

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Compass4NFV

	Compass4NFV Development Overview
	Introduction of Containerized Compass

	Compass4nfv Design Guide
	1. How to integrate a feature into compass4nfv

Indices

	Search Page

1. How to integrate a feature into compass4nfv

This document describes how to integrate a feature (e.g. sdn, moon, kvm, sfc)
into compass installer. Follow the steps below, you can achieve the goal.

1.1. Create a role for the feature

Currently Ansible is the main packages installation plugin in the adapters of
Compass4nfv, which is used to deploy all the roles listed in the playbooks.
(More details about ansible and playbook can be achieved according to the
Reference.) The mostly used playbook in compass4nfv is named
“HA-ansible-multinodes.yml” located in “your_path_to_compass4nfv/compass4nfv/deploy/
adapters/ansible/openstack/”.

Before you add your role into the playbook, create your role under the directory of
“your_path_to_compass4nfv/compass4nfv/deploy/adapters/ansible/roles/”. For example
Fig 1 shows some roles currently existed in compass4nfv.

[image: Existed roles in compass4nfv]
Fig 1. Existed roles in compass4nfv

Let’s take a look at “moon” and understand the construction of a role. Fig 2
below presents the tree of “moon”.

[image: Tree of moon role]
Fig 2. Tree of moon role

There are five directories in moon, which are files, handlers, tasks, templates and vars.
Almost every role has such five directories.

For “files”, it is used to store the files you want to copy to the hosts without any
modification. These files can be configuration files, code files and etc. Here in moon’s
files directory, there are two python files and one configuration file. All of the three
files will be copied to controller nodes for some purposes.

For “handlers”, it is used to store some operations frequently used in your tasks. For
example, restart the service daemon.

For “tasks”, it is used to store the task yaml files. You need to add the yaml files including
the tasks you write to deploy your role on the hosts. Please attention that a main.yml
should be existed as the entrance of running tasks. In Fig 2, you can find that there are four
yaml files in the tasks directory of moon. The main.yml is the entrance which will call the
other three yaml files.

For “templates”, it is used to store the files that you want to replace some variables in them
before copying to hosts. These variables are usually defined in “vars” directory. This can
avoid hard coding.

For “vars”, it is used to store the yaml files in which the packages and variables are defined.
The packages defined here are some generic debian or rpm packages. The script of making repo
will scan the packages names here and download them into related PPA. For some special
packages, section “Build packages for the feature” will introduce how to handle with special
packages. The variables defined here are used in the files in “templates” and “tasks”.

Note: you can get the special packages in the tasks like this:

- name: get the special packages' http server
 shell: awk -F'=' '/compass_server/ {print $2}' /etc/compass.conf
 register: http_server

- name: download odl package
 get_url:
 url: "http://{{ http_server.stdout_lines[0] }}/packages/odl/{{ odl_pkg_url }}"
 dest: /opt/

1.2. Build packages for the feature

In the previous section, we have explained how to build the generic packages for your feature.
In this section, we will talk about how to build the special packages used by your feature.

[image: Features building directory in compass4nfv]
Fig 3. Features building directory in compass4nfv

Fig 3 shows the tree of “your_path_to_compass4nfv/compass4nfv/repo/features/”. Dockerfile
is used to start a docker container to run the scripts in scripts directory. These scripts
will download the special feature related packages into the container. What you need to do is
to write a shell script to download or build the package you want. And then put the script
into “your_path_to_compass4nfv/compass4nfv/repo/features/scripts/”. Attention that, you need
to make a directory under /pkg. Take opendaylight as an example:

mkdir -p /pkg/odl

After downloading or building your feature packages, please copy all of your packages into the
directory you made, e.g. /pkg/odl.

Note: If you have specail requirements for the container OS or kernel vesion, etc. Please
contact us.

After all of these, come back to your_path_to_compass4nfv/compass4nfv/ directory, and run
the command below:

./repo/make_repo.sh feature # To get special packages

./repo/make_repo.sh openstack # To get generic packages

When execution finished, you will get a tar package named packages.tar.gz under
“your_path_to_compass4nfv/compass4nfv/work/repo/”. Your feature related packages have been
archived in this tar package. And you will also get the PPA packages which includes the generic
packages you defined in the role directory. The PPA packages are xenial-newton-ppa.tar.gz
and centos7-newton-ppa.tar.gz, also in “your_path_to_compass4nfv/compass4nfv/work/repo/”.

1.3. Build compass ISO including the feature

Before you deploy a cluster with your feature installed, you need an ISO with feature packages,
generic packages and role included. This section introduces how to build the ISO you want.
What you need to do are two simple things:

Configure the build configuration file

The build configuration file is located in “your_path_to_compass4nfv/compass4nfv/build/”.
There are lines in the file like this:

export APP_PACKAGE=${APP_PACKAGE:-$FEATURE_URL/packages.tar.gz}

export XENIAL_NEWTON_PPA=${XENIAL_NEWTON_PPA:-$PPA_URL/xenial-newton-ppa.tar.gz}

export CENTOS7_NEWTON_PPA=${CENTOS7_NEWTON_PPA:-$PPA_URL/centos7-newton-ppa.tar.gz}

Just replace the $FEATURE_URL and $PPA_URL to the directory where your packages.tar.gz
located in. For example:

export APP_PACKAGE=${APP_PACKAGE:-file:///home/opnfv/compass4nfv/work/repo/packages.tar.gz}

export XENIAL_NEWTON_PPA=${XENIAL_NEWTON_PPA:-file:///home/opnfv/compass4nfv/work/repo/xenial-newton-ppa.tar.gz}

export CENTOS7_NEWTON_PPA=${CENTOS7_NEWTON_PPA:-file:///home/opnfv/compass4nfv/work/repo/centos7-newton-ppa.tar.gz}

Build the ISO

After the configuration, just run the command below to build the ISO you want for deployment.

./build.sh

1.4. References

Ansible documentation: http://docs.ansible.com/ansible/index.html>

Compass4nfv Design Guide

	1. How to integrate a feature into compass4nfv
	1.1. Create a role for the feature

	1.2. Build packages for the feature

	1.3. Build compass ISO including the feature

	1.4. References

Introduction of Containerized Compass

Containerized Compass uses five compass containers instead of a single VM.

Each container stands for a micro service and compass-core function separates into these five micro services:

	Compass-deck : RESTful API and DB Handlers for Compass

	Compass-tasks : Registered tasks and MQ modules for Compass

	Compass-cobbler : Cobbler container for Compass

	Compass-db : Database for Compass

	Compass-mq : Message Queue for Compass

Compass4nfv has several containers to satisfy OPNFV requirements:

	Compass-tasks-osa : compass-task’s adapter for deployment OpenStack via OpenStack-ansible

	Compass-tasks-k8s : compass-task’s adapter for deployment Kubernetes

	Compass-repo-osa-ubuntu : optional container to support OPNFV offfline installation via OpenStack-ansible

	Compass-repo-osa-centos : optional container to support OPNFV offfline installation via OpenStack-ansible

Picture below shows the new architecture of compass4nfv:

[image: New Archietecture of Compass4nfv]
Fig 1. New Archietecture of Compass4nfv

Compass4NFV Development Overview

	Introduction of Containerized Compass

5. Installation on Bare Metal

5.1. Nodes Configuration (Bare Metal Deployment)

The below file is the inventory template of deployment nodes:

“compass4nfv/deploy/conf/hardware_environment/huawei-pod1/dha.yml”

The “dha.yml” is a collectively name for “os-nosdn-nofeature-ha.yml
os-ocl-nofeature-ha.yml os-odl_l2-moon-ha.yml etc”.

You can write your own IPMI IP/User/Password/Mac address/roles reference to it.

	name – Host name for deployment node after installation.

	ipmiVer – IPMI interface version for deployment node support. IPMI 1.0
or IPMI 2.0 is available.

	ipmiIP – IPMI IP address for deployment node. Make sure it can access
from Jumphost.

	ipmiUser – IPMI Username for deployment node.

	ipmiPass – IPMI Password for deployment node.

	mac – MAC Address of deployment node PXE NIC.

	interfaces – Host NIC renamed according to NIC MAC addresses when OS provisioning.

	roles – Components deployed.

Set TYPE/FLAVOR and POWER TOOL

E.g.
.. code-block:: yaml

TYPE: baremetal
FLAVOR: cluster
POWER_TOOL: ipmitool

Set ipmiUser/ipmiPass and ipmiVer

E.g.

ipmiUser: USER
ipmiPass: PASSWORD
ipmiVer: '2.0'

Assignment of different roles to servers

E.g. Openstack only deployment roles setting

hosts:
 - name: host1
 mac: 'F8:4A:BF:55:A2:8D'
 interfaces:
 - eth1: 'F8:4A:BF:55:A2:8E'
 ipmiIp: 172.16.130.26
 roles:
 - controller
 - ha

 - name: host2
 mac: 'D8:49:0B:DA:5A:B7'
 interfaces:
 - eth1: 'D8:49:0B:DA:5A:B8'
 ipmiIp: 172.16.130.27
 roles:
 - compute

NOTE:
THE ‘ha’ role MUST BE SELECTED WITH CONTROLLERS, EVEN THERE IS ONLY ONE CONTROLLER NODE.

