

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

JOID Configuration

Scenario 1: Nosdn

./deploy.sh -o pike -s nosdn -t ha -l custom -f none -d xenial -m openstack

Scenario 2: Kubernetes core

./deploy.sh -l custom -f none -m kubernetes

Scenario 3: Kubernetes Load Balancer

./deploy.sh -l custom -f lb -m kubernetes

Scenario 4: Kubernetes with OVN

./deploy.sh -s ovn -l custom -f lb -m kubernetes

Scenario 5: Openstack with Opencontrail

./deploy.sh -o pike -s ocl -t ha -l custom -f none -d xenial -m openstack

Scenario 6: Kubernetes Load Balancer with Canal CNI

./deploy.sh -s canal -l custom -f lb -m kubernetes

Scenario 7: Kubernetes Load Balancer with Ceph

./deploy.sh -l custom -f lb,ceph -m kubernetes

JOID Configuration guide

JOID Configuration

Scenario 1: Nosdn

./deploy.sh -o pike -s nosdn -t ha -l custom -f none -d xenial -m openstack

Scenario 2: Kubernetes core

./deploy.sh -l custom -f none -m kubernetes

Scenario 3: Kubernetes Load Balancer

./deploy.sh -l custom -f lb -m kubernetes

Scenario 4: Kubernetes with OVN

./deploy.sh -s ovn -l custom -f lb -m kubernetes

Scenario 5: Openstack with Opencontrail

./deploy.sh -o pike -s ocl -t ha -l custom -f none -d xenial -m openstack

Scenario 6: Kubernetes Load Balancer with Canal CNI

./deploy.sh -s canal -l custom -f lb -m kubernetes

Scenario 7: Kubernetes Load Balancer with Ceph

./deploy.sh -l custom -f lb,ceph -m kubernetes

JOID Configuration

Bare Metal Installations:

Requirements as per Pharos:

Networking:

Minimum 2 networks

1. First for Admin/Management network with gateway to access external network

2. Second for floating ip network to consume by tenants for floating ips

NOTE: JOID support multiple isolated networks for API, data as well as storage.
Based on your network options for Openstack.

Minimum 6 physical servers

	Jump host server:

`` Minimum H/W Spec needed``

`` CPU cores: 16``

`` Memory: 32 GB``

`` Hard Disk: 1(250 GB)``

`` NIC: if0(Admin, Management), if1 (external network)``

	Node servers (minimum 5):

`` Minimum H/W Spec``

`` CPU cores: 16``

`` Memory: 32 GB``

`` Hard Disk: 2(1 TB preferred SSD) this includes the space for ceph as well``

`` NIC: if0 (Admin, Management), if1 (external network)``

NOTE: Above configuration is minimum and for better performance and usage of
the Openstack please consider higher spec for each nodes.

Make sure all servers are connected to top of rack switch and configured accordingly. No DHCP server should be up and configured. Only gateway at eth0 and eth1 network should be configure to access the network outside your lab.

Jump node configuration:

1. Install Ubuntu 16.04.1 LTS server version of OS on the first server.
2. Install the git and bridge-utils packages on the server and configure minimum two bridges on jump host:

brAdm and brExt cat /etc/network/interfaces

`` # The loopback network interface``

`` auto lo``

`` iface lo inet loopback``

`` iface if0 inet manual``

`` auto brAdm ``

`` iface brAdm inet static``

`` address 10.5.1.1``

`` netmask 255.255.255.0``

`` bridge_ports if0``

`` iface if1 inet manual``

`` auto brExt``

`` iface brExt inet static``

`` address 10.5.15.1``

`` netmask 255.255.255.0``

`` bridge_ports if1``

NOTE: If you choose to use the separate network for management, pulic , data and
storage then you need to create bridge for each interface. In case of VLAN tags
use the appropriate network on jump-host depend upon VLAN ID on the interface.

Configure JOID for your lab

Get the joid code from gerritt

git clone https://gerrit.opnfv.org/gerrit/joid.git

Enable MAAS (labconfig.yaml is must and base for MAAS installation and scenario deployment)

If you have already enabled maas for your environment and installed it then there is no need to enabled it again or install it. If you have patches from previous MAAS enablement then you can apply it here.

NOTE: If MAAS is pre installed without 03-maasdeploy.sh not supported. We strongly suggest to use 03-maaseploy.sh to deploy the MAAS and JuJu environment.

If enabling first time then follow it further.
- Create a directory in joid/labconfig/<company name>/<pod number>/ for example

mkdir joid/labconfig/intel/pod7/

	copy labconfig.yaml from pod6 to pod7

cp joid/labconfig/intel/pod5/* joid/labconfig/intel/pod7/

labconfig.yaml file

Prerequisite:

1. Make sure Jump host node has been configured with bridges on each interface,
so that appropriate MAAS and JUJU bootstrap VM can be created. For example if
you have three network admin, data and floating ip then I would suggest to give names
like brAdm, brData and brExt etc.
2. You have information about the node MAC address and power management details (IPMI IP, username, password) of the nodes used for deployment.

modify labconfig.yaml

This file has been used to configure your maas and bootstrap node in a
VM. Comments in the file are self explanatory and we expect fill up the
information according to match lab infrastructure information. Sample
labconfig.yaml can be found at
https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git;a=blob;f=labconfig/intel/pod6/labconfig.yaml

	*lab:

	location: intel
racks:
- rack: pod6

nodes:
- name: rack-6-m1

architecture: x86_64
roles: [network,control]
nics:
- ifname: eth1

spaces: [public]
mac: [“xx:xx:xx:xx:xx:xx”]

	power:

	type: ipmi
address: xx.xx.xx.xx
user: xxxx
pass: xxxx

	name: rack-6-m1
architecture: x86_64
roles: [network,control]
nics:
- ifname: eth1

spaces: [public]
mac: [“xx:xx:xx:xx:xx:xx”]

	power:

	type: ipmi
address: xx.xx.xx.xx
user: xxxx
pass: xxxx

	name: rack-6-m1
architecture: x86_64
roles: [network,control]
nics:
- ifname: eth1

spaces: [public]
mac: [“xx:xx:xx:xx:xx:xx”]

	power:

	type: ipmi
address: xx.xx.xx.xx
user: xxxx
pass: xxxx

	name: rack-6-m1
architecture: x86_64
roles: [network,control]
nics:
- ifname: eth1

spaces: [public]
mac: [“xx:xx:xx:xx:xx:xx”]

	power:

	type: ipmi
address: xx.xx.xx.xx
user: xxxx
pass: xxxx

	name: rack-6-m1
architecture: x86_64
roles: [network,control]
nics:
- ifname: eth1

spaces: [public]
mac: [“xx:xx:xx:xx:xx:xx”]

	power:

	type: ipmi
address: xx.xx.xx.xx
user: xxxx
pass: xxxx

floating-ip-range: 10.5.15.6,10.5.15.250,10.5.15.254,10.5.15.0/24
ext-port: “eth1”
dns: 8.8.8.8

	opnfv:

	release: d
distro: xenial
type: noha
openstack: pike
sdncontroller:
- type: nosdn
storage:
- type: ceph

disk: /dev/sdb

feature: odl_l2
spaces:
- type: floating

bridge: brEx
cidr: 10.5.15.0/24
gateway: 10.5.15.254
vlan:

	type: admin
bridge: brAdm
cidr: 10.5.1.0/24
gateway:
vlan:*

Deployment of OPNFV using JOID:

Once you have done the change in above section then run the following commands to do the automatic deployments.

MAAS Install

After integrating the changes as mentioned above run the MAAS install.
then run the below commands to start the MAAS deployment.

`` ./03-maasdeploy.sh custom <absolute path of config>/labconfig.yaml ``
or
`` ./03-maasdeploy.sh custom http://<web site location>/labconfig.yaml ``

For deployment of Danbue release on KVM please use the following command.

`` ./03-maasdeploy.sh default ``

This will take approximately 20 minutes to couple hours depending on your
environment. This script will do the following:

	Create 1 VMs (KVM) for Juju bootstrap.

	Install MAAS on the jumphost.

	Configure the MAAS to enlist and commission a VM for Juju bootstrap node.

	Configure the MAAS to enlist and commission bare metal servers.

	In case of virtual server deployments MAAS will create three more KVM servers and add those servers in MAAS fir deployment.

When it’s done, you should be able to view MAAS webpage (http://<MAAS IP>/MAAS) and see 1 bootstrap node and bare metal servers in the ‘Ready’ state on the nodes page.

OPNFV Install

`` ./deploy.sh -o pike -s nosdn -t noha -l custom -f none -d xenial -m openstack``

`` ``

./deploy.sh -o pike -s nosdn -t noha -l custom -f none -d xenial -m openstack

NOTE: Possible options are as follows:

	choose which sdn controller to use.

	[-s|–sdn <nosdn|odl|opencontrail>]
nosdn: openvswitch only and no other SDN.
odl: OpenDayLight Boron version.
opencontrail: OpenContrail SDN.

	Mode of Openstack deployed.

	[-t|–type <noha|ha|tip>]
noha: NO HA mode of Openstack
ha: HA mode of openstack.

	Wihch version of Openstack deployed.

	[-o|–openstack <pike|ocata>]
pike: Pike version of openstack.
Ocata: Ocata version of openstack.

	Where to deploy

	[-l|–lab <custom | default>] etc…
custom: For bare metal deployment where labconfig.yaml provided externally and not part of JOID.
default: For virtual deployment where installation will be done on KVM created using 03-maasdeploy.sh

	what feature to deploy. Comma seperated list

	[-f|–feature <lxd|dvr|sfc|dpdk|ipv6|none>]
none: no special feature will be enabled.
ipv6: ipv6 will be enabled for tenant in openstack.
lxd: With this feature hypervisor will be LXD rather than KVM.
dvr: Will enable distributed virtual routing.
dpdk: Will enable DPDK feature.
sfc: Will enable sfc feature only supported with onos deployment.

	which Ubuntu distro to use.

	[-d|–distro <xenial>]

Which model to deploy
JOID introduces the various model to deploy apart from openstack for docker based container workloads.
[-m|–model <openstack|kubernetes>]

openstack: Openstack which will be used for KVM/LXD container based workloads.
kubernetes: Kubernes model will be used for docker based workloads.

Deploy MAAS or not?
[–maasinstall <0|1>]

0: Do not deploy MAAS
1: Deploy MAAS first.

Lab Config file location
[–labfile <labconfig.yaml file>]

location of the file labconfig.yaml if no valid location then virtual MAAS would be deployed.

OPNFV Scenarios in JOID
Following OPNFV scenarios can be deployed using JOID. Seperate yaml bundle will be created to deploy the individual scenario.

Scenario Owner Known Issues
os-nosdn-nofeature-ha Joid
os-nosdn-nofeature-noha Joid
os-odl_l2-nofeature-ha Joid Floating ips are not working on this deployment.
os-nosdn-lxd-ha Joid Yardstick team is working to support.
os-nosdn-lxd-noha Joid Yardstick team is working to support.
os-ocl-nofeature-ha OCL Keystone V2 has been used.
os-ocl-nofeature-noha OCL Keystone V2 has been used.
k8-nosdn-nofeature-noha Joid No support from Functest.
k8-nosdn-lb-noha Joid No support from Functest.
k8-ovn-lb-noha OVN No support from Functest.

Is the deployment done successfully?

Once deploy.sh is complete, use juju status to verify that all deployed unit are in the ready state.

`` juju status ``

Find the Openstack-dashboard IP address from the juju status output, and see if you can log in via browser. The username and password is admin/openstack.

Optionally, see if you can log in Juju GUI. Juju GUI is on the Juju bootstrap node which is the VM define using 03-maasdeploy.sh. The username and password deplayed at the end of deployment along with url.

If you deploy ODL, OpenContrail or ONOS, find the IP address of the web UI and login. Please refer to each SDN guides for username/password.

Troubleshoot

By default debug is enabled in script and error messages will be printed on ssh terminal where you are running the scripts.

To Access of any control or compute nodes.
juju ssh <service name>/<instance id>
for example to login into openstack-dashboard container.

juju ssh openstack-dashboard/0
juju ssh nova-compute/0
juju ssh neutron-gateway/0

All charm jog files are availble under /var/log/juju

By default juju will add the current user keys for authentication into the deployed server and only ssh access will be available.

JOID post installation procedures

Configure OpenStack

openstack.sh under joid/ci used to configure the openstack after deployment

./openstack.sh <nosdn> custom xenial pike

Below commands are used to setup domain in heat.
juju run-action heat/0 domain-setup

Upload cloud images and creates the sample network to test.

joidjuju/get-cloud-images
joid/juju/joid-configure-openstack

Configure Kubernets

k8.sh under joid/ci would be used to show the kubernets workload and create
sample pods.

./k8.sh

Juju GUI

Below command would be used to display Juju GUI url along with credentials.

juju gui –show-credentials –no-browser

1. Abstract

This document will explain how to install the Fraser release of OPNFV with
JOID including installing JOID, configuring JOID for your environment, and
deploying OPNFV with different SDN solutions in HA, or non-HA mode.

7. Appendices

7.1. Appendix A: Single Node Deployment

By default, running the script ./03-maasdeploy.sh will automatically create the KVM VMs on a single machine and configure everything for you.

if [! -e ./labconfig.yaml]; then
 virtinstall=1
 labname="default"
 cp ../labconfig/default/labconfig.yaml ./
 cp ../labconfig/default/deployconfig.yaml ./

Please change joid/ci/labconfig/default/labconfig.yaml accordingly. The MAAS deployment script will do the following:
1. Create bootstrap VM.
2. Install MAAS on the jumphost.
3. Configure MAAS to enlist and commission VM for Juju bootstrap node.

Later, the 03-massdeploy.sh script will create three additional VMs and register them into the MAAS Server:

if ["$virtinstall" -eq 1]; then
 sudo virt-install --connect qemu:///system --name $NODE_NAME --ram 8192 --cpu host --vcpus 4 \
 --disk size=120,format=qcow2,bus=virtio,io=native,pool=default \
 $netw $netw --boot network,hd,menu=off --noautoconsole --vnc --print-xml | tee $NODE_NAME

 nodemac=`grep "mac address" $NODE_NAME | head -1 | cut -d '"' -f 2`
 sudo virsh -c qemu:///system define --file $NODE_NAME
 rm -f $NODE_NAME
 maas $PROFILE machines create autodetect_nodegroup='yes' name=$NODE_NAME \
 tags='control compute' hostname=$NODE_NAME power_type='virsh' mac_addresses=$nodemac \
 power_parameters_power_address='qemu+ssh://'$USER'@'$MAAS_IP'/system' \
 architecture='amd64/generic' power_parameters_power_id=$NODE_NAME
 nodeid=$(maas $PROFILE machines read | jq -r '.[] | select(.hostname == '\"$NODE_NAME\"').system_id')
 maas $PROFILE tag update-nodes control add=$nodeid || true
 maas $PROFILE tag update-nodes compute add=$nodeid || true

fi

7.2. Appendix B: Automatic Device Discovery

If your bare metal servers support IPMI, they can be discovered and enlisted automatically
by the MAAS server. You need to configure bare metal servers to PXE boot on the network
interface where they can reach the MAAS server. With nodes set to boot from a PXE image,
they will start, look for a DHCP server, receive the PXE boot details, boot the image,
contact the MAAS server and shut down.

During this process, the MAAS server will be passed information about the node, including
the architecture, MAC address and other details which will be stored in the database of
nodes. You can accept and commission the nodes via the web interface. When the nodes have
been accepted the selected series of Ubuntu will be installed.

7.3. Appendix C: Machine Constraints

Juju and MAAS together allow you to assign different roles to servers, so that hardware and software can be configured according to their roles. We have briefly mentioned and used this feature in our example. Please visit Juju Machine Constraints https://jujucharms.com/docs/stable/charms-constraints and MAAS tags https://maas.ubuntu.com/docs/tags.html for more information.

7.4. Appendix D: Offline Deployment

When you have limited access policy in your environment, for example, when only the Jump Host has Internet access, but not the rest of the servers, we provide tools in JOID to support the offline installation.

The following package set is provided to those wishing to experiment with a ‘disconnected
from the internet’ setup when deploying JOID utilizing MAAS. These instructions provide
basic guidance as to how to accomplish the task, but it should be noted that due to the
current reliance of MAAS and DNS, that behavior and success of deployment may vary
depending on infrastructure setup. An official guided setup is in the roadmap for the next release:

	Get the packages from here: https://launchpad.net/~thomnico/+archive/ubuntu/ubuntu-cloud-mirrors

Note

The mirror is quite large 700GB in size, and does not mirror SDN repo/ppa.

