

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

1. OPERA Requirement and Design

	Define Scenario OS-NOSDN-OPENO-HA and Integrate OPEN-O M Release
with OPNFV D Release (with OpenStack Newton)

	
	Integrate OPEN-O to OPNFV CI Process

	
	Integrate automatic Open-O and Juju installation

	
	Deploy Clearwater vIMS through OPEN-O

	
	Test case to simulate SIP clients voice call

	Integrate vIMS test scripts to FuncTest

2. OS-NOSDN-OPENO-HA Scenario Definition

2.1. Compass4NFV supports Open-O NFV Scenario

	Scenario name: os-nosdn-openo-ha

	Deployment: OpenStack + Open-O + JuJu

	
	Setups:

	
	Virtual deployment (one physical server as Jump Server with
OS ubuntu)

	Physical Deployment (one physical server as Jump Server,
ubuntu + 5 physical Host Server)

[image: deploy overview]
Fig 1. Deploy Overview

3. Open-O is participating OPNFV CI Process

	All steps are linked to OPNFV CI Process

	Jenkins jobs remotely access OPEN-O NEXUS repository to fetch binaries

	COMPASS is to deploy scenario based on OpenStack Newton release.

	OPEN-O and JuJu installation scripts will be triggered in Jenkins job
after COMPASS finish deploying OpenStack

	Clearwater vIMS deploy scripts will be integrated into FuncTest

	Clearwater vIMS test scripts will be integrated into FuncTest

[image: opera ci]
Fig 2. Opera Ci

4. The vIMS is used as initial use case

based on which test cases will be created and aligned with Open-O first
release for OPNFV D release.

	Creatting scenario (os-nosdn-openoe-ha) to integrate Open-O with OpenStack Newton.

	Integrating with COMPASS as installer, FuncTest as testing framework

	Clearwater vIMS is used as VNFs, Juju is used as VNFM.

	Use Open-O as Orchestrator to deploy vIMS to do end-2-end test with the following steps.

	deploy Open-O as orchestrator

	create tenant by Open-O to OpenStack

	deploy vIMS VNFs from orchestrator based on TOSCA blueprintn and create VNFs

	launch test suite

	collect results and clean up

[image: vIMS deploy]
Fig 3. vIMS Deploy

5. Requirement and Tasks

5.1. OPERA Deployment Key idea

	Keep OPEN-O deployment agnostic from an installer perspective (Apex, Compass, Fuel, Joid)

	Breakdown deployments in single scripts (isolation)

	Have OPNFV CI Process (Jenkins) control and monitor the execution

5.2. Tasks need to be done for OPNFV CD process

	Compass to deploy scenario of os-nosdn-openo-noha

	Automate OPEN-O installation (deployment) process

	Automate JuJu installation process

	Create vIMS TOSCA blueprint (for vIMS deployment)

	
	Automate vIMS package deployment (need helper/OPEN-O M)

	
	(a)Jenkins to invoke OPEN-O Restful API to import & deploy vIMS ackage

	Integrate scripts of step 2,3,4,5 with OPNFV CD Jenkins Job

5.3. FUNCTEST

	
	test case automation

	
	(a)Invoke URL request to vIMS services to test deployment is successfully done.

	
	Integrate test scripts with FuncTest

	
	(a)trigger these test scripts

	(b)record test result to DB

[image: functest]
Fig 4. Functest

OPNFV Opera Design

	1. OPERA Requirement and Design

	2. OS-NOSDN-OPENO-HA Scenario Definition
	2.1. Compass4NFV supports Open-O NFV Scenario

	3. Open-O is participating OPNFV CI Process

	4. The vIMS is used as initial use case

	5. Requirement and Tasks
	5.1. OPERA Deployment Key idea

	5.2. Tasks need to be done for OPNFV CD process

	5.3. FUNCTEST

OPNFV Opera Overview

	1. OPERA Project Overview

	2. Open-O is scoped for the integration

	3. The vIMS is used as initial use case

1. OPERA Project Overview

Since OPNFV board expanded its scope to include NFV MANO last year,
several upstream open source projects have been created to develop
MANO solutions. Each solution has demonstrated its unique value in
specific area. Open-Orchestrator (OPEN-O) project is one of such
communities. Opera seeks to develop requirements for OPEN-O MANO
support in the OPNFV reference platform, with the plan to eventually
integrate OPEN-O in OPNFV as a non-exclusive upstream MANO. The
project will definitely benefit not only OPNFV and Open-O, but can
be referenced by other MANO integration as well. In particular, this
project is basically use case driven. Based on that, it will focus
on the requirement of interfaces/data models for integration among
various components and OPNFV platform. The requirement is designed
to support integration among Open-O as NFVO with Juju as VNFM and
OpenStack as VIM.

Currently OPNFV has already included upstream OpenStack as VIM, and
Juju and Tacker have been being considered as gVNFM by different OPNFV
projects. OPEN-O as NFVO part of MANO will interact with OpenStack and
Juju. The key items required for the integration can be described as
follows.

