

 Navigation

 	
 index

 	
 next |

 	OpenWorm 0.5 documentation

Welcome to OpenWorm’s documentation!

Contents:

	Introduction to OpenWorm
	Welcome

	Mission/Vision

	Goal

	Navigating OpenWorm

	Contributing to OpenWorm

	Project Background
	History

	Why do this?

	Why c. elegans?

	On models

	Concepts

	OpenWorm Modeling Approach
	Closing the loop with neuromechanical modeling

	Components

	Tuning

	Validation

	Reproducibility

	OpenWorm Projects

	OpenWorm Community
	An Opening Note

	Contribution Best Practices

	Meetings

	Interactions

	Membership

	Using OpenWorm Resources
	Simulation engines

	Visualization Environments

	Data sets

	Frequently Asked Questions
	OpenWorm general

	OpenWorm simulation and modeling

	OpenWorm code reuse

	OpenWorm links and resources

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenWorm 0.5 documentation

Introduction to OpenWorm

Welcome

OpenWorm is an open source project and open science community dedicated to creating the world’s first whole organism
in a computer, a C. elegans nematode, via bottom-up “systems biology” computational modeling. It is an association
of highly motivated scientists, engineers, coders, and curious citizens from around the world who believe in
open science and open access.

Mission/Vision

The complexity of computational neuroscience and biology make it extremely difficult to sort through the
myriad facts, data, and biological processes that are uncovered on a daily basis by researchers around the world.

OpenWorm believes that the challenges of solving brain simulation, even for the simplest of model organisms,
require open access and collaborative solutions.

OpenWorm is actively working to achieve its goal - creating the world’s first virtual organism in a computer - by:

	bringing together highly motivated scientists and engineers in the open space

	pushing away all the red tape by taking open science to the extreme

	fostering growth of a completely open computational biology community

Goal

Our main goal is to build the world’s first virtual organism– an in silico implementation of a living creature–
for the purpose of achieving an understanding of the events and mechanisms of living cells.
Our secondary goal is to enable, via simulation, unprecedented in silico experiments of living cells to power
the next generation of advanced systems biology analysis, synthetic biology, computational drug discovery and
dynamic disease modeling.

Navigating OpenWorm

We’ve created this documentation to help orient you to the different locations on the web
where OpenWorm material is found and where contributions can be made.

The modeling approach page explains how we have broken down this problem and what steps
we are currently taking.

The
resources page
has a gallery of content that has been produced by the project, including simulation engines,
visualization environments, and data sets.

There are a lot of additional questions you may have about the project. We have assembled
a frequently asked questions (FAQ) document to help you. You may also wish to use
the search feature in our documentation [http://openworm.rtfd.org].

Contributing to OpenWorm

To start off the process, please give us some information about yourself on
this form [https://docs.google.com/spreadsheet/viewform?usp=drive_web&formkey=dC1CUDQtTV82MEJJcjY0NjdCcHpYdmc6MQ#gid=0].
We recommend as well that you sign up to
this mailing list [https://groups.google.com/forum/?fromgroups#!forum/openworm-discuss] and peruse the archives
to get a sense of what is going on.

Then, please check out a recent orientation overview [https://www.youtube.com/watch?v=C12d11z8OIo],
and browse
our project list to understand the different areas where work is happening.
To put the projects in context, you will find it useful to read more about the
big picture idea of the modeling approach we are taking.

If you are interested in a specific programming language, check out links to issues specifically for
python [https://github.com/openworm/OpenWorm/issues?direction=desc&labels=python&page=1&sort=comments&state=open] or
c++ [https://github.com/openworm/OpenWorm/issues?direction=desc&labels=c%2B%2B&page=1&sort=comments&state=open].
We also have a lot of Java and Javascript/HTML/CSS development going on as part of Geppetto.
See the list of issues here [https://waffle.io/openworm/org.geppetto].

If you have questions about specific things you find, please post them to
the list [https://groups.google.com/forum/?fromgroups#!forum/openworm-discuss].

More information about the process of making a contribution is
available on our community page

While the heart of OpenWorm is computational modeling, we are always looking for people with talents beyond programming
to contribute. Are you a graphic designer, writer, PR specialist or simply someone with a love of science and expertise
to share? Please reach out to us at info@openworm.org to discuss opportuntities with OpenWorm.

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenWorm 0.5 documentation

Project Background

History

Established in January 2011 and in just 2 years of activity, OpenWorm has built a community of highly-motivated
and highly-skilled individuals and coordinated their work. The community has produced regular scientific publications
making extensive use of scientific research published through open access, proving the validity of the open science
approach taken.

More information is available on the past history of releases the project has done

Why do this?

There has never been a scientific result in biology or neuroscience that is inconsistent with the idea that
brains are 100% physical matter. We tend to forget, but our brains are tissues just like our lungs and heart are.
If I could stick an electrode in your brain right now I could record activity from your neurons that corresponds
with your thoughts. The problem is that scientists can’t understand what all that activity means yet.

Scientists can make models of sending a rocket to land on the surface of Mars, but not a model of all the activity
of your brain. Scientists lack well-agreed upon models of complex neuronal activity because such models are hard to
produce.

Complex neuronal activity is the result of countless interactions between molecules happening inside, between, and
around neurons. Because of all the interactions that make up complex neuronal activity, you need to gather up a
lot of information to make models of it. Also because of all those interactions, you need sophisticated software
platforms to manage all that information properly.

We are building a simulation platform to prove it is possible to make good models of complex neuronal activity,
starting with a digital worm. We are making the simulation platform open source because we believe anyone should be
able to use it to understand how neurons and cells work.

Why c. elegans?

In the field of neuroscience, one of the simplest organisms that are studied is the c. elegans. It only has 302
neurons, has a very consistent lifecycle, and is well studied. Its whole body has only 1000 cells total.
With those 1000 cells it solves basic problems of feeding, mate-finding, predator and toxin avoidance using
a nervous system driving muscles on a body in a complex world.

The cells in its body work together to produce its behavior. Instead of starting with the behavior and building
a simple system to capture it, we are starting with making models of the individual cells and their interactions.
If we do this correctly so that the cells act on each other as they do in the real organism, we will have a much
more realistic model than we would get trying to go straight to the behavior.

This seems to us the only sensible starting point to creating a true biological simulation that captures enough
details and has enough constraints to approximate real biology. Simulating a single cell that doesn’t move
(like a yeast cell) isn’t going to provide us enough of a foundation to build up to more complex organisms by
itself. If we can’t accomplish a simulation at this humble scale, we’ll never be able to do it at the massive
scale of the human brain. The technology that would come out of this endeavor would be applicable to much more
complex organisms down the road.

On models

Models are the cornerstone of science. Tools like algebra and calculus and newtonian mechanics and computer
spreadsheets were advances because we could plug numbers into equations and get answers out that told us something
about the world.

Unfortunately, neuroscience has few predictive models for how nervous systems work.

We are starting by building a full simulation of a small biological system with a reasonable number of parts. We
are focused on capturing as much of the rich detail of that biological system as possible.

Concepts

Top-down simulation

Our first instincts when looking at a system we want to simulate is to come up with a list of its obvious features
and then try to pick the simplest means of simulating it. In the case of obvious top-down ways to model a worm,
one might capture the fact that it bends in a sinusoidal pattern as a good starting point, and begin implementing
sine and cosine functions that can capture this.

There is an important place for this kind of simulation, but we have found that one rapidly runs into limitations
of generalization. The model that worked great for crawling no longer works for turning around. The simplest
thing possible is added to the model to make it work for turning around, but soon there is another aspect to
capture, and then another. Soon, the model is a series of hacks that become increasingly brittle.

