
OpenXC Accessories Documentation
Release 0.1

Ford Motor Company

Nov 17, 2017

Contents

1 Table of Contents 3
1.1 Getting Started . 3
1.2 System Overview . 12
1.3 Configuration . 14
1.4 Design Sources . 20
1.5 License Disclosure . 20

2 License 21

i

ii

OpenXC Accessories Documentation, Release 0.1

Version 0.0.1

Web http://openxcplatform.com

Documentation http://accessories.openxcplatform.com

Source http://github.com/openxc/openxc-accessories

The OpenXC Accessories are a line of hardware accessories intended to augment the Vehicle Interface (VI) and
communicate with other entities. The benefit of the Accessory Platform is that all accessories share a common base
(or motherboard) and new features are added by modifying or designing a new daughter card (mPCIe connector).

The base board contains an Atmel SAMA5 (Cortex-A5) running embedded Linux. All accessory functions are coded
in Python. Interfaces include SD card slot, Bluetooth Classic, Bluetooth Low Energy (a.k.a Bluetooth Smart), USB
OTG, and WiFi. A debug serial port is available.

The first in the line of accessories is a 3G Modem to enable sharing of vehicle data directly with the cloud, OTA
updates to the Modem configuration, and still allows use of the Enabler app.

The second accessory is the V2X device. The OpenXC-V2X device can act as a modem, which connects to the VI
device or a phone, and shares OpenXC data via WiFi or 802.11p (in RSU mode).

Contents 1

http://openxcplatform.com
http://accessories.openxcplatform.com
http://github.com/openxc/openxc-accessories
http://openxcplatform.com/vehicle-interface/hardware.html

OpenXC Accessories Documentation, Release 0.1

2 Contents

CHAPTER 1

Table of Contents

1.1 Getting Started

The OpenXC-Modem and OpenXC-V2X/RSU devices come preloaded with the kernel and firmware for operation.
Before using for the first time, please charge the devices for at least 15 minutes with a micro-USB cable, or 12V wall
wort. A full battery will last approximately 8-10 hours during operation.

To turn on, press the button on the side of the device once until the LED lights stay on. If there are no lights emitting
from the device, ensure that the device is charged. Please note, this is a latching button that needs to be pushed in far
enough to latch (a little past where the LEDs turn on).

Once the device is on, the device will automatically proceed with the auto start script, which initiates the connection
and data communication with a VI and Android Device.

The following sections describe the next steps.

1.1.1 Install

Android

In order to connect with the Android device, install the accessories branch of the Enabler in the openxc-android
project. The enabler app that works with the accessories is available here.

Be sure Bluetooth is enabled before trying to connect to the Modem. Once the Modem is running the main function,
connect to the OpenXC-Modem from the Android device using Bluetooth. The password/pin code is “1234”.

Windows

The main method of configuring and setting up the modem or V2X device will be through USB from the device to a
Windows PC. A program called Teraterm will be used to interface with the operating system on the device. To allow
ease of use, a program called “OpenXC Modem Connect” will be used to automatically configure the connection
settings.

3

https://github.com/openxc/openxc-accessories/tree/master/tools/openxc-enabler-v6.0.6-modem.354.apk

OpenXC Accessories Documentation, Release 0.1

Note: Using OpenXC Modem Connect is suggested for easier and faster access to the Modem, although you may
choose to manually configure TeraTerm to connect to the modem.

Download OpenXC Modem Connect here. Detailed instructions are available here.

1.1.2 Directory Structure

The following directory structure is used.

• /root/OpenXCAccessory:

Directory
Name

Description

bluez-test-
script

BlueZ 5.23 test scripts (1)

openxc-
python

OpenXC Python development platform. (1)

startup Base board startup scripts (1)
common Common Software for OpenXC-Modem/OpenXC-V2X
modem Modem specific software
backup Place holder for Firmware Factory Reset and current software versions. Also has backup of

configuration files such as WiFi, xc.conf, boardid, and topology
etc wpa configuration files for modem, V2X, and RSU
V2X V2X specific Software (1)
rsu RSU specific Software

Note: 1 - Not covered in this document

• /root/OpenXCAccessory/common

4 Chapter 1. Table of Contents

https://github.com/openxc/openxc-accessories/blob/master/tools/ModemConnect/ModemConnect-v1.0.0.143.msi
https://github.com/openxc/openxc-accessories/blob/master/tools/ModemConnect/Documents/OpenXC%20Modem%20Connect%20App%20Installation%20Procedure.docx

