
OpenXC for Python Documentation
Release 2.2.0

Christopher Peplin

Aug 11, 2021

Contents

1 Installation 3

2 Command Line Tools 5

3 Example Code 15

4 Vehicle Data API Reference 17

5 Contributing 33

Python Module Index 35

Index 37

i

ii

OpenXC for Python Documentation, Release 2.2.0

Version 2.2.0

Web http://openxcplatform.com

Download http://pypi.python.org/pypi/openxc/

Documentation http://python.openxcplatform.com

Source http://github.com/openxc/openxc-python/

The OpenXC Python library (for Python 3.6) provides an interface to vehicle data from the OpenXC Platform. The
primary platform for OpenXC applications is Android, but for prototyping and testing, often it is preferrable to use a
low-overhead environment like Python when developing.

In addition to a port of the Android library API, the package also contains a number of command-line tools for
connecting to the vehicle interface and manipulating previously recorded vehicle data.

This Python package works with Python 3.6. For python 2.7 support use version 0.15.0.

For general documentation on the OpenXC platform, visit the main OpenXC site.

Contents 1

http://openxcplatform.com
http://pypi.python.org/pypi/openxc/
http://python.openxcplatform.com
http://github.com/openxc/openxc-python/
http://openxcplatform.com

OpenXC for Python Documentation, Release 2.2.0

2 Contents

CHAPTER 1

Installation

1.1 Install Python and Pip

This library (obviously) requires a Python language runtime - the OpenXC library supports python 3.x only, for python
2.x support use version 0.15.0.

• Mac OS X and Linux

Mac OS X and most Linux distributions already have a compatible Python installed. Run python
--version from a terminal to check - you need a 3.6.x version, such as 3.6.8.

• Windows

1. Download and run the Python 3.6.x MSI installer. Make sure to select to option to Add python.exe
to Path.

2. Add the Python Scripts directory your PATH: PATH=%PATH%;
C:\Users\%username%\AppData\Local\Programs\Python\Python36-32\Scripts.
If you aren’t sure how to edit your PATH, see this guide for all versions of Windows. Log out and back in
for the change to take effect.

3. Install pip, a Python package manager by saving the get-pip.py script to a file and running it from a
terminal.

• Cygwin

From the setup.exe package list, select the python and python-setuptools packages.
Then, inside Cygwin install pip using easy_install:

$ easy_install pip

1.2 Install the openxc Package

You can install or upgrade the OpenXC library from the Python Package Index (PyPI) with pip at the command line:

3

https://www.python.org/downloads/
https://www.java.com/en/download/help/path.xml
https://pip.pypa.io/en/latest/installing.html#install-pip

OpenXC for Python Documentation, Release 2.2.0

$ [sudo] pip install -U openxc

1.3 USB Backend

If you intend to use the library to connect to a vehicle interface via USB, you must also install a native USB backend
- libusb-1.0 is the recommended library.

• Mac OS X

First install Homebrew, then run:

$ brew install libusb

• Ubuntu

libusb is available in the main repository:

$ sudo apt-get install libusb-1.0-0

• Arch Linux

Install libusb using pacman:

$ sudo pacman -S libusbx

• Windows

Download and install the OpenXC VI USB driver. You must install the driver manually through the
Device Manager while the VI is plugged in and on - either running the emulator firmware so it never
turns off, or plugged into a real car.

• Cygwin

Install the VI USB driver as in a regular Windows installation.

If you get the error Skipping USB device: [Errno 88] Operation not
supported or unimplemented on this platform when you run any of the OpenXC
Python tools, make sure you do not have the libusb Cygwin package installed - that is explicitly
not compatible.

1.4 Using the development version

You can clone the repository and install the development version like so:

$ git clone https://github.com/openxc/openxc-python
$ cd openxc-python
$ pip install -e .

Any time you update the clone of the Git repository, all of the Python tools will be updated too.

4 Chapter 1. Installation

http://mxcl.github.com/homebrew/
https://github.com/openxc/vi-windows-driver

CHAPTER 2

Command Line Tools

With all tools, the library will attempt to autodetect the payload format being used by the VI. If it’s not sending any
messages this is not possible, so you may need to provide the current payload format explicitly with the --format
flag. For example, here’s a command to change the passthrough status of bus 1, but with the payload format for the
request explicitly set the protocol buffers:

$ openxc-control set --bus 1 --passthrough --format protobuf

The following links describe the available openxc-python commands.

2.1 openxc-generate-firmware-code - configure CAN messages,
signals and buses

The OpenXC vehicle interface firmware uses a JSON-formatted configuration file to set up CAN messages, signals
and buses. The configuration options and many examples are included with the VI firmware docs. The configuration
file is used to generate C++ that is compiled with the open source firmware.

The OpenXC Python library contains a command line tool, openxc-generate-firmware-code, that can parse
VI configuration files and generate a proper C++ implementation to compile the VI firmware.

Once you’ve created a VI configuration file, run the openxc-generate-firmware-code tool to create an im-
plementation of the functions in the VI’s signals.h. In this example, the configuration is in the file mycar.json.

$ openxc-generate-firmware-code --message-set mycar.json > signals.cpp

2.2 openxc-control - write messages to the VI and change its set-
tings

openxc-control is a command-line tool that can send control messages to an attached vehicle interface.

5

http://vi-firmware.openxcplatform.com
http://vi-firmware.openxcplatform.com/en/latest/config/config.html

OpenXC for Python Documentation, Release 2.2.0

2.2.1 Basic use

version

Print the current firmware version and firmware description of the attached CAN translator:

$ openxc-control version

An example response is v7.2.1 (default), where the default firmware description can be modified in
the JSON file via the "name" entry. The first example in Low-level CAN Features would return a value of
passthrough.

id

Print the unique ID of the VI, if it has one. This is often the MAC address of the Bluetooth module.

$ openxc-control id

platform

Print the hardware platform of the vehicle interface.

$ openxc-control platform

Supported platforms include CHIPKIT, BLUEBOARD, FORDBOARD, CROSSCHASM_C5, CROSSCHASM_C5_BT,
CROSSCHASM_C5_BLE, and CROSSCHASM_C5_CELLULAR

set

Modify the run-time configuration of the VI. Currently, you can change the acceptance filter (AF) bypass status,
passthrough CAN message output, and the payload format used from the OpenXC message format.

Enable and disable CAN AF bypass for a bus:

$ openxc-control set --bus 1 --af-bypass
$ openxc-control set --bus 1 --no-af-bypass

Enable and disable passthrough of CAN messages to the output interface (e.g. USB or Bluetooth):

$ openxc-control set --bus 1 --passthrough
$ openxc-control set --bus 1 --no-passthrough

Change the payload format to Protocol Buffers, then back to JSON:

$ openxc-control set --new-payload-format json
$ openxc-control set --new-payload-format protobuf

Change the time for the RTC unit on the C5 devices:

$ openxc-control set --time 1461545558

Set the host and port for the C5 Cellular device

6 Chapter 2. Command Line Tools

http://vi-firmware.openxcplatform.com/en/master/advanced/lowlevel.html

OpenXC for Python Documentation, Release 2.2.0

$ openxc-control set --host www.server.com --port 80

This will return true when successful. If network-host is supplied, but not port, port will default to 80.

write

Send a write request to the VI, either for a simple vehicle message write (to be translated by the VI to a CAN message),
or a raw CAN message.

To write a simple vehicle message, the --name and --value parameters are required. The --event parameter is
optional.

$ openxc-control write --name turn_signal_status --value left

To write a CAN messages, the --bus, --id and --data parameters are required. data should be a hex string.

$ openxc-control write --bus 1 --id 0x124 --data 0x0234567812345678

A CAN message with an ID greater than can be represented with 11 bits will automatically be sent using the extended
frame format. If you want to send a message with a lower ID using the extended frame format, you can use the
--frame-format flag:

$ openxc-control write --bus 1 --id 0x124 --data 0x0234567812345678 --frame-format
→˓extended

Note: The vehicle interface must be running firmware that supports CAN writes, and must allow writing the specific
message that you request with openxc-control.

sd_mount_status

This queries the device to see if the SD card is mounted correctly.

