

Euphrates 1.0 Release

Overview of Documentation

Overview

	1. KVM4NFV Project Overview
	1.1. Project Purpose

	1.2. Project Description

KVM4NFV Installation Procedure

Installation

	1. Abstract

	2. KVM4NFV Installation Instruction
	2.1. Preparing the installation

	2.2. HW requirements

	2.3. Build instructions

	2.4. Installation instructions

	2.5. Post-installation activities

	3. Release Note for KVM4NFV CICD
	3.1. Abstract

	3.2. Introduction

	3.3. Release Data

	3.4. Document version change

	3.5. Reason for new version
	3.5.1. Feature additions

	3.6. Known issues

	3.7. Workarounds

KVM4NFV Design Guide

Design Overview and Description

	1. KVM4NFV design description
	1.1. Design Considerations

	1.2. Goals and Guidelines

	1.3. Test plan
	1.3.1. Reference

KVM4NFV Requirements Guide

Requirements

	1. Kvm4nfv Requirements
	1.1. Introduction

	1.2. Scope and Purpose

	1.3. Methods and Instrumentation

	1.4. Features to be tested

	1.5. Dependencies

	1.6. Reference

KVM4NFV Configuration Guide

Configuration Guide

	1. Configuration Abstract

	2. Configuration Options

	3. Scenariomatrix
	3.1. Euphrates scenario overeview

	3.2. Scenario Naming

	3.3. Installing your scenario

	4. Low Latency Feature Configuration Description
	4.1. Introduction

	4.2. Configuration of Cyclictest
	4.2.1. Pre-configuration activities

	4.2.2. Hardware configuration

KVM4NFV Scenarios Overview and Description

Scenario Overview and Description

	1. Scenario Abstract
	1.1. Release Features

	1.2. E- Release Scenario’s overview

	2. KVM4NFV Scenario-Description
	2.1. Abstract

	2.2. Version Features

	2.3. Introduction

	2.4. System pre-requisites

	2.5. Environment Setup
	2.5.1. Enable network access after the installation

	2.5.2. Configuring Proxy

	2.5.3. Install redsocks

	2.5.4. Network Time Protocol (NTP) setup and configuration

	2.6. Scenario Testing
	2.6.1. Fuel

	2.6.2. Apex

	2.6.3. OPNFV-Playground

	2.6.4. Jenkins Project

os-nosdn-kvm_ovs_dpdk-noha Overview and Description

os-nosdn-kvm_ovs_dpdk-noha

	1. os-nosdn-kvm_ovs_dpdk-noha Description
	1.1. Introduction

	1.2. Scenario Components and Composition

	1.3. Scenario Usage Overview

	1.4. Scenario Components and Composition

	1.5. Scenario Usage Overview

	1.6. References

os-nosdn-kvm_ovs_dpdk-ha Overview and Description

os-nosdn-kvm_ovs_dpdk-ha

	1. os-nosdn-kvm_ovs_dpdk-ha Description
	1.1. Introduction

	1.2. Scenario Components and Composition

	1.3. Scenario Usage Overview

	1.4. Scenario Components and Composition

	1.5. Scenario Usage Overview

	1.6. References

os-nosdn-kvm_ovs_dpdk_bar-noha Overview and Description

os-nosdn-kvm_ovs_dpdk_bar-noha

	1. os-nosdn-kvm_ovs_dpdk_bar-ha Description
	1.1. Introduction

	1.2. Scenario Components and Composition

	1.3. Scenario Usage Overview

	1.4. Known Limitations, Issues and Workarounds

	1.5. References

os-nosdn-kvm_ovs_dpdk_bar-ha Overview and Description

os-nosdn-kvm_ovs_dpdk_bar-ha

	1. os-nosdn-kvm_ovs_dpdk_bar-ha Description
	1.1. Introduction

	1.2. Scenario Components and Composition

	1.3. Scenario Usage Overview

	1.4. Known Limitations, Issues and Workarounds

	1.5. References

KVM4NFV User Guide

User Guide

	1. Userguide Abstract

	2. Userguide Introduction
	2.1. Overview

	2.2. KVM4NFV Features

	2.3. General usage guidelines

	2.4. Scenarios User Guide

	3. Using common platform components

	4. Using Euphrates Features

	5. FTrace Debugging Tool
	5.1. About Ftrace

	5.2. Version Features

	5.3. Implementation of Ftrace

	5.4. Files in Ftrace:

	5.5. Avaliable Tracers

	5.6. Ftrace in KVM4NFV

	5.7. Ftrace Usage in KVM4NFV Kernel Debugging:

	5.8. Enabling Ftrace in KVM4NFV

	5.9. Details of enable_trace script

	5.10. BREAKTRACE

	5.11. Post-execute scripts

	5.12. Details of disable_trace Script

	5.13. Publishing Ftrace logs:

	6. KVM4NFV Dashboard Guide
	6.1. Dashboard for KVM4NFV Daily Test Results

	6.2. Abstract

	6.3. Version Features

	6.4. Installation Steps:

	6.5. Configuring the Dispatcher Type:
	6.5.1. Detailing the dispatcher module in verify and daily Jobs:

	6.6. Understanding Kvm4nfv Grafana Dashboard
	6.6.1. 1. Idle-Idle Graph

	6.6.2. 2. CPU_Stress-Idle Graph

	6.6.3. 3. Memory_Stress-Idle Graph

	6.6.4. 4. IO_Stress-Idle Graph

	6.6.5. Packet Forwarding Results

	6.7. Understanding Kvm4nfv Grafana Dashboard

	6.8. Future Scope

	7. Low Latency Environment
	7.1. Hardware Environment Description
	7.1.1. CPU Features

	7.1.2. CPU Topology

	7.1.3. BIOS Setup

	7.2. Software Environment Setup
	7.2.1. Kernel Parameter

	7.2.2. Run-time Environment Setup

	7.3. Test cases to measure Latency

	7.4. 1. Cyclictest case
	7.4.1. Understanding the naming convention

	7.4.2. Version Features

	7.4.3. Idle-Idle test-type

	7.4.4. CPU_Stress-Idle test-type

	7.4.5. Memory_Stress-Idle test-type

	7.4.6. IO_Stress-Idle test-type

	7.4.7. CPU_Stress-CPU_Stress test-type

	7.4.8. Memory_Stress-Memory_Stress test-type

	7.4.9. IO_Stress-IO_Stress test type

	7.5. 2. Packet Forwarding Test cases
	7.5.1. Packet forwarding to Host

	7.5.2. Packet forwarding to Guest

	7.5.3. Packet forwarding to Guest using SRIOV

	8. Fast Live Migration
	8.1. Current Challenges

	8.2. Optimizations

	8.3. Test Environment

	8.4. Test Result

	9. Euphrates OpenStack User Guide
	9.1. OpenStack references

	9.2. Connecting to the OpenStack instance

	10. Packet Forwarding
	10.1. About Packet Forwarding

	10.2. Version Features

	10.3. VSPERF
	10.3.1. Installation

	10.3.2. Supported Operating Systems

	10.3.3. Supported vSwitches

	10.3.4. Supported Hypervisors

	10.3.5. Other Requirements

	10.3.6. For CentOS 7

	10.3.7. Working Behind a Proxy

	10.4. Traffic-Generators

	10.5. IXIA Setup
	10.5.1. Hardware Requirements

	10.5.2. Installation

	10.5.3. On the CentOS 7 system

	10.5.4. On the IXIA client software system

	10.6. VSPERF configuration
	10.6.1. Test results share

	10.6.2. Cloning and building src dependencies

	10.6.3. Configure the ./conf/10_custom.conf file

	10.6.4. Using a custom settings file

	10.6.5. vloop_vnf

	10.6.6. l2fwd Kernel Module

	10.6.7. Executing tests

	10.7. Testcases

	10.8. VSPERF modes of operation

	10.9. Packet Forwarding Test Scenarios
	10.9.1. Packet Forwarding Host Scenario

	10.9.2. Packet Forwarding Guest Scenario (PXP Deployment)

	10.9.3. Packet Forwarding SRIOV Scenario

	10.9.4. Using vfio_pci with DPDK

	10.9.5. Using SRIOV support

	10.9.6. Results

	11. PCM Utility in KVM4NFV
	11.1. Collecting Memory Bandwidth Information using PCM utility

	11.2. About PCM utility

	11.3. Version Features
	11.3.1. Implementation of pcm-memory.x:

	11.3.2. pcm-memory.x in KVM4NFV:

	11.4. Future Scope

	12. Low Latency Tunning Suggestion
	12.1. Platform Configuration

	12.2. Operating System Configuration

KVM4NFV Releasenotes

1. KVM4NFV Project Overview

1.1. Project Purpose

Purpose:

This document provides an overview of the areas that can be addressed to
enhance the KVM Hypervisor for NFV. It is intended to capture and convey the
significant changes which have been made on the KVM Hypervisor.

1.2. Project Description

The NFV hypervisors provide crucial functionality in the NFV
Infrastructure(NFVI).The existing hypervisors, however, are not necessarily
designed or targeted to meet the requirements for the NFVI.

This design focuses on the enhancement of following area for KVM Hypervisor

	
	Minimal Interrupt latency variation for data plane VNFs:

	
	Minimal Timing Variation for Timing correctness of real-time VNFs

	Minimal packet latency variation for data-plane VNFs

	Fast live migration

The detailed understanding of this project is organized into different sections-

	installation procedure - This will give the user instructions on how to deploy
available KVM4NFV build scenario.

	design - This includes the parameters or design considerations taken into
account for achieving minimal interrupt latency for the data VNFs.

	requirements - This includes the introduction of KVM4NFV project,
specifications of how the project should work, and constraints placed upon
its execution.

	configuration guide - This provides guidance for configuring KVM4NFV
environment, even with the use of specific installer tools for deploying some
components, available in the Euphrates release of OPNFV.

	scenarios - This includes the sceanrios that are currently implemented in the
kvm4nfv project,features of each scenario and a general guide to how to deploy them.

	userguide - This provides the required technical assistance to the user, in
using the KVM4NFV process.

	release notes - This describes a brief summary of recent changes, enhancements
and bug fixes in the KVM4NFV project.

	glossary - It includes the definition of terms, used in the KVM4NFV project.

1. Abstract

This document will give the instructions to user on how to deploy available
KVM4NFV build scenario verfied for the Euphrates release of the OPNFV
platform.

2. KVM4NFV Installation Instruction

2.1. Preparing the installation

The OPNFV project- KVM4NFV (https://gerrit.opnfv.org/gerrit/kvmfornfv.git) is
cloned first, to make the build scripts for Qemu & Kernel, Rpms and Debians
available.

2.2. HW requirements

These build scripts are triggered on the Jenkins-Slave build server. Currently
Intel POD10 is used as test environment for kvm4nfv to execute cyclictest. As
part of this test environment Intel pod10-jump is configured as jenkins slave
and all the latest build artifacts are downloaded on to it. Intel pod10-node1
is the host on which a guest vm will be launched as a part of running cylictest
through yardstick.

2.3. Build instructions

Builds are possible for the following packages-

kvmfornfv source code

The ./ci/build.sh is the main script used to trigger
the Rpms (on ‘centos’) and Debians (on ‘ubuntu’) builds in this case.

	How to build Kernel/Qemu Rpms- To build rpm packages, build.sh script is run
with -p and -o option (i.e. if -p package option is passed as “centos” or in
default case). Example:

cd kvmfornfv/

For Kernel/Qemu RPMs,
sh ./ci/build.sh -p centos -o build_output

	How to build Kernel/Qemu Debians- To build debian packages, build.sh script
is run with -p and -o option (i.e. if -p package option is passed as
“ubuntu”). Example:

cd kvmfornfv/

For Kernel/Qemu Debians,
sh ./ci/build.sh -p ubuntu -o build_output

	How to build all Kernel & Qemu, Rpms & Debians- To build both debian and rpm
packages, build.sh script is run with -p and -o option (i.e. if -p package
option is passed as “both”). Example:

cd kvmfornfv/

For Kernel/Qemu RPMs and Debians,
sh ./ci/build.sh -p both -o build_output

Note

Kvm4nfv can be installed in two ways

	As part of a scenario deployment [http://artifacts.opnfv.org/kvmfornfv/docs/index.html#document-scenarios/kvmfornfv.scenarios.description]

	As a stand alone [http://artifacts.opnfv.org/kvmfornfv/docs/index.html#build-instructions] component

For installation of kvmfornfv as part of scenario deployment use this `link`_

http://artifacts.opnfv.org/kvmfornfv/docs/index.html#document-scenarios/kvmfornfv.scenarios.description

2.4. Installation instructions

Installation can be done in the following ways-

1. From kvmfornfv source code-
The build packages that are prepared in the above section, are installed
differently depending on the platform.

Please visit the links for each-

	Centos : https://www.centos.org/docs/5/html/Deployment_Guide-en-US/s1-rpm-using.html

	Ubuntu : https://help.ubuntu.com/community/InstallingSoftware

2. Using Fuel installer-

	Please refer to the document present at /fuel-plugin/README.md

2.5. Post-installation activities

After the packages are built, test these packages by executing the scripts
present in ci/envs for configuring the host and guest respectively.

3. Release Note for KVM4NFV CICD

3.1. Abstract

This document contains the release notes for the Euphrates release of OPNFV when using KVM4NFV CICD
process.

3.2. Introduction

Provide a brief introduction of how this configuration is used in OPNFV release
using KVM4VFV CICD as scenario.

Be sure to reference your scenario installation instruction.

3.3. Release Data

	Project

	NFV Hypervisors-KVM

	Repo/tag

	kvmfornfv

	Release designation

	

	Release date

	2017-10-06

	Purpose of the delivery

	
	Automate the KVM4VFV CICD scenario

	Executing latency test cases

	Collection of logs for debugging

3.4. Document version change

	The following documents are added-

	
	configurationguide

	installationprocedure

	userguide

	overview

	glossary

	releasenotes

3.5. Reason for new version

3.5.1. Feature additions

	JIRA REFERENCE

	SLOGAN

	JIRA:

	NFV Hypervisors-KVMFORNFV-72

	JIRA:

	NFV Hypervisors-KVMFORNFV-73

	JIRA:

	NFV Hypervisors-KVMFORNFV-78

	JIRA:

	NFV Hypervisors-KVMFORNFV-86

	JIRA:

	NFV Hypervisors-KVMFORNFV-87

	JIRA:

	NFV Hypervisors-KVMFORNFV-88

	JIRA:

	NFV Hypervisors-KVMFORNFV-89

	JIRA:

	VSPERF-510

	JIRA:

	YARDSTICK-783

	JIRA:

	YARDSTICK-815

3.6. Known issues

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	
	

3.7. Workarounds

See JIRA: https://jira.opnfv.org/projects

For more information on the OPNFV Euphrates release, please visit
http://www.opnfv.org/euphrates

1. KVM4NFV design description

This design focuses on the enhancement of following area for KVM Hypervisor

	
	Minimal Interrupt latency variation for data plane VNFs:

	
	Minimal Timing Variation for Timing correctness of real-time VNFs

	Minimal packet latency variation for data-plane VNFs

	Fast live migration

Minimal Interrupt latency variation for data plane VNFs

Processing performance and latency depend on a number of factors, including
the CPUs (frequency, power management features, etc.), micro-architectural
resources, the cache hierarchy and sizes, memory (and hierarchy, such as NUMA)
and speed, inter-connects, I/O and I/O NUMA, devices, etc.

There are two separate types of latencies to minimize:

	Minimal Timing Variation for Timing correctness of real-time
VNFs – timing correctness for scheduling operations(such as Radio scheduling)

	Minimal packet latency variation for data-plane VNFs – packet delay
variation, which applies to packet processing.

For a VM, interrupt latency (time between arrival of H/W interrupt and
invocation of the interrupt handler in the VM), for example, can be either of
the above or both, depending on the type of the device. Interrupt latency with
a (virtual) timer can cause timing correctness issues with real-time VNFs even
if they only use polling for packet processing.

We assume that the VNFs are implemented properly to minimize interrupt latency
variation within the VMs, but we have additional causes of latency variation
on KVM:

	Asynchronous (e.g. external interrupts) and synchronous(e.g. instructions)
VM exits and handling in KVM (and kernel routines called), which may have
loops and spin locks

	Interrupt handling in the host Linux and KVM, scheduling and virtual
interrupt delivery to VNFs

	Potential VM exit (e.g. EOI) in the interrupt service routines in VNFs

	Exit to the user-level (e.g. QEMU)

[image: ../../_images/kvm1.png]

1.1. Design Considerations

The latency variation and jitters can be minimized with the below
steps (with some in parallel):

	Statically and exclusively assign hardware resources
(CPUs, memory, caches,) to the VNFs.

	Pre-allocate huge pages (e.g. 1 GB/2MB pages) and guest-to-host mapping,
e.g. EPT (Extended Page Table) page tables, to minimize or mitigate
latency from misses in caches,

	Use the host Linux configured for hard real-time and packet latency,
Check the set of virtual devices used by the VMs to optimize or
eliminate virtualization overhead if applicable

	Use advanced hardware virtualization features that can reduce or
eliminate VM exits, if present, and

	Inspect the code paths in KVM and associated kernel services to
eliminate code that can cause latencies (e.g. loops and spin locks).

	Measure latencies intensively. We leverage the existing testing methods.
OSADL, for example, defines industry tests for timing correctness.

1.2. Goals and Guidelines

The output of this project will provide :

	A list of the performance goals, which will be obtained by the
OPNFV members (as described above)

	A set of comprehensive instructions for the system configurations
(hardware features, BIOS setup, kernel parameters, VM configuration,
options to QEMU/KVM, etc.)

	The above features to the upstream of Linux, the real-time patch
set, KVM, QEMU, libvirt, and

	Performance and interrupt latency measurement tools

1.3. Test plan

The tests that need to be conducted to make sure that all components from OPNFV
meet the requirement are mentioned below:

Timer test:This test utilize the cyclictest
(https://rt.wiki.kernel.org/index.php/Cyclictest) to test the guest timer
latency (the latency from the time that the guest timer should be triggered
to the time the guest timer is really triggered).

[image: ../../_images/TimerTest.png]

Device Interrupt Test:A device on the hardware platform trigger interrupt
every one ms and the device interrupt will be delivered to the VNF. This test
cover the latency from the interrupt happened on the hardware to the time the
interrupt handled in the VNF.

[image: ../../_images/DeviceInterruptTest.png]

Packet forwarding (DPDK OVS):A packet is sent from TG (Traffic Generator)
to a VNF. The VNF, after processing the packet, forwards the packet to another
NIC and in the end the packet is received by the traffic generator. The test
check the latency from the packet is sent out by the TC to the time the packet
is received by the TC.

[image: ../../_images/PacketforwardingDPDK_OVS.png]

Packet Forwarding (SR-IOV):This test is similar to Packet Forwarding
(DPDK OVS). However, instead of using virtio NIC devices on the guest,
a PCI NIC or a PCI VF NIC is assigned to the guest for network acess.

Bare-metal Packet Forwarding:This is used to compare with the above
packet forwarding scenario.

[image: ../../_images/Bare-metalPacketForwarding.png]

1.3.1. Reference

https://wiki.opnfv.org/display/kvm/

1. Kvm4nfv Requirements

1.1. Introduction

The NFV hypervisors provide crucial functionality in the NFV
Infrastructure(NFVI).The existing hypervisors, however, are not necessarily
designed or targeted to meet the requirements for the NFVI.

This document specifies the list of requirements that need to be met as part
of this “NFV Hypervisors-KVM” project in Euphrates release.

As part of this project we need to make collaborative efforts towards enabling
the NFV features.

1.2. Scope and Purpose

The main purpose of this project is to enhance the KVM hypervisor for NFV, by
looking at the following areas initially:

	
	Minimal Interrupt latency variation for data plane VNFs:

	
	Minimal Timing Variation for Timing correctness of real-time VNFs

	Minimal packet latency variation for data-plane VNFs

	Inter-VM communication

	Fast live migration

The output of this project would be list of the performance goals,comprehensive
instructions for the system configurations,tools to measure Performance and
interrupt latency.

1.3. Methods and Instrumentation

The above areas would require software development and/or specific hardware
features, and some need just configurations information for the system
(hardware, BIOS, OS, etc.).

A right configuration is critical for improving the NFV performance/latency.
Even working on the same code base, different configurations can make
completely different performance/latency result.
Configurations that can be made as part of this project to tune a specific
scenario are:

	Platform Configuration : Some hardware features like Power management,
Hyper-Threading,Legacy USB Support/Port 60/64 Emulation,SMI can be configured.

	Operating System Configuration : Some configuration features like CPU
isolation,Memory allocation,IRQ affinity,Device assignment for VM,Tickless,
TSC,Idle,_RCU_NOCB_,Disable the RT throttling,NUMA can be configured.

	Performance/Latency Tuning : Application level configurations like
timers,Making vfio MSI interrupt as non-threaded,Cache Allocation
Technology(CAT) enabling can be tuned to improve the NFV
performance/latency.

1.4. Features to be tested

	The tests that need to be conducted to make sure that latency is addressed are:

	
	Timer test

	Device Interrupt Test

	Packet forwarding (DPDK OVS)

	Packet Forwarding (SR-IOV)

	Bare-metal Packet Forwarding

1.5. Dependencies

	OPNFV Project: “Characterize vSwitch Performance for Telco NFV Use Cases”
(VSPERF) for performance evaluation of ivshmem vs. vhost-user.

	OPNFV Project: “Pharos” for Test Bed Infrastructure, and possibly
“Yardstick” for infrastructure verification.

	There are currently no similar projects underway in OPNFV or in an upstream
project

	The relevant upstream project to be influenced here is QEMU/KVM and
libvirt.

	In terms of HW dependencies, the aim is to use standard IA Server hardware
for this project, as provided by OPNFV Pharos.

1.6. Reference

https://wiki.opnfv.org/display/kvm/

1. Configuration Abstract

This document provides guidance for the configurations available in the
Euphrates release of OPNFV

The release includes four installer tools leveraging different technologies;
Apex, Compass4nfv, Fuel and JOID, which deploy components of the platform.

This document also includes the selection of tools and components including
guidelines for how to deploy and configure the platform to an operational
state.

2. Configuration Options

OPNFV provides a variety of virtual infrastructure deployments called scenarios
designed to host virtualised network functions (VNF’s). KVM4NFV scenarios
provide specific capabilities and/or components aimed to solve specific
problems for the deployment of VNF’s. KVM4NFV scenario includes components
such as OpenStack,KVM etc. which includes different source components or
configurations.

Note

	Each KVM4NFV scenario [http://artifacts.opnfv.org/kvmfornfv/docs/index.html#document-scenarios/kvmfornfv.scenarios.description] provides unique features and capabilities, it is
important to understand your target platform capabilities before installing
and configuring. This configuration guide outlines how to configure components
in order to enable the features required.

	More deatils of kvm4nfv scenarios installation and description can be found in the scenario guide [http://artifacts.opnfv.org/kvmfornfv/docs/index.html#document-scenarios/abstract] of kvm4nfv docs

3. Scenariomatrix

Scenarios are implemented as deployable compositions through integration with an installation tool.
OPNFV supports multiple installation tools and for any given release not all tools will support all
scenarios. While our target is to establish parity across the installation tools to ensure they
can provide all scenarios, the practical challenge of achieving that goal for any given feature and
release results in some disparity.

3.1. Euphrates scenario overeview

The following table provides an overview of the installation tools and available scenario’s
in the Euphrates release of OPNFV.

Scenario status is indicated by a weather pattern icon. All scenarios listed with
a weather pattern are possible to deploy and run in your environment or a Pharos lab,
however they may have known limitations or issues as indicated by the icon.

Weather pattern icon legend:

	Weather Icon

	Scenario Status

	[image: ../../_images/weather-clear.jpg]

	Stable, no known issues

	[image: ../../_images/weather-few-clouds.jpg]

	Stable, documented limitations

	[image: ../../_images/weather-overcast.jpg]

	Deployable, stability or feature limitations

	[image: ../../_images/weather-dash.jpg]

	Not deployed with this installer

Scenarios that are not yet in a state of “Stable, no known issues” will continue to be stabilised
and updates will be made on the stable/euphrates branch. While we intend that all Euphrates
scenarios should be stable it is worth checking regularly to see the current status. Due to
our dependency on upstream communities and code, some issues may not be resolved prior to E release.

3.2. Scenario Naming

In OPNFV scenarios are identified by short scenario names, these names follow a scheme that
identifies the key components and behaviours of the scenario. The rules for scenario naming are as
follows:

os-[controller]-[feature]-[mode]-[option]

Details of the fields are

	[os]: mandatory

	Refers to the platform type used

	possible value: os (OpenStack)

	[controller]: mandatory

	Refers to the SDN controller integrated in the platform

	example values: nosdn, ocl, odl, onos

	[feature]: mandatory

	Refers to the feature projects supported by the scenario

	example values: nofeature, kvm, ovs, sfc

	[mode]: mandatory

	Refers to the deployment type, which may include for instance high availability

	possible values: ha, noha

	[option]: optional

	Used for the scenarios those do not fit into naming scheme.

	The optional field in the short scenario name should not be included if there is no optional

scenario.