E.g. Openstack and ceph deployment roles setting

hosts:
 - name: host1
 mac: 'F8:4A:BF:55:A2:8D'
 interfaces:
 - eth1: 'F8:4A:BF:55:A2:8E'
 ipmiIp: 172.16.130.26
 roles:
 - controller
 - ha
 - ceph-adm
 - ceph-mon

 - name: host2
 mac: 'D8:49:0B:DA:5A:B7'
 interfaces:
 - eth1: 'D8:49:0B:DA:5A:B8'
 ipmiIp: 172.16.130.27
 roles:
 - compute
 - ceph-osd

E.g. Openstack and ODL deployment roles setting

hosts:
 - name: host1
 mac: 'F8:4A:BF:55:A2:8D'
 interfaces:
 - eth1: 'F8:4A:BF:55:A2:8E'
 ipmiIp: 172.16.130.26
 roles:
 - controller
 - ha
 - odl

 - name: host2
 mac: 'D8:49:0B:DA:5A:B7'
 interfaces:
 - eth1: 'D8:49:0B:DA:5A:B8'
 ipmiIp: 172.16.130.27
 roles:
 - compute

E.g. Openstack and ONOS deployment roles setting

hosts:
 - name: host1
 mac: 'F8:4A:BF:55:A2:8D'
 interfaces:
 - eth1: 'F8:4A:BF:55:A2:8E'
 ipmiIp: 172.16.130.26
 roles:
 - controller
 - ha
 - onos

 - name: host2
 mac: 'D8:49:0B:DA:5A:B7'
 interfaces:
 - eth1: 'D8:49:0B:DA:5A:B8'
 ipmiIp: 172.16.130.27
 roles:
 - compute

5.2. Network Configuration (Bare Metal Deployment)

Before deployment, there are some network configuration to be checked based
on your network topology.Compass4nfv network default configuration file is
“compass4nfv/deploy/conf/hardware_environment/huawei-pod1/network.yml”.
This file is an example, you can customize by yourself according to specific network
environment.

In this network.yml, there are several config sections listed following(corresponed to the
ordre of the config file):

5.2.1. Provider Mapping

	name – provider network name.

	network – default as physnet, do not change it.

	interfaces – the NIC or Bridge attached by the Network.

	type – the type of the NIC or Bridge(vlan for NIC and ovs for Bridge, either).

	roles – all the possible roles of the host machines which connected by this
network(mostly put both controller and compute).

5.2.2. System Interface

	name – Network name.

	interfaces – the NIC or Bridge attached by the Network.

	vlan_tag – if type is vlan, add this tag before ‘type’ tag.

	type – the type of the NIC or Bridge(vlan for NIC and ovs for Bridge, either).

	roles – all the possible roles of the host machines which connected by this
network(mostly put both controller and compute).

5.2.3. IP Settings

	name – network name corresponding the the network name in System Interface section one by one.

	ip_ranges – ip addresses range provided for this network.

	cidr – the IPv4 address and its associated routing prefix and subnet mask?

	gw – need to add this line only if network is external.

	roles – all the possible roles of the host machines which connected by this
network(mostly put both controller and compute).

5.2.4. Internal VIP(virtual or proxy IP)

	ip – virtual or proxy ip address, must be in the same subnet with mgmt network
but must not be in the range of mgmt network.

	netmask – the length of netmask

	interface – mostly mgmt.

5.2.5. Public VIP

	ip – virtual or proxy ip address, must be in the same subnet with external
network but must not be in the range of external network.

	netmask – the length of netmask

	interface – mostly external.

5.2.6. Public Network

	enable – must be True(if False, you need to set up provider network manually).

	network – leave it ext-net.

	type – the type of the ext-net above, such as flat or vlan.

	segment_id – when the type is vlan, this should be id of vlan.

	subnet – leave it ext-subnet.

	provider_network – leave it physnet.

	router – leave it router-ext.

	enable_dhcp – must be False.

	no_gateway – must be False.

	external_gw – same as gw in ip_settings.

	floating_ip_cidr – cidr for floating ip, see explanation in ip_settings.

	floating_ip_start – define range of floating ip with floating_ip_end(this
defined range must not be included in ip range of external configured in
ip_settings section).

	floating_ip_end – define range of floating ip with floating_ip_start.

The following figure shows the default network configuration.

+--+ +--+ +--+
	+------------+				
+------+ Jumphost +------+					
	+------+-----+				
	+------------+ +-----+				
	+------------+				
+------+ host1 +------+					
	+------+-----+				
	+------------+ +-----+				
	+------------+				
+------+ host2 +------+					
	+------+-----+				
	+------------+ +-----+				
	+------------+				
+------+ host3 +------+					
	+------+-----+				
	+------------+ +-----+				
+-++ ++-+ +-++					
^ ^ ^					
+-+-------------------------+					
External Network					
+---------------------------+ | |
 +-----------------------+---+ |
 | IPMI Network | |
 +---------------------------+ |
 +-------------------------+-+
 | PXE(Installation) Network |
 +---------------------------+

The following figure shows the interfaces and nics of JumpHost and deployment nodes in
huawei-pod1 network configuration(default one nic for openstack networks).

[image: Single nic scenario]
Fig 1. Single nic scenario

The following figure shows the interfaces and nics of JumpHost and deployment nodes in
intel-pod8 network configuration(openstack networks are seperated by multiple NICs).

[image: Multiple nics scenario]
Fig 2. Multiple nics scenario

5.3. Start Deployment (Bare Metal Deployment)

	Edit deploy.sh

	1.1. Set OS version for deployment nodes.

	Compass4nfv supports ubuntu and centos based openstack newton.

E.g.

Set OS version for target hosts
Ubuntu16.04 or CentOS7
export OS_VERSION=xenial
or
export OS_VERSION=centos7

1.2. Set tarball corresponding to your code

E.g.

Set ISO image corresponding to your code
export ISO_URL=file:///home/compass/compass4nfv.tar.gz

	1.3. Set hardware deploy jumpserver PXE NIC. (set eth1 E.g.)

	You do not need to set it when virtual deploy.

E.g.

Set hardware deploy jumpserver PXE NIC
you need to comment out it when virtual deploy
export INSTALL_NIC=eth1

1.4. Set scenario that you want to deploy

E.g.

nosdn-nofeature scenario deploy sample

DHA is your dha.yml's path
export DHA=./deploy/conf/hardware_environment/huawei-pod1/os-nosdn-nofeature-ha.yml

NETWORK is your network.yml's path
export NETWORK=./deploy/conf/hardware_environment/huawei-pod1/network.yml

odl_l2-moon scenario deploy sample

DHA is your dha.yml's path
export DHA=./deploy/conf/hardware_environment/huawei-pod1/os-odl_l2-moon-ha.yml

NETWORK is your network.yml's path
export NETWORK=./deploy/conf/hardware_environment/huawei-pod1/network.yml

odl_l2-nofeature scenario deploy sample

DHA is your dha.yml's path
export DHA=./deploy/conf/hardware_environment/huawei-pod1/os-odl_l2-nofeature-ha.yml

NETWORK is your network.yml's path
export NETWORK=./deploy/conf/hardware_environment/huawei-pod1/network.yml

odl_l3-nofeature scenario deploy sample

DHA is your dha.yml's path
export DHA=./deploy/conf/hardware_environment/huawei-pod1/os-odl_l3-nofeature-ha.yml

NETWORK is your network.yml's path
export NETWORK=./deploy/conf/hardware_environment/huawei-pod1/network.yml

odl-sfc deploy scenario sample

DHA is your dha.yml's path
export DHA=./deploy/conf/hardware_environment/huawei-pod1/os-odl-sfc-ha.yml

NETWORK is your network.yml's path
export NETWORK=./deploy/conf/hardware_environment/huawei-pod1/network.yml

	Run deploy.sh

./deploy.sh

4. Configure network

network_cfg.yaml file describes networks configuration for openstack on hosts. It
specifies host network mapping and ip assignment of networks to be installed on hosts.
Compass4nfv includes a sample network_cfg.yaml under
compass4nfv/deploy/conf/network_cfg.yaml

There are three openstack networks to be installed: external, mgmt and storage. These
three networks can be shared on one physical nic or on separate nics (multi-nic). The
sample included in compass4nfv uses one nic. For multi-nic configuration, see multi-nic
configuration.