$ openxc-control sd_mount_status

This will return ‘True’ if the SD card is available for writing. Otherwise, it will return ‘False’.

2.2.2 Command-line options

An overview of all possible command line options can be found via --help.

2.3 openxc-dashboard - an ncurses UI to view data received from a
VI

openxc-dashboard is a command-line tool that displays the current values of all OpenXC messages simultane-
ously. The dashboard uses curses to draw a basic GUI to the terminal.

Only OpenXC messages in the official public set will be displayed. Unofficial messages may be received, but will not
appear on the dashboard.

For each message type, the dashboard displays:

2.3. openxc-dashboard - an ncurses UI to view data received from a VI 7

OpenXC for Python Documentation, Release 2.2.0

• Message name

• Last received value

• A simple graph of the current value and the range seen

• Total number received since the program started

• A rough calculation of the frequency the message is sent in Hz

If the terminal window is not wide enough, only a subset of this data will be displayed. The wider you make the
window, the more you’ll see. The same goes for the list of messages - if the window is not tall enough, the message
list will be truncated.

The dashboard also displays some overall summary data:

• Total messages received of any type

• Total amount of data received over the source interface

• Average data rate since the program started

If the number of message types is large, you can scroll up and down the list with the arrow keys or Page Up / Page
Down keys.

This is a screenshot of the dashboard showing all possible columns of data.

This screenshot shows the dashboard displaying raw CAN messages (the vehicle interface must have CAN passthrough
enabled).

8 Chapter 2. Command Line Tools

OpenXC for Python Documentation, Release 2.2.0

2.3.1 Basic use

Open the dashboard:

$ openxc-dashboard

Use a custom USB device:

$ openxc-dashboard --usb-vendor 4424

Use a a vehicle interface connected via serial instead of USB:

$ openxc-dashboard --serial --serial-device /dev/ttyUSB1

The serial-device option is only required if the virtual COM port is different than the default /dev/ttyUSB0.

Play back a trace file in real-time:

$ openxc-dashboard --trace monday-trace.json

2.3.2 Command-line options

An overview of all possible command line options can be found via --help.

2.4 openxc-diag - Send and receive OBD-II diagnostic messages

openxc-diag is a command-line tool for adding new recurring or one-time diagnostic message requests through a
vehicle interface.

2.4.1 Perform a single diagnostic request

This example will add a new one-time diagnostic request - it will be sent once, and any respones will be printed to the
terminal via stdout. The --message and --mode options are required. This particular request sends a functional
broadcast request (ID 0x7df) for the mode 3 service, to store a “freeze frame”. See the Unified Diagnostics Service
and On-Board Diagnostics standards for more information on valid modes.

The bus option is not required; the VI wlil use its default configured CAN bus if one is not specified.

$ openxc-diag add --message 0x7df --mode 0x3

Note: The vehicle interface must be running firmware that supports diagnostic requests.

2.4.2 Add a recurring diagnostic request

This example will register a new recurring diagnostic request with the vehicle interface. It will request the OBD-II
engine speed parameter at 1Hz, so if you subseqeuntly run the openxc-dump command you will be able to read the
responses.

$ openxc-diag add --message 0x7df --mode 0x1 --pid 0xc --frequency 1

2.4. openxc-diag - Send and receive OBD-II diagnostic messages 9

OpenXC for Python Documentation, Release 2.2.0

2.4.3 Cancel an existing recurring diagnostic request

This example will cancel the recurring diagnostic request we added in the previous example. Deleting requests also
uses the combination of bus, ID, mode and PID to identify a request.

$ openxc-diag cancel --message 0x7df --mode 0x1 --pid 0xc

2.4.4 Cancelling a non-recurring diagnostic request

If you’re wondering why there are no examples of canceling an existing request that is not recurring, it’s because they
either complete or timeout withing 1 second, so there’s no reason to try and modify them.

2.4.5 Command-line options

A description overview of all possible command line options can be found via --help.

2.5 openxc-dump - view the unfiltered stream of data from a VI

openxc-dump is a command-line tool to view the raw data stream from an attached vehicle interface or trace file. It
attempts to read OpenXC messages from the interface specified at the command line (USB, Bluetooth (Linux), serial
a trace file) and prints each message received to stdout.

2.5.1 Basic use

View everything:

$ openxc-dump

View only a particular message:

$ openxc-dump | grep steering_wheel_angle

Use a custom USB device:

$ openxc-dump --usb-vendor 4424

Use a vehicle interface connected via serial instead of USB:

$ openxc-dump --serial --serial-device /dev/ttyUSB1

The serial-device option is only required if the virtual COM port is different than the default /dev/ttyUSB0.

Use a VI with a Bluetooth adapter (this is only supported when connecting from Linux at the moment):

$ openxc-dump --bluetooth

This will scan and discover for an OpenXC VI, connect and start streaming the data. If you know the MAC address,
you can also provide that explicitly with the --bluetooth-address flag.

Play back a trace file in real-time:

10 Chapter 2. Command Line Tools

OpenXC for Python Documentation, Release 2.2.0

$ openxc-dump --trace monday-trace.json

2.5.2 Command-line options

An overview of all possible command line options can be found via --help.

2.5.3 Traces

You can record a trace of JSON messages from the CAN reader with openxc-dump. Simply redirect the output to a
file, and you’ve got your trace. This can be used directly by the openxc-android library, for example.

$ openxc-dump > vehicle-data.trace

2.6 openxc-gps - convert a vehicle data stream to GPX format

openxc-gps is a command-line tool to convert a raw OpenXC data stream that includes GPS information (namely
latitude and longitude) into one of a few popular formats for GPS traces. The output file is printed to stdout, so the
output must be redirected to save it to a file.

The only format currently supported is .gpx, which can be imported by Google Earth, the Google Maps API and many
other popular tools.

2.6.1 Basic use

Convert a previously recorded OpenXC JSON trace file to GPX:

$ openxc-gps --trace trace.json > trace.gpx

Convert a real-time stream from a USB vehicle interface to GPX in real-time (using all defaults, and printing to stdout):

$ openxc-gps

2.6.2 Command-line options

An overview of all possible command line options can be found via --help.

2.7 openxc-obd2scanner - detect OBD-II PIDs supported by a vehi-
cle

openxc-obd2scanner is a simple and quick tool to check what OBD-II PIDs a vehicle actually supports. It
sequentially scans all valid PIDs and prints the responses to stdout.

2.6. openxc-gps - convert a vehicle data stream to GPX format 11

OpenXC for Python Documentation, Release 2.2.0

2.7.1 Basic use

$ openxc-obd2scanner

2.7.2 Command-line options

A description overview of all possible command line options can be found via --help.

2.8 openxc-scanner - scanner for determining support diagnostic
requests

openxc-scanner is a is a rudimentary diagnostic scanner that can give you a high level view of the what message
IDs are used by modules on a vehicle network and to which diagnostics services they (potentially) respond.

When you run openxc-scanner, it will send a Tester Present diagnostic request to all possible 11-bit CAN message
IDs (or arbitration IDs). For each module that responds, it then sends a blank request for each possible diagnostic
service to the module’s arbitration ID. Finally, for each service that responded, it fuzzes the payload field to see if
anything interesting can happen.

Make sure you do not run this tool while operating your car. The Tester Present message can put modules into
diagnostic modes that aren’t safe for driving, or other unexpected behaviors may occur (e.g. your powered driver’s
seat may reset the position, or the powered trunk may open up).

2.8.1 Basic use

There’s not much to it, just run it and view the results. It may take a number of minutes to complete the scan if there
are many active modules.

$ openxc-scanner

2.8.2 Scanning a specific message ID

If you wish to scan only a single message ID, you can skip right to it:

$ openxc-scanner --message 0x7e0

2.8.3 Command-line options

A description overview of all possible command line options can be found via --help.