Some examples of supported scenario names are:

	os-nosdn-kvm-noha

	This is an OpenStack based deployment using neutron including the OPNFV enhanced KVM hypervisor

	os-onos-nofeature-ha

	This is an OpenStack deployment in high availability mode including ONOS as the SDN controller

	os-odl_l2-sfc

	This is an OpenStack deployment using OpenDaylight and OVS enabled with SFC features

	os-nosdn-kvm_ovs_dpdk-ha

	This is an Openstack deployment with high availability using OVS, DPDK including the OPNFV

enhanced KVM hypervisor
* This deployment has 3-Contoller and 2-Compute nodes

	os-nosdn-kvm_ovs_dpdk-noha

	This is an Openstack deployment without high availability using OVS, DPDK including the OPNFV

enhanced KVM hypervisor
* This deployment has 1-Contoller and 3-Compute nodes

	os-nosdn-kvm_ovs_dpdk_bar-ha

	This is an Openstack deployment with high availability using OVS, DPDK including the OPNFV

	enhanced KVM hypervisor

	and Barometer

	This deployment has 3-Contoller and 2-Compute nodes

	os-nosdn-kvm_ovs_dpdk_bar-noha

	This is an Openstack deployment without high availability using OVS, DPDK including the OPNFV

	enhanced KVM hypervisor

	and Barometer

	This deployment has 1-Contoller and 3-Compute nodes

3.3. Installing your scenario

There are two main methods of deploying your target scenario, one method is to follow this guide
which will walk you through the process of deploying to your hardware using scripts or ISO images,
the other method is to set up a Jenkins slave and connect your infrastructure to the OPNFV Jenkins
master.

For the purposes of evaluation and development a number of Euphrates scenarios are able to be
deployed virtually to mitigate the requirements on physical infrastructure. Details and instructions
on performing virtual deployments can be found in the installer specific installation instructions.

To set up a Jenkins slave for automated deployment to your lab, refer to the Jenkins slave connect
guide. [http://artifacts.opnfv.org/brahmaputra.1.0/docs/opnfv-jenkins-slave-connection.brahmaputra.1.0.html]

4. Low Latency Feature Configuration Description

4.1. Introduction

In KVM4NFV project, we focus on the KVM hypervisor to enhance it for NFV, by
looking at the following areas initially

	
	Minimal Interrupt latency variation for data plane VNFs:

	
	Minimal Timing Variation for Timing correctness of real-time VNFs

	Minimal packet latency variation for data-plane VNFs

	Inter-VM communication,

	Fast live migration

4.2. Configuration of Cyclictest

Cyclictest measures Latency of response to a stimulus. Achieving low latency
with the KVM4NFV project requires setting up a special test environment.
This environment includes the BIOS settings, kernel configuration, kernel
parameters and the run-time environment.

	For more information regarding the test environment, please visit
https://wiki.opnfv.org/display/kvm/KVM4NFV+Test++Environment
https://wiki.opnfv.org/display/kvm/Nfv-kvm-tuning

4.2.1. Pre-configuration activities

Intel POD10 is currently used as OPNFV-KVM4NFV test environment. The rpm
packages from the latest build are downloaded onto Intel-Pod10 jump server
from artifact repository. Yardstick running in a ubuntu docker container
on Intel Pod10-jump server will configure the host(intel pod10 node1/node2
based on job type), the guest and triggers the cyclictest on the guest using
below sample yaml file.

For IDLE-IDLE test,

host_setup_seqs:
- "host-setup0.sh"
- "reboot"
- "host-setup1.sh"
- "host-run-qemu.sh"

guest_setup_seqs:
- "guest-setup0.sh"
- "reboot"
- "guest-setup1.sh"

[image: ../../_images/idle-idle-test.png]

For [CPU/Memory/IO]Stress-IDLE tests,

host_setup_seqs:
- "host-setup0.sh"
- "reboot"
- "host-setup1.sh"
- "stress_daily.sh" [cpustress/memory/io]
- "host-run-qemu.sh"

guest_setup_seqs:
- "guest-setup0.sh"
- "reboot"
- "guest-setup1.sh"

[image: ../../_images/stress-idle-test.png]

The following scripts are used for configuring host and guest to create a
special test environment and achieve low latency.

Note: host-setup0.sh, host-setup1.sh and host-run-qemu.sh are run on the host,
followed by guest-setup0.sh and guest-setup1.sh scripts on the guest VM.

host-setup0.sh: Running this script will install the latest kernel rpm
on host and will make necessary changes as following to create special test
environment.

	Isolates CPUs from the general scheduler

	Stops timer ticks on isolated CPUs whenever possible

	Stops RCU callbacks on isolated CPUs

	Enables intel iommu driver and disables DMA translation for devices

	Sets HugeTLB pages to 1GB

	Disables machine check

	Disables clocksource verification at runtime

host-setup1.sh: Running this script will make the following test
environment changes.

	Disabling watchdogs to reduce overhead

	Disabling RT throttling

	Reroute interrupts bound to isolated CPUs to CPU 0

	Change the iptable so that we can ssh to the guest remotely

stress_daily.sh: Scripts gets triggered only for stress-idle tests. Running this script
make the following environment changes.

	Triggers stress_script.sh, which runs the stress command with necessary options

	CPU,Memory or IO stress can be applied based on the test type

	Applying stress only on the Host is handled in D-Release

	For Idle-Idle test the stress script is not triggered

	Stress is applied only on the free cores to prevent load on qemu process

	Note:

	
	On Numa Node 1: 22,23 cores are allocated for QEMU process

	24-43 are used for applying stress

	host-run-qemu.sh: Running this script will launch a guest vm on the host.

	Note: download guest disk image from artifactory.

guest-setup0.sh: Running this scrcipt on the guest vm will install the
latest build kernel rpm, cyclictest and make the following configuration on
guest vm.

	Isolates CPUs from the general scheduler

	Stops timer ticks on isolated CPUs whenever possible

	Uses polling idle loop to improve performance

	Disables clocksource verification at runtime

guest-setup1.sh: Running this script on guest vm will do the following
configurations.

	Disable watchdogs to reduce overhead

	Routes device interrupts to non-RT CPU

	Disables RT throttling

4.2.2. Hardware configuration

Currently Intel POD10 is used as test environment for kvm4nfv to execute
cyclictest. As part of this test environment Intel pod10-jump is configured as
jenkins slave and all the latest build artifacts are downloaded on to it.

	For more information regarding hardware configuration, please visit
https://wiki.opnfv.org/display/pharos/Intel+Pod10
https://build.opnfv.org/ci/computer/intel-pod10/
http://artifacts.opnfv.org/octopus/brahmaputra/docs/octopus_docs/opnfv-jenkins-slave-connection.html

1. Scenario Abstract

This chapter includes detailed explanation of various scenarios files deployed as part
of kvm4nfv E-Release.

1.1. Release Features

	Scenario Name

	Colorado

	Danube

	Euphrates

	
	os-nosdn-kvm-ha

	Y

	Y

	

	
	os-nosdn-kvm_ovs_dpdk-noha

	
	Y

	Y

	
	os-nosdn-kvm_ovs_dpdk-ha

	
	Y

	Y

	
	os-nosdn-kvm_ovs_dpdk_bar-noha

	
	Y

	

	
	os-nosdn-kvm_ovs_dpdk_bar-ha

	
	Y

	

1.2. E- Release Scenario’s overview

	Scenario Name

	No of Controllers

	No of Computes

	Plugin Names

	DPDK

	OVS

	
	os-nosdn-kvm_ovs_dpdk-noha

	1

	1

	KVM

	Y

	Y

	
	os-nosdn-kvm_ovs_dpdk-ha

	3

	2

	KVM

	Y

	Y

2. KVM4NFV Scenario-Description

2.1. Abstract

This document describes the procedure to deploy/test KVM4NFV scenarios in a nested virtualization
environment. This has been verified with os-nosdn-kvm-ha, os-nosdn-kvm-noha,os-nosdn-kvm_ovs_dpdk-ha,
os-nosdn-kvm_ovs_dpdk-noha and os-nosdn-kvm_ovs_dpdk_bar-ha test scenarios.

2.2. Version Features

	Release

	Features

	Colorado

	
	Scenario Testing feature was not part of
the Colorado release of KVM4NFV

	Danube

	
	High Availability/No-High Availability
deployment configuration of KVM4NFV
software suite using Fuel

	Multi-node setup with 3 controller and
2 compute nodes are deployed for HA

	Multi-node setup with 1 controller and
3 compute nodes are deployed for NO-HA

	Scenarios os-nosdn-kvm_ovs_dpdk-ha,
os-nosdn-kvm_ovs_dpdk_bar-ha,
os-nosdn-kvm_ovs_dpdk-noha,
os-nosdn-kvm_ovs_dpdk_bar-noha
are supported

	Euphrates

	
	High Availability/No-High Availability
deployment configuration of KVM4NFV
software suite using Apex

	Multi-node setup with 3 controller and
2 compute nodes are deployed for HA

	Multi-node setup with 1 controller and
1 compute node are deployed for NO-HA

	Scenarios os-nosdn-kvm_ovs_dpdk-ha,
os-nosdn-kvm_ovs_dpdk-noha,
are supported

2.3. Introduction

The purpose of os-nosdn-kvm_ovs_dpdk-ha,os-nosdn-kvm_ovs_dpdk_bar-ha and
os-nosdn-kvm_ovs_dpdk-noha,os-nosdn-kvm_ovs_dpdk_bar-noha scenarios testing is to
test the High Availability/No-High Availability deployment and configuration of
OPNFV software suite with OpenStack and without SDN software.

This OPNFV software suite includes OPNFV KVM4NFV latest software packages
for Linux Kernel and QEMU patches for achieving low latency and also OPNFV Barometer for traffic,
performance and platform monitoring.

When using Fuel installer, High Availability feature is achieved by deploying OpenStack
multi-node setup with 1 Fuel-Master,3 controllers and 2 computes nodes. No-High Availability
feature is achieved by deploying OpenStack multi-node setup with 1 Fuel-Master,1 controllers
and 3 computes nodes.

When using Apex installer, High Availability feature is achieved by deploying Openstack
multi-node setup with 1 undercloud, 3 overcloud controllers and 2 overcloud compute nodes.
No-High Availability feature is achieved by deploying Openstack multi-node setup with
1 undercloud, 1 overcloud controller and 1 overcloud compute nodes.

KVM4NFV packages will be installed on compute nodes as part of deployment.
The scenario testcase deploys a multi-node setup by using OPNFV Fuel and Apex deployer.

2.4. System pre-requisites

	RAM - Minimum 16GB

	HARD DISK - Minimum 500GB

	Linux OS installed and running

	Nested Virtualization enabled, which can be checked by,

$ cat /sys/module/kvm_intel/parameters/nested
 Y

$ cat /proc/cpuinfo | grep vmx

Note:
If Nested virtualization is disabled, enable it by,

For Ubuntu:
$ modeprobe kvm_intel
$ echo Y > /sys/module/kvm_intel/parameters/nested
$ sudo reboot

For RHEL:
$ cat << EOF > /etc/modprobe.d/kvm_intel.conf
 options kvm-intel nested=1
 options kvm-intel enable_shadow_vmcs=1
 options kvm-intel enable_apicv=1
 options kvm-intel ept=1
 EOF
$ cat << EOF > /etc/sysctl.d/98-rp-filter.conf
 net.ipv4.conf.default.rp_filter = 0
 net.ipv4.conf.all.rp_filter = 0
 EOF
$ sudo reboot

2.5. Environment Setup

2.5.1. Enable network access after the installation

For CentOS.,
Login as “root” user. After the installation complete, the Ethernet interfaces are not enabled by
the default in Centos 7, you need to change the line “ONBOOT=no” to “ONBOOT=yes” in the network
interface configuration file (such as ifcfg-enp6s0f0 or ifcfg-em1 … whichever you want to connect)
in /etc/sysconfig/network-scripts sub-directory. The default BOOTPROTO is dhcp in the network
interface configuration file. Then use following command to enable the network access:

systemctl restart network

2.5.2. Configuring Proxy

For Ubuntu.,
Create an apt.conf file in /etc/apt if it doesn’t exist. Used to set proxy for apt-get if working
behind a proxy server.

Acquire::http::proxy "http://<username>:<password>@<proxy>:<port>/";
Acquire::https::proxy "https://<username>:<password>@<proxy>:<port>/";
Acquire::ftp::proxy "ftp://<username>:<password>@<proxy>:<port>/";
Acquire::socks::proxy "socks://<username>:<password>@<proxy>:<port>/";

For CentOS.,
Edit /etc/yum.conf to work behind a proxy server by adding the below line.

$ echo "proxy=http://<username>:<password>@<proxy>:<port>/" >> /etc/yum.conf

2.5.3. Install redsocks

For CentOS.,
Since there is no redsocks package for CentOS Linux release 7.2.1511, you need build redsocks from
source yourself. Using following commands to create “proxy_redsocks” sub-directory at /root:

cd ~
mkdir proxy_redsocks

Since you can’t download file at your Centos system yet. At other Centos or Ubuntu system, use
following command to download redsocks source for Centos into a file “redsocks-src”;

wget -O redsocks-src --no-check-certificate https://github.com/darkk/redsocks/zipball/master

Also download libevent-devel-2.0.21-4.el7.x86_64.rpm by:

wget ftp://fr2.rpmfind.net/linux/centos/7.2.1511/os/x86_64/Packages/libevent-devel-2.0.21-4.el7.x86_64.rpm

Copy both redsock-src and libevent-devel-2.0.21-4.el7.x86_64.rpm files into ~/proxy_redsocks in your
Centos system by “scp”.

Back to your Centos system, first install libevent-devel using libevent-devel-2.0.21-4.el7.x86_64.rpm
as below:

cd ~/proxy_redsocks
yum install –y libevent-devel-2.0.21-4.el7.x86_64.rpm

Build redsocks by:

cd ~/proxy_redsocks
unzip redsocks-src
cd darkk-redsocks-78a73fc
yum –y install gcc
make
cp redsocks ~/proxy_redsocks/.

Create a redsocks.conf in ~/proxy_redsocks with following contents:

base {
log_debug = on;
log_info = on;
log = "file:/root/proxy.log";
daemon = on;
redirector = iptables;
}
redsocks {
local_ip = 0.0.0.0;
local_port = 6666;
// socks5 proxy server
ip = <proxy>;
port = 1080;
type = socks5;
}
redudp {
local_ip = 0.0.0.0;
local_port = 8888;
ip = <proxy>;
port = 1080;
}
dnstc {
local_ip = 127.0.0.1;
local_port = 5300;
}

Start redsocks service by:

cd ~/proxy_redsocks
./redsocks –c redsocks.conf

Note
The redsocks service is not persistent and you need to execute the above-mentioned commands after
every reboot.

Create intc-proxy.sh in ~/proxy_redsocks with following contents and make it executable by
“chmod +x intc-proxy.sh”:

iptables -t nat -N REDSOCKS
iptables -t nat -A REDSOCKS -d 0.0.0.0/8 -j RETURN
iptables -t nat -A REDSOCKS -d 10.0.0.0/8 -j RETURN
iptables -t nat -A REDSOCKS -d 127.0.0.0/8 -j RETURN
iptables -t nat -A REDSOCKS -d 169.254.0.0/16 -j RETURN
iptables -t nat -A REDSOCKS -d 172.16.0.0/12 -j RETURN
iptables -t nat -A REDSOCKS -d 192.168.0.0/16 -j RETURN
iptables -t nat -A REDSOCKS -d 224.0.0.0/4 -j RETURN
iptables -t nat -A REDSOCKS -d 240.0.0.0/4 -j RETURN
iptables -t nat -A REDSOCKS -p tcp -j REDIRECT --to-ports 6666
iptables -t nat -A REDSOCKS -p udp -j REDIRECT --to-ports 8888
iptables -t nat -A OUTPUT -p tcp -j REDSOCKS
iptables -t nat -A PREROUTING -p tcp -j REDSOCKS

Enable the REDSOCKS nat chain rule by:

cd ~/proxy_redsocks
./intc-proxy.sh

Note
These REDSOCKS nat chain rules are not persistent and you need to execute the above-mentioned
commands after every reboot.

2.5.4. Network Time Protocol (NTP) setup and configuration

Install ntp by:

$ sudo apt-get update
$ sudo apt-get install -y ntp

Insert the following two lines after “server ntp.ubuntu.com” line and before “ # Access control
configuration; see link for” line in /etc/ntp.conf file:

server 127.127.1.0
fudge 127.127.1.0 stratum 10

Restart the ntp server to apply the changes

$ sudo service ntp restart

2.6. Scenario Testing

	There are three ways of performing scenario testing,

	
	1 Fuel

	2 Apex

	3 OPNFV-Playground

	4 Jenkins Project

2.6.1. Fuel

1 Clone the fuel repo :

$ git clone https://gerrit.opnfv.org/gerrit/fuel.git

2 Checkout to the specific version of the branch to deploy by:

The default branch is master, to use a stable release-version use the below.,

3 Building the Fuel iso :

$ cd ~/fuel/ci/
$./build.sh -h

Provide the necessary options that are required to build an iso.
Create a customized iso as per the deployment needs.

$ cd ~/fuel/build/
$ make

(OR) Other way is to download the latest stable fuel iso from here [http://artifacts.opnfv.org/fuel.html].

http://artifacts.opnfv.org/fuel.html

4 Creating a new deployment scenario

(i). Naming the scenario file

Include the new deployment scenario yaml file in ~/fuel/deploy/scenario/. The file name should adhere to the following format:

<ha | no-ha>_<SDN Controller>_<feature-1>_..._<feature-n>.yaml

(ii). Meta data

The deployment configuration file should contain configuration metadata as stated below:

deployment-scenario-metadata:
 title:
 version:
 created:

(iii). “stack-extentions” Module

To include fuel plugins in the deployment configuration file, use the “stack-extentions” key:

Example:
 stack-extensions:
 - module: fuel-plugin-collectd-ceilometer
 module-config-name: fuel-barometer
 module-config-version: 1.0.0
 module-config-override:
 #module-config overrides

Note:
The “module-config-name” and “module-config-version” should be same as the name of plugin
configuration file.

The “module-config-override” is used to configure the plugin by overrriding the corresponding keys in
the plugin config yaml file present in ~/fuel/deploy/config/plugins/.

(iv). “dea-override-config” Module

To configure the HA/No-HA mode, network segmentation types and role to node assignments, use the
“dea-override-config” key.

Example:
dea-override-config:
 environment:
 mode: ha
 net_segment_type: tun
 nodes:
 - id: 1
 interfaces: interfaces_1
 role: mongo,controller,opendaylight
 - id: 2
 interfaces: interfaces_1
 role: mongo,controller
 - id: 3
 interfaces: interfaces_1
 role: mongo,controller
 - id: 4
 interfaces: interfaces_1
 role: ceph-osd,compute
 - id: 5
 interfaces: interfaces_1
 role: ceph-osd,compute
settings:
 editable:
 storage:
 ephemeral_ceph:
 description: Configures Nova to store ephemeral volumes in RBD.
 This works best if Ceph is enabled for volumes and images, too.
 Enables live migration of all types of Ceph backed VMs (without this
 option, live migration will only work with VMs launched from
 Cinder volumes).
 label: Ceph RBD for ephemeral volumes (Nova)
 type: checkbox
 value: true
 weight: 75
 images_ceph:
 description: Configures Glance to use the Ceph RBD backend to store
 images.If enabled, this option will prevent Swift from installing.
 label: Ceph RBD for images (Glance)
 restrictions:
 - settings:storage.images_vcenter.value == true: Only one Glance
 backend could be selected.
 type: checkbox
 value: true
 weight: 30

Under the “dea-override-config” should provide atleast {environment:{mode:’value},{net_segment_type:’value’}
and {nodes:1,2,…} and can also enable additional stack features such ceph,heat which overrides
corresponding keys in the dea_base.yaml and dea_pod_override.yaml.

(v). “dha-override-config” Module

In order to configure the pod dha definition, use the “dha-override-config” key.
This is an optional key present at the ending of the scenario file.

(vi). Mapping to short scenario name

The scenario.yaml file is used to map the short names of scenario’s to the one or more deployment
scenario configuration yaml files.
The short scenario names should follow the scheme below:

 [os]-[controller]-[feature]-[mode]-[option]

[os]: mandatory
possible value: os

Please note that this field is needed in order to select parent jobs to list and do blocking
relations between them.

[controller]: mandatory
example values: nosdn, ocl, odl, onos

[mode]: mandatory
possible values: ha, noha

[option]: optional

Used for the scenarios those do not fit into naming scheme.
Optional field in the short scenario name should not be included if there is no optional scenario.

Example:
 1. os-nosdn-kvm-noha
 2. os-nosdn-kvm_ovs_dpdk_bar-ha

Example of how short scenario names are mapped to configuration yaml files:

os-nosdn-kvm_ovs_dpdk-ha:
 configfile: ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml

Note:

	(-) used for separator of fields. [os-nosdn-kvm_ovs_dpdk-ha]

	(_) used to separate the values belong to the same field. [os-nosdn-kvm_ovs_bar-ha].

5 Deploying the scenario

Command to deploy the os-nosdn-kvm_ovs_dpdk-ha scenario:

$ cd ~/fuel/ci/
$ sudo ./deploy.sh -f -b file:///tmp/opnfv-fuel/deploy/config -l devel-pipeline -p default \
-s ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml -i file:///tmp/opnfv.iso

	where,

	-b is used to specify the configuration directory

-f is used to re-deploy on the existing deployment

-i is used to specify the image downloaded from artifacts.

-l is used to specify the lab name

-p is used to specify POD name

-s is used to specify the scenario file

Note:

Check $ sudo ./deploy.sh -h for further information.

2.6.2. Apex

Apex installer uses CentOS as the platform.

1 Install Packages :

Install necessary packages by following:

cd ~
yum install –y git rpm-build python-setuptools python-setuptools-devel
yum install –y epel-release gcc
curl -O https://bootstrap.pypa.io/get-pip.py
um install –y python3 python34
/usr/bin/python3.4 get-pip.py
yum install –y python34-devel python34-setuptools
yum install –y libffi-devel python-devel openssl-devel
yum -y install libxslt-devel libxml2-devel

Then you can use “dev_deploy_check.sh“ in Apex installer source to install the remaining necessary
packages by following:

cd ~
git clone https://gerrit.opnfv.org/gerrit/p/apex.git
export CONFIG=$(pwd)/apex/build
export LIB=$(pwd)/apex/lib
export PYTHONPATH=$PYTHONPATH:$(pwd)/apex/lib/python
cd ci
./dev_deploy_check.sh
yum install –y python2-oslo-config python2-debtcollector

2 Create ssh key :

Use following commands to create ssh key, when asked for passphrase, just enter return for empty
passphrase:

cd ~
ssh-keygen -t rsa

Then prepare the authorized_keys for Apex scenario deployment:

cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

3 Create default pool :

Use following command to default pool device:

cd ~
virsh pool-define /dev/stdin <<EOF
<pool type='dir'>
 <name>default</name>
 <target>
 <path>/var/lib/libvirt/images</path>
 </target>
</pool>
EOF

Use following commands to start and set autostart the default pool device:

virsh pool-start default
virsh pool-autostart default

Use following commands to verify the success of the creation of the default pool device and starting
and setting autostart of the default pool device:

virsh pool-list
virsh pool-info default

4 Get Apex source code :

Get Apex installer source code:

git clone https://gerrit.opnfv.org/gerrit/p/apex.git
cd apex

5 Modify code to work behind proxy :

In “lib” sub-directory of Apex source, change line 284 “if ping -c 2 www.google.com > /dev/null;
then” to “if curl www.google.com > /dev/null; then” in “common-functions.sh” file, since we can’t
ping www.google.com behind Intel proxy.

6 Setup build environment :

Setup build environment by:

cd ~
export BASE=$(pwd)/apex/build
export LIB=$(pwd)/apex/lib
export PYTHONPATH=$PYTHONPATH:$(pwd)/apex/lib/python
export IMAGES=$(pwd)/apex/.build

7 Build Apex installer :

Build undercloud image by:

cd ~/apex/build
make images-clean
make undercloud

You can look at the targets in ~/apex/build/Makefile to build image for specific feature.
Following show how to build vanilla ODL image (this can be used to build the overcloud image for
basic (nosdn-nofeature) and opendaylight test scenario:

cd ~/apex/build
make overcloud-opendaylight

You can build the complete full set of images (undercloud, overcloud-full, overcloud-opendaylight,
overcloud-onos) by:

cd ~/apex/build
make images

8 Modification of network_settings.yaml :

Since we are working behind proxy, we need to modify the network_settings.yaml in ~/apex/config/network
to make the deployment work properly. In order to avoid checking our modification into the repo
accidentally, it is recommend that you copy “network_settings.yaml” to “intc_network_settings.yaml”
in the ~/apex/config/network and do following modification in intc_network_settings.yaml:

Change dns_nameservers settings from

dns_servers: ["8.8.8.8", "8.8.4.4"]

to

dns_servers: ["<ip-address>"]

Also, you need to modify deploy.sh in apex/ci from “ntp_server=”pool.ntp.org”” to
“ntp_server=”<ip-address>”” to reflect that fact we couldn’t reach outside NTP server, just use
local time.