Instead of a pure top-down approach, we employ a balanced top-down, bottom-up approach, with a greater emphasis
on the bottom up.

Bottom-up simulation

Biology teaches us that when it comes to understanding how animals work, understanding the
behavior of cells is critical [http://en.wikipedia.org/wiki/Cell_biology].
Our bodies are made up of between 40 and 100 trillion cells, and it is these cells working
together that make up everything we are and do. Of particular interest are the cells in the
brain and larger nervous system, that are responsible for our thoughts, creativity and feelings.

Today, science has barely scratched the surface of how to make best use of the enormous power of computers
to create models of cellular activity. Scientists have not yet placed computer models of cells at the center
of biology.

A “bottom-up” simulation, in this case, is an attempt to model the individual cells in the organism, giving
them behaviors which, when combined together, produce the outward behavior of the entire organism. This is as
opposed to building the organism without consideration for individual cells to start with, and adding cells in later.

In reality, we always have to do some bottom-up simulation along with top-down simulation, in order to make progress.
But in general and where possible, we view what we are doing as focused on simulating cells first.

Multi-algorithm integration

Just as mathematics has played a crucial role in the description of physics [http://en.wikipedia.org/wiki/Mathematical_physics],
mathematicians have approached the field of biology [http://en.wikipedia.org/wiki/Mathematical_and_theoretical_biology]
with the goal of describing biological activity more precisely. Generally speaking, this means that if it happens
inside a biological organism, there should be a set of equations that can explain how it works. A great deal of
creativity goes into coming up with such equations.

Once equations have been determined, computers are great at calculating them once they have been
turned into algorithms [http://en.wikipedia.org/wiki/Algorithm]. Algorithms become the computer’s way of
handling a bunch of equations.

The challenge is that there are a lot of equations that are necessary to fully specify how cellular activity works.
A recent whole cell model [https://simtk.org/home/wholecell] of a relatively simple cell came up with 32 algorithms
composed of many more equations and a ton of data.

The consequence of this from an engineering perspective is, in order to simulate complex living systems,
we need software that is flexible enough to let us assemble the algorithms we need in just the right ways.
We call this “multi-algorithm integration”.

Model optimization

There are a lot of aspects of the c. elegans that we will not be able to measure directly for a while based
on experimental limitations. These are “free parameters” [http://en.wikipedia.org/wiki/Free_parameter].
The conventional wisdom on modeling is to minimize the number of free parameters as much as possible.
Sometimes, the large number of free parameters are used as an argument to avoid making computational simulations.

In this case, we have to make do with what we have and make some good educated guesses about the free parameters.
There is a mathematical discipline that helps us do that known as optimization [http://en.wikipedia.org/wiki/Mathematical_optimization]. For our purposes, you can think of this as generating
many different versions of a model, each version with slightly different parameters, and then measuring if the
model produces good results. If a model produces better results by changing the parameters in a particular way,
you try to keep changing the parameters in that way and see if you get even better results. In this way,
roughly speaking, optimization techniques enable scientists to turn a problem of lack of data into a problem
that a computer can address using brute force calculations.

NeuroML

NeuroML is [http://en.wikipedia.org/wiki/NeuroML] an XML (Extensible Markup Language) based model description
language that aims to provide a common data format for defining and exchanging models in computational neuroscience.
The focus of NeuroML is on models which are based on the biophysical and anatomical properties of real neurons.
(Wikipedia [http://en.wikipedia.org/wiki/NeuroML]).
NeuroML is known as an open standard, because its means of describing a model is publicly available for
others to improve upon.

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenWorm 0.5 documentation

OpenWorm Modeling Approach

Our main goal is to build the world’s first virtual organism– an in silico implementation
of a living creature–
for the purpose of achieving an understanding of the events and mechanisms of living cells.
Our secondary goal is to enable, via simulation, unprecedented in silico experiments of
living cells to power
the next generation of advanced systems biology analysis, synthetic biology,
computational drug discovery and dynamic disease modeling.

Contents

	OpenWorm Modeling Approach
	Closing the loop with neuromechanical modeling

	Components
	Body and environment

	Neurons

	Muscle cells

	Tuning

	Validation

	Reproducibility

In order to achieve these goals, we first began with an informal cartoon representation of
a breakdown of cell types and
various biological processes that the worm has. Here is a representation of a small subset of those processes,
where arrows show the causal relationship between processes and cell types:

[image: Complex causation loop]

This picture is purposefully drawn with an underlying loop of causal relationships, and
is partially inspired by the work of
Robert Rosen [http://www.amazon.com/Life-Itself-Comprehensive-Fabrication-Complexity/dp/0231075650]. The
decision to focus on any one loop is arbitrary. Many different loops of
causal relationships could be plucked out of the processes that underly the worm. However,
focusing on first dealing with the loop that deals with behavior in the environment and
through the nervous system has several advantages as a starting point:

	Crawling behavior of worms is relatively easy to measure

	The 302 neurons responsible for the behavior are well mapped

	Enables the study of the nervous system as a real time control system for a body

	Provides the model with a minimum core to which other biological processes and cell types can be added.

Having chosen one loop to focus on first, we can now re-define the problem as how to
construct an acceptable neuromechanical model. There have been
other attempts [http://www.artificialbrains.com/openworm#similar] to do this in the
past and there are some groups currently working on the problem using
different approaches (e.g. Cohen [http://www.comp.leeds.ac.uk/celegans/],
Lockery [http://lockerylab.uoregon.edu/groups/main/wiki/a99e9/Research.html],
Si Elegans [http://www.si-elegans.eu/]).

Our approach involves building a 3D mechanical model of the worm body and nervous system,
tuning the model using model optimization techniques, validating the model using real data,
and ensuring the model is reproducible by other labs by exposing it through a web-based
simulation engine.

Closing the loop with neuromechanical modeling

While our ultimate goal is to simulate every cell in the c. elegans, we
are starting out by building a model of its body and environment, its nervous system,
and its muscle cells.

To get a quick idea of what this looks like, check out the CyberElegans
prototype [http://www.youtube.com/embed/3uV3yTmUlgo]. In this movie
you can see a simulated 3D c. elegans being activated in an environment.
Similar to the CyberElegans model, its muscles are located around the outside of its body,
and as they turn red, they are exerting forces on the body that cause the bending to
happen.

These steps are outlined in blue text of the figure below:

[image: Greatly oversimplified causation loop]

Our end goal for the first version is to complete the entire loop. We
believe that this is the most meaningful place to begin because it
enables us to study the relationship between a nervous system, the body
it is controlling, and the environment that body has to navigate. We
also believe this is a novel development because there are no existing
computational models of any nervous systems that complete this loop. For
an excellent review of the current state of research on this topic, check out
Cohen & Sanders, 2014 [https://www.dropbox.com/s/6a76de0jpjm0ze0/Nematode%20locomotion%20dissecting%20the%20neuronal%E2%80%93environmental%20loop%20-%20Cohen%2C%20Sanders%20-%202014.pdf]

When we first started, our team in Novosibirsk had produced an awesome
prototype. We recently published an
article [http://iospress.metapress.com/content/p61284485326g608/?p=5e3b5e96ad274eb5af0001971360de3e&pi=4]
about it. If you watch the movie that goes along with the
prototype [http://www.youtube.com/watch?v=3uV3yTmUlgo], you can see
the basic components of the loop above in action:

[image: CyberElegans with muscle cells]

Here muscle cells cause the motion of the body of the worm along the
surface of its environment.