2.9 openxc-trace-split - split merged OpenXC trace files into sep-
arate trips

openxc-trace-split is a command-line tool to re-split a collection of previously recorded OpenXC trace files
by different units of time.

12 Chapter 2. Command Line Tools

OpenXC for Python Documentation, Release 2.2.0

Often, trace files are recorded into arbitrarily sized chunks, e.g. a new trace file every hour. The trace files are often
most useful if grouped into more logical chunks e.g. one “trip” in the vehicle.

This tool accepts a list of JSON trace files as arguments, reads them into memory and sorts by time, then re-splits the
file into new output files based on the requested split unit. The unit is “trips” by default, which looks for gaps of 5
minutes or more in the trace files to demarcate the trips.

The output files are named based on the timestamp of the first record recorded in the segment.

2.9.1 Basic use

Re-combine two trace files and re-split by trip (the default split unit) instead of the original day splits:

$ openxc-trace-split monday.json tuesday.json

Re-combine two trace files and re-split by hour instead of the original day splits:

$ openxc-trace-split --split hour monday.json tuesday.json

Re-split an entire directory of JSON files by trip

$ openxc-trace-split *.json

2.9.2 Command-line options

A quick overview of all possible command line options can be found via --help.

-s, --split <unit>
Change the time unit used to split trace files - choices are day, hour and trip. The default unit is trip,
which looks for large gaps of time in the trace files where no data was recorded.

2.9. openxc-trace-split - split merged OpenXC trace files into separate trips 13

OpenXC for Python Documentation, Release 2.2.0

14 Chapter 2. Command Line Tools

CHAPTER 3

Example Code

Read an unfiltered stream of OpenXC messages from a USB vehicle interface:

from openxc.interface import UsbVehicleInterface

def receive(message, **kwargs):
this callback will receive each message received as a dict
print(message['name'])

vi = UsbVehicleInterface(callback=receive)
vi.start()
This will block until the connection dies or you exit the program
vi.join()

If you want to connect to a Bluetooth interface (currently only supported in Linux), just replace
UsbVehicleInterface with BluetoothVehicleInterface.

The base VehicleInterface classes all implement the Controller API, which also supports writing CAN
messages, creating diagnostic requests and sending configuration commands to the VI.

For example, to create a diagnostic request and wait for responses:

message_id = 42
mode = 1
bus = 1
pid = 3

responses = vi.create_diagnostic_request(message, mode,
bus=bus, pid=pid, wait_for_first_response=True)

To write a low-level CAN message (the VI must be configured to allow this):

vi.write(bus=1, id=42, data="0x1234567812345678")

To put the CAN acceptance filter in bypass mode for bus 1:

15

OpenXC for Python Documentation, Release 2.2.0

vi.set_passthrough(1, true)

There are many more commands and options, and most have documented APIs in the code base. You are encouraged
you to dig around as the library is fairly small and should be easy to grok. More examples and documentation would
be a most welcome contribution!

16 Chapter 3. Example Code

CHAPTER 4

Vehicle Data API Reference

4.1 Controllers

Contains the abstract interface for sending commands back to a vehicle interface.

class openxc.controllers.base.CommandResponseReceiver(queue, request,
quit_after_first=True)

A receiver that matches the ‘command’ field in responses to the original request.

Construct a new ResponseReceiver.

queue - A multithreading queue that this receiver will pull potential responses from. request - The request we
are trying to match up with a response.

class openxc.controllers.base.Controller
A Controller is a physical vehicle interface that accepts commands to be send back to the vehicle. This class is
abstract, and implementations of the interface must define at least the write_bytes method.

complex_request(request, wait_for_first_response=True)
Send a compound command request to the interface over the normal data channel.

request - A dict storing the request to send to the VI. It will be serialized to the currently selected out-
put format.

wait_for_first_response - If true, this function will block waiting for a response from the VI and re-
turn it to the caller. Otherwise, it will send the command and return immediately and any response
will be lost.

create_diagnostic_request(id, mode, bus=None, pid=None, frequency=None, pay-
load=None, wait_for_ack=True, wait_for_first_response=False,
decoded_type=None)

Send a new diagnostic message request to the VI

Required:

id - The message ID (arbitration ID) for the request. mode - the diagnostic mode (or service).

Optional:

17

OpenXC for Python Documentation, Release 2.2.0

bus - The address of the CAN bus controller to send the request, either 1 or 2 for current VI hard-
ware.

pid - The parameter ID, or PID, for the request (e.g. for a mode 1 request).

frequency - The frequency in hertz to add this as a recurring diagnostic requests. Must be greater
than 0, or None if it is a one-time request.

payload - A bytearray to send as the request’s optional payload. Only single frame diagnostic re-
quests are supported by the VI firmware in the current version, so the payload has a maximum length
of 6.

wait_for_ack - If True, will wait for an ACK of the command message. wait_for_first_response - If True,
this function will block waiting for

a diagnostic response to be received for the request. It will return either after timing out or after
1 matching response is received - there may be more responses to functional broadcast requests
that arrive after returning.

Returns a tuple of

([list of ACK responses to create request], [list of diagnostic responses received])

delete_diagnostic_request(id, mode, bus=None, pid=None)

device_id()
Request the unique device ID of the attached VI.

get_vin()
Request vehicle VIN

modem_configuration(host, port)
Set the host:port for the Cellular device to send data to.

Returns True if the command was successful.

platform()
Request the VI platform.

rtc_configuration(unix_time)
Set the Unix time if RTC is supported on the device.

Returns True if the command was successful.

sd_mount_status()
Request for SD Mount status if available.

set_acceptance_filter_bypass(bus, bypass)
Control the status of CAN acceptance filter for a bus.

Returns True if the command was successful.

set_passthrough(bus, enabled)
Control the status of CAN message passthrough for a bus.

Returns True if the command was successful.

set_payload_format(payload_format)
Set the payload format for messages sent to and from the VI.

Returns True if the command was successful.

set_predefined_obd2_requests(enabled)
Control if pre-defined OBD2 requests should be sent.

18 Chapter 4. Vehicle Data API Reference

OpenXC for Python Documentation, Release 2.2.0

Returns True if the command was successful.

stop()

version()
Request a firmware version identifier from the VI.

write(**kwargs)
Serialize a raw or translated write request and send it to the VI, following the OpenXC message format.

write_bytes(data)
Write the bytes in data to the controller interface.

write_raw(id, data, bus=None, frame_format=None)
Send a raw write request to the VI.

write_translated(name, value, event=None)
Send a translated write request to the VI.

exception openxc.controllers.base.ControllerError

class openxc.controllers.base.DiagnosticResponseReceiver(queue, request)
A receiver that matches the bus, ID, mode and PID from a diagnostic request to an incoming response.

class openxc.controllers.base.MultiframeDiagnosticMessage(response)

addFrame(response)

getResponse()

class openxc.controllers.base.ResponseReceiver(queue, request, quit_after_first=True)
All commands to a vehicle interface are asynchronous. This class is used to wait for the response for a particular
request in a thread. Before making a request, a ResponseReceiver is created to wait for the response. All
responses received from the VI (which may or may not be in response to this particular command) are passed to
the ResponseReceiver, until it either times out waiting or finds a matching response.

The synchronization mechanism is a multiprocessing Queue. The ResponseReceiver blocks waiting on a new
response to be added to the queue, and the vehicle interface class puts newly received responses in the queues
of ResponseReceivers as they arrive.

Construct a new ResponseReceiver.

queue - A multithreading queue that this receiver will pull potential responses from. request - The request we
are trying to match up with a response.

COMMAND_RESPONSE_TIMEOUT_S = 0.5

handle_responses()
Block and wait for responses to this object’s original request, or until a timeout
(self.COMMAND_RESPONSE_TIMEOUT_S).

This function is handy to use as the target function for a thread.

The responses received (or None if none was received before the timeout) is stored in a list at self.responses.

start()

wait_for_responses()
Block the thread and wait for the response to the given request to arrive from the VI. If no matching
response is received in COMMAND_RESPONSE_TIMEOUT_S seconds, returns anyway.