9 Commands to deploy scenario :

Following shows the commands used to deploy os-nosdn-kvm_ovs_dpdk-noha scenario behind the proxy:

cd ~/apex/ci
./clean.sh
./dev_deploy_check.sh
./deploy.sh -v --ping-site <ping_ip-address> --dnslookup-site <dns_ip-address> -n \
~/apex/config/network/intc_network_settings.yaml -d \
~/apex/config/deploy/os-nosdn-kvm_ovs_dpdk-noha.yaml

10 Accessing the Overcloud dashboard :

If the deployment completes successfully, the last few output lines from the deployment will look
like the following:

INFO: Undercloud VM has been setup to NAT Overcloud public network
Undercloud IP: <ip-address>, please connect by doing 'opnfv-util undercloud'
Overcloud dashboard available at http://<ip-address>/dashboard
INFO: Post Install Configuration Complete

11 Accessing the Undercloud and Overcloud through command line :

At the end of the deployment we obtain the Undercloud ip. One can login to the Undercloud and obtain
the Overcloud ip as follows:

cd ~/apex/ci/
./util.sh undercloud
source stackrc
nova list
ssh heat-admin@<overcloud-ip>

2.6.3. OPNFV-Playground

Install OPNFV-playground (the tool chain to deploy/test CI scenarios in fuel@opnfv,):

$ cd ~
$ git clone https://github.com/jonasbjurel/OPNFV-Playground.git
$ cd OPNFV-Playground/ci_fuel_opnfv/

	Follow the README.rst in this ~/OPNFV-Playground/ci_fuel_opnfv sub-holder to complete all necessary

installation and setup.
- Section “RUNNING THE PIPELINE” in README.rst explain how to use this ci_pipeline to deploy/test CI
test scenarios, you can also use

./ci_pipeline.sh --help ##to learn more options.

1 Downgrade paramiko package from 2.x.x to 1.10.0

The paramiko package 2.x.x doesn’t work with OPNFV-playground tool chain now, Jira ticket FUEL - 188
has been raised for the same.

Check paramiko package version by following below steps in your system:

$ python
Python 2.7.6 (default, Jun 22 2015, 17:58:13) [GCC 4.8.2] on linux2 Type "help", "copyright",
"credits" or "license" for more information.

>>> import paramiko
>>> print paramiko.__version__
>>> exit()

You will get the current paramiko package version, if it is 2.x.x, uninstall this version by

$ sudo pip uninstall paramiko

Ubuntu 14.04 LTS has python-paramiko package (1.10.0), install it by

$ sudo apt-get install python-paramiko

Verify it by following:

$ python
>>> import paramiko
>>> print paramiko.__version__
>>> exit()

2 Clone the fuel@opnfv

Check out the specific version of specific branch of fuel@opnfv

$ cd ~
$ git clone https://gerrit.opnfv.org/gerrit/fuel.git
$ cd fuel
By default it will be master branch, in-order to deploy on the Colorado/Danube branch, do:
$ git checkout stable/Danube

3 Creating the scenario

Implement the scenario file as described in 3.1.4

4 Deploying the scenario

You can use the following command to deploy/test os-nosdn kvm_ovs_dpdk-(no)ha and
os-nosdn-kvm_ovs_dpdk_bar-(no)ha scenario

$ cd ~/OPNFV-Playground/ci_fuel_opnfv/

For os-nosdn-kvm_ovs_dpdk-ha :

$./ci_pipeline.sh -r ~/fuel -i /root/fuel.iso -B -n intel-sc -s os-nosdn-kvm_ovs_dpdk-ha

For os-nosdn-kvm_ovs_dpdk_bar-ha:

$./ci_pipeline.sh -r ~/fuel -i /root/fuel.iso -B -n intel-sc -s os-nosdn-kvm_ovs_dpdk_bar-ha

The “ci_pipeline.sh” first clones the local fuel repo, then deploys the
os-nosdn-kvm_ovs_dpdk-ha/os-nosdn-kvm_ovs_dpdk_bar-ha scenario from the given ISO, and run Functest
and Yarstick test. The log of the deployment/test (ci.log) can be found in
~/OPNFV-Playground/ci_fuel_opnfv/artifact/master/YYYY-MM-DD—HH.mm, where YYYY-MM-DD—HH.mm is the
date/time you start the “ci_pipeline.sh”.

Note:

Check $./ci_pipeline.sh -h for further information.

2.6.4. Jenkins Project

os-nosdn-kvm_ovs_dpdk-(no)ha and os-nosdn-kvm_ovs_dpdk_bar-(no)ha scenario can be executed from the
jenkins project :

	HA scenarios:

	
	“fuel-os-nosdn-kvm_ovs_dpdk-ha-baremetal-daily-master” (os-nosdn-kvm_ovs_dpdk-ha)

	“fuel-os-nosdn-kvm_ovs_dpdk_bar-ha-baremetal-daily-master” (os-nosdn-kvm_ovs_dpdk_bar-ha)

	“apex-os-nosdn-kvm_ovs_dpdk-ha-baremetal-master” (os-nosdn-kvm_ovs_dpdk-ha)

	NOHA scenarios:

	
	“fuel-os-nosdn-kvm_ovs_dpdk-noha-virtual-daily-master” (os-nosdn-kvm_ovs_dpdk-noha)

	“fuel-os-nosdn-kvm_ovs_dpdk_bar-noha-virtual-daily-master” (os-nosdn-kvm_ovs_dpdk_bar-noha)

	“apex-os-nosdn-kvm_ovs_dpdk-noha-baremetal-master” (os-nosdn-kvm_ovs_dpdk-noha)

1. os-nosdn-kvm_ovs_dpdk-noha Description

1.1. Introduction

The purpose of os-nosdn-kvm_ovs_dpdk-noha scenario testing is to test the No
High Availability deployment and configuration of OPNFV software suite
with OpenStack and without SDN software. This OPNFV software suite
includes OPNFV KVM4NFV latest software packages for Linux Kernel and
QEMU patches for achieving low latency. When deployed using Fuel, No High
Availability feature is achieved by deploying OpenStack multi-node setup with
1 controller and 3 computes nodes and using Apex the setup is with 1 controller
and 1 compute.

KVM4NFV packages will be installed on compute nodes as part of deployment.
This scenario testcase deployment is happening on multi-node by using OPNFV Fuel
and Apex deployer.

Using Fuel Installer

1.2. Scenario Components and Composition

This scenario deploys the No High Availability OPNFV Cloud based on the
configurations provided in no-ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml.
This yaml file contains following configurations and is passed as an
argument to deploy.py script

	scenario.yaml: This configuration file defines translation between a
short deployment scenario name(os-nosdn-kvm_ovs_dpdk-noha) and an actual deployment
scenario configuration file(no-ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml)

	deployment-scenario-metadata: Contains the configuration metadata like
title,version,created,comment.

deployment-scenario-metadata:
 title: NFV KVM and OVS-DPDK NOHA deployment
 version: 0.0.1
 created: Dec 20 2016
 comment: NFV KVM and OVS-DPDK

	stack-extensions: Stack extentions are opnfv added value features in form
of a fuel-plugin.Plugins listed in stack extensions are enabled and
configured. os-nosdn-kvm_ovs_dpdk-noha scenario currently uses KVM-1.0.0 plugin.

stack-extensions:
 - module: fuel-plugin-kvm
 module-config-name: fuel-nfvkvm
 module-config-version: 1.0.0
 module-config-override:
 # Module config overrides

	dea-override-config: Used to configure the NO-HA mode,network segmentation
types and role to node assignments.These configurations overrides
corresponding keys in the dea_base.yaml and dea_pod_override.yaml.
These keys are used to deploy multiple nodes(1 controller,3 computes)
as mention below.

	
	Node 1:

	
	This node has MongoDB and Controller roles

	The controller node runs the Identity service, Image Service, management portions of
Compute and Networking, Networking plug-in and the dashboard

	Uses VLAN as an interface

	
	Node 2:

	
	This node has compute and Ceph-osd roles

	Ceph is a massively scalable, open source, distributed storage system

	By default, Compute uses KVM as the hypervisor

	Uses DPDK as an interface

	
	Node 3:

	
	This node has compute and Ceph-osd roles

	Ceph is a massively scalable, open source, distributed storage system

	By default, Compute uses KVM as the hypervisor

	Uses DPDK as an interface

	
	Node 4:

	
	This node has compute and Ceph-osd roles

	Ceph is a massively scalable, open source, distributed storage system

	By default, Compute uses KVM as the hypervisor

	Uses DPDK as an interface

The below is the dea-override-config of the no-ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml file.

dea-override-config:
 fuel:
 FEATURE_GROUPS:
 - experimental
 environment:
 net_segment_type: vlan
 nodes:
 - id: 1
 interfaces: interfaces_vlan
 role: mongo,controller
 - id: 2
 interfaces: interfaces_dpdk
 role: ceph-osd,compute
 attributes: attributes_1
 - id: 3
 interfaces: interfaces_dpdk
 role: ceph-osd,compute
 attributes: attributes_1
 - id: 4
 interfaces: interfaces_dpdk
 role: ceph-osd,compute
 attributes: attributes_1

 attributes_1:
 hugepages:
 dpdk:
 value: 1024
 nova:
 value:
 '2048': 1024

 network:
 networking_parameters:
 segmentation_type: vlan
 networks:
 - cidr: null
 gateway: null
 ip_ranges: []
 meta:
 configurable: false
 map_priority: 2
 name: private
 neutron_vlan_range: true
 notation: null
 render_addr_mask: null
 render_type: null
 seg_type: vlan
 use_gateway: false
 vlan_start: null
 name: private
 vlan_start: null

 settings:
 editable:
 storage:
 ephemeral_ceph:
 description: Configures Nova to store ephemeral volumes in RBD. This works best if Ceph
 is enabled for volumes and images, too. Enables live migration of all types of Ceph
 backed VMs (without this option, live migration will only work with VMs launched from
 Cinder volumes).
 label: Ceph RBD for ephemeral volumes (Nova)
 type: checkbox
 value: true
 weight: 75
 images_ceph:
 description: Configures Glance to use the Ceph RBD backend to store images. If enabled,
 this option will prevent Swift from installing.
 label: Ceph RBD for images (Glance)
 restrictions:
 - settings:storage.images_vcenter.value == true: Only one Glance backend could be selected.
 type: checkbox
 value: true
 weight: 30

	dha-override-config: Provides information about the VM definition and
Network config for virtual deployment.These configurations overrides
the pod dha definition and points to the controller,compute and
fuel definition files. The no-ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml
has no dha-config changes i.e., default configuration is used.

	os-nosdn-kvm_ovs_dpdk-noha scenario is successful when all the 4 Nodes are accessible,
up and running.

Note:

	In os-nosdn-kvm_ovs_dpdk-noha scenario, OVS is installed on the compute nodes with DPDK configured

	Hugepages for DPDK are configured in the attributes_1 section of the

no-ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml

	Hugepages are only configured for compute nodes

	This results in faster communication and data transfer among the compute nodes

1.3. Scenario Usage Overview

	The high availability feature is disabled and deploymet is done by deploy.py with
noha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml as an argument.

	Install Fuel Master and deploy OPNFV Cloud from scratch on Hardware
Environment:

Command to deploy the os-nosdn-kvm_ovs_dpdk-noha scenario:

$ cd ~/fuel/ci/
$ sudo ./deploy.sh -f -b file:///tmp/opnfv-fuel/deploy/config -l devel-pipeline -p default \
-s no-ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml -i file:///tmp/opnfv.iso

	where,

	-b is used to specify the configuration directory

-i is used to specify the image downloaded from artifacts.

Note:

Check $ sudo ./deploy.sh -h for further information.

	os-nosdn-kvm_ovs_dpdk-noha scenario can be executed from the jenkins project
“fuel-os-nosdn-kvm_ovs_dpdk-noha-baremetal-daily-master”

	This scenario provides the No High Availability feature by deploying
1 controller,3 compute nodes and checking if all the 4 nodes
are accessible(IP,up & running).

	Test Scenario is passed if deployment is successful and all 4 nodes have
accessibility (IP , up & running).

Using Apex Installer

1.4. Scenario Components and Composition

This scenario is composed of common OpenStack services enabled by default,
including Nova, Neutron, Glance, Cinder, Keystone, Horizon. Optionally and
by default, Tacker and Congress services are also enabled. Ceph is used as
the backend storage to Cinder on all deployed nodes.

The os-nosdn-kvm_ovs_dpdk-noha.yaml file contains following configurations and
is passed as an argument to deploy.sh script.

	global-params: Used to define the global parameter and there is only one
such parameter exists,i.e, ha_enabled

global-params:
 ha_enabled: false

	deploy_options: Used to define the type of SDN controller, configure the
tacker, congress, service functioning chaining support(sfc) for ODL and ONOS,
configure ODL with SDNVPN support, which dataplane to use for overcloud
tenant networks, whether to run the kvm real time kernel (rt_kvm) in the
compute node(s) to reduce the network latencies caused by network function
virtualization and whether to install and configure fdio functionality in the
overcloud

deploy_options:
 sdn_controller: false
 tacker: true
 congress: true
 sfc: false
 vpn: false
 rt_kvm: true
 dataplane: ovs_dpdk

	performance: Used to set performance options on specific roles. The valid
roles are ‘Compute’, ‘Controller’ and ‘Storage’, and the valid sections are
‘kernel’ and ‘nova’

performance:
 Controller:
 kernel:
 hugepages: 1024
 hugepagesz: 2M
 Compute:
 kernel:
 hugepagesz: 2M
 hugepages: 2048
 intel_iommu: 'on'
 iommu: pt
 ovs:
 socket_memory: 1024
 pmd_cores: 2
 dpdk_cores: 1

1.5. Scenario Usage Overview

	The high availability feature can be acheived by executing deploy.sh with
os-nosdn-kvm_ovs_dpdk-noha.yaml as an argument.

	Build the undercloud and overcloud images as mentioned below:

cd ~/apex/build/
make images-clean
make images

	Command to deploy os-nosdn-kvm_ovs_dpdk-noha scenario:

cd ~/apex/ci/
./clean.sh
./dev_dep_check.sh
./deploy.sh -v --ping-site <ping_ip-address> --dnslookup-site <dns_ip-address> -n \
~/apex/config/network/intc_network_settings.yaml -d ~/apex/config/deploy/os-nosdn-kvm_ovs_dpdk-noha.yaml

	where,

	-v is used for virtual deployment
-n is used for providing the network configuration file
-d is used for providing the scenario configuration file

1.6. References

For more information on the OPNFV Euphrates release, please visit
http://www.opnfv.org/Euphrates

1. os-nosdn-kvm_ovs_dpdk-ha Description

1.1. Introduction

The purpose of os-nosdn-kvm_ovs_dpdk-ha scenario testing is to test the
High Availability deployment and configuration of OPNFV software suite
with OpenStack and without SDN software. This OPNFV software suite
includes OPNFV KVM4NFV latest software packages for Linux Kernel and
QEMU patches for achieving low latency. High Availability feature is achieved
by deploying OpenStack multi-node setup with 3 controllers and 2 computes nodes.

KVM4NFV packages will be installed on compute nodes as part of deployment.
This scenario testcase deployment is happening on multi-node by using OPNFV Fuel
and Apex deployer.

Using Fuel Installer

1.2. Scenario Components and Composition

This scenario deploys the High Availability OPNFV Cloud based on the
configurations provided in ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml.
This yaml file contains following configurations and is passed as an
argument to deploy.py script

	scenario.yaml: This configuration file defines translation between a
short deployment scenario name(os-nosdn-kvm_ovs_dpdk-ha) and an actual deployment
scenario configuration file(ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml)

	deployment-scenario-metadata: Contains the configuration metadata like
title,version,created,comment.

deployment-scenario-metadata:
 title: NFV KVM and OVS-DPDK HA deployment
 version: 0.0.1
 created: Dec 20 2016
 comment: NFV KVM and OVS-DPDK

	stack-extensions: Stack extentions are opnfv added value features in form
of a fuel-plugin.Plugins listed in stack extensions are enabled and
configured. os-nosdn-kvm_ovs_dpdk-ha scenario currently uses KVM-1.0.0 plugin.

stack-extensions:
 - module: fuel-plugin-kvm
 module-config-name: fuel-nfvkvm
 module-config-version: 1.0.0
 module-config-override:
 # Module config overrides

	dea-override-config: Used to configure the HA mode,network segmentation
types and role to node assignments.These configurations overrides
corresponding keys in the dea_base.yaml and dea_pod_override.yaml.
These keys are used to deploy multiple nodes(3 controllers,2 computes)
as mention below.

	
	Node 1:

	
	This node has MongoDB and Controller roles

	The controller node runs the Identity service, Image Service, management portions of
Compute and Networking, Networking plug-in and the dashboard

	Uses VLAN as an interface

	
	Node 2:

	
	This node has Ceph-osd and Controller roles

	The controller node runs the Identity service, Image Service, management portions of
Compute and Networking, Networking plug-in and the dashboard

	Ceph is a massively scalable, open source, distributed storage system

	Uses VLAN as an interface

	
	Node 3:

	
	This node has Controller role in order to achieve high availability.

	Uses VLAN as an interface

	
	Node 4:

	
	This node has compute and Ceph-osd roles

	Ceph is a massively scalable, open source, distributed storage system

	By default, Compute uses KVM as the hypervisor

	Uses DPDK as an interface

	
	Node 5:

	
	This node has compute and Ceph-osd roles

	Ceph is a massively scalable, open source, distributed storage system

	By default, Compute uses KVM as the hypervisor

	Uses DPDK as an interface

The below is the dea-override-config of the ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml file.

dea-override-config:
 fuel:
 FEATURE_GROUPS:
 - experimental
 nodes:
 - id: 1
 interfaces: interfaces_1
 role: controller
 - id: 2
 interfaces: interfaces_1
 role: mongo,controller
 - id: 3
 interfaces: interfaces_1
 role: ceph-osd,controller
 - id: 4
 interfaces: interfaces_dpdk
 role: ceph-osd,compute
 attributes: attributes_1
 - id: 5
 interfaces: interfaces_dpdk
 role: ceph-osd,compute
 attributes: attributes_1

 attributes_1:
 hugepages:
 dpdk:
 value: 1024
 nova:
 value:
 '2048': 1024

 settings:
 editable:
 storage:
 ephemeral_ceph:
 description: Configures Nova to store ephemeral volumes in RBD. This works best if Ceph
 is enabled for volumes and images, too. Enables live migration of all types of Ceph
 backed VMs (without this option, live migration will only work with VMs launched from
 Cinder volumes).
 label: Ceph RBD for ephemeral volumes (Nova)
 type: checkbox
 value: true
 weight: 75
 images_ceph:
 description: Configures Glance to use the Ceph RBD backend to store images. If enabled,
 this option will prevent Swift from installing.
 label: Ceph RBD for images (Glance)
 restrictions:
 - settings:storage.images_vcenter.value == true: Only one Glance backend could be selected.
 type: checkbox
 value: true
 weight: 30

	dha-override-config: Provides information about the VM definition and
Network config for virtual deployment.These configurations overrides
the pod dha definition and points to the controller,compute and
fuel definition files.

The below is the dha-override-config of the ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml file.

dha-override-config:
 nodes:
 - id: 1
 libvirtName: controller1
 libvirtTemplate: templates/virtual_environment/vms/controller.xml
 - id: 2
 libvirtName: controller2
 libvirtTemplate: templates/virtual_environment/vms/controller.xml
 - id: 3
 libvirtName: controller3
 libvirtTemplate: templates/virtual_environment/vms/controller.xml
 - id: 4
 libvirtName: compute1
 libvirtTemplate: templates/virtual_environment/vms/compute.xml
 - id: 5
 libvirtName: compute2
 libvirtTemplate: templates/virtual_environment/vms/compute.xml
 - id: 6
 libvirtName: fuel-master
 libvirtTemplate: templates/virtual_environment/vms/fuel.xml
 isFuel: yes
 username: root
 password: r00tme

	os-nosdn-kvm_ovs_dpdk-ha scenario is successful when all the 5 Nodes are accessible,
up and running.

Note:

	In os-nosdn-kvm_ovs_dpdk-ha scenario, OVS is installed on the compute nodes with DPDK configured

	Hugepages for DPDK are configured in the attributes_1 section of the

no-ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml

	Hugepages are only configured for compute nodes

	This results in faster communication and data transfer among the compute nodes

1.3. Scenario Usage Overview

	The high availability feature can be acheived by executing deploy.py with
ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml as an argument.

	Install Fuel Master and deploy OPNFV Cloud from scratch on Hardware
Environment:

Command to deploy the os-nosdn-kvm_ovs_dpdk-ha scenario:

$ cd ~/fuel/ci/
$ sudo ./deploy.sh -f -b file:///tmp/opnfv-fuel/deploy/config -l devel-pipeline -p default \
-s ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml -i file:///tmp/opnfv.iso

	where,

	-b is used to specify the configuration directory

-i is used to specify the image downloaded from artifacts.

Note:

Check $ sudo ./deploy.sh -h for further information.

	os-nosdn-kvm_ovs_dpdk-ha scenario can be executed from the jenkins project
“fuel-os-nosdn-kvm_ovs_dpdk-ha-baremetal-daily-master”

	This scenario provides the High Availability feature by deploying
3 controller,2 compute nodes and checking if all the 5 nodes
are accessible(IP,up & running).

	Test Scenario is passed if deployment is successful and all 5 nodes have
accessibility (IP , up & running).

Using Apex Installer

1.4. Scenario Components and Composition

This scenario is composed of common OpenStack services enabled by default,
including Nova, Neutron, Glance, Cinder, Keystone, Horizon. Optionally and
by default, Tacker and Congress services are also enabled. Ceph is used as
the backend storage to Cinder on all deployed nodes.

All services are in HA, meaning that there are multiple cloned instances of
each service, and they are balanced by HA Proxy using a Virtual IP Address
per service.

The os-nosdn-kvm_ovs_dpdk-ha.yaml file contains following configurations and
is passed as an argument to deploy.sh script.

	global-params: Used to define the global parameter and there is only one
such parameter exists,i.e, ha_enabled

global-params:
 ha_enabled: true

	deploy_options: Used to define the type of SDN controller, configure the
tacker, congress, service functioning chaining support(sfc) for ODL and ONOS,
configure ODL with SDNVPN support, which dataplane to use for overcloud
tenant networks, whether to run the kvm real time kernel (rt_kvm) in the
compute node(s) to reduce the network latencies caused by network function
virtualization and whether to install and configure fdio functionality in the
overcloud

deploy_options:
 sdn_controller: false
 tacker: true
 congress: true
 sfc: false
 vpn: false
 rt_kvm: true
 dataplane: ovs_dpdk

	performance: Used to set performance options on specific roles. The valid
roles are ‘Compute’, ‘Controller’ and ‘Storage’, and the valid sections are
‘kernel’ and ‘nova’

performance:
 Controller:
 kernel:
 hugepages: 1024
 hugepagesz: 2M
 Compute:
 kernel:
 hugepagesz: 2M
 hugepages: 2048
 intel_iommu: 'on'
 iommu: pt
 ovs:
 socket_memory: 1024
 pmd_cores: 2
 dpdk_cores: 1

1.5. Scenario Usage Overview

	The high availability feature can be acheived by executing deploy.sh with
os-nosdn-kvm_ovs_dpdk-ha.yaml as an argument.

	Build the undercloud and overcloud images as mentioned below:

cd ~/apex/build/
make images-clean
make images

	Command to deploy os-nosdn-kvm_ovs_dpdk-ha scenario:

cd ~/apex/ci/
./clean.sh
./dev_dep_check.sh
./deploy.sh -v --ping-site <ping_ip-address> --dnslookup-site <dns_ip-address> -n \
~/apex/config/network/intc_network_settings.yaml -d ~/apex/config/deploy/os-nosdn-kvm_ovs_dpdk-ha.yaml

	where,

	-v is used for virtual deployment
-n is used for providing the network configuration file
-d is used for providing the scenario configuration file

1.6. References

For more information on the OPNFV Euphrates release, please visit
http://www.opnfv.org/Euphrates

1. os-nosdn-kvm_ovs_dpdk_bar-ha Description

1.1. Introduction

The purpose of os-nosdn-kvm_ovs_dpdk_bar-noha scenario testing is to test the
No High Availability deployment and configuration of OPNFV software suite
with OpenStack and without SDN software. This OPNFV software suite
includes OPNFV KVM4NFV latest software packages for Linux Kernel and
QEMU patches for achieving low latency.No High Availability feature is achieved
by deploying OpenStack multi-node setup with 1 controller and 3 computes nodes.

OPNFV Barometer packages is used for traffic,performance and platform monitoring.
KVM4NFV packages will be installed on compute nodes as part of deployment.
This scenario testcase deployment is happening on multi-node by using OPNFV Fuel deployer.