[image: Inside the CyberElegans model]

Inside the worm, motor neurons are responsible for activating the
muscles, which then makes the worms move. The blue portions of the loop
diagram above are those aspects that are covered by the initial
prototype. We are now in the process of both adding in the missing
portions of the loop, as well as making the existing portions more
biologically realistic, and making the software platform they are
operating on more scalable.

Components

In order to accomplish this vision, we have to describe the different pieces of the loop
separately in order to understand how to model them effectively. This consists of
modeling the body within an environment, the neurons, and the muscle cells.

Body and environment

One of the aspects of making the model more biologically realistic has
been to incorporate a 3d model of the
anatomy [http://browser.openworm.org/] of the worm into the
simulation.

To get a quick idea of what this looks like, check out the
latest movie [https://www.youtube.com/watch?v=SaovWiZJUWY]. In this movie you can
see a simulated 3D c. elegans being activated in an environment. Its muscles are located
around the outside of its body, and as they turn red, they are exerting forces on the
body that cause the bending to happen.

In turn, the activity of the muscles are being driven by the activity of neurons within
the body.

[image: http://i.imgur.com/KSWjCaW.jpg]
More detailed information is available on the Sibernetic project page.

Having a virtual body now allows us to try out many different ways to control it using
signals that could arise from neurons. Separately, we have been doing work to create
a realistic model of the worm’s neurons.

Neurons

[image: Neurons in WormBrowser]

This is a much more faithful representation of the neurons and their
positions within the worm’s body.

Our computational strategy to model the nervous system involves first reusing the
c. elegans
connectome [http://dx.plos.org/10.1371/journal.pcbi.1001066] and the
3D anatomical map of the c. elegans nervous system and body
plan [http://g.ua/MhxC]. We have used the NeuroML standard (Gleeson
et al., 2010 [http://dx.plos.org/10.1371/journal.pcbi.1000815]) to
describe the 3D anatomical map of the c. elegans nervous system. This
has been done by discretizing each neuron into multiple compartments,
while preserving its three-dimensional position and structure. We have
then defined the connections between the NeuroML neurons using the c.
elegans connectome. Because NeuroML has a well-defined mapping into a
system of Hodgkin-Huxley equations, it is currently possible to import
the “spatial connectome” into the NEURON simulator (Hines & Carnevale
1997 [http://www.ncbi.nlm.nih.gov/pubmed/9248061]) to perform in
silico experiments.

To start getting some practical experience playing with dynamics that come from the
connectome, we have simplified it into a project called the ‘connectome engine’ and
integrated its dynamics into a Lego Mindstorms EV3 robot. You can see a movie of
this in action [https://www.youtube.com/watch?v=D8ogHHwqrkI].

More information about working with the data within it and other data entities
can be found on the data representation project page.

These neurons must eventually send signals to muscle cells.

Muscle cells

[image: Muscle cells in c. elegans]

We have started our process of modeling muscle cells by choosing a specific muscle cell to
target:

[image: Muscle cell highlighted]

More information about working with the data within it and other data entities
can be found on the data representation project page.

Once the body, neurons, and muscles are represented, we still have a lot of free parameters
that we don’t know. That’s what leads us to the need to tune the model.

Tuning

The way we make the model biophysically realistic is to
use sophisticated mathematics to drive the simulation that keep it
more closely tied to real biology. This is important because we want the
model to be able to inform real biological experiments and more
coarse-grained, simplified mathematics falls short in many cases.

Specifically for this loop, we have found that two systems of equations
will cover both aspects of the loop, broadly speaking:

[image: Simple loop overlaid with solvers]

As you can see, where the two sets of equations overlap is with the
activation of muscle cells. As a result, we have taken steps to use the
muscle cell as a pilot of our more biologically realistic modeling, as
well as our software integration of different set of equations assembled
into an algorithmic “solver”.

These two algorithms, Hodgkin-Huxley and SPH, require parameters to be
set in order for them to function properly, and therefore create some
“known unknows” or “free parameters” we must define in order for the
algorithm to function at all. For Hodgkin-Huxley we must define the ion
channel species and set their conductance parameters. For SPH, we must
define mass and the forces that one set of particles exert on another,
which in turn means defining the mass of muscles and how much they pull.
The conventional wisdom on modeling is to minimize the number of free
parameters as much as possible, but we know there will be a vast
parameter space associated with the model.

To deal with the space of free parameters, two strategies are employed.
First, by using parameters that are based on actual physical processes,
many different means can be used to provide sensible estimates. For
example, we can estimate the volume and mass of a muscle cell based on
figures that have been created in the scientific literature that show
its basic dimensions, and some educated guesses about the weight of
muscle tissue. Secondly, to go beyond educated estimates into more
detailed measurements, we can employ model optimization techniques.
Briefly stated, these computational techniques enable a rational way to
generate multiple models with differing parameters and choose those sets
of parameters that best pass a series of tests. For example, the
conductances of motor neurons can be set by what keeps the activity
those neurons within the boundaries of an appropriate dynamic range,
given calcium trace recordings data of those neurons as constraints.

If you’d be interested to help with tuning the model, please check out
the Optimization project page.

Validation

In order to know that we are making meaningful scientific progress, we need to validate
the model using information from real worms. The movement validation project is working
with an existing database of worm movement to make the critical comparisons.

The main goal of the Movement Validation team is to finish a test pipeline so the
OpenWorm project can run a behavioural phenotyping of its virtual worm, using the same
statistical tests the Schafer lab used on their real worm data.

More detailed information is available on the
Movement validation project page.

Reproducibility

In order to allow the world to play with the model easily, we are engineering Geppetto [http://geppetto.org], an open-source modular platform to enable multi-scale and multi-algorithm
interactive simulation of biological systems. Geppetto features a built-in WebGL visualizer that offers
out-of-the-box visualization of simulated models right in the browser. You can read about architectural
concepts and learn more about the different plug-in bundles we are working on.

[image: http://www.geppetto.org/images/cn2.png]
The project page for Geppetto has information about getting involved in its development with
OpenWorm.

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenWorm 0.5 documentation

OpenWorm Projects

The project is currently laid out into six major areas shown below:

	Neuromechanical modeling with Sibernetic

	Geppetto Simulation Engine

	Movement validation

	Optimization engine

	Data collection and representation

	Community outreach

[image: Project overview]

NeuroMechanical Modeling - Sibernetic

While our ultimate goal is to simulate every cell in the c. Elegans, we are starting out by building a model
of its body, its nervous system, and its environment.
Sibernetic [http://sibernetic.org] is the home of the C++ code base that implements the core of the model.
We have implemented an algorithm called Smoothed Particle Hydrodynamics (SPH) to simulate the body of the
worm and its environment using GPUs. This algorithm has been initially worked out in C++ (with OpenGL visualization).

To get a quick idea of what this looks like, check out the
latest movie [https://www.youtube.com/watch?v=SaovWiZJUWY]. In this movie you can
see a simulated 3D c. elegans being activated in an environment. Its muscles are located around the outside
of its body, and as they contract, they exert forces on the surrounding fluid, propelling the body forward via undulutory thrust.
In this model, the neural system is not considered and patterns of muscle contraction are explicitly defined.

More detailed information is available on the Sibernetic project page.

Geppetto Simulation Engine

In order to allow the world to play with the model easily, we are engineering Geppetto [http://geppetto.org], an open-source modular platform to enable multi-scale and multi-algorithm
interactive simulation of biological systems. Geppetto features a built-in WebGL visualizer that offers
out-of-the-box visualization of simulated models right in the browser. You can read about architectural
concepts and learn more about the different plug-in bundles we are working on.

More detailed information is available on the Geppetto project page.

Movement validation

In order to know that we are making meaningful scientific progress, we need to validate the model using information
from real worms. The movement validation project is working with an existing database of worm movement to make
the critical comparisons.