Controller implementation for a virtual serial device.

4.1. Controllers 19

OpenXC for Python Documentation, Release 2.2.0

class openxc.controllers.serial.SerialControllerMixin
An implementation of a Controller type that connects to a virtual serial device.

This class acts as a mixin, and expects self.device to be an instance of serial.Serial.

TODO Bah, this is kind of weird. refactor the relationship between sources/controllers.

WAITIED_FOR_CONNECTION = False

complex_request(request, blocking=True)
Send a compound command request to the interface over the normal data channel.

request - A dict storing the request to send to the VI. It will be serialized to the currently selected out-
put format.

wait_for_first_response - If true, this function will block waiting for a response from the VI and re-
turn it to the caller. Otherwise, it will send the command and return immediately and any response
will be lost.

write_bytes(data)
Write the bytes in data to the controller interface.

Controller implementation for an OpenXC USB device.

class openxc.controllers.usb.UsbControllerMixin
An implementation of a Controller type that connects to an OpenXC USB device.

This class acts as a mixin, and expects self.device to be an instance of usb.Device.

TODO bah, this is kind of weird. refactor the relationship between sources/controllers.

COMPLEX_CONTROL_COMMAND = 131

out_endpoint
Open a reference to the USB device’s only OUT endpoint. This method assumes that the USB device
configuration has already been set.

write_bytes(data)
Write the bytes in data to the controller interface.

4.2 Data Formats

JSON formatting utilities.

class openxc.formats.json.JsonFormatter

classmethod deserialize(message)

classmethod serialize(data)

class openxc.formats.json.JsonStreamer

SERIALIZED_COMMAND_TERMINATOR = b'\x00'

parse_next_message()

serialize_for_stream(message)

20 Chapter 4. Vehicle Data API Reference

OpenXC for Python Documentation, Release 2.2.0

4.3 Measurements

Vehicle data measurement types pre-defined in OpenXC.

class openxc.measurements.AcceleratorPedalPosition(value, **kwargs)

name = 'accelerator_pedal_position'

class openxc.measurements.BooleanMeasurement(value, **kwargs)

DATA_TYPE
alias of builtins.bool

class openxc.measurements.BrakePedalStatus(value, **kwargs)

name = 'brake_pedal_status'

class openxc.measurements.ButtonEvent(value, **kwargs)

name = 'button_event'

states = ['up', 'down', 'left', 'right', 'ok']

class openxc.measurements.CanMessage(name, value, event=None, override_unit=False,
**kwargs)

Construct a new Measurement with the given name and value.

Args: name (str): The Measurement’s generic name in OpenXC. value (str, float, or bool): The Measurement’s
value.

Kwargs: event (str, bool): An optional event for compound Measurements. override_unit (bool): The value
will be coerced to the correct units

if it is a plain number.

Raises: UnrecognizedMeasurementError if the value is not the correct units, e.g. if it’s a string and we’re
expecting a numerical value

name = 'can_message'

class openxc.measurements.DoorStatus(value, **kwargs)

name = 'door_status'

states = ['driver', 'rear_left', 'rear_right', 'passenger']

class openxc.measurements.EngineSpeed(value, **kwargs)

name = 'engine_speed'

unit = ComposedUnit([LeafUnit('rotations', False)], [LeafUnit('m', True)], 1)

valid_range = <openxc.utils.Range object>

class openxc.measurements.EventedMeasurement(value, **kwargs)

DATA_TYPE
alias of builtins.str

4.3. Measurements 21

OpenXC for Python Documentation, Release 2.2.0

class openxc.measurements.FuelConsumed(value, **kwargs)

name = 'fuel_consumed_since_restart'

unit = NamedComposedUnit('L', ComposedUnit([LeafUnit('m', True), LeafUnit('m', True), LeafUnit('m', True)], [], 0.0010000000000000002), True)

valid_range = <openxc.utils.Range object>

class openxc.measurements.FuelLevel(value, **kwargs)

name = 'fuel_level'

class openxc.measurements.HeadlampStatus(value, **kwargs)

name = 'headlamp_status'

class openxc.measurements.HighBeamStatus(value, **kwargs)

name = 'high_beam_status'

class openxc.measurements.IgnitionStatus(value, **kwargs)

name = 'ignition_status'

states = ['off', 'accessory', 'run', 'start']

class openxc.measurements.LateralAcceleration(value, **kwargs)

name = 'lateral_acceleration'

unit = ComposedUnit([LeafUnit('m', True)], [LeafUnit('s', True), LeafUnit('s', True)], 1.0)

valid_range = <openxc.utils.Range object>

class openxc.measurements.Latitude(value, **kwargs)

name = 'latitude'

unit = LeafUnit('deg', False)

valid_range = <openxc.utils.Range object>

class openxc.measurements.Longitude(value, **kwargs)

name = 'longitude'

unit = LeafUnit('deg', False)

valid_range = <openxc.utils.Range object>

class openxc.measurements.LongitudinalAcceleration(value, **kwargs)

name = 'longitudinal_acceleration'

unit = ComposedUnit([LeafUnit('m', True)], [LeafUnit('s', True), LeafUnit('s', True)], 1.0)

valid_range = <openxc.utils.Range object>

22 Chapter 4. Vehicle Data API Reference

OpenXC for Python Documentation, Release 2.2.0

class openxc.measurements.Measurement(name, value, event=None, override_unit=False,
**kwargs)

The Measurement is the base type of all values read from an OpenXC vehicle interface. All values encapsulated
in a Measurement have an associated scalar unit (e.g. meters, degrees, etc) to avoid crashing a rover into Mars.

Construct a new Measurement with the given name and value.

Args: name (str): The Measurement’s generic name in OpenXC. value (str, float, or bool): The Measurement’s
value.

Kwargs: event (str, bool): An optional event for compound Measurements. override_unit (bool): The value
will be coerced to the correct units

if it is a plain number.

Raises: UnrecognizedMeasurementError if the value is not the correct units, e.g. if it’s a string and we’re
expecting a numerical value

DATA_TYPE
alias of numbers.Number

classmethod from_dict(data)
Create a new Measurement subclass instance using the given dict.

If Measurement.name_from_class was previously called with this data’s associated Measurement sub-class
in Python, the returned object will be an instance of that sub-class. If the measurement name in data is
unrecognized, the returned object will be of the generic Measurement type.

Args:

data (dict): the data for the new measurement, including at least a name and value.

name = 'generic'

classmethod name_from_class(measurement_class)
For a given measurement class, return its generic name.

The given class is expected to have a name attribute, otherwise this function will raise an execption.
The point of using this method instead of just trying to grab that attribute in the application is to cache
measurement name to class mappings for future use.

Returns: the generic OpenXC name for a measurement class.

Raise:

UnrecognizedMeasurementError: if the class does not have a valid generic name

unit = LeafUnit('undef', False)

value

class openxc.measurements.NamedMeasurement(value, **kwargs)
A NamedMeasurement has a class-level name variable and thus the name argument is not required in its
constructor.

class openxc.measurements.NumericMeasurement(value, **kwargs)
A NumericMeasurement must have a numeric value and thus a valid range of acceptable values.

percentage_within_range()

valid_range = None

within_range()

class openxc.measurements.Odometer(value, **kwargs)

4.3. Measurements 23

OpenXC for Python Documentation, Release 2.2.0

name = 'odometer'

unit = NamedComposedUnit('km', ComposedUnit([LeafUnit('m', True)], [], 1000), False)

valid_range = <openxc.utils.Range object>

class openxc.measurements.ParkingBrakeStatus(value, **kwargs)

name = 'parking_brake_status'

class openxc.measurements.PercentageMeasurement(value, **kwargs)

unit = LeafUnit('%', False)

valid_range = <openxc.utils.Range object>

class openxc.measurements.StatefulMeasurement(value, **kwargs)
Must have a class-level states member that defines a set of valid string states for this measurement’s value.