	Additionally to make juju use a private repository of charms instead of using an external location are provided via the following link and configuring environments.yaml to use cloudimg-base-url: https://github.com/juju/docs/issues/757

JOID installation instruction

	1. Abstract

	2. Introduction
	2.1. JOID in brief

	2.2. Typical JOID Architecture

	3. Setup Requirements
	3.1. Network Requirements

	3.2. Jumphost Requirements

	3.3. Physical nodes requirements (bare metal deployment)

	4. Bare Metal Installation
	4.1. Networking

	4.2. Jumphost installation and configuration

	4.3. Configure JOID for your lab

	4.4. MAAS Install

	4.5. Juju Install

	4.6. OPNFV Scenarios in JOID

	4.7. Troubleshoot

	4.8. Common Issues

	5. Virtual Installation

	6. Post Installation
	6.1. Testing Your Deployment

	6.2. Create proxies to the dashboards

	6.3. Configuring OpenStack

	6.4. Configuring Kubernetes

	6.5. Configuring OpenStack

	6.6. openstack.sh

	6.7. get-cloud-images

	6.8. joid-configure-openstack

	7. Appendices
	7.1. Appendix A: Single Node Deployment

	7.2. Appendix B: Automatic Device Discovery

	7.3. Appendix C: Machine Constraints

	7.4. Appendix D: Offline Deployment

4. Bare Metal Installation

Before proceeding, make sure that your hardware infrastructure satisfies the
Setup Requirements.

4.1. Networking

Make sure you have at least two networks configured:

	Admin (management) network with gateway to access the Internet (for
downloading installation resources).

	A public/floating network to consume by tenants for floating IPs.

You may configure other networks, e.g. for data or storage, based on your
network options for Openstack.

4.2. Jumphost installation and configuration

	Install Ubuntu 16.04 (Xenial) LTS server on Jumphost (one of the physical
nodes).

Tip

Use ubuntu as username as password, as this matches the MAAS
credentials installed later.

During the OS installation, install the OpenSSH server package to
allow SSH connections to the Jumphost.

If the data size of the image is too big or slow (e.g. when mounted
through a slow virtual console), you can also use the Ubuntu mini ISO.
Install packages: standard system utilities, basic Ubuntu server,
OpenSSH server, Virtual Machine host.

If you have issues with blank console after booting, see
this SO answer [https://askubuntu.com/a/38782] and set
nomodeset, (removing quiet splash can also be useful to see log
during booting) either through console in recovery mode or via SSH (if
installed).

	Install git and bridge-utils packages

sudo apt install git bridge-utils

	Configure bridges for each network to be used.

Example /etc/network/interfaces file:

source /etc/network/interfaces.d/*

The loopback network interface (set by Ubuntu)
auto lo
iface lo inet loopback

Admin network interface
iface eth0 inet manual
auto brAdmin
iface brAdmin inet static
 bridge_ports eth0
 address 10.5.1.1
 netmask 255.255.255.0

Ext. network for floating IPs
iface eth1 inet manual
auto brExt
iface brExt inet static
 bridge_ports eth1
 address 10.5.15.1
 netmask 255.255.255.0

Note

If you choose to use the separate network for management, public, data
and storage, then you need to create bridge for each interface. In case
of VLAN tags, use the appropriate network on Jumphost depending on the
VLAN ID on the interface.

Note

Both of the networks need to have Internet connectivity. If only one
of your interfaces has Internet access, you can setup IP forwarding.
For an example how to accomplish that, see the script in Nokia pod 1
deployment (labconfig/nokia/pod1/setup_ip_forwarding.sh).

4.3. Configure JOID for your lab

All configuration for the JOID deployment is specified in a labconfig.yaml
file. Here you describe all your physical nodes, their roles in OpenStack,
their network interfaces, IPMI parameters etc. It’s also where you configure
your OPNFV deployment and MAAS networks/spaces.
You can find example configuration files from already existing nodes in the
repository [https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git;a=tree;f=labconfig].

First of all, download JOID to your Jumphost. We recommend doing this in your
home directory.

git clone https://gerrit.opnfv.org/gerrit/p/joid.git

Tip

You can select the stable version of your choice by specifying the git
branch, for example:

git clone -b stable/fraser https://gerrit.opnfv.org/gerrit/p/joid.git

Create a directory in joid/labconfig/<company_name>/<pod_number>/ and
create or copy a labconfig.yaml configuration file to that directory.
For example:

All JOID actions are done from the joid/ci directory
cd joid/ci
mkdir -p ../labconfig/your_company/pod1
cp ../labconfig/nokia/pod1/labconfig.yaml ../labconfig/your_company/pod1/

Example labconfig.yaml configuration file:

lab:
 location: your_company
 racks:
 - rack: pod1
 nodes:
 - name: rack-1-m1
 architecture: x86_64
 roles: [network,control]
 nics:
 - ifname: eth0
 spaces: [admin]
 mac: ["12:34:56:78:9a:bc"]
 - ifname: eth1
 spaces: [floating]
 mac: ["12:34:56:78:9a:bd"]
 power:
 type: ipmi
 address: 192.168.10.101
 user: admin
 pass: admin
 - name: rack-1-m2
 architecture: x86_64
 roles: [compute,control,storage]
 nics:
 - ifname: eth0
 spaces: [admin]
 mac: ["23:45:67:89:ab:cd"]
 - ifname: eth1
 spaces: [floating]
 mac: ["23:45:67:89:ab:ce"]
 power:
 type: ipmi
 address: 192.168.10.102
 user: admin
 pass: admin
 - name: rack-1-m3
 architecture: x86_64
 roles: [compute,control,storage]
 nics:
 - ifname: eth0
 spaces: [admin]
 mac: ["34:56:78:9a:bc:de"]
 - ifname: eth1
 spaces: [floating]
 mac: ["34:56:78:9a:bc:df"]
 power:
 type: ipmi
 address: 192.168.10.103
 user: admin
 pass: admin
 - name: rack-1-m4
 architecture: x86_64
 roles: [compute,storage]
 nics:
 - ifname: eth0
 spaces: [admin]
 mac: ["45:67:89:ab:cd:ef"]
 - ifname: eth1
 spaces: [floating]
 mac: ["45:67:89:ab:ce:f0"]
 power:
 type: ipmi
 address: 192.168.10.104
 user: admin
 pass: admin
 - name: rack-1-m5
 architecture: x86_64
 roles: [compute,storage]
 nics:
 - ifname: eth0
 spaces: [admin]
 mac: ["56:78:9a:bc:de:f0"]
 - ifname: eth1
 spaces: [floating]
 mac: ["56:78:9a:bc:df:f1"]
 power:
 type: ipmi
 address: 192.168.10.105
 user: admin
 pass: admin
 floating-ip-range: 10.5.15.6,10.5.15.250,10.5.15.254,10.5.15.0/24
 ext-port: "eth1"
 dns: 8.8.8.8
opnfv:
 release: d
 distro: xenial
 type: noha
 openstack: pike
 sdncontroller:
 - type: nosdn
 storage:
 - type: ceph
 disk: /dev/sdb
 feature: odl_l2
 spaces:
 - type: admin
 bridge: brAdmin
 cidr: 10.5.1.0/24
 gateway:
 vlan:
 - type: floating
 bridge: brExt
 cidr: 10.5.15.0/24
 gateway: 10.5.15.1
 vlan:

Once you have prepared the configuration file, you may begin with the automatic
MAAS deployment.

4.4. MAAS Install

This section will guide you through the MAAS deployment. This is the first of
two JOID deployment steps.

Note

For all the commands in this document, please do not use a root user
account to run but instead use a non-root user account. We recommend using
the ubuntu user as described above.

If you have already enabled maas for your environment and installed it then
there is no need to enabled it again or install it. If you have patches
from previous MAAS install, then you can apply them here.

Pre-installed MAAS without using the 03-maasdeploy.sh script is not
supported. We strongly suggest to use 03-maasdeploy.sh script to deploy
the MAAS and JuJu environment.

With the labconfig.yaml configuration file ready, you can start the MAAS
deployment. In the joid/ci directory, run the following command:

in joid/ci directory
./03-maasdeploy.sh custom <absolute path of config>/labconfig.yaml

If you prefer, you can also host your labconfig.yaml file remotely and JOID
will download it from there. Just run

in joid/ci directory
./03-maasdeploy.sh custom http://<web_site_location>/labconfig.yaml

This step will take approximately 30 minutes to a couple of hours depending on
your environment.
This script will do the following:

	If this is your first time running this script, it will download all the
required packages.

	Install MAAS on the Jumphost.

	Configure MAAS to enlist and commission a VM for Juju bootstrap node.

	Configure MAAS to enlist and commission bare metal servers.

	Download and load Ubuntu server images to be used by MAAS.

Already during deployment, once MAAS is installed, configured and launched,
you can visit the MAAS Web UI and observe the progress of the deployment.
Simply open the IP of your jumphost in a web browser and navigate to the
/MAAS directory (e.g. http://10.5.1.1/MAAS in our example). You can
login with username ubuntu and password ubuntu. In the Nodes page,
you can see the bootstrap node and the bare metal servers and their status.

Hint

If you need to re-run this step, first undo the performed actions by
running

in joid/ci
./cleanvm.sh
./cleanmaas.sh
now you can run the ./03-maasdeploy.sh script again

4.5. Juju Install

This section will guide you through the Juju an OPNFV deployment. This is the
second of two JOID deployment steps.

JOID allows you to deploy different combinations of OpenStack and SDN solutions
in HA or no-HA mode. For OpenStack, it supports Pike and Ocata. For SDN, it
supports Open vSwitch, OpenContrail, OpenDaylight and ONOS (Open Network
Operating System). In addition to HA or no-HA mode, it also supports deploying
the latest from the development tree (tip).

To deploy OPNFV on the previously deployed MAAS system, use the deploy.sh
script. For example:

in joid/ci directory
./deploy.sh -d xenial -m openstack -o pike -s nosdn -f none -t noha -l custom

The above command starts an OPNFV deployment with Ubuntu Xenial (16.04) distro,
OpenStack model, Pike version of OpenStack, Open vSwitch (and no other SDN),
no special features, no-HA OpenStack mode and with custom labconfig. I.e. this
corresponds to the os-nosdn-nofeature-noha OPNFV deployment scenario.

Note

You can see the usage info of the script by running

./deploy.sh --help

Possible script arguments are as follows.

Ubuntu distro to deploy

[-d <trusty|xenial>]

	trusty: Ubuntu 16.04.

	xenial: Ubuntu 17.04.

Model to deploy

[-m <openstack|kubernetes>]

JOID introduces two various models to deploy.

	openstack: Openstack, which will be used for KVM/LXD
container-based workloads.

	kubernetes: Kubernetes model will be used for docker-based
workloads.

Version of Openstack deployed

[-o <pike|ocata>]

	pike: Pike version of OpenStack.

	ocata: Ocata version of OpenStack.

SDN controller

[-s <nosdn|odl|opencontrail|onos|canal>]

	nosdn: Open vSwitch only and no other SDN.

	odl: OpenDayLight Boron version.

	opencontrail: OpenContrail SDN.

	onos: ONOS framework as SDN.

	cana;: canal CNI plugin for kubernetes.

Feature to deploy (comma separated list)

[-f <lxd|dvr|sfc|dpdk|ipv6|none>]

	none: No special feature will be enabled.

	ipv6: IPv6 will be enabled for tenant in OpenStack.

	lxd: With this feature hypervisor will be LXD rather than KVM.

	dvr: Will enable distributed virtual routing.

	dpdk: Will enable DPDK feature.

	sfc: Will enable sfc feature only supported with ONOS deployment.

	lb: Load balancing in case of Kubernetes will be enabled.

	ceph: Ceph storage Kubernetes will be enabled.

Mode of Openstack deployed

[-t <noha|ha|tip>]

	noha: No High Availability.

	ha: High Availability.

	tip: The latest from the development tree.

Where to deploy

[-l <custom|default|...>]

	custom: For bare metal deployment where labconfig.yaml was provided
externally and not part of JOID package.

	default: For virtual deployment where installation will be done on
KVM created using 03-maasdeploy.sh.

Architecture

[-a <amd64|ppc64el|aarch64>]

	amd64: Only x86 architecture will be used. Future version will
support arm64 as well.

This step may take up to a couple of hours, depending on your configuration,
internet connectivity etc. You can check the status of the deployment by
running this command in another terminal:

watch juju status --format tabular

Hint

If you need to re-run this step, first undo the performed actions by
running

in joid/ci
./clean.sh
now you can run the ./deploy.sh script again

4.6. OPNFV Scenarios in JOID

Following OPNFV scenarios can be deployed using JOID. Separate yaml bundle will
be created to deploy the individual scenario.

	Scenario

	Owner

	Known Issues

	os-nosdn-nofeature-ha

	Joid

	

	os-nosdn-nofeature-noha

	Joid

	

	os-odl_l2-nofeature-ha

	Joid

	Floating ips are not working on this deployment.

	os-nosdn-lxd-ha

	Joid

	Yardstick team is working to support.

	os-nosdn-lxd-noha

	Joid

	Yardstick team is working to support.

	os-onos-nofeature-ha

	ONOSFW

	

	os-onos-sfc-ha

	ONOSFW

	

	k8-nosdn-nofeature-noha

	Joid

	No support from Functest and Yardstick

	k8-nosdn-lb-noha

	Joid

	No support from Functest and Yardstick

4.7. Troubleshoot

By default debug is enabled in script and error messages will be printed on ssh
terminal where you are running the scripts.

Logs are indispensable when it comes time to troubleshoot. If you want to see
all the service unit deployment logs, you can run juju debug-log in another
terminal. The debug-log command shows the consolidated logs of all Juju agents
(machine and unit logs) running in the environment.

To view a single service unit deployment log, use juju ssh to access to the
deployed unit. For example to login into nova-compute unit and look for
/var/log/juju/unit-nova-compute-0.log for more info:

ubuntu@R4N4B1:~$ juju ssh nova-compute/0
Warning: Permanently added '172.16.50.60' (ECDSA) to the list of known hosts.
Warning: Permanently added '3-r4n3b1-compute.maas' (ECDSA) to the list of known hosts.
Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 3.13.0-77-generic x86_64)

* Documentation: https://help.ubuntu.com/
<skipped>
Last login: Tue Feb 2 21:23:56 2016 from bootstrap.maas
ubuntu@3-R4N3B1-compute:~$ sudo -i
root@3-R4N3B1-compute:~# cd /var/log/juju/
root@3-R4N3B1-compute:/var/log/juju# ls
machine-2.log unit-ceilometer-agent-0.log unit-ceph-osd-0.log unit-neutron-contrail-0.log unit-nodes-compute-0.log unit-nova-compute-0.log unit-ntp-0.log
root@3-R4N3B1-compute:/var/log/juju#

Note

By default Juju will add the Ubuntu user keys for authentication into the
deployed server and only ssh access will be available.

Once you resolve the error, go back to the jump host to rerun the charm hook
with

$ juju resolved --retry <unit>

If you would like to start over, run
juju destroy-environment <environment name> to release the resources, then
you can run deploy.sh again.

To access of any of the nodes or containers, use

juju ssh <service name>/<instance id>

For example:

juju ssh openstack-dashboard/0
juju ssh nova-compute/0
juju ssh neutron-gateway/0

You can see the available nodes and containers by running

juju status

All charm log files are available under /var/log/juju.

If you have questions, you can join the JOID channel #opnfv-joid on
Freenode [https://webchat.freenode.net/].

4.8. Common Issues

The following are the common issues we have collected from the community:

	The right variables are not passed as part of the deployment procedure.

./deploy.sh -o pike -s nosdn -t ha -l custom -f none

	If you have not setup MAAS with 03-maasdeploy.sh then the
./clean.sh command could hang, the juju status command may hang
because the correct MAAS API keys are not mentioned in cloud listing for
MAAS.

Solution: Please make sure you have an MAAS cloud listed using juju
clouds and the correct MAAS API key has been added.

	Deployment times out: use the command juju status and make sure all
service containers receive an IP address and they are executing code.
Ensure there is no service in the error state.

	In case the cleanup process hangs,run the juju destroy-model command
manually.