The main goal of the Movement Validation team is to finish a test pipeline so the OpenWorm
project can run a behavioural phenotyping of its virtual worm, using the same statistical
tests the Schafer lab used on their real worm data.

More detailed information is available on the Movement validation project page.

Optimization engine

The Optimization engine uses optimization techniques like genetic algorithms to help fill gaps in our
knowledge of the electrophysiology of C. elegans muscle cells and neurons.

More detailed information is available on the Optimization project page.

Data Collection and Representation

A lot of data about C. elegans is integrated into the model. In this project, we work
on what forms we should put these data in to best leverage them for building the model.

More detailed information is available on the Data representation project page.

Community Outreach

The effort to build the OpenWorm open science community is always ongoing.

More detailed information is available on the Community project page.

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenWorm 0.5 documentation

 	OpenWorm Projects

NeuroMechanical Modeling - Sibernetic

Contents

	NeuroMechanical Modeling - Sibernetic
	Available Documentation

	Current roadmap
	Electrofluid Paper

	Issues list

	Associated Repositories

While our ultimate goal is to simulate every cell in the c. Elegans, we are starting out by building a model
of its body, its nervous system, and its environment.
Sibernetic [http://sibernetic.org] is the home of the C++ code base that implements the core of the model.
We have implemented an algorithm called Smoothed Particle Hydrodynamics (SPH) to simulate the body of the
worm and its environment using GPUs. This algorithm has been initially worked out in C++ (with OpenGL visualization).

To get a quick idea of what this looks like, check out the
latest movie [https://www.youtube.com/watch?v=SaovWiZJUWY]. In this movie you can
see a simulated 3D c. elegans being activated in an environment. Its muscles are located around the outside
of its body, and as they turn red, they are exerting forces on the body that cause the bending to happen.

Available Documentation

	How to run

	PCI-SPH algorithm

	Main data structures

Current roadmap

Electrofluid Paper [https://github.com/openworm/OpenWorm/issues?milestone=17&state=open]

We are writing a manuscript focusing on the work we have to implement SPH in the project and apply it to muscle cells
and the worm body. @vellamike, @a-palyanov and @skhayrulin are taking the lead on this,

The proposal is to do this after the Sibernetic proof of concept worm wiggling is complete.

Issues list

All issues related to the
Sibernetic code base [https://github.com/openworm/OpenWorm/issues?direction=desc&labels=sibernetic&page=1&sort=comments&state=open]
can be found on GitHub.

Associated Repositories

	Repository
	Description
	Language

	Smoothed-Particle-Hydrodynamics [https://github.com/openworm/Smoothed-Particle-Hydrodynamics]
	
	The Sibernetic code base containing the 2014 version of the worm body model,

	a C++ implementation of the Smoothed Particle Hydrodynamics algorithm customised for the OpenWorm project.

	C++

	ConfigurationGenerator [https://github.com/openworm/ConfigurationGenerator]
	Generation start scene configuration for PCI SPH solver
	JavaScript

	CyberElegans [https://github.com/openworm/CyberElegans]
	Circa 2010 Neuromechanical model of C. Elegans
	C++

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenWorm 0.5 documentation

 	OpenWorm Projects

Geppetto Simulation Engine

Contents

	Geppetto Simulation Engine
	Previous accomplishments

	Current roadmap
	STORY: Worm wiggling in the browser

	STORY: Interactive worm wiggling in browser

	Issues list

	Associated Repositories

In order to allow the world to play with the model easily, we are engineering
Geppetto [http://geppetto.org], an open-source modular platform to enable multi-scale and multi-algorithm
interactive simulation of biological systems. Geppetto features a built-in WebGL visualizer that offers
out-of-the-box visualization of simulated models right in the browser. You can read about architectural
concepts and learn more about the different plug-in bundles we are working on.

Geppetto, is written in Java and leverages technologies like
OSGi [http://www.osgi.org/],
Spring Framework [http://www.springsource.org/spring-framework],
OpenCL [http://www.khronos.org/opencl/] and
Maven [http://maven.apache.org/].

Geppetto’s frontend is written using
THREE.js [http://mrdoob.github.com/three.js/] and
WebGL [http://www.khronos.org/webgl/].
Back-end / front-end communication happens via
JSON [http://www.json.org/] messages through
WebSocket [http://www.websocket.org/].

The engine runs on on Eclipse Virgo WebServer deployed on an Amazon
Elastic Compute Cloud [http://aws.amazon.com/ec2/] Linux instance.

Previous accomplishments

	Past releases of Geppetto

Current roadmap

STORY: Worm wiggling in the browser [https://github.com/openworm/OpenWorm/issues?milestone=21&state=open]

As a user, I want to see the proof of concept sibernetic worm in my web browser so
that anyone around the world can play with it.

Practically, this means porting the proof of concept scene into Geppetto.

STORY: Interactive worm wiggling in browser [https://github.com/openworm/OpenWorm/issues?milestone=23&state=open]

As a user, I want to be able to see a visualization of the proof of concept
worm wiggling in my web browser and be able to perturb it in a manner that
causes the wiggling to change in a realistic manner.

This milestone suggests interactivity via Geppetto. The kind of perturbation is
not defined yet– ideally we should aim for the simplest kind we can think of that
gives the user an interface to make modifications.

Issues list

The issues related to Geppetto are distributed across different repositories.

Issues related to general functionalities that need to be added to support the OpenWorm simulation are found here [https://github.com/openworm/OpenWorm/issues?direction=desc&labels=geppetto&page=1&sort=comments&state=open].

Issues related to the platform in general are found here [https://github.com/openworm/org.geppetto/issues?state=open].

Ultimately every module of Geppetto has issues of its own, see the list of repositories below.

The issues are so splitted to allow capturing different granularities, having both issues that reflect what macro functionalities need to be added in the OpenWorm and Geppetto repository and having detailed close-to-the-code bugs in the individual repositories.

Associated Repositories

	Repository
	Description
	Language

	org.gepetto [https://github.com/openworm/org.geppetto]
	Geppetto Main Bundle and packaging
	Java

	org.geppetto.solver.sph [https://github.com/openworm/org.geppetto.solver.sph]
	PCI SPH Solver bundle for Geppetto
	Java

	org.geppetto.simulator.jlems [https://github.com/openworm/org.geppetto.simulator.jlems]
	jLEMS based simulator for Geppetto
	Java

	org.geppetto.model.neuroml [https://github.com/openworm/org.geppetto.model.neuroml]
	NeuroML Model Bundle for Geppetto
	Java

	org.geppetto.core [https://github.com/openworm/org.geppetto.core]
	Geppetto core bundle
	Java

	org.geppetto.frontend [https://github.com/openworm/org.geppetto.frontend]
	Geppetto frontend bundle - Web application
	Java

	org.geppetto.testbackend [https://github.com/openworm/org.geppetto.testbackend]
	Geppetto test backend for Geppetto
	Java

	org.geppetto.simulator.sph [https://github.com/openworm/org.geppetto.simulator.sph]
	SPH Simulator bundle for Geppetto
	Java

	org.geppetto.simulation [https://github.com/openworm/org.geppetto.simulation]
	Generic simulation bundle for Geppetto
	Java

	org.geppetto.model.sph [https://github.com/openworm/org.geppetto.model.sph]
	PCI SPH Model Bundle for Geppetto
	Java

	org.geppetto.samples [https://github.com/openworm/org.geppetto.samples]
	Sample simulations for Geppetto
	Descriptive

	org.geppetto.templatebundle [https://github.com/openworm/org.geppetto.templatebundle]
	Template bundle
	Java

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenWorm 0.5 documentation

 	OpenWorm Projects

Movement Validation

Contents

	Movement Validation
	Previous accomplishments

	Current roadmap
	STORY: Build a test suite for the simulation from WormBehavior database

	EPIC: Correctly predict 80% of wild type (N2) behavior in WormBehavior database

	Issues list

	Associated Repositories

In order to know that we are making meaningful scientific progress, we need to validate the model using information
from real worms. The movement validation project is working with an existing database of worm movement to make
the critical comparisons.