4.1. Configure openstack network

! All interface name in network_cfg.yaml must be identified in dha file by mac address !

Compass4nfv will install networks on host as described in this configuration. It will look
for physical nic on host by mac address from dha file and rename nic to the name with
that mac address. Therefore, any network interface name that is not identified by mac
address in dha file will not be installed correctly as compass4nfv cannot find the nic.

Configure provider network

provider_net_mappings:
 - name: br-prv
 network: physnet
 interface: eth1
 type: ovs
 role:
 - controller
 - compute

The external nic in dha file must be named eth1 with mac address. If user uses a
different interface name in dha file, change eth1 to that name here.
Note: User cannot use eth0 for external interface name as install/pxe network is named as
such.

Configure openstack mgmt&storage network:

sys_intf_mappings:
 - name: mgmt
 interface: eth1
 vlan_tag: 101
 type: vlan
 role:
 - controller
 - compute
- name: storage
 interface: eth1
 vlan_tag: 102
 type: vlan
 role:
 - controller
 - compute

Change vlan_tag of mgmt and storage to corresponding vlan tag configured on
switch.

Note: for virtual deployment, there is no need to modify mgmt&storage network.

If using multi-nic feature, i.e, separate nic for mgmt or storage network, user needs to
change name to desired nic name (need to match dha file). Please see multi-nic
configuration.

4.2. Assign IP address to networks

ip_settings section specifics ip assignment for openstack networks.

User can use default ip range for mgmt&storage network.

for external networks:

- name: external
 ip_ranges:
 - - "192.168.50.210"
 - "192.168.50.220"
 cidr: "192.168.50.0/24"
 gw: "192.168.50.1"
 role:
 - controller
 - compute

Provide at least number of hosts available ip for external IP range(these ips will be
assigned to each host). Provide actual cidr and gateway in cidr and gw fields.

configure public IP for horizon dashboard

public_vip:
 ip: 192.168.50.240
 netmask: "24"
 interface: external

Provide an external ip in ip field. This ip cannot be within the ip range assigned to
external network configured in pervious section. It will be used for horizon address.

See section 6.2 (Vitual) and 7.2 (BareMetal) for graphs illustrating network topology.

11. Expansion Guide

11.1. Edit NETWORK File

The below file is the inventory template of deployment nodes:

“./deploy/conf/hardware_environment/huawei-pod1/network.yml”

You need to edit the network.yml which you had edited the first deployment.

NOTE:
External subnet’s ip_range should exclude the IPs those have already been used.

11.2. Edit DHA File

The below file is the inventory template of deployment nodes:

“./deploy/conf/hardware_environment/expansion-sample/hardware_cluster_expansion.yml”

You can write your own IPMI IP/User/Password/Mac address/roles reference to it.

	name – Host name for deployment node after installation.

	ipmiIP – IPMI IP address for deployment node. Make sure it can access
from Jumphost.

	ipmiUser – IPMI Username for deployment node.

	ipmiPass – IPMI Password for deployment node.

	mac – MAC Address of deployment node PXE NIC .

Set TYPE/FLAVOR and POWER TOOL

E.g.

TYPE: baremetal
FLAVOR: cluster
POWER_TOOL: ipmitool

Set ipmiUser/ipmiPass and ipmiVer

E.g.

ipmiUser: USER
ipmiPass: PASSWORD
ipmiVer: '2.0'

Assignment of roles to servers

E.g. Only increase one compute node

hosts:
 - name: host6
 mac: 'E8:4D:D0:BA:60:45'
 interfaces:
 - eth1: '08:4D:D0:BA:60:44'
 ipmiIp: 172.16.131.23
 roles:
 - compute

E.g. Increase two compute nodes

hosts:
 - name: host6
 mac: 'E8:4D:D0:BA:60:45'
 interfaces:
 - eth1: '08:4D:D0:BA:60:44'
 ipmiIp: 172.16.131.23
 roles:
 - compute

 - name: host6
 mac: 'E8:4D:D0:BA:60:78'
 interfaces:
 - eth1: '08:4D:56:BA:60:83'
 ipmiIp: 172.16.131.23
 roles:
 - compute

11.2.1. Start Expansion

	Edit network.yml and dha.yml file

You need to Edit network.yml and virtual_cluster_expansion.yml or
hardware_cluster_expansion.yml. Edit the DHA and NETWORK envionment variables.
External subnet’s ip_range and management ip should be changed as the first 6
IPs are already taken by the first deployment.

E.g.

--- network.yml 2017-02-16 20:07:10.097878150 +0800
+++ network-expansion.yml 2017-05-03 10:01:34.537379013 +0800
@@ -38,7 +38,7 @@
 ip_settings:
 - name: mgmt
 ip_ranges:
- - - "172.16.1.1"
+ - - "172.16.1.6"
 - "172.16.1.254"
 cidr: "172.16.1.0/24"
 role:
@@ -47,7 +47,7 @@

 - name: storage
 ip_ranges:
- - - "172.16.2.1"
+ - - "172.16.2.6"
 - "172.16.2.254"
 cidr: "172.16.2.0/24"
 role:
@@ -56,7 +56,7 @@

 - name: external
 ip_ranges:
- - - "192.168.116.201"
+ - - "192.168.116.206"
 - "192.168.116.221"
 cidr: "192.168.116.0/24"
 gw: "192.168.116.1"

	Edit deploy.sh

	2.1. Set EXPANSION and VIRT_NUMBER.

	VIRT_NUMBER decide how many virtual machines needs to expand when virtual expansion

E.g.

export EXPANSION="true"
export MANAGEMENT_IP_START="10.1.0.55"
export VIRT_NUMBER=1
export DEPLOY_FIRST_TIME="false"

2.2. Set scenario that you need to expansion

E.g.

DHA is your dha.yml's path
export DHA=./deploy/conf/hardware_environment/expansion-sample/hardware_cluster_expansion.yml

NETWORK is your network.yml's path
export NETWORK=./deploy/conf/hardware_environment/huawei-pod1/network.yml

	Note: Other environment variable shoud be same as your first deployment.

	Please check the environment variable before you run deploy.sh.

	Run deploy.sh

./deploy.sh

2. Features

2.1. Supported Openstack Version and OS

	
	OS
only

	OpenStack
Liberty

	OpenStack
Mitaka

	OpenStack
Newton

	OpenStack
Ocata

	OpenStack
Pike

	CentOS 7

	yes

	yes

	yes

	yes

	no

	yes

	Ubuntu trusty

	yes

	yes

	yes

	no

	no

	no

	Ubuntu xenial

	yes

	no

	yes

	yes

	yes

	yes

2.2. Supported Openstack Flavor and Features

	
	OpenStack
Liberty

	OpenStack
Mitaka

	OpenStack
Newton

	OpenStack
Ocata

	OpenStack
Pike

	Virtual
Deployment

	Yes

	Yes

	Yes

	Yes

	Yes

	Baremetal
Deployment

	Yes

	Yes

	Yes

	Yes

	Yes

	HA

	Yes

	Yes

	Yes

	Yes

	Yes

	Ceph

	Yes

	Yes

	Yes

	Yes

	Yes

	SDN
ODL/ONOS

	Yes

	Yes

	Yes

	Yes*

	Yes*

	Compute Node
Expansion

	Yes

	Yes

	Yes

	No

	No

	Multi-Nic
Support

	Yes

	Yes

	Yes

	Yes

	Yes

	Boot
Recovery

	Yes

	Yes

	Yes

	Yes

	Yes

	SFC

	No

	No

	Yes

	Yes

	Yes

	ONOS will not be supported in this release.