Direct console access via the OpenStack GUI can be quite helpful if you
need to login to a VM but cannot get to it over the network.
It can be enabled by setting the console-access-protocol in the
nova-cloud-controller to vnc. One option is to directly edit the
juju-deployer bundle and set it there prior to deploying OpenStack.

nova-cloud-controller:
 options:
 console-access-protocol: vnc

To access the console, just click on the instance in the OpenStack GUI and
select the Console tab.

5. Virtual Installation

The virtual deployment of JOID is very simple and does not require any special
configuration. To deploy a virtual JOID environment follow these few simple
steps:

	Install a clean Ubuntu 16.04 (Xenial) server on the machine. You can use
the tips noted in the first step of the Jumphost installation and configuration for
bare metal deployment. However, no specialized configuration is needed,
just make sure you have Internet connectivity.

	Run the MAAS deployment for virtual deployment without customized labconfig
file:

in joid/ci directory
./03-maasdeploy.sh

	Run the Juju/OPNFV deployment with your desired configuration parameters,
but with -l default -i 1 for virtual deployment. For example to deploy
the Kubernetes model:

in joid/ci directory
./deploy.sh -d xenial -s nosdn -t noha -f none -m kubernetes -l default -i 1

Now you should have a working JOID deployment with three virtual nodes. In case
of any issues, refer to the Troubleshoot section.

2. Introduction

2.1. JOID in brief

JOID as Juju OPNFV Infrastructure Deployer allows you to deploy different
combinations of OpenStack release and SDN solution in HA or non-HA mode. For
OpenStack, JOID currently supports Ocata and Pike. For SDN, it supports
Openvswitch, OpenContrail, OpenDayLight, and ONOS. In addition to HA or non-HA
mode, it also supports deploying from the latest development tree.

JOID heavily utilizes the technology developed in Juju and MAAS.

Juju [https://jujucharms.com/] is a state-of-the-art, open source modelling tool for operating software
in the cloud. Juju allows you to deploy, configure, manage, maintain, and scale
cloud applications quickly and efficiently on public clouds, as well as on
physical servers, OpenStack, and containers. You can use Juju from the command
line or through its beautiful GUI [https://jujucharms.com/docs/stable/controllers-gui].
(source: Juju Docs [https://jujucharms.com/docs/2.2/about-juju])

MAAS [https://maas.io/] is Metal As A Service. It lets you treat physical servers like virtual
machines (instances) in the cloud. Rather than having to manage each server
individually, MAAS turns your bare metal into an elastic cloud-like resource.
Machines can be quickly provisioned and then destroyed again as easily as you
can with instances in a public cloud. … In particular, it is designed to work
especially well with Juju, the service and model management service. It’s a
perfect arrangement: MAAS manages the machines and Juju manages the services
running on those machines.
(source: MAAS Docs [https://docs.ubuntu.com/maas/2.1/en/index])

2.2. Typical JOID Architecture

The MAAS server is installed and configured on Jumphost with Ubuntu 16.04 LTS
server with access to the Internet. Another VM is created to be managed by
MAAS as a bootstrap node for Juju. The rest of the resources, bare metal or
virtual, will be registered and provisioned in MAAS. And finally the MAAS
environment details are passed to Juju for use.

6. Post Installation

6.1. Testing Your Deployment

Once Juju deployment is complete, use juju status to verify that all
deployed units are in the _Ready_ state.

Find the OpenStack dashboard IP address from the juju status output, and
see if you can login via a web browser. The domain, username and password are
admin_domain, admin and openstack.

Optionally, see if you can log in to the Juju GUI. Run juju gui to see the
login details.

If you deploy OpenDaylight, OpenContrail or ONOS, find the IP address of the
web UI and login. Please refer to each SDN bundle.yaml for the login
username/password.

Note

If the deployment worked correctly, you can get easier access to the web
dashboards with the setupproxy.sh script described in the next section.

6.2. Create proxies to the dashboards

MAAS, Juju and OpenStack/Kubernetes all come with their own web-based
dashboards. However, they might be on private networks and require SSH
tunnelling to see them. To simplify access to them, you can use the following
script to configure the Apache server on Jumphost to work as a proxy to Juju
and OpenStack/Kubernetes dashboards. Furthermore, this script also creates
JOID deployment homepage with links to these dashboards, listing also their
access credentials.

Simply run the following command after JOID has been deployed.

run in joid/ci directory
for OpenStack model:
./setupproxy.sh openstack
for Kubernetes model:
./setupproxy.sh kubernetes

You can also use the -v argument for more verbose output with xtrace.

After the script has finished, it will print out the addresses and credentials
to the dashboards. You can also find the JOID deployment homepage if you
open the Jumphost’s IP address in your web browser.

6.3. Configuring OpenStack

At the end of the deployment, the admin-openrc with OpenStack login
credentials will be created for you. You can source the file and start
configuring OpenStack via CLI.

. ~/joid_config/admin-openrc

The script openstack.sh under joid/ci can be used to configure the
OpenStack after deployment.

./openstack.sh <nosdn> custom xenial pike

Below commands are used to setup domain in heat.

juju run-action heat/0 domain-setup

Upload cloud images and creates the sample network to test.

joid/juju/get-cloud-images
joid/juju/joid-configure-openstack

6.4. Configuring Kubernetes

The script k8.sh under joid/ci would be used to show the Kubernetes
workload and create sample pods.

./k8.sh

6.5. Configuring OpenStack

At the end of the deployment, the admin-openrc with OpenStack login
credentials will be created for you. You can source the file and start
configuring OpenStack via CLI.

cat ~/joid_config/admin-openrc
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_TENANT_NAME=admin
export OS_AUTH_URL=http://172.16.50.114:5000/v2.0
export OS_REGION_NAME=RegionOne

We have prepared some scripts to help your configure the OpenStack cloud that
you just deployed. In each SDN directory, for example joid/ci/opencontrail,
there is a ‘scripts’ folder where you can find the scripts. These scripts are
created to help you configure a basic OpenStack Cloud to verify the cloud. For
more information on OpenStack Cloud configuration, please refer to the
OpenStack Cloud Administrator Guide:
http://docs.openstack.org/user-guide-admin/.
Similarly, for complete SDN configuration, please refer to the respective SDN
administrator guide.

Each SDN solution requires slightly different setup. Please refer to the README
in each SDN folder. Most likely you will need to modify the openstack.sh
and cloud-setup.sh scripts for the floating IP range, private IP network,
and SSH keys. Please go through openstack.sh, glance.sh and
cloud-setup.sh and make changes as you see fit.

Let’s take a look at those for the Open vSwitch and briefly go through each
script so you know what you need to change for your own environment.

$ ls ~/joid/juju
configure-juju-on-openstack get-cloud-images joid-configure-openstack

6.6. openstack.sh

Let’s first look at openstack.sh. First there are 3 functions defined,
configOpenrc(), unitAddress(), and unitMachine().

configOpenrc() {
 cat <<-EOF
 export SERVICE_ENDPOINT=$4
 unset SERVICE_TOKEN
 unset SERVICE_ENDPOINT
 export OS_USERNAME=$1
 export OS_PASSWORD=$2
 export OS_TENANT_NAME=$3
 export OS_AUTH_URL=$4
 export OS_REGION_NAME=$5
EOF
}

unitAddress() {
 if [["$jujuver" < "2"]]; then
 juju status --format yaml | python -c "import yaml; import sys; print yaml.load(sys.stdin)[\"services\"][\"$1\"][\"units\"][\"$1/$2\"][\"public-address\"]" 2> /dev/null
 else
 juju status --format yaml | python -c "import yaml; import sys; print yaml.load(sys.stdin)[\"applications\"][\"$1\"][\"units\"][\"$1/$2\"][\"public-address\"]" 2> /dev/null
 fi
}

unitMachine() {
 if [["$jujuver" < "2"]]; then
 juju status --format yaml | python -c "import yaml; import sys; print yaml.load(sys.stdin)[\"services\"][\"$1\"][\"units\"][\"$1/$2\"][\"machine\"]" 2> /dev/null
 else
 juju status --format yaml | python -c "import yaml; import sys; print yaml.load(sys.stdin)[\"applications\"][\"$1\"][\"units\"][\"$1/$2\"][\"machine\"]" 2> /dev/null
 fi
}

The function configOpenrc() creates the OpenStack login credentials, the function unitAddress() finds the IP address of the unit, and the function unitMachine() finds the machine info of the unit.

create_openrc() {
 keystoneIp=$(keystoneIp)
 if [["$jujuver" < "2"]]; then
 adminPasswd=$(juju get keystone | grep admin-password -A 5 | grep value | awk '{print $2}' 2> /dev/null)
 else
 adminPasswd=$(juju config keystone | grep admin-password -A 5 | grep value | awk '{print $2}' 2> /dev/null)
 fi

 configOpenrc admin $adminPasswd admin http://$keystoneIp:5000/v2.0 RegionOne > ~/joid_config/admin-openrc
 chmod 0600 ~/joid_config/admin-openrc
}

This finds the IP address of the keystone unit 0, feeds in the OpenStack admin
credentials to a new file name ‘admin-openrc’ in the ‘~/joid_config/’ folder
and change the permission of the file. It’s important to change the credentials here if
you use a different password in the deployment Juju charm bundle.yaml.

neutron net-show ext-net > /dev/null 2>&1 || neutron net-create ext-net \
 --router:external=True \
 --provider:network_type flat \
 --provider:physical_network physnet1

neutron subnet-show ext-subnet > /dev/null 2>&1 || neutron subnet-create ext-net \
 --name ext-subnet --allocation-pool start=$EXTNET_FIP,end=$EXTNET_LIP \
 --disable-dhcp --gateway $EXTNET_GW $EXTNET_NET

This section will create the ext-net and ext-subnet for defining the for floating ips.

openstack congress datasource create nova "nova" \
 --config username=$OS_USERNAME \
 --config tenant_name=$OS_TENANT_NAME \
 --config password=$OS_PASSWORD \
 --config auth_url=http://$keystoneIp:5000/v2.0

This section will create the congress datasource for various services.
Each service datasource will have entry in the file.

6.7. get-cloud-images

folder=/srv/data/
sudo mkdir $folder || true

if grep -q 'virt-type: lxd' bundles.yaml; then
 URLS=" \
 http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64-lxc.tar.gz \
 http://cloud-images.ubuntu.com/xenial/current/xenial-server-cloudimg-amd64-root.tar.gz "

else
 URLS=" \
 http://cloud-images.ubuntu.com/precise/current/precise-server-cloudimg-amd64-disk1.img \
 http://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img \
 http://cloud-images.ubuntu.com/xenial/current/xenial-server-cloudimg-amd64-disk1.img \
 http://mirror.catn.com/pub/catn/images/qcow2/centos6.4-x86_64-gold-master.img \
 http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud.qcow2 \
 http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64-disk.img "
fi

for URL in $URLS
do
FILENAME=${URL##*/}
if [-f $folder/$FILENAME];
then
 echo "$FILENAME already downloaded."
else
 wget -O $folder/$FILENAME $URL
fi
done

This section of the file will download the images to jumphost if not found to
be used with openstack VIM.

Note

The image downloading and uploading might take too long and time out. In
this case, use juju ssh glance/0 to log in to the glance unit 0 and run the
script again, or manually run the glance commands.

6.8. joid-configure-openstack

source ~/joid_config/admin-openrc

First, source the the admin-openrc file.

	::

	#Upload images to glance
glance image-create –name=”Xenial LXC x86_64” –visibility=public –container-format=bare –disk-format=root-tar –property architecture=”x86_64” < /srv/data/xenial-server-cloudimg-amd64-root.tar.gz
glance image-create –name=”Cirros LXC 0.3” –visibility=public –container-format=bare –disk-format=root-tar –property architecture=”x86_64” < /srv/data/cirros-0.3.4-x86_64-lxc.tar.gz
glance image-create –name=”Trusty x86_64” –visibility=public –container-format=ovf –disk-format=qcow2 < /srv/data/trusty-server-cloudimg-amd64-disk1.img
glance image-create –name=”Xenial x86_64” –visibility=public –container-format=ovf –disk-format=qcow2 < /srv/data/xenial-server-cloudimg-amd64-disk1.img
glance image-create –name=”CentOS 6.4” –visibility=public –container-format=bare –disk-format=qcow2 < /srv/data/centos6.4-x86_64-gold-master.img
glance image-create –name=”Cirros 0.3” –visibility=public –container-format=bare –disk-format=qcow2 < /srv/data/cirros-0.3.4-x86_64-disk.img

Upload the images into Glance to be used for creating the VM.

adjust tiny image
nova flavor-delete m1.tiny
nova flavor-create m1.tiny 1 512 8 1

Adjust the tiny image profile as the default tiny instance is too small for Ubuntu.

configure security groups
neutron security-group-rule-create --direction ingress --ethertype IPv4 --protocol icmp --remote-ip-prefix 0.0.0.0/0 default
neutron security-group-rule-create --direction ingress --ethertype IPv4 --protocol tcp --port-range-min 22 --port-range-max 22 --remote-ip-prefix 0.0.0.0/0 default

Open up the ICMP and SSH access in the default security group.

import key pair
keystone tenant-create --name demo --description "Demo Tenant"
keystone user-create --name demo --tenant demo --pass demo --email demo@demo.demo

nova keypair-add --pub-key id_rsa.pub ubuntu-keypair

Create a project called ‘demo’ and create a user called ‘demo’ in this project. Import the key pair.

configure external network
neutron net-create ext-net --router:external --provider:physical_network external --provider:network_type flat --shared
neutron subnet-create ext-net --name ext-subnet --allocation-pool start=10.5.8.5,end=10.5.8.254 --disable-dhcp --gateway 10.5.8.1 10.5.8.0/24

This section configures an external network ‘ext-net’ with a subnet called ‘ext-subnet’.
In this subnet, the IP pool starts at 10.5.8.5 and ends at 10.5.8.254. DHCP is disabled.
The gateway is at 10.5.8.1, and the subnet mask is 10.5.8.0/24. These are the public IPs
that will be requested and associated to the instance. Please change the network configuration according to your environment.

create vm network
neutron net-create demo-net
neutron subnet-create --name demo-subnet --gateway 10.20.5.1 demo-net 10.20.5.0/24

This section creates a private network for the instances. Please change accordingly.

neutron router-create demo-router

neutron router-interface-add demo-router demo-subnet

neutron router-gateway-set demo-router ext-net

This section creates a router and connects this router to the two networks we just created.

create pool of floating ips
i=0
while [$i -ne 10]; do
 neutron floatingip-create ext-net
 i=$((i + 1))
done

Finally, the script will request 10 floating IPs.

6.8.1. configure-juju-on-openstack

This script can be used to do juju bootstrap on openstack so that Juju can be used as model tool to deploy the services and VNF on top of openstack using the JOID.

3. Setup Requirements

3.1. Network Requirements

Minimum 2 Networks:

	One for the administrative network with gateway to access the Internet

	One for the OpenStack public network to access OpenStack instances via
floating IPs

JOID supports multiple isolated networks for data as well as storage based on
your network requirement for OpenStack.

No DHCP server should be up and configured. Configure gateways only on eth0 and
eth1 networks to access the network outside your lab.

3.2. Jumphost Requirements

The Jumphost requirements are outlined below:

	OS: Ubuntu 16.04 LTS Server

	Root access.

	CPU cores: 16

	Memory: 32GB

	Hard Disk: 1× (min. 250 GB)

	NIC: eth0 (admin, management), eth1 (external connectivity)

3.3. Physical nodes requirements (bare metal deployment)

Besides Jumphost, a minimum of 5 physical servers for bare metal environment.

	CPU cores: 16

	Memory: 32GB

	Hard Disk: 2× (500GB) prefer SSD

	NIC: eth0 (Admin, Management), eth1 (external network)

NOTE: Above configuration is minimum. For better performance and usage of
the OpenStack, please consider higher specs for all nodes.

Make sure all servers are connected to top of rack switch and configured
accordingly.

JOID Release Notes

	1. Abstract

	2. Introduction

	3. Summary

	4. Release Data
	4.1. Deliverables
	4.1.1. Software deliverables

	4.1.2. Documentation deliverables

	4.2. Version change
	4.2.1. Module version change

	4.2.2. Document version change

	4.3. Reason for new version
	4.3.1. Feature additions

	4.3.2. Bug corrections

	5. Known Limitations, Issues and Workarounds
	5.1. System Limitations

	5.2. Known issues

	5.3. Workarounds

	6. Scenario Releases

	7. References
	7.1. Juju

	7.2. MAAS

	7.3. JOID

	7.4. OpenStack

	7.5. OpenDaylight

	7.6. Opencontrail

	7.7. Kubernetes

 /. This work is licensed under a Creative Commons Attribution 4.0 International License.
.. http://creativecommons.org/licenses/by/4.0
.. (c) <optionally add copywriters name>

1. Abstract

This document compiles the release notes for the Fraser release of
OPNFV when using JOID as a deployment tool.