OpenXC Accessories Documentation, Release 0.1

File Name Description
xcmodem_boardid Hidden file to specify board type: where board_type is

board _type = {
0. {‘type’: ‘MODEM-EVT’, ‘pre-

fix’: ‘OpenXC-VI-MODEM’}, #
OpenXC-Modem EVT

1. {‘type’: ‘MODEM-DVT’, ‘pre-
fix’: ‘OpenXC-VI-MODEM’}, #
OpenXC-Modem DVT

2. {‘type’: ‘V2X’ , ‘prefix’:
‘OpenXC-VI-V2X’} # OpenXC-
V2X

3. {‘type’: ‘RSU’ , ‘prefix’:
‘OpenXC-VI-V2X’} # OpenXC-
V2X

}

xcmodem_topology File to specify the config mode/topology
1. Topology 1
2. Topology 2
3. Topology 3

xc_led.py LED unit test
xc_ser.py Serial Terminal Emulator

Usage: xcmodem_ser.py [-h] dev where
dev: Serial Device

xc_cmd.py OpenXC-Modem application command handler and
unit test

xc_app.py OpenXC-Modem application (Mobile / PC) agent and
unit test

xc_vi.py OpenXC-Modem Vehicle Interface agent and unit test
xcmodem.conf.web OpenXC-Modem auto start script, used during board

startup
xc.conf Local user variable options configuration file. This file

is common to Modem, V2X and RSU
xc_rsu_common.py File for RSU functions that are common to V2X and

RSU
ota_upgrade.py File for OTA upgrade functions
xc_ver.py PpenXC-Modem version
xc_scp.pem RSA Private Key
xc.common.py OpenXC-Modem common functions
cleanup.py RSU cleanup

• /root/OpenXCAccessory/modem: (applicable for OpenXC Modem Accessory only)

1.1. Getting Started 5

OpenXC Accessories Documentation, Release 0.1

File Name Description
xc.conf Link to the xc.conf file in common directory
xcmodem.conf.web Downloaded configuration file from remote server, if applicable
xcmodem.conf.bk Configuration backup file which is generated during upgrading process
xcmodem.conf.cur All options value currently in effect
trace_raw.json Current raw VI stream snapshot in json format
trace_raw_bk.json Back up of current raw VI stream snapshot to be processed for uploading
trace.json Modified upload-able VI stream snapshot in json format
xcmodem_gsm.py GSM agent and unit test
xcmodem_gsm.sh GSM debug shell script
xcmodem_gps.py GPS agent and unit test
xcmodem_gps.sh GPS debug shell script

• /root/OpenXCAccessory/backup:

File
Name

Description

factory Directory to store factory released SW version info (upgrade.ver) and its upgraded package
current Directory to store current SW version info (upgrade.ver) and its upgraded package
other Directory to store backup of wpa_supplicant config files for Modem, V2X, RSU, and xc.conf before

upgrade is performed. Boardid and topology are also backed up
previ-
ous

Directory for previous SW version during over-the-air auto upgrade, if applicable

• /root/OpenXCAccessory/v2x: (applicable for OpenXC V2X Accessory only)

File Name Description
xc.conf Link to the xc.conf file in common directory
xc_scp.pem PEM key file to access AWS
xc.conf.cur All options value currently in effect
xc_v2x.py V2X-MODEM MD client agent and unit test

• /root/OpenXCAccessory/etc:

File Name Description
create_symlinks.sh Remove and replace exisiting .etc files with new files
wpa_supplicant_modem.conf Overwrite modem configuration file whenever changed
wpa_supplicant_rsu.conf Overwrite RSU configuration file whenever changed
wpa_supplicant_v2x.conf Overwrite V2X configuration file whenever changed
wpa_supplicant_v2x_top2.conf Overwrite V2X configuration file whenever changed in Topology 2

• RSU: (applicable for OpenXC V2X Accessory only)

File Name Description
xc_rsu.py V2X-MODEM MD client agent and unit test
rsu_fn.py File for RSU specific functions e.g. garage

1.1.3 Scripts

Main Functions

OpenXCSoftware main functions can be performed by invoking the appropriate scripts depending on the device (Mo-
dem, V2X or RSU) as described in this section.