Compass4nfv Installation Instructions

	1. Abstract

	2. Features
	2.1. Supported Openstack Version and OS

	2.2. Supported Openstack Flavor and Features

	3. Compass4nfv configuration
	3.1. Preconditions
	3.1.1. Retrieving the installation tarball

	3.1.2. Getting the deployment scripts

	3.2. Setup Requirements
	3.2.1. Jumphost Requirements

	3.3. Bare Metal Node Requirements

	3.4. Network Requirements

	3.5. Execution Requirements (Bare Metal Only)

	3.6. Configurations

	4. Configure network
	4.1. Configure openstack network

	4.2. Assign IP address to networks

	5. Installation on Bare Metal
	5.1. Nodes Configuration (Bare Metal Deployment)

	5.2. Network Configuration (Bare Metal Deployment)
	5.2.1. Provider Mapping

	5.2.2. System Interface

	5.2.3. IP Settings

	5.2.4. Internal VIP(virtual or proxy IP)

	5.2.5. Public VIP

	5.2.6. Public Network

	5.3. Start Deployment (Bare Metal Deployment)

	6. Installation on virtual machines
	6.1. Quick Start

	6.2. Nodes Configuration (Virtual Deployment)
	6.2.1. virtual machine setting

	6.2.2. roles setting

	6.3. Network Configuration (Virtual Deployment)

	6.4. Start Deployment (Virtual Deployment)

	7. K8s introduction
	7.1. Kubernetes Architecture
	7.1.1. Kube-apiserver

	7.1.2. Etcd

	7.1.3. Kube-controller-manager

	7.1.4. kube-scheduler

	7.1.5. Kubelet

	7.1.6. Kube-proxy

	7.1.7. Docker

	7.1.8. POD

	7.2. Understand Kubernetes Networking in Compass configuration

	8. Installation of K8s on virtual machines
	8.1. Quick Start

	9. Installation of K8s on Bare Metal
	9.1. Nodes Configuration (Bare Metal Deployment)

	9.2. Network Configuration (Bare Metal Deployment)
	9.2.1. Provider Mapping

	9.2.2. System Interface

	9.2.3. IP Settings

	9.2.4. Internal VIP(virtual or proxy IP)

	9.2.5. Public VIP

	9.2.6. Public Network

	9.3. Start Deployment (Bare Metal Deployment)

	10. Offline Deploy
	10.1. Preparation for offline deploy

	10.2. Steps of offline deploy

	11. Expansion Guide
	11.1. Edit NETWORK File

	11.2. Edit DHA File
	11.2.1. Start Expansion

	12. References
	12.1. OPNFV

	12.2. OpenStack

	12.3. OpenDaylight

	12.4. ONOS

	12.5. Compass

Compass4nfv configuration

This document describes providing guidelines on how to install and
configure the Gambia release of OPNFV when using Compass4nfv as a
deployment tool including required software and hardware
configurations.

Installation and configuration of host OS, OpenStack, OpenDaylight,
ONOS, Ceph etc. can be supported by Compass on Virtual nodes or Bare Metal
nodes.

The audience of this document is assumed to have good knowledge in
networking and Unix/Linux administration.

Preconditions

Before starting the installation of the Gambia release of OPNFV,
some planning must be done.

Retrieving the installation Tarball

First of all, The installation tarball is needed for deploying your OPNFV
environment, it included packages of compass docker images and OSA repo.

The stable tarball can be retrieved via OPNFV software download page [https://www.opnfv.org/software]

The daily build tarball can be retrieved via OPNFV artifacts repository:

http://artifacts.opnfv.org/compass4nfv.html

NOTE: Search the keyword “compass4nfv/Gambia” to locate the ISO image.

E.g.
compass4nfv/Gambia/opnfv-2017-09-18_08-15-13.tar.gz

The name of tarball includes the time of iso building, you can get the daily
ISO according the building time.
The git url and sha1 of Compass4nfv are recorded in properties files,
According these, the corresponding deployment scripts can be retrieved.

Getting the deployment scripts

To retrieve the repository of Compass4nfv on Jumphost use the following command:

	git clone https://gerrit.opnfv.org/gerrit/compass4nfv

NOTE: PLEASE DO NOT GIT CLONE COMPASS4NFV IN ROOT DIRECTORY(INCLUDE SUBFOLDERS).

To get stable /Gambia release, you can use the following command:

	git checkout Gambia.1.0

Setup Requirements

If you have only 1 Bare Metal server, Virtual deployment is recommended. if more
than or equal 3 servers, the Bare Metal deployment is recommended. The minimum number of
servers for Bare metal deployment is 3, 1 for JumpServer(Jumphost), 1 for controller,
1 for compute.

Jumphost Requirements

The Jumphost requirements are outlined below:

	Ubuntu 14.04 (Pre-installed).

	Root access.

	libvirt virtualization support.

	Minimum 2 NICs.

	PXE installation Network (Receiving PXE request from nodes and providing OS provisioning)

	IPMI Network (Nodes power control and set boot PXE first via IPMI interface)

	External Network (Optional: Internet access)

	16 GB of RAM for a Bare Metal deployment, 64 GB of RAM for a Virtual deployment.

	CPU cores: 32, Memory: 64 GB, Hard Disk: 500 GB, (Virtual Deployment needs 1 TB Hard Disk)

Bare Metal Node Requirements

Bare Metal nodes require:

	IPMI enabled on OOB interface for power control.

	BIOS boot priority should be PXE first then local hard disk.

	Minimum 3 NICs.

	PXE installation Network (Broadcasting PXE request)

	IPMI Network (Receiving IPMI command from Jumphost)

	External Network (OpenStack mgmt/external/storage/tenant network)

Network Requirements

Network requirements include:

	No DHCP or TFTP server running on networks used by OPNFV.

	2-6 separate networks with connectivity between Jumphost and nodes.

	PXE installation Network

	IPMI Network

	br-mgmt Network*

	br-vlan Network*

	br-tenant Network*

	br-storage Network*

	Lights out OOB network access from Jumphost with IPMI node enabled (Bare Metal deployment only).

	br-vlan network has Internet access, meaning a gateway and DNS availability.

The networks with(*) can be share one NIC(Default configuration) or use an exclusive
NIC(Reconfigurated in network.yml).

Execution Requirements (Bare Metal Only)

In order to execute a deployment, one must gather the following information:

	IPMI IP addresses of the nodes.

	IPMI login information for the nodes (user/pass).

	MAC address of Control Plane / Provisioning interfaces of the Bare Metal nodes.

Configurations

There are three configuration files a user needs to modify for a cluster deployment.
network_cfg.yaml for openstack networks on hosts.
dha file for host role, IPMI credential and host nic idenfitication (MAC address).
deploy.sh for os and openstack version.

1. Abstract

This document describes how to install the Gambia release of OPNFV when
using Compass4nfv as a deployment tool covering it’s limitations, dependencies
and required system resources.

Validated platform

Jump server: Baremetal, Ubuntu 16.04

Node: VM / Baremetal, CentOS 7 / Ubuntu 16.04, K8s 1.9.1

Prepare jump server

A baremetal Arm server is required as Compass4NFV jump server.

	Install Ubuntu 16.04 aarch64 on jump server.

	Install required packages.

$ sudo apt install docker.io libvirt-bin virt-manager qemu qemu-efi

	Disable DHCP of default libvirt network.

Libvirt creates a default network at intallation, which enables DHCP and occupies port 67. It conflicts with compass-cobbler container.

$ sudo virsh net-edit default

<!-- remove below lines and save/quit ->
<dhcp>
 <range start='192.168.122.2' end='192.168.122.254'/>
</dhcp>

$ sudo virsh net-destroy default
$ sudo virsh net-start default

	Make sure ports 67, 69, 80, 443 are free.

Compass-cobber requires ports 67, 69 to provide DHCP and TFTP services. Compass-deck provides HTTP and HTTPS through ports 80, 443. All these ports should be free before deployment.

	Tear down apparmor service.

$ sudo service apparmor teardown

	Enable password-less sudo for current user (optional).

Build Arm tarball

Clone Compass4NFV code. Run below command to build deployment tarball for Arm.

$./build.sh

It downloads and archives Ubuntu/CentOS installation ISO and Compass core docker images for later deployment.

Deploy K8s

This section introduces the steps to deploy K8s cluster in VM and baremetal nodes.

Clear old Compass core

Compass core consists of five containers which are responsible for deploying K8s clusters.

	compass-deck: provides API service and web UI

	compass-tasks: deploy K8s to nodes

	compass-cobbler: deploy OS to nodes

	compass-db: mysql service

	compass-mq: rabbitmq service

Run below command to remove running Compass containers for a clean deployment.

$ docker rm -f `docker ps | grep compass | cut -f1 -d' '`

Deploy OS and K8s

To deploy CentOS and K8s on two virtual nodes, run:

$ ADAPTER_OS_PATTERN='(?i)CentOS-7.*arm.*' \
 OS_VERSION=centos7 \
 KUBERNETES_VERSION=v1.9.1 \
 DHA=deploy/conf/vm_environment/k8-nosdn-nofeature-noha.yml \
 NETWORK=deploy/conf/vm_environment/network.yml \
 VIRT_NUMBER=2 VIRT_CPUS=4 VIRT_MEM=8192 VIRT_DISK=50G \
 ./deploy.sh

To deploy on baremetal nodes, reference below DHA and NETWORK files:

DHA="deploy/conf/hardware_environment/huawei-pod8/k8-nosdn-nofeature-noha.yml"
NETWORK="deploy/conf/hardware_environment/huawei-pod8/network.yml"

To deploy Ubuntu, set:

ADAPTER_OS_PATTERN='(?i)ubuntu-16.*arm.*'
OS_VERSION=xenial

8. Installation of K8s on virtual machines

8.1. Quick Start

Only 1 command to try virtual deployment, if you have Internet access. Just Paste it and Run.

curl https://raw.githubusercontent.com/opnfv/compass4nfv/master/quickstart_k8s.sh | bash

If you want to deploy noha with1 controller and 1 compute, run the following command

export SCENARIO=k8-nosdn-nofeature-noha.yml
export VIRT_NUMBER=2
curl https://raw.githubusercontent.com/opnfv/compass4nfv/stable/gambia/quickstart_k8s.sh | bash

9. Installation of K8s on Bare Metal

9.1. Nodes Configuration (Bare Metal Deployment)

The below file is the inventory template of deployment nodes:

“compass4nfv/deploy/conf/hardware_environment/huawei-pod1/k8-nosdn-nofeature-ha.yml”

You can write your own IPMI IP/User/Password/Mac address/roles reference to it.

	name – Host name for deployment node after installation.

	ipmiVer – IPMI interface version for deployment node support. IPMI 1.0
or IPMI 2.0 is available.

	ipmiIP – IPMI IP address for deployment node. Make sure it can access
from Jumphost.

	ipmiUser – IPMI Username for deployment node.

	ipmiPass – IPMI Password for deployment node.

	mac – MAC Address of deployment node PXE NIC.

	interfaces – Host NIC renamed according to NIC MAC addresses when OS provisioning.

	roles – Components deployed.