DATA_TYPE
alias of builtins.str

states = None

valid_state()
Determine if the current state is valid, given the class’ state member.

Returns: True if the value is a valid state.

class openxc.measurements.SteeringWheelAngle(value, **kwargs)

name = 'steering_wheel_angle'

unit = LeafUnit('deg', False)

valid_range = <openxc.utils.Range object>

class openxc.measurements.TorqueAtTransmission(value, **kwargs)

name = 'torque_at_transmission'

unit = NamedComposedUnit('Nm', ComposedUnit([NamedComposedUnit('N', ComposedUnit([LeafUnit('m', True), NamedComposedUnit('kg', ComposedUnit([LeafUnit('g', True)], [], 1000), False)], [LeafUnit('s', True), LeafUnit('s', True)], 1), True), LeafUnit('m', True)], [], 1), True)

valid_range = <openxc.utils.Range object>

class openxc.measurements.TransmissionGearPosition(value, **kwargs)

name = 'transmission_gear_position'

states = ['first', 'second', 'third', 'fourth', 'fifth', 'sixth', 'seventh', 'eighth', 'neutral', 'reverse', 'park']

class openxc.measurements.TurnSignalStatus(value, **kwargs)

name = 'turn_signal_status'

exception openxc.measurements.UnrecognizedMeasurementError

class openxc.measurements.VehicleSpeed(value, **kwargs)

name = 'vehicle_speed'

24 Chapter 4. Vehicle Data API Reference

OpenXC for Python Documentation, Release 2.2.0

unit = ComposedUnit([NamedComposedUnit('km', ComposedUnit([LeafUnit('m', True)], [], 1000), False)], [NamedComposedUnit('h', ComposedUnit([NamedComposedUnit('min', ComposedUnit([LeafUnit('s', True)], [], 60.0), False)], [], 60.0), False)], 1)

valid_range = <openxc.utils.Range object>

class openxc.measurements.WindshieldWiperStatus(value, **kwargs)

name = 'windshield_wiper_status'

openxc.measurements.all_measurements()

4.4 Data Sinks

Common operations for all vehicle data sinks.

class openxc.sinks.base.DataSink
A base interface for all data sinks. At the minimum, a data sink must have a receive() method.

receive(message, **kwargs)
Handle an incoming vehicle data message.

Args: message (dict) - a new OpenXC vehicle data message

Kwargs:

data_remaining (bool) - if the originating data source can peek ahead in the data stream, this ar-
gument will True if there is more data available.

A data sink implementation for the core listener notification service of openxc.vehicle.Vehicle.

class openxc.sinks.notifier.MeasurementNotifierSink
Notify previously registered callbacks whenever measurements of a certian type have been received.

This data sink is the core of the asynchronous interface of openxc.vehicle.Vehicle.

class Notifier(queue, callback)

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object
passed to the object’s constructor as the target argument, if any, with sequential and keyword argu-
ments taken from the args and kwargs arguments, respectively.

register(measurement_class, callback)
Call the callback with any new values of measurement_class received.

unregister(measurement_class, callback)
Stop notifying callback of new values of measurement_class.

If the callback wasn’t previously registered, this method will have no effect.

Common functinality for data sinks that work on a queue of incoming messages.

class openxc.sinks.queued.QueuedSink
Store every message received and any kwargs from the originating data source as a tuple in a queue.

The queue can be reference in subclasses via the queue attribute.

receive(message, **kwargs)
Add the message and kwargs to the queue.

Trace file recording operations.

4.4. Data Sinks 25

OpenXC for Python Documentation, Release 2.2.0

class openxc.sinks.recorder.FileRecorderSink
A sink to record trace files based on the messages received from all data sources.

FILENAME_DATE_FORMAT = '%Y-%m-%d-%H'

FILENAME_FORMAT = '%s.json'

class Recorder(queue)

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object
passed to the object’s constructor as the target argument, if any, with sequential and keyword argu-
ments taken from the args and kwargs arguments, respectively.

class openxc.sinks.uploader.UploaderSink(url)
Uploads all incoming vehicle data to a remote web application via HTTP.

TODO document service side format

Args: url (str) - the URL to send an HTTP POST request with vehicle data

HTTP_TIMEOUT = 5000

UPLOAD_BATCH_SIZE = 25

class Uploader(queue, url)

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object
passed to the object’s constructor as the target argument, if any, with sequential and keyword argu-
ments taken from the args and kwargs arguments, respectively.

4.5 Data Sources

Abstract base interface for vehicle data sources.

class openxc.sources.base.BytestreamDataSource(**kwargs)
A source that receives data is a series of bytes, with discrete messages separated by a newline character.

Subclasses of this class need only to implement the read method.

parse_messages()

run()
Continuously read data from the source and attempt to parse a valid message from the buffer of bytes.
When a message is parsed, passes it off to the callback if one is set.

class openxc.sources.base.DataSource(callback=None, log_mode=None, pay-
load_format=None)

Interface for all vehicle data sources. This inherits from Thread and when a source is added to a vehicle it
attempts to call the start() method if it exists. If an implementer of DataSource needs some background
process to read data, it’s just a matter of defining a run() method.

A data source requires a callback method to be specified. Whenever new data is received, it will pass it to that
callback.

26 Chapter 4. Vehicle Data API Reference

OpenXC for Python Documentation, Release 2.2.0

Construct a new DataSource.

By default, DataSource threads are marked as daemon threads, so they will die as soon as all other non-daemon
threads in the process have quit.

Kwargs: callback - function to call with any new data received

bytes_received

format

formatter

read(timeout=None)
Read data from the source.

Kwargs:

timeout (float) - if the source implementation could potentially block, timeout after this number
of seconds.

read_logs(timeout=None)
Read log data from the source.

Kwargs:

timeout (float) - if the source implementation could potentially block, timeout after this number
of seconds.

start()
Start the thread’s activity.

It must be called at most once per thread object. It arranges for the object’s run() method to be invoked in
a separate thread of control.

This method will raise a RuntimeError if called more than once on the same thread object.

stop()

streamer

exception openxc.sources.base.DataSourceError

exception openxc.sources.base.MissingPayloadFormatError

class openxc.sources.base.SourceLogger(source, mode=’off’)

FILENAME_TEMPLATE = '%d-%m-%Y.%H-%M-%S'

record(message)

run()
Continuously read data from the source and attempt to parse a valid message from the buffer of bytes.
When a message is parsed, passes it off to the callback if one is set.

stop()

A virtual serial port data source.

class openxc.sources.serial.SerialDataSource(port=None, baudrate=None, **kwargs)
A data source reading from a serial port, which could be implemented with a USB to Serial or Bluetooth adapter.

Initialize a connection to the serial device.

Kwargs: port - optionally override the default virtual COM port baudrate - optionally override the default
baudrate

4.5. Data Sources 27

OpenXC for Python Documentation, Release 2.2.0

Raises: DataSourceError if the serial device cannot be opened.

DEFAULT_BAUDRATE = 230400

DEFAULT_PORT = '/dev/ttyUSB0'

read()
Read data from the source.

Kwargs:

timeout (float) - if the source implementation could potentially block, timeout after this number
of seconds.

A USB vehicle interface data source.

class openxc.sources.usb.UsbDataSource(vendor_id=None, product_id=None, **kwargs)
A source to receive data from an OpenXC vehicle interface via USB.

Initialize a connection to the USB device’s IN endpoint.

Kwargs:

vendor_id (str or int) - optionally override the USB device vendor ID we will attempt to connect to, if
not using the OpenXC hardware.

product_id (str or int) - optionally override the USB device product ID we will attempt to connect to,
if not using the OpenXC hardware.

log_mode - optionally record or print logs from the USB device, which are on a separate channel.

Raises: DataSourceError if the USB device with the given vendor ID is not connected.

