0'}],
 ['vswitch', 'del_flow', 'int_br0'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
 ['vswitch', 'del_switch', 'int_br0'],
]

},

To run HelloWorld test:

./vsperf --conf-file user_settings.py --integration HelloWorld

2.3.2. Specify a Flow by the IP address

The next example shows how to explicitly set up a flow by specifying a
destination IP address.
All packets received from the port created at STEP #1 that have a destination
IP address = 90.90.90.90 will be forwarded to the port created at the STEP #2.

{
 "Name": "p2p_rule_l3da",
 "Description": "Phy2Phy with rule on L3 Dest Addr",
 "Deployment": "clean",
 "biDirectional": "False",
 "TestSteps": [
 ['vswitch', 'add_switch', 'int_br0'], # STEP 0
 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
 'dl_type': '0x0800', 'nw_dst': '90.90.90.90', \
 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
 ['trafficgen', 'send_traffic', \
 {'traffic_type' : 'rfc2544_continuous'}],
 ['vswitch', 'dump_flows', 'int_br0'], # STEP 5
 ['vswitch', 'del_flow', 'int_br0'], # STEP 7 == del-flows
 ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
 ['vswitch', 'del_switch', 'int_br0'],
]
},

To run the test:

./vsperf --conf-file user_settings.py --integration p2p_rule_l3da

2.3.3. Multistream feature

The next testcase uses the multistream feature.
The traffic generator will send packets with different UDP ports.
That is accomplished by using “Stream Type” and “MultiStream” keywords.
4 different flows are set to forward all incoming packets.

{
 "Name": "multistream_l4",
 "Description": "Multistream on UDP ports",
 "Deployment": "clean",
 "Parameters": {
 'TRAFFIC' : {
 "multistream": 4,
 "stream_type": "L4",
 },
 },
 "TestSteps": [
 ['vswitch', 'add_switch', 'int_br0'], # STEP 0
 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
 # Setup Flows
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
 'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '0', \
 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
 'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '1', \
 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
 'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '2', \
 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
 'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '3', \
 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
 # Send mono-dir traffic
 ['trafficgen', 'send_traffic', \
 {'traffic_type' : 'rfc2544_continuous', \
 'bidir' : 'False'}],
 # Clean up
 ['vswitch', 'del_flow', 'int_br0'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
 ['vswitch', 'del_switch', 'int_br0'],
]
},

To run the test:

./vsperf --conf-file user_settings.py --integration multistream_l4

2.3.4. PVP with a VM Replacement

This example launches a 1st VM in a PVP topology, then the VM is replaced
by another VM.
When VNF setup parameter in ./conf/04_vnf.conf is “QemuDpdkVhostUser”
‘add_vport’ method creates a ‘dpdkvhostuser’ type port to connect a VM.

{
 "Name": "ex_replace_vm",
 "Description": "PVP with VM replacement",
 "Deployment": "clean",
 "TestSteps": [
 ['vswitch', 'add_switch', 'int_br0'], # STEP 0
 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
 ['vswitch', 'add_vport', 'int_br0'], # STEP 3 vm1
 ['vswitch', 'add_vport', 'int_br0'], # STEP 4

 # Setup Flows
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
 'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}],
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[4][1]', \
 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[2][1]', \
 'actions': ['output:#STEP[4][1]'], 'idle_timeout': '0'}],
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[3][1]', \
 'actions': ['output:#STEP[1][1]'], 'idle_timeout': '0'}],

 # Start VM 1
 ['vnf1', 'start'],
 # Now we want to replace VM 1 with another VM
 ['vnf1', 'stop'],

 ['vswitch', 'add_vport', 'int_br0'], # STEP 11 vm2
 ['vswitch', 'add_vport', 'int_br0'], # STEP 12
 ['vswitch', 'del_flow', 'int_br0'],
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
 'actions': ['output:#STEP[11][1]'], 'idle_timeout': '0'}],
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[12][1]', \
 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],

 # Start VM 2
 ['vnf2', 'start'],
 ['vnf2', 'stop'],
 ['vswitch', 'dump_flows', 'int_br0'],

 # Clean up
 ['vswitch', 'del_flow', 'int_br0'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[3][0]'], # vm1
 ['vswitch', 'del_port', 'int_br0', '#STEP[4][0]'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[11][0]'], # vm2
 ['vswitch', 'del_port', 'int_br0', '#STEP[12][0]'],
 ['vswitch', 'del_switch', 'int_br0'],
]
},

To run the test:

./vsperf --conf-file user_settings.py --integration ex_replace_vm

2.3.5. VM with a Linux bridge

This example setups a PVP topology and routes traffic to the VM based on
the destination IP address. A command-line parameter is used to select a Linux
bridge as a guest loopback application. It is also possible to select a guest
loopback application by a configuration option GUEST_LOOPBACK.

{
 "Name": "ex_pvp_rule_l3da",
 "Description": "PVP with flow on L3 Dest Addr",
 "Deployment": "clean",
 "TestSteps": [
 ['vswitch', 'add_switch', 'int_br0'], # STEP 0
 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
 ['vswitch', 'add_vport', 'int_br0'], # STEP 3 vm1
 ['vswitch', 'add_vport', 'int_br0'], # STEP 4
 # Setup Flows
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
 'dl_type': '0x0800', 'nw_dst': '90.90.90.90', \
 'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}],
 # Each pkt from the VM is forwarded to the 2nd dpdk port
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[4][1]', \
 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
 # Start VMs
 ['vnf1', 'start'],
 ['trafficgen', 'send_traffic', \
 {'traffic_type' : 'rfc2544_continuous', \
 'bidir' : 'False'}],
 ['vnf1', 'stop'],
 # Clean up
 ['vswitch', 'dump_flows', 'int_br0'], # STEP 10
 ['vswitch', 'del_flow', 'int_br0'], # STEP 11
 ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[3][0]'], # vm1 ports
 ['vswitch', 'del_port', 'int_br0', '#STEP[4][0]'],
 ['vswitch', 'del_switch', 'int_br0'],
]
},

To run the test:

./vsperf --conf-file user_settings.py --test-params \
 "GUEST_LOOPBACK=['linux_bridge']" --integration ex_pvp_rule_l3da

2.3.6. Forward packets based on UDP port

This examples launches 2 VMs connected in parallel.
Incoming packets will be forwarded to one specific VM depending on the
destination UDP port.

{
 "Name": "ex_2pvp_rule_l4dp",
 "Description": "2 PVP with flows on L4 Dest Port",
 "Deployment": "clean",
 "Parameters": {
 'TRAFFIC' : {
 "multistream": 2,
 "stream_type": "L4",
 },
 },
 "TestSteps": [
 ['vswitch', 'add_switch', 'int_br0'], # STEP 0
 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
 ['vswitch', 'add_vport', 'int_br0'], # STEP 3 vm1
 ['vswitch', 'add_vport', 'int_br0'], # STEP 4
 ['vswitch', 'add_vport', 'int_br0'], # STEP 5 vm2
 ['vswitch', 'add_vport', 'int_br0'], # STEP 6
 # Setup Flows to reply ICMPv6 and similar packets, so to
 # avoid flooding internal port with their re-transmissions
 ['vswitch', 'add_flow', 'int_br0', \
 {'priority': '1', 'dl_src': '00:00:00:00:00:01', \
 'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}],
 ['vswitch', 'add_flow', 'int_br0', \
 {'priority': '1', 'dl_src': '00:00:00:00:00:02', \
 'actions': ['output:#STEP[4][1]'], 'idle_timeout': '0'}],
 ['vswitch', 'add_flow', 'int_br0', \
 {'priority': '1', 'dl_src': '00:00:00:00:00:03', \
 'actions': ['output:#STEP[5][1]'], 'idle_timeout': '0'}],
 ['vswitch', 'add_flow', 'int_br0', \
 {'priority': '1', 'dl_src': '00:00:00:00:00:04', \
 'actions': ['output:#STEP[6][1]'], 'idle_timeout': '0'}],
 # Forward UDP packets depending on dest port
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
 'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '0', \
 'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}],
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
 'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '1', \
 'actions': ['output:#STEP[5][1]'], 'idle_timeout': '0'}],
 # Send VM output to phy port #2
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[4][1]', \
 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[6][1]', \
 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
 # Start VMs
 ['vnf1', 'start'], # STEP 16
 ['vnf2', 'start'], # STEP 17
 ['trafficgen', 'send_traffic', \
 {'traffic_type' : 'rfc2544_continuous', \
 'bidir' : 'False'}],
 ['vnf1', 'stop'],
 ['vnf2', 'stop'],
 ['vswitch', 'dump_flows', 'int_br0'],
 # Clean up
 ['vswitch', 'del_flow', 'int_br0'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[3][0]'], # vm1 ports
 ['vswitch', 'del_port', 'int_br0', '#STEP[4][0]'],
 ['vswitch', 'del_port', 'int_br0', '#STEP[5][0]'], # vm2 ports
 ['vswitch', 'del_port', 'int_br0', '#STEP[6][0]'],
 ['vswitch', 'del_switch', 'int_br0'],
]
},

The same test can be written in a shorter form using “Deployment” : “pvpv”.