2. Introduction

These notes provides release information for the use of joid as deployment
tool for the Fraser release of OPNFV.

The goal of the Fraser release and this JOID based deployment process is
to establish a lab ready platform accelerating further development
of the OPNFV infrastructure.

Carefully follow the installation-instructions which guides a user to deploy
OPNFV using JOID which is based on MAAS and Juju.

3. Summary

The Fraser release with the JOID deployment toolchain will establish an OPNFV target system on a Pharos compliant lab infrastructure.
The current definition of an OPNFV target system is and OpenStack Pike combined with OpenDaylight Boron.

The system is deployed with OpenStack High Availability (HA) for most OpenStack services.
Ceph storage is used as Cinder backend, and is the only supported storage for Fraser. Ceph is setup as 3 OSDs and 3 Monitors, one radosgw.

User has following choices to make to do the deployment.

	Openstack – Pike

	Type – HA, nonHA, tip (stable git branch of respective openstack)

	SDN controller – nosdn(Openvswitch), Onos, OpenContrail, Canal(k8), OVN (K8)

	Feature – IPV6, DVR(distributed virtual routing), ceph(Kubernetes storage), LB(Load Balancer for Kubernetes)

	Distro – Xenial

	Model – Openstack, Kubernetes

	Documentation is built by Jenkins

	Jenkins deploys a Denbue release with the JOID deployment toolchain baremetal,
which includes 3 control+network nodes, and 2 compute nodes.

NOTE: Detailed information on how to install in your lab can be find in installation guide

4. Release Data

	Project

	JOID

	Repo/tag

	gerrit.opnfv.org/gerrit/joid.git
opnfv-6.0.0

	Release designation

	Fraser release

	Release date

	April 27 2018

	Purpose of the delivery

	Fraser release

4.1. Deliverables

4.1.1. Software deliverables

JOID based installer script files [https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git;a=summary]

4.1.2. Documentation deliverables

	Installation instructions

	Release notes (This document)

	User guide

4.2. Version change

4.2.1. Module version change

	Fraser release with the JOID deployment toolchain.

	OpenStack (Pike release)

	Kubernetes 1.8

	Ubuntu 16.04 LTS

4.2.2. Document version change

	OPNFV Installation instructions for the Fraser release using JOID deployment
toolchain - ver. 1.0.0

	OPNFV Release Notes with the JOID deployment toolchain - ver. 1.0.0 (this document)

4.3. Reason for new version

4.3.1. Feature additions

4.3.2. Bug corrections

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	JIRA:

	Fixes the issue on get the keyston IP

	JIRA:

	Fix provided where use Public API

5. Known Limitations, Issues and Workarounds

5.1. System Limitations

Min jumphost requirements: At least 16GB of RAM, 4 core cpu and 250 gb disk should support virtualization.

5.2. Known issues

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	JIRA: YARDSTICK-325

	Provide raw format yardstick vm image
for nova-lxd scenario(OPNFV)

	JIRA:

	floating ip are not working for ODL.

	JIRA:

	No functest support for Kubernetes.

5.3. Workarounds

See JIRA: <link>

6. Scenario Releases

Name: joid-os-nosdn-nofeature-ha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-os-nosdn-nofeature-ha-baremetal-daily-fraser/
Notes:

Name: joid-os-nosdn-lxd-ha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-os-nosdn-lxd-ha-baremetal-daily-fraser/
Notes:

Name: joid-os-nosdn-lxd-noha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-os-nosdn-lxd-noha-baremetal-daily-fraser/
Notes:

Name: joid-os-nosdn-nofeature-noha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-os-nosdn-nofeature-noha-baremetal-daily-fraser/
Notes:

Name: joid-k8-nosdn-lb-noha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-k8-nosdn-lb-noha-baremetal-daily-fraser/
Notes:

Name: joid-k8-ovn-lb-noha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-k8-ovn-lb-noha-baremetal-daily-fraser/
Notes:

Name: joid-os-ocl-nofeature-ha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-os-ocl-nofeature-ha-baremetal-daily-fraser/
Notes:

Name: joid-os-ocl-nofeature-noha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-os-ocl-nofeature-noha-baremetal-daily-fraser/
Notes:

Name: joid-k8-canal-lb-noha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-k8-canal-lb-noha-baremetal-daily-fraser/
Notes:

Name: joid-k8-nosdn-lb_ceph-noha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-k8-nosdn-lb_ceph-noha-baremetal-daily-fraser/
Notes:

7. References

For more information on the OPNFV Fraser release, please visit
- OPNFV Fraser release [http://www.opnfv.org/fraser]

7.1. Juju

	Juju Charm store [https://jujucharms.com/]

	Juju documents [https://jujucharms.com/docs/stable/getting-started]

7.2. MAAS

	Bare metal management (Metal-As-A-Service) [http://maas.io/get-started]

	MAAS API documents [http://maas.ubuntu.com/docs/]

7.3. JOID

	OPNFV JOID wiki [https://wiki.opnfv.org/joid]

	OPNFV Release Notes [http://docs.opnfv.org/en/stable-fraser/submodules/joid/docs/release/release-notes/release-notes.html]

	OPNFV JOID Install Guide [http://docs.opnfv.org/en/latest/submodules/joid/docs/release/installation/index.html]

7.4. OpenStack

	OpenStack Pike Release artifacts [http://www.openstack.org/software/pike]

	OpenStack documentation [http://docs.openstack.org]

7.5. OpenDaylight

	OpenDaylight artifacts [http://www.opendaylight.org/software/downloads]

7.6. Opencontrail

	`http://www.opencontrail.org/opencontrail-quick-start-guide/`_

7.7. Kubernetes

	`https://kubernetes.io/`_

JOID Kubernetes Release Notes

	1. Abstract

	2. Introduction

	3. Summary

	4. Using Kubernetes after Deployment

	5. Release Data
	5.1. Deliverables
	5.1.1. Software deliverables

	6. Known Limitations, Issues and Workarounds
	6.1. Known issues

	7. Scenario Releases

	8. References
	8.1. Juju

	8.2. MAAS

	8.3. JOID

	8.4. Kubernetes

1. Abstract

This document compiles the release notes for the Fraser release of
OPNFV when using JOID as a deployment tool for Kubernetes with cancal CNI.

2. Introduction

These notes provides release information for the use of joid as deployment
tool for the Fraser release of OPNFV for Kubernetes scenario.

The goal of the Fraser release and this JOID based deployment process is
to establish a lab ready platform accelerating further development
of the OPNFV infrastructure for docker based workloads.

Carefully follow the installation-instructions which guides a user to deploy
OPNFV using JOID which is based on MAAS and Juju.

3. Summary

Kubernetes is an open-source system for automating deployment, scaling, and
management of containerized applications.

This is a Kubernetes cluster that includes logging, monitoring, and operational
knowledge. It is comprised of the following components and features:

	Kubernetes (automated deployment, operations, and scaling)

	TLS used for communication between nodes for security.
A CNI plugin (e.g., Canal)
Optional Ingress Controller (on worker)
Optional Dashboard addon (on master) including Heapster for cluster monitoring

	EasyRSA

	Performs the role of a certificate authority serving self signed certificates
to the requesting units of the cluster.

	Etcd (distributed key value store)

	Minimum Three node cluster for reliability.

Fraser release with the JOID deployment with Kubernetes will establish an
OPNFV target system on a Pharos compliant lab infrastructure.

NOTE: Detailed information on how to install in your lab can be find in installation guide
command to deploy lxd feature is:

#Kubernetes deployment
./deploy.sh -m kubernetes -f lb -l custom -s canal

4. Using Kubernetes after Deployment

Once you have finished installinf the JOID with Kubernetes you can use the
following command to test the deployment.

To deploy 5 replicas of the microbot web application inside the Kubernetes
cluster run the following command:

juju run-action kubernetes-worker/0 microbot replicas=5

This action performs the following steps:

It creates a deployment titled ‘microbots’ comprised of 5 replicas defined
during the run of the action. It also creates a service named ‘microbots’
which binds an ‘endpoint’, using all 5 of the ‘microbots’ pods.
Finally, it will create an ingress resource, which points at a
xip.io domain to simulate a proper DNS service.

Running the packaged example

You can run a Juju action to create an example microbot web application:

$ juju run-action kubernetes-worker/0 microbot replicas=3
Action queued with id: db7cc72b-5f35-4a4d-877c-284c4b776eb8

$ juju show-action-output db7cc72b-5f35-4a4d-877c-284c4b776eb8
results:

address: microbot.104.198.77.197.xip.io

status: completed
timing:

completed: 2016-09-26 20:42:42 +0000 UTC
enqueued: 2016-09-26 20:42:39 +0000 UTC
started: 2016-09-26 20:42:41 +0000 UTC

Note: Your FQDN will be different and contain the address of the cloud
instance.
At this point, you can inspect the cluster to observe the workload coming
online.

Mor einformation on using Canonical distribution of kubernetes can be found
at https://jujucharms.com/canonical-kubernetes/

5. Release Data

	Project

	JOID

	Repo/tag

	gerrit.opnfv.org/gerrit/joid.git
opnfv-6.0.0

	Release designation

	Fraser release

	Release date

	April 27 2018

	Purpose of the delivery

	Fraser release

5.1. Deliverables

5.1.1. Software deliverables

JOID based installer script files [https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git]

6. Known Limitations, Issues and Workarounds

6.1. Known issues

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	JIRA:

	No support for yardstick and functest
for Kubernetes scenarios (OPNFV)

	JIRA:

	

7. Scenario Releases

Name: joid-k8-canal-lb-noha
Test Link: https://build.opnfv.org/ci/user/narindergupta/my-views/view/joid/job/joid-k8-canal-lb-noha-baremetal-daily-fraser/
Notes:

8. References

8.1. Juju

	Juju Charm store [https://jujucharms.com/]

	Juju documents [https://jujucharms.com/docs/stable/getting-started]

	Canonical Distibuytion of Kubernetes [https://jujucharms.com/canonical-kubernetes/]

8.2. MAAS

	Bare metal management (Metal-As-A-Service) [http://maas.io/get-started]

	MAAS API documents [http://maas.ubuntu.com/docs/]

8.3. JOID

	OPNFV JOID wiki [https://wiki.opnfv.org/joid]

	OPNFV JOID Get Started [https://wiki.opnfv.org/display/joid/JOID+Get+Started]

8.4. Kubernetes

	Kubernetes Release artifacts [https://get.k8s.io/]

	Kubernetes documentation [https://kubernetes.io/]

JOID Kubernetes Release Notes

	1. Abstract

	2. Introduction

	3. Summary

	4. Using Kubernetes after Deployment

	5. Release Data
	5.1. Deliverables
	5.1.1. Software deliverables

	6. Known Limitations, Issues and Workarounds
	6.1. Known issues

	7. Scenario Releases

	8. References
	8.1. Juju

	8.2. MAAS

	8.3. JOID

	8.4. Kubernetes

1. Abstract

This document compiles the release notes for the Fraser release of
OPNFV when using JOID as a deployment tool for Kubernets and load balancer.

2. Introduction

These notes provides release information for the use of joid as deployment
tool for the Fraser release of OPNFV for Kubernets and load balancer
scenario.

The goal of the Fraser release and this JOID based deployment process is
to establish a lab ready platform accelerating further development
of the OPNFV infrastructure for docker based workloads.

Carefully follow the installation-instructions which guides a user to deploy
OPNFV using JOID which is based on MAAS and Juju.

3. Summary

Kubernetes is an open-source system for automating deployment, scaling, and
management of containerized applications.

This is a Kubernetes cluster that includes logging, monitoring, and operational
knowledge. It is comprised of the following components and features:

	Kubernetes (automated deployment, operations, and scaling)

	TLS used for communication between nodes for security.
A CNI plugin (e.g., Flannel)
A load balancer for HA kubernetes-master (Experimental)
Optional Ingress Controller (on worker)
Optional Dashboard addon (on master) including Heapster for cluster monitoring

	EasyRSA

	Performs the role of a certificate authority serving self signed certificates
to the requesting units of the cluster.

	Etcd (distributed key value store)

	Minimum Three node cluster for reliability.

Fraser release with the JOID deployment with Kubernetes with load balancer will establish an
OPNFV target system on a Pharos compliant lab infrastructure.

NOTE: Detailed information on how to install in your lab can be find in installation guide
command to deploy load balancer feature is:

#Kubernetes deployment with Load Balancer
./deploy.sh -m kubernetes -f lb -l custom -s nosdn

4. Using Kubernetes after Deployment

Once you have finished installinf the JOID with Kubernetes with load balancer you can use the
following command to test the deployment.

To deploy 5 replicas of the microbot web application inside the Kubernetes
cluster run the following command:

juju run-action kubernetes-worker/0 microbot replicas=5

This action performs the following steps:

It creates a deployment titled ‘microbots’ comprised of 5 replicas defined
during the run of the action. It also creates a service named ‘microbots’
which binds an ‘endpoint’, using all 5 of the ‘microbots’ pods.
Finally, it will create an ingress resource, which points at a
xip.io domain to simulate a proper DNS service.

Running the packaged example

You can run a Juju action to create an example microbot web application:

$ juju run-action kubernetes-worker/0 microbot replicas=3
Action queued with id: db7cc72b-5f35-4a4d-877c-284c4b776eb8

$ juju show-action-output db7cc72b-5f35-4a4d-877c-284c4b776eb8
results:

address: microbot.104.198.77.197.xip.io

status: completed
timing:

completed: 2016-09-26 20:42:42 +0000 UTC
enqueued: 2016-09-26 20:42:39 +0000 UTC
started: 2016-09-26 20:42:41 +0000 UTC

Note: Your FQDN will be different and contain the address of the cloud
instance.
At this point, you can inspect the cluster to observe the workload coming
online.

Mor einformation on using Canonical distribution of kubernetes can be found
at https://jujucharms.com/canonical-kubernetes/

5. Release Data

	Project

	JOID

	Repo/tag

	gerrit.opnfv.org/gerrit/joid.git
opnfv-6.0.0

	Release designation

	Fraser release

	Release date

	April 27 2018

	Purpose of the delivery

	Fraser release

5.1. Deliverables

5.1.1. Software deliverables

JOID based installer script files [https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git]

6. Known Limitations, Issues and Workarounds

6.1. Known issues

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	JIRA:

	No support for yardstick and functest
for Kubernetes scenarios (OPNFV)

	JIRA:

	

7. Scenario Releases

Name: joid-k8-nosdn-lb-noha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-k8-nosdn-lb-noha-baremetal-daily-fraser/
Notes:

8. References

8.1. Juju

	Juju Charm store [https://jujucharms.com/]

	Juju documents [https://jujucharms.com/docs/stable/getting-started]

	Canonical Distibuytion of Kubernetes [https://jujucharms.com/canonical-kubernetes/]

8.2. MAAS

	Bare metal management (Metal-As-A-Service) [http://maas.io/get-started]

	MAAS API documents [http://maas.ubuntu.com/docs/]

8.3. JOID

	OPNFV JOID wiki [https://wiki.opnfv.org/joid]

	OPNFV JOID Get Started [https://wiki.opnfv.org/display/joid/JOID+Get+Started]

8.4. Kubernetes

	Kubernetes Release artifacts [https://get.k8s.io/]

	Kubernetes documentation [https://kubernetes.io/]

JOID Kubernetes Release Notes

	1. Abstract

	2. Introduction

	3. Summary

	4. Using Kubernetes after Deployment

	5. Release Data
	5.1. Deliverables
	5.1.1. Software deliverables

	6. Known Limitations, Issues and Workarounds
	6.1. Known issues

	7. Scenario Releases

	8. References
	8.1. Juju

	8.2. MAAS

	8.3. JOID

	8.4. Kubernetes

1. Abstract

This document compiles the release notes for the Fraser release of
OPNFV when using JOID as a deployment tool for Kubernetes with cancal CNI.

2. Introduction

These notes provides release information for the use of joid as deployment
tool for the Fraser release of OPNFV for Kubernetes scenario.