Set TYPE/FLAVOR and POWER TOOL

E.g.
.. code-block:: yaml

TYPE: baremetal
FLAVOR: cluster
POWER_TOOL: ipmitool

Set ipmiUser/ipmiPass and ipmiVer

E.g.

ipmiUser: USER
ipmiPass: PASSWORD
ipmiVer: '2.0'

Assignment of different roles to servers

E.g. K8s only deployment roles setting

hosts:
 - name: host1
 mac: 'F8:4A:BF:55:A2:8D'
 interfaces:
 - eth1: 'F8:4A:BF:55:A2:8E'
 ipmiIp: 172.16.130.26
 roles:
 - kube_master
 - etcd

 - name: host2
 mac: 'D8:49:0B:DA:5A:B7'
 interfaces:
 - eth1: 'D8:49:0B:DA:5A:B8'
 ipmiIp: 172.16.130.27
 roles:
 - kube_node

9.2. Network Configuration (Bare Metal Deployment)

Before deployment, there are some network configuration to be checked based
on your network topology.Compass4nfv network default configuration file is
“compass4nfv/deploy/conf/hardware_environment/huawei-pod1/network.yml”.
This file is an example, you can customize by yourself according to specific network
environment.

In this network.yml, there are several config sections listed following(corresponed to the
ordre of the config file):

9.2.1. Provider Mapping

	name – provider network name.

	network – default as physnet, do not change it.

	interfaces – the NIC or Bridge attached by the Network.

	type – the type of the NIC or Bridge(vlan for NIC and ovs for Bridge, either).

	roles – all the possible roles of the host machines which connected by this
network(mostly put both controller and compute).

9.2.2. System Interface

	name – Network name.

	interfaces – the NIC or Bridge attached by the Network.

	vlan_tag – if type is vlan, add this tag before ‘type’ tag.

	type – the type of the NIC or Bridge(vlan for NIC and ovs for Bridge, either).

	roles – all the possible roles of the host machines which connected by this
network(mostly put both controller and compute).

9.2.3. IP Settings

	name – network name corresponding the the network name in System Interface section one by one.

	ip_ranges – ip addresses range provided for this network.

	cidr – the IPv4 address and its associated routing prefix and subnet mask?

	gw – need to add this line only if network is external.

	roles – all the possible roles of the host machines which connected by this
network(mostly put both controller and compute).

9.2.4. Internal VIP(virtual or proxy IP)

	ip – virtual or proxy ip address, must be in the same subnet with mgmt network
but must not be in the range of mgmt network.

	netmask – the length of netmask

	interface – mostly mgmt.

9.2.5. Public VIP

	ip – virtual or proxy ip address, must be in the same subnet with external
network but must not be in the range of external network.

	netmask – the length of netmask

	interface – mostly external.

9.2.6. Public Network

	enable – must be True(if False, you need to set up provider network manually).

	network – leave it ext-net.

	type – the type of the ext-net above, such as flat or vlan.

	segment_id – when the type is vlan, this should be id of vlan.

	subnet – leave it ext-subnet.

	provider_network – leave it physnet.

	router – leave it router-ext.

	enable_dhcp – must be False.

	no_gateway – must be False.

	external_gw – same as gw in ip_settings.

	floating_ip_cidr – cidr for floating ip, see explanation in ip_settings.

	floating_ip_start – define range of floating ip with floating_ip_end(this
defined range must not be included in ip range of external configured in
ip_settings section).

	floating_ip_end – define range of floating ip with floating_ip_start.

The following figure shows the default network configuration.

[image: Kubernetes network configuration]
Fig 5. Kubernetes network configuration

9.3. Start Deployment (Bare Metal Deployment)

	Edit deploy.sh

	1.1. Set OS version for deployment nodes.

	Compass4nfv supports ubuntu and centos based openstack newton.

E.g.

Set OS version for target hosts
Only CentOS7 supported now
export OS_VERSION=centos7

1.2. Set tarball corresponding to your code

E.g.

Set ISO image corresponding to your code
export ISO_URL=file:///home/compass/compass4nfv.tar.gz

	1.3. Set hardware deploy jumpserver PXE NIC. (set eth1 E.g.)

	You do not need to set it when virtual deploy.

E.g.

Set hardware deploy jumpserver PXE NIC
you need to comment out it when virtual deploy
export INSTALL_NIC=eth1

1.4. K8s scenario that you want to deploy

E.g.

nosdn-nofeature scenario deploy sample

DHA is your dha.yml's path
export DHA=./deploy/conf/hardware_environment/huawei-pod1/k8-nosdn-nofeature-ha.yml

NETWORK is your network.yml's path
export NETWORK=./deploy/conf/hardware_environment/huawei-pod1/network.yml

	Run deploy.sh

./deploy.sh

7. K8s introduction

7.1. Kubernetes Architecture

Currently Compass can deploy kubernetes as NFVI in 3+2 mode by default.

The following figure shows a typical architecture of Kubernetes.

[image: K8s architecture]
Fig 3. K8s architecture

7.1.1. Kube-apiserver

Kube-apiserver exposes the Kubernetes API. It is the front-end for the Kubernetes control plane.
It is designed to scale horizontally, that is, it scales by deploying more instances.

7.1.2. Etcd

Etcd is used as Kubernetes’ backing store. All cluster data is stored here. Always have a backup
plan for etcd’s data for your Kubernetes cluster.

7.1.3. Kube-controller-manager

Kube-controller-manager runs controllers, which are the background threads that handle routine
tasks in the cluster. Logically, each controller is a separate process, but to reduce complexity,
they are all compiled into a single binary and run in a single process.

These controllers include:

	Node Controller: Responsible for noticing and responding when nodes go down.

	Replication Controller: Responsible for maintaining the correct number of pods for every
replication controller object in the system.

	Endpoints Controller: Populates the Endpoints object (that is, joins Services & Pods).

	Service Account & Token Controllers: Create default accounts and API access tokens for
new namespaces.

7.1.4. kube-scheduler

Kube-scheduler watches newly created pods that have no node assigned, and selects a node for them
to run on.

7.1.5. Kubelet

Kubelet is the primary node agent. It watches for pods that have been assigned to its node (either
by apiserver or via local configuration file) and:

	Mounts the pod’s required volumes.

	Downloads the pod’s secrets.

	Runs the pod’s containers via docker (or, experimentally, rkt).

	Periodically executes any requested container liveness probes.

	Reports the status of the pod back to the rest of the system, by creating a mirror pod if
necessary.

	Reports the status of the node back to the rest of the system.

7.1.6. Kube-proxy

Kube-proxy enables the Kubernetes service abstraction by maintaining network rules on the host and
performing connection forwarding.

7.1.7. Docker

Docker is used for running containers.

7.1.8. POD

A pod is a collection of containers and its storage inside a node of a Kubernetes cluster. It is
possible to create a pod with multiple containers inside it. For example, keeping a database container
and data container in the same pod.

7.2. Understand Kubernetes Networking in Compass configuration

The following figure shows the Kubernetes Networking in Compass configuration.

[image: Kubernetes Networking in Compass]
Fig 4. Kubernetes Networking in Compass

10. Offline Deploy

Compass4nfv uses a repo docker container as distro and pip package source
to deploy cluster and support complete offline deployment on a jumphost without
access internet. Here is the offline deployment instruction:

10.1. Preparation for offline deploy

	Download compass.tar.gz from OPNFV artifacts repository (Search compass4nfv in
http://artifacts.opnfv.org/ and download an appropriate tarball. Tarball can also be
generated by script build.sh in compass4nfv root directory.)