Modem: The Modem main function can be started by invoking xc_modem.py in /root/OpenXCAccessory/modem
directory

6 Chapter 1. Table of Contents

OpenXC Accessories Documentation, Release 0.1

V2X: The V2X main function can be started by invoking xc_v2x.py in /root/OpenXCAccessory/v2x directory

RSU: The RSU is a subset function of the V2X accessory. The RSU main function can be started by invoking xc_rsu.py
in /root/OpenXCAccessory/rsu directory

Config Scripts

The Configuration scripts are used to setup the environment for the application. These scripts are stored in ~/OpenX-
CAccessory/startup directory.

Script Name Description
openxc_init Set the config files, Set boardid file contents, set topology, set .pem files found here.
openxc_load_config Load /restore config files found here.
openxc_save_config Save backup of current configuration found here.

Python Scripts

Helpful Python scripts for converting OpenXC trace files into JSON data files optimized for browsers (and Free-
board!.”)

Script
Name

Description Example Usage

/openxc_json_converter.pyTakes any raw trace file from the OpenXC library
(examples can be downloaded from here) and
converts into an array of JSON data objects. This
will output a new version of the trace file named
input_trace_filename_VALIDATED.json, which
can be parsed by Freeboard datasources and
widgets, and many other external APIs

`Shell $ python
openxc_json_converter.py
input_trace_filename.json `

/sig-
nal_extractor.py

Takes in a JSON data file (created by using
/openxc_json_converter.py) and a list of signals
(each prepended with ‘-s’) that the user wishes to
keep. Outputs new JSON data file with only those
signals included, named in-
put_trace_filename_VALIDATED_STRIPPED.json

`Shell $ python
signal_extractor.py
input_trace_filename_VALIDATED.
json -s openxc_signal_name -s
openxc_signal_name2 [...] `

/nor-
mal-
izer.py

Strips the input JSON data file to one data point,
per signal, per second. Outputs new files named
in-
put_trace_filename_VALIDATED_STRIPPED_NORMALIZED.json

`Shell $ python normalizer.py
input_trace_filename_VALIDATED_STRIPPED.
json
`

WiFi Setup

• Modem

– The script connects the modem to one of the Access Points (APs) specified in the “wpa_supplicant” file.

– The script opens an “OPENXC_AP” access point with 20.0.0.1 IP address for the V2X device to connect
to the modem, in topology 3.

• V2X

– The script connects the V2X device to one of the APs specified in the “wpa_supplicant” file, in topology
2.

– The script connects to “OPENXC_AP” from modem, in topology 3.

1.1. Getting Started 7

https://github.com/openxc/OpenXCAccessory/tree/master/scripts
https://github.com/openxc/OpenXCAccessory/tree/master/scripts
https://github.com/openxc/OpenXCAccessory/tree/master/scripts
https:/openxc.freeboard.io
https:/openxc.freeboard.io
http://openxcplatform.com/resources/traces.html

OpenXC Accessories Documentation, Release 0.1

• RSU

– The script connects the RSU to one of the APs specified in the “wpa_supplicant” file.

Note: The scripts reset the hardware (Modem and V2X) if the required connector is not connected.

Cohda Setup

The “Cohda_setup.sh” script performs the following functions for the setting the Cohda environment and the necessary
IP setup for the 802.11p based network.

• Enable Cohda HW.

• Download Firmware.

• Install llc kernel object with TCP/IP and UDP/IP support.

• Bring up Cohda interface and assign IP address.

• Create IP neighborhood for other Cohda devices (this is a pre-assigned network configuration).

– Each Cohda device is assigned a unique 10.0.0.XX address and a unique MAC address based on the last
four characters of the Bluetooth MAC address, found through a lookup table in the script.

– All the Cohda devices in the supplied population (50 units) are added to the current device neighborhood.

1.1.4 Firmware Update

Firmware Git Pull

The best way to update firmware is with a git pull.

1. Navigate to the /root/OpenXCAccessory directory.

2. Issue a ‘git pull’ command.

• Make sure the device has an Internet connection

3. Files and scripts will be updated to their latest versions from https://github.com/openxc/OpenXCAccessory.

Firmware Reset Button

1. The OpenXC-Modem and V2X Embedded SW supports a Firmware Reset Button to reset the embedded soft-
ware to a known factory released version as needed.

2. Users can activate this feature by holding the button, next to the USB port, for 5 seconds (to prevent accidental
triggering) once software (vi_app) is in OPERATION stage.