The goal of the Fraser release and this JOID based deployment process is
to establish a lab ready platform accelerating further development
of the OPNFV infrastructure for docker based workloads.

Carefully follow the installation-instructions which guides a user to deploy
OPNFV using JOID which is based on MAAS and Juju.

3. Summary

Kubernetes is an open-source system for automating deployment, scaling, and
management of containerized applications.

This is a Kubernetes cluster that includes logging, monitoring, and operational
knowledge. It is comprised of the following components and features:

	Kubernetes (automated deployment, operations, and scaling)

	TLS used for communication between nodes for security.
A CNI plugin (e.g., Canal)
Ceph based storage solution (LXD container)
Optional Ingress Controller (on worker)
Optional Dashboard addon (on master) including Heapster for cluster monitoring

	EasyRSA

	Performs the role of a certificate authority serving self signed certificates
to the requesting units of the cluster.

	Etcd (distributed key value store)

	Minimum Three node cluster for reliability.

Fraser release with the JOID deployment with Kubernetes will establish an
OPNFV target system on a Pharos compliant lab infrastructure.

NOTE: Detailed information on how to install in your lab can be find in installation guide
command to deploy lxd feature is:

#Kubernetes deployment
./deploy.sh -m kubernetes -f lb,ceph -l custom

4. Using Kubernetes after Deployment

Once you have finished installinf the JOID with Kubernetes you can use the
following command to test the deployment.

To deploy 5 replicas of the microbot web application inside the Kubernetes
cluster run the following command:

juju run-action kubernetes-worker/0 microbot replicas=5

This action performs the following steps:

It creates a deployment titled ‘microbots’ comprised of 5 replicas defined
during the run of the action. It also creates a service named ‘microbots’
which binds an ‘endpoint’, using all 5 of the ‘microbots’ pods.
Finally, it will create an ingress resource, which points at a
xip.io domain to simulate a proper DNS service.

Running the packaged example

You can run a Juju action to create an example microbot web application:

$ juju run-action kubernetes-worker/0 microbot replicas=3
Action queued with id: db7cc72b-5f35-4a4d-877c-284c4b776eb8

$ juju show-action-output db7cc72b-5f35-4a4d-877c-284c4b776eb8
results:

address: microbot.104.198.77.197.xip.io

status: completed
timing:

completed: 2016-09-26 20:42:42 +0000 UTC
enqueued: 2016-09-26 20:42:39 +0000 UTC
started: 2016-09-26 20:42:41 +0000 UTC

Note: Your FQDN will be different and contain the address of the cloud
instance.
At this point, you can inspect the cluster to observe the workload coming
online.

Mor einformation on using Canonical distribution of kubernetes can be found
at https://jujucharms.com/canonical-kubernetes/

5. Release Data

	Project

	JOID

	Repo/tag

	gerrit.opnfv.org/gerrit/joid.git
opnfv-6.0.0

	Release designation

	Fraser release

	Release date

	April 27 2018

	Purpose of the delivery

	Fraser release

5.1. Deliverables

5.1.1. Software deliverables

JOID based installer script files [https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git]

6. Known Limitations, Issues and Workarounds

6.1. Known issues

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	JIRA:

	No support for yardstick and functest
for Kubernetes scenarios (OPNFV)

	JIRA:

	

7. Scenario Releases

Name: joid-k8-nosdn-lb_ceph-noha
Test Link: https://build.opnfv.org/ci/user/narindergupta/my-views/view/joid/job/joid-k8-nosdn-lb_ceph-noha-baremetal-daily-fraser/
Notes:

8. References

8.1. Juju

	Juju Charm store [https://jujucharms.com/]

	Juju documents [https://jujucharms.com/docs/stable/getting-started]

	Canonical Distibuytion of Kubernetes [https://jujucharms.com/canonical-kubernetes/]

8.2. MAAS

	Bare metal management (Metal-As-A-Service) [http://maas.io/get-started]

	MAAS API documents [http://maas.ubuntu.com/docs/]

8.3. JOID

	OPNFV JOID wiki [https://wiki.opnfv.org/joid]

	OPNFV JOID Get Started [https://wiki.opnfv.org/display/joid/JOID+Get+Started]

8.4. Kubernetes

	Kubernetes Release artifacts [https://get.k8s.io/]

	Kubernetes documentation [https://kubernetes.io/]

JOID Kubernetes Release Notes

	1. Abstract

	2. Introduction

	3. Summary

	4. Using Kubernetes after Deployment

	5. Release Data
	5.1. Deliverables
	5.1.1. Software deliverables

	6. Known Limitations, Issues and Workarounds
	6.1. Known issues

	7. Scenario Releases

	8. References
	8.1. Juju

	8.2. MAAS

	8.3. JOID

	8.4. Kubernetes

1. Abstract

This document compiles the release notes for the Fraser release of
OPNFV when using JOID as a deployment tool for Kubernetes.

2. Introduction

These notes provides release information for the use of joid as deployment
tool for the Fraser release of OPNFV for Kubernetes scenario.

The goal of the Fraser release and this JOID based deployment process is
to establish a lab ready platform accelerating further development
of the OPNFV infrastructure for docker based workloads.

Carefully follow the installation-instructions which guides a user to deploy
OPNFV using JOID which is based on MAAS and Juju.

3. Summary

Kubernetes is an open-source system for automating deployment, scaling, and
management of containerized applications.

This is a Kubernetes cluster that includes logging, monitoring, and operational
knowledge. It is comprised of the following components and features:

	Kubernetes (automated deployment, operations, and scaling)

	TLS used for communication between nodes for security.
A CNI plugin (e.g., Flannel)
Optional Ingress Controller (on worker)
Optional Dashboard addon (on master) including Heapster for cluster monitoring

	EasyRSA

	Performs the role of a certificate authority serving self signed certificates
to the requesting units of the cluster.

	Etcd (distributed key value store)

	Minimum Three node cluster for reliability.

Fraser release with the JOID deployment with Kubernetes will establish an
OPNFV target system on a Pharos compliant lab infrastructure.

NOTE: Detailed information on how to install in your lab can be find in installation guide
command to deploy lxd feature is:

#Kubernetes deployment
./deploy.sh -m kubernetes -f none -l custom -s nosdn

4. Using Kubernetes after Deployment

Once you have finished installinf the JOID with Kubernetes you can use the
following command to test the deployment.

To deploy 5 replicas of the microbot web application inside the Kubernetes
cluster run the following command:

juju run-action kubernetes-worker/0 microbot replicas=5

This action performs the following steps:

It creates a deployment titled ‘microbots’ comprised of 5 replicas defined
during the run of the action. It also creates a service named ‘microbots’
which binds an ‘endpoint’, using all 5 of the ‘microbots’ pods.
Finally, it will create an ingress resource, which points at a
xip.io domain to simulate a proper DNS service.

Running the packaged example

You can run a Juju action to create an example microbot web application:

$ juju run-action kubernetes-worker/0 microbot replicas=3
Action queued with id: db7cc72b-5f35-4a4d-877c-284c4b776eb8

$ juju show-action-output db7cc72b-5f35-4a4d-877c-284c4b776eb8
results:

address: microbot.104.198.77.197.xip.io

status: completed
timing:

completed: 2016-09-26 20:42:42 +0000 UTC
enqueued: 2016-09-26 20:42:39 +0000 UTC
started: 2016-09-26 20:42:41 +0000 UTC

Note: Your FQDN will be different and contain the address of the cloud
instance.
At this point, you can inspect the cluster to observe the workload coming
online.

Mor einformation on using Canonical distribution of kubernetes can be found
at https://jujucharms.com/canonical-kubernetes/

5. Release Data

	Project

	JOID

	Repo/tag

	gerrit.opnfv.org/gerrit/joid.git
opnfv-6.0.0

	Release designation

	Fraser release

	Release date

	April 27 2018

	Purpose of the delivery

	Fraser release

5.1. Deliverables

5.1.1. Software deliverables

JOID based installer script files [https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git]

6. Known Limitations, Issues and Workarounds

6.1. Known issues

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	JIRA:

	No support for yardstick and functest
for Kubernetes scenarios (OPNFV)

	JIRA:

	

7. Scenario Releases

Name: joid-k8-nosdn-nofeature-noha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-k8-nosdn-nofeature-noha-baremetal-daily-fraser/
Notes:

8. References

8.1. Juju

	Juju Charm store [https://jujucharms.com/]

	Juju documents [https://jujucharms.com/docs/stable/getting-started]

	Canonical Distibuytion of Kubernetes [https://jujucharms.com/canonical-kubernetes/]

8.2. MAAS

	Bare metal management (Metal-As-A-Service) [http://maas.io/get-started]

	MAAS API documents [http://maas.ubuntu.com/docs/]

8.3. JOID

	OPNFV JOID wiki [https://wiki.opnfv.org/joid]

	OPNFV JOID Get Started [https://wiki.opnfv.org/display/joid/JOID+Get+Started]

8.4. Kubernetes

	Kubernetes Release artifacts [https://get.k8s.io/]

	Kubernetes documentation [https://kubernetes.io/]

JOID Kubernetes Release Notes

	1. Abstract

	2. Introduction

	3. Summary

	4. Using Kubernetes after Deployment

	5. Release Data
	5.1. Deliverables
	5.1.1. Software deliverables

	6. Known Limitations, Issues and Workarounds
	6.1. Known issues

	7. Scenario Releases

	8. References
	8.1. Juju

	8.2. MAAS

	8.3. JOID

	8.4. Kubernetes

1. Abstract

This document compiles the release notes for the Fraser release of
OPNFV when using JOID as a deployment tool for Kubernets and load balancer.

2. Introduction

These notes provides release information for the use of joid as deployment
tool for the Fraser release of OPNFV for Kubernets and load balancer
scenario.

The goal of the Fraser release and this JOID based deployment process is
to establish a lab ready platform accelerating further development
of the OPNFV infrastructure for docker based workloads.

Carefully follow the installation-instructions which guides a user to deploy
OPNFV using JOID which is based on MAAS and Juju.

3. Summary

Kubernetes is an open-source system for automating deployment, scaling, and
management of containerized applications.

This is a Kubernetes cluster that includes logging, monitoring, and operational
knowledge. It is comprised of the following components and features:

	Kubernetes (automated deployment, operations, and scaling)

	TLS used for communication between nodes for security.
A CNI plugin (e.g., Flannel, Ovn)
A load balancer for HA kubernetes-master (Experimental)
Optional Ingress Controller (on worker)
Optional Dashboard addon (on master) including Heapster for cluster monitoring

	EasyRSA

	Performs the role of a certificate authority serving self signed certificates
to the requesting units of the cluster.

	Etcd (distributed key value store)

	Minimum Three node cluster for reliability.

Fraser release with the JOID deployment with Kubernetes with load balancer will establish an
OPNFV target system on a Pharos compliant lab infrastructure.

NOTE: Detailed information on how to install in your lab can be find in installation guide
command to deploy load balancer feature is:

#Kubernetes deployment with Load Balancer
./deploy.sh -m kubernetes -f lb -l custom -s nosdn

4. Using Kubernetes after Deployment

Once you have finished installinf the JOID with Kubernetes with load balancer you can use the
following command to test the deployment.

To deploy 5 replicas of the microbot web application inside the Kubernetes
cluster run the following command:

juju run-action kubernetes-worker/0 microbot replicas=5

This action performs the following steps:

It creates a deployment titled ‘microbots’ comprised of 5 replicas defined
during the run of the action. It also creates a service named ‘microbots’
which binds an ‘endpoint’, using all 5 of the ‘microbots’ pods.
Finally, it will create an ingress resource, which points at a
xip.io domain to simulate a proper DNS service.

Running the packaged example

You can run a Juju action to create an example microbot web application:

$ juju run-action kubernetes-worker/0 microbot replicas=3
Action queued with id: db7cc72b-5f35-4a4d-877c-284c4b776eb8

$ juju show-action-output db7cc72b-5f35-4a4d-877c-284c4b776eb8
results:

address: microbot.104.198.77.197.xip.io

status: completed
timing:

completed: 2016-09-26 20:42:42 +0000 UTC
enqueued: 2016-09-26 20:42:39 +0000 UTC
started: 2016-09-26 20:42:41 +0000 UTC

Note: Your FQDN will be different and contain the address of the cloud
instance.
At this point, you can inspect the cluster to observe the workload coming
online.

Mor einformation on using Canonical distribution of kubernetes can be found
at https://jujucharms.com/canonical-kubernetes/

5. Release Data

5.1. Deliverables

5.1.1. Software deliverables

JOID based installer script files [https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git]

6. Known Limitations, Issues and Workarounds

6.1. Known issues

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	JIRA:

	No support for functest for
Kubernetes scenarios (OPNFV)

	JIRA:

	

7. Scenario Releases

Name: joid-k8-ovn-lb-noha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-k8-ovn-lb-noha-baremetal-daily-fraser/
Notes:

8. References

8.1. Juju

	Juju Charm store [https://jujucharms.com/]

	Juju documents [https://jujucharms.com/docs/stable/getting-started]

	Canonical Distibuytion of Kubernetes [https://jujucharms.com/canonical-kubernetes/]

8.2. MAAS

	Bare metal management (Metal-As-A-Service) [http://maas.io/get-started]

	MAAS API documents [http://maas.ubuntu.com/docs/]

8.3. JOID

	OPNFV JOID wiki [https://wiki.opnfv.org/joid]

	OPNFV JOID Get Started [https://wiki.opnfv.org/display/joid/JOID+Get+Started]

8.4. Kubernetes

	Kubernetes Release artifacts [https://get.k8s.io/]

	Kubernetes documentation [https://kubernetes.io/]

JOID LXD Release Notes

	1. Abstract

	2. Introduction

	3. Summary

	4. Using LXD with Openstack

	5. Release Data
	5.1. Deliverables
	5.1.1. Software deliverables

	6. Known Limitations, Issues and Workarounds
	6.1. Known issues

	7. Scenario Releases

	8. References
	8.1. LXD

	8.2. Juju

	8.3. MAAS

	8.4. JOID

	8.5. OpenStack

1. Abstract

This document compiles the release notes for the Fraser release of
OPNFV when using JOID as a deployment tool with LXD container hypervisor.

2. Introduction

These notes provides release information for the use of joid as deployment
tool for the Fraser release of OPNFV with LXD hypervisor for containers
scenario.

The goal of the Fraser release and this JOID based deployment process is
to establish a lab ready platform accelerating further development
of the OPNFV infrastructure.

Carefully follow the installation-instructions which guides a user to deploy
OPNFV using JOID which is based on MAAS and Juju.

3. Summary

LXD is a lightweight container hypervisor for full system containers,

unlike Docker and Rocket which is for application containers. This means that
the container will look and feel like a regular VM – but will act like a
container. LXD uses the same container technology found in the Linux kernel
(cgroups, namespaces, LSM, etc).

Fraser release with the JOID deployment with LXD hypervisor will establish an
OPNFV target system on a Pharos compliant lab infrastructure.
The current definition of an OPNFV target system is and OpenStack Pike combined
with LXD Hypervisor.

The system is deployed with OpenStack High Availability (HA) for most OpenStack services.

User has following choices to make to do the deployment.