DEFAULT_INTERFACE_NUMBER = 0

DEFAULT_PRODUCT_ID = 1

DEFAULT_READ_REQUEST_SIZE = 512

DEFAULT_READ_TIMEOUT = 200

DEFAULT_VENDOR_ID = 7108

LIBUSB0_TIMEOUT_CODE = -116

LIBUSB1_TIMEOUT_CODE = -7

LOG_IN_ENDPOINT = 11

OPENUSB_TIMEOUT_CODE = -62

VEHICLE_DATA_IN_ENDPOINT = 2

read(timeout=None)
Read data from the source.

Kwargs:

timeout (float) - if the source implementation could potentially block, timeout after this number
of seconds.

read_logs(timeout=None)
Read log data from the source.

Kwargs:

timeout (float) - if the source implementation could potentially block, timeout after this number
of seconds.

28 Chapter 4. Vehicle Data API Reference

OpenXC for Python Documentation, Release 2.2.0

stop()

A data source for reading from pre-recorded OpenXC trace files.

class openxc.sources.trace.TraceDataSource(filename=None, realtime=True, loop=True,
**kwargs)

A class to replay a previously recorded OpenXC vehicle data trace file. For details on the trace file format, see
http://openxcplatform.com/android/testing.html.

Construct the source and attempt to open the trace file.

filename - the full absolute path to the trace file

realtime - if True, the trace will be replayed at approximately the same cadence as it was recorded. Otherwise,
the trace file will be replayed as fast as possible (likely much faster than any vehicle).

loop - if True, the trace file will be looped and will provide data until the process exist or the source is stopped.

read()
Read a line of data from the input source at a time.

A network socket data source.

class openxc.sources.network.NetworkDataSource(host=None, port=None, **kwargs)
A data source reading from a network socket, as implemented in the openxc-vehicle-simulator .

Initialize a connection to the network socket.

Kwargs: host - optionally override the default network host (default is local machine) port - optionally override
the default network port (default is 50001) log_mode - optionally record or print logs from the network
source

Raises: DataSourceError if the socket connection cannot be opened.

DEFAULT_PORT = 50001

4.6 Units

Define the scalar units used by vehicle measurements.

openxc.units.Percentage

openxc.units.Meter

openxc.units.Kilometer

openxc.units.Hour

openxc.units.KilometersPerHour

openxc.units.RotationsPerMinute

openxc.units.Litre

openxc.units.Degree

openxc.units.NewtonMeter

openxc.units.MetersPerSecondSquared

openxc.units.Undefined

4.6. Units 29

http://openxcplatform.com/android/testing.html

OpenXC for Python Documentation, Release 2.2.0

4.7 Utils

Data containers and other utilities.

class openxc.utils.AgingData
Mixin to associate a class with a time of birth.

age
Return the age of the data in seconds.

class openxc.utils.Range(minimum, maximum)
Encapsulates a ranged defined by a min and max numerical value.

spread
Returns the spread between this Range’s min and max.

within_range(value)
Returns True if the value is between this Range, inclusive.

openxc.utils.dict_raise_on_duplicates(ordered_pairs)
Reject duplicate keys.

openxc.utils.fatal_error(message)

openxc.utils.find_file(filename, search_paths)

openxc.utils.load_json_from_search_path(filename, search_paths)

openxc.utils.merge(a, b)
Merge two deep dicts non-destructively

Uses a stack to avoid maximum recursion depth exceptions

>>> a = {'a': 1, 'b': {1: 1, 2: 2}, 'd': 6}
>>> b = {'c': 3, 'b': {2: 7}, 'd': {'z': [1, 2, 3]}}
>>> c = merge(a, b)
>>> from pprint import pprint; pprint(c)
{'a': 1, 'b': {1: 1, 2: 7}, 'c': 3, 'd': {'z': [1, 2, 3]}}

openxc.utils.quacks_like_dict(object)
Check if object is dict-like

openxc.utils.quacks_like_list(object)
Check if object is list-like

4.8 Vehicle functions

This module is contains the Vehicle class, which is the main entry point for using the Python library to access vehicle
data programatically. Most users will want to interact with an instance of Vehicle, and won’t need to deal with other
parts of the library directly (besides measurement types).

class openxc.vehicle.Vehicle(interface=None)
The Vehicle class is the main entry point for the OpenXC Python library. A Vehicle represents a connection to
at least one vehicle data source and zero or 1 vehicle controllers, which can accept commands to send back to
the vehicle. A Vehicle instance can have more than one data source (e.g. if the computer using this library has a
secondary GPS data source).

Most applications will either request synchronous vehicle data measurements using the get method or or with
a callback function passed to listen.

30 Chapter 4. Vehicle Data API Reference

OpenXC for Python Documentation, Release 2.2.0

More advanced applications that want access to all raw vehicle data may want to register a DataSink with a
Vehicle.

Construct a new Vehicle instance, optionally providing an vehicle interface from openxc.interface to user
for I/O.

add_sink(sink)
Add a vehicle data sink to the instance. sink should be a sub-class of DataSink or at least have a
receive(message, **kwargs) method.

The sink will be started if it is startable. (i.e. it has a start() method).

add_source(source)
Add a vehicle data source to the instance.

The Vehicle instance will be set as the callback of the source, and the source will be started if it is startable.
(i.e. it has a start() method).

get(measurement_class)
Return the latest measurement for the given class or None if nothing has been received from the vehicle.

listen(measurement_class, callback)
Register the callback function to be called whenever a new measurement of the given class is received
from the vehicle data sources.

If the callback is already registered for measurements of the given type, this method will have no effect.

unlisten(measurement_class, callback)
Stop notifying the given callback of new values of the measurement type.

If the callback was not previously registered as a listener, this method will have no effect.

4.8. Vehicle functions 31

OpenXC for Python Documentation, Release 2.2.0

32 Chapter 4. Vehicle Data API Reference

CHAPTER 5

Contributing

Development of openxc-python happens at GitHub. Be sure to see our contribution document for details.

5.1 Test Suite

The openxc-python repository contains a test suite that can be run with the tox tool, which attemps to run the
test suite in Python 2.7. If you wish to just run the test suite in your primary Python version, run

$ python setup.py test

To run it with tox:

$ tox

5.2 Mailing list

For discussions about the usage, development, and future of OpenXC, please join the OpenXC mailing list.

5.3 Bug tracker

If you have any suggestions, bug reports or annoyances please report them to our issue tracker at http://github.com/
openxc/openxc-python/issues/

5.4 Authors and Contributors

A complete list of all authors is stored in the repository - thanks to everyone for the great contributions.

33

https://github.com/openxc/openxc-python
https://github.com/openxc/openxc-python/blob/master/CONTRIBUTING.rst
http://groups.google.com/group/openxc
http://github.com/openxc/openxc-python/issues/
http://github.com/openxc/openxc-python/issues/
https://github.com/openxc/openxc-python/blob/master/CONTRIBUTORS

OpenXC for Python Documentation, Release 2.2.0

34 Chapter 5. Contributing

Python Module Index

o
openxc.controllers.base, 17
openxc.controllers.serial, 19
openxc.controllers.usb, 20
openxc.formats.json, 20
openxc.measurements, 21
openxc.sinks.base, 25
openxc.sinks.notifier, 25
openxc.sinks.queued, 25
openxc.sinks.recorder, 25
openxc.sinks.uploader, 26
openxc.sources.base, 26
openxc.sources.network, 29
openxc.sources.serial, 27
openxc.sources.trace, 29
openxc.sources.usb, 28
openxc.units, 29
openxc.utils, 30
openxc.vehicle, 30