	Download the Jumphost preparation package from our httpserver. (Download the
jumphost environment package from
here [http://artifacts.opnfv.org/compass4nfv/package/master/jh_env_package.tar.gz].
It should be awared that currently we only support ubuntu trusty as offline
jumphost OS.)

	Clone the compass4nfv code repository.

10.2. Steps of offline deploy

	Copy the compass.tar.gz, jh_env_package.tar.gz and the compass4nfv code
repository to your jumphost.

	Export the local path of the compass.tar.gz and jh_env_package.tar.gz on
jumphost. Then you can perform deployment on a offline jumphost.

E.g.

Export the compass4nfv.iso and jh_env_package.tar.gz path

ISO_URL and JHPKG_URL should be absolute path
export ISO_URL=file:///home/compass/compass4nfv.iso
export JHPKG_URL=file:///home/compass/jh_env_package.tar.gz

	Open the OSA offline deployment switch on jumphost.

export OFFLINE_DEPLOY=Enable

	Run deploy.sh

./deploy.sh

3. Compass4nfv configuration

This document describes providing guidelines on how to install and
configure the Danube release of OPNFV when using Compass as a
deployment tool including required software and hardware
configurations.

Installation and configuration of host OS, OpenStack, OpenDaylight,
ONOS, Ceph etc. can be supported by Compass on Virtual nodes or Bare Metal
nodes.

The audience of this document is assumed to have good knowledge in
networking and Unix/Linux administration.

3.1. Preconditions

Before starting the installation of the Gambia release of OPNFV,
some planning must be done.

3.1.1. Retrieving the installation tarball

First of all, The installation tarball is needed for deploying your OPNFV
environment, it included packages of Compass, OpenStack, OpenDaylight, ONOS
and so on.

The stable release tarball can be retrieved via OPNFV software download page [https://www.opnfv.org/software]

The daily build tarball can be retrieved via OPNFV artifacts repository:

http://artifacts.opnfv.org/compass4nfv.html

NOTE: Search the keyword “compass4nfv/Gambia” to locate the tarball.

E.g.
compass4nfv/gambia/opnfv-2017-03-29_08-55-09.tar.gz

The name of tarball includes the time of tarball building, you can get the daily
tarball according the building time.
The git url and sha1 of Compass4nfv are recorded in properties files,
According these, the corresponding deployment scripts can be retrieved.

3.1.2. Getting the deployment scripts

To retrieve the repository of Compass4nfv on Jumphost use the following command:

	git clone https://gerrit.opnfv.org/gerrit/compass4nfv

NOTE: PLEASE DO NOT GIT CLONE COMPASS4NFV IN ROOT DIRECTORY(INCLUDE SUBFOLDERS).

To get stable/gambia release, you can use the following command:

	git checkout Gambia.1.0

3.2. Setup Requirements

If you have only 1 Bare Metal server, Virtual deployment is recommended. if more
than or equal 3 servers, the Bare Metal deployment is recommended. The minimum number of
servers for Bare metal deployment is 3, 1 for JumpServer(Jumphost), 1 for controller,
1 for compute.

3.2.1. Jumphost Requirements

The Jumphost requirements are outlined below:

	Ubuntu 14.04 (Pre-installed).

	Root access.

	libvirt virtualization support.

	Minimum 2 NICs.

	PXE installation Network (Receiving PXE request from nodes and providing OS provisioning)

	IPMI Network (Nodes power control and set boot PXE first via IPMI interface)

	External Network (Optional: Internet access)

	16 GB of RAM for a Bare Metal deployment, 64 GB of RAM for a Virtual deployment.

	CPU cores: 32, Memory: 64 GB, Hard Disk: 500 GB, (Virtual Deployment needs 1 TB Hard Disk)

3.3. Bare Metal Node Requirements

Bare Metal nodes require:

	IPMI enabled on OOB interface for power control.

	BIOS boot priority should be PXE first then local hard disk.

	Minimum 3 NICs.

	PXE installation Network (Broadcasting PXE request)

	IPMI Network (Receiving IPMI command from Jumphost)

	External Network (OpenStack mgmt/external/storage/tenant network)

3.4. Network Requirements

Network requirements include:

	No DHCP or TFTP server running on networks used by OPNFV.

	2-6 separate networks with connectivity between Jumphost and nodes.

	PXE installation Network

	IPMI Network

	Openstack mgmt Network*

	Openstack external Network*

	Openstack tenant Network*

	Openstack storage Network*

	Lights out OOB network access from Jumphost with IPMI node enabled (Bare Metal deployment only).

	External network has Internet access, meaning a gateway and DNS availability.

The networks with(*) can be share one NIC(Default configuration) or use an exclusive
NIC(Reconfigurated in network.yml).

3.5. Execution Requirements (Bare Metal Only)

In order to execute a deployment, one must gather the following information:

	IPMI IP addresses of the nodes.

	IPMI login information for the nodes (user/pass).

	MAC address of Control Plane / Provisioning interfaces of the Bare Metal nodes.

3.6. Configurations

There are three configuration files a user needs to modify for a cluster deployment.
network_cfg.yaml for openstack networks on hosts.
dha file for host role, IPMI credential and host nic idenfitication (MAC address).
deploy.sh for os and openstack version.

12. References

12.1. OPNFV

OPNFV Compass4nfv project page [https://wiki.opnfv.org/compass4nfv]

Tutoring videos [https://wiki.opnfv.org/display/compass4nfv/Compass+101]

12.2. OpenStack

OpenStack Newton Release artifacts [http://www.openstack.org/software/Newton]

12.3. OpenDaylight

OpenDaylight artifacts [http://www.opendaylight.org/software/downloads]

12.4. ONOS

ONOS artifacts [http://onosproject.org/software/]

12.5. Compass

Compass Home Page [http://www.syscompass.org/]

6. Installation on virtual machines

6.1. Quick Start

Only 1 command to try virtual deployment, if you have Internet access. Just Paste it and Run.

curl https://raw.githubusercontent.com/opnfv/compass4nfv/stable/gambia/quickstart.sh | bash

If you want to deploy noha with1 controller and 1 compute, run the following command

export SCENARIO=os-nosdn-nofeature-noha.yml
curl https://raw.githubusercontent.com/opnfv/compass4nfv/stable/gambia/quickstart.sh | bash

6.2. Nodes Configuration (Virtual Deployment)

6.2.1. virtual machine setting

	VIRT_CPUS – the number of CPUs allocated per virtual machine.

	VIRT_MEM – the memory size(MB) allocated per virtual machine.

	VIRT_DISK – the disk size allocated per virtual machine.

export VIRT_CPUS=${VIRT_CPU:-4}
export VIRT_MEM=${VIRT_MEM:-16384}
export VIRT_DISK=${VIRT_DISK:-200G}

6.2.2. roles setting

The below file is the inventory template of deployment nodes:

“./deploy/conf/vm_environment/huawei-virtual1/dha.yml”

The “dha.yml” is a collectively name for “os-nosdn-nofeature-ha.yml
os-ocl-nofeature-ha.yml os-odl_l2-moon-ha.yml etc”.

You can write your own address/roles reference to it.

	name – Host name for deployment node after installation.

	roles – Components deployed.

Set TYPE and FLAVOR

E.g.

TYPE: virtual
FLAVOR: cluster

Assignment of different roles to servers

E.g. Openstack only deployment roles setting

hosts:
 - name: host1
 roles:
 - controller
 - ha

 - name: host2
 roles:
 - compute

NOTE:
IF YOU SELECT MUTIPLE NODES AS CONTROLLER, THE ‘ha’ role MUST BE SELECT, TOO.

E.g. Openstack and ceph deployment roles setting

hosts:
 - name: host1
 roles:
 - controller
 - ha
 - ceph-adm
 - ceph-mon

 - name: host2
 roles:
 - compute
 - ceph-osd

E.g. Openstack and ODL deployment roles setting

hosts:
 - name: host1
 roles:
 - controller
 - ha
 - odl

 - name: host2
 roles:
 - compute

E.g. Openstack and ONOS deployment roles setting

hosts:
 - name: host1
 roles:
 - controller
 - ha
 - onos

 - name: host2
 roles:
 - compute

6.3. Network Configuration (Virtual Deployment)

The same with Baremetal Deployment.

6.4. Start Deployment (Virtual Deployment)

	Edit deploy.sh

	1.1. Set OS version for deployment nodes.

	Compass4nfv supports ubuntu and centos based openstack pike.

E.g.

Set OS version for target hosts
Ubuntu16.04 or CentOS7
export OS_VERSION=xenial
or
export OS_VERSION=centos7

1.2. Set ISO image corresponding to your code

E.g.