3. Users can also enable this feature by calling “fw_factory_reset_enable”.

4. The Embedded Software will be reset to the factory released version and reboot.

8 Chapter 1. Table of Contents

https://github.com/openxc/OpenXCAccessory

OpenXC Accessories Documentation, Release 0.1

Over-The-Air Auto Upgrade

1. OpenXC-Modem and V2X supports Over-The-Air Auto Upgrade

1.1. Modem requires WiFi or GSM connection

1.2. V2X requires WiFi connection

1.2.1. WAN connection – upgrade file on AWS

1.2.2. LAN via “Open_AP” – upgrade file on Modem (Modem must have the latest FW)

1.3. During upgrade, some configurations will be backup to /root/OpenXCAccessory/backup such as
wpa_supplicants, xc.conf, boardid, and toplogy

1.4. After upgrade, user will have the option to restore configuration:

1.4.1. All – restore all config wpa, id, topology, xc.conf

1.4.2. Yes – option to choose, wpa configs or id, topology, xc.conf

1.4.3. No – no restore will perform

2. Users can control this feature by calling “web_scp_sw_latest_version_url”

The provided file from that url should contain the latest version and its associated upgraded package:

• version

• package

3. Modem & V2X SW will look for a newer version and perform upgrading as needed. If the upgrade fails, modem
SW will perform best attempt to restore previous working version

Filesystem Upgrade

The V2X and Modem Filesystem can be upgraded using the image referenced below. The upgrade process is per-
formed using a Linux environment.

Requirement:

1. PC with Linux OS (Ubuntu, Debian, or similar)

2. Micro SD card reader

Procedures:

1. Power on PC and boot into Linux OS

2. Download Filesystem image file

1. For V2X, use “V2X_fs_CLEAN_v2.1.1_020516.img.gz” and save to a directory

2. For Modem, use “Modem_fs_CLEAN_v2.1.1_020516.img.gz” and save to a directory

3. Open Terminal Window and type `sudo fdisk -l` and pay attention to what drive is mounted

4. Remove Micro SD from V2X and insert into card reader

5. Install card reader in Linux PC

6. In Terminal Window, type `sudo fdisk -l`

• System should detect newly insert Micro SD /dev/sdX1 and /dev/sdX2, where X is your Micro SD drive with
partition 1 (sdX1) and partition 2 (sdX2)

7. Open another Terminal Window:

1.1. Getting Started 9

OpenXC Accessories Documentation, Release 0.1

1. Erase all contents from Micro SDcard `rm -r /media/john/rootfs/*` or format partition
1 with ext4 and label “rootfs”

2. To copy image, type `sudo gunzip -c /YourDirectory/ V2X_fs_CLEAN_v2.1.
1_020516.img.gz | dd of=/dev/sdX1 bs=8M`

WARNING: make sure image is copied to partition 1 of Micro SD. If your system doesn’t
have gunzip, you will need to install with command ‘‘‘apt-get -y install gzip‘‘‘

8. Safely Eject Micro SD from PC, install in device, and power it on.

Mirco SD Partition

The following procedure will guide you in how to partition a Micro SD card of any size to use for both V2X and
Modem.

Requirement:

1. PC with Linux OS (Ubuntu, Debian, or similar)

2. Micro SD card reader

3. New 16GB Micro SD (recommended)

Procedures:

1. Power on PC and boot into Linux OS

2. Open Terminal Window and type `sudo fdisk -l` and pay attention to what drive is mounted

3. Remove Micro SD from V2X and insert into card reader

4. Install card reader in Linux PC

5. In Terminal Window, type `sudo fdisk -l`

• System should detect newly inserted Micro SD /dev/sdX where X is your Micro SD drive with factory partition
1 (sdX1)

6. Umount Micro SD, type `umount /dev/sdX1`

7. Start “fdisk” to partition Micro SD, type `sudo fdisk /dev/sdX`

In command console, type the following:

• `d` – delete partition

1. Select correct partition to be deleted. Repeat this step if there is more than 1 partition

• `n` – create new partition #1

• `p` – create Primary partition #1

• `1` – create partition #1

• Press “Enter” – to use Default value 2048 for First Sector

• `+1024M` – Last Sector end at 1GB

• `n` – create new partition #2

• `p` – create Primary partition #2

• `2` – create partition #2

• Press “Enter” – to use Default value for First Sector

• Press “Enter” – to use Default value for Last Sector

10 Chapter 1. Table of Contents

OpenXC Accessories Documentation, Release 0.1

• `w` – to write created partition to Micro SD

8. The newly created partition needs to be formatted, where Partition #1 use “ext4” and Partition #2 use “vfat”

• Some Linux distributions do not come with preinstalled “dosfstools” which are required for “vfat”.
To install, type `apt-get -y install dosfstools`