To run the test:

./vsperf --conf-file user_settings.py --integration ex_2pvp_rule_l4dp

2.3.7. Modification of existing PVVP deployment

This is an example of modification of a standard deployment scenario with additional TestSteps.
Standard PVVP scenario is used to configure a vSwitch and to deploy two VNFs connected
in series. Additional TestSteps will deploy a 3rd VNF and connect it in parallel to
already configured VNFs. Traffic generator is instructed (by Multistream feature) to send
two separate traffic streams. One stream will be sent to the standalone VNF and second
to two chained VNFs.

In case, that test is defined as a performance test, then traffic results will be collected
and available in both csv and rst report files.

{
 "Name": "pvvp_pvp_cont",
 "Deployment": "pvvp",
 "Description": "PVVP and PVP in parallel with Continuous Stream",
 "Parameters" : {
 "TRAFFIC" : {
 "traffic_type" : "rfc2544_continuous",
 "multistream": 2,
 },
 },
 "TestSteps": [
 ['vswitch', 'add_vport', '$VSWITCH_BRIDGE_NAME'],
 ['vswitch', 'add_vport', '$VSWITCH_BRIDGE_NAME'],
 # priority must be higher than default 32768, otherwise flows won't match
 ['vswitch', 'add_flow', '$VSWITCH_BRIDGE_NAME',
 {'in_port': '1', 'actions': ['output:#STEP[-2][1]'], 'idle_timeout': '0', 'dl_type':'0x0800',
 'nw_proto':'17', 'tp_dst':'0', 'priority': '33000'}],
 ['vswitch', 'add_flow', '$VSWITCH_BRIDGE_NAME',
 {'in_port': '2', 'actions': ['output:#STEP[-2][1]'], 'idle_timeout': '0', 'dl_type':'0x0800',
 'nw_proto':'17', 'tp_dst':'0', 'priority': '33000'}],
 ['vswitch', 'add_flow', '$VSWITCH_BRIDGE_NAME', {'in_port': '#STEP[-4][1]', 'actions': ['output:1'],
 'idle_timeout': '0'}],
 ['vswitch', 'add_flow', '$VSWITCH_BRIDGE_NAME', {'in_port': '#STEP[-4][1]', 'actions': ['output:2'],
 'idle_timeout': '0'}],
 ['vswitch', 'dump_flows', '$VSWITCH_BRIDGE_NAME'],
 ['vnf1', 'start'],
]
},

To run the test:

./vsperf --conf-file user_settings.py pvvp_pvp_cont

1. vSwitchPerf test suites userguide

1.1. General

VSPERF requires a traffic generators to run tests, automated traffic gen
support in VSPERF includes:

	IXIA traffic generator (IxNetwork hardware) and a machine that runs the IXIA
client software.

	Spirent traffic generator (TestCenter hardware chassis or TestCenter virtual
in a VM) and a VM to run the Spirent Virtual Deployment Service image,
formerly known as “Spirent LabServer”.

	Xena Network traffic generator (Xena hardware chassis) that houses the Xena
Traffic generator modules.

	Moongen software traffic generator. Requires a separate machine running
moongen to execute packet generation.

	T-Rex software traffic generator. Requires a separate machine running T-Rex
Server to execute packet generation.

If you want to use another traffic generator, please select the Dummy
generator.

1.2. VSPERF Installation

To see the supported Operating Systems, vSwitches and system requirements,
please follow the installation instructions <vsperf-installation>.

1.3. Traffic Generator Setup

Follow the Traffic generator instructions <trafficgen-installation> to
install and configure a suitable traffic generator.

1.4. Cloning and building src dependencies

In order to run VSPERF, you will need to download DPDK and OVS. You can
do this manually and build them in a preferred location, OR you could
use vswitchperf/src. The vswitchperf/src directory contains makefiles
that will allow you to clone and build the libraries that VSPERF depends
on, such as DPDK and OVS. To clone and build simply:

$ cd src
$ make

VSPERF can be used with stock OVS (without DPDK support). When build
is finished, the libraries are stored in src_vanilla directory.

The ‘make’ builds all options in src:

	Vanilla OVS

	OVS with vhost_user as the guest access method (with DPDK support)

The vhost_user build will reside in src/ovs/
The Vanilla OVS build will reside in vswitchperf/src_vanilla

To delete a src subdirectory and its contents to allow you to re-clone simply
use:

$ make clobber

1.5. Configure the ./conf/10_custom.conf file

The 10_custom.conf file is the configuration file that overrides
default configurations in all the other configuration files in ./conf
The supplied 10_custom.conf file MUST be modified, as it contains
configuration items for which there are no reasonable default values.

The configuration items that can be added is not limited to the initial
contents. Any configuration item mentioned in any .conf file in
./conf directory can be added and that item will be overridden by
the custom configuration value.

Further details about configuration files evaluation and special behaviour
of options with GUEST_ prefix could be found at design document.

1.6. Using a custom settings file

If your 10_custom.conf doesn’t reside in the ./conf directory
or if you want to use an alternative configuration file, the file can
be passed to vsperf via the --conf-file argument.

$./vsperf --conf-file <path_to_custom_conf> ...

1.7. Evaluation of configuration parameters

The value of configuration parameter can be specified at various places,
e.g. at the test case definition, inside configuration files, by the command
line argument, etc. Thus it is important to understand the order of configuration
parameter evaluation. This “priority hierarchy” can be described like so
(1 = max priority):

	Testcase definition keywords vSwitch, Trafficgen, VNF and Tunnel Type

	Parameters inside testcase definition section Parameters

	Command line arguments (e.g. --test-params, --vswitch, --trafficgen, etc.)

	Environment variables (see --load-env argument)

	Custom configuration file specified via --conf-file argument

	Standard configuration files, where higher prefix number means higher
priority.

For example, if the same configuration parameter is defined in custom configuration
file (specified via --conf-file argument), via --test-params argument
and also inside Parameters section of the testcase definition, then parameter
value from the Parameters section will be used.

Further details about order of configuration files evaluation and special behaviour
of options with GUEST_ prefix could be found at design document.

1.8. Overriding values defined in configuration files

The configuration items can be overridden by command line argument
--test-params. In this case, the configuration items and
their values should be passed in form of item=value and separated
by semicolon.

Example:

$./vsperf --test-params "TRAFFICGEN_DURATION=10;TRAFFICGEN_PKT_SIZES=(128,);" \
 "GUEST_LOOPBACK=['testpmd','l2fwd']" pvvp_tput

The --test-params command line argument can also be used to override default
configuration values for multiple tests. Providing a list of parameters will apply each
element of the list to the test with the same index. If more tests are run than
parameters provided the last element of the list will repeat.

$./vsperf --test-params "['TRAFFICGEN_DURATION=10;TRAFFICGEN_PKT_SIZES=(128,)',"
 "'TRAFFICGEN_DURATION=10;TRAFFICGEN_PKT_SIZES=(64,)']" \
 pvvp_tput pvvp_tput

The second option is to override configuration items by Parameters section
of the test case definition. The configuration items can be added into Parameters
dictionary with their new values. These values will override values defined in
configuration files or specified by --test-params command line argument.