1.2. Scenario Components and Composition

This scenario deploys the No High Availability OPNFV Cloud based on the
configurations provided in no-ha_nfv-kvm_nfv-ovs-dpdk-bar_heat_ceilometer_scenario.yaml.
This yaml file contains following configurations and is passed as an
argument to deploy.py script

	scenario.yaml: This configuration file defines translation between a
short deployment scenario name(os-nosdn-kvm_ovs_dpdk_bar-noha) and an actual deployment
scenario configuration file(no-ha_nfv-kvm_nfv-ovs-dpdk-bar_heat_ceilometer_scenario.yaml)

	deployment-scenario-metadata: Contains the configuration metadata like
title,version,created,comment.

deployment-scenario-metadata:
 title: NFV KVM and OVS-DPDK HA deployment
 version: 0.0.1
 created: Dec 20 2016
 comment: NFV KVM and OVS-DPDK

	stack-extensions: Stack extentions are opnfv added value features in form
of a fuel-plugin.Plugins listed in stack extensions are enabled and
configured. os-nosdn-kvm_ovs_dpdk_bar-noha scenario currently uses KVM-1.0.0 plugin and
barometer-1.0.0 plugin.

stack-extensions:
 - module: fuel-plugin-kvm
 module-config-name: fuel-nfvkvm
 module-config-version: 1.0.0
 module-config-override:
 # Module config overrides
 - module: fuel-plugin-collectd-ceilometer
 module-config-name: fuel-barometer
 module-config-version: 1.0.0
 module-config-override:
 # Module config overrides

	dea-override-config: Used to configure the HA mode,network segmentation
types and role to node assignments.These configurations overrides
corresponding keys in the dea_base.yaml and dea_pod_override.yaml.
These keys are used to deploy multiple nodes(1 controller,3 computes)
as mention below.

	
	Node 1:

	
	This node has MongoDB and Controller roles

	The controller node runs the Identity service, Image Service, management portions of
Compute and Networking, Networking plug-in and the dashboard

	Uses VLAN as an interface

	
	Node 2:

	
	This node has compute and Ceph-osd roles

	Ceph is a massively scalable, open source, distributed storage system

	By default, Compute uses KVM as the hypervisor

	Uses DPDK as an interface

	
	Node 3:

	
	This node has compute and Ceph-osd roles

	Ceph is a massively scalable, open source, distributed storage system

	By default, Compute uses KVM as the hypervisor

	Uses DPDK as an interface

	
	Node 4:

	
	This node has compute and Ceph-osd roles

	Ceph is a massively scalable, open source, distributed storage system

	By default, Compute uses KVM as the hypervisor

	Uses DPDK as an interface

The below is the dea-override-config of the no-ha_nfv-kvm_nfv-ovs-dpdk-bar_heat_ceilometer_scenario.yaml file.

dea-override-config:
 fuel:
 FEATURE_GROUPS:
 - experimental
 environment:
 net_segment_type: vlan
 nodes:
 - id: 1
 interfaces: interfaces_vlan
 role: mongo,controller
 - id: 2
 interfaces: interfaces_dpdk
 role: ceph-osd,compute
 attributes: attributes_1
 - id: 3
 interfaces: interfaces_dpdk
 role: ceph-osd,compute
 attributes: attributes_1
 - id: 4
 interfaces: interfaces_dpdk
 role: ceph-osd,compute
 attributes: attributes_1

 attributes_1:
 hugepages:
 dpdk:
 value: 1024
 nova:
 value:
 '2048': 1024

 network:
 networking_parameters:
 segmentation_type: vlan
 networks:
 - cidr: null
 gateway: null
 ip_ranges: []
 meta:
 configurable: false
 map_priority: 2
 name: private
 neutron_vlan_range: true
 notation: null
 render_addr_mask: null
 render_type: null
 seg_type: vlan
 use_gateway: false
 vlan_start: null
 name: private
 vlan_start: null

 settings:
 editable:
 storage:
 ephemeral_ceph:
 description: Configures Nova to store ephemeral volumes in RBD. This works best if Ceph
 is enabled for volumes and images, too. Enables live migration of all types of Ceph
 backed VMs (without this option, live migration will only work with VMs launched from
 Cinder volumes).
 label: Ceph RBD for ephemeral volumes (Nova)
 type: checkbox
 value: true
 weight: 75
 images_ceph:
 description: Configures Glance to use the Ceph RBD backend to store images. If enabled,
 this option will prevent Swift from installing.
 label: Ceph RBD for images (Glance)
 restrictions:
 - settings:storage.images_vcenter.value == true: Only one Glance backend could be selected.
 type: checkbox
 value: true
 weight: 30

	dha-override-config: Provides information about the VM definition and
Network config for virtual deployment.These configurations overrides
the pod dha definition and points to the controller,compute and
fuel definition files. The noha_nfv-kvm_nfv-ovs-dpdk-bar_heat_ceilometer_scenario.yaml has no
dha-config changes i.e., default configuration is used.

	os-nosdn-kvm_ovs_dpdk_bar-noha scenario is successful when all the 4 Nodes are accessible,
up and running.

Note:

	In os-nosdn-kvm_ovs_dpdk_bar-noha scenario, OVS is installed on the compute nodes with DPDK configured

	Baraometer plugin is also implemented along with KVM plugin.

	Hugepages for DPDK are configured in the attributes_1 section of the
no-ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml

	Hugepages are only configured for compute nodes

	This results in faster communication and data transfer among the compute nodes

1.3. Scenario Usage Overview

	The high availability feature is disabled and deploymet is done by deploy.py with
noha_nfv-kvm_nfv-ovs-dpdk-bar_heat_ceilometer_scenario.yaml as an argument.

	Install Fuel Master and deploy OPNFV Cloud from scratch on Hardware
Environment:

Command to deploy the os-nosdn-kvm_ovs_dpdk_bar-noha scenario:

$ cd ~/fuel/ci/
$ sudo ./deploy.sh -f -b file:///tmp/opnfv-fuel/deploy/config -l devel-pipeline -p default \
-s no-ha_nfv-kvm_nfv-ovs-dpdk-bar_heat_ceilometer_scenario.yaml -i file:///tmp/opnfv.iso

	where,

	-b is used to specify the configuration directory

-i is used to specify the image downloaded from artifacts.

Note:

Check $ sudo ./deploy.sh -h for further information.

	os-nosdn-kvm_ovs_dpdk_bar-noha scenario can be executed from the jenkins project
“fuel-os-nosdn-kvm_ovs_dpdk_bar-noha-baremetal-daily-master”

	This scenario provides the No High Availability feature by deploying
1 controller,3 compute nodes and checking if all the 4 nodes
are accessible(IP,up & running).

	Test Scenario is passed if deployment is successful and all 4 nodes have
accessibility (IP , up & running).

1.4. Known Limitations, Issues and Workarounds

	Test scenario os-nosdn-kvm_ovs_dpdk_bar-noha result is not stable.

1.5. References

For more information on the OPNFV Euphrates release, please visit
http://www.opnfv.org/Euphrates

1. os-nosdn-kvm_ovs_dpdk_bar-ha Description

1.1. Introduction

The purpose of os-nosdn-kvm_ovs_dpdk_bar-ha scenario testing is to test the
High Availability deployment and configuration of OPNFV software suite
with OpenStack and without SDN software. This OPNFV software suite
includes OPNFV KVM4NFV latest software packages for Linux Kernel and
QEMU patches for achieving low latency. High Availability feature is achieved
by deploying OpenStack multi-node setup with 3 controllers and 2 computes nodes.

OPNFV Barometer packages is used for traffic,performance and platform monitoring.
KVM4NFV packages will be installed on compute nodes as part of deployment.
This scenario testcase deployment is happening on multi-node by using OPNFV Fuel deployer.

1.2. Scenario Components and Composition

This scenario deploys the High Availability OPNFV Cloud based on the
configurations provided in ha_nfv-kvm_nfv-ovs-dpdk-bar_heat_ceilometer_scenario.yaml.
This yaml file contains following configurations and is passed as an
argument to deploy.py script

	scenario.yaml: This configuration file defines translation between a
short deployment scenario name(os-nosdn-kvm_ovs_dpdk_bar-ha) and an actual deployment
scenario configuration file(ha_nfv-kvm_nfv-ovs-dpdk-bar_heat_ceilometer_scenario.yaml)

	deployment-scenario-metadata: Contains the configuration metadata like
title,version,created,comment.

deployment-scenario-metadata:
 title: NFV KVM and OVS-DPDK HA deployment
 version: 0.0.1
 created: Dec 20 2016
 comment: NFV KVM and OVS-DPDK

	stack-extensions: Stack extentions are opnfv added value features in form
of a fuel-plugin.Plugins listed in stack extensions are enabled and
configured. os-nosdn-kvm_ovs_dpdk_bar-ha scenario currently uses KVM-1.0.0 plugin and barometer plugin.

stack-extensions:
 - module: fuel-plugin-kvm
 module-config-name: fuel-nfvkvm
 module-config-version: 1.0.0
 module-config-override:
 # Module config overrides
 - module: fuel-plugin-collectd-ceilometer
 module-config-name: fuel-barometer
 module-config-version: 1.0.0
 module-config-override:
 # Module config overrides

	dea-override-config: Used to configure the HA mode,network segmentation
types and role to node assignments.These configurations overrides
corresponding keys in the dea_base.yaml and dea_pod_override.yaml.
These keys are used to deploy multiple nodes(3 controllers,2 computes)
as mention below.

	
	Node 1:

	
	This node has MongoDB and Controller roles

	The controller node runs the Identity service, Image Service, management portions of
Compute and Networking, Networking plug-in and the dashboard

	Uses VLAN as an interface

	
	Node 2:

	
	This node has Ceph-osd and Controller roles

	The controller node runs the Identity service, Image Service, management portions of
Compute and Networking, Networking plug-in and the dashboard

	Ceph is a massively scalable, open source, distributed storage system

	Uses VLAN as an interface

	
	Node 3:

	
	This node has Controller role in order to achieve high availability.

	Uses VLAN as an interface

	
	Node 4:

	
	This node has compute and Ceph-osd roles

	Ceph is a massively scalable, open source, distributed storage system

	By default, Compute uses KVM as the hypervisor

	Uses DPDK as an interface

	
	Node 5:

	
	This node has compute and Ceph-osd roles

	Ceph is a massively scalable, open source, distributed storage system

	By default, Compute uses KVM as the hypervisor

	Uses DPDK as an interface

The below is the dea-override-config of the ha_nfv-kvm_nfv-ovs-dpdk-bar_heat_ceilometer_scenario.yaml file.

dea-override-config:
 fuel:
 FEATURE_GROUPS:
 - experimental
 nodes:
 - id: 1
 interfaces: interfaces_1
 role: controller
 - id: 2
 interfaces: interfaces_1
 role: mongo,controller
 - id: 3
 interfaces: interfaces_1
 role: ceph-osd,controller
 - id: 4
 interfaces: interfaces_dpdk
 role: ceph-osd,compute
 attributes: attributes_1
 - id: 5
 interfaces: interfaces_dpdk
 role: ceph-osd,compute
 attributes: attributes_1

 attributes_1:
 hugepages:
 dpdk:
 value: 1024
 nova:
 value:
 '2048': 1024

 settings:
 editable:
 storage:
 ephemeral_ceph:
 description: Configures Nova to store ephemeral volumes in RBD. This works best if Ceph
 is enabled for volumes and images, too. Enables live migration of all types of Ceph
 backed VMs (without this option, live migration will only work with VMs launched from
 Cinder volumes).
 label: Ceph RBD for ephemeral volumes (Nova)
 type: checkbox
 value: true
 weight: 75
 images_ceph:
 description: Configures Glance to use the Ceph RBD backend to store images. If enabled,
 this option will prevent Swift from installing.
 label: Ceph RBD for images (Glance)
 restrictions:
 - settings:storage.images_vcenter.value == true: Only one Glance backend could be selected.
 type: checkbox
 value: true
 weight: 30

	dha-override-config: Provides information about the VM definition and
Network config for virtual deployment.These configurations overrides
the pod dha definition and points to the controller,compute and
fuel definition files.

The below is the dha-override-config of the ha_nfv-kvm_nfv-ovs-dpdk-bar_heat_ceilometer_scenario.yaml file.

dha-override-config:
 nodes:
 - id: 1
 libvirtName: controller1
 libvirtTemplate: templates/virtual_environment/vms/controller.xml
 - id: 2
 libvirtName: controller2
 libvirtTemplate: templates/virtual_environment/vms/controller.xml
 - id: 3
 libvirtName: controller3
 libvirtTemplate: templates/virtual_environment/vms/controller.xml
 - id: 4
 libvirtName: compute1
 libvirtTemplate: templates/virtual_environment/vms/compute.xml
 - id: 5
 libvirtName: compute2
 libvirtTemplate: templates/virtual_environment/vms/compute.xml
 - id: 6
 libvirtName: fuel-master
 libvirtTemplate: templates/virtual_environment/vms/fuel.xml
 isFuel: yes
 username: root
 password: r00tme

	os-nosdn-kvm_ovs_dpdk_bar-ha scenario is successful when all the 5 Nodes are accessible, up and running.

Note:

	In os-nosdn-kvm_ovs_dpdk_bar-ha scenario, OVS is installed on the compute nodes with DPDK configured

	Baraometer plugin is also implemented along with KVM plugin

	Hugepages for DPDK are configured in the attributes_1 section of the

no-ha_nfv-kvm_nfv-ovs-dpdk_heat_ceilometer_scenario.yaml

	Hugepages are only configured for compute nodes

	This results in faster communication and data transfer among the compute nodes

1.3. Scenario Usage Overview

	The high availability feature can be acheived by executing deploy.py with
ha_nfv-kvm_nfv-ovs-dpdk-bar_heat_ceilometer_scenario.yaml as an argument.

	Install Fuel Master and deploy OPNFV Cloud from scratch on Hardware
Environment:

Command to deploy the os-nosdn-kvm_ovs_dpdk_bar-ha scenario:

$ cd ~/fuel/ci/
$ sudo ./deploy.sh -f -b file:///tmp/opnfv-fuel/deploy/config -l devel-pipeline -p default \
-s ha_nfv-kvm_nfv-ovs-dpdk-bar_heat_ceilometer_scenario.yaml -i file:///tmp/opnfv.iso

	where,

	-b is used to specify the configuration directory

-i is used to specify the image downloaded from artifacts.

Note:

Check $ sudo ./deploy.sh -h for further information.

	os-nosdn-kvm_ovs_dpdk_bar-ha scenario can be executed from the jenkins project
“fuel-os-nosdn-kvm_ovs_dpdk_bar-ha-baremetal-daily-master”

	This scenario provides the High Availability feature by deploying
3 controller,2 compute nodes and checking if all the 5 nodes
are accessible(IP,up & running).

	Test Scenario is passed if deployment is successful and all 5 nodes have
accessibility (IP , up & running).

1.4. Known Limitations, Issues and Workarounds

	Test scenario os-nosdn-kvm_ovs_dpdk_bar-ha result is not stable.

1.5. References

For more information on the OPNFV Euphrates release, please visit
http://www.opnfv.org/Euphrates

1. Userguide Abstract

In KVM4NFV project, we focus on the KVM hypervisor to enhance it for NFV,
by looking at the following areas initially-

	
	Minimal Interrupt latency variation for data plane VNFs:

	
	Minimal Timing Variation for Timing correctness of real-time VNFs

	Minimal packet latency variation for data-plane VNFs

	Inter-VM communication

	Fast live migration

2. Userguide Introduction

2.1. Overview

The project “NFV Hypervisors-KVM” makes collaborative efforts to enable NFV
features for existing hypervisors, which are not necessarily designed or
targeted to meet the requirements for the NFVI.The KVM4NFV scenario
consists of Continuous Integration builds, deployments and testing
combinations of virtual infrastructure components.

2.2. KVM4NFV Features

Using this project, the following areas are targeted-

	
	Minimal Interrupt latency variation for data plane VNFs:

	
	Minimal Timing Variation for Timing correctness of real-time VNFs

	Minimal packet latency variation for data-plane VNFs

	Inter-VM communication

	Fast live migration

Some of the above items would require software development and/or specific
hardware features, and some need just configurations information for the
system (hardware, BIOS, OS, etc.).

We include a requirements gathering stage as a formal part of the project.
For each subproject, we will start with an organized requirement stage so
that we can determine specific use cases (e.g. what kind of VMs should be
live migrated) and requirements (e.g. interrupt latency, jitters, Mpps,
migration-time, down-time, etc.) to set out the performance goals.

Potential future projects would include:

	Dynamic scaling (via scale-out) using VM instantiation

	Fast live migration for SR-IOV

The user guide outlines how to work with key components and features in
the platform, each feature description section will indicate the scenarios
that provide the components and configurations required to use it.

The configuration guide details which scenarios are best for you and how to
install and configure them.

2.3. General usage guidelines

The user guide for KVM4NFV features and capabilities provide step by step
instructions for using features that have been configured according to the
installation and configuration instructions.

2.4. Scenarios User Guide

The procedure to deploy/test KVM4NFV scenarios [http://artifacts.opnfv.org/kvmfornfv/docs/index.html#kvmfornfv-scenarios-overview-and-description] in a nested virtualization
or on bare-metal environment is mentioned in the below link. The kvm4nfv user guide can
be found at docs/scenarios

http://artifacts.opnfv.org/kvmfornfv/docs/index.html#kvmfornfv-scenarios-overview-and-description

The deployment has been verified for os-nosdn-kvm-ha [http://artifacts.opnfv.org/kvmfornfv/docs/index.html#kvmfornfv-scenarios-overview-and-description], os-nosdn-kvm-noha, os-nosdn-kvm_ovs_dpdk-ha [http://artifacts.opnfv.org/kvmfornfv/docs/index.html#os-nosdn-kvm-nfv-ovs-dpdk-ha-overview-and-description],
os-nosdn-kvm_ovs_dpdk-noha [http://artifacts.opnfv.org/kvmfornfv/docs/index.html#os-nosdn-kvm-nfv-ovs-dpdk-noha-overview-and-description] and os-nosdn-kvm_ovs_dpdk_bar-ha [http://artifacts.opnfv.org/kvmfornfv/docs/index.html#os-nosdn-kvm-nfv-ovs-dpdk_bar-ha-overview-and-description], os-nosdn-kvm_ovs_dpdk_bar-noha [http://artifacts.opnfv.org/kvmfornfv/docs/index.html#os-nosdn-kvm-nfv-ovs-dpdk_bar-noha-overview-and-description] test scenarios.

For brief view of the above scenarios use:

http://artifacts.opnfv.org/kvmfornfv/docs/index.html#scenario-abstract

3. Using common platform components

This section outlines basic usage principals and methods for some of the
commonly deployed components of supported OPNFV scenario’s in Euphrates.
The subsections provide an outline of how these components are commonly
used and how to address them in an OPNFV deployment.The components derive
from autonomous upstream communities and where possible this guide will
provide direction to the relevant documentation made available by those
communities to better help you navigate the OPNFV deployment.

4. Using Euphrates Features

The following sections of the user guide provide feature specific usage
guidelines and references for KVM4NFV project.

	<project>/docs/userguide/low_latency.userguide.rst

	<project>/docs/userguide/live_migration.userguide.rst

	<project>/docs/userguide/tuning.userguide.rst

5. FTrace Debugging Tool

5.1. About Ftrace

Ftrace is an internal tracer designed to find what is going on inside the kernel. It can be used
for debugging or analyzing latencies and performance related issues that take place outside of
user-space. Although ftrace is typically considered the function tracer, it is really a frame
work of several assorted tracing utilities.

One of the most common uses of ftrace is the event tracing.

Note:
- For KVM4NFV, Ftrace is preferred as it is in-built kernel tool
- More stable compared to other debugging tools

5.2. Version Features

	Release

	Features

	Colorado

	
	Ftrace Debugging tool is not implemented in
Colorado release of KVM4NFV

	Danube

	
	Ftrace aids in debugging the KVM4NFV
4.4-linux-kernel level issues

	Option to disable if not required

	Euphrates

	
	Breaktrace option is implemented.

	Implemented post-execute script option to
disable the ftrace when it is enabled.

5.3. Implementation of Ftrace

Ftrace uses the debugfs file system to hold the control files as
well as the files to display output.

When debugfs is configured into the kernel (which selecting any ftrace
option will do) the directory /sys/kernel/debug will be created. To mount
this directory, you can add to your /etc/fstab file:

debugfs /sys/kernel/debug debugfs defaults 0 0

Or you can mount it at run time with:

mount -t debugfs nodev /sys/kernel/debug

Some configurations for Ftrace are used for other purposes, like finding latency or analyzing the
system. For the purpose of debugging, the kernel configuration parameters that should be enabled are:

CONFIG_FUNCTION_TRACER=y
CONFIG_FUNCTION_GRAPH_TRACER=y
CONFIG_STACK_TRACER=y
CONFIG_DYNAMIC_FTRACE=y

The above parameters must be enabled in /boot/config-4.4.0-el7.x86_64 i.e., kernel config file for
ftrace to work. If not enabled, change the parameter to y and run.,

On CentOS
grub2-mkconfig -o /boot/grub2/grub.cfg
sudo reboot

Re-check the parameters after reboot before running ftrace.

5.4. Files in Ftrace:

The below is a list of few major files in Ftrace.

current_tracer:

This is used to set or display the current tracer that is configured.

available_tracers:

This holds the different types of tracers that have been compiled into the kernel.
The tracers listed here can be configured by echoing their name into current_tracer.

tracing_on:

This sets or displays whether writing to the tracering buffer is enabled. Echo 0 into this
file to disable the tracer or 1 to enable it.

trace:

This file holds the output of the trace in a human readable format.

tracing_cpumask:

This is a mask that lets the user only trace on specified CPUs. The format is a hex string
representing the CPUs.

events:

It holds event tracepoints (also known as static tracepoints) that have been compiled into
the kernel. It shows what event tracepoints exist and how they are grouped by system.

5.5. Avaliable Tracers

Here is the list of current tracers that may be configured based on usage.

	function

	function_graph

	irqsoff

	preemptoff

	preemptirqsoff

	wakeup

	wakeup_rt

Brief about a few:

function:

Function call tracer to trace all kernel functions.

function_graph:

Similar to the function tracer except that the function tracer probes the functions on their
entry whereas the function graph tracer traces on both entry and exit of the functions.

nop:

This is the “trace nothing” tracer. To remove tracers from tracing simply echo “nop” into
current_tracer.

Examples:

To list available tracers:
[tracing]# cat available_tracers
function_graph function wakeup wakeup_rt preemptoff irqsoff preemptirqsoff nop

Usage:
[tracing]# echo function > current_tracer
[tracing]# cat current_tracer
function

To view output:
[tracing]# cat trace | head -10

To Stop tracing:
[tracing]# echo 0 > tracing_on

To Start/restart tracing:
[tracing]# echo 1 > tracing_on;

5.6. Ftrace in KVM4NFV

Ftrace is part of KVM4NFV D-Release. KVM4NFV built 4.4-linux-Kernel will be tested by
executing cyclictest and analyzing the results/latency values (max, min, avg) generated.
Ftrace (or) function tracer is a stable kernel inbuilt debugging tool which tests real time
kernel and outputs a log as part of the code. These output logs are useful in following ways.

	Kernel Debugging.

	Helps in Kernel code optimization and

	Can be used to better understand the kernel level code flow

Ftrace logs for KVM4NFV can be found here [http://artifacts.opnfv.org/kvmfornfv.html]:

5.7. Ftrace Usage in KVM4NFV Kernel Debugging:

Kvm4nfv has two scripts in /ci/envs to provide ftrace tool:

	enable_trace.sh

	disable_trace.sh

Found at.,
$ cd kvmfornfv/ci/envs

5.8. Enabling Ftrace in KVM4NFV

The enable_trace.sh script is triggered by changing ftrace_enable value in test_kvmfornfv.sh
script to 1 (which is zero by default). Change as below to enable Ftrace.

ftrace_enable=1

Note:

	Ftrace is enabled before

5.9. Details of enable_trace script

	CPU coremask is calculated using getcpumask()

	
	All the required events are enabled by,

	echoing “1” to $TRACEDIR/events/event_name/enable file

Example,

$TRACEDIR = /sys/kernel/debug/tracing/
sudo bash -c "echo 1 > $TRACEDIR/events/irq/enable"
sudo bash -c "echo 1 > $TRACEDIR/events/task/enable"
sudo bash -c "echo 1 > $TRACEDIR/events/syscalls/enable"

The set_event file contains all the enabled events list

	Function tracer is selected. May be changed to other avaliable tracers based on requirement

sudo bash -c "echo function > $TRACEDIR/current_tracer

	When tracing is turned ON by setting tracing_on=1, the trace file keeps getting append

with the traced data until tracing_on=0 and then ftrace_buffer gets cleared.

To Stop/Pause,
echo 0 >tracing_on;

To Start/Restart,
echo 1 >tracing_on;

	Once tracing is disabled, disable_trace.sh script is triggered.

5.10. BREAKTRACE

	Send break trace command when latency > USEC. This is a debugging option to control the latency

tracer in the realtime preemption patch. It is useful to track down unexpected large latencies on a
system. This option does only work with following kernel config options.