– This command should work for Ubuntu and Debian. Please search on how to install “dosfstools”
for other Linux distros

1. `sudo mkfs.ext4 -L rootfs /dev/sdX1` - format Partition #1 with ext4 and label
“rootfs”

2. `sudo mkfs.vfat -F 32 -n DATALOG /dev/sdX2` – format Partition #2 with vfat and
label “DATALOG”

3. Note - you may need to unmount SDcard if an error occurs when trying to format `umount /
dev/sdX1`

9. Safely Eject Micro SD from PC and install to device and power it on.

1.1.5 Kernel Upgrade

In order to successfully upgrade the kernel, you will need the following two cables:

• USB-A to micro-B cable

• USB to Serial UART (FTDI TTL-232R-3V3), which can be purchased here.

Upgrade Procedure

• Power device Off.

• Remove top cover by unscrewing the 4 screws on bottom of device.

• Connect micro-B side of USB-A to micro-B cable to device.

• Connect USB-A side of cable to PC.

• Connect FTDI cable to device.

– You will need to install the FTDI driver when connecting the cable to a PC for the first time. The FTDI
driver can be downloaded from here.

– When connecting the FTDI cable to the V2X device, make sure the Black cable on the serial connector
connects to the GND pin on the V2X device. This is to ensure proper polarity.

• Connect the USB-A side of the FTDI cable to your PC and allow the FTDI driver to complete the installation.

– Driver installation will assign a new COMx port, in addition to the USB COM port.

• Open TeraTerm and connect to the previously assigned (serial debug) COMx port with a 115200 baud rate.

– Instructions for downloading TeraTerm can be found here.

• Power device On.

• Stop “autoboot” by pressing any key on your keyboard.

• Type “nand erase.chip” and hit Enter.

• Type “reset” and hit Enter.

1.1. Getting Started 11

http://www.amazon.com/GearMo%C2%AE-3-3v-Header-like-TTL-232R-3V3/dp/B004LBXO2A
https://github.com/openxc/openxc-accessories/blob/master/tools/FTDI_Cable_Windows_Driver.zip
https://github.com/openxc/openxc-accessories/tree/master/tools/ModemConnect/Documents

OpenXC Accessories Documentation, Release 0.1

• The Device Manager should have registered a new device under Ports (COM & LPT) named “AT91 USB to
Serial Converter”.

– Install or update provided driver “atm6124_cdc_signed.zip” if device did not register or install correctly.

• Install executable file “sam-ba_2.15.exe”.

• Extract KERNEL file.

– For the V2X device, download “sama5d3_xplained-v2.1_V2X_011316.zip” to Desktop.

– For the Modem device, download “sama5d3_xplained-v2.0_TEST_2_Modem.zip” to Desktop.

• Run “demo_linux_nandflash.bat” from extracted folder above.

– Select “Run” on any warning popups.

• Power V2X device Off then back On after the Kernel finishes flashing to nandflash.

– Terminal 1 will stop scrolling and Terminal 2 will automatically close.

Congratulations, you have successfully upgraded the V2X kernel.

1.2 System Overview

1.2.1 General Overview

The following section describes the high level software design for the OpenXC-Modem and V2X devices. The picture
below shows the communication links between devices.

The OpenXC Embedded Software initiates connections shown in Figure 1. The devices (VI, V2X, Modem, Phone,
RSU, AP and Cloud) can be configured as follows:

• Topology 1: VI + Modem + Phone + Cloud

• Topology 2: VI + V2X + RSU + Phone + Cloud

• Topology 3: VI + Modem + V2X + RSU + Phone + Cloud

1.2.2 Application Overview

The Modem, V2X and RSU devices are designed as communication sources connecting through sockets and queues.

Tasks are handled in separate threads to handle concurrent activities and exchange data safely. The threads are designed
to be stoppable, using the following techniques as applicable:

• System exception to detect connection errors, or connection termination.

• Timeout exception to detect lost connection, especially in receiving/listening thread.

• External control flag to terminate execution loop.

The exchange of data from the sources to apps can be enabled or disable based on the configuration parameters
described in the next section. The devices are connected through either Bluetooth, WIFi or 802.11p as shown in
Figure 1.

• The Bluetooth interface uses 2 independent RFCOMM socket (Send & Recv) threads and associated data buffer
queues.

• The WiFi interface uses 2 independent INET socket (Send & Recv) threads and associated data buffer queues.