Set ISO image corresponding to your code
export ISO_URL=file:///home/compass/compass4nfv.tar.gz

1.3. Set scenario that you want to deploy

E.g.

nosdn-nofeature scenario deploy sample

DHA is your dha.yml's path
export DHA=./deploy/conf/vm_environment/os-nosdn-nofeature-ha.yml

NETWORK is your network.yml's path
export NETWORK=./deploy/conf/vm_environment/huawei-virtual1/network.yml

odl_l2-moon scenario deploy sample

DHA is your dha.yml's path
export DHA=./deploy/conf/vm_environment/os-odl_l2-moon-ha.yml

NETWORK is your network.yml's path
export NETWORK=./deploy/conf/vm_environment/huawei-virtual1/network.yml

odl_l2-nofeature scenario deploy sample

DHA is your dha.yml's path
export DHA=./deploy/conf/vm_environment/os-odl_l2-nofeature-ha.yml

NETWORK is your network.yml's path
export NETWORK=./deploy/conf/vm_environment/huawei-virtual1/network.yml

odl_l3-nofeature scenario deploy sample

DHA is your dha.yml's path
export DHA=./deploy/conf/vm_environment/os-odl_l3-nofeature-ha.yml

NETWORK is your network.yml's path
export NETWORK=./deploy/conf/vm_environment/huawei-virtual1/network.yml

odl-sfc deploy scenario sample

DHA is your dha.yml's path
export DHA=./deploy/conf/vm_environment/os-odl-sfc-ha.yml

NETWORK is your network.yml's path
export NETWORK=./deploy/conf/vm_environment/huawei-virtual1/network.yml

	Run deploy.sh

./deploy.sh

Compass4nfv Release Notes

	1. Abstract

	2. Introduction

	3. Release Data
	3.1. Deliverables
	3.1.1. Software deliverables

	3.1.2. Documentation deliverables

	3.2. Version change
	3.2.1. Module version change

	3.3. Reason for new version
	3.3.1. Feature additions

	3.3.2. Bug corrections

	4. Known Limitations, Issues and Workarounds
	4.1. System Limitations

	4.2. Scenario Limitations

	4.3. Known issues

	5. Test Result

 Release Note for the Gambia release of OPNFV when using Compass4nfv as a deployment tool.

1. Abstract

This document describes release notes of OPNFV when using Compass4nfv as a
deployment tool covering it’s features, limitations and required system resources.

2. Introduction

Compass4nfv is an OPNFV installer project based on open source project Compass,
which provides automated deployment and management of OpenStack and other distributed systems.
Please carefully follow the Installation Instructions to deploy OPNFV using Compass4nfv
installer.

3. Release Data

3.1. Deliverables

3.1.1. Software deliverables

	Compass4nfv/Gambia.1.0 tarball, please get it from OPNFV software download page [https://www.opnfv.org/software/]

3.1.2. Documentation deliverables

	OPNFV(Gambia) Compass4nfv installation instructions

	OPNFV(Gambia) Compass4nfv Release Notes

3.2. Version change

3.2.1. Module version change

This is the Gambia release of compass4nfv as a deployment toolchain in OPNFV, the following
upstream components supported with this release.

	Ubuntu 16.04.3/Centos 7.4

	Openstack (Queens release)

	Kubernates (1.9)

	Opendaylight (Nitrogen SR1 release)

3.3. Reason for new version

3.3.1. Feature additions

	JIRA REFERENCE

	SLOGAN

	COMPASS-549

	Real Time KVM

	
	OpenDaylight Nitrogen Support

	COMPASS-542

	Support OpenStack Ocata

	
	Support ODL SFC

	COMPASS-550

	Support OVS-DPDK

	COMPASS-495

	Yardstick Integration into Compass4nfv

3.3.2. Bug corrections

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	
	With no ceph, the cluster will heal
itself after a power failure or reboot

4. Known Limitations, Issues and Workarounds

4.1. System Limitations

Max number of blades: 1 Jumphost, 3 Controllers, 20 Compute blades

Min number of blades: 1 Jumphost, 1 Controller, 1 Compute blade

Storage: Ceph is the only supported storage configuration

Min Jumphost requirements: At least 16GB of RAM, 16 core CPU

4.2. Scenario Limitations

4.3. Known issues

5. Test Result

The Gambia release with the Compass4nfv deployment toolchain has undergone QA test
runs with the following results:

Functest: http://testresults.opnfv.org/reporting/gambia/functest/status-compass.html

Compass4NFV Scenarios

	os-nosdn-nofeature-ha
	Scenario components and composition

	Scenario usage overview

	Limitations, Issues and Workarounds

	References

	os-odl-nofeature-ha
	Scenario components and composition

	Scenario usage overview

	Limitations, Issues and Workarounds

	References

	os-odl-sfc-ha
	Scenario components and composition

	Scenario usage overview

	Limitations, Issues and Workarounds

	References

	k8s-nosdn-nofeature-ha
	Scenario components and composition

	Scenario usage overview

	Limitations, Issues and Workarounds

	References

 This document introduces scenario descriptions for Gambia 1.0 of
deployment with no SDN controller and no feature enabled.

	k8s-nosdn-nofeature-ha

	Scenario components and composition

	Scenario usage overview

	Limitations, Issues and Workarounds

	References

k8s-nosdn-nofeature-ha

This scenario is used to deploy an kubernets cluster.

Scenario components and composition

This scenario includes a set of kubernets services which are kubernets API Server,
Controller Manager, kube-proxy, kubelet,kube-dns,nginx-proxy,kubernetes-dashboard.
Nginx-proxy is used to balance all the services running on 3 control nodes behind
a VIP (Virtual IP address).

Scenario usage overview

To deploy with this scenario, you just need to assign the
k8s-nosdn-nofeature-ha.yaml to DHA file before deployment.

Limitations, Issues and Workarounds

References

For more information on the OPNFV Gambia release, please visit
http://www.opnfv.org/gambia

 This document introduces scenario descriptions for Gambia 1.0 of
deployment with no SDN controller and no feature enabled.

	os-nosdn-nofeature-ha

	Scenario components and composition

	Scenario usage overview

	Limitations, Issues and Workarounds

	References

os-nosdn-nofeature-ha

This scenario is used to deploy a Pike OpenStack deployment with
Ceph Luminous, and without SDN controller nor any NFV feature enabled.

Scenario components and composition

This scenario includes a set of common OpenStack services which are Nova,
Neutron, Glance, Cinder, Keystone, Heat, Ceilometer, Gnocchi, Aodh,
Horizon. Ceph is used as the backend of Cinder on deployed hosts. HAproxy
is used to balance all the services running on 3 control nodes behind a
VIP (Virtual IP address).

Scenario usage overview

To deploy with this scenario, you just need to assign the
os-nosdn-nofeature-ha.yaml to DHA file before deployment.

Limitations, Issues and Workarounds

References

For more information on the OPNFV Gambia release, please visit
http://www.opnfv.org/gambia

 This document introduces scenario descriptions for Gambia 1.0 of
deployment with the OpenDaylight controller and no feature enabled.

	os-odl-nofeature-ha

	Scenario components and composition

	Scenario usage overview

	Limitations, Issues and Workarounds

	References

os-odl-nofeature-ha

This scenario is used to deploy a Pike OpenStack deployment with
OpenDaylight Nitrogen SR1, Ceph Luminous, and without any NFV feature enabled.

Scenario components and composition

This scenario includes a set of common OpenStack services which are Nova,
Neutron, Glance, Cinder, Keystone, Heat, Ceilometer, Gnocchi, Aodh,
Horizon. Ceph is used as the backend of Cinder on deployed hosts. HAproxy
is used to balance all the services running on 3 control nodes behind a
VIP (Virtual IP address). OpenDaylight will also be deployed in this
scenario. ODL is also running in HA. Neutron communicates with ODL
through a VIP.

Scenario usage overview

To deploy with this scenario, you just need to assign the
os-odl-nofeature-ha.yaml to DHA file before deployment.

Limitations, Issues and Workarounds

References

For more information on the OPNFV Gambia release, please visit
http://www.opnfv.org/gambia

 This document introduces scenario descriptions for Gambia 1.0 of
deployment with the OpenDaylight controller and SFC feature enabled.

	os-odl-sfc-ha

	Scenario components and composition

	Scenario usage overview

	Limitations, Issues and Workarounds

	References

os-odl-sfc-ha

This scenario is used to deploy a Pike OpenStack deployment with
OpenDaylight Nitrogen SR1, Ceph Luminous, and SFC feature enabled.

Scenario components and composition

This scenario includes a set of common OpenStack services which are Nova,
Neutron, Glance, Cinder, Keystone, Heat, Ceilometer, Gnocchi, Aodh,
Horizon. Ceph is used as the backend of Cinder on deployed hosts. HAproxy
is used to balance all the services running on 3 control nodes behind a
VIP (Virtual IP address). OpenDaylight will also be deployed in this
scenario. ODL is also running in HA. Neutron communicates with ODL
through a VIP. Open vSwitch with NSH patched is used instead of native
Open vSwitch to support ODL SFC. Neutron communicates with ODL SFC to
create port pair, classifier, port chain and etc.