For kernel < 2.6.24:
* CONFIG_PREEMPT_RT=y
* CONFIG_WAKEUP_TIMING=y
* CONFIG_LATENCY_TRACE=y
* CONFIG_CRITICAL_PREEMPT_TIMING=y
* CONFIG_CRITICAL_IRQSOFF_TIMING=y

For kernel >= 2.6.24:
* CONFIG_PREEMPT_RT=y
* CONFIG_FTRACE
* CONFIG_IRQSOFF_TRACER=y
* CONFIG_PREEMPT_TRACER=y
* CONFIG_SCHED_TRACER=y
* CONFIG_WAKEUP_LATENCY_HIST

	Kernel configuration options enabled. The USEC parameter to the -b option defines a maximum

latency value, which is compared against the actual latencies of the test. Once the measured latency
is higher than the given maximum, the kernel tracer and cyclictest is stopped. The trace can be read
from /proc/latency_trace. Please be aware that the tracer adds significant overhead to the kernel,
so the latencies will be much higher than on a kernel with latency tracing disabled.

	Breaktrace option will enable the trace by default, suppress the tracing by using –notrace option.

5.11. Post-execute scripts

post-execute script to yardstick node context teardown is added to disable the ftrace soon after the
completion of cyclictest execution throughyardstick. This option is implemented to collect only
required ftrace logs for effective debugging if needed.

5.12. Details of disable_trace Script

In disable trace script the following are done:

	The trace file is copied and moved to /tmp folder based on timestamp

	The current tracer file is set to nop

	The set_event file is cleared i.e., all the enabled events are disabled

	Kernel Ftrace is disabled/unmounted

5.13. Publishing Ftrace logs:

The generated trace log is pushed to artifacts [https://artifacts.opnfv.org/] by kvmfornfv-upload-artifact.sh
script available in releng which will be triggered as a part of kvm4nfv daily job.
The trigger [https://gerrit.opnfv.org/gerrit/gitweb?p=releng.git;a=blob;f=jjb/kvmfornfv/kvmfornfv-upload-artifact.sh;h=56fb4f9c18a83c689a916dc6c85f9e3ddf2479b2;hb=HEAD#l53] in the script is.,

echo "Uploading artifacts for future debugging needs...."
gsutil cp -r $WORKSPACE/build_output/log-*.tar.gz $GS_LOG_LOCATION > $WORKSPACE/gsutil.log 2>&1

6. KVM4NFV Dashboard Guide

6.1. Dashboard for KVM4NFV Daily Test Results

6.2. Abstract

This chapter explains the procedure to configure the InfluxDB and Grafana on Node1 or Node2
depending on the testtype to publish KVM4NFV test results. The cyclictest cases are executed
and results are published on Yardstick Dashboard(Grafana). InfluxDB is the database which will
store the cyclictest results and Grafana is a visualisation suite to view the maximum,minimum and
average values of the time series data of cyclictest results.The framework is shown in below image.

[image: ../../_images/dashboard-architecture.png]

6.3. Version Features

	Release

	Features

	Colorado

	
	Data published in Json file format

	No database support to store the test’s
latency values of cyclictest

	For each run, the previous run’s output
file is replaced with a new file with
currents latency values.

	Danube

	
	Test results are stored in Influxdb

	Graphical representation of the latency
values using Grafana suite. (Dashboard)

	Supports graphical view for multiple
testcases and test-types (Stress/Idle)

6.4. Installation Steps:

To configure Yardstick, InfluxDB and Grafana for KVM4NFV project following sequence of steps are followed:

Note:

All the below steps are done as per the script, which is a part of CICD integration of kvmfornfv.

For Yardstick:
git clone https://gerrit.opnfv.org/gerrit/yardstick

For InfluxDB:
docker pull tutum/influxdb
docker run -d --name influxdb -p 8083:8083 -p 8086:8086 --expose 8090 --expose 8099 tutum/influxdb
docker exec -it influxdb bash
$influx
>CREATE USER root WITH PASSWORD 'root' WITH ALL PRIVILEGES
>CREATE DATABASE yardstick;
>use yardstick;
>show MEASUREMENTS;

For Grafana:
docker pull grafana/grafana
docker run -d --name grafana -p 3000:3000 grafana/grafana

The Yardstick document for Grafana and InfluxDB configuration can be found here [https://wiki.opnfv.org/display/yardstick/How+to+deploy+InfluxDB+and+Grafana+locally].

6.5. Configuring the Dispatcher Type:

Need to configure the dispatcher type in /etc/yardstick/yardstick.conf depending on the dispatcher
methods which are used to store the cyclictest results. A sample yardstick.conf can be found at
/yardstick/etc/yardstick.conf.sample, which can be copied to /etc/yardstick.

mkdir -p /etc/yardstick/
cp /yardstick/etc/yardstick.conf.sample /etc/yardstick/yardstick.conf

Dispatcher Modules:

Three type of dispatcher methods are available to store the cyclictest results.

	File

	InfluxDB

	HTTP

1. File: Default Dispatcher module is file. If the dispatcher module is configured as a file,
then the test results are stored in a temporary file yardstick.out(default path: /tmp/yardstick.out).
Dispatcher module of “Verify Job” is “Default”. So,the results are stored in Yardstick.out file for
verify job. Storing all the verify jobs in InfluxDB database causes redundancy of latency values.
Hence, a File output format is prefered.

[DEFAULT]
debug = False
dispatcher = file

[dispatcher_file]
file_path = /tmp/yardstick.out
max_bytes = 0
backup_count = 0

2. Influxdb: If the dispatcher module is configured as influxdb, then the test results are
stored in Influxdb. Users can check test resultsstored in the Influxdb(Database) on Grafana which is
used to visualizethe time series data.

To configure the influxdb, the following content in /etc/yardstick/yardstick.conf need to updated

[DEFAULT]
debug = False
dispatcher = influxdb

[dispatcher_influxdb]
timeout = 5
target = http://127.0.0.1:8086 ##Mention the IP where influxdb is running
db_name = yardstick
username = root
password = root

Dispatcher module of “Daily Job” is Influxdb. So, the results are stored in influxdb and then
published to Dashboard.

3. HTTP: If the dispatcher module is configured as http, users can check test result on OPNFV
testing dashboard which uses MongoDB as backend.

[DEFAULT]
debug = False
dispatcher = http

[dispatcher_http]
timeout = 5
target = http://127.0.0.1:8000/results

[image: ../../_images/UseCaseDashboard.png]

6.5.1. Detailing the dispatcher module in verify and daily Jobs:

KVM4NFV updates the dispatcher module in the yardstick configuration (/etc/yardstick/yardstick.conf)
file depending on the Job type(Verify/Daily). Once the test is completed, results are published to
the respective dispatcher modules.

Dispatcher module is configured for each Job type as mentioned below.

1. Verify Job : Default “DISPATCHER_TYPE” i.e. file(/tmp/yardstick.out) is used. User can also
see the test results on Jenkins console log.

"max": "00030", "avg": "00006", "min": "00006"

	Daily Job : Opnfv Influxdb url is configured as dispatcher module.

DISPATCHER_TYPE=influxdb
DISPATCHER_INFLUXDB_TARGET="http://104.197.68.199:8086"

Influxdb only supports line protocol, and the json protocol is deprecated.

	For example, the raw_result of cyclictest in json format is:

	"benchmark": {
 "timestamp": 1478234859.065317,
 "errors": "",
 "data": {
 "max": "00012",
 "avg": "00008",
 "min": "00007"
 },
 "sequence": 1
 },
 "runner_id": 23
}

	With the help of “influxdb_line_protocol”, the json is transformed as a line string:

	'kvmfornfv_cyclictest_idle_idle,deploy_scenario=unknown,host=kvm.LF,
installer=unknown,pod_name=unknown,runner_id=23,scenarios=Cyclictest,
task_id=e7be7516-9eae-406e-84b6-e931866fa793,version=unknown
avg="00008",max="00012",min="00007" 1478234859065316864'

Influxdb api which is already implemented in Influxdb [https://git.opnfv.org/cgit/yardstick/tree/yardstick/dispatcher/influxdb.py] will post the data in line format into the
database.

Displaying Results on Grafana dashboard:

	Once the test results are stored in Influxdb, dashboard configuration file(Json) which used to

display the cyclictest results on Grafana need to be created by following the Grafana-procedure [https://wiki.opnfv.org/display/yardstick/How+to+work+with+grafana+dashboard]
and then pushed into yardstick-repo [https://git.opnfv.org/cgit/yardstick/tree/dashboard/KVMFORNFV-Cyclictest]

	Grafana can be accessed at Login [http://testresults.opnfv.org/grafana/login] using credentials opnfv/opnfv and used for visualizing the

collected test data as shown in Visual [http://testresults.opnfv.org/grafana/dashboard/db/kvmfornfv-cyclictest]

[image: ../../_images/Dashboard-screenshot-1.png]

[image: ../../_images/Dashboard-screenshot-2.png]

6.6. Understanding Kvm4nfv Grafana Dashboard

The Kvm4nfv dashboard found at http://testresults.opnfv.org/ currently supports graphical view of
cyclictest. For viewing Kvm4nfv dashboarduse,

http://testresults.opnfv.org/grafana/dashboard/db/kvmfornfv-cyclictest

The login details are:

 Username: opnfv
 Password: opnfv

The JSON of the kvmfonfv-cyclictest dashboard can be found at.,

$ git clone https://gerrit.opnfv.org/gerrit/yardstick.git
$ cd yardstick/dashboard
$ cat KVMFORNFV-Cyclictest

The Dashboard has four tables, each representing a specific test-type of cyclictest case,

	Kvmfornfv_Cyclictest_Idle-Idle

	Kvmfornfv_Cyclictest_CPUstress-Idle

	Kvmfornfv_Cyclictest_Memorystress-Idle

	Kvmfornfv_Cyclictest_IOstress-Idle

Note:

	For all graphs, X-axis is marked with time stamps, Y-axis with value in microsecond units.

A brief about what each graph of the dashboard represents:

6.6.1. 1. Idle-Idle Graph

Idle-Idle [http://testresults.opnfv.org/grafana/dashboard/db/kvmfornfv-cyclictest?panelId=10&fullscreen] graph displays the Average, Maximum and Minimum latency values obtained by running
Idle_Idle test-type of the cyclictest.
Idle_Idle implies that no stress is applied on the Host or the Guest.

[image: ../../_images/Idle-Idle.png]

6.6.2. 2. CPU_Stress-Idle Graph

Cpu_Stress-Idle [http://testresults.opnfv.org/grafana/dashboard/db/kvmfornfv-cyclictest?panelId=11&fullscreen] graph displays the Average, Maximum and Minimum latency values obtained by
running Cpu-stress_Idle test-type of the cyclictest. Cpu-stress_Idle implies that CPU stress is
applied on the Host and no stress on the Guest.

[image: ../../_images/Cpustress-Idle.png]

6.6.3. 3. Memory_Stress-Idle Graph

Memory_Stress-Idle [http://testresults.opnfv.org/grafana/dashboard/db/kvmfornfv-cyclictest?panelId=12&fullscreen] graph displays the Average, Maximum and Minimum latency values obtained by
running Memory-stress_Idle test-type of the Cyclictest. Memory-stress_Idle implies that Memory
stress is applied on the Host and no stress on the Guest.

[image: ../../_images/Memorystress-Idle.png]

6.6.4. 4. IO_Stress-Idle Graph

IO_Stress-Idle [http://testresults.opnfv.org/grafana/dashboard/db/kvmfornfv-cyclictest?panelId=13&fullscreen] graph displays the Average, Maximum and Minimum latency values obtained by running
IO-stress_Idle test-type of the Cyclictest. IO-stress_Idle implies that IO stress is applied on the
Host and no stress on the Guest.

[image: ../../_images/IOstress-Idle.png]

6.6.5. Packet Forwarding Results

6.7. Understanding Kvm4nfv Grafana Dashboard

The Kvm4nfv dashboard found at http://testresults.opnfv.org/grafana/ currently supports graphical
view of packet forwarding as well. For viewing Kvm4nfv packet forwarding dashboard use,

http://testresults.opnfv.org/grafana/dashboard/db/kvmfornfv-packet-forwarding

The login details are:

 Username: opnfv
 Password: opnfv

The JSON of the KVMFORNFV-Packet-Forwarding dashboard can be found at.,

$ git clone https://gerrit.opnfv.org/gerrit/yardstick.git
$ cd yardstick/dashboard
$ cat KVMFORNFV-Packet-Forwarding

The Dashboard has five tables for each specific test of packet forwarding, one for each frame size.

	KVM4NFV-PHY2PHY-TPUT-OVS_WITH_DPDK_AND_VHOST_USER

	KVM4NFV-PVP-TPUT-OVS_WITH_DPDK_AND_VHOST_USER

	KVM4NFV-PVP-TPUT-SRIOV

	KVM4NFV-PVVP-TPUT-OVS_WITH_DPDK_AND_VHOST_USER

	KVM4NFV-PVVP-TPUT-OVS_WITH_DPDK_AND_VHOST_USER

Note:

	For all graphs, X-axis is marked with time stamps, Y-axis with value in microsecond units.

6.8. Future Scope

The future work will include adding new tables to packet forwarding Grafana dashboard to publish the
results of new packet forwarding test cases to be added if any.

7. Low Latency Environment

Achieving low latency with the KVM4NFV project requires setting up a special
test environment. This environment includes the BIOS settings, kernel
configuration, kernel parameters and the run-time environment.

7.1. Hardware Environment Description

BIOS setup plays an important role in achieving real-time latency. A collection
of relevant settings, used on the platform where the baseline performance data
was collected, is detailed below:

7.1.1. CPU Features

Some special CPU features like TSC-deadline timer, invariant TSC and Process
posted interrupts, etc, are helpful for latency reduction.

7.1.2. CPU Topology

NUMA topology is also important for latency reduction.

7.1.3. BIOS Setup

Careful BIOS setup is important in achieving real time latency. Different
platforms have different BIOS setups, below are the important BIOS settings on
the platform used to collect the baseline performance data.

7.2. Software Environment Setup

Both the host and the guest environment need to be configured properly to
reduce latency variations. Below are some suggested kernel configurations.
The ci/envs/ directory gives detailed implementation on how to setup the
environment.

7.2.1. Kernel Parameter

Please check the default kernel configuration in the source code at:
kernel/arch/x86/configs/opnfv.config.

Below is host kernel boot line example:

isolcpus=11-15,31-35 nohz_full=11-15,31-35 rcu_nocbs=11-15,31-35
iommu=pt intel_iommu=on default_hugepagesz=1G hugepagesz=1G mce=off idle=poll
intel_pstate=disable processor.max_cstate=1 pcie_asmp=off tsc=reliable

Below is guest kernel boot line example

isolcpus=1 nohz_full=1 rcu_nocbs=1 mce=off idle=poll default_hugepagesz=1G
hugepagesz=1G

Please refer to tuning.userguide for more explanation.

7.2.2. Run-time Environment Setup

Not only are special kernel parameters needed but a special run-time
environment is also required. Please refer to tunning.userguide for
more explanation.

7.3. Test cases to measure Latency

The performance of the kvm4nfv is assesed by the latency values. Cyclictest and Packet forwarding
Test cases result in real time latency values of average, minimum and maximum.

	Cyclictest

	Packet Forwarding test

7.4. 1. Cyclictest case

Cyclictest results are the most frequently cited real-time Linux metric. The core concept of Cyclictest is very simple.
In KVM4NFV cyclictest is implemented on the Guest-VM with 4.4-Kernel RPM installed. It generated Max,Min and Avg
values which help in assesing the kernel used. Cyclictest in currently divided into the following test types,

	Idle-Idle

	CPU_stress-Idle

	Memory_stress-Idle

	IO_stress-Idle

Future scope of work may include the below test-types,

	CPU_stress-CPU_stress

	Memory_stress-Memory_stress

	IO_stress-IO_stress

7.4.1. Understanding the naming convention

[Host-Type] - [Guest-Type]

	Host-Type : Mentions the type of stress applied on the kernel of the Host

	Guest-Type : Mentions the type of stress applied on the kernel of the Guest

Example.,

Idle - CPU_stress

The above name signifies that,

	No Stress is applied on the Host kernel

	CPU Stress is applied on the Guest kernel

Note:

	Stress is applied using the stress which is installed as part of the deployment.
Stress can be applied on CPU, Memory and Input-Output (Read/Write) operations using the stress tool.

7.4.2. Version Features

	Test Name

	Colorado

	Danube

	Euphrates

	
	Idle - Idle

	Y

	Y

	Y

	
	Cpustress - Idle

	
	Y

	Y

	
	Memorystress - Idle

	
	Y

	Y

	
	IOstress - Idle

	
	Y

	Y

7.4.3. Idle-Idle test-type

Cyclictest in run on the Guest VM when Host,Guest are not under any kind of stress. This is the basic
cyclictest of the KVM4NFV project. Outputs Avg, Min and Max latency values.

[image: ../../_images/idle-idle-test-type.png]

7.4.4. CPU_Stress-Idle test-type

Here, the host is under CPU stress, where multiple times sqrt() function is called on kernel which
results increased CPU load. The cyclictest will run on the guest, where the guest is under no stress.
Outputs Avg, Min and Max latency values.

[image: ../../_images/cpu-stress-idle-test-type.png]

7.4.5. Memory_Stress-Idle test-type

In this type, the host is under memory stress where continuos memory operations are implemented to
increase the Memory stress (Buffer stress).The cyclictest will run on the guest, where the guest is
under no stress. It outputs Avg, Min and Max latency values.

[image: ../../_images/memory-stress-idle-test-type.png]

7.4.6. IO_Stress-Idle test-type

The host is under constant Input/Output stress .i.e., multiple read-write operations are invoked to
increase stress. Cyclictest will run on the guest VM that is launched on the same host, where the
guest is under no stress. It outputs Avg, Min and Max latency values.

[image: ../../_images/io-stress-idle-test-type.png]

7.4.7. CPU_Stress-CPU_Stress test-type

Not implemented for Euphrates release.

7.4.8. Memory_Stress-Memory_Stress test-type

Not implemented for Euphrates release.

7.4.9. IO_Stress-IO_Stress test type

Not implemented for Euphrates release.

7.5. 2. Packet Forwarding Test cases

Packet forwarding is an other test case of Kvm4nfv. It measures the time taken by a packet to return
to source after reaching its destination. This test case uses automated test-framework provided by
OPNFV VSWITCHPERF project and a traffic generator (IXIA is used for kvm4nfv). Only latency results
generating test cases are triggered as a part of kvm4nfv daily job.

Latency test measures the time required for a frame to travel from the originating device through
the network to the destination device. Please note that RFC2544 Latency measurement will be
superseded with a measurement of average latency over all successfully transferred packets or frames.

Packet forwarding test cases currently supports the following test types:

	Packet forwarding to Host

	Packet forwarding to Guest

	Packet forwarding to Guest using SRIOV

The testing approach adoped is black box testing, meaning the test inputs can be generated and the
outputs captured and completely evaluated from the outside of the System Under Test(SUT).

7.5.1. Packet forwarding to Host

This is also known as Physical port → vSwitch → physical port deployment.
This test measures the time taken by the packet/frame generated by traffic generator(phy) to travel
through the network to the destination device(phy). This test results min,avg and max latency values.
This value signifies the performance of the installed kernel.

Packet flow,

[image: ../../_images/host_pk_fw.png]

7.5.2. Packet forwarding to Guest

This is also known as Physical port → vSwitch → VNF → vSwitch → physical port deployment.

This test measures the time taken by the packet/frame generated by traffic generator(phy) to travel
through the network involving a guest to the destination device(phy). This test results min,avg and
max latency values. This value signifies the performance of the installed kernel.

Packet flow,

[image: ../../_images/guest_pk_fw.png]

7.5.3. Packet forwarding to Guest using SRIOV

This test is used to verify the VNF and measure the base performance (maximum forwarding rate in
fps and latency) that can be achieved by the VNF without a vSwitch. The performance metrics
collected by this test will serve as a key comparison point for NIC passthrough technologies and
vSwitches. VNF in this context refers to the hypervisor and the VM.

Note: The Vsperf running on the host is still required.

Packet flow,

[image: ../../_images/sriov_pk_fw.png]

8. Fast Live Migration

The NFV project requires fast live migration. The specific requirement is
total live migration time < 2Sec, while keeping the VM down time < 10ms when
running DPDK L2 forwarding workload.

We measured the baseline data of migrating an idle 8GiB guest running a DPDK L2
forwarding work load and observed that the total live migration time was 2271ms
while the VM downtime was 26ms. Both of these two indicators failed to satisfy
the requirements.

8.1. Current Challenges

The following 4 features have been developed over the years to make the live
migration process faster.

	
	XBZRLE:

	Helps to reduce the network traffic by just sending the
compressed data.

	
	RDMA:

	Uses a specific NIC to increase the efficiency of data
transmission.

	
	Multi thread compression:

	Compresses the data before transmission.

	
	Auto convergence:

	Reduces the data rate of dirty pages.

Tests show none of the above features can satisfy the requirement of NFV.
XBZRLE and Multi thread compression do the compression entirely in software and
they are not fast enough in a 10Gbps network environment. RDMA is not flexible
because it has to transport all the guest memory to the destination without zero
page optimization. Auto convergence is not appropriate for NFV because it will
impact guest’s performance.

So we need to find other ways for optimization.

8.2. Optimizations

	Delay non-emergency operations
By profiling, it was discovered that some of the cleanup operations during
the stop and copy stage are the main reason for the long VM down time. The
cleanup operation includes stopping the dirty page logging, which is a time
consuming operation. By deferring these operations until the data transmission
is completed the VM down time is reduced to about 5-7ms.

	Optimize zero page checking
Currently QEMU uses the SSE2 instruction to optimize the zero pages
checking. The SSE2 instruction can process 16 bytes per instruction.
By using the AVX2 instruction, we can process 32 bytes per instruction.
Testing shows that using AVX2 can speed up the zero pages checking process
by about 25%.

	Remove unnecessary context synchronization.
The CPU context was being synchronized twice during live migration. Removing
this unnecessary synchronization shortened the VM downtime by about 100us.

8.3. Test Environment

The source and destination host have the same hardware and OS:
::
Host: HSW-EP
CPU: Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz
RAM: 64G
OS: RHEL 7.1
Kernel: 4.2
QEMU v2.4.0

Ethernet controller: Intel Corporation Ethernet Controller 10-Gigabit
X540-AT2 (rev 01)

Vhost-user with OVS/DPDK as backend:
::
The goal is to connect guests’ virtio-net devices having vhost-user backend to OVS dpdkvhostuser
ports and be able to run any kind of network traffic between them.

Installation of OVS and DPDK:
::
Using vsperf,installing the OVS and DPDk. Prepare the directories

mkdir -p /var/run/openvswitch
mount -t hugetlbfs -o pagesize=2048k none /dev/hugepages

Load Kernel modules

modprobe openvswitch

For OVS setup, clean the environment

rm -f /usr/local/var/run/openvswitch/vhost-user*
rm -f /usr/local/etc/openvswitch/conf.db

Start database server

ovsdb-tool create /usr/local/etc/openvswitch/conf.db $VSPERF/src/ovs/ovs/vswitchd/vswitch.ovsschema
ovsdb-server --remote=punix:$DB_SOCK --remote=db:Open_vSwitch,Open_vSwitch,manager_options --pidfile --detach

Start OVS

ovs-vsctl --no-wait init
ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-lcore-mask=0xf
ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-socket-mem=1024
ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true

Configure the bridge

ovs-vsctl add-br ovsbr0 -- set bridge ovsbr0 datapath_type=netdev
ovs-vsctl add-port ovsbr0 vhost-user1 -- set Interface vhost-user1 type=dpdkvhostuser
ovs-vsctl add-port ovsbr0 vhost-user2 -- set Interface vhost-user2 type=dpdkvhostuser

QEMU parameters:
::
qemu-system-x86_64 -enable-kvm -cpu host -smp 2
-chardev socket,id=char1,path=/usr/local/var/run/openvswitch/vhost-user1
-netdev type=vhost-user,id=net1,chardev=char1,vhostforce -device virtio-net-pci,netdev=net1,mac=52:54:00:12:34:56 -chardev socket,id=char2,path=/usr/local/var/run/openvswitch/vhost-user2-netdev type=vhost-user,id=net2,chardev=char2,vhostforce -device virtio-net-pci,netdev=net2,mac=54:54:00:12:34:56 -m 1024 -mem-path /dev/hugepages -mem-prealloc -realtime mlock=on -monitor unix:/tmp/qmp-sock-src,server,nowait -balloon virtio -drive file=/root/guest1.qcow2 -vnc :1 &

Run the standby qemu with -incoming tcp:-incoming tcp:${incoming_ip}:${migrate_port}:${migrate_port}

For local live migration

incoming ip=0

For peer -peer live migration

incoming ip=dest_host

Network connection

[image: live migration network connection]

Commands for performing live migration:

.. code:: bash

echo “migrate_set_speed 0” |nc -U /tmp/qmp-sock-src
echo “migrate_set_downtime 0.10” |nc -U /tmp/qmp-sock-src
echo “migrate -d tcp:0:4444” |nc -U /tmp/qmp-sock-src
#Wait till livemigration completed
echo “info migrate” | nc -U /tmp/qmp-sock-src

8.4. Test Result

The down time is set to 10ms when doing the test. We use pktgen to send the
packages to guest, the package size is 64 bytes, and the line rate is 2013
Mbps.