12 Chapter 1. Table of Contents

OpenXC Accessories Documentation, Release 0.1

• The 802.11p interface uses 2 independent UDP broadcast socket (UdpSend & UdpRecv) threads and associated
data buffer queues.

1.2.3 Modem Overview

• Source: VI

– VI through Bluetooth socket

• Applications

– VI stream recording

– GSM “Network Server Upload” task is handled in a separate stoppable thread

– GPS “Acquire Current Position” task is handled in a separate stoppable thread

– Environmental Monitor tasks (Battery level, Charger status, FW reset button . . .) are handled in separate
stoppable threads.

– Mobile App Thread

– V2X connection thread (Topology 3)

1.2.4 V2X Overview

• Sources:

– VI through Bluetooth socket (Topology 2)

– VI through modem over WiFI (Topology 3)

– RSU through UDP broadcast over 802.11p

– Self-identification announcement via UDP broadcast over 802.11p

• Applications

– VI stream recording

– RSU stream recording

– Environmental Monitor tasks (Battery level, Charger status, FW reset button . . .) are handled in separate
stoppable threads.

– Mobile App Thread (Topology 2)

– VI data upload

– RSU data upload

1.2.5 RSU Overview

• Source:

– Garage Simulator, sends garage data through UDP broadcast over 802.11p

• Application

– RSU data recording. Collects vehicle announcement and VI data if enabled)

1.2. System Overview 13

OpenXC Accessories Documentation, Release 0.1

1.3 Configuration

1.3.1 Configuration File

The following section describes the configuration file for the OpenXC Software.

• /root/OpenXCAccessory/common

Option Name Unit Default Value Description
openxc_vi_mac XX:XX:XX:XX:XX:XX None Vehicle Interface Dongle

MAC
openxc_vi_enable boolean (0 .. 1) 1/0 for MODEM/V2X Enabling Vehicle Inter-

face communication
openxc_md_enable boolean (0 .. 1) 1/0 for MODEM/V2X Enabling V2X-MD Inter-

face communication (10)
openxc_vi_trace_snapshot_durationseconds 10 Vehicle data stream trace

recording snapshot dura-
tion

openxc_vi_trace_idle_durationseconds 110 Idle duration between
subsequent Vehicle data
trace recording snapshot

openxc_vi_trace_truncate_sizebytes 0 Vehicle data trace snap-
shot truncate size where 0
means no truncate

openxc_vi_trace_filter_script None Vehicle data trace filtering
executable script where
the script is required to
accept stdin input stream
and generate stdout output
(1)

openxc_vi_trace_number_of_backupinteger 0 Number of vehicle data
trace will be backed up in
provided micro SD card
(2) where O means no
back up is needed

openxc_vi_trace_backup_overwrite_enableboolean (0 .. 1) 1 Enabling to overwrite
backup files when the SD
disk is full

web_scp_userid anonymous Remote server scp userid
v2x_lan_scp_userid root Remote server(Modem)

scp userid for V2X in
Topology 3

web_scp_pem None Remote server SSL
Enscripted Private key
PEM

web_scp_apn apn Remote server Access
Point Name as per details
provided with the SIM
card contract

web_scp_config_download_enableboolean (0 .. 1) 0 Enabling congifuration
file download from
remote server
Continued on next page

14 Chapter 1. Table of Contents

OpenXC Accessories Documentation, Release 0.1

Table 1.1 – continued from previous page
Option Name Unit Default Value Description
web_scp_config_url ip:file Configuration file URL on

the remote server

(<IP>:[<directory>/]<filename>)
(3)

web_scp_vi_target_url ip:file Remote server target file
URL in this format

(<IP>:[<directory>/]<filename>)
(4)

web_scp_target_overwrite_enableboolean (0 .. 1) 1 Enabling to overwrite re-
mote server target file (5)

web_scp_vi_trace_upload_enableboolean (0 .. 1) 0 Enabling vehicle data
records to be uploaded
into remote server

web_scp_vi_trace_upload_intervalseconds 3600 Interval to upload vehicle
data stream into a remote
server (6)

web_scp_sw_latest_version_url None Auto upgrade version
URL

(<IP>:[<directory>/]<filename>)
where None
means Auto
Upgrade is
disable

v2x_lan_scp_sw_latest_version_url 20.0.0.1:/tmp/upgrade.ver Auto upgrade version
URL