[image: key item]
Fig 1. Key Item for Integration

2. Open-O is scoped for the integration

OPEN-O includes various components for OPNFV MANO integration. The initial
release of integration will be focusing on NFV-O, Common service and Common
TOSCA. Other components of Open-O will be gradually integrated to OPNFV
reference platform in later release.

[image: openo component]
Fig 2. Deploy Overview

3. The vIMS is used as initial use case

based on which test cases will be created and aligned with Open-O first
release for OPNFV D release.

	Creatting scenario (os-nosdn-openoe-ha) to integrate Open-O with OpenStack Newton.

	Integrating with COMPASS as installer, FuncTest as testing framework

	Clearwater vIMS is used as VNFs, Juju is used as VNFM.

	Use Open-O as Orchestrator to deploy vIMS to do end-2-end test with the following steps.

	deploy Open-O as orchestrator

	create tenant by Open-O to OpenStack

	deploy vIMS VNFs from orchestrator based on TOSCA blueprintn and create VNFs

	launch test suite

	collect results and clean up

[image: vIMS deploy]
Fig 3. vIMS Deploy

1. Config Guide

1.1. Add OpenStack Admin Openrc file

Add the admin openrc file of your local openstack into opera/conf
directory with the name of admin-openrc.sh.

1.2. Config open-o.yml

Set openo_version to specify Open-O version.

Set openo_ip to specify an external ip to access Open-O services.
(leave the value unset will use local server’s external ip)

Set ports in openo_docker_net to specify Open-O’s exposed service
ports.

Set enable_sdno to specify if use Open-O ‘s sdno services.
(set this value false will not launch Open-O sdno dockers and reduce
deploy duration)

Set vnf_type to specify the vnf type need to be deployed.
(currently only support clearwater deployment, leave this unset will
not deploy any vnf)

OPNFV Opera Config Instructions

	1. Config Guide
	1.1. Add OpenStack Admin Openrc file

	1.2. Config open-o.yml

OPNFV Opera Installation Instructions

	1. Abstract

	2. Version history

	3. Opera Installation Instructions
	3.1. Preconditions
	3.1.1. A functional OpenStack environment

	3.1.2. Getting the deployment scripts

	3.2. Machine requirements

	3.3. Deploy Instruction
	3.3.1. Add OpenStack Admin Openrc file

	3.3.2. Config open-o.yml

	3.3.3. Run opera_launch.sh

3. Opera Installation Instructions

This document providing guidelines on how to deploy a working Open-O
environment using opera project.

The audience of this document is assumed to have good knowledge in
OpenStack and Linux.

3.1. Preconditions

There are some preconditions before starting the Opera deployment

3.1.1. A functional OpenStack environment

OpenStack should be deployed before opera deploy.

3.1.2. Getting the deployment scripts

Retrieve the repository of Opera using the following command:

	git clone https://gerrit.opnfv.org/gerrit/opera

3.2. Machine requirements

	Ubuntu OS (Pre-installed).

	Root access.

	Minimum 1 NIC (internet access)

	CPU cores: 32

	64 GB free memory

	100G free disk

3.3. Deploy Instruction

After opera deployment, Open-O dockers will be launched on local
server as orchestrator and juju vm will be launched on OpenStack
as VNFM.

3.3.1. Add OpenStack Admin Openrc file

Add the admin openrc file of your local openstack into opera/conf
directory with the name of admin-openrc.sh.

3.3.2. Config open-o.yml

Set openo_version to specify Open-O version.

Set openo_ip to specify an external ip to access Open-O services.
(leave the value unset will use local server’s external ip)

Set ports in openo_docker_net to specify Open-O’s exposed service
ports.

Set enable_sdno to specify if use Open-O ‘s sdno services.
(set this value false will not launch Open-O sdno dockers and reduce
deploy duration)

Set vnf_type to specify the vnf type need to be deployed.
(currently only support clearwater deployment, leave this unset will
not deploy any vnf)

3.3.3. Run opera_launch.sh

./opera_launch.sh

1. Abstract

This document describes how to install Open-O in an OpenStack deployed environment
using Opera project.

2. Version history

	Date

	Ver.

	Author

	Comment

	2017-02-16

	0.0.1

	Harry Huang
(HUAWEI)

	First draft

OPNFV Danube: Opera Release Notes

	1. OPNFV Opera Release Notes
	1.1. Abstract

	1.2. Release Data
	1.2.1. Known issues

1. OPNFV Opera Release Notes

This document describes release notes of OPNFV Danube Release of Opera

1.1. Abstract

Opera project is aimed to deploy a working Open-O environment.

1.2. Release Data

	Date

	Ver.