	Total live migration time

The total live migration time before and after optimization is shown in the
chart below. For an idle guest, we can reduce the total live migration time
from 2070ms to 401ms. For a guest running the DPDK L2 forwarding workload,
the total live migration time is reduced from 2271ms to 654ms.

[image: total live migration time]

	VM downtime

The VM down time before and after optimization is shown in the chart below.
For an idle guest, we can reduce the VM down time from 29ms to 9ms. For a guest
running the DPDK L2 forwarding workload, the VM down time is reduced from 26ms to
5ms.

[image: vm downtime]

9. Euphrates OpenStack User Guide

OpenStack is a cloud operating system developed and released by the
OpenStack project [https://www.openstack.org]. OpenStack is used in OPNFV
for controlling pools of compute, storage, and networking resources in a Pharos
compliant infrastructure.

OpenStack is used in Euphrates to manage tenants (known in OpenStack as
projects),users, services, images, flavours, and quotas across the Pharos
infrastructure.The OpenStack interface provides the primary interface for an
operational Euphrates deployment and it is from the “horizon console” that an
OPNFV user will perform the majority of administrative and operational
activities on the deployment.

9.1. OpenStack references

The OpenStack user guide [http://docs.openstack.org/user-guide] provides
details and descriptions of how to configure and interact with the OpenStack
deployment.This guide can be used by lab engineers and operators to tune the
OpenStack deployment to your liking.

Once you have configured OpenStack to your purposes, or the Euphrates
deployment meets your needs as deployed, an operator, or administrator, will
find the best guidance for working with OpenStack in the
OpenStack administration guide [http://docs.openstack.org/user-guide-admin].

9.2. Connecting to the OpenStack instance

Once familiar with the basic of working with OpenStack you will want to connect
to the OpenStack instance via the Horizon Console. The Horizon console provide
a Web based GUI that will allow you operate the deployment.
To do this you should open a browser on the JumpHost to the following address
and enter the username and password:

http://{Controller-VIP}:80/index.html>
username: admin
password: admin

Other methods of interacting with and configuring OpenStack,, like the REST API
and CLI are also available in the Euphrates deployment, see the
OpenStack administration guide [http://docs.openstack.org/user-guide-admin]
for more information on using those interfaces.

10. Packet Forwarding

10.1. About Packet Forwarding

Packet Forwarding is a test suite of KVM4NFV. These latency tests measures the time taken by a
Packet generated by the traffic generator to travel from the originating device through the
network to the destination device. Packet Forwarding is implemented using test framework
implemented by OPNFV VSWITCHPERF project and an IXIA Traffic Generator.

10.2. Version Features

	Release

	Features

	Colorado

	
	Packet Forwarding is not part of Colorado
release of KVM4NFV

	Danube

	
	Packet Forwarding is a testcase in KVM4NFV

	Implements three scenarios (Host/Guest/SRIOV)
as part of testing in KVM4NFV

	Uses automated test framework of OPNFV
VSWITCHPERF software (PVP/PVVP)

	Works with IXIA Traffic Generator

	Euphrates

	
	Test cases involving multiple guests (PVVP/PVPV)
included.

	Implemented Yardstick Grafana dashboard to
publish results of packet forwarding test cases

10.3. VSPERF

VSPerf is an OPNFV testing project.
VSPerf will develop a generic and architecture agnostic vSwitch testing framework and associated
tests, that will serve as a basis for validating the suitability of different vSwitch
implementations in a Telco NFV deployment environment. The output of this project will be utilized
by the OPNFV Performance and Test group and its associated projects, as part of OPNFV Platform and
VNF level testing and validation.

For complete VSPERF documentation go to link. [http://artifacts.opnfv.org/vswitchperf/danube/index.html]

10.3.1. Installation

Guidelines of installating VSPERF [http://artifacts.opnfv.org/vswitchperf/colorado/configguide/index.html].

10.3.2. Supported Operating Systems

	CentOS 7

	Fedora 20

	Fedora 21

	Fedora 22

	RedHat 7.2

	Ubuntu 14.04

10.3.3. Supported vSwitches

The vSwitch must support Open Flow 1.3 or greater.

	OVS (built from source).

	OVS with DPDK (built from source).

10.3.4. Supported Hypervisors

	Qemu version 2.6.

10.3.5. Other Requirements

The test suite requires Python 3.3 and relies on a number of other
packages. These need to be installed for the test suite to function.

Installation of required packages, preparation of Python 3 virtual
environment and compilation of OVS, DPDK and QEMU is performed by
script systems/build_base_machine.sh. It should be executed under
user account, which will be used for vsperf execution.

Please Note: Password-less sudo access must be configured for given user before script is

executed.

Execution of installation script:

$ cd vswitchperf
$ cd systems
$./build_base_machine.sh

Script build_base_machine.sh will install all the vsperf dependencies
in terms of system packages, Python 3.x and required Python modules.
In case of CentOS 7 it will install Python 3.3 from an additional repository
provided by Software Collections (a link [http://www.softwarecollections.org/en/scls/rhscl/python33/]). In case of RedHat 7 it will
install Python 3.4 as an alternate installation in /usr/local/bin. Installation
script will also use virtualenv [https://virtualenv.readthedocs.org/en/latest/] to create a vsperf virtual environment,
which is isolated from the default Python environment. This environment will
reside in a directory called vsperfenv in $HOME.

You will need to activate the virtual environment every time you start a
new shell session. Its activation is specific to your OS:

For running testcases VSPERF is installed on Intel pod1-node2 in which centos
operating system is installed. Only VSPERF installion on Centos is discussed here.
For installation steps on other operating systems please refer to here [http://artifacts.opnfv.org/vswitchperf/colorado/configguide/index.html].

10.3.6. For CentOS 7

Python 3 Packages

To avoid file permission errors and Python version issues, use virtualenv to create an isolated
environment with Python3. The required Python 3 packages can be found in the requirements.txt file
in the root of the test suite. They can be installed in your virtual environment like so:

scl enable python33 bash
Create virtual environment
virtualenv vsperfenv
cd vsperfenv
source bin/activate
pip install -r requirements.txt

You need to activate the virtual environment every time you start a new shell session.
To activate, simple run:

scl enable python33 bash
cd vsperfenv
source bin/activate

10.3.7. Working Behind a Proxy

If you’re behind a proxy, you’ll likely want to configure this before running any of the above.
For example:

export http_proxy="http://<username>:<password>@<proxy>:<port>/";
export https_proxy="https://<username>:<password>@<proxy>:<port>/";
export ftp_proxy="ftp://<username>:<password>@<proxy>:<port>/";
export socks_proxy="socks://<username>:<password>@<proxy>:<port>/";

For other OS specific activation click this link:

http://artifacts.opnfv.org/vswitchperf/colorado/configguide/installation.html#other-requirements

10.4. Traffic-Generators

VSPERF supports many Traffic-generators. For configuring VSPERF to work with the available traffic
generator go through this [http://artifacts.opnfv.org/vswitchperf/colorado/configguide/trafficgen.html].

VSPERF supports the following traffic generators:

	Dummy (DEFAULT): Allows you to use your own external
traffic generator.

	IXIA (IxNet and IxOS)

	Spirent TestCenter

	Xena Networks

	MoonGen

To see the list of traffic gens from the cli:

$./vsperf --list-trafficgens

This guide provides the details of how to install
and configure the various traffic generators.

As KVM4NFV uses only IXIA traffic generator, it is discussed here. For complete documentation
regarding traffic generators please follow this link [https://gerrit.opnfv.org/gerrit/gitweb?p=vswitchperf.git;a=blob;f=docs/configguide/trafficgen.rst;h=85fc35b886d30db3b92a6b7dcce7ca742b70cbdc;hb=HEAD].

10.5. IXIA Setup

10.5.1. Hardware Requirements

VSPERF requires the following hardware to run tests: IXIA traffic generator (IxNetwork), a machine
that runs the IXIA client software and a CentOS Linux release 7.1.1503 (Core) host.

10.5.2. Installation

Follow the installation instructions to install.

10.5.3. On the CentOS 7 system

You need to install IxNetworkTclClient$(VER_NUM)Linux.bin.tgz.

10.5.4. On the IXIA client software system

	Find the IxNetwork TCL server app

	
	(start -> All Programs -> IXIA -> IxNetwork -> IxNetwork_$(VER_NUM) -> IxNetwork TCL Server)

	Right click on IxNetwork TCL Server, select properties

	Under shortcut tab in the Target dialogue box make sure there is the argument “-tclport xxxx”

where xxxx is your port number (take note of this port number you will need it for the
10_custom.conf file).

[image: ../../_images/IXIA1.png]

	Hit Ok and start the TCL server application

10.6. VSPERF configuration

There are several configuration options specific to the IxNetworks traffic generator
from IXIA. It is essential to set them correctly, before the VSPERF is executed
for the first time.

Detailed description of options follows:

	TRAFFICGEN_IXNET_MACHINE - IP address of server, where IxNetwork TCL Server is running

	TRAFFICGEN_IXNET_PORT - PORT, where IxNetwork TCL Server is accepting connections from
TCL clients

	TRAFFICGEN_IXNET_USER - username, which will be used during communication with IxNetwork
TCL Server and IXIA chassis

	TRAFFICGEN_IXIA_HOST - IP address of IXIA traffic generator chassis

	TRAFFICGEN_IXIA_CARD - identification of card with dedicated ports at IXIA chassis

	TRAFFICGEN_IXIA_PORT1 - identification of the first dedicated port at TRAFFICGEN_IXIA_CARD
at IXIA chassis; VSPERF uses two separated ports for traffic generation. In case of
unidirectional traffic, it is essential to correctly connect 1st IXIA port to the 1st NIC
at DUT, i.e. to the first PCI handle from WHITELIST_NICS list. Otherwise traffic may not
be able to pass through the vSwitch.

	TRAFFICGEN_IXIA_PORT2 - identification of the second dedicated port at TRAFFICGEN_IXIA_CARD
at IXIA chassis; VSPERF uses two separated ports for traffic generation. In case of
unidirectional traffic, it is essential to correctly connect 2nd IXIA port to the 2nd NIC
at DUT, i.e. to the second PCI handle from WHITELIST_NICS list. Otherwise traffic may not
be able to pass through the vSwitch.

	TRAFFICGEN_IXNET_LIB_PATH - path to the DUT specific installation of IxNetwork TCL API

	TRAFFICGEN_IXNET_TCL_SCRIPT - name of the TCL script, which VSPERF will use for
communication with IXIA TCL server

	TRAFFICGEN_IXNET_TESTER_RESULT_DIR - folder accessible from IxNetwork TCL server,
where test results are stored, e.g. c:/ixia_results; see test-results-share

	TRAFFICGEN_IXNET_DUT_RESULT_DIR - directory accessible from the DUT, where test
results from IxNetwork TCL server are stored, e.g. /mnt/ixia_results; see
test-results-share

10.6.1. Test results share

VSPERF is not able to retrieve test results via TCL API directly. Instead, all test
results are stored at IxNetwork TCL server. Results are stored at folder defined by
TRAFFICGEN_IXNET_TESTER_RESULT_DIR configuration parameter. Content of this
folder must be shared (e.g. via samba protocol) between TCL Server and DUT, where
VSPERF is executed. VSPERF expects, that test results will be available at directory
configured by TRAFFICGEN_IXNET_DUT_RESULT_DIR configuration parameter.

Example of sharing configuration:

	Create a new folder at IxNetwork TCL server machine, e.g. c:\ixia_results

	Modify sharing options of ixia_results folder to share it with everybody

	Create a new directory at DUT, where shared directory with results
will be mounted, e.g. /mnt/ixia_results

	Update your custom VSPERF configuration file as follows:

TRAFFICGEN_IXNET_TESTER_RESULT_DIR = 'c:/ixia_results'
TRAFFICGEN_IXNET_DUT_RESULT_DIR = '/mnt/ixia_results'

Note: It is essential to use slashes ‘/’ also in path
configured by TRAFFICGEN_IXNET_TESTER_RESULT_DIR parameter.

	Install cifs-utils package.

e.g. at rpm based Linux distribution:

yum install cifs-utils

	Mount shared directory, so VSPERF can access test results.

e.g. by adding new record into /etc/fstab

mount -t cifs //_TCL_SERVER_IP_OR_FQDN_/ixia_results /mnt/ixia_results
 -o file_mode=0777,dir_mode=0777,nounix

It is recommended to verify, that any new file inserted into c:/ixia_results folder
is visible at DUT inside /mnt/ixia_results directory.

10.6.2. Cloning and building src dependencies

In order to run VSPERF, you will need to download DPDK and OVS. You can do this manually and build
them in a preferred location, or you could use vswitchperf/src. The vswitchperf/src directory
contains makefiles that will allow you to clone and build the libraries that VSPERF depends on,
such as DPDK and OVS. To clone and build simply:

cd src
make

To delete a src subdirectory and its contents to allow you to re-clone simply use:

make cleanse

10.6.3. Configure the ./conf/10_custom.conf file

The supplied 10_custom.conf file must be modified, as it contains configuration items for which
there are no reasonable default values.

The configuration items that can be added is not limited to the initial contents. Any configuration
item mentioned in any .conf file in ./conf directory can be added and that item will be overridden
by the custom configuration value.

10.6.4. Using a custom settings file

Alternatively a custom settings file can be passed to vsperf via the –conf-file argument.

./vsperf --conf-file <path_to_settings_py> ...

Note that configuration passed in via the environment (–load-env) or via another command line
argument will override both the default and your custom configuration files. This
“priority hierarchy” can be described like so (1 = max priority):

	Command line arguments

	Environment variables

	Configuration file(s)

10.6.5. vloop_vnf

VSPERF uses a VM image called vloop_vnf for looping traffic in the deployment
scenarios involving VMs. The image can be downloaded from
http://artifacts.opnfv.org/.

Please see the installation instructions for information on vloop-vnf
images.

10.6.6. l2fwd Kernel Module

A Kernel Module that provides OSI Layer 2 Ipv4 termination or forwarding with
support for Destination Network Address Translation (DNAT) for both the MAC and
IP addresses. l2fwd can be found in <vswitchperf_dir>/src/l2fwd

10.6.7. Executing tests

Before running any tests make sure you have root permissions by adding the following line to
/etc/sudoers:

username ALL=(ALL) NOPASSWD: ALL

username in the example above should be replaced with a real username.

To list the available tests:

./vsperf --list-tests

To run a group of tests, for example all tests with a name containing
‘RFC2544’:

./vsperf --conf-file=user_settings.py --tests="RFC2544"

To run all tests:

./vsperf --conf-file=user_settings.py

Some tests allow for configurable parameters, including test duration (in seconds) as well as packet
sizes (in bytes).

./vsperf --conf-file user_settings.py
 --tests RFC2544Tput
 --test-param` "rfc2544_duration=10;packet_sizes=128"

For all available options, check out the help dialog:

./vsperf --help

10.7. Testcases

Available Tests in VSPERF are:

	phy2phy_tput

	phy2phy_forwarding

	back2back

	phy2phy_tput_mod_vlan

	phy2phy_cont

	pvp_cont

	pvvp_cont

	pvpv_cont

	phy2phy_scalability

	pvp_tput

	pvp_back2back

	pvvp_tput

	pvvp_back2back

	phy2phy_cpu_load

	phy2phy_mem_load

10.8. VSPERF modes of operation

VSPERF can be run in different modes. By default it will configure vSwitch,
traffic generator and VNF. However it can be used just for configuration
and execution of traffic generator. Another option is execution of all
components except traffic generator itself.

Mode of operation is driven by configuration parameter -m or –mode

-m MODE, --mode MODE vsperf mode of operation;
 Values:
 "normal" - execute vSwitch, VNF and traffic generator
 "trafficgen" - execute only traffic generator
 "trafficgen-off" - execute vSwitch and VNF
 "trafficgen-pause" - execute vSwitch and VNF but wait before traffic transmission

In case, that VSPERF is executed in “trafficgen” mode, then configuration
of traffic generator can be modified through TRAFFIC dictionary passed to the
--test-params option. It is not needed to specify all values of TRAFFIC
dictionary. It is sufficient to specify only values, which should be changed.
Detailed notes on TRAFFIC dictionary can be found at: ref:configuration-of-traffic-dictionary.

Example of execution of VSPERF in “trafficgen” mode:

$./vsperf -m trafficgen --trafficgen IxNet --conf-file vsperf.conf \
 --test-params "TRAFFIC={'traffic_type':'rfc2544_continuous','bidir':'False','framerate':60}"

10.9. Packet Forwarding Test Scenarios

KVM4NFV currently implements three scenarios as part of testing:

	Host Scenario

	Guest Scenario.

	SR-IOV Scenario.

10.9.1. Packet Forwarding Host Scenario

Here host DUT has VSPERF installed in it and is properly configured to use IXIA Traffic-generator
by providing IXIA CARD, PORTS and Lib paths along with IP.
please refer to figure.2

[image: ../../_images/Host_Scenario.png]

10.9.2. Packet Forwarding Guest Scenario (PXP Deployment)

Here the guest is a Virtual Machine (VM) launched by using vloop_vnf provided by vsperf project
on host/DUT using Qemu. In this latency test the time taken by the frame/packet to travel from the
originating device through network involving a guest to destination device is calculated.
The resulting latency values will define the performance of installed kernel.

[image: ../../_images/Guest_Scenario.png]

Every testcase uses one of the supported deployment scenarios to setup test environment.
The controller responsible for a given scenario configures flows in the vswitch to route
traffic among physical interfaces connected to the traffic generator and virtual
machines. VSPERF supports several deployments including PXP deployment, which can
setup various scenarios with multiple VMs.

These scenarios are realized by VswitchControllerPXP class, which can configure and
execute given number of VMs in serial or parallel configurations. Every VM can be
configured with just one or an even number of interfaces. In case that VM has more than
2 interfaces, then traffic is properly routed among pairs of interfaces.

Example of traffic routing for VM with 4 NICs in serial configuration:

 +--+
 | VM with 4 NICs |
 | +---------------+ +---------------+ |
 | | Application | | Application | |
 | +---------------+ +---------------+ |
 | ^ | ^ | |
 | | v | v |
 | +---------------+ +---------------+ |
 | | logical ports | | logical ports | |
 | | 0 1 | | 2 3 | |
 +--+---------------+----+---------------+--+
 ^ : ^ :
 | | | |
 : v : v
+-----------+---------------+----+---------------+----------+
| vSwitch | 0 1 | | 2 3 | |
| | logical ports | | logical ports | |
| previous +---------------+ +---------------+ next |
| VM or PHY ^ | ^ | VM or PHY|
| port -----+ +------------+ +---> port |
+---+

It is also possible to define different number of interfaces for each VM to better
simulate real scenarios.

The number of VMs involved in the test and the type of their connection is defined
by deployment name as follows:

	pvvp[number] - configures scenario with VMs connected in series with
optional number of VMs. In case that number is not specified, then
2 VMs will be used.

Example of 2 VMs in a serial configuration:

+----------------------+ +----------------------+
1st VM		2nd VM				
+---------------+		+---------------+				
	Application				Application	
+---------------+		+---------------+				
^			^			
	v			v		
+---------------+		+---------------+				
	logical ports				logical ports	
	0 1				0 1	
+---+---------------+--+ +---+---------------+--+
 ^ : ^ :
 | | | |
 : v : v
+---+---------------+---------+---------------+--+
| | 0 1 | | 3 4 | |
| | logical ports | vSwitch | logical ports | |
| +---------------+ +---------------+ |
| ^ | ^ | |
| | +-----------------+ v |
| +--+ |
| | physical ports | |
| | 0 1 | |
+---+--+---+
 ^ :
 | |
 : v
+--+
| |
| traffic generator |
| |
+--+

	
	pvpv[number] - configures scenario with VMs connected in parallel with

	optional number of VMs. In case that number is not specified, then
2 VMs will be used. Multistream feature is used to route traffic to particular
VMs (or NIC pairs of every VM). It means, that VSPERF will enable multistream
feaure and sets the number of streams to the number of VMs and their NIC
pairs. Traffic will be dispatched based on Stream Type, i.e. by UDP port,
IP address or MAC address.

	Example of 2 VMs in a parallel configuration, where traffic is dispatched

	based on the UDP port.

+----------------------+ +----------------------+
1st VM		2nd VM				
+---------------+		+---------------+				
	Application				Application	
+---------------+		+---------------+				
^			^			
	v			v		
+---------------+		+---------------+				
	logical ports				logical ports	
	0 1				0 1	
+---+---------------+--+ +---+---------------+--+
 ^ : ^ :
 | | | |
 : v : v
+---+---------------+---------+---------------+--+
| | 0 1 | | 3 4 | |
| | logical ports | vSwitch | logical ports | |
| +---------------+ +---------------+ |
^	^ :	
: :	
UDP	UDP :	:
port	port: +--------------------+ :	
0	1 :	:
	: v v	
+--+		
	physical ports	
	0 1	
+---+--+---+
 ^ :
 | |
 : v
+--+
| |
| traffic generator |
| |
+--+

PXP deployment is backward compatible with PVP deployment, where pvp is
an alias for pvvp1 and it executes just one VM.

The number of interfaces used by VMs is defined by configuration option
GUEST_NICS_NR. In case that more than one pair of interfaces is defined
for VM, then:

	for pvvp (serial) scenario every NIC pair is connected in serial
before connection to next VM is created

	for pvpv (parallel) scenario every NIC pair is directly connected
to the physical ports and unique traffic stream is assigned to it

Examples:

	Deployment pvvp10 will start 10 VMs and connects them in series

	Deployment pvpv4 will start 4 VMs and connects them in parallel

	Deployment pvpv1 and GUEST_NICS_NR = [4] will start 1 VM with
4 interfaces and every NIC pair is directly connected to the
physical ports

	Deployment pvvp and GUEST_NICS_NR = [2, 4] will start 2 VMs;
1st VM will have 2 interfaces and 2nd VM 4 interfaces. These interfaces
will be connected in serial, i.e. traffic will flow as follows:
PHY1 -> VM1_1 -> VM1_2 -> VM2_1 -> VM2_2 -> VM2_3 -> VM2_4 -> PHY2

Note: In case that only 1 or more than 2 NICs are configured for VM,
then testpmd should be used as forwarding application inside the VM.
As it is able to forward traffic between multiple VM NIC pairs.

Note: In case of linux_bridge, all NICs are connected to the same
bridge inside the VM.

10.9.3. Packet Forwarding SRIOV Scenario

In this test the packet generated at the IXIA is forwarded to the Guest VM launched on Host by
implementing SR-IOV interface at NIC level of host .i.e., DUT. The time taken by the packet to
travel through the network to the destination the IXIA traffic-generator is calculated and
published as a test result for this scenario.

SRIOV-support is given below, it details how to use SR-IOV.

[image: ../../_images/SRIOV_Scenario.png]

10.9.4. Using vfio_pci with DPDK

To use vfio with DPDK instead of igb_uio add into your custom configuration
file the following parameter:

PATHS['dpdk']['src']['modules'] = ['uio', 'vfio-pci']

NOTE: In case, that DPDK is installed from binary package, then please

set PATHS['dpdk']['bin']['modules'] instead.

NOTE: Please ensure that Intel VT-d is enabled in BIOS.

NOTE: Please ensure your boot/grub parameters include
the following:

iommu=pt intel_iommu=on

To check that IOMMU is enabled on your platform:

 $ dmesg | grep IOMMU
 [0.000000] Intel-IOMMU: enabled
 [0.139882] dmar: IOMMU 0: reg_base_addr fbffe000 ver 1:0 cap d2078c106f0466 ecap f020de
 [0.139888] dmar: IOMMU 1: reg_base_addr ebffc000 ver 1:0 cap d2078c106f0466 ecap f020de
 [0.139893] IOAPIC id 2 under DRHD base 0xfbffe000 IOMMU 0
 [0.139894] IOAPIC id 0 under DRHD base 0xebffc000 IOMMU 1
 [0.139895] IOAPIC id 1 under DRHD base 0xebffc000 IOMMU 1
 [3.335744] IOMMU: dmar0 using Queued invalidation
 [3.335746] IOMMU: dmar1 using Queued invalidation
....

10.9.5. Using SRIOV support

To use virtual functions of NIC with SRIOV support, use extended form
of NIC PCI slot definition:

WHITELIST_NICS = ['0000:03:00.0|vf0', '0000:03:00.1|vf3']

Where vf is an indication of virtual function usage and following
number defines a VF to be used. In case that VF usage is detected,
then vswitchperf will enable SRIOV support for given card and it will
detect PCI slot numbers of selected VFs.

So in example above, one VF will be configured for NIC ‘0000:05:00.0’
and four VFs will be configured for NIC ‘0000:05:00.1’. Vswitchperf
will detect PCI addresses of selected VFs and it will use them during
test execution.

At the end of vswitchperf execution, SRIOV support will be disabled.

SRIOV support is generic and it can be used in different testing scenarios.
For example:

	vSwitch tests with DPDK or without DPDK support to verify impact
of VF usage on vSwitch performance

	tests without vSwitch, where traffic is forwared directly
between VF interfaces by packet forwarder (e.g. testpmd application)

	tests without vSwitch, where VM accesses VF interfaces directly
by PCI-passthrough to measure raw VM throughput performance.