35

OpenXC for Python Documentation, Release 2.2.0

36 Python Module Index

Index

Symbols
-s, -split <unit>

command line option, 13

A
AcceleratorPedalPosition (class in

openxc.measurements), 21
add_sink() (openxc.vehicle.Vehicle method), 31
add_source() (openxc.vehicle.Vehicle method), 31
addFrame() (openxc.controllers.base.MultiframeDiagnosticMessage

method), 19
age (openxc.utils.AgingData attribute), 30
AgingData (class in openxc.utils), 30
all_measurements() (in module

openxc.measurements), 25

B
BooleanMeasurement (class in

openxc.measurements), 21
BrakePedalStatus (class in openxc.measurements),

21
ButtonEvent (class in openxc.measurements), 21
bytes_received (openxc.sources.base.DataSource

attribute), 27
BytestreamDataSource (class in

openxc.sources.base), 26

C
CanMessage (class in openxc.measurements), 21
command line option

-s, -split <unit>, 13
COMMAND_RESPONSE_TIMEOUT_S

(openxc.controllers.base.ResponseReceiver
attribute), 19

CommandResponseReceiver (class in
openxc.controllers.base), 17

COMPLEX_CONTROL_COMMAND
(openxc.controllers.usb.UsbControllerMixin
attribute), 20

complex_request()
(openxc.controllers.base.Controller method),
17

complex_request()
(openxc.controllers.serial.SerialControllerMixin
method), 20

Controller (class in openxc.controllers.base), 17
ControllerError, 19
create_diagnostic_request()

(openxc.controllers.base.Controller method),
17

D
DATA_TYPE (openxc.measurements.BooleanMeasurement

attribute), 21
DATA_TYPE (openxc.measurements.EventedMeasurement

attribute), 21
DATA_TYPE (openxc.measurements.Measurement at-

tribute), 23
DATA_TYPE (openxc.measurements.StatefulMeasurement

attribute), 24
DataSink (class in openxc.sinks.base), 25
DataSource (class in openxc.sources.base), 26
DataSourceError, 27
DEFAULT_BAUDRATE (openxc.sources.serial.SerialDataSource

attribute), 28
DEFAULT_INTERFACE_NUMBER

(openxc.sources.usb.UsbDataSource attribute),
28

DEFAULT_PORT (openxc.sources.network.NetworkDataSource
attribute), 29

DEFAULT_PORT (openxc.sources.serial.SerialDataSource
attribute), 28

DEFAULT_PRODUCT_ID
(openxc.sources.usb.UsbDataSource attribute),
28

DEFAULT_READ_REQUEST_SIZE
(openxc.sources.usb.UsbDataSource attribute),
28

DEFAULT_READ_TIMEOUT

37

OpenXC for Python Documentation, Release 2.2.0

(openxc.sources.usb.UsbDataSource attribute),
28

DEFAULT_VENDOR_ID
(openxc.sources.usb.UsbDataSource attribute),
28

Degree (in module openxc.units), 29
delete_diagnostic_request()

(openxc.controllers.base.Controller method),
18

deserialize() (openxc.formats.json.JsonFormatter
class method), 20

device_id() (openxc.controllers.base.Controller
method), 18

DiagnosticResponseReceiver (class in
openxc.controllers.base), 19

dict_raise_on_duplicates() (in module
openxc.utils), 30

DoorStatus (class in openxc.measurements), 21

E
EngineSpeed (class in openxc.measurements), 21
EventedMeasurement (class in

openxc.measurements), 21

F
fatal_error() (in module openxc.utils), 30
FILENAME_DATE_FORMAT

(openxc.sinks.recorder.FileRecorderSink
attribute), 26

FILENAME_FORMAT (openxc.sinks.recorder.FileRecorderSink
attribute), 26

FILENAME_TEMPLATE
(openxc.sources.base.SourceLogger attribute),
27

FileRecorderSink (class in openxc.sinks.recorder),
25

FileRecorderSink.Recorder (class in
openxc.sinks.recorder), 26

find_file() (in module openxc.utils), 30
format (openxc.sources.base.DataSource attribute), 27
formatter (openxc.sources.base.DataSource at-

tribute), 27
from_dict() (openxc.measurements.Measurement

class method), 23
FuelConsumed (class in openxc.measurements), 21
FuelLevel (class in openxc.measurements), 22

G
get() (openxc.vehicle.Vehicle method), 31
get_vin() (openxc.controllers.base.Controller

method), 18
getResponse() (openxc.controllers.base.MultiframeDiagnosticMessage

method), 19

H
handle_responses()

(openxc.controllers.base.ResponseReceiver
method), 19

HeadlampStatus (class in openxc.measurements), 22
HighBeamStatus (class in openxc.measurements), 22
Hour (in module openxc.units), 29
HTTP_TIMEOUT (openxc.sinks.uploader.UploaderSink

attribute), 26

I
IgnitionStatus (class in openxc.measurements), 22

J
JsonFormatter (class in openxc.formats.json), 20
JsonStreamer (class in openxc.formats.json), 20

K
Kilometer (in module openxc.units), 29
KilometersPerHour (in module openxc.units), 29

L
LateralAcceleration (class in

openxc.measurements), 22
Latitude (class in openxc.measurements), 22
LIBUSB0_TIMEOUT_CODE

(openxc.sources.usb.UsbDataSource attribute),
28

LIBUSB1_TIMEOUT_CODE
(openxc.sources.usb.UsbDataSource attribute),
28

listen() (openxc.vehicle.Vehicle method), 31
Litre (in module openxc.units), 29
load_json_from_search_path() (in module

openxc.utils), 30
LOG_IN_ENDPOINT (openxc.sources.usb.UsbDataSource

attribute), 28
Longitude (class in openxc.measurements), 22
LongitudinalAcceleration (class in

openxc.measurements), 22

M
Measurement (class in openxc.measurements), 22
MeasurementNotifierSink (class in

openxc.sinks.notifier), 25
MeasurementNotifierSink.Notifier (class in

openxc.sinks.notifier), 25
merge() (in module openxc.utils), 30
Meter (in module openxc.units), 29
MetersPerSecondSquared (in module

openxc.units), 29
MissingPayloadFormatError, 27

38 Index

OpenXC for Python Documentation, Release 2.2.0

modem_configuration()
(openxc.controllers.base.Controller method),
18

MultiframeDiagnosticMessage (class in
openxc.controllers.base), 19

N
name (openxc.measurements.AcceleratorPedalPosition

attribute), 21
name (openxc.measurements.BrakePedalStatus at-

tribute), 21
name (openxc.measurements.ButtonEvent attribute), 21
name (openxc.measurements.CanMessage attribute), 21
name (openxc.measurements.DoorStatus attribute), 21
name (openxc.measurements.EngineSpeed attribute), 21
name (openxc.measurements.FuelConsumed attribute),

22
name (openxc.measurements.FuelLevel attribute), 22
name (openxc.measurements.HeadlampStatus attribute),

22
name (openxc.measurements.HighBeamStatus attribute),

22
name (openxc.measurements.IgnitionStatus attribute), 22
name (openxc.measurements.LateralAcceleration at-

tribute), 22
name (openxc.measurements.Latitude attribute), 22
name (openxc.measurements.Longitude attribute), 22
name (openxc.measurements.LongitudinalAcceleration

attribute), 22
name (openxc.measurements.Measurement attribute), 23
name (openxc.measurements.Odometer attribute), 23
name (openxc.measurements.ParkingBrakeStatus at-

tribute), 24
name (openxc.measurements.SteeringWheelAngle

attribute), 24
name (openxc.measurements.TorqueAtTransmission at-

tribute), 24
name (openxc.measurements.TransmissionGearPosition

attribute), 24
name (openxc.measurements.TurnSignalStatus at-

tribute), 24
name (openxc.measurements.VehicleSpeed attribute), 24
name (openxc.measurements.WindshieldWiperStatus at-

tribute), 25
name_from_class()

(openxc.measurements.Measurement class
method), 23

NamedMeasurement (class in openxc.measurements),
23

NetworkDataSource (class in
openxc.sources.network), 29

NewtonMeter (in module openxc.units), 29
NumericMeasurement (class in

openxc.measurements), 23

O
Odometer (class in openxc.measurements), 23
OPENUSB_TIMEOUT_CODE

(openxc.sources.usb.UsbDataSource attribute),
28

openxc.controllers.base (module), 17
openxc.controllers.serial (module), 19
openxc.controllers.usb (module), 20
openxc.formats.json (module), 20
openxc.measurements (module), 21
openxc.sinks.base (module), 25
openxc.sinks.notifier (module), 25
openxc.sinks.queued (module), 25
openxc.sinks.recorder (module), 25
openxc.sinks.uploader (module), 26
openxc.sources.base (module), 26
openxc.sources.network (module), 29
openxc.sources.serial (module), 27
openxc.sources.trace (module), 29
openxc.sources.usb (module), 28
openxc.units (module), 29
openxc.utils (module), 30
openxc.vehicle (module), 30
out_endpoint (openxc.controllers.usb.UsbControllerMixin

attribute), 20

P
ParkingBrakeStatus (class in

openxc.measurements), 24
parse_messages() (openxc.sources.base.BytestreamDataSource

method), 26
parse_next_message()