	Author

	Comment

	2017-02-24

	0.0.1

	Harry Huang
(HUAWEI)

	First draft

1.2.1. Known issues

	Scenario

	Issue

	Workarounds

	os-nosdn-openo-ha

	500 error ccasionally happens
when uploading vnf package

	manually upload vnf
package on Open-O web
UI

os-nosdn-openo-ha Overview and Description

	1. os-nosdn-openo-ha Description
	1.1. Introduction

	1.2. Scenario Components and Composition

	1.3. Scenario Usage Overview
	1.3.1. COMPASS installer configuration

	1.4. References

1. os-nosdn-openo-ha Description

1.1. Introduction

Since OPNFV board expanded its scope to include NFV MANO last year,
several upstream open source projects have been created to develop
MANO solutions. Each solution has demonstrated its unique value in
specific area. Open-Orchestrator (OPEN-O) project is one of such
communities. Opera seeks to develop requirements for OPEN-O MANO
support in the OPNFV reference platform, with the plan to eventually
integrate OPEN-O in OPNFV as a non-exclusive upstream MANO. The
project will definitely benefit not only OPNFV and Open-O, but can
be referenced by other MANO integration as well. In particular, this
project is basically use case driven. Based on that, it will focus
on the requirement of interfaces/data models for integration among
various components and OPNFV platform. The requirement is designed
to support integration among Open-O as NFVO with Juju as VNFM and
OpenStack as VIM.

Currently OPNFV has already included upstream OpenStack as VIM, and
Juju and Tacker have been being considered as gVNFM by different OPNFV
projects. OPEN-O as NFVO part of MANO will interact with OpenStack and
Juju. The key items required for the integration can be described as
follows.

1.2. Scenario Components and Composition

This Scenario will deploy Open-O on jump host as orchestrator and deploy
juju in an OpenStack VM as VNFM. All Open-O service can be access through
openo_ip specified in network config file.

1.3. Scenario Usage Overview

This scenario has an orchestrator field to specify which orchestrator to
be used.

1.3.1. COMPASS installer configuration

The os-nosdn-openo-ha scenario in Compass4NFV has an orchestrator field.
Set orchestrator type to Open-O to install Open-O after Compass4NFV finishs
NFVI deployment and Open-O version can also be assigned in key version.
With orchestrator setting to Open-O, Compass4NFV will git clone Opera
project to perform a combined deployment. Set key vnf to clearwater if you
want to launch clearwater after Open-O launched.

os-nosdn-openo-ha scenario needs to be deployed along with Open-O included
network config file. Compass4NFV has network_openo.yml to config network for
Opera.

The Open-O related info in both scenario and network config will be synchronized
into Opera after its repository being cloned.

1.4. References

For more information on the OPNFV Danube release, please visit
http://www.opnfv.org/danube

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/vIMS_deploy.png
Functest

v Signaling
docker . testing
@gl’é’afwale r

_images/vIMS_deploy1.png
Functest

v Signaling
docker . testing
@gl’é’afwale r

_images/openo_component.png
n

later release

\
|
|
|
|
|

/

_images/opera_ci.png
24

Compass Installer
integration

OPEN-O Repository ThecH] Post Merge| Boin]
i e e L
B = 150 5= =) 1580 53

FuncTest integration
Open-O test scripts
VIMS test scripts

JENKINS

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/functest.png
FUNCTEST

OPERA Deployment

OPEN-O

_images/key_item.png
085/85S

VNF

OsManfvo

71 NSinterfaces

7.2:1 YNF ackage management
722 VN softwa

7.24VNF lfcycle management

7.2.5VNF fecycl change notifcation
7.4 Polcyadministration nteface

image management

7.5 VN Hecyle change notfiation
7,34 Virualsed Resources Peformance Managem

VeVnfmem

226 N configuration

VeVnfmanf N

7,35 Vietualised Resources Fault Management) |

—\4-/VN

7.2.7 VN Performance Mansgement

7.2.8 VN Fault Mansgement

vim

Ornim
7.2.1 NF Package management

7.23 VN lfecyle operation granting
7.2.4 VN Hecydle management

7.5 VN Hecyele hange notfication
7.7 VNF erformance Mangement
72,8 VNF Fault Management

733 Virtualised Resources Management
74 Policy adminisration interface

Y]

e

Softuare Image Management
Vituslized Compute Interfaces
Virtualized Network Iterfaces.
Vituslized Storage nterfaces.
Virtualized Resource Fault Mgmt

Vitualized Resource Reservation
Vituslized Resource Quota Interfac

)

o

Software Image Management
Virtualzed Compute Interfaces
Virtualized Network Interfaces.
Virtualzed Storage Interfaces
Virtualzed Resource Fault Mgmt
Virtualized Rezource Performance Mgmt
Virtualzed Resource Reservation
Virtualzed Resource Quota interfaces

Virtualized Resource Performance Memt

_static/up-pressed.png

_images/deploy_overview.png
OpenStack

Compass-core VM

Jumper Server

_static/up.png