10.9.5.1. Using QEMU with PCI passthrough support

Raw virtual machine throughput performance can be measured by execution of PVP
test with direct access to NICs by PCI passthrough. To execute VM with direct
access to PCI devices, enable vfio-pci. In order to use virtual functions,
SRIOV-support must be enabled.

Execution of test with PCI passthrough with vswitch disabled:

$./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf \
 --vswitch none --vnf QemuPciPassthrough pvp_tput

Any of supported guest-loopback-application can be used inside VM with
PCI passthrough support.

Note: Qemu with PCI passthrough support can be used only with PVP test
deployment.

10.9.5.2. Guest Core and Thread Binding

VSPERF provides options to achieve better performance by guest core binding and
guest vCPU thread binding as well. Core binding is to bind all the qemu threads.
Thread binding is to bind the house keeping threads to some CPU and vCPU thread to
some other CPU, this helps to reduce the noise from qemu house keeping threads.

GUEST_CORE_BINDING = [('#EVAL(6+2*#VMINDEX)', '#EVAL(7+2*#VMINDEX)')]

NOTE By default the GUEST_THREAD_BINDING will be none, which means same as
the GUEST_CORE_BINDING, i.e. the vcpu threads are sharing the physical CPUs with
the house keeping threads. Better performance using vCPU thread binding can be
achieved by enabling affinity in the custom configuration file.

For example, if an environment requires 28,29 to be core binded and 30,31 for
guest thread binding to achieve better performance.

VNF_AFFINITIZATION_ON = True
GUEST_CORE_BINDING = [('28','29')]
GUEST_THREAD_BINDING = [('30', '31')]

10.9.5.3. Qemu CPU features

QEMU default to a compatible subset of performance enhancing cpu features.
To pass all available host processor features to the guest.

GUEST_CPU_OPTIONS = ['host,migratable=off']

NOTE To enhance the performance, cpu features tsc deadline timer for guest,
the guest PMU, the invariant TSC can be provided in the custom configuration file.

10.9.5.4. Selection of loopback application for tests with VMs

To select the loopback applications which will forward packets inside VMs,
the following parameter should be configured:

GUEST_LOOPBACK = ['testpmd']

or use --test-params CLI argument:

$./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf \
 --test-params "GUEST_LOOPBACK=['testpmd']"

Supported loopback applications are:

'testpmd' - testpmd from dpdk will be built and used
'l2fwd' - l2fwd module provided by Huawei will be built and used
'linux_bridge' - linux bridge will be configured
'buildin' - nothing will be configured by vsperf; VM image must
 ensure traffic forwarding between its interfaces

Guest loopback application must be configured, otherwise traffic
will not be forwarded by VM and testcases with VM related deployments
will fail. Guest loopback application is set to ‘testpmd’ by default.

NOTE: In case that only 1 or more than 2 NICs are configured for VM,
then ‘testpmd’ should be used. As it is able to forward traffic between
multiple VM NIC pairs.

NOTE: In case of linux_bridge, all guest NICs are connected to the same
bridge inside the guest.

10.9.6. Results

The results for the packet forwarding test cases are uploaded to artifacts and
also published on Yardstick Grafana dashboard.
The links for the same can be found below

http://artifacts.opnfv.org/kvmfornfv.html
http://testresults.opnfv.org/KVMFORNFV-Packet-Forwarding

11. PCM Utility in KVM4NFV

11.1. Collecting Memory Bandwidth Information using PCM utility

This chapter includes how the PCM utility is used in kvm4nfv
to collect memory bandwidth information

11.2. About PCM utility

The Intel® Performance Counter Monitor provides sample C++ routines and utilities to estimate the
internal resource utilization of the latest Intel® Xeon® and Core™ processors and gain a significant
performance boost.In Intel PCM toolset,there is a pcm-memory.x tool which is used for observing the
memory traffic intensity

11.3. Version Features

	Release

	Features

	Colorado

	
	In Colorado release,we don’t have memory
bandwidth information collected through the
cyclic testcases.

	Danube

	
	pcm-memory.x will be executed before the
execution of every testcase

	pcm-memory.x provides the memory bandwidth
data throughout out the testcases

	used for all test-types (stress/idle)

	Generated memory bandwidth logs are
published to the KVMFORFNV artifacts

11.3.1. Implementation of pcm-memory.x:

The tool measures the memory bandwidth observed for every channel reporting seperate throughput
for reads from memory and writes to the memory. pcm-memory.x tool tends to report values slightly
higher than the application’s own measurement.

Command:

sudo ./pcm-memory.x [Delay]/[external_program]

Parameters

	pcm-memory can called with either delay or external_program/application as a parameter

	If delay is given as 5,then the output will be produced with refresh of every 5 seconds.

	If external_program is script/application,then the output will produced after the execution of the application or the script passed as a parameter.

Sample Output:

The output produced with default refresh of 1 second.

	Socket 0

	Socket 1

	Memory Performance Monitoring

	Memory Performance Monitoring

	
	Mem Ch 0: Reads (MB/s): 6870.81

	Writes(MB/s): 1805.03

	Mem Ch 1: Reads (MB/s): 6873.91

	Writes(MB/s): 1810.86

	Mem Ch 2: Reads (MB/s): 6866.77

	Writes(MB/s): 1804.38

	Mem Ch 3: Reads (MB/s): 6867.47

	Writes(MB/s): 1805.53

NODE0 Mem Read (MB/s) : 27478.96
NODE0 Mem Write (MB/s): 7225.79
NODE0 P. Write (T/s) : 214810
NODE0 Memory (MB/s) : 34704.75

	
	Mem Ch 0: Reads (MB/s): 7406.36

	Writes(MB/s): 1951.25

	Mem Ch 1: Reads (MB/s): 7411.11

	Writes(MB/s): 1957.73

	Mem Ch 2: Reads (MB/s): 7403.39

	Writes(MB/s): 1951.42

	Mem Ch 3: Reads (MB/s): 7403.66

	Writes(MB/s): 1950.95

NODE1 Mem Read (MB/s) : 29624.51
NODE1 Mem Write (MB/s): 7811.36
NODE1 P. Write (T/s) : 238294
NODE1 Memory (MB/s) : 37435.87

	
	System Read Throughput(MB/s): 57103.47

	System Write Throughput(MB/s): 15037.15

	System Memory Throughput(MB/s): 72140.62

11.3.2. pcm-memory.x in KVM4NFV:

pcm-memory is a part of KVM4NFV in D release.pcm-memory.x will be executed with delay of 60 seconds
before starting every testcase to monitor the memory traffic intensity which was handled in
collect_MBWInfo function .The memory bandwidth information will be collected into the logs through
the testcase updating every 60 seconds.

Pre-requisites:

1.Check for the processors supported by PCM .Latest pcm utility version (2.11)support Intel® Xeon® E5 v4 processor family.

2.Disabling NMI Watch Dog

3.Installing MSR registers

Memory Bandwidth logs for KVM4NFV can be found here [http://artifacts.opnfv.org/kvmfornfv.html]:

http://artifacts.opnfv.org/kvmfornfv.html

Details of the function implemented:

In install_Pcm function, it handles the installation of pcm utility and the required prerequisites for pcm-memory.x tool to execute.

$ git clone https://github.com/opcm/pcm
$ cd pcm
$ make

In collect_MBWInfo Function,the below command is executed on the node which was collected to the logs
with the timestamp and testType.The function will be called at the begining of each testcase and
signal will be passed to terminate the pcm-memory process which was executing throughout the cyclic testcase.

$ pcm-memory.x 60 &>/root/MBWInfo/MBWInfo_${testType}_${timeStamp}

where,
${testType} = verify (or) daily

11.4. Future Scope

PCM information will be added to cyclictest of kvm4nfv in yardstick.

12. Low Latency Tunning Suggestion

The correct configuration is critical for improving the NFV
performance/latency.Even working on the same codebase, configurations can cause
wildly different performance/latency results.

There are many combinations of configurations, from hardware configuration to
Operating System configuration and application level configuration. And there
is no one simple configuration that works for every case. To tune a specific
scenario, it’s important to know the behaviors of different configurations and
their impact.

12.1. Platform Configuration

Some hardware features can be configured through firmware interface(like BIOS)
but others may not be configurable (e.g. SMI on most platforms).

	Power management:
Most power management related features save power at the
expensive of latency. These features include: Intel®Turbo Boost Technology,
Enhanced Intel®SpeedStep, Processor C state and P state. Normally they
should be disabled but, depending on the real-time application design and
latency requirements, there might be some features that can be enabled if
the impact on deterministic execution of the workload is small.

	Hyper-Threading:
The logic cores that share resource with other logic cores can introduce
latency so the recommendation is to disable this feature for realtime use
cases.

	Legacy USB Support/Port 60/64 Emulation:
These features involve some emulation in firmware and can introduce random
latency. It is recommended that they are disabled.

	SMI (System Management Interrupt):
SMI runs outside of the kernel code and can potentially cause
latency. It is a pity there is no simple way to disable it. Some vendors may
provide related switches in BIOS but most machines do not have this
capability.

12.2. Operating System Configuration

	CPU isolation:
To achieve deterministic latency, dedicated CPUs should be allocated for
realtime application. This can be achieved by isolating cpus from kernel
scheduler. Please refer to
http://lxr.free-electrons.com/source/Documentation/kernel-parameters.txt#L1608
for more information.

	Memory allocation:
Memory shoud be reserved for realtime applications and usually hugepage
should be used to reduce page fauts/TLB misses.

	IRQ affinity:
All the non-realtime IRQs should be affinitized to non realtime CPUs to
reduce the impact on realtime CPUs. Some OS distributions contain an
irqbalance daemon which balances the IRQs among all the cores dynamically.
It should be disabled as well.

	Device assignment for VM:
If a device is used in a VM, then device passthrough is desirable. In this
case,the IOMMU should be enabled.

	Tickless:
Frequent clock ticks cause latency. CONFIG_NOHZ_FULL should be enabled in
the linux kernel. With CONFIG_NOHZ_FULL, the physical CPU will trigger many
fewer clock tick interrupts(currently, 1 tick per second). This can reduce
latency because each host timer interrupt triggers a VM exit from guest to
host which causes performance/latency impacts.

	TSC:
Mark TSC clock source as reliable. A TSC clock source that seems to be
unreliable causes the kernel to continuously enable the clock source
watchdog to check if TSC frequency is still correct. On recent Intel
platforms with Constant TSC/Invariant TSC/Synchronized TSC, the TSC is
reliable so the watchdog is useless but cause latency.

	Idle:
The poll option forces a polling idle loop that can slightly improve the
performance of waking up an idle CPU.

	RCU_NOCB:
RCU is a kernel synchronization mechanism. Refer to
http://lxr.free-electrons.com/source/Documentation/RCU/whatisRCU.txt for more
information. With RCU_NOCB, the impact from RCU to the VNF will be reduced.

	Disable the RT throttling:
RT Throttling is a Linux kernel mechanism that
occurs when a process or thread uses 100% of the core, leaving no resources
for the Linux scheduler to execute the kernel/housekeeping tasks. RT
Throttling increases the latency so should be disabled.

	NUMA configuration:
To achieve the best latency. CPU/Memory and device allocated for realtime
application/VM should be in the same NUMA node.

Index

KVM4NFV Design

	1. KVM4NFV design description
	1.1. Design Considerations

	1.2. Goals and Guidelines

	1.3. Test plan
	1.3.1. Reference

KVM4NFV Requirements

	1. Kvm4nfv Requirements
	1.1. Introduction

	1.2. Scope and Purpose

	1.3. Methods and Instrumentation

	1.4. Features to be tested

	1.5. Dependencies

	1.6. Reference

Kvm4nfv Configuration Guide

Euphrates 1.0

	1. Configuration Abstract

	2. Configuration Options

	4. Low Latency Feature Configuration Description
	4.1. Introduction

	4.2. Configuration of Cyclictest

	3. Scenariomatrix
	3.1. Euphrates scenario overeview

	3.2. Scenario Naming

	3.3. Installing your scenario

KVM4NFV Installation instruction

	1. Abstract

	2. KVM4NFV Installation Instruction
	2.1. Preparing the installation

	2.2. HW requirements

	2.3. Build instructions

	2.4. Installation instructions

	2.5. Post-installation activities

	3. Release Note for KVM4NFV CICD
	3.1. Abstract

	3.2. Introduction

	3.3. Release Data

	3.4. Document version change

	3.5. Reason for new version

	3.6. Known issues

	3.7. Workarounds

KVM4NFV Release Notes for Danube Release

	Release Notes
	Abstract

	Version history

	Important notes

	Summary

	Release Data

	Version change

	Reason for version

	Deliverables

	References

Release Notes

Abstract

This document provides the release notes for Euphrates 1.0 release of KVM4NFV.

Contents

1 Version History

2 Important notes

3 Summary

4 Delivery Data

5 References

Version history

	Date

	Ver.

	Author

	Comment

	2016-08-22

	0.1.0

	
	Colorado 1.0 release

	2017-03-27

	0.1.0

	
	Danube 1.0 release

	2017-10-06

	0.1.0

	
	Euphrates 1.0 release

Important notes

The KVM4NFV project is currently supported on Fuel and Apex installer.

Summary

This Euphrates 1.0 release provides KVM4NFV as a framework to enhance the
KVM Hypervisor for NFV and OPNFV scenario testing, automated in the OPNFV
CI pipeline, including:

	KVMFORNFV source code

	Automation of building the Kernel and qemu for RPM and debian packages

	Cyclictests execution to check the latency

	“os-nosdn-kvm_ovs_dpdk-ha”,“os-nosdn-kvm_ovs_dpdk-noha”, Scenarios testing for
high availability/no-high avaliability configuration using Apex installer

	Documentation created for,

	User Guide

	Configuration Guide

	Installation Procedure

	Release notes

	Scenarios Guide

	Design Guide

	Requirements Guide

Release Data

	Project

	NFV Hypervisors-KVM

	Repo/commit-ID

	kvmfornfv

	Release designation

	Euphrates

	Release date

	2017-10-06

	Purpose of the delivery

	OPNFV Euphrates 1.0 Releases

Version change

1 Module version changes

This is the Euphrates 1.0 main release. It is based on following upstream
versions:

	RT Kernel 4.4.50-rt62

	QEMU 2.9.0

	Apex based on Openstack Ocata

This is the third tracked release of KVM4NFV

2 Document version changes

This is the second version of the KVM4NFV framework in OPNFV.

Reason for version

1 Feature additions

	JIRA REFERENCE

	SLOGAN

	JIRA:

	NFV Hypervisors-KVMFORNFV-72

	JIRA:

	NFV Hypervisors-KVMFORNFV-73

	JIRA:

	NFV Hypervisors-KVMFORNFV-78

	JIRA:

	NFV Hypervisors-KVMFORNFV-86

	JIRA:

	NFV Hypervisors-KVMFORNFV-87

	JIRA:

	NFV Hypervisors-KVMFORNFV-88

	JIRA:

	NFV Hypervisors-KVMFORNFV-89

	JIRA:

	VSPERF-510

	JIRA:

	YARDSTICK-783

	JIRA:

	YARDSTICK-815

A brief Description of the the JIRA tickets:

	JIRA REFERENCE

	DESCRIPTION

	KVMFORNFV-72

	Define and integrate additional scenario - KVM+OVS+DPDK
with HA for bare metal and virtual environments

	KVMFORNFV-73

	Define and integrate additional scenario - KVM+OVS+DPDK
with NOHA for bare metal and virtual environments

	KVMFORNFV-78

	Scenarios in Euphrates release for KVM for NFV

	KVMFORNFV-86

	Live Migration tests in kvmfornfv repository

	KVMFORNFV-87

	Packet forwarding test type pxp - multiple guests

	KVMFORNFV-88

	Apex environment setup for local machine to debug Apex
related integration issues

	KVMFORNFV-89

	Generate kernel debug-info rpm

	VSPERF-510

	KVM optimizations

	YARDSTICK-783

	To update Grafana dashboard for kvmfornfv packet forwarding
test cases

	YARDSTICK-815

	Implementation of breaktrace option for cyclictest

Deliverables

1 Software deliverables

	Euphrates 1.0 release of the KVM4NFV RPM and debian for kvm4nfv

	Kernel debug-info rpm and debian is generated as part of E-release

	Integrated the following scenarios in APEX as part of E-Release:

	os-nosdn-kvm_ovs_dpdk-noha

	os-nosdn-kvm_ovs_dpdk-ha

	Configured influxdb and Graphana_dashboard [http://testresults.opnfv.org/grafana/dashboard/db/kvmfornfv-cyclictest] for publishing kvm4nfv test results

	Packet forwarding test case is implemented and it supports the following test types currently,

	Packet forwarding to Host

	Packet forwarding to Guest

	Packet forwarding to Guest using SRIOV

	Packet forwarding to multiple guests

	Breaktrace option is implemented to monitor the latency values obatined by the cyclictest

	Live Migration test case is implemented and the following values are collected:

	Total time

	Down time

	Setup time

	Either Apex or Fuel can be used for deployment of os-nosdn-kvm-ha, os-nosdn-kvm_ovs_dpdk-ha and

os-nosdn-kvm_ovs_dpdk-noha scenarios

	Scenario Name

	Apex

	Fuel

	
	os-nosdn-kvm-ha

	Y

	Y

	
	os-nosdn-kvm_ovs_dpdk-noha

	Y

	Y

	
	os-nosdn-kvm_ovs_dpdk-ha

	Y

	Y

	
	os-nosdn-kvm_ovs_dpdk_bar-noha

	
	Y

	
	os-nosdn-kvm_ovs_dpdk_bar-ha

	
	Y

	The below documents are delivered for Euphrates KVM4NFV Release:

	User Guide

	Configuration Guide

	Installation Procedure

	Overview

	Release notes

	Glossary

	Scenarios

	Requirements Guide

	Overview Guide

References

For more information on the KVM4NFV Euphrates release, please see:

https://wiki.opnfv.org/display/kvm/

Scenario Overview and Description

Scenario Overview and Description

	1. Scenario Abstract
	1.1. Release Features

	1.2. E- Release Scenario’s overview

	2. KVM4NFV Scenario-Description
	2.1. Abstract

	2.2. Version Features

	2.3. Introduction

	2.4. System pre-requisites

	2.5. Environment Setup
	2.5.1. Enable network access after the installation

	2.5.2. Configuring Proxy

	2.5.3. Install redsocks

	2.5.4. Network Time Protocol (NTP) setup and configuration

	2.6. Scenario Testing
	2.6.1. Fuel

	2.6.2. Apex

	2.6.3. OPNFV-Playground

	2.6.4. Jenkins Project

os-nosdn-kvm_ovs_dpdk-noha Overview and Description

os-nosdn-kvm_ovs_dpdk-noha

	1. os-nosdn-kvm_ovs_dpdk-noha Description
	1.1. Introduction

	1.2. Scenario Components and Composition

	1.3. Scenario Usage Overview

	1.4. Scenario Components and Composition

	1.5. Scenario Usage Overview

	1.6. References

os-nosdn-kvm_ovs_dpdk-ha Overview and Description

os-nosdn-kvm_ovs_dpdk-ha

	1. os-nosdn-kvm_ovs_dpdk-ha Description
	1.1. Introduction

	1.2. Scenario Components and Composition

	1.3. Scenario Usage Overview

	1.4. Scenario Components and Composition

	1.5. Scenario Usage Overview

	1.6. References

os-nosdn-kvm_ovs_dpdk_bar-noha Overview and Description

os-nosdn-kvm_ovs_dpdk_bar-noha

	1. os-nosdn-kvm_ovs_dpdk_bar-ha Description
	1.1. Introduction

	1.2. Scenario Components and Composition

	1.3. Scenario Usage Overview

	1.4. Known Limitations, Issues and Workarounds

	1.5. References

os-nosdn-kvm_ovs_dpdk_bar-ha Overview and Description

os-nosdn-kvm_ovs_dpdk_bar-ha

	1. os-nosdn-kvm_ovs_dpdk_bar-ha Description
	1.1. Introduction

	1.2. Scenario Components and Composition

	1.3. Scenario Usage Overview

	1.4. Known Limitations, Issues and Workarounds

	1.5. References

os-nosdn-kvm-ha Overview and Description

	1. os-nosdn-kvm-ha Description
	1.1. Introduction

	1.2. Scenario Components and Composition

	1.3. Scenario Usage Overview

	1.4. Known Limitations, Issues and Workarounds

	1.5. References

1. os-nosdn-kvm-ha Description

1.1. Introduction

The purpose of os-nosdn-kvm-ha scenario testing is to test the
High Availability deployment and configuration of OPNFV software suite
with OpenStack and without SDN software. This OPNFV software suite
includes OPNFV KVM4NFV latest software packages for Linux Kernel and
QEMU patches for achieving low latency. High Availability feature is achieved
by deploying OpenStack multi-node setup with 3 controllers and 2 computes nodes

KVM4NFV packages will be installed on compute nodes as part of deployment.
This scenario testcase deployment is happening on multi-node by using
OPNFV Fuel deployer.

1.2. Scenario Components and Composition

This scenario deploys the High Availability OPNFV Cloud based on the
configurations provided in ha_nfv-kvm_heat_ceilometer_scenario.yaml.
This yaml file contains following configurations and is passed as an
argument to deploy.py script

	scenario.yaml: This configuration file defines translation between a
short deployment scenario name(os-nosdn-kvm-ha) and an actual deployment
scenario configuration file(ha_nfv-kvm_heat_ceilometer_scenario.yaml)

	deployment-scenario-metadata: Contains the configuration metadata like
title,version,created,comment.

	stack-extensions: Stack extentions are opnfv added value features in form
of a fuel-plugin.Plugins listed in stack extensions are enabled and
configured.

	dea-override-config: Used to configure the HA mode,network segmentation
types and role to node assignments.These configurations overrides
corresponding keys in the dea_base.yaml and dea_pod_override.yaml.
These keys are used to deploy multiple nodes(3 controllers,2 computes)
as mention below.

	Node 1: This node has MongoDB and Controller roles. The controller
node runs the Identity service, Image Service, management portions of
Compute and Networking, Networking plug-in and the dashboard. The
Telemetry service which was designed to support billing systems for
OpenStack cloud resources uses a NoSQL database to store information.
The database typically runs on the controller node.

	Node 2: This node has Controller and Ceph-osd roles. Ceph is a
massively scalable, open source, distributed storage system. It is
comprised of an object store, block store and a POSIX-compliant distributed
file system. Enabling Ceph, configures Nova to store ephemeral volumes in
RBD, configures Glance to use the Ceph RBD backend to store images,
configures Cinder to store volumes in Ceph RBD images and configures the
default number of object replicas in Ceph.

	Node 3: This node has Controller role in order to achieve high
availability.

	Node 4: This node has Compute role. The compute node runs the
hypervisor portion of Compute that operates tenant virtual machines
or instances. By default, Compute uses KVM as the hypervisor.

	Node 5: This node has compute role.

	dha-override-config: Provides information about the VM definition and
Network config for virtual deployment.These configurations overrides
the pod dha definition and points to the controller,compute and
fuel definition files.

	os-nosdn-kvm-ha scenario is successful when all the 5 Nodes are accessible,
up and running

1.3. Scenario Usage Overview

	The high availability feature can be acheived by executing deploy.py with
ha_nfv-kvm_heat_ceilometer_scenario.yaml as an argument.

	Install Fuel Master and deploy OPNFV Cloud from scratch on Hardware
Environment:

-Example:

sudo python deploy.py -iso ~/ISO/opnfv.iso -dea ~/CONF/hardware/dea.yaml -dha \
~/CONF/hardware/dha.yaml -s /mnt/images -b pxebr -log ~/Deployment-888.log.tar.gz

	Install Fuel Master and deploy OPNFV Cloud from scratch on Virtual
Environment:

-Example:

sudo python deploy.py -iso ~/ISO/opnfv.iso -dea ~/CONF/virtual/dea.yaml -dha \
~/CONF/virtual/dha.yaml -s /mnt/images -log ~/Deployment-888.log.tar.gz

	os-nosdn-kvm-ha scenario can be executed from the jenkins project
“fuel-os-nosdn-kvm-ha-baremetal-daily-master”

	This scenario provides the High Availability feature by deploying
3 controller,2 compute nodes and checking if all the 5 nodes
are accessible(IP,up & running).

	Test Scenario is passed if deployment is successful and all 5 nodes have
accessibility (IP , up & running).

	Observed that scenario is not running any testcase on top of deployment.

1.4. Known Limitations, Issues and Workarounds

	Test scenario os-nosdn-kvm-ha result is not stable. After node reboot
triggered by kvm plugin, sometimes puppet agent (mcollective) is not
responding with in the given time.