Example:

"Parameters" : {'TRAFFICGEN_PKT_SIZES' : (128,),
 'TRAFFICGEN_DURATION' : 10,
 'GUEST_LOOPBACK' : ['testpmd','l2fwd'],
 }

NOTE: In both cases, configuration item names and their values must be specified
in the same form as they are defined inside configuration files. Parameter names
must be specified in uppercase and data types of original and new value must match.
Python syntax rules related to data types and structures must be followed.
For example, parameter TRAFFICGEN_PKT_SIZES above is defined as a tuple
with a single value 128. In this case trailing comma is mandatory, otherwise
value can be wrongly interpreted as a number instead of a tuple and vsperf
execution would fail. Please check configuration files for default values and their
types and use them as a basis for any customized values. In case of any doubt, please
check official python documentation related to data structures like tuples, lists
and dictionaries.

NOTE: Vsperf execution will terminate with runtime error in case, that unknown
parameter name is passed via --test-params CLI argument or defined in Parameters
section of test case definition. It is also forbidden to redefine a value of
TEST_PARAMS configuration item via CLI or Parameters section.

NOTE: The new definition of the dictionary parameter, specified via --test-params
or inside Parameters section, will not override original dictionary values. Instead
the original dictionary will be updated with values from the new dictionary definition.

1.9. Referencing parameter values

It is possible to use a special macro #PARAM() to refer to the value of
another configuration parameter. This reference is evaluated during
access of the parameter value (by settings.getValue() call), so it
can refer to parameters created during VSPERF runtime, e.g. NICS dictionary.
It can be used to reflect DUT HW details in the testcase definition.

Example:

{
 ...
 "Name": "testcase",
 "Parameters" : {
 "TRAFFIC" : {
 'l2': {
 # set destination MAC to the MAC of the first
 # interface from WHITELIST_NICS list
 'dstmac' : '#PARAM(NICS[0]["mac"])',
 },
 },
 ...

1.10. vloop_vnf

VSPERF uses a VM image called vloop_vnf for looping traffic in the deployment
scenarios involving VMs. The image can be downloaded from
http://artifacts.opnfv.org/.

Please see the installation instructions for information on vloop-vnf
images.

1.11. l2fwd Kernel Module

A Kernel Module that provides OSI Layer 2 Ipv4 termination or forwarding with
support for Destination Network Address Translation (DNAT) for both the MAC and
IP addresses. l2fwd can be found in <vswitchperf_dir>/src/l2fwd

1.12. Additional Tools Setup

Follow the Additional tools instructions <additional-tools-configuration> to
install and configure additional tools such as collectors and loadgens.

1.13. Executing tests

All examples inside these docs assume, that user is inside the VSPERF
directory. VSPERF can be executed from any directory.

Before running any tests make sure you have root permissions by adding
the following line to /etc/sudoers:

username ALL=(ALL) NOPASSWD: ALL

username in the example above should be replaced with a real username.

To list the available tests:

$./vsperf --list

To run a single test:

$./vsperf $TESTNAME

Where $TESTNAME is the name of the vsperf test you would like to run.

To run a test multiple times, repeat it:

$./vsperf $TESTNAME $TESTNAME $TESTNAME

To run a group of tests, for example all tests with a name containing
‘RFC2544’:

$./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf --tests="RFC2544"

To run all tests:

$./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf

Some tests allow for configurable parameters, including test duration
(in seconds) as well as packet sizes (in bytes).

$./vsperf --conf-file user_settings.py \
 --tests RFC2544Tput \
 --test-params "TRAFFICGEN_DURATION=10;TRAFFICGEN_PKT_SIZES=(128,)"

To specify configurable parameters for multiple tests, use a list of
parameters. One element for each test.

$./vsperf --conf-file user_settings.py \
 --test-params "['TRAFFICGEN_DURATION=10;TRAFFICGEN_PKT_SIZES=(128,)',"\
 "'TRAFFICGEN_DURATION=10;TRAFFICGEN_PKT_SIZES=(64,)']" \
 phy2phy_cont phy2phy_cont

If the CUMULATIVE_PARAMS setting is set to True and there are different parameters
provided for each test using --test-params, each test will take the parameters of
the previous test before appyling it’s own.
With CUMULATIVE_PARAMS set to True the following command will be equivalent to the
previous example:

$./vsperf --conf-file user_settings.py \
 --test-params "['TRAFFICGEN_DURATION=10;TRAFFICGEN_PKT_SIZES=(128,)',"\
 "'TRAFFICGEN_PKT_SIZES=(64,)']" \
 phy2phy_cont phy2phy_cont
 "

For all available options, check out the help dialog:

$./vsperf --help

1.14. Executing Vanilla OVS tests

	If needed, recompile src for all OVS variants

$ cd src
$ make distclean
$ make

	Update your 10_custom.conf file to use Vanilla OVS:

VSWITCH = 'OvsVanilla'

	Run test:

$./vsperf --conf-file=<path_to_custom_conf>

Please note if you don’t want to configure Vanilla OVS through the
configuration file, you can pass it as a CLI argument.

$./vsperf --vswitch OvsVanilla

1.15. Executing tests with VMs

To run tests using vhost-user as guest access method:

	Set VSWITCH and VNF of your settings file to:

VSWITCH = 'OvsDpdkVhost'
VNF = 'QemuDpdkVhost'

	If needed, recompile src for all OVS variants

$ cd src
$ make distclean
$ make

	Run test:

$./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf

NOTE: By default vSwitch is acting as a server for dpdk vhost-user sockets.
In case, that QEMU should be a server for vhost-user sockets, then parameter
VSWITCH_VHOSTUSER_SERVER_MODE should be set to False.

1.16. Executing tests with VMs using Vanilla OVS

To run tests using Vanilla OVS:

	Set the following variables:

VSWITCH = 'OvsVanilla'
VNF = 'QemuVirtioNet'

VANILLA_TGEN_PORT1_IP = n.n.n.n
VANILLA_TGEN_PORT1_MAC = nn:nn:nn:nn:nn:nn

VANILLA_TGEN_PORT2_IP = n.n.n.n
VANILLA_TGEN_PORT2_MAC = nn:nn:nn:nn:nn:nn

VANILLA_BRIDGE_IP = n.n.n.n

or use --test-params option

$./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf \
 --test-params "VANILLA_TGEN_PORT1_IP=n.n.n.n;" \
 "VANILLA_TGEN_PORT1_MAC=nn:nn:nn:nn:nn:nn;" \
 "VANILLA_TGEN_PORT2_IP=n.n.n.n;" \
 "VANILLA_TGEN_PORT2_MAC=nn:nn:nn:nn:nn:nn"

	If needed, recompile src for all OVS variants

$ cd src
$ make distclean
$ make

	Run test:

$./vsperf --conf-file<path_to_custom_conf>/10_custom.conf

1.17. Executing VPP tests

Currently it is not possible to use standard scenario deployments for execution of
tests with VPP. It means, that deployments p2p, pvp, pvvp and in general any
PXP Deployment won’t work with VPP. However it is possible to use VPP in
Step driven tests. A basic set of VPP testcases covering phy2phy, pvp
and pvvp tests are already prepared.

List of performance tests with VPP support follows:

	phy2phy_tput_vpp: VPP: LTD.Throughput.RFC2544.PacketLossRatio

	phy2phy_cont_vpp: VPP: Phy2Phy Continuous Stream

	phy2phy_back2back_vpp: VPP: LTD.Throughput.RFC2544.BackToBackFrames

	pvp_tput_vpp: VPP: LTD.Throughput.RFC2544.PacketLossRatio

	pvp_cont_vpp: VPP: PVP Continuous Stream

	pvp_back2back_vpp: VPP: LTD.Throughput.RFC2544.BackToBackFrames

	pvvp_tput_vpp: VPP: LTD.Throughput.RFC2544.PacketLossRatio

	pvvp_cont_vpp: VPP: PVP Continuous Stream

	pvvp_back2back_vpp: VPP: LTD.Throughput.RFC2544.BackToBackFrames

In order to execute testcases with VPP it is required to:

	install VPP manually, see VPP installation

	configure WHITELIST_NICS, with two physical NICs connected to the traffic generator

	configure traffic generator, see ‘vsperf’ Traffic Gen Guide

After that it is possible to execute VPP testcases listed above.

For example:

$./vsperf --conf-file=<path_to_custom_conf> phy2phy_tput_vpp

1.18. Using vfio_pci with DPDK

To use vfio with DPDK instead of igb_uio add into your custom configuration
file the following parameter:

PATHS['dpdk']['src']['modules'] = ['uio', 'vfio-pci']

NOTE: In case, that DPDK is installed from binary package, then please
set PATHS['dpdk']['bin']['modules'] instead.