The main goal of the Movement Validation team is to finish a test pipeline so the OpenWorm
project can run a behavioural phenotyping of its virtual worm, using the same statistical
tests the Schafer lab used on their real worm data.

Previous accomplishments

	All code necessary to reproduce Ev Yemini’s Nature Methods paper was obtained in October 2013. Jim has stored it in the MRC_wormtracker_GUI repo [https://github.com/JimHokanson/mrc_wormtracker_gui].
	This is in addition to the SegWorm repo [https://github.com/openworm/SegWorm], although we will be merging them.

	It has code to generate features from measurements.

	A movement validation GitHub repository [https://github.com/MichaelCurrie/movement_validation] was started specifically with the goal of developing

the infrastructure to validate model worm movements against real worms.

Current roadmap

STORY: Build a test suite for the simulation from WormBehavior database [https://github.com/openworm/OpenWorm/issues?milestone=19&state=open]

As a scientist or developer, I want to be able to run a test suite against the simulation that will show me how
close the model is to real data.

In order for a model to demonstrate scientific value, it has to make falsifiable predictions. The target data to
be able to predict will be drawn from the WormBehavior database. This milestone will involve working with these data,
creating a code base that can compare movement output from the simulation with ground truth from the database and produce
an accuracy score.

This story breaks down the epic to predict behavior from the WormBehavior database

EPIC: Correctly predict 80% of wild type (N2) behavior in WormBehavior database [https://github.com/openworm/OpenWorm/issues?milestone=22&state=open]

This epic is to have a simulation that can demonstrate it can predict (and therefore reproduce) 80% of the data
collected about the N2 worm in the WormBehavior database. This means building a training set and a test set that
are kept separate from each other, using the training set to tune up the model, then generating predictions, and
comparing them against the test set, and doing some cross-validation).

This epic focuses on an output of simulation performance rather than the means of implementation, so any way to
achieve this epic is welcome.

More information on next steps is available in a
recent progress report [https://docs.google.com/document/d/1sBgMAD-7RUjHwBgrC204LMqSC81byIaZNRm32lEGWMM/edit].

Issues list

All issues related to
movement validation [https://github.com/openworm/OpenWorm/issues?direction=desc&labels=movement+validation&page=1&sort=comments&state=open]
can be found on GitHub

Associated Repositories

	Repository
	Description
	Language

	movement_validation [https://github.com/openworm/movement_validation]
	A test pipeline that allows us to run a behavioural phenotyping of our virtual worm running the same test statistics the Shafer lab used on their worm data.
	Python

	SegWorm [https://github.com/openworm/SegWorm]
	SegWorm is Matlab code from Dr. Eviatar Yemini built as part of the WormBehavior database (http://wormbehavior.mrc-lmb.cam.ac.uk/)
	Matlab

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenWorm 0.5 documentation

 	OpenWorm Projects

Optimization engine

Contents

	Optimization engine
	Previous accomplishments

	Current roadmap
	STORY: Muscle Cell model output closely matches that of real data

	bionet: training C. elegans with a specialized genetic algorithm

	Issues list

	Associated Repositories

The Optimization engine uses optimization techniques like genetic algorithms to help fill
gaps in our knowledge of the electrophysiology of C. elegans muscle cells and neurons.

These two algorithms, Hodgkin-Huxley and SPH, require parameters to be set in order for
them to function properly, and therefore create some “known unknows” or “free parameters”
we must define in order for the algorithm to function at all. For Hodgkin-Huxley we must
define the ion channel species and set their conductance parameters. For SPH, we must
define mass and the forces that one set of particles exert on another, which in turn
means defining the mass of muscles and how much they pull. The conventional wisdom on
modeling is to minimize the number of free parameters as much as possible, but we know
there will be a vast parameter space associated with the model.

To deal with the space of free parameters, two strategies are employed. First, by using
parameters that are based on actual physical processes, many different means can be
used to provide sensible estimates. For example, we can estimate the volume and mass
of a muscle cell based on figures that have been created in the scientific literature
that show its basic dimensions, and some educated guesses about the weight of muscle
tissue. Secondly, to go beyond educated estimates into more detailed measurements, we
can employ model optimization techniques. Briefly stated, these computational techniques
enable a rational way to generate multiple models with differing parameters and choose
those sets of parameters that best pass a series of tests. For example, the conductances
of motor neurons can be set by what keeps the activity those neurons within the boundaries
of an appropriate dynamic range, given calcium trace recordings data of those neurons as
constraints.

Previous accomplishments

	Genetic algorithms applied to tuning muscle cell models

Current roadmap

STORY: Muscle Cell model output closely matches that of real data [https://github.com/openworm/OpenWorm/issues?milestone=13&state=open]

We will show that we have built a model of C. elegans muscle cell that matches data
recorded from the nematode muscle cell. In part, we will use techniques of model
optimization to fill in gaps in the model parameter space (deduce unmeasured parameters).
The main technical challenge is tuning muscle cell passive properties and building a larger
data set (more cell recordings).

bionet: training C. elegans with a specialized genetic algorithm

The C. elegans connectome is a neural network wiring diagram that specifies synaptic
neurotransmitters and junction types. It does not however quantify synaptic connection strengths.
It is believed that measuring these must be done in live specimens,
requiring emerging or yet to be developed techniques. Without the connection strengths, it is not fully
known how the nematode’s nervous system produces sensory-motor behaviors.

Bionet is an attempt to compute the connection strengths that produce desired sensory-motor behaviors.
This is done by a hybrid genetic algorithm that trains a large space
of 3000+ weights representing synapse connection strengths to perform given sensory-motor sequences.
The algorithm uses both global and local optimization techniques that take advantage of the topology
of the connectome. An artificial worm embodying the connectome and trained to
perform sensory-motor behaviors taken from measurements of the actual C. elegans
would then behave realistically in an artificial environment. This is an important step toward creating
a fully functional artificial worm. Indeed, knowing the artificial weights might cast light
on the actual ones.

Using the NEURON simulation tool as a fitness evaluation function,
the pharyngeal neuron assembly has been trained to produce given activation patterns, reducing
activation differences from more than 50% to less than 5%. Looking ahead, training worm locomotion
behaviors using Movement Validation measurements as models will allow the neural network to drive the
Sibernetic body model realistically.

Issues list

none

Associated Repositories

	Repository
	Description
	Language

	HeuristicWorm [https://github.com/openworm/HeuristicWorm]
	
	C++

	bionet [https://github.com/openworm/bionet]
	Artificial neural network for training C. elegans behaviors
	C++

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenWorm 0.5 documentation

 	OpenWorm Projects

Data Collection and Representation

Contents

	Data Collection and Representation
	NeuroML Connectome
	Previous accomplishments

	Current roadmap
	Updated NeuroML connectome model

	Issues list

	Associated Repositories

	Data Visualization
	Previous accomplishments

	Current roadmap

	Issues list

	Associated Repositories

	PyOpenWorm Unified Data Access Layer
	Previous accomplishments

	Current roadmap

	Issues list

	Associated Repositories

	Muscle Cell Integration
	Current roadmap

	Issues list

	Associated Repositories

There is not a single data source for our simulation; in fact one of our unique challenges is coming up with new ways to
work out how to integrate multiple data sets together. On this page you can read about how different dataset are used in
the model.