	Openstack – Pike

	Type – HA, nonHA, tip (stable git branch of respective openstack)

	Feature – LXD (container hypervisor)

NOTE: Detailed information on how to install in your lab can be find in installation guide
command to deploy lxd feature is:

#LXD deployment with HA Openstack
./deploy.sh -o pike -f lxd -t ha -l custom -s nosdn

#LXD deployment with no HA Openstack
./deploy.sh -o pike -f lxd -t noha -l custom -s nosdn

4. Using LXD with Openstack

Once you have finished installinf the JOID with LXD container hypervisor you can use the
following to uplod your lxd image to the glance server that LXD can use.
In order to do that you simply have to do the following:

wget -O xenial-server-cloudimg-amd64-root.tar.gz https://cloud-images.ubuntu.com/xenial/current/xenial-server-cloudimg-amd64-root.tar.gz

glance image-create –name=”Xenial LXC x86_64” –visibility=public –container-format=bare –disk-format=root-tar –property architecture=”x86_64” xenial-server-cloudimg-amd64-root.tar.gz

After you upload the image to glance then you will be ready to go. If you have any questions
please don’t hesitate to ask on the LXC mailing, #lxcontainers IRC channel on freenode

5. Release Data

	Project

	JOID

	Repo/tag

	gerrit.opnfv.org/gerrit/joid.git
opnfv-6.0.0

	Release designation

	Fraser release

	Release date

	April 27 2018

	Purpose of the delivery

	Fraser release

5.1. Deliverables

5.1.1. Software deliverables

JOID based installer script files [https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git;a=summary]

6. Known Limitations, Issues and Workarounds

6.1. Known issues

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	JIRA: YARDSTICK-325

	Provide raw format yardstick vm image
for nova-lxd scenario(OPNFV)

	JIRA:

	

7. Scenario Releases

Name: joid-os-nosdn-lxd-ha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-os-nosdn-lxd-ha-baremetal-daily-fraser/
Notes:

Name: joid-os-nosdn-lxd-noha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-os-nosdn-lxd-noha-baremetal-daily-fraser/
Notes:

8. References

8.1. LXD

	JUJU LXD charm [https://jujucharms.com/lxd/xenial/2]

	LXD hypervisor [https://help.ubuntu.com/lts/serverguide/lxd.html]

	LXD Story [http://insights.ubuntu.com/2016/03/14/the-lxd-2-0-story-prologue/]

8.2. Juju

	Juju Charm store [https://jujucharms.com/]

	Juju documents [https://jujucharms.com/docs/stable/getting-started]

8.3. MAAS

	Bare metal management (Metal-As-A-Service) [http://maas.io/get-started]

	MAAS API documents [http://maas.ubuntu.com/docs/]

8.4. JOID

	OPNFV JOID wiki [https://wiki.opnfv.org/joid]

	OPNFV JOID Get Started [https://wiki.opnfv.org/display/joid/JOID+Get+Started]

8.5. OpenStack

	OpenStack Pike Release artifacts [http://www.openstack.org/software/pike]

	OpenStack documentation [http://docs.openstack.org]

JOID LXD Release Notes

	1. Abstract

	2. Introduction

	3. Summary

	4. Using LXD with Openstack

	5. Release Data
	5.1. Deliverables
	5.1.1. Software deliverables

	6. Known Limitations, Issues and Workarounds
	6.1. Known issues

	7. Scenario Releases

	8. References
	8.1. LXD

	8.2. Juju

	8.3. MAAS

	8.4. JOID

	8.5. OpenStack

1. Abstract

This document compiles the release notes for the Fraser release of
OPNFV when using JOID as a deployment tool with LXD container hypervisor.

2. Introduction

These notes provides release information for the use of joid as deployment
tool for the Fraser release of OPNFV with LXD hypervisor for containers
scenario.

The goal of the Fraser release and this JOID based deployment process is
to establish a lab ready platform accelerating further development
of the OPNFV infrastructure.

Carefully follow the installation-instructions which guides a user to deploy
OPNFV using JOID which is based on MAAS and Juju.

3. Summary

LXD is a lightweight container hypervisor for full system containers,

unlike Docker and Rocket which is for application containers. This means that
the container will look and feel like a regular VM – but will act like a
container. LXD uses the same container technology found in the Linux kernel
(cgroups, namespaces, LSM, etc).

Fraser release with the JOID deployment with LXD hypervisor will establish an
OPNFV target system on a Pharos compliant lab infrastructure.
The current definition of an OPNFV target system is and OpenStack Pike combined
with LXD Hypervisor.

The system is deployed with OpenStack High Availability (HA) for most OpenStack services.

User has following choices to make to do the deployment.

	Openstack – Pike

	Type – HA, nonHA, tip (stable git branch of respective openstack)

	Feature – LXD (container hypervisor)

NOTE: Detailed information on how to install in your lab can be find in installation guide
command to deploy lxd feature is:

#LXD deployment with HA Openstack
./deploy.sh -o pike -f lxd -t ha -l custom -s nosdn

#LXD deployment with no HA Openstack
./deploy.sh -o pike -f lxd -t noha -l custom -s nosdn

4. Using LXD with Openstack

Once you have finished installinf the JOID with LXD container hypervisor you can use the
following to uplod your lxd image to the glance server that LXD can use.
In order to do that you simply have to do the following:

wget -O xenial-server-cloudimg-amd64-root.tar.gz https://cloud-images.ubuntu.com/xenial/current/xenial-server-cloudimg-amd64-root.tar.gz

glance image-create –name=”Xenial LXC x86_64” –visibility=public –container-format=bare –disk-format=root-tar –property architecture=”x86_64” xenial-server-cloudimg-amd64-root.tar.gz

After you upload the image to glance then you will be ready to go. If you have any questions
please don’t hesitate to ask on the LXC mailing, #lxcontainers IRC channel on freenode

5. Release Data

	Project

	JOID

	Repo/tag

	gerrit.opnfv.org/gerrit/joid.git
opnfv-6.0.0

	Release designation

	Fraser release

	Release date

	April 30 2019

	Purpose of the delivery

	Fraser release

5.1. Deliverables

5.1.1. Software deliverables

JOID based installer script files [https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git;a=summary]

6. Known Limitations, Issues and Workarounds

6.1. Known issues

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	JIRA: YARDSTICK-325

	Provide raw format yardstick vm image
for nova-lxd scenario(OPNFV)

	JIRA:

	

7. Scenario Releases

Name: joid-os-nosdn-lxd-ha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-os-nosdn-lxd-ha-baremetal-daily-fraser/
Notes:

Name: joid-os-nosdn-lxd-noha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-os-nosdn-lxd-noha-baremetal-daily-fraser/
Notes:

8. References

8.1. LXD

	JUJU LXD charm [https://jujucharms.com/lxd/xenial/2]

	LXD hypervisor [https://help.ubuntu.com/lts/serverguide/lxd.html]

	LXD Story [http://insights.ubuntu.com/2016/03/14/the-lxd-2-0-story-prologue/]

8.2. Juju

	Juju Charm store [https://jujucharms.com/]

	Juju documents [https://jujucharms.com/docs/stable/getting-started]

8.3. MAAS

	Bare metal management (Metal-As-A-Service) [http://maas.io/get-started]

	MAAS API documents [http://maas.ubuntu.com/docs/]

8.4. JOID

	OPNFV JOID wiki [https://wiki.opnfv.org/joid]

	OPNFV JOID Get Started [https://wiki.opnfv.org/display/joid/JOID+Get+Started]

8.5. OpenStack

	OpenStack Pike Release artifacts [http://www.openstack.org/software/pike]

	OpenStack documentation [http://docs.openstack.org]

JOID LXD Release Notes

	1. Abstract

	2. Introduction

	3. Summary

	4. Using Openstack

	5. Release Data
	5.1. Deliverables
	5.1.1. Software deliverables

	6. Known Limitations, Issues and Workarounds
	6.1. Known issues

	7. Scenario Releases

	8. References
	8.1. KVM

	8.2. Juju

	8.3. MAAS

	8.4. JOID

	8.5. OpenStack

1. Abstract

This document compiles the release notes for the Fraser release of
OPNFV when using JOID as a deployment tool with KVM hypervisor.

2. Introduction

These notes provides release information for the use of joid as deployment
tool for the Fraser release of OPNFV with KVM hypervisor for containers
scenario.

The goal of the Fraser release and this JOID based deployment process is
to establish a lab ready platform accelerating further development
of the OPNFV infrastructure.

Carefully follow the installation-instructions which guides a user to deploy
OPNFV using JOID which is based on MAAS and Juju.

3. Summary

KVM (for Kernel-based Virtual Machine) is a full virtualization solution

for Linux on x86 hardware containing virtualization extensions (Intel VT or AMD-V).
It consists of a loadable kernel module, kvm.ko, that provides the core
virtualization infrastructure and a processor specific module, kvm-intel.ko or kvm-amd.ko.

Fraser release with the JOID deployment with KVM hypervisor will establish an
OPNFV target system on a Pharos compliant lab infrastructure.

The current definition of an OPNFV target system is and OpenStack Pike.

The system is deployed with OpenStack High Availability (HA) for most OpenStack services.

User has following choices to make to do the deployment.

	Openstack – Pike

	Type – HA, nonHA, tip (stable git branch of respective openstack)

	Feature – KVM (hypervisor)

NOTE: Detailed information on how to install in your lab can be find in installation guide
command to deploy lxd feature is:

#KVM deployment with HA Openstack
./deploy.sh -o pike -f none -t ha -l custom -s nosdn

#LXD deployment with no HA Openstack
./deploy.sh -o pike -f none -t noha -l custom -s nosdn

4. Using Openstack

admin-openrc file have been placed under ~/joid_config/
Please source the same and use OpenStack API to do rest of the configuration.

5. Release Data

	Project

	JOID

	Repo/tag

	gerrit.opnfv.org/gerrit/joid.git
opnfv-6.0.0

	Release designation

	Fraser release

	Release date

	April 27 2018

	Purpose of the delivery

	Fraser release

5.1. Deliverables

5.1.1. Software deliverables

JOID based installer script files [https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git;a=summary]

6. Known Limitations, Issues and Workarounds

6.1. Known issues

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	JIRA:

	

7. Scenario Releases

Name: joid-os-nosdn-lxd-ha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-os-nosdn-lxd-ha-baremetal-daily-fraser/
Notes:

Name: joid-os-nosdn-lxd-noha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-os-nosdn-lxd-noha-baremetal-daily-fraser/
Notes:

8. References

8.1. KVM

	JUJU Openstack charm [https://jujucharms.com/openstack-telemetry/]

	KVM hypervisor [https://help.ubuntu.com/community/KVM/Installation]

8.2. Juju

	Juju Charm store [https://jujucharms.com/]

	Juju documents [https://jujucharms.com/docs/stable/getting-started]

8.3. MAAS

	Bare metal management (Metal-As-A-Service) [http://maas.io/get-started]

	MAAS API documents [http://maas.ubuntu.com/docs/]

8.4. JOID

	OPNFV JOID wiki [https://wiki.opnfv.org/joid]

	OPNFV JOID Get Started [https://wiki.opnfv.org/display/joid/JOID+Get+Started]

8.5. OpenStack

	OpenStack Pike Release artifacts [http://www.openstack.org/software/pike]

	OpenStack documentation [http://docs.openstack.org]

JOID LXD Release Notes

	1. Abstract

	2. Introduction

	3. Summary

	4. Using Openstack

	5. Release Data
	5.1. Deliverables
	5.1.1. Software deliverables

	6. Known Limitations, Issues and Workarounds
	6.1. Known issues

	7. Scenario Releases

	8. References
	8.1. KVM

	8.2. Juju

	8.3. MAAS

	8.4. JOID

	8.5. OpenStack

1. Abstract

This document compiles the release notes for the Fraser release of
OPNFV when using JOID as a deployment tool with KVM hypervisor.

2. Introduction

These notes provides release information for the use of joid as deployment
tool for the Fraser release of OPNFV with KVM hypervisor for containers
scenario.

The goal of the Fraser release and this JOID based deployment process is
to establish a lab ready platform accelerating further development
of the OPNFV infrastructure.

Carefully follow the installation-instructions which guides a user to deploy
OPNFV using JOID which is based on MAAS and Juju.

3. Summary

KVM (for Kernel-based Virtual Machine) is a full virtualization solution

for Linux on x86 hardware containing virtualization extensions (Intel VT or AMD-V).
It consists of a loadable kernel module, kvm.ko, that provides the core
virtualization infrastructure and a processor specific module, kvm-intel.ko or kvm-amd.ko.

Fraser release with the JOID deployment with KVM hypervisor will establish an
OPNFV target system on a Pharos compliant lab infrastructure.

The current definition of an OPNFV target system is and OpenStack Pike.

The system is deployed with OpenStack High Availability (HA) for most OpenStack services.

User has following choices to make to do the deployment.

	Openstack – Pike

	Type – HA, nonHA, tip (stable git branch of respective openstack)

	Feature – KVM (hypervisor)

NOTE: Detailed information on how to install in your lab can be find in installation guide
command to deploy lxd feature is:

#KVM deployment with HA Openstack
./deploy.sh -o pike -f none -t ha -l custom -s nosdn

#LXD deployment with no HA Openstack
./deploy.sh -o pike -f none -t noha -l custom -s nosdn

4. Using Openstack

admin-openrc file have been placed under ~/joid_config/
Please source the same and use OpenStack API to do rest of the configuration.

5. Release Data

	Project

	JOID

	Repo/tag

	gerrit.opnfv.org/gerrit/joid.git
opnfv-6.0.0

	Release designation

	Fraser release

	Release date

	April 27 2018

	Purpose of the delivery

	Fraser release

5.1. Deliverables

5.1.1. Software deliverables

JOID based installer script files [https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git;a=summary]

6. Known Limitations, Issues and Workarounds

6.1. Known issues

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	JIRA:

	

7. Scenario Releases

Name: joid-os-nosdn-lxd-ha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-os-nosdn-lxd-ha-baremetal-daily-fraser/
Notes:

Name: joid-os-nosdn-lxd-noha
Test Link: https://build.opnfv.org/ci/view/joid/job/joid-os-nosdn-lxd-noha-baremetal-daily-fraser/
Notes:

8. References

8.1. KVM

	JUJU Openstack charm [https://jujucharms.com/openstack-telemetry/]

	KVM hypervisor [https://help.ubuntu.com/community/KVM/Installation]

8.2. Juju

	Juju Charm store [https://jujucharms.com/]

	Juju documents [https://jujucharms.com/docs/stable/getting-started]

8.3. MAAS

	Bare metal management (Metal-As-A-Service) [http://maas.io/get-started]

	MAAS API documents [http://maas.ubuntu.com/docs/]

8.4. JOID

	OPNFV JOID wiki [https://wiki.opnfv.org/joid]

	OPNFV JOID Get Started [https://wiki.opnfv.org/display/joid/JOID+Get+Started]

8.5. OpenStack

	OpenStack Pike Release artifacts [http://www.openstack.org/software/pike]

	OpenStack documentation [http://docs.openstack.org]

JOID LXD Release Notes

	1. Abstract

	2. Introduction

	3. Summary

	4. Using Openstack

	5. Using Orchestra (Open Baton) after Deployment

	6. Release Data
	6.1. Deliverables
	6.1.1. Software deliverables

	7. Known Limitations, Issues and Workarounds
	7.1. Known issues

	8. Scenario Releases

	9. References
	9.1. KVM

	9.2. Juju

	9.3. MAAS

	9.4. JOID

	9.5. OpenStack

	9.6. Orchestra

1. Abstract

This document compiles the release notes for the Fraser release of
OPNFV when using JOID as a deployment tool with the Open Baton NFV MANO framework

provided by the OPNFV orchestra project.

2. Introduction

These notes provides release information for the use of joid as deployment
tool for the Fraser release of OPNFV for orchestra
scenario.

The goal of the Fraser release and this JOID based deployment process is
to establish a lab ready platform accelerating further development
of the OPNFV infrastructure.

Carefully follow the installation-instructions which guides a user to deploy
OPNFV using JOID which is based on MAAS and Juju.

3. Summary

The OPNFV Orchestra project integrates the upstream open source Open Baton project within OPNFV.
Open Baton is the result of an agile design process having as major objective the development
of an extensible and customizable framework capable of orchestrating network services across
heterogeneous NFV Infrastructures.

	Fraser release with the JOID deployment enables deployment of orchestra

	on a Pharos compliant lab infrastructure.

The current definition of an OPNFV target system is based on OpenStack Pike.

The system is deployed with OpenStack High Availability (HA) for most OpenStack services.

User has following choices to make to do the deployment.

	Openstack – Pike

	Type – HA, nonHA, tip (stable git branch of respective openstack)

	Feature – Open Baton (NFV MANO framework)

NOTE: Detailed information on how to install in your lab can be find in installation guide
command to deploy orchestra feature is:

#Orchestra deployment with no HA Openstack
./deploy.sh -o pike -m openstack -f openbaton -s nosdn -t nonha

#Orchestra deployment with no HA Openstack
./deploy.sh -o pike -m openstack -f openbaton -s nosdn -t ha

4. Using Openstack

admin-openrc file have been placed under ~/joid_config/
Please source the same and use OpenStack API to do rest of the configuration.