NOTE: Please ensure that Intel VT-d is enabled in BIOS.

NOTE: Please ensure your boot/grub parameters include
the following:

iommu=pt intel_iommu=on

To check that IOMMU is enabled on your platform:

$ dmesg | grep IOMMU
[0.000000] Intel-IOMMU: enabled
[0.139882] dmar: IOMMU 0: reg_base_addr fbffe000 ver 1:0 cap d2078c106f0466 ecap f020de
[0.139888] dmar: IOMMU 1: reg_base_addr ebffc000 ver 1:0 cap d2078c106f0466 ecap f020de
[0.139893] IOAPIC id 2 under DRHD base 0xfbffe000 IOMMU 0
[0.139894] IOAPIC id 0 under DRHD base 0xebffc000 IOMMU 1
[0.139895] IOAPIC id 1 under DRHD base 0xebffc000 IOMMU 1
[3.335744] IOMMU: dmar0 using Queued invalidation
[3.335746] IOMMU: dmar1 using Queued invalidation
....

NOTE: In case of VPP, it is required to explicitly define, that vfio-pci
DPDK driver should be used. It means to update dpdk part of VSWITCH_VPP_ARGS
dictionary with uio-driver section, e.g. VSWITCH_VPP_ARGS[‘dpdk’] = ‘uio-driver vfio-pci’

1.19. Using SRIOV support

To use virtual functions of NIC with SRIOV support, use extended form
of NIC PCI slot definition:

WHITELIST_NICS = ['0000:05:00.0|vf0', '0000:05:00.1|vf3']

Where ‘vf’ is an indication of virtual function usage and following
number defines a VF to be used. In case that VF usage is detected,
then vswitchperf will enable SRIOV support for given card and it will
detect PCI slot numbers of selected VFs.

So in example above, one VF will be configured for NIC ‘0000:05:00.0’
and four VFs will be configured for NIC ‘0000:05:00.1’. Vswitchperf
will detect PCI addresses of selected VFs and it will use them during
test execution.

At the end of vswitchperf execution, SRIOV support will be disabled.

SRIOV support is generic and it can be used in different testing scenarios.
For example:

	vSwitch tests with DPDK or without DPDK support to verify impact
of VF usage on vSwitch performance

	tests without vSwitch, where traffic is forwarded directly
between VF interfaces by packet forwarder (e.g. testpmd application)

	tests without vSwitch, where VM accesses VF interfaces directly
by PCI-passthrough to measure raw VM throughput performance.

1.20. Using QEMU with PCI passthrough support

Raw virtual machine throughput performance can be measured by execution of PVP
test with direct access to NICs by PCI pass-through. To execute VM with direct
access to PCI devices, enable vfio-pci. In order to use virtual functions,
SRIOV-support must be enabled.

Execution of test with PCI pass-through with vswitch disabled:

$./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf \
 --vswitch none --vnf QemuPciPassthrough pvp_tput

Any of supported guest-loopback-application can be used inside VM with
PCI pass-through support.

Note: Qemu with PCI pass-through support can be used only with PVP test
deployment.

1.21. Selection of loopback application for tests with VMs

To select the loopback applications which will forward packets inside VMs,
the following parameter should be configured:

GUEST_LOOPBACK = ['testpmd']

or use --test-params CLI argument:

$./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf \
 --test-params "GUEST_LOOPBACK=['testpmd']"

Supported loopback applications are:

'testpmd' - testpmd from dpdk will be built and used
'l2fwd' - l2fwd module provided by Huawei will be built and used
'linux_bridge' - linux bridge will be configured
'buildin' - nothing will be configured by vsperf; VM image must
 ensure traffic forwarding between its interfaces

Guest loopback application must be configured, otherwise traffic
will not be forwarded by VM and testcases with VM related deployments
will fail. Guest loopback application is set to ‘testpmd’ by default.

NOTE: In case that only 1 or more than 2 NICs are configured for VM,
then ‘testpmd’ should be used. As it is able to forward traffic between
multiple VM NIC pairs.

NOTE: In case of linux_bridge, all guest NICs are connected to the same
bridge inside the guest.

1.22. Mergable Buffers Options with QEMU

Mergable buffers can be disabled with VSPerf within QEMU. This option can
increase performance significantly when not using jumbo frame sized packets.
By default VSPerf disables mergable buffers. If you wish to enable it you
can modify the setting in the a custom conf file.

GUEST_NIC_MERGE_BUFFERS_DISABLE = [False]

Then execute using the custom conf file.

$./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf

Alternatively you can just pass the param during execution.

$./vsperf --test-params "GUEST_NIC_MERGE_BUFFERS_DISABLE=[False]"

1.23. Selection of dpdk binding driver for tests with VMs

To select dpdk binding driver, which will specify which driver the vm NICs will
use for dpdk bind, the following configuration parameter should be configured:

GUEST_DPDK_BIND_DRIVER = ['igb_uio_from_src']

The supported dpdk guest bind drivers are:

'uio_pci_generic' - Use uio_pci_generic driver
'igb_uio_from_src' - Build and use the igb_uio driver from the dpdk src
 files
'vfio_no_iommu' - Use vfio with no iommu option. This requires custom
 guest images that support this option. The default
 vloop image does not support this driver.

Note: uio_pci_generic does not support sr-iov testcases with guests attached.
This is because uio_pci_generic only supports legacy interrupts. In case
uio_pci_generic is selected with the vnf as QemuPciPassthrough it will be
modified to use igb_uio_from_src instead.

Note: vfio_no_iommu requires kernels equal to or greater than 4.5 and dpdk
16.04 or greater. Using this option will also taint the kernel.

Please refer to the dpdk documents at http://dpdk.org/doc/guides for more
information on these drivers.

1.24. Guest Core and Thread Binding

VSPERF provides options to achieve better performance by guest core binding and
guest vCPU thread binding as well. Core binding is to bind all the qemu threads.
Thread binding is to bind the house keeping threads to some CPU and vCPU thread to
some other CPU, this helps to reduce the noise from qemu house keeping threads.

GUEST_CORE_BINDING = [('#EVAL(6+2*#VMINDEX)', '#EVAL(7+2*#VMINDEX)')]

NOTE By default the GUEST_THREAD_BINDING will be none, which means same as
the GUEST_CORE_BINDING, i.e. the vcpu threads are sharing the physical CPUs with
the house keeping threads. Better performance using vCPU thread binding can be
achieved by enabling affinity in the custom configuration file.

For example, if an environment requires 32,33 to be core binded and 29,30&31 for
guest thread binding to achieve better performance.

VNF_AFFINITIZATION_ON = True
GUEST_CORE_BINDING = [('32','33')]
GUEST_THREAD_BINDING = [('29', '30', '31')]

1.25. Qemu CPU features

QEMU default to a compatible subset of performance enhancing cpu features.
To pass all available host processor features to the guest.

GUEST_CPU_OPTIONS = ['host,migratable=off']

NOTE To enhance the performance, cpu features tsc deadline timer for guest,
the guest PMU, the invariant TSC can be provided in the custom configuration file.

1.26. Multi-Queue Configuration

VSPerf currently supports multi-queue with the following limitations:

	Requires QEMU 2.5 or greater and any OVS version higher than 2.5. The
default upstream package versions installed by VSPerf satisfies this
requirement.

	Guest image must have ethtool utility installed if using l2fwd or linux
bridge inside guest for loopback.

	If using OVS versions 2.5.0 or less enable old style multi-queue as shown
in the ‘‘02_vswitch.conf’’ file.

OVS_OLD_STYLE_MQ = True

To enable multi-queue for dpdk modify the ‘‘02_vswitch.conf’’ file.

VSWITCH_DPDK_MULTI_QUEUES = 2

NOTE: you should consider using the switch affinity to set a pmd cpu mask
that can optimize your performance. Consider the numa of the NIC in use if this
applies by checking /sys/class/net/<eth_name>/device/numa_node and setting an
appropriate mask to create PMD threads on the same numa node.

When multi-queue is enabled, each dpdk or dpdkvhostuser port that is created
on the switch will set the option for multiple queues. If old style multi queue
has been enabled a global option for multi queue will be used instead of the
port by port option.

To enable multi-queue on the guest modify the ‘‘04_vnf.conf’’ file.