Being an integrative model, OpenWorm utilizes different datasets, each with different file formats and interfaces to the model.
There is no master representation of all the data incorporated into the model, instead our aim is to keep the model open to
be able to cope with different data structures.

Consider the connectomics data. There are different useful ways to mine this data set. For example, a
NetworkX [https://networkx.github.io/] representation
of the connectome as a complex graph enables questions to be asked about first and second nearest neighbors of a given neuron.
In contrast, an RDF [http://www.w3.org/RDF/] semantic graph representation is useful for reading and writing annotations about multiple aspects of a
neuron, such as what papers have been written about it, multiple different properties it may have such as ion channels and
neurotransmitter receptors and so on. A NeuroML [http://www.neuroml.org/] representation is useful for answering questions about model morphology and
simulation parameters. Lastly, a Blender [http://www.blender.org/] representation is a full 3D shape definition that can be used for calculations in
3D space.

Using these different representations separately leads to ad hoc scripting for for each representation. This presents a
challenge for data integration and consolidation of information. An ongoing development of the project is to create a
unified data access layer (see PyOpenWorm below), which enables different representations to become encapsulated into an
abstract view. This allows the user
to work with objects related to the biological reality of the worm. This has the advantage that the user can forget about
which representation is being used under the hood.

Here is a list of some of the data sets that we have used so far:

	The Virtual Worm (3D atlas of C. elegans anatomy) [http://caltech.wormbase.org/virtualworm/]

	The c. elegans connectome (wiring diagram of neurons) [http://www.wormatlas.org/neuronalwiring.html]

	Cell list of c. elegans [https://docs.google.com/spreadsheet/pub?key=0Avt3mQaA-HaMdGFnQldkWm9oUmQ3YjZ1LXJ4OHFnR0E&output=html]

	Ion channels used by c. elegans [https://docs.google.com/spreadsheet/pub?key=0Avt3mQaA-HaMdEd6S0dfVnE4blhaY2ZIWDBvZFNjT0E&output=html]

	Database of Worm behavioral phenotypes [http://www.ncbi.nlm.nih.gov/pubmed/23852451]

Currently our work on data collection and representation is divided among four subprojects:

	NeuroML Connectome

	Data Visualization

	PyOpenWorm Unified Data Access Layer

	Muscle cell integration

Below you can find information about each subproject, see the project’s current roadmap and access the associated
data repositories

A lot of data about c. elegans is integrated into the model.
In this project, we work on what forms we should put these data in to best leverage them
for building the model.

NeuroML Connectome

Our computational strategy to accomplish this involves first reusing the
C. elegans connectome and the 3D anatomical map of the C. elegans
nervous system and body plan. We have used the NeuroML standard
(Gleeson et al., 2010) to describe the 3D anatomical map of the c. elegans
nervous system. This has been done by discretizing each neuron into multiple
compartments, while preserving its three-dimensional position and structure.
We have then defined the connections between the NeuroML neurons using the c. elegans
connectome. Because NeuroML has a well-defined mapping into a system of Hodgkin-Huxley
equations, it is currently possible to import the “spatial connectome” into the NEURON
simulator (Hines & Carnevale 1997) to perform in silico experiments.

Previous accomplishments

	Building the C Elegans NeuroML file

Current roadmap

Updated NeuroML connectome model [https://github.com/openworm/OpenWorm/issues?milestone=15&state=open]

The NeuroML connectome model [https://github.com/openworm/CElegansNeuroML]
provides a framework for multi-compartmental modeling [https://en.wikipedia.org/wiki/Multi-compartment_model] of the
c. elegans nervous system. We are continuing to refine this to include more and more information that is known about the
anatomy and dynamics of the nervous system in order to reach ever-improving biological realism.

	Create sample NeuroML connectome output [https://github.com/openworm/OpenWorm/issues/114]

	Remove Glutamate_GJ etc in neuroConstruct project [https://github.com/openworm/OpenWorm/issues/50]

	Create or reuse a NeuroML description of c. elegans motor neuron synapses [https://github.com/openworm/OpenWorm/issues/124]

Issues list

All issues related to working with data [https://github.com/openworm/OpenWorm/issues?direction=desc&labels=data+parsing&page=1&sort=comments&state=open],
and doing research [https://github.com/openworm/OpenWorm/issues?direction=desc&labels=research&page=1&sort=comments&state=open] can be found on GitHub.

Associated Repositories

	Repository
	Description
	Language

	CElegansNeuroML [https://github.com/openworm/CElegansNeuroML]
	NeuroML based C elegans model, contained in a neuroConstruct project
	Java

	Blender2NeuroML [https://github.com/openworm/Blender2NeuroML]
	Conversion script to bring neuron models drawn in Blender into NeuroML format
	Python

	NEURONSimData [https://github.com/openworm/NEURONSimData]
	Graphing voltage data from NEURON sims of C. elegans conectome
	Python

Data Visualization

With the ever increasing capacity to collect data about biological system, the new challenge is to understand what
these dataset tell us about the system. The computational neuroscience community is developing a range of methods
to extract knowledge from these datasets. One approach the accomplish this task is to represent the data visually.
Our team has already produced the OpenWorm browser for web [http://browser.openworm.org] and iOS [https://itunes.apple.com/us/app/openworm-browser/id595581306?mt=8],
which makes it easy to visually study the anatomy of the the worm.

Previous accomplishments

	OpenWorm browser

	OpenWorm browser iOS

	Hive Plots visualizations of connectome

Current roadmap

	Create a D3 implementation of the C. elegans connectome HivePlot [https://github.com/openworm/OpenWorm/issues/89]

Issues list

All issues related to working with data [https://github.com/openworm/OpenWorm/issues?direction=desc&labels=data+parsing&page=1&sort=comments&state=open],
and doing research [https://github.com/openworm/OpenWorm/issues?direction=desc&labels=research&page=1&sort=comments&state=open] can be found on GitHub.

Associated Repositories

	Repository
	Description
	Language

	wormbrowser [https://github.com/openworm/wormbrowser]
	The Worm Browser – a 3D browser of the cellular anatomy of the c. elegans
	Javascript

	openwormbrowser-ios [https://github.com/openworm/openwormbrowser-ios]
	OpenWorm Browser for iOS, based on the open-3d-viewer, which was based on Google Body Browser
	Objective-C

	data-viz [https://github.com/openworm/data-viz]
	Repository for scripts and other code items to create web-based visualizations of data in the project
	Python

PyOpenWorm Unified Data Access Layer

We have consolidated a lot of data about the worm into a python library that creates a unified data access layer
called PyOpenWorm [https://github.com/openworm/pyopenworm]. Documentation for PyOpenWorm
is available online <http://pyopenworm.readthedocs.org/en/latest/intro.html>_.

Previous accomplishments

	Building the original OpenWorm database [https://groups.google.com/d/msg/openworm-discuss/2V5kF5na5fw/GnxZMgWYF7wJ]

	Initial release of PyOpenWorm [https://github.com/openworm/PyOpenWorm/releases/tag/0.0.1-alpha]

Current roadmap

	Finalize remaining issues for PyOpenWorm version alpha0.5 [https://github.com/openworm/PyOpenWorm/labels/alpha0.5]

	Document Neuron Ion Channels: Types [https://github.com/openworm/OpenWorm/issues/31]

	Document Ion channels: Research Claims [https://github.com/openworm/OpenWorm/issues/32]

Issues list

All issues related to working with data [https://github.com/openworm/OpenWorm/issues?direction=desc&labels=data+parsing&page=1&sort=comments&state=open],
and doing research [https://github.com/openworm/OpenWorm/issues?direction=desc&labels=research&page=1&sort=comments&state=open] can be found on GitHub.
Additionally, the PyOpenWorm project has its own issues list [https://github.com/openworm/PyOpenWorm/issues?q=is%3Aopen+is%3Aissue] and
a waffle board [https://waffle.io/openworm/PyOpenWorm] for easier observation of what is going on.