5. Using Orchestra (Open Baton) after Deployment

Considering that there are no major differences between the Open Baton installed within
OPNFV platform and the upstream one, feel free to follow the upstram documentation provided
by the Open Baton project to learn more advanced use cases: http://openbaton.github.io/documentation/

6. Release Data

6.1. Deliverables

6.1.1. Software deliverables

JOID based installer script files [https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git;a=summary]

7. Known Limitations, Issues and Workarounds

7.1. Known issues

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	JIRA:

	

8. Scenario Releases

Name: os-nosdn-openbaton-ha
Test Link: https://build.opnfv.org/ci/job/joid-deploy-baremetal-daily-hrates
Notes:

9. References

9.1. KVM

	JUJU Openstack charm [https://jujucharms.com/openstack-telemetry/]

	KVM hypervisor [https://help.ubuntu.com/community/KVM/Installation]

9.2. Juju

	Juju Charm store [https://jujucharms.com/]

	Juju documents [https://jujucharms.com/docs/stable/getting-started]

9.3. MAAS

	Bare metal management (Metal-As-A-Service) [http://maas.io/get-started]

	MAAS API documents [http://maas.ubuntu.com/docs/]

9.4. JOID

	OPNFV JOID wiki [https://wiki.opnfv.org/joid]

	OPNFV JOID Get Started [https://wiki.opnfv.org/display/joid/JOID+Get+Started]

9.5. OpenStack

	OpenStack Release artifacts [http://www.openstack.org/software/pike]

	OpenStack documentation [http://docs.openstack.org]

9.6. Orchestra

	Orchestra Release Notes [http://docs.opnfv.org/en/stable-hrates/submodules/orchestra/docs/release/release-notes/index.html#orchestra-releasenotes]

	Open Baton documentation [http://openbaton.github.io/documentation/]

JOID User Guide

	1. Introduction

	2. Orientation
	2.1. JOID in brief

	2.2. Typical JOID Setup

	3. Installation
	3.1. Configuring the Jump Host

	3.2. Setting Up Your Environment for JOID

	3.3. Starting MAAS depoyment

	3.4. Troubleshooting MAAS deployment

	3.5. Deploying OPNFV

	3.6. OPNFV Juju Charm Bundles

	3.7. Testing Your Deployment

	3.8. Troubleshooting

	4. Post Installation Configuration
	4.1. Configuring OpenStack
	4.1.1. openstack.sh

	4.1.2. get-cloud-images

	4.1.3. joid-configure-openstack

	4.1.4. configure-juju-on-openstack

	5. Appendix A: Single Node Deployment

	6. Appendix B: Automatic Device Discovery

	7. Appendix C: Machine Constraints

	8. Appendix D: Offline Deployment

1. Introduction

This document will explain how to install OPNFV Fraser with JOID including installing JOID, configuring JOID for your environment, and deploying OPNFV with different SDN solutions in HA, or non-HA mode. Prerequisites include

	An Ubuntu 16.04 LTS Server Jumphost

	Minimum 2 Networks per Pharos requirement

	One for the administrative network with gateway to access the Internet

	One for the OpenStack public network to access OpenStack instances via floating IPs

	JOID supports multiple isolated networks for data as well as storage based on your network requirement for OpenStack.

	Minimum 6 Physical servers for bare metal environment

	Jump Host x 1, minimum H/W configuration:

	CPU cores: 16

	Memory: 32GB

	Hard Disk: 1 (250GB)

	NIC: eth0 (Admin, Management), eth1 (external network)

	Control and Compute Nodes x 5, minimum H/W configuration:

	CPU cores: 16

	Memory: 32GB

	Hard Disk: 2 (500GB) prefer SSD

	NIC: eth0 (Admin, Management), eth1 (external network)

NOTE: Above configuration is minimum. For better performance and usage of the OpenStack, please consider higher specs for all nodes.

Make sure all servers are connected to top of rack switch and configured accordingly. No DHCP server should be up and configured. Configure gateways only on eth0 and eth1 networks to access the network outside your lab.

2. Orientation

2.1. JOID in brief

JOID as Juju OPNFV Infrastructure Deployer allows you to deploy different combinations of
OpenStack release and SDN solution in HA or non-HA mode. For OpenStack, JOID supports
Juno and Liberty. For SDN, it supports Openvswitch, OpenContrail, OpenDayLight, and ONOS. In addition to HA or non-HA mode, it also supports deploying from the latest development tree.

JOID heavily utilizes the technology developed in Juju and MAAS. Juju is a
state-of-the-art, open source, universal model for service oriented architecture and
service oriented deployments. Juju allows you to deploy, configure, manage, maintain,
and scale cloud services quickly and efficiently on public clouds, as well as on physical
servers, OpenStack, and containers. You can use Juju from the command line or through its
powerful GUI. MAAS (Metal-As-A-Service) brings the dynamism of cloud computing to the
world of physical provisioning and Ubuntu. Connect, commission and deploy physical servers
in record time, re-allocate nodes between services dynamically, and keep them up to date;
and in due course, retire them from use. In conjunction with the Juju service
orchestration software, MAAS will enable you to get the most out of your physical hardware
and dynamically deploy complex services with ease and confidence.

For more info on Juju and MAAS, please visit https://jujucharms.com/ and http://maas.ubuntu.com.

2.2. Typical JOID Setup

The MAAS server is installed and configured on Jumphost with Ubuntu 16.04 LTS with
access to the Internet. Another VM is created to be managed by MAAS as a bootstrap node
for Juju. The rest of the resources, bare metal or virtual, will be registered and
provisioned in MAAS. And finally the MAAS environment details are passed to Juju for use.

3. Installation

We will use 03-maasdeploy.sh to automate the deployment of MAAS clusters for use as a Juju provider. MAAS-deployer uses a set of configuration files and simple commands to build a MAAS cluster using virtual machines for the region controller and bootstrap hosts and automatically commission nodes as required so that the only remaining step is to deploy services with Juju. For more information about the maas-deployer, please see https://launchpad.net/maas-deployer.

3.1. Configuring the Jump Host

Let’s get started on the Jump Host node.

The MAAS server is going to be installed and configured on a Jumphost machine. We need to create bridges on the Jump Host prior to setting up the MAAS.

NOTE: For all the commands in this document, please do not use a ‘root’ user account to run. Please create a non root user account. We recommend using the ‘ubuntu’ user.

Install the bridge-utils package on the Jump Host and configure a minimum of two bridges, one for the Admin network, the other for the Public network:

$ sudo apt-get install bridge-utils

$ cat /etc/network/interfaces
This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

iface p1p1 inet manual

auto brAdm
iface brAdm inet static
 address 172.16.50.51
 netmask 255.255.255.0
 bridge_ports p1p1

iface p1p2 inet manual

auto brPublic
iface brPublic inet static
 address 10.10.15.1
 netmask 255.255.240.0
 gateway 10.10.10.1
 dns-nameservers 8.8.8.8
 bridge_ports p1p2

NOTE: If you choose to use separate networks for management, data, and storage, then you need to create a bridge for each interface. In case of VLAN tags, make the appropriate network on jump-host depend upon VLAN ID on the interface.

NOTE: The Ethernet device names can vary from one installation to another. Please change the Ethernet device names according to your environment.

MAAS has been integrated in the JOID project. To get the JOID code, please run

$ sudo apt-get install git
$ git clone https://gerrit.opnfv.org/gerrit/p/joid.git

3.2. Setting Up Your Environment for JOID

To set up your own environment, create a directory in joid/ci/maas/<company name>/<pod number>/ and copy an existing JOID environment over. For example:

$ cd joid/ci
$ mkdir -p ../labconfig/myown/pod
$ cp ../labconfig/cengn/pod2/labconfig.yaml ../labconfig/myown/pod/

Now let’s configure labconfig.yaml file. Please modify the sections in the labconfig as per your lab configuration.

	lab:

	## Change the name of the lab you want maas name will get firmat as per location and rack name ##
location: myown
racks:
- rack: pod

	## based on your lab hardware please fill it accoridngly. ##

	# Define one network and control and two control, compute and storage
and rest for compute and storage for backward compaibility. again
server with more disks should be used for compute and storage only.
nodes:
DCOMP4-B, 24cores, 64G, 2disk, 4TBdisk
- name: rack-2-m1

architecture: x86_64
roles: [network,control]
nics:
- ifname: eth0

spaces: [admin]
mac: [“0c:c4:7a:3a:c5:b6”]

	ifname: eth1
spaces: [floating]
mac: [“0c:c4:7a:3a:c5:b7”]

	power:

	type: ipmi
address: <bmc ip>
user: <bmc username>
pass: <bmc password>

repeate the above section for number of hardware nodes you have it.

	## define the floating IP range along with gateway IP to be used during the instance floating ips ##

	floating-ip-range: 172.16.120.20,172.16.120.62,172.16.120.254,172.16.120.0/24
Mutiple MACs seperated by space where MACs are from ext-ports across all network nodes.

	## interface name to be used for floating ips ##

	# eth1 of m4 since tags for networking are not yet implemented.
ext-port: “eth1”
dns: 8.8.8.8
osdomainname:

	opnfv:

	
release: d
distro: xenial
type: noha
openstack: pike
sdncontroller:
- type: nosdn
storage:
- type: ceph

	## define the maximum disk possible in your environment ##

	
disk: /dev/sdb

feature: odl_l2

	## Ensure the following configuration matches the bridge configuration on your jumphost

	spaces:
- type: admin

bridge: brAdm
cidr: 10.120.0.0/24
gateway: 10.120.0.254
vlan:

	type: floating
bridge: brPublic
cidr: 172.16.120.0/24
gateway: 172.16.120.254

Next we will use the 03-maasdeploy.sh in joid/ci to kick off maas deployment.

3.3. Starting MAAS depoyment

Now run the 03-maasdeploy.sh script with the environment you just created

~/joid/ci$./03-maasdeploy.sh custom ../labconfig/mylab/pod/labconfig.yaml

This will take approximately 30 minutes to couple of hours depending on your environment. This script will do the following:
1. Create 1 VM (KVM).
2. Install MAAS on the Jumphost.
3. Configure MAAS to enlist and commission a VM for Juju bootstrap node.
4. Configure MAAS to enlist and commission bare metal servers.
5. Download and load 16.04 images to be used by MAAS.

When it’s done, you should be able to view the MAAS webpage (in our example http://172.16.50.2/MAAS) and see 1 bootstrap node and bare metal servers in the ‘Ready’ state on the nodes page.

3.4. Troubleshooting MAAS deployment

During the installation process, please carefully review the error messages.

Join IRC channel #opnfv-joid on freenode to ask question. After the issues are resolved, re-running 03-maasdeploy.sh will clean up the VMs created previously. There is no need to manually undo what’s been done.

3.5. Deploying OPNFV

JOID allows you to deploy different combinations of OpenStack release and SDN solution in
HA or non-HA mode. For OpenStack, it supports Juno and Liberty. For SDN, it supports Open
vSwitch, OpenContrail, OpenDaylight and ONOS (Open Network Operating System). In addition
to HA or non-HA mode, it also supports deploying the latest from the development tree (tip).

The deploy.sh script in the joid/ci directoy will do all the work for you. For example, the following deploys OpenStack Pike with OpenvSwitch in a HA mode.

~/joid/ci$./deploy.sh -o pike -s nosdn -t ha -l custom -f none -m openstack

The deploy.sh script in the joid/ci directoy will do all the work for you. For example, the following deploys Kubernetes with Load balancer on the pod.

~/joid/ci$./deploy.sh -m openstack -f lb

Take a look at the deploy.sh script. You will find we support the following for each option:

[-s]
 nosdn: Open vSwitch.
 odl: OpenDayLight Lithium version.
 opencontrail: OpenContrail.
 onos: ONOS framework as SDN.
[-t]
 noha: NO HA mode of OpenStack.
 ha: HA mode of OpenStack.
 tip: The tip of the development.
[-o]
 ocata: OpenStack Ocata version.
 pike: OpenStack Pike version.
[-l]
 default: For virtual deployment where installation will be done on KVM created using ./03-maasdeploy.sh
 custom: Install on bare metal OPNFV defined by labconfig.yaml
[-f]
 none: no special feature will be enabled.
 ipv6: IPv6 will be enabled for tenant in OpenStack.
 dpdk: dpdk will be enabled.
 lxd: virt-type will be lxd.
 dvr: DVR will be enabled.
 lb: Load balancing in case of Kubernetes will be enabled.
[-d]
 xenial: distro to be used is Xenial 16.04
[-a]
 amd64: Only x86 architecture will be used. Future version will support arm64 as well.
[-m]
 openstack: Openstack model will be deployed.
 kubernetes: Kubernetes model will be deployed.

The script will call 01-bootstrap.sh to bootstrap the Juju VM node, then it will call 02-deploybundle.sh with the corrosponding parameter values.

./02-deploybundle.sh $opnfvtype $openstack $opnfvlab $opnfvsdn $opnfvfeature $opnfvdistro

Python script GenBundle.py would be used to create bundle.yaml based on the template
defined in the config_tpl/juju2/ directory.

By default debug is enabled in the deploy.sh script and error messages will be printed on the SSH terminal where you are running the scripts. It could take an hour to a couple of hours (maximum) to complete.

You can check the status of the deployment by running this command in another terminal:

$ watch juju status --format tabular

This will refresh the juju status output in tabular format every 2 seconds.

Next we will show you what Juju is deploying and to where, and how you can modify based on your own needs.

3.6. OPNFV Juju Charm Bundles

The magic behind Juju is a collection of software components called charms. They contain
all the instructions necessary for deploying and configuring cloud-based services. The
charms publicly available in the online Charm Store represent the distilled DevOps
knowledge of experts.

A bundle is a set of services with a specific configuration and their corresponding
relations that can be deployed together in a single step. Instead of deploying a single
service, they can be used to deploy an entire workload, with working relations and
configuration. The use of bundles allows for easy repeatability and for sharing of
complex, multi-service deployments.

For OPNFV, we have created the charm bundles for each SDN deployment. They are stored in
each directory in ~/joid/ci.

We use Juju to deploy a set of charms via a yaml configuration file. You can find the complete format guide for the Juju configuration file here: http://pythonhosted.org/juju-deployer/config.html

In the ‘services’ subsection, here we deploy the ‘Ubuntu Xenial charm from the charm
store,’ You can deploy the same charm and name it differently such as the second
service ‘nodes-compute.’ The third service we deploy is named ‘ntp’ and is deployed from
the NTP Trusty charm from the Charm Store. The NTP charm is a subordinate charm, which is
designed for and deployed to the running space of another service unit.

The tag here is related to what we define in the deployment.yaml file for the
MAAS. When ‘constraints’ is set, Juju will ask its provider, in this case MAAS,
to provide a resource with the tags. In this case, Juju is asking one resource tagged with
control and one resource tagged with compute from MAAS. Once the resource information is
passed to Juju, Juju will start the installation of the specified version of Ubuntu.

In the next subsection, we define the relations between the services. The beauty of Juju
and charms is you can define the relation of two services and all the service units
deployed will set up the relations accordingly. This makes scaling out a very easy task.
Here we add the relation between NTP and the two bare metal services.

Once the relations are established, Juju considers the deployment complete and moves to the next.

juju deploy bundles.yaml

It will start the deployment , which will retry the section,

nova-cloud-controller:
 branch: lp:~openstack-charmers/charms/trusty/nova-cloud-controller/next
 num_units: 1
 options:
 network-manager: Neutron
 to:
 - "lxc:nodes-api=0"

We define a service name ‘nova-cloud-controller,’ which is deployed from the next branch
of the nova-cloud-controller Trusty charm hosted on the Launchpad openstack-charmers team.
The number of units to be deployed is 1. We set the network-manager option to ‘Neutron.’
This 1-service unit will be deployed to a LXC container at service ‘nodes-api’ unit 0.

To find out what other options there are for this particular charm, you can go to the code location at http://bazaar.launchpad.net/~openstack-charmers/charms/trusty/nova-cloud-controller/next/files and the options are defined in the config.yaml file.

Once the service unit is deployed, you can see the current configuration by running juju get:

$ juju config nova-cloud-controller

You can change the value with juju config, for example:

$ juju config nova-cloud-controller network-manager=’FlatManager’

Charms encapsulate the operation best practices. The number of options you need to configure should be at the minimum. The Juju Charm Store is a great resource to explore what a charm can offer you. Following the nova-cloud-controller charm example, here is the main page of the recommended charm on the Charm Store: https://jujucharms.com/nova-cloud-controller/trusty/66

If you have any questions regarding Juju, please join the IRC channel #opnfv-joid on freenode for JOID related questions or #juju for general questions.

3.7. Testing Your Deployment

Once juju-deployer is complete, use juju status –format tabular to verify that all deployed units are in the ready state.

Find the Openstack-dashboard IP address from the juju status output, and see if you can login via a web browser. The username and password is admin/openstack.