GUEST_NIC_QUEUES = [2]

Enabling multi-queue at the guest will add multiple queues to each NIC port when
qemu launches the guest.

In case of Vanilla OVS, multi-queue is enabled on the tuntap ports and nic
queues will be enabled inside the guest with ethtool. Simply enabling the
multi-queue on the guest is sufficient for Vanilla OVS multi-queue.

Testpmd should be configured to take advantage of multi-queue on the guest if
using DPDKVhostUser. This can be done by modifying the ‘‘04_vnf.conf’’ file.

GUEST_TESTPMD_PARAMS = ['-l 0,1,2,3,4 -n 4 --socket-mem 512 -- '
 '--burst=64 -i --txqflags=0xf00 '
 '--nb-cores=4 --rxq=2 --txq=2 '
 '--disable-hw-vlan']

NOTE: The guest SMP cores must be configured to allow for testpmd to use the
optimal number of cores to take advantage of the multiple guest queues.

In case of using Vanilla OVS and qemu virtio-net you can increase performance
by binding vhost-net threads to cpus. This can be done by enabling the affinity
in the ‘‘04_vnf.conf’’ file. This can be done to non multi-queue enabled
configurations as well as there will be 2 vhost-net threads.

VSWITCH_VHOST_NET_AFFINITIZATION = True

VSWITCH_VHOST_CPU_MAP = [4,5,8,11]

NOTE: This method of binding would require a custom script in a real
environment.

NOTE: For optimal performance guest SMPs and/or vhost-net threads should be
on the same numa as the NIC in use if possible/applicable. Testpmd should be
assigned at least (nb_cores +1) total cores with the cpu mask.

1.27. Jumbo Frame Testing

VSPERF provides options to support jumbo frame testing with a jumbo frame supported
NIC and traffic generator for the following vswitches:

	OVSVanilla

	OvsDpdkVhostUser

	TestPMD loopback with or without a guest

NOTE: There is currently no support for SR-IOV or VPP at this time with jumbo
frames.

All packet forwarding applications for pxp testing is supported.

To enable jumbo frame testing simply enable the option in the conf files and set the
maximum size that will be used.

VSWITCH_JUMBO_FRAMES_ENABLED = True
VSWITCH_JUMBO_FRAMES_SIZE = 9000

To enable jumbo frame testing with OVSVanilla the NIC in test on the host must have
its mtu size changed manually using ifconfig or applicable tools:

ifconfig eth1 mtu 9000 up

NOTE: To make the setting consistent across reboots you should reference the OS
documents as it differs from distribution to distribution.

To start a test for jumbo frames modify the conf file packet sizes or pass the option
through the VSPERF command line.

TEST_PARAMS = {'TRAFFICGEN_PKT_SIZES':(2000,9000)}

./vsperf --test-params "TRAFFICGEN_PKT_SIZES=2000,9000"

It is recommended to increase the memory size for OvsDpdkVhostUser testing from the default
1024. Your size required may vary depending on the number of guests in your testing. 4096
appears to work well for most typical testing scenarios.

DPDK_SOCKET_MEM = ['4096', '0']

NOTE: For Jumbo frames to work with DpdkVhostUser, mergable buffers will be enabled by
default. If testing with mergable buffers in QEMU is desired, disable Jumbo Frames and only
test non jumbo frame sizes. Test Jumbo Frames sizes separately to avoid this collision.

1.28. Executing Packet Forwarding tests

To select the applications which will forward packets,
the following parameters should be configured:

VSWITCH = 'none'
PKTFWD = 'TestPMD'

or use --vswitch and --fwdapp CLI arguments:

$./vsperf phy2phy_cont --conf-file user_settings.py \
 --vswitch none \
 --fwdapp TestPMD

Supported Packet Forwarding applications are:

'testpmd' - testpmd from dpdk

	Update your ‘‘10_custom.conf’’ file to use the appropriate variables
for selected Packet Forwarder:

testpmd configuration
TESTPMD_ARGS = []
packet forwarding mode supported by testpmd; Please see DPDK documentation
for comprehensive list of modes supported by your version.
e.g. io|mac|mac_retry|macswap|flowgen|rxonly|txonly|csum|icmpecho|...
Note: Option "mac_retry" has been changed to "mac retry" since DPDK v16.07
TESTPMD_FWD_MODE = 'csum'
checksum calculation layer: ip|udp|tcp|sctp|outer-ip
TESTPMD_CSUM_LAYER = 'ip'
checksum calculation place: hw (hardware) | sw (software)
TESTPMD_CSUM_CALC = 'sw'
recognize tunnel headers: on|off
TESTPMD_CSUM_PARSE_TUNNEL = 'off'

	Run test:

$./vsperf phy2phy_tput --conf-file <path_to_settings_py>

1.29. Executing Packet Forwarding tests with one guest

TestPMD with DPDK 16.11 or greater can be used to forward packets as a switch to a single guest using TestPMD vdev
option. To set this configuration the following parameters should be used.

VSWITCH = 'none'
PKTFWD = 'TestPMD'

or use --vswitch and --fwdapp CLI arguments:

$./vsperf pvp_tput --conf-file user_settings.py \
 --vswitch none \
 --fwdapp TestPMD

Guest forwarding application only supports TestPMD in this configuration.

GUEST_LOOPBACK = ['testpmd']

For optimal performance one cpu per port +1 should be used for TestPMD. Also set additional params for packet forwarding
application to use the correct number of nb-cores.

DPDK_SOCKET_MEM = ['1024', '0']
VSWITCHD_DPDK_ARGS = ['-l', '46,44,42,40,38', '-n', '4']
TESTPMD_ARGS = ['--nb-cores=4', '--txq=1', '--rxq=1']

For guest TestPMD 3 VCpus should be assigned with the following TestPMD params.

GUEST_TESTPMD_PARAMS = ['-l 0,1,2 -n 4 --socket-mem 1024 -- '
 '--burst=64 -i --txqflags=0xf00 '
 '--disable-hw-vlan --nb-cores=2 --txq=1 --rxq=1']

Execution of TestPMD can be run with the following command line

./vsperf pvp_tput --vswitch=none --fwdapp=TestPMD --conf-file <path_to_settings_py>

NOTE: To achieve the best 0% loss numbers with rfc2544 throughput testing, other tunings should be applied to host
and guest such as tuned profiles and CPU tunings to prevent possible interrupts to worker threads.

1.30. VSPERF modes of operation

VSPERF can be run in different modes. By default it will configure vSwitch,
traffic generator and VNF. However it can be used just for configuration
and execution of traffic generator. Another option is execution of all
components except traffic generator itself.

Mode of operation is driven by configuration parameter -m or –mode

-m MODE, --mode MODE vsperf mode of operation;
 Values:
 "normal" - execute vSwitch, VNF and traffic generator
 "trafficgen" - execute only traffic generator
 "trafficgen-off" - execute vSwitch and VNF
 "trafficgen-pause" - execute vSwitch and VNF but wait before traffic transmission

In case, that VSPERF is executed in “trafficgen” mode, then configuration
of traffic generator can be modified through TRAFFIC dictionary passed to the
--test-params option. It is not needed to specify all values of TRAFFIC
dictionary. It is sufficient to specify only values, which should be changed.
Detailed description of TRAFFIC dictionary can be found at
Configuration of TRAFFIC dictionary.

Example of execution of VSPERF in “trafficgen” mode:

$./vsperf -m trafficgen --trafficgen IxNet --conf-file vsperf.conf \
 --test-params "TRAFFIC={'traffic_type':'rfc2544_continuous','bidir':'False','framerate':60}"

1.31. Performance Matrix

The --matrix command line argument analyses and displays the performance of
all the tests run. Using the metric specified by MATRIX_METRIC in the conf-file,
the first test is set as the baseline and all the other tests are compared to it.
The MATRIX_METRIC must always refer to a numeric value to enable comparision.
A table, with the test ID, metric value, the change of the metric in %, testname
and the test parameters used for each test, is printed out as well as saved into the
results directory.