(<IP>:[<directory>/]<filename>)

fw_factory_reset_enable boolean (0 .. 1) 1 Enabling Firmware Fac-
tory Reset Button support

power_saving_mode Normal Power saving profile
where value is (perfor-
mance / normal / saving)

led_brightness 128 LED brightness level
where level is (0 .. 255)
(7)

gps_log_interval seconds 10 Interval to log
GPS Acquire Cur-
rent Position into
/var/log/xcmodem.gps
if applicable

gps_enable boolean (0 .. 1) 1/0 for MODEM/V2X En-
abling GPS module
(8)
Continued on next page

1.3. Configuration 15

OpenXC Accessories Documentation, Release 0.1

Table 1.1 – continued from previous page
Option Name Unit Default Value Description
gsm_enable boolean (0 .. 1) 1/0 for MODEM/V2X En-

abling GSM module
(9)

openxc_v2x_trace_snapshot_duration*seconds RSU data stream trace
recording snapshot dura-
tion for topology 3.

openxc_v2x_trace_idle_duration*seconds Idle duration between
subsequent RSU data
trace recording snapshot
for topology 3

xcmodem_ip_addr IP address 20.0.0.1 IP address for the Modem
when it acts as an AP

openxc_xcV2Xrsu_trace_snapshot_durationseconds Duration control for RSU
snapshot in V2X and RSU

openxc_xcV2Xrsu_trace_idle_durationseconds Interval control between
RSU snapshots

web_scp_xcV2Xrsu_target_urlURL URL for uploading RSU
logs

web_scp_rxcV2Xsu_trace_upload_intervalseconds Interval control between
successive web uploads

web_scp_xcV2Xrsu_trace_upload_enableseconds Enable/Disable control for
web upload of RSU log

openxc_xcV2Xrsu_msg_send_interval*seconds Control for interval be-
tween RSU identification
message broadcast

chd_txpower 2 dBm Transmit power for cohda
radio

chd_radio (‘a’..’b’) a Radio to be used for the
Cohda module

chd_antenna (1..3) 3 Antenna(s) to be used for
radio

chd_chan_no
10 MHz channel
(172, 174, 176,
180, 182, 184)
20MHz channel
(175, 181) All
channels SCH

184 802.11p Channel

Continued on next page

16 Chapter 1. Table of Contents

OpenXC Accessories Documentation, Release 0.1

Table 1.1 – continued from previous page
Option Name Unit Default Value Description
chd_modulation

MK2MCS_R12BPSK
MK2MCS_R34BPSK
MK2MCS_R12QPSK
MK2MCS_R34QPSK
MK2MCS_R12QAM16
MK2MCS_R34QAM16
MK2MCS_R23QAM64
MK2MCS_R34QAM64
MK2MCS_DEFAULT
MK2MCS_TRC

MK2MCS_R12QPSK Modulation scheme for
cohda

chd_ch_update_enable Boolean(0..1) 0 Flag to update the cohda
channel parameters from
the config parameters dur-
ing the application run

• For optimal RSU trace recording in topology 3, trace time interval should be set as 1:2:1 ratio. Default value is
20:40:20. Where:

– RSU device set “openxc_xcV2Xrsu_msg_send_interval = 20”

– Modem device set “openxc_v2x_trace_snapshot_duration = 40” and “openxc_v2x_trace_idle_duration =
20”

1.3.2 Notes

1. An executable shell script like the following:

#!/bin/bash egrep “transmission|ignition”

will generate a trace file such as:

{“name”:”ignition_status”,”value”:”run”,”timestamp”:1427334376.624450} {“name”:”ignition_status”,”value”:”run”,”timestamp”:1427334376.664466}
{“name”:”ignition_status”,”value”:”accessory”,”timestamp”:1427334376.700860}
{“name”:”transmission_gear_position”,”value”:”neutral”,”timestamp”:1427334376.724524}
{“name”:”torque_at_transmission”,”value”:10.200000,”timestamp”:1427334376.734772}
{“name”:”transmission_gear_position”,”value”:”first”,”timestamp”:1427334376.765584}
{“name”:”ignition_status”,”value”:”run”,”timestamp”:1427334376.786151} ...