(openxc.formats.json.JsonStreamer method),
20

Percentage (in module openxc.units), 29
percentage_within_range()

(openxc.measurements.NumericMeasurement
method), 23

PercentageMeasurement (class in
openxc.measurements), 24

platform() (openxc.controllers.base.Controller
method), 18

Q
quacks_like_dict() (in module openxc.utils), 30
quacks_like_list() (in module openxc.utils), 30
QueuedSink (class in openxc.sinks.queued), 25

R
Range (class in openxc.utils), 30
read() (openxc.sources.base.DataSource method), 27
read() (openxc.sources.serial.SerialDataSource

method), 28

Index 39

OpenXC for Python Documentation, Release 2.2.0

read() (openxc.sources.trace.TraceDataSource
method), 29

read() (openxc.sources.usb.UsbDataSource method),
28

read_logs() (openxc.sources.base.DataSource
method), 27

read_logs() (openxc.sources.usb.UsbDataSource
method), 28

receive() (openxc.sinks.base.DataSink method), 25
receive() (openxc.sinks.queued.QueuedSink method),

25
record() (openxc.sources.base.SourceLogger

method), 27
register() (openxc.sinks.notifier.MeasurementNotifierSink

method), 25
ResponseReceiver (class in

openxc.controllers.base), 19
RotationsPerMinute (in module openxc.units), 29
rtc_configuration()

(openxc.controllers.base.Controller method),
18

run() (openxc.sinks.notifier.MeasurementNotifierSink.Notifier
method), 25

run() (openxc.sinks.recorder.FileRecorderSink.Recorder
method), 26

run() (openxc.sinks.uploader.UploaderSink.Uploader
method), 26

run() (openxc.sources.base.BytestreamDataSource
method), 26

run() (openxc.sources.base.SourceLogger method), 27

S
sd_mount_status()

(openxc.controllers.base.Controller method),
18

SerialControllerMixin (class in
openxc.controllers.serial), 19

SerialDataSource (class in openxc.sources.serial),
27

serialize() (openxc.formats.json.JsonFormatter
class method), 20

serialize_for_stream()
(openxc.formats.json.JsonStreamer method),
20

SERIALIZED_COMMAND_TERMINATOR
(openxc.formats.json.JsonStreamer attribute),
20

set_acceptance_filter_bypass()
(openxc.controllers.base.Controller method),
18

set_passthrough()
(openxc.controllers.base.Controller method),
18

set_payload_format()
(openxc.controllers.base.Controller method),
18

set_predefined_obd2_requests()
(openxc.controllers.base.Controller method),
18

SourceLogger (class in openxc.sources.base), 27
spread (openxc.utils.Range attribute), 30
start() (openxc.controllers.base.ResponseReceiver

method), 19
start() (openxc.sources.base.DataSource method), 27
StatefulMeasurement (class in

openxc.measurements), 24
states (openxc.measurements.ButtonEvent attribute),

21
states (openxc.measurements.DoorStatus attribute),

21
states (openxc.measurements.IgnitionStatus attribute),

22
states (openxc.measurements.StatefulMeasurement at-

tribute), 24
states (openxc.measurements.TransmissionGearPosition

attribute), 24
SteeringWheelAngle (class in

openxc.measurements), 24
stop() (openxc.controllers.base.Controller method), 19
stop() (openxc.sources.base.DataSource method), 27
stop() (openxc.sources.base.SourceLogger method),

27
stop() (openxc.sources.usb.UsbDataSource method),

28
streamer (openxc.sources.base.DataSource attribute),

27

T
TorqueAtTransmission (class in

openxc.measurements), 24
TraceDataSource (class in openxc.sources.trace), 29
TransmissionGearPosition (class in

openxc.measurements), 24
TurnSignalStatus (class in openxc.measurements),

24

U
Undefined (in module openxc.units), 29
unit (openxc.measurements.EngineSpeed attribute), 21
unit (openxc.measurements.FuelConsumed attribute),

22
unit (openxc.measurements.LateralAcceleration at-

tribute), 22
unit (openxc.measurements.Latitude attribute), 22
unit (openxc.measurements.Longitude attribute), 22
unit (openxc.measurements.LongitudinalAcceleration

attribute), 22

40 Index

OpenXC for Python Documentation, Release 2.2.0

unit (openxc.measurements.Measurement attribute), 23
unit (openxc.measurements.Odometer attribute), 24
unit (openxc.measurements.PercentageMeasurement

attribute), 24
unit (openxc.measurements.SteeringWheelAngle

attribute), 24
unit (openxc.measurements.TorqueAtTransmission at-

tribute), 24
unit (openxc.measurements.VehicleSpeed attribute), 24
unlisten() (openxc.vehicle.Vehicle method), 31
UnrecognizedMeasurementError, 24
unregister() (openxc.sinks.notifier.MeasurementNotifierSink

method), 25
UPLOAD_BATCH_SIZE

(openxc.sinks.uploader.UploaderSink at-
tribute), 26

UploaderSink (class in openxc.sinks.uploader), 26
UploaderSink.Uploader (class in

openxc.sinks.uploader), 26
UsbControllerMixin (class in

openxc.controllers.usb), 20
UsbDataSource (class in openxc.sources.usb), 28

V
valid_range (openxc.measurements.EngineSpeed at-

tribute), 21
valid_range (openxc.measurements.FuelConsumed

attribute), 22
valid_range (openxc.measurements.LateralAcceleration

attribute), 22
valid_range (openxc.measurements.Latitude at-

tribute), 22
valid_range (openxc.measurements.Longitude

attribute), 22
valid_range (openxc.measurements.LongitudinalAcceleration

attribute), 22
valid_range (openxc.measurements.NumericMeasurement

attribute), 23
valid_range (openxc.measurements.Odometer

attribute), 24
valid_range (openxc.measurements.PercentageMeasurement

attribute), 24
valid_range (openxc.measurements.SteeringWheelAngle

attribute), 24
valid_range (openxc.measurements.TorqueAtTransmission

attribute), 24
valid_range (openxc.measurements.VehicleSpeed at-

tribute), 25
valid_state() (openxc.measurements.StatefulMeasurement

method), 24
value (openxc.measurements.Measurement attribute),

23
Vehicle (class in openxc.vehicle), 30

VEHICLE_DATA_IN_ENDPOINT
(openxc.sources.usb.UsbDataSource attribute),
28

VehicleSpeed (class in openxc.measurements), 24
version() (openxc.controllers.base.Controller

method), 19

W
wait_for_responses()

(openxc.controllers.base.ResponseReceiver
method), 19

WAITIED_FOR_CONNECTION
(openxc.controllers.serial.SerialControllerMixin
attribute), 20

WindshieldWiperStatus (class in
openxc.measurements), 25

within_range() (openxc.measurements.NumericMeasurement
method), 23

within_range() (openxc.utils.Range method), 30
write() (openxc.controllers.base.Controller method),

19
write_bytes() (openxc.controllers.base.Controller

method), 19
write_bytes() (openxc.controllers.serial.SerialControllerMixin

method), 20
write_bytes() (openxc.controllers.usb.UsbControllerMixin

method), 20
write_raw() (openxc.controllers.base.Controller

method), 19
write_translated()

(openxc.controllers.base.Controller method),
19

Index 41

	Installation
	Command Line Tools
	Example Code
	Vehicle Data API Reference
	Contributing
	Python Module Index
	Index