Associated Repositories

	Repository
	Description
	Language

	PyOpenWorm [https://github.com/openworm/pyopenworm]
	Unified, simple data access library for data & facts about c. elegans anatomy
	Python

Muscle Cell Integration

Because the muscle cell is driven both by an electrical model and a mechanical model, it
is a focus of integration between different algorithms. Previously we have created a
separate repository for the muscle model [https://github.com/openworm/muscle_model] that is an adaptation
of the work by Boyle & Cohen, 2008 <http://www.comp.leeds.ac.uk/jboyle/JordanBoyle_files/extended.pdf>.
We have an approximately working version [http://www.opensourcebrain.org/projects/muscle_model/wiki] implemented
in NEURON and are porting this to be fully NeuroML2 compliant.

Current roadmap

	Update NeuroML2 version of muscle model to match Neuron version [https://github.com/openworm/OpenWorm/issues/169]

	Create or reuse a NeuroML description of C. elegans motor neuron synapses [https://github.com/openworm/OpenWorm/issues/124]

	Sync channel descriptions with Muscle model standalone [https://github.com/openworm/OpenWorm/issues/51]

	Find neuroreceptors and synaptic information for MDL08 muscle cell [https://github.com/openworm/OpenWorm/issues/53]

	Secondary mechanical/electrophysiological muscle cell integration [https://github.com/openworm/OpenWorm/issues/9]

Issues list

All issues related to working with the muscle model [https://github.com/openworm/OpenWorm/labels/muscle%20model],
can be found on GitHub.

Associated Repositories

	Repository
	Description
	Language

	muscle_model [https://github.com/openworm/muscle_model]
	model of c.elegans muscle in NEURON / Python
	Python

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenWorm 0.5 documentation

 	OpenWorm Projects

Community Outreach

Contents

	Community Outreach
	Previous accomplishments

	Current roadmap

	Issues list

	Associated Repositories

The effort to build the OpenWorm open science community is always ongoing.

	Outreach via Social Media

	Documenting our progress

	Journal clubs

You can find out more about our OpenWorm community on another page.

Previous accomplishments

	Past Journal clubs [https://www.youtube.com/watch?v=JHSqkZ2sFDA&list=PL8ACJC0fGE7D-EkkR7EFgQESpHONC_kcI]

	Media attention [http://www.openworm.org/media.html]

	Attracting contributors [http://www.openworm.org/people.html]

	Attracting supporters [http://www.openworm.org/supporters.html]

Current roadmap

	Create documentation and package to allow others to play with the model optimization code [https://github.com/openworm/OpenWorm/issues/15]

	Have a parallel Spanish version of the site [https://github.com/openworm/OpenWorm/issues/36]

	Mention the call for C++ programmers to assist with Sibernetic on the Get Involved page [https://github.com/openworm/OpenWorm/issues/167]

Issues list

All issues related to
help with documentation [https://github.com/openworm/OpenWorm/issues?direction=desc&labels=documentation&page=1&sort=comments&state=open].
can be found on GitHub.

Associated Repositories

	Repository
	Description
	Language

	org.openworm.website [https://github.com/openworm/org.openworm.website]
	OpenWorm Website
	Python

	OpenWorm [https://github.com/openworm/OpenWorm]
	Project Home repo for OpenWorm Wiki and Project-wide issues
	Matlab

	openworm_docs [https://github.com/openworm/openworm_docs]
	Documentation for OpenWorm
	

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenWorm 0.5 documentation

OpenWorm Community

This page contains information intended to help individuals understand what steps to take
to make contributions to OpenWorm, how to join OpenWorm meetings, how to
interact with the community online, and how to become
an OpenWorm core member.

Contents

	OpenWorm Community
	An Opening Note

	Contribution Best Practices
	Using OpenWorm repos on GitHub

	Creating organizing documents
	Taking notes as Google docs

	Creating proposals as Google docs

	Contributing to the OpenWorm documentation
	OpenWorm Documentation Versions

	Guest Blog Post

	Journal Clubs

	Coding Standards

	Meetings
	Team meetings

	Working meetings

	IRC channel for OpenWorm

	Scheduling meetings

	Interactions
	Mailing Lists

	Google Plus

	YouTube
	Playlists

	Twitter

	Blog

	Membership

An Opening Note

Feeling lost? Not uncommon in open source projects. In fact, there are whole papers [http://www.igor.pro.br/publica/papers/OSS2014.pdf]
describing the kinds of problems you may be having and some proposed solutions.
Help us make helping you easier by reaching out to us to ask for help!

Contribution Best Practices

Once you have identified an issue you want to work on from a particular project,
please announce your intention to helping out on the
mailing list [https://groups.google.com/forum/?fromgroups#!forum/openworm-discuss] and
by commenting on the
specific GitHub issue.

Using OpenWorm repos on GitHub

Making
a contribution of code to the project will first involve
forking one of our repositories,
making changes, committing them, creating a pull request back to the original repo, and
then updating the appropriate part of documentation.

An alternate way to contribute is to
create a new GitHub repo yourself and begin tackling some issue directly there. We can
then fork your repo back into the OpenWorm organization at a later point in order to
bring other contributors along to help you.

More details on best practices using OpenWorm repos on GitHub are available on a separate page.

Creating organizing documents

Another
great way to contribute is by
organizing ideas or documentation or proposals via a Google
doc, and then sharing the link on our
mailing list [https://groups.google.com/forum/?fromgroups#!forum/openworm-discuss].

To contribute documentation and materials to the OpenWorm Google Drive, log into your Gmail account and click on
this link [https://drive.google.com/folderview?id=0B_t3mQaA-HaMaXpxVW5BY2JLa1E&usp=sharing].

All documents located in the OpenWorm folder is viewable to the public. Comments can be added to both text
documents and spreadsheets. In order to edit existing documents or to add a new document, you will need to be
added to the folder. You can request access by email your Google ID to info@openworm.org.

OpenWorm Docs [https://drive.google.com/a/openworm.org/?tab=oo#folders/0B_t3mQaA-HaMaXpxVW5BY2JLa1E]

Taking notes as Google docs

It is very useful to create notes and progress reports as the result of meetings as Google docs. Docs should
be shared publicly with view and comment access.

An effective progress report should contain the following information:

	Meeting title

	Attendees

	Date

	Goal being worked on (link back to doc page describing project)

	Previous accomplishments

	Recent progress towards goal

	Next Steps

	Future Steps

An example of an effective progress report is
available online [https://docs.google.com/document/d/1sBgMAD-7RUjHwBgrC204LMqSC81byIaZNRm32lEGWMM/edit].

Once the document is shared, it should be announced on the mailing list [https://groups.google.com/forum/?fromgroups#!forum/openworm-discuss].

Creating proposals as Google docs

To gather public comment on a direction for the project, it is often effective to create a
proposal as a world-editable Google Doc. Once your document is created and shared,
it should be announced on the mailing list [https://groups.google.com/forum/?fromgroups#!forum/openworm-discuss].

An example of an effective proposal is
available online [https://docs.google.com/a/openworm.org/document/d/1R5yeossrj_Ks1GvTtoE__8HtsrPCNVN46crwiJdSieU/edit#heading=h.8sny9ql7x375]

Contributing to the OpenWorm documentation

The OpenWorm documentation [http://openworm.rtfd.org] is a searchable repository
of knowledge we have assembled to help new users get oriented to the different areas
of the project. When new contributions are made, it is important that they are incorporated
into the appropriate part of the documentation.