Example of 2 tests being compared using Performance Matrix:

$./vsperf --conf-file user_settings.py \
 --test-params "['TRAFFICGEN_PKT_SIZES=(64,)',"\
 "'TRAFFICGEN_PKT_SIZES=(128,)']" \
 phy2phy_cont phy2phy_cont --matrix

Example output:

+------+--------------+---------------------+----------+---------------------------------------+
| ID | Name | throughput_rx_fps | Change | Parameters, CUMULATIVE_PARAMS = False |
+======+==============+=====================+==========+=======================================+
| 0 | phy2phy_cont | 23749000.000 | 0 | 'TRAFFICGEN_PKT_SIZES': [64] |
+------+--------------+---------------------+----------+---------------------------------------+
| 1 | phy2phy_cont | 16850500.000 | -29.048 | 'TRAFFICGEN_PKT_SIZES': [128] |
+------+--------------+---------------------+----------+---------------------------------------+

1.32. Code change verification by pylint

Every developer participating in VSPERF project should run
pylint before his python code is submitted for review. Project
specific configuration for pylint is available at ‘pylint.rc’.

Example of manual pylint invocation:

$ pylint --rcfile ./pylintrc ./vsperf

1.33. GOTCHAs:

1.33.1. Custom image fails to boot

Using custom VM images may not boot within VSPerf pxp testing because of
the drive boot and shared type which could be caused by a missing scsi
driver inside the image. In case of issues you can try changing the drive
boot type to ide.

GUEST_BOOT_DRIVE_TYPE = ['ide']
GUEST_SHARED_DRIVE_TYPE = ['ide']

1.33.2. OVS with DPDK and QEMU

If you encounter the following error: “before (last 100 chars):
‘-path=/dev/hugepages,share=on: unable to map backing store for
hugepages: Cannot allocate memoryrnrn” during qemu initialization,
check the amount of hugepages on your system:

$ cat /proc/meminfo | grep HugePages

By default the vswitchd is launched with 1Gb of memory, to change
this, modify –socket-mem parameter in conf/02_vswitch.conf to allocate
an appropriate amount of memory:

DPDK_SOCKET_MEM = ['1024', '0']
VSWITCHD_DPDK_ARGS = ['-c', '0x4', '-n', '4']
VSWITCHD_DPDK_CONFIG = {
 'dpdk-init' : 'true',
 'dpdk-lcore-mask' : '0x4',
 'dpdk-socket-mem' : '1024,0',
}

Note: Option VSWITCHD_DPDK_ARGS is used for vswitchd, which supports --dpdk
parameter. In recent vswitchd versions, option VSWITCHD_DPDK_CONFIG will be
used to configure vswitchd via ovs-vsctl calls.

1.34. More information

For more information and details refer to the rest of vSwitchPerfuser documentation.

1. Traffic Capture

Tha ability to capture traffic at multiple points of the system is crucial to
many of the functional tests. It allows the verification of functionality for
both the vSwitch and the NICs using hardware acceleration for packet
manipulation and modification.

There are three different methods of traffic capture supported by VSPERF.
Detailed descriptions of these methods as well as their pros and cons can be
found in the following chapters.

1.1. Traffic Capture inside of a VM

This method uses the standard PVP scenario, in which vSwitch first processes
and modifies the packet before forwarding it to the VM. Inside of the VM we
capture the traffic using tcpdump or a similiar technique. The capture
information is the used to verify the expected modifications to the packet done
by vSwitch.

 _
+--+ |
+--+			
	Traffic capture and Packet Forwarding		
+--+			
^ :			
: v			
+---------------+ +---------------+			
	logical port 0		logical port 1
+---+---------------+----------+---------------+---+ _|
 ^ :
 | |
 : v _
+---+---------------+----------+---------------+---+ |
	logical port 0		logical port 1		
+---------------+ +---------------+					
^ :					
				Host	
: v					
+--------------+ +--------------+					
	phy port	vSwitch	phy port		
+---+--------------+------------+--------------+---+ _|
 ^ :
 | |
 : v
+--+
| |
| traffic generator |
| |
+--+

PROS:

	supports testing with all traffic generators

	easy to use and implement into test

	allows testing hardware offloading on the ingress side

CONS:

	does not allow testing hardware offloading on the egress side

An example of Traffic Capture in VM test:

Capture Example 1 - Traffic capture inside VM (PVP scenario)
This TestCase will modify VLAN ID set by the traffic generator to the new value.
Correct VLAN ID settings is verified by inspection of captured frames.
{
 Name: capture_pvp_modify_vid,
 Deployment: pvp,
 Description: Test and verify VLAN ID modification by Open vSwitch,
 Parameters : {
 VSWITCH : OvsDpdkVhost, # works also for Vanilla OVS
 TRAFFICGEN_DURATION : 5,
 TRAFFIC : {
 traffic_type : rfc2544_continuous,
 frame_rate : 100,
 'vlan': {
 'enabled': True,
 'id': 8,
 'priority': 1,
 'cfi': 0,
 },
 },
 GUEST_LOOPBACK : ['linux_bridge'],
 },
 TestSteps: [
 # replace original flows with vlan ID modification
 ['!vswitch', 'add_flow', '$VSWITCH_BRIDGE_NAME', {'in_port': '1', 'actions': ['mod_vlan_vid:4','output:3']}],
 ['!vswitch', 'add_flow', '$VSWITCH_BRIDGE_NAME', {'in_port': '2', 'actions': ['mod_vlan_vid:4','output:4']}],
 ['vswitch', 'dump_flows', '$VSWITCH_BRIDGE_NAME'],
 # verify that received frames have modified vlan ID
 ['VNF0', 'execute_and_wait', 'tcpdump -i eth0 -c 5 -w dump.pcap vlan 4 &'],
 ['trafficgen', 'send_traffic',{}],
 ['!VNF0', 'execute_and_wait', 'tcpdump -qer dump.pcap vlan 4 2>/dev/null | wc -l','|^(\d+)$'],
 ['tools', 'assert', '#STEP[-1][0] == 5'],
],
},

1.2. Traffic Capture for testing NICs with HW offloading/acceleration

The NIC with hardware acceleration/offloading is inserted as an additional card
into the server. Two ports on this card are then connected together using
a patch cable as shown in the diagram. Only a single port of the tested NIC is
setup with DPDK acceleration, while the other is handled by the Linux Ip stack
allowing for traffic capture. The two NICs are then connected by vSwitch so the
original card can forward the processed packets to the traffic generator. The
ports handled by Linux IP stack allow for capturing packets, which are then
analyzed for changes done by both the vSwitch and the NIC with hardware
acceleration.

 _
+--+ |
+--+						
	vSwitch					
	+----------------------------------+					
		+------------------+				
				v		
+--+		Device under Test				
^	^					
	v	v				
+--------------+ +--------------+						
			NIC w HW acc			
	phy ports		phy ports			
+---+--------------+----------+--------------+---+ _|
 ^ : ^ :
 | | | |
 | | +-------+
 : v Patch Cable
+--+
| |
| traffic generator |
| |
+--+

PROS:

	allows testing hardware offloading on both the ingress and egress side

	supports testing with all traffic generators

	relatively easy to use and implement into tests

CONS:

	a more complex setup with two cards

	if the tested card only has one port, an additional card is needed

An example of Traffic Capture for testing NICs with HW offloading test:

Capture Example 2 - Setup with 2 NICs, where traffic is captured after it is
processed by NIC under the test (2nd NIC). See documentation for further details.
This TestCase will strip VLAN headers from traffic sent by the traffic generator.
The removal of VLAN headers is verified by inspection of captured frames.
#
NOTE: This setup expects a DUT with two NICs with two ports each. First NIC is
connected to the traffic generator (standard VSPERF setup). Ports of a second NIC
are interconnected by a patch cable. PCI addresses of all four ports have to be
properly configured in the WHITELIST_NICS parameter.
{
 Name: capture_p2p2p_strip_vlan_ovs,
 Deployment: clean,
 Description: P2P Continuous Stream,
 Parameters : {
 _CAPTURE_P2P2P_OVS_ACTION : 'strip_vlan',
 TRAFFIC : {
 bidir : False,
 traffic_type : rfc2544_continuous,
 frame_rate : 100,
 'l2': {
 'srcmac': ca:fe:00:00:00:00,
 'dstmac': 00:00:00:00:00:01
 },
 'vlan': {
 'enabled': True,
 'id': 8,
 'priority': 1,
 'cfi': 0,
 },
 },
 # suppress DPDK configuration, so physical interfaces are not bound to DPDK driver
 'WHITELIST_NICS' : [],
 'NICS' : [],
 },
 TestSteps: _CAPTURE_P2P2P_SETUP + [
 # capture traffic after processing by NIC under the test (after possible egress HW offloading)
 ['tools', 'exec_shell_background', 'tcpdump -i [2][device] -c 5 -w capture.pcap '
 'ether src [l2][srcmac]'],
 ['trafficgen', 'send_traffic', {}],
 ['vswitch', 'dump_flows', '$VSWITCH_BRIDGE_NAME'],
 ['vswitch', 'dump_flows', 'br1'],
 # there must be 5 captured frames...
 ['tools', 'exec_shell', 'tcpdump -r capture.pcap | wc -l', '|^(\d+)$'],
 ['tools', 'assert', '#STEP[-1][0] == 5'],
 # ...but no vlan headers
 ['tools', 'exec_shell', 'tcpdump -r capture.pcap vlan | wc -l', '|^(\d+)$'],
 ['tools', 'assert', '#STEP[-1][0] == 0'],
],
},