1.5. References

For more information on the OPNFV Euphrates release, please visit
http://www.opnfv.org/euphrates

os-nosdn-kvm_ovs_dpdk-ha Overview and Description

	1. os-nosdn-kvm_ovs_dpdk-ha Description
	1.1. Introduction

	1.2. Scenario Components and Composition

	1.3. Scenario Usage Overview

	1.4. Scenario Components and Composition

	1.5. Scenario Usage Overview

	1.6. References

os-nosdn-kvm_ovs_dpdk-noha Overview and Description

	1. os-nosdn-kvm_ovs_dpdk-noha Description
	1.1. Introduction

	1.2. Scenario Components and Composition

	1.3. Scenario Usage Overview

	1.4. Scenario Components and Composition

	1.5. Scenario Usage Overview

	1.6. References

os-nosdn-kvm_ovs_dpdk_bar-ha Overview and Description

	1. os-nosdn-kvm_ovs_dpdk_bar-ha Description
	1.1. Introduction

	1.2. Scenario Components and Composition

	1.3. Scenario Usage Overview

	1.4. Known Limitations, Issues and Workarounds

	1.5. References

os-nosdn-kvm_ovs_dpdk_bar-noha Overview and Description

	1. os-nosdn-kvm_ovs_dpdk_bar-ha Description
	1.1. Introduction

	1.2. Scenario Components and Composition

	1.3. Scenario Usage Overview

	1.4. Known Limitations, Issues and Workarounds

	1.5. References

KVM4NFV User Guide

	1. Userguide Abstract

	2. Userguide Introduction
	2.1. Overview

	2.2. KVM4NFV Features

	2.3. General usage guidelines

	2.4. Scenarios User Guide

	3. Using common platform components

	4. Using Euphrates Features

	5. FTrace Debugging Tool
	5.1. About Ftrace

	5.2. Version Features

	5.3. Implementation of Ftrace

	5.4. Files in Ftrace:

	5.5. Avaliable Tracers

	5.6. Ftrace in KVM4NFV

	5.7. Ftrace Usage in KVM4NFV Kernel Debugging:

	5.8. Enabling Ftrace in KVM4NFV

	5.9. Details of enable_trace script

	5.10. BREAKTRACE

	5.11. Post-execute scripts

	5.12. Details of disable_trace Script

	5.13. Publishing Ftrace logs:

	6. KVM4NFV Dashboard Guide
	6.1. Dashboard for KVM4NFV Daily Test Results

	6.2. Abstract

	6.3. Version Features

	6.4. Installation Steps:

	6.5. Configuring the Dispatcher Type:
	6.5.1. Detailing the dispatcher module in verify and daily Jobs:

	6.6. Understanding Kvm4nfv Grafana Dashboard
	6.6.1. 1. Idle-Idle Graph

	6.6.2. 2. CPU_Stress-Idle Graph

	6.6.3. 3. Memory_Stress-Idle Graph

	6.6.4. 4. IO_Stress-Idle Graph

	6.6.5. Packet Forwarding Results

	6.7. Understanding Kvm4nfv Grafana Dashboard

	6.8. Future Scope

	7. Low Latency Environment
	7.1. Hardware Environment Description
	7.1.1. CPU Features

	7.1.2. CPU Topology

	7.1.3. BIOS Setup

	7.2. Software Environment Setup
	7.2.1. Kernel Parameter

	7.2.2. Run-time Environment Setup

	7.3. Test cases to measure Latency

	7.4. 1. Cyclictest case
	7.4.1. Understanding the naming convention

	7.4.2. Version Features

	7.4.3. Idle-Idle test-type

	7.4.4. CPU_Stress-Idle test-type

	7.4.5. Memory_Stress-Idle test-type

	7.4.6. IO_Stress-Idle test-type

	7.4.7. CPU_Stress-CPU_Stress test-type

	7.4.8. Memory_Stress-Memory_Stress test-type

	7.4.9. IO_Stress-IO_Stress test type

	7.5. 2. Packet Forwarding Test cases
	7.5.1. Packet forwarding to Host

	7.5.2. Packet forwarding to Guest

	7.5.3. Packet forwarding to Guest using SRIOV

	8. Fast Live Migration
	8.1. Current Challenges

	8.2. Optimizations

	8.3. Test Environment

	8.4. Test Result

	9. Euphrates OpenStack User Guide
	9.1. OpenStack references

	9.2. Connecting to the OpenStack instance

	10. Packet Forwarding
	10.1. About Packet Forwarding

	10.2. Version Features

	10.3. VSPERF
	10.3.1. Installation

	10.3.2. Supported Operating Systems

	10.3.3. Supported vSwitches

	10.3.4. Supported Hypervisors

	10.3.5. Other Requirements

	10.3.6. For CentOS 7

	10.3.7. Working Behind a Proxy

	10.4. Traffic-Generators

	10.5. IXIA Setup
	10.5.1. Hardware Requirements

	10.5.2. Installation

	10.5.3. On the CentOS 7 system

	10.5.4. On the IXIA client software system

	10.6. VSPERF configuration
	10.6.1. Test results share

	10.6.2. Cloning and building src dependencies

	10.6.3. Configure the ./conf/10_custom.conf file

	10.6.4. Using a custom settings file

	10.6.5. vloop_vnf

	10.6.6. l2fwd Kernel Module

	10.6.7. Executing tests

	10.7. Testcases

	10.8. VSPERF modes of operation

	10.9. Packet Forwarding Test Scenarios
	10.9.1. Packet Forwarding Host Scenario

	10.9.2. Packet Forwarding Guest Scenario (PXP Deployment)

	10.9.3. Packet Forwarding SRIOV Scenario

	10.9.4. Using vfio_pci with DPDK

	10.9.5. Using SRIOV support

	10.9.6. Results

	11. PCM Utility in KVM4NFV
	11.1. Collecting Memory Bandwidth Information using PCM utility

	11.2. About PCM utility

	11.3. Version Features
	11.3.1. Implementation of pcm-memory.x:

	11.3.2. pcm-memory.x in KVM4NFV:

	11.4. Future Scope

	12. Low Latency Tunning Suggestion
	12.1. Platform Configuration

	12.2. Operating System Configuration

	OPNFV Glossary
	Euphrates 1.0

	Contents
	A

	B

	C

	D

	E

	F

	H

	I

	J

	K

	L

	M

	N

	O

	P

	Q

	R

	S

	T

	V

	X

	Y

OPNFV Glossary

Euphrates 1.0

Contents

This glossary provides a common definition of phrases and words commonly used
in OPNFV.

A

Arno

A river running through Tuscany and the name of the first OPNFV release.

Apex

OPNFV Installation and Deployment tool based on the RDO Project’s Triple-O
OpenStack installation tool.

API

Application Programming Interface

AVX2

Advanced Vector Extensions 2 is an instruction set extension for x86.

B

Brahmaputra

A river running through Asia and the name of the Second OPNFV release.

Bios

Basic Input/Output System

Builds

Build in Jenkins is a version of a program.

Bogomips

Bogomips is the number of million times per second a processor can do
absolutely nothing.

C

CAT

Cache Automation Technology

CentOS

Community Enterprise Operating System is a Linux distribution

CICD

Continuous Integration and Continuous Deployment

CLI

Command Line Interface

Colorado

A river in Argentina and the name of the Third OPNFV release.

Compute

Compute is an OpenStack service which offers many configuration options
which may be deployment specific.

Console

Console is display screen.

	CPU

	Central Processing Unit

D

Danube

A river in Europe and name of the Fourth OPNFV release.

Data plane

The data plane is the part of a network that carries user traffic.

Debian/deb

Debian is a Unix-like computer operating system that is composed entirely of
free software.

Docs

Documentation/documents

DPDK

Data Plane Development Kit

DPI

Deep Packet Inspection

DSCP

Differentiated Services Code Point

E

Euphrates

Longest river of Western Asia and name of the fifth OPNFV release.

F

Flavors

Flavors are templates used to define VM configurations.

Fuel

Provides an intuitive, GUI-driven experience for deployment and management of OpenStack

H

Horizon

Horizon is an OpenStack service which serves as an UI.

Hypervisor

A hypervisor, also called a virtual machine manager, is a program that allows
multiple operating systems to share a single hardware host.

I

IGMP

Internet Group Management Protocol

IOMMU

Input-Output Memory Management Unit

IOPS

Input/Output Operations Per Second

IRQ

Interrupt ReQuest is an interrupt request sent from the hardware level to
the CPU.

IRQ affinity

IRQ affinity is the set of CPU cores that can service that interrupt.

J

Jenkins

Jenkins is an open source continuous integration tool written in Java.

JIRA

JIRA is a bug tracking software.

Jitter

Time difference in packet inter-arrival time to their destination can be called jitter.

JumpHost

A jump host or jump server or jumpbox is a computer on a network typically
used to manage devices in a separate security zone.

K

Kernel

The kernel is a computer program that constitutes the central core of a
computer’s operating system.

L

Latency

The amount of time it takes a packet to travel from source to destination is
Latency.

libvirt

libvirt is an open source API, daemon and management tool for managing
platform virtualization.

M

Migration

Migration is the process of moving from the use of one operating environment
to another operating environment.

N

NFV

Network Functions Virtualisation, an industry initiative to leverage
virtualisation technologies in carrier networks.

NFVI

Network Function Virtualization Infrastructure

NIC

Network Interface Controller

NUMA

Non-Uniform Memory Access

O

OPNFV

Open Platform for NFV, an open source project developing an NFV reference
platform and features.

P

Pharos

Is a lighthouse and is a project deals with developing an OPNFV lab
infrastructure that is geographically and technically diverse.

Pipeline

A suite of plugins in Jenkins that lets you orchestrate automation.

Platform

OPNFV provides an open source platform for deploying NFV solutions that
leverages investments from a community of developers and solution providers.

Pools

A Pool is a set of resources that are kept ready to use, rather than acquired
on use and released afterwards.

Q

Qemu

QEMU is a free and open-source hosted hypervisor that performs hardware
virtualization.

R

RDMA

Remote Direct Memory Access (RDMA)

Rest-Api

REST (REpresentational State Transfer) is an architectural style, and an
approach to communications that is often used in the development of web
services

S

Scaling

Refers to altering the size.

Slave

Works with/for master.where master has unidirectional control over one or
more other devices.

SR-IOV

Single root IO- Virtualization.

Spin locks

A spinlock is a lock which causes a thread trying to acquire it to simply
wait in a loop while repeatedly checking if the lock is available.

Storage

Refers to computer components which store some data.

T

Tenant

A Tenant is a group of users who share a common access with specific
privileges to the software instance.

Tickless

A tickless kernel is an operating system kernel in which timer interrupts
do not occur at regular intervals, but are only delivered as required.

TSC

Technical Steering Committee

V

VLAN

A virtual local area network, typically an isolated ethernet network.

VM

Virtual machine, an emulation in software of a computer system.

VNF

Virtual network function, typically a networking application or function
running in a virtual environment.

X

XBZRLE

Helps to reduce the network traffic by just sending the updated data

Y

Yardstick

Yardstick is an infrastructure verification. It is an OPNFV testing project.

 _images/Memorystress-Idle.png
Backtodashboard ~ Zoomout ~ @lLast7days Refresheveryld &

kvmfornfu_cyclictest_memorystress_idle

2280000 2281200 IL0000 L1200 320000 21200 IZ0000 331200

— kvmfomfy_cycictest_ memorystress_idie.min
— kvmfomfv_cycictest memorystress_idle.max
— kvmfomfv_cycictest memorystress_idie.avg

0000 WAIZ0D WSO000 ISI200 G000 61200
min maxcurent
5 6 6
R
5 6 6

_images/PacketforwardingDPDK_OVS.png
Compute Node

Physical memory

Traffic
Generator

_images/IXIA1.png
{2 1xNetwork TCL Server Proper

seouty | Detas | PeveusVeions |
o] St | Compaiby |

Targettype: Applcation

Terget location: 7.21-G4

Terget: Ietwork\7 21-GANNetwork eve' tcPort

Sty flod

T || Erm || e

=

_images/Idle-Idle.png
KVMFORNFV-Cyclictest .. w e o Backtodashboard ~ zoomOut @ Last7days Refresheveryld &

kvmfornfv_cyclictest_idle_idle
1

16
1
12

10

: —— :
2280000 2281200 10000 V11200 320000 321200 330000 31200 40000 41200 50000 51200 60000 361200
min max current

= kumfomfy_cyclictest_idle_idle.avg 5 6 6
= kvmfomfv_cycictest_ide_idle.max 8 16 E
= kvmfomfy_cyclictest ide_idle.min 5 6 5

_images/UseCaseDashboard.png
Vardstick

Run a SingleTest
Case

Run Test Case
Suite

Query Secenarios or
Runners

Plot with test result

Check ms%

Cpck test Tesult
Check test result —>

Check test result

User \

OPNFV Testing
Dashboard

test result

Dispatcher

MongoDB

_images/cpu-stress-idle-test-type.png
Yardstick

_images/SRIOV_Scenario.png
Host Machine

vm
DPDK apps

PCIVF nics

‘ OVsS ’

PHY PHY
portl bort?

Traffic Generator

_images/TimerTest.png
—7—

Timer System

Hypervisor

Virtual Timer
Device

HW

Timer Device

_images/dashboard-architecture.png
Test Execution

/

KVMFORNFV

_images/guest_pk_fw.png
———————— — 4

—_——————

Application |

"

logical port 0 | logical port 1]

logical port 0 | logical port 1]
+

phy port | vSwitch | phyport |

+———

Traffic Generator

_images/Guest_Scenario.png
Host Machine

vm
DPDK apps

Virtio nics

(oVvs
Y P:w
port1 bort2

Traffic Generator

_images/Host_Scenario.png
Host Machine
Vsperf installed

OVS+DPDK

Phy Phy
portl port2

||

Traffic Generator

_images/Dashboard-screenshot-2.png
kvmfornfu_cyclictest_memorystress_idle
s
0
=
£
15 2017-03.05 11:33:16

10 ~ kumfomiy_cyclctest_memorystress_idiemin: 5
. — kymfomfy_cyciictest_memorystress.idie max: 8 E
= kumfomi_cycictest_memorysiress_die.avg: 6

2280000 2281200 310000 11200 20000 321200 I30000 31200 40000 41200 IS0000 I51200 IG0000 61200
min max current

— kvmfomfy_cycictest_ memorystress_idie.min 5 6 6
— kvmfomfv_cycictest memorystress_idle.max 8 30 9
— kvmfomfv_cycictest memorystress_idie.avg 5 6 6

kvmfornfu_cyclictest iostress i
15
150
125

100 \
:

.]
:

2280000 2281200 310000 11200 320000 21200 I30000 331200 40000 41200 50000 51200 I60000 361200

min max current
— kvmfomfv_cycictest_iostress_idie.min 500 600 500
— kvmfomfv_cycictest_iostress_idle.max 800 1500 800

— kvmfomfv_cycictest_iostress_idle.avg 500 600 500

_images/DeviceInterruptTest.png
Inter:

_images/IOstress-Idle.png
£CY A Backtodstbord omou O Last7days Refishevery 4

kvmfornfv_cyclictest_iostress_idle

14

2280000 2281200 310000 W11200 320000 21200 360000 II1200 40000 IAI200 S0000 ISI200 60000 61200

min maxcurent
— miomiy_cyciictest_iostress_idie.min 5 6 5
= kumiomiv_cycictest_iostress_idle.max s 15 8
— miomiy_cyciictest_iostress_idie.avg 5 6 5

_images/host_pk_fw.png

nav.xhtml

 Table of Contents

 		
 Euphrates 1.0 Release

 		
 KVM4NFV Project Overview

 		
 Project Purpose

 		
 Project Description

 		
 Abstract

 		
 KVM4NFV Installation Instruction

 		
 Preparing the installation

 		
 HW requirements

 		
 Build instructions

 		
 Installation instructions

 		
 Post-installation activities

 		
 Release Note for KVM4NFV CICD

 		
 Abstract

 		
 Introduction

 		
 Release Data

 		
 Document version change

 		
 Reason for new version

 		
 Feature additions

 		
 Known issues

 		
 Workarounds

 		
 KVM4NFV design description

 		
 Design Considerations

 		
 Goals and Guidelines

 		
 Test plan

 		
 Reference

 		
 Kvm4nfv Requirements

 		
 Introduction

 		
 Scope and Purpose

 		
 Methods and Instrumentation

 		
 Features to be tested

 		
 Dependencies

 		
 Reference

 		
 Configuration Abstract

 		
 Configuration Options

 		
 Scenariomatrix

 		
 Euphrates scenario overeview

 		
 Scenario Naming

 		
 Installing your scenario

 		
 Low Latency Feature Configuration Description

 		
 Introduction

 		
 Configuration of Cyclictest

 		
 Pre-configuration activities

 		
 Hardware configuration

 		
 Scenario Abstract

 		
 Release Features

 		
 E- Release Scenario’s overview

 		
 KVM4NFV Scenario-Description

 		
 Abstract

 		
 Version Features

 		
 Introduction

 		
 System pre-requisites

 		
 Environment Setup

 		
 Enable network access after the installation

 		
 Configuring Proxy

 		
 Install redsocks

 		
 Network Time Protocol (NTP) setup and configuration

 		
 Scenario Testing

 		
 Fuel

 		
 Apex

 		
 OPNFV-Playground

 		
 Jenkins Project

 		
 os-nosdn-kvm_ovs_dpdk-noha Description

 		
 Introduction

 		
 Scenario Components and Composition

 		
 Scenario Usage Overview

 		
 Scenario Components and Composition

 		
 Scenario Usage Overview

 		
 References

 		
 os-nosdn-kvm_ovs_dpdk-ha Description

 		
 Introduction

 		
 Scenario Components and Composition

 		
 Scenario Usage Overview

 		
 Scenario Components and Composition

 		
 Scenario Usage Overview

 		
 References

 		
 os-nosdn-kvm_ovs_dpdk_bar-ha Description

 		
 Introduction

 		
 Scenario Components and Composition

 		
 Scenario Usage Overview

 		
 Known Limitations, Issues and Workarounds

 		
 References

 		
 os-nosdn-kvm_ovs_dpdk_bar-ha Description

 		
 Introduction

 		
 Scenario Components and Composition

 		
 Scenario Usage Overview

 		
 Known Limitations, Issues and Workarounds

 		
 References

 		
 Userguide Abstract

 		
 Userguide Introduction

 		
 Overview

 		
 KVM4NFV Features

 		
 General usage guidelines

 		
 Scenarios User Guide

 		
 Using common platform components

 		
 Using Euphrates Features

 		
 FTrace Debugging Tool

 		
 About Ftrace

 		
 Version Features

 		
 Implementation of Ftrace

 		
 Files in Ftrace:

 		
 Avaliable Tracers

 		
 Ftrace in KVM4NFV

 		
 Ftrace Usage in KVM4NFV Kernel Debugging:

 		
 Enabling Ftrace in KVM4NFV

 		
 Details of enable_trace script

 		
 BREAKTRACE

 		
 Post-execute scripts

 		
 Details of disable_trace Script

 		
 Publishing Ftrace logs:

 		
 KVM4NFV Dashboard Guide

 		
 Dashboard for KVM4NFV Daily Test Results

 		
 Abstract

 		
 Version Features

 		
 Installation Steps:

 		
 Configuring the Dispatcher Type:

 		
 Detailing the dispatcher module in verify and daily Jobs:

 		
 Understanding Kvm4nfv Grafana Dashboard

 		
 1. Idle-Idle Graph

 		
 2. CPU_Stress-Idle Graph

 		
 3. Memory_Stress-Idle Graph

 		
 4. IO_Stress-Idle Graph

 		
 Packet Forwarding Results

 		
 Understanding Kvm4nfv Grafana Dashboard

 		
 Future Scope

 		
 Low Latency Environment

 		
 Hardware Environment Description

 		
 CPU Features

 		
 CPU Topology

 		
 BIOS Setup

 		
 Software Environment Setup

 		
 Kernel Parameter

 		
 Run-time Environment Setup

 		
 Test cases to measure Latency

 		
 1. Cyclictest case

 		
 Understanding the naming convention

 		
 Version Features

 		
 Idle-Idle test-type

 		
 CPU_Stress-Idle test-type

 		
 Memory_Stress-Idle test-type

 		
 IO_Stress-Idle test-type

 		
 CPU_Stress-CPU_Stress test-type

 		
 Memory_Stress-Memory_Stress test-type

 		
 IO_Stress-IO_Stress test type

 		
 2. Packet Forwarding Test cases

 		
 Packet forwarding to Host

 		
 Packet forwarding to Guest

 		
 Packet forwarding to Guest using SRIOV

 		
 Fast Live Migration

 		
 Current Challenges

 		
 Optimizations

 		
 Test Environment

 		
 Test Result

 		
 Euphrates OpenStack User Guide

 		
 OpenStack references

 		
 Connecting to the OpenStack instance

 		
 Packet Forwarding

 		
 About Packet Forwarding

 		
 Version Features

 		
 VSPERF

 		
 Installation

 		
 Supported Operating Systems

 		
 Supported vSwitches

 		
 Supported Hypervisors

 		
 Other Requirements

 		
 For CentOS 7

 		
 Working Behind a Proxy

 		
 Traffic-Generators

 		
 IXIA Setup

 		
 Hardware Requirements

 		
 Installation

 		
 On the CentOS 7 system

 		
 On the IXIA client software system

 		
 VSPERF configuration

 		
 Test results share

 		
 Cloning and building src dependencies

 		
 Configure the ./conf/10_custom.conf file

 		
 Using a custom settings file

 		
 vloop_vnf

 		
 l2fwd Kernel Module

 		
 Executing tests

 		
 Testcases

 		
 VSPERF modes of operation

 		
 Packet Forwarding Test Scenarios

 		
 Packet Forwarding Host Scenario

 		
 Packet Forwarding Guest Scenario (PXP Deployment)

 		
 Packet Forwarding SRIOV Scenario

 		
 Using vfio_pci with DPDK

 		
 Using SRIOV support

 		
 Results

 		
 PCM Utility in KVM4NFV

 		
 Collecting Memory Bandwidth Information using PCM utility

 		
 About PCM utility

 		
 Version Features

 		
 Implementation of pcm-memory.x:

 		
 pcm-memory.x in KVM4NFV:

 		
 Future Scope

 		
 Low Latency Tunning Suggestion

 		
 Platform Configuration

 		
 Operating System Configuration

_images/Cpustress-Idle.png
oY e e Sacktodmsions zonon Olastrcas Reesh ey i G

kvmfomfu_cyclictest_cpustress_idle

14

2280000 2281200 310000 W11200 320000 21200 360000 II1200 40000 IAI200 SO000 ISI200 60000 61200
min maxcurent

— kmiomiv_cycictest_cpusiress idie.avg 5 6 6

= miomiy_cyciictest_cpusiress_idle.max s 1

— kumiomiv_cycictest_cpustress idie.min 5 6

_images/io-stress-idle-test-type.png
Yardstick

_images/Dashboard-screenshot-1.png
KVMFORNFV-Cyclictest - w e o zoomout @lLast7days Refresheveryld &

OPNFV_KVMFORNFV_Cydlictest - Real time benchmark

cyclictest used to test the guest timer latency with idle host/guest,Host memory stress and Host CPU stress. For more information see Cyclictest

Test Case Execution

kvmfornfv_cyclictest_idle_idle

175
150
125
100

75

50 e
25
2280000 2281200 310000 11200 320000 21200 I30000 331200 40000 41200 50000 51200 I60000 361200
min max current
— kvmfomfv_cycictest_idle_idle.avg 500 600 600
= kvmfomfv_cycictest_ide_idle.max 800 1600 800
— kvmfomfv_cyciictest_idle_idle.min 500 600 500

kvmfornfu_cyclictest_cpustress_idle
150

.
: e s
:

2280000 2281200 310000 11200 320000 21200 I30000 331200 40000 41200 50000 51200 I60000 361200

min max current
— kvmfomfv_cycictest_cpustress._idle.avg 500 600 600
— kvmfomfv_cycictest_cpustress._idle.max 800 1400 900

— kvmfomfv_cycictest_cpustress._idie.min 500 600 600

_images/kvm1.png
Provided
Functionalty

Provided Information

System
Configuration

Inter-VM Config.

Runtime System

2. Inter-VM

Testing and
Perf Tools

Inter-VM Comm.
Perf. Tools

Information Communication
v \Y v
M M M
/ / 1
Live Migration KVM Hyparvisor o
Config. Information / amf;fa“::;e
Virtual Switch
{vSwitch)
Configuration I 1. Minimal

Information (BIOS,
boot, ketmal)

Live Migration
Petf. Tools

Latency Variation

Latency Variation
Perf. Tools

[

NIC

Hardware

v v

core [----[core

_images/idle-idle-test-type.png
B EX

_images/Bare-metalPacketForwarding.png
Test Device
(Send&Rcv)

_images/idle-idle-test.png

_images/lmtotaltime.jpg
Total live migration time

= baseline

= After optimization

DPDK L2 FW

_images/memory-stress-idle-test-type.png
Yardstick

_images/lmdowntime.jpg
VM down time

= baseline

= After optimization

DPDK L2 FW

_images/lmnetwork.jpg
10 Gbps for LM

10Gbps used by pktgen

_images/sriov_pk_fw.png
Pass-through/SR-10V
traffic generator

_images/stress-idle-test.png
Ceyclictest
Guest
VM
IDLE

L

Yardstick b

_images/weather-clear.jpg

_images/weather-overcast.jpg

_static/ajax-loader.gif

_images/weather-dash.jpg

_images/weather-few-clouds.jpg
a2

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