2. Raw vehicle trace snapshot will be saved as /mnt/data/trace_raw_<no>.json

*/mnt/data is mounted to the first recognized formatted partition on the inserted micro SD card

3. A unique configuration template will be created at the remote server during the device registration process, e.g:
<IP>:[<directory>/]<hostname>.<filename>

*To be used instead of provided <IP>:[<directory>/]<filename>, where <filename> is xconfig.conf by design

4. Uploading file will be named as <IP>:[<directory>/]<hostname>[.<timestamp>].<filename> at remote server
where <filename> is trace.json by design

5. If overwrite flag is disabled, YYMMDDhhmmss timestamp will be added to target file name.

6. User should be aware of additional time due to trace file conversion and server connection establishment.

1.3. Configuration 17

OpenXC Accessories Documentation, Release 0.1

7. LED brightness default is 255|128|0 for performance|normal|saving of power_saving_mode respectively

8. Default value is based upon board type. This option is not valid for V2X as the V2X accessory does not support
GPS.

9. Default value is based upon board type. This option is not valid for V2X as the V2X does not support GSM.

10. Default value is based upon board type. Need to be enable on both MODEM and V2X to operate V2X-Modem
interface.

Power-Saving Mode Profile

To illustrate ability to support different power saving modes, OpenXC-Modem Embedded Software implements simple
profiles (aka performance, normal and saving) for certain functions as shown in the following table:

1.3.3 LEDs

The Modem has 5 LED indicator lights. Battery LED has 2 colors (RED and GREEN) while the others are single
color. OpenXC Modem Embedded SW controls the LEDs via gpio (/sys/class/leds/XXX).

• After power up, all LEDs except the Battery LED will blink fast.

• During software upgrades (Over-The-Air or Manufacturing Firmware Reset), all LEDs will blink slow.

• Run xcmodem.py to change LEDs according to the following table.

18 Chapter 1. Table of Contents

OpenXC Accessories Documentation, Release 0.1

LED Color Mode Function Keyword State
Bat_grn_led

OFF
ON
FAST BLINK

VBAT < 3.55V
VBAT >= 3.55V
Charging

charger

NOT_CHARGE/CHARGE_DONE

PRE_CHARGE/FAST_CHARGE

Bat_red_led

OFF
ON
FAST BLINK

VBAT > 3.65V
VBAT <= 3.65V
Charging

charger

NOT_CHARGE/CHARGE_DONE

PRE_CHARGE/FAST_CHARGE

GSM_led

OFF
ON
FAST BLINK
SLOW BLINK

IDLE or PPP lost
GSM is ready
PPP data
transferring
SIM not inserted

gsm_app

IDLE / LOST
PENDING
OPERATION
PENDING

GPS_led*

OFF
ON
FAST BLINK
SLOW BLINK

Not start
GPS Unit power up
Valid GPSAPC
Locking for valid
GPSAPC

gps_app

IDLE
CONNECT
OPERATION
LOCKING

BT_led

OFF
ON
FAST BLINK
SLOW BLINK

IDLE
VI Dongle Connect
VI Dongle Pairing
VI Dongle
Discovery

vi_app

IDLE / LOST
OPERATION
DISCOVERED

ADDR_INQUIRY/ADDR_ASSIGNED/DISCOVERED

Wifi_led**

OFF
ON
FAST BLINK
SLOW BLINK

Not Connected
Connected
Data Transmitting
Device N/A

na

IDLE
PENDING
OPERATION
NO WIFI DEVICE
DETECTED***

80211_led

OFF
FAST BLINK

Not Connected
Data Transmittin

na

IDLE
OPERATION

Note: .* V2X and RSU use “gps” as “wifi” led.

.** V2X and RSU use “wifi” led for 802.11p led.

1.3. Configuration 19

OpenXC Accessories Documentation, Release 0.1

.*** TI WiFi module occasionally doesn’t come up during boot-up and may need manual power cycle.

Brightness Control

LED brightness is controlled by Power-saving-mode profile. However, users can overwrite the brightness level using
“led_brightness” (in xcmodem.conf). The brightness level can be adjusted from 0 (dim) to 255 (bright).

1.4 Design Sources

1.4.1 Electrical

1.4.2 Mechanical

1.4.3 Assembly

1.5 License Disclosure

The OpenXC Accessories project is an open source project, and in turn depends on a few other open source projects.
If you are building from source, or have downloaded a pre-compiled binary firmware, the result may contain source
code covered by the following licenses:

Accessories

Copyright (c) 2017 Ford Motor Company All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the <organization> nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

20 Chapter 1. Table of Contents

https://github.com/openxc/openxc-accessories

CHAPTER 2

License

Copyright (c) 2015 Ford Motor Company

Licensed under the BSD license.

This software depends on other open source projects, and a binary distribution may contain code covered by other
licenses.

21

	Table of Contents
	Getting Started
	System Overview
	Configuration
	Design Sources
	License Disclosure

	License