Optionally, see if you can log in to the Juju GUI. The Juju GUI is on the Juju bootstrap node, which is the second VM you define in the 03-maasdeploy.sh file. The username and password is admin/admin.

If you deploy OpenDaylight, OpenContrail or ONOS, find the IP address of the web UI and login. Please refer to each SDN bundle.yaml for the login username/password.

3.8. Troubleshooting

Logs are indispensable when it comes time to troubleshoot. If you want to see all the
service unit deployment logs, you can run juju debug-log in another terminal. The
debug-log command shows the consolidated logs of all Juju agents (machine and unit logs)
running in the environment.

To view a single service unit deployment log, use juju ssh to access to the deployed unit. For example to login into nova-compute unit and look for /var/log/juju/unit-nova-compute-0.log for more info.

$ juju ssh nova-compute/0

Example:

ubuntu@R4N4B1:~$ juju ssh nova-compute/0
Warning: Permanently added '172.16.50.60' (ECDSA) to the list of known hosts.
Warning: Permanently added '3-r4n3b1-compute.maas' (ECDSA) to the list of known hosts.
Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 3.13.0-77-generic x86_64)

* Documentation: https://help.ubuntu.com/
<skipped>
Last login: Tue Feb 2 21:23:56 2016 from bootstrap.maas
ubuntu@3-R4N3B1-compute:~$ sudo -i
root@3-R4N3B1-compute:~# cd /var/log/juju/
root@3-R4N3B1-compute:/var/log/juju# ls
machine-2.log unit-ceilometer-agent-0.log unit-ceph-osd-0.log unit-neutron-contrail-0.log unit-nodes-compute-0.log unit-nova-compute-0.log unit-ntp-0.log
root@3-R4N3B1-compute:/var/log/juju#

NOTE: By default Juju will add the Ubuntu user keys for authentication into the deployed server and only ssh access will be available.

Once you resolve the error, go back to the jump host to rerun the charm hook with:

$ juju resolved --retry <unit>

If you would like to start over, run juju destroy-environment <environment name> to release the resources, then you can run deploy.sh again.

The following are the common issues we have collected from the community:

	The right variables are not passed as part of the deployment procedure.

./deploy.sh -o pike -s nosdn -t ha -l custom -f none

	If you have setup maas not with 03-maasdeploy.sh then the ./clean.sh command could hang,
the juju status command may hang because the correct MAAS API keys are not mentioned in
cloud listing for MAAS.
Solution: Please make sure you have an MAAS cloud listed using juju clouds.
and the correct MAAS API key has been added.

	
	Deployment times out:

	use the command juju status –format=tabular and make sure all service containers receive an IP address and they are executing code. Ensure there is no service in the error state.

	In case the cleanup process hangs,run the juju destroy-model command manually.

Direct console access via the OpenStack GUI can be quite helpful if you need to login to a VM but cannot get to it over the network.
It can be enabled by setting the console-access-protocol in the nova-cloud-controller to vnc. One option is to directly edit the juju-deployer bundle and set it there prior to deploying OpenStack.

nova-cloud-controller:
options:
 console-access-protocol: vnc

To access the console, just click on the instance in the OpenStack GUI and select the Console tab.

4. Post Installation Configuration

4.1. Configuring OpenStack

At the end of the deployment, the admin-openrc with OpenStack login credentials will be created for you. You can source the file and start configuring OpenStack via CLI.

~/joid_config$ cat admin-openrc
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_TENANT_NAME=admin
export OS_AUTH_URL=http://172.16.50.114:5000/v2.0
export OS_REGION_NAME=RegionOne

We have prepared some scripts to help your configure the OpenStack cloud that you just deployed. In each SDN directory, for example joid/ci/opencontrail, there is a ‘scripts’ folder where you can find the scripts. These scripts are created to help you configure a basic OpenStack Cloud to verify the cloud. For more information on OpenStack Cloud configuration, please refer to the OpenStack Cloud Administrator Guide: http://docs.openstack.org/user-guide-admin/. Similarly, for complete SDN configuration, please refer to the respective SDN administrator guide.

Each SDN solution requires slightly different setup. Please refer to the README in each
SDN folder. Most likely you will need to modify the openstack.sh and cloud-setup.sh
scripts for the floating IP range, private IP network, and SSH keys. Please go through
openstack.sh, glance.sh and cloud-setup.sh and make changes as you see fit.

Let’s take a look at those for the Open vSwitch and briefly go through each script so you know what you need to change for your own environment.

~/joid/juju$ ls
configure-juju-on-openstack get-cloud-images joid-configure-openstack

4.1.1. openstack.sh

Let’s first look at ‘openstack.sh’. First there are 3 functions defined, configOpenrc(), unitAddress(), and unitMachine().

configOpenrc() {
 cat <<-EOF
 export SERVICE_ENDPOINT=$4
 unset SERVICE_TOKEN
 unset SERVICE_ENDPOINT
 export OS_USERNAME=$1
 export OS_PASSWORD=$2
 export OS_TENANT_NAME=$3
 export OS_AUTH_URL=$4
 export OS_REGION_NAME=$5
EOF
}

unitAddress() {
 if [["$jujuver" < "2"]]; then
 juju status --format yaml | python -c "import yaml; import sys; print yaml.load(sys.stdin)[\"services\"][\"$1\"][\"units\"][\"$1/$2\"][\"public-address\"]" 2> /dev/null
 else
 juju status --format yaml | python -c "import yaml; import sys; print yaml.load(sys.stdin)[\"applications\"][\"$1\"][\"units\"][\"$1/$2\"][\"public-address\"]" 2> /dev/null
 fi
}

unitMachine() {
 if [["$jujuver" < "2"]]; then
 juju status --format yaml | python -c "import yaml; import sys; print yaml.load(sys.stdin)[\"services\"][\"$1\"][\"units\"][\"$1/$2\"][\"machine\"]" 2> /dev/null
 else
 juju status --format yaml | python -c "import yaml; import sys; print yaml.load(sys.stdin)[\"applications\"][\"$1\"][\"units\"][\"$1/$2\"][\"machine\"]" 2> /dev/null
 fi
}

The function configOpenrc() creates the OpenStack login credentials, the function unitAddress() finds the IP address of the unit, and the function unitMachine() finds the machine info of the unit.

create_openrc() {
 keystoneIp=$(keystoneIp)
 if [["$jujuver" < "2"]]; then
 adminPasswd=$(juju get keystone | grep admin-password -A 7 | grep value | awk '{print $2}' 2> /dev/null)
 else
 adminPasswd=$(juju config keystone | grep admin-password -A 7 | grep value | awk '{print $2}' 2> /dev/null)
 fi

 configOpenrc admin $adminPasswd admin http://$keystoneIp:5000/v2.0 RegionOne > ~/joid_config/admin-openrc
 chmod 0600 ~/joid_config/admin-openrc
}

This finds the IP address of the keystone unit 0, feeds in the OpenStack admin
credentials to a new file name ‘admin-openrc’ in the ‘~/joid_config/’ folder
and change the permission of the file. It’s important to change the credentials here if
you use a different password in the deployment Juju charm bundle.yaml.

neutron net-show ext-net > /dev/null 2>&1 || neutron net-create ext-net \
 --router:external=True \
 --provider:network_type flat \
 --provider:physical_network physnet1

	::

	
	neutron subnet-show ext-subnet > /dev/null 2>&1 || neutron subnet-create ext-net

	–name ext-subnet –allocation-pool start=$EXTNET_FIP,end=$EXTNET_LIP –disable-dhcp –gateway $EXTNET_GW $EXTNET_NET

This section will create the ext-net and ext-subnet for defining the for floating ips.

openstack congress datasource create nova "nova" \
 --config username=$OS_USERNAME \
 --config tenant_name=$OS_TENANT_NAME \
 --config password=$OS_PASSWORD \
 --config auth_url=http://$keystoneIp:5000/v2.0

This section will create the congress datasource for various services.
Each service datasource will have entry in the file.

4.1.2. get-cloud-images

folder=/srv/data/
sudo mkdir $folder || true

if grep -q 'virt-type: lxd' bundles.yaml; then
 URLS=" \
 http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64-lxc.tar.gz \
 http://cloud-images.ubuntu.com/xenial/current/xenial-server-cloudimg-amd64-root.tar.gz "

else
 URLS=" \
 http://cloud-images.ubuntu.com/precise/current/precise-server-cloudimg-amd64-disk1.img \
 http://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img \
 http://cloud-images.ubuntu.com/xenial/current/xenial-server-cloudimg-amd64-disk1.img \
 http://mirror.catn.com/pub/catn/images/qcow2/centos6.4-x86_64-gold-master.img \
 http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud.qcow2 \
 http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64-disk.img "
fi

for URL in $URLS
do
FILENAME=${URL##*/}
if [-f $folder/$FILENAME];
then
 echo "$FILENAME already downloaded."
else
 wget -O $folder/$FILENAME $URL
fi
done

This section of the file will download the images to jumphost if not found to be used with
openstack VIM.

NOTE: The image downloading and uploading might take too long and time out. In this case, use juju ssh glance/0 to log in to the glance unit 0 and run the script again, or manually run the glance commands.

4.1.3. joid-configure-openstack

source ~/joid_config/admin-openrc

First, source the the admin-openrc file.

	::

	
	#Upload images to glance

	glance image-create –name=”Xenial LXC x86_64” –visibility=public –container-format=bare –disk-format=root-tar –property architecture=”x86_64” < /srv/data/xenial-server-cloudimg-amd64-root.tar.gz
glance image-create –name=”Cirros LXC 0.3” –visibility=public –container-format=bare –disk-format=root-tar –property architecture=”x86_64” < /srv/data/cirros-0.3.4-x86_64-lxc.tar.gz
glance image-create –name=”Trusty x86_64” –visibility=public –container-format=ovf –disk-format=qcow2 < /srv/data/trusty-server-cloudimg-amd64-disk1.img
glance image-create –name=”Xenial x86_64” –visibility=public –container-format=ovf –disk-format=qcow2 < /srv/data/xenial-server-cloudimg-amd64-disk1.img
glance image-create –name=”CentOS 6.4” –visibility=public –container-format=bare –disk-format=qcow2 < /srv/data/centos6.4-x86_64-gold-master.img
glance image-create –name=”Cirros 0.3” –visibility=public –container-format=bare –disk-format=qcow2 < /srv/data/cirros-0.3.4-x86_64-disk.img

upload the images into glane to be used for creating the VM.

adjust tiny image
nova flavor-delete m1.tiny
nova flavor-create m1.tiny 1 512 8 1

Adjust the tiny image profile as the default tiny instance is too small for Ubuntu.

configure security groups
neutron security-group-rule-create --direction ingress --ethertype IPv4 --protocol icmp --remote-ip-prefix 0.0.0.0/0 default
neutron security-group-rule-create --direction ingress --ethertype IPv4 --protocol tcp --port-range-min 22 --port-range-max 22 --remote-ip-prefix 0.0.0.0/0 default

Open up the ICMP and SSH access in the default security group.

import key pair
keystone tenant-create --name demo --description "Demo Tenant"
keystone user-create --name demo --tenant demo --pass demo --email demo@demo.demo

nova keypair-add --pub-key id_rsa.pub ubuntu-keypair

Create a project called ‘demo’ and create a user called ‘demo’ in this project. Import the key pair.

configure external network
neutron net-create ext-net --router:external --provider:physical_network external --provider:network_type flat --shared
neutron subnet-create ext-net --name ext-subnet --allocation-pool start=10.5.8.5,end=10.5.8.254 --disable-dhcp --gateway 10.5.8.1 10.5.8.0/24

This section configures an external network ‘ext-net’ with a subnet called ‘ext-subnet’.
In this subnet, the IP pool starts at 10.5.8.5 and ends at 10.5.8.254. DHCP is disabled.
The gateway is at 10.5.8.1, and the subnet mask is 10.5.8.0/24. These are the public IPs
that will be requested and associated to the instance. Please change the network configuration according to your environment.

create vm network
neutron net-create demo-net
neutron subnet-create --name demo-subnet --gateway 10.20.5.1 demo-net 10.20.5.0/24

This section creates a private network for the instances. Please change accordingly.

neutron router-create demo-router
neutron router-interface-add demo-router demo-subnet
neutron router-gateway-set demo-router ext-net

This section creates a router and connects this router to the two networks we just created.

create pool of floating ips
i=0
while [$i -ne 10]; do
 neutron floatingip-create ext-net
 i=$((i + 1))
done

Finally, the script will request 10 floating IPs.

4.1.4. configure-juju-on-openstack

This script can be used to do juju bootstrap on openstack so that Juju can be used as model tool to deploy the services and VNF on top of openstack using the JOID.

5. Appendix A: Single Node Deployment

By default, running the script ./03-maasdeploy.sh will automatically create the KVM VMs on a single machine and configure everything for you.

if [! -e ./labconfig.yaml]; then
 virtinstall=1
 labname="default"
 cp ../labconfig/default/labconfig.yaml ./
 cp ../labconfig/default/deployconfig.yaml ./

Please change joid/ci/labconfig/default/labconfig.yaml accordingly. The MAAS deployment script will do the following:
1. Create bootstrap VM.
2. Install MAAS on the jumphost.
3. Configure MAAS to enlist and commission VM for Juju bootstrap node.

Later, the 03-massdeploy.sh script will create three additional VMs and register them into the MAAS Server:

if ["$virtinstall" -eq 1]; then
 sudo virt-install --connect qemu:///system --name $NODE_NAME --ram 8192 --cpu host --vcpus 4 \
 --disk size=120,format=qcow2,bus=virtio,io=native,pool=default \
 $netw $netw --boot network,hd,menu=off --noautoconsole --vnc --print-xml | tee $NODE_NAME

 nodemac=`grep "mac address" $NODE_NAME | head -1 | cut -d '"' -f 2`
 sudo virsh -c qemu:///system define --file $NODE_NAME
 rm -f $NODE_NAME
 maas $PROFILE machines create autodetect_nodegroup='yes' name=$NODE_NAME \
 tags='control compute' hostname=$NODE_NAME power_type='virsh' mac_addresses=$nodemac \
 power_parameters_power_address='qemu+ssh://'$USER'@'$MAAS_IP'/system' \
 architecture='amd64/generic' power_parameters_power_id=$NODE_NAME
 nodeid=$(maas $PROFILE machines read | jq -r '.[] | select(.hostname == '\"$NODE_NAME\"').system_id')
 maas $PROFILE tag update-nodes control add=$nodeid || true
 maas $PROFILE tag update-nodes compute add=$nodeid || true

fi

6. Appendix B: Automatic Device Discovery

If your bare metal servers support IPMI, they can be discovered and enlisted automatically
by the MAAS server. You need to configure bare metal servers to PXE boot on the network
interface where they can reach the MAAS server. With nodes set to boot from a PXE image,
they will start, look for a DHCP server, receive the PXE boot details, boot the image,
contact the MAAS server and shut down.

During this process, the MAAS server will be passed information about the node, including
the architecture, MAC address and other details which will be stored in the database of
nodes. You can accept and commission the nodes via the web interface. When the nodes have
been accepted the selected series of Ubuntu will be installed.

7. Appendix C: Machine Constraints

Juju and MAAS together allow you to assign different roles to servers, so that hardware and software can be configured according to their roles. We have briefly mentioned and used this feature in our example. Please visit Juju Machine Constraints https://jujucharms.com/docs/stable/charms-constraints and MAAS tags https://maas.ubuntu.com/docs/tags.html for more information.

8. Appendix D: Offline Deployment

When you have limited access policy in your environment, for example, when only the Jump Host has Internet access, but not the rest of the servers, we provide tools in JOID to support the offline installation.

The following package set is provided to those wishing to experiment with a ‘disconnected
from the internet’ setup when deploying JOID utilizing MAAS. These instructions provide
basic guidance as to how to accomplish the task, but it should be noted that due to the
current reliance of MAAS and DNS, that behavior and success of deployment may vary
depending on infrastructure setup. An official guided setup is in the roadmap for the next release:

	Get the packages from here: https://launchpad.net/~thomnico/+archive/ubuntu/ubuntu-cloud-mirrors

NOTE: The mirror is quite large 700GB in size, and does not mirror SDN repo/ppa.

	Additionally to make juju use a private repository of charms instead of using an external location are provided via the following link and configuring environments.yaml to use cloudimg-base-url: https://github.com/juju/docs/issues/757

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment-bright.png

_static/ajax-loader.gif