1.3. Traffic Capture on the Traffic Generator

Using the functionality of the Traffic generator makes it possible to configure
Traffic Capture on both it’s ports. With Traffic Capture enabled, VSPERF
instructs the Traffic Generator to automatically export captured data into
a pcap file. The captured packets are then sent to VSPERF for analysis and
verification, monitoring any changes done by both vSwitch and the NICs.

Vsperf currently only supports this functionality with the T-Rex generator.

 _
+--+ |
+--------------------------+			
	v		Host
+--------------+ +--------------+			
	phy port	vSwitch	phy port
+---+--------------+------------+--------------+---+ _|
 ^ :
 | |
 : v
+--+
| |
| traffic generator |
| |
+--+

PROS:

	allows testing hardware offloading on both the ingress and egress side

	does not require an additional NIC

CONS:

	currently only supported by T-Rex traffic generator

An example Traffic Capture on the Traffic Generator test:

Capture Example 3 - Traffic capture by traffic generator.
This TestCase uses OVS flow to add VLAN tag with given ID into every
frame send by traffic generator. Correct frame modificaiton is verified by
inspection of packet capture received by T-Rex.
{
 Name: capture_p2p_add_vlan_ovs_trex,
 Deployment: clean,
 Description: OVS: Test VLAN tag modification and verify it by traffic capture,
 vSwitch : OvsDpdkVhost, # works also for Vanilla OVS
 Parameters : {
 TRAFFICGEN : Trex,
 TRAFFICGEN_DURATION : 5,
 TRAFFIC : {
 traffic_type : rfc2544_continuous,
 frame_rate : 100,
 # enable capture of five RX frames
 'capture': {
 'enabled': True,
 'tx_ports' : [],
 'rx_ports' : [1],
 'count' : 5,
 },
 },
 },
 TestSteps : STEP_VSWITCH_P2P_INIT + [
 # replace standard L2 flows by flows, which will add VLAN tag with ID 3
 ['!vswitch', 'add_flow', 'int_br0', {'in_port': '1', 'actions': ['mod_vlan_vid:3','output:2']}],
 ['!vswitch', 'add_flow', 'int_br0', {'in_port': '2', 'actions': ['mod_vlan_vid:3','output:1']}],
 ['vswitch', 'dump_flows', 'int_br0'],
 ['trafficgen', 'send_traffic', {}],
 ['trafficgen', 'get_results'],
 # verify that captured frames have vlan tag with ID 3
 ['tools', 'exec_shell', 'tcpdump -qer /#STEP[-1][0][capture_rx] vlan 3 '
 '2>/dev/null | wc -l', '|^(\d+)$'],
 # number of received frames with expected VLAN id must match the number of captured frames
 ['tools', 'assert', '#STEP[-1][0] == 5'],
] + STEP_VSWITCH_P2P_FINIT,
},

4. Execution of vswitchperf testcases by Yardstick

4.1. General

Yardstick is a generic framework for a test execution, which is used for
validation of installation of OPNFV platform. In the future, Yardstick will
support two options of vswitchperf testcase execution:

	plugin mode, which will execute native vswitchperf testcases; Tests will
be executed natively by vsperf, and test results will be processed and
reported by yardstick.

	traffic generator mode, which will run vswitchperf in trafficgen
mode only; Yardstick framework will be used to launch VNFs and to configure
flows to ensure, that traffic is properly routed. This mode will allow to
test OVS performance in real world scenarios.

In Colorado release only the traffic generator mode is supported.

4.2. Yardstick Installation

In order to run Yardstick testcases, you will need to prepare your test
environment. Please follow the installation instructions [http://artifacts.opnfv.org/yardstick/docs/user_guides_framework/index.html]
to install the yardstick.

Please note, that yardstick uses OpenStack for execution of testcases.
OpenStack must be installed with Heat and Neutron services. Otherwise
vswitchperf testcases cannot be executed.

4.3. VM image with vswitchperf

A special VM image is required for execution of vswitchperf specific testcases
by yardstick. It is possible to use a sample VM image available at OPNFV
artifactory or to build customized image.

4.3.1. Sample VM image with vswitchperf

Sample VM image is available at vswitchperf section of OPNFV artifactory
for free download:

$ wget http://artifacts.opnfv.org/vswitchperf/vnf/vsperf-yardstick-image.qcow2

This image can be used for execution of sample testcases with dummy traffic
generator.

NOTE: Traffic generators might require an installation of client software.
This software is not included in the sample image and must be installed by user.

NOTE: This image will be updated only in case, that new features related
to yardstick integration will be added to the vswitchperf.

4.3.2. Preparation of custom VM image

In general, any Linux distribution supported by vswitchperf can be used as
a base image for vswitchperf. One of the possibilities is to modify vloop-vnf
image, which can be downloaded from http://artifacts.opnfv.org/vswitchperf.html/
(see vloop-vnf).

Please follow the Installing vswitchperf to
install vswitchperf inside vloop-vnf image. As vswitchperf will be run in
trafficgen mode, it is possible to skip installation and compilation of OVS,
QEMU and DPDK to keep image size smaller.

In case, that selected traffic generator requires installation of additional
client software, please follow appropriate documentation. For example in case
of IXIA, you would need to install IxOS and IxNetowrk TCL API.

4.3.3. VM image usage

Image with vswitchperf must be uploaded into the glance service and
vswitchperf specific flavor configured, e.g.:

$ glance --os-username admin --os-image-api-version 1 image-create --name \
 vsperf --is-public true --disk-format qcow2 --container-format bare --file \
 vsperf-yardstick-image.qcow2

$ nova --os-username admin flavor-create vsperf-flavor 100 2048 25 1

4.4. Testcase execution

After installation, yardstick is available as python package within yardstick
specific virtual environment. It means, that yardstick environment must be
enabled before the test execution, e.g.:

source ~/yardstick_venv/bin/activate

Next step is configuration of OpenStack environment, e.g. in case of devstack:

source /opt/openstack/devstack/openrc
export EXTERNAL_NETWORK=public

Vswitchperf testcases executable by yardstick are located at vswitchperf
repository inside yardstick/tests directory. Example of their download
and execution follows:

git clone https://gerrit.opnfv.org/gerrit/vswitchperf
cd vswitchperf

yardstick -d task start yardstick/tests/rfc2544_throughput_dummy.yaml

NOTE: Optional argument -d shows debug output.

4.5. Testcase customization

Yardstick testcases are described by YAML files. vswitchperf specific testcases
are part of the vswitchperf repository and their yaml files can be found at
yardstick/tests directory. For detailed description of yaml file structure,
please see yardstick documentation and testcase samples. Only vswitchperf specific
parts will be discussed here.

Example of yaml file:

...
scenarios:
-
 type: Vsperf
 options:
 testname: 'p2p_rfc2544_throughput'
 trafficgen_port1: 'eth1'
 trafficgen_port2: 'eth3'
 external_bridge: 'br-ex'
 test_params: 'TRAFFICGEN_DURATION=30;TRAFFIC={'traffic_type':'rfc2544_throughput}'
 conf_file: '~/vsperf-yardstick.conf'

 host: vsperf.demo

 runner:
 type: Sequence
 scenario_option_name: frame_size
 sequence:
 - 64
 - 128
 - 512
 - 1024
 - 1518
 sla:
 metrics: 'throughput_rx_fps'
 throughput_rx_fps: 500000
 action: monitor

context:
...