Scenario usage overview

To deploy with this scenario, you just need to assign the
os-odl-nofeature-ha.yaml to DHA file before deployment.

Limitations, Issues and Workarounds

References

For more information on the OPNFV Gambia release, please visit
http://www.opnfv.org/gambia

1. What is Compass4nfv

Compass4nfv is an installer project based on open source project Compass,
which provides automated deployment and management of OpenStack and other distributed systems.
It can be considered as what the LiveCD to a single box for a pool of servers – bootstrapping
the server pool.

see more information, please visit

OPNFV Compass4nfv project page [https://wiki.opnfv.org/compass4nfv]

COMPASS Home Page [http://www.syscompass.org/]

2. What’s the additional setting in switch if use the default network configuration

Here is the Compass4nfv default network configration file:
compass4nfv/deploy/conf/hardware_environment/huawei-pod1/network.yml
OR
compass4nfv_FAQ/deploy/conf/vm_environment/huawei-virtual1/network.yml

It uses a VLAN network for mgmt and storage networks that are share one NIC(eth1) as a
default network configuration. So you need add an additional tagged VLAN (101) and VLAN (102) on
eth1’s switch for access.

3. How to deal with installation failure caused by setting pxe and reset nodes failed

At first, please make sure that deployed nodes’ ipmi network can access from Jumphost and
IPMI user/pass is correct.

Compass4nfv supports IPMI 1.0 or IPMI 2.0 to control your nodes, so you can set it according your IPMI
version in dha.yml.

ipmiVer: '2.0'

4. How to deal with installation failure caused by “The Server quit without updating PID file”

If you see “The Server quit without updating PID file” in installation print log, it is caused by
mgmt network can’t access from each deployed nodes, so you need to check your switch setting whether
an additional tagged VLAN is added if uses default network configuration.

5. How to set OpenStack Dashboard login user and password

It uses admin as the default user for OpenStack Dashboard. The password can be achieved as below:

sudo docker cp compass-tasks:/opt/openrc ./
sudo cat openrc | grep OS_PASSWORD

6. How to visit OpenStack Dashboard

For vm deployment, because NAT bridge is used in virtual deployment, horizon can not be access directly
in external IP address. you need to cofigure the related IPtables rule at first.

iptables -t nat -A PREROUTING -d $EX_IP -p tcp --dport $PORT -j DNAT --to 192.16.1.222:443

The $EX_IP here is the server’s ip address that can be access from external.
You can use below command to query your external IP address.

external_nic=`ip route |grep '^default'|awk '{print $5F}'
ip addr show $external_nic

The $PORT here is the one of the port [1- 65535] that does’t be used in system.

After that, you can visit OpenStack Dashboard by URL: http://$EX_IP:$PORT

7. How to access controller nodes after deployment

You can login the controller nodes (host1-3) by default user/pass root/root via the install
network IPs which are configured in “compass4nfv/deploy/conf/base.conf”, defined as below:

export MANAGEMENT_IP_START=${MANAGEMENT_IP_START:-'10.1.0.50'}

 +-------------+
 | |
 +----------+ host1 |
 | | |
 | +-------------+
 |
 +---------+ | +-------------+
 | | install | | |
 | Compass +---------------+----------+ host2 |
 | | network | | |
 +---+VM+--+ | +-------------+
+--------------------+ |
| | | +-------------+
| Jumphost | | | |
| | +----------+ host3 |
+--------------------+ | |
 +-------------+

8. Where is OpenStack RC file

The RC file named openrc is located in /root in utility container on each controller node as default.
Please source it first if you want to use OpenStack CLI.

lxc-attach -n $(lxc-ls | grep utility)
source /root/openrc

9. How to recovery network connection after Jumphost reboot

source deploy/network.sh && save_network_info

10. How to use Kubernetes CLI

10.1. Login one of the controllers

There are 3 controllers referring to host1 to host3 with IPs from 10.1.0.50 to 10.1.0.52.
The username of the nodes is root, and the password is root.

ssh root@10.1.0.50

10.2. Run the Kubernetes command

Kubectl controls the Kubernetes cluster manager.

kubectl help

10.3. Follow the k8s example to create a ngnix service

To create a nginx service, please read Ref[2] at the end of this page.

11. References

11.1. [1]

For more information on the Compass4nfv FAQ, please visit

COMPASS FAQ WIKI Page [https://wiki.opnfv.org/compass4nfv_faq]

11.2. [2]

K8s Get-Started Page [http://containertutorials.com/get_started_kubernetes/k8s_example.html]

Compass4nfv Frequently Asked Questions

	1. What is Compass4nfv

	2. What’s the additional setting in switch if use the default network configuration

	3. How to deal with installation failure caused by setting pxe and reset nodes failed

	4. How to deal with installation failure caused by “The Server quit without updating PID file”

	5. How to set OpenStack Dashboard login user and password

	6. How to visit OpenStack Dashboard

	7. How to access controller nodes after deployment

	8. Where is OpenStack RC file

	9. How to recovery network connection after Jumphost reboot

	10. How to use Kubernetes CLI
	10.1. Login one of the controllers

	10.2. Run the Kubernetes command

	10.3. Follow the k8s example to create a ngnix service

	11. References
	11.1. [1]

	11.2. [2]

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/multi_nics.png
Jump Host

{

Compass Containers

compass- compass-
tasks-osa cobbler

ternet

br_external nat (NAT)
192.16.1.024

Controller(VM)

neutron_agent Ixc

cinder_api Ixc

[eth1 | [etmiz ethl0]

[em1

br-external br-tenant

Compute(VM)

ethl eth2

eth3

Storage(VM)

_images/repo_features.png
root@v1288-2:/home/yifei/compass4nfv/repo/features# tree

|-- Dockerfile

“-- scripts
|-- download_java.sh
*-- download_odl.sh

_images/compass_arch.png
Restful API/Web Service
mirrors service

Compass-repo-osa Compass-repo-k8s
T T
.

Compass-deck
mq database
Compass-cobbler || Compass-tasks openstack”

i
i
i
i
i
C

OS provisioning

Compass-tasks-osa

Packages installing

_images/k8s.png
System POD

Service POD

Install & memt network

Container service network

Jump Host

Compass Containers

compass-
deck

complss- complss-

compass- compass-
cobbler

. R

Kube-master

eth0 {

Kube-node

kube-proxy

kubelet

eth0 {

_images/single_nic.png
Jump Host

Controller(VM)

neutron_agent_Ixc cinder_api_Ixc
[ern |[emiz en10] | | [em1] [emz

Compass Containers br-external br-tenant

eth1.101 eth1.102

compass- compass-
tasks-osa cobbler

Compute(VM)

eth1.101 eth1.102

eth1 f—L T

ternet br_external nat (NAT)

192.16.1.0/24

{

Storage(VM)

eth1.101 eth1.102

|_I—I

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/Moon.png
root@v1288-2:/home/yifei/compass4nfv/deploy/adapters/ansible/roles/moon# tree

I-- files

| |-- controllers.py

| |-~ deb.conf

| *-- get_deb_depends.py
I-- handlers

I “-- main.yml

|-~ tasks

| I-- main.yml

| |-- moon-compute.yml
| |-- moon-controller.yml
I “-- moon.yml
|-- templates
| |-- admin-openrc.sh
| |-- api-paste.ini
| |-- demo-openrc.sh
| |-- keystone.conf
| |-- keystone-paste.ini
| |-- proxy-server.conf
| -- wsgi-keystone.conf.j2
t-- vars
|-- Debian.yml
I-- main.yml
*-- RedHat.yml

_static/up.png

_images/architecture.png
kubectl (user commands)

authentication
authorization

REST
(pods, services,
rep. controllers)

scheduling
actu

Scheduler controller manager
5 I (replication controller etc.)

Master components Distributed
Colocated, or spread across machines, Watchable
as dictated by cluster size. Storage

(implemented via etcd)

Firewall

[Iy

II

Pod

II

Node

kubelet

Pod

e Iy

Pod

II

docker

Pod

e II

_images/Existed_roles.png
root@v1288-2:/home/yifei/compassé4nfv/deploy/adapters/ansible/roles# 1s

aodh ceph-osd dashboard memcached nova-compute setup-network
apache ceph-purge database monitor nova-controller storage
boot-recovery cinder-controller ext-network moon odl_cluster swift
ceilometer_compute cinder-volume glance mq odl_cluster_neutron tacker
ceilometer_controller common ha neutron-common odl_cluster_post

ceph-config compute-recovery heat neutron-compute onos_cluster

ceph-mon congress keystone neutron-controller openstack-post

ceph-openstack controller-recovery kvmfornfv neutron-network secgroup

_static/up-pressed.png