4.5.1. Section option

Section option defines details of vswitchperf test scenario. Lot of options
are identical to the vswitchperf parameters passed through --test-params
argument. Following options are supported:

	frame_size - a packet size for which test should be executed;
Multiple packet sizes can be tested by modification of Sequence runner
section inside YAML definition. Default: ‘64’

	conf_file - sets path to the vswitchperf configuration file, which will be
uploaded to VM; Default: ‘~/vsperf-yardstick.conf’

	setup_script - sets path to the setup script, which will be executed
during setup and teardown phases

	trafficgen_port1 - specifies device name of 1st interface connected to
the trafficgen

	trafficgen_port2 - specifies device name of 2nd interface connected to
the trafficgen

	external_bridge - specifies name of external bridge configured in OVS;
Default: ‘br-ex’

	test_params - specifies a string with a list of vsperf configuration
parameters, which will be passed to the --test-params CLI argument;
Parameters should be stated in the form of param=value and separated
by a semicolon. Configuration of traffic generator is driven by TRAFFIC
dictionary, which can be also updated by values defined by test_params.
Please check VSPERF documentation for details about available configuration
parameters and their data types.
In case that both test_params and conf_file are specified,
then values from test_params will override values defined
in the configuration file.

In case that trafficgen_port1 and/or trafficgen_port2 are defined, then
these interfaces will be inserted into the external_bridge of OVS. It is
expected, that OVS runs at the same node, where the testcase is executed. In case
of more complex OpenStack installation or a need of additional OVS configuration,
setup_script can be used.

NOTE It is essential to specify a configuration for selected traffic generator.
In case, that standalone testcase is created, then traffic generator can be
selected and configured directly in YAML file by test_params. On the other
hand, if multiple testcases should be executed with the same traffic generator
settings, then a customized configuration file should be prepared and its name
passed by conf_file option.

4.5.2. Section runner

Yardstick supports several runner types [http://artifacts.opnfv.org/yardstick/docs/userguide/architecture.html#runner-types].
In case of vswitchperf specific TCs, Sequence runner type can be used to
execute the testcase for given list of frame sizes.

4.5.3. Section sla

In case that sla section is not defined, then testcase will be always
considered as successful. On the other hand, it is possible to define a set of
test metrics and their minimal values to evaluate test success. Any numeric
value, reported by vswitchperf inside CSV result file, can be used.
Multiple metrics can be defined as a coma separated list of items. Minimal
value must be set separately for each metric.

e.g.:

sla:
 metrics: 'throughput_rx_fps,throughput_rx_mbps'
 throughput_rx_fps: 500000
 throughput_rx_mbps: 1000

In case that any of defined metrics will be lower than defined value, then
testcase will be marked as failed. Based on action policy, yardstick
will either stop test execution (value assert) or it will run next test
(value monitor).

NOTE The throughput SLA (or any other SLA) cannot be set to a meaningful
value without knowledge of the server and networking environment, possibly
including prior testing in that environment to establish a baseline SLA level
under well-understood circumstances.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/vm2vm_hypervisor_benchmark.png
Forwarding capability and latency through the VNF/hypervisor

« Then determine the forwarding capability VM
and latency through the VNF/hypervisor by
directly connecting the NIC to the VM
(shown in blue).

« Delay of Bypass paths with vNICs can be
subtracted from measured delay (if
constant) to get “VM with VNF Delay” alone

« The same driver must be used for both
VNICs as that which determines the
forwarding capability and latency through
the virtual interface (for example vfio). s

- Traffic can be uni/bi-directional. (Send&Rcv)

« The same loopback application must be
used as that which determines the

forwarding capability and latency through KN
the virtual interface S OPNFV ss

Loopback App

_images/vm2vm_virtual_interface_benchmark.png
Forwarding capability and latency through the virtual interface

First determine the forwarding capability and
latency through the virtual interface (shown in
green).

Loopback application should run on the host (in
user mode).

Loopback application might need to be
developed. The same loopback application
should be used in all subsequent steps in the
methodology.

One possible app is DPDK testpmd.

To measure the maximum achievable
performance the app must be one that is capable
of stressing the system/passing traffic at line rate

The same driver must be used for both vNICs
(igb_uio/vfio).

Traffic can be uni/bi-directional.

Loopback App

Test Device
(Traffic Gen)

3:0PNFV =

_images/vm2vm_alternative_benchmark.png
Alternate VM2VM Configuration

VM-PktGen VM-PktRcy
(Isolated) (1solated)

- Emphasize Delay measurement of path through
Logical ports of vSwitch with low-rate stream
from dedicated and isolated VM-PktGen.

= Confirm VM-PktGen Isolation in loopback under
full vSwitch load

+ Max Forwarding Rate is the sum of the Test
\[I)’\e/lvice stream and the low-rate stream from

+ NOTE: the VNFs used for this methodology
must be the same.
= Traffic can be uni/bi-directional.

+ The same loopback application must be used
as that which determines the forwarding
capability and latency through the virtual
interface

Test Device
(Send&Rcy)

VM2VM

_images/vm2vm_benchmark.png
Forwarding capability and latency for VM2VM

« Determine the performance for VM2VM in the
following configuration (shown in orange). M

- Subtract the latency of the
2x (VM with VNF Delay) +
(Bypass paths with vNICs)

to eliminate the impairments of the green and
blue paths.

- NOTE: the VNFs used for this methodology
must be the same.

- Traffic can be uni/bi-directional.

« The same loopback application must be used
as that which determines the forwarding
capability and latency through the virtual Test Device

interface (Send&Rcv)

Locpiack Aop

#:0PNFV =

_images/vsperf.png
vsperf testcase

e
specified

n R

nf_tl nf

vswitch_ctl vswitch

traffic_ctl

skipping details offinding and creating correct subclasses of IVSwitch, ITraffisGenerato etc

>

ppe_esutto_fi()

create(vswitch class »
VSWITCH_Cl TS
instance of
VswitchCont:
ollerPvp
creatent dlass),
VTGS
instance of
VnfControlle-
Pyp
create()
PYToN Context
management
protocol
start/stop
controllers
enter () »

enter >
create >

Skipping full details of switch configuration

create >

VSWICH TS

instance of

OvsDpdkVh
ost

]

add o

add vportl)
add flow)

create/start()

TrafficGontrol-

Traffic_ci s
ingtarice of
lerRFC2544

traffic_gen

load_gen

send traffic(traffic)

>

get resutts()

Trarfic
ecfies the
vaffic Type'

from

01_testoases-
conf as well
as other traffic

details

serld fc2544 throughput()

e
implementati-
onis
dependent on
the vendor
specific Traffic
Gen used

Toac ’gen
simulates
system load

using 'stress’
ol

returng resuls as strvalue pairs

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/factory_and_loader.png
app loader component_factory traffic_ctir

searces
TRAFFICGEN DIR for
classes jmplemenfing Iraffic
and matching name
configured as TRAFFIGGEN

le TrafficGenClass

create traffictraffic tye, TrafficGenClass »

GMPONENT Factory Taps
from a traffic_type (string) to
a TrafficCantroller class

create

le traffic_ctlr

_static/up.png

_images/traffic_controller.png
testcase traffic_ctir traffic_gen traffic_defaults HwSwTrafficGen

7@, Spirent, Xena,
Moongen, etc.

createfiraffic gen class),
create >
connect >

send trafficfraffic)

Tokes
send 1fc2544 back-
2Backitputor
sepd cont based on
rafficl traffic e];
'Rso tetcnas
duration/trials from

coni

Send rfc2544 tpuraffic

start_rfc2544 _tputraffic) ———_

default traffic params = reag(
‘r‘?—iﬂme S TalTC W

default_traffic_para-
ms)

foreach packet_size in configuration

Actualfest starts [\
here. Details of
interactions between
traffic_gen class
actual traffic
jenerator
(HWSw TrafficGen) are
hidden to vsperf

¢ >
vl rfo2544_throughput()e———

|qesults (strinaivalue pairs)

store_resufts) &

get results| >

jwrite_results_to_file

end foreach:

_images/TCLServerProperties.png
{2 1xNetwork TCL Server Proper

seouty | Detas | PeveusVeions |
o] St | Compaiby |

Targettype: Applcation

Terget location: 7.21-G4

Terget: Ietwork\7 21-GANNetwork eve' tcPort

Sty flod

T || Erm || e

=

_static/up-pressed.png