When they are ready to consume by the general public, simulation engines,
visualization environments, and data sets should be added to the resources page.

Information about the goals, progress, and roadmap of current or proposed projects should
be added to the projects page.

The docs use rst format [http://sphinx-doc.org/rest.html]. This kind of
markup [https://en.wikipedia.org/wiki/Markup_language] is a bit verbose and unforgiving
in its syntax compared to other languages, but it is convenient for publishing documentation
to the ReadTheDocs service [https://readthedocs.org/] directly from the GitHub repo, so we use it.

The ‘master outline’ for the top level is in
index.rst [https://raw.github.com/openworm/openworm_docs/master/index.rst]. The
‘toctree’ directive [http://sphinx-doc.org/markup/toctree.html] in this
file sets up what is on the sidebar. This assumes that files with the names under the
toctree are present in the same directory as index.rst. Under this, the next level of
hierarchy is determined by section headers [http://sphinx-doc.org/rest.html#sections].
In the projects page [https://raw.github.com/openworm/openworm_docs/master/projects.rst]
we’ve used a hidden toctree in the file, which is creating the
next level of hierarchy in the sidebar. In that toctree, you can see an example of referencing
the underlying directory structure (e.g. ‘Projects/worm-movement’).

Changes that appear in GitHub will automatically trigger a hook that will cause the documentation on
ReadTheDocs to become rebuilt and pushed onto the site. There are different versions of the documentation
that are explained below.

OpenWorm Documentation Versions

Multiple versions of the documentation are enabled via GitHub branches.
The content that appears as ‘latest’ online [http://docs.openworm.org/en/latest/] corresponds to what is
in the master branch in the repo. This content should be dynamic and a space for adding stuff boldly.

The content that appears as a numbered version, like 0.5 [http://docs.openworm.org/en/0.5/] corresponds to
what is in the branch named 0.5 in the repo [https://github.com/openworm/openworm_docs/tree/0.5]. This content
should be considered stable and not updated lightly.

Keeping a division between latest and the versioned documentation is important for several reasons:

	Latest acts as a staging area - ReStructuredText is often touchy in terms of formatting – it is easy towrite something before ensuring that it formats properly. We don’t want those warts exposed to the public so having an extra layer of review by checking the page on latest first is valuable.

	URL Stability - content in latest is easy to update. Pages can be moved or deleted easily, breaking URLs that we have given out. If we make sure not to move pages around on the versioned docs, we can sustain URLs

	Versions should correspond to major releases of the project as a whole, which happen approximately every six months. As the project naturally evolves, the versioned docs provide a motivation for the entire documentation to be re-evaluated as a whole.

The recommended best practice when updating the documentation is that if your changes fix bugs with the documentation that
don’t involve moving pages, renaming pages, or deleting pages, then check them in first to latest. Then on a regular
basis the changes can be evaluated to be back applied to the most recent version. If your changes add new projects
or new content, or update a documentation page with the results of new events, keep this in latest and it will
get rolled into the next version.

Guest Blog Post

We love hearing about what members are of the OpenWorm community are doing.
If you have something to share, contact us at info@openworm.org to discuss.

Journal Clubs

Every few months an academic journal article comes along we can’t resist talking about.
We host a journal club where we invite scientists to present on the paper and to host a
discussion about it, hopefully with some of the article authors.

You can see
past journal clubs we have conducted online [https://www.youtube.com/watch?v=JHSqkZ2sFDA&list=PL8ACJC0fGE7D-EkkR7EFgQESpHONC_kcI].

If you have an idea for a good journal club, please post the suggestion
on our mailing list [https://groups.google.com/forum/?fromgroups#!forum/openworm-discuss].

Coding Standards

It is recommended to follow the PEP8 Guidelines [http://legacy.python.org/dev/peps/pep-0008/]. For contributions of Python code to OpenWorm repositories. Compliance can be checked with the pep8 tool [https://pypi.python.org/pypi/pep8] and autopep8 [http://pypi.python.org/pypi/autopep8]

Meetings

Team meetings

We have a regular meeting [https://www.youtube.com/watch?v=-IyHokN8FkA&list=PL8ACJC0fGE7C7zlCBqkx1LMN1DHGKVp22]
of the team that is building applications every two weeks.
We also currently
schedule an ad-hoc data team meeting [https://www.youtube.com/watch?v=seKjRnw7CB8&list=PL8ACJC0fGE7CGtyJWV2dPOfNxAruk2VcM]
about every 3-4 weeks. The events
are on our community calendar [https://www.google.com/calendar/embed?src=bqvlrm642m3irjehbethokkcdg%40group.calendar.google.com].
The events are streamed live when they occur and an archive of the meeting videos
and the minutes [https://drive.google.com/#folders/0B8QUskXehbJtNWM2MjUyM2EtOTMxMC00MWY3LWEyNWMtNDUwMjRiNjM0Mjcx]
are kept online.

Working meetings

Contributors are encouraged to meet with each other on a regular basis to advance areas of
the project they need interaction on.

IRC channel for OpenWorm

We’re trying to reboot an IRC channel for OpenWorm [https://kiwiirc.com/client/irc.snoonet.org/OpenWorm]. Check it out!

Scheduling meetings

We like using the Doodle service [http://doodle.com] for scheduling meetings. This makes it easy to find
times to meet across various time zones. Once a meeting is scheduled, we will often create
a Google+ event to track it and remind everyone it is occurring.

Interactions

Mailing Lists

There are two Google Groups in connection with OpenWorm. We suggest joining both lists to stay current,
introduce yourself to the project, and participate in ongoing discussions. Simply login with you Gmail
username and click on “Join Group” for each list.

This list [https://groups.google.com/forum/?hl=en#!forum/openworm] is for general updates and announcements
related to the project.

This list [https://groups.google.com/forum/?hl=en#!forum/openworm-discuss] is for high-volume type technical
discussions, day-to-day communications, and questions related to the OpenWorm project.

Google Plus

Follow us on OpenWorm Google+ [https://plus.google.com/+OpenwormOrg/posts]

Click on the “Follow” button to be a part of the OpenWorm community on Google+.

If you need more help with Google+, check out the handy guide [https://support.google.com/plus/?hl=en#topic=3049662]
put out by Google.

YouTube

View our YouTube channel [http://www.youtube.com/user/OpenWorm]

Want to get notified when new content goes live? Subscribe to the channel [http://www.youtube.com/user/OpenWorm] by clicking on the “subscribe” button while logged in to your Google account.

Playlists

	Status Updates - Biweekly updates from the OpenWorm team.

	Journal Clubs - Like journal clubs that meet in person, the OpenWorm journal clubs use discuss new discoveries, tools and resources related to neuroscience, C. elegans, computational biology and open source science.
Journal clubs are posted to social media in advance for any to watch and recordings then become available on YouTube. Learn more about our journal clubs.

	Data Team meetings - Learn more about our team meetings.

	Real C. elegans

	Building Blocks

Twitter

Follow our Twitter feed [http://twitter.com/openworm]

Want to tag OpenWorm on a tweet? Use @openworm and share the love.

Blog

Our blog [http://blog.openworm.org] is hosted in Tumblr.

Interesting in being a guest on our blog? We love hearing about what members of the OpenWorm community are doing. If you have something to share, contact us at info@openworm.org to discuss.

Membership

More information about the membership policy is
available on a separate page.

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenWorm 0.5 documentation

Using OpenWorm Resources

This page describes content that has been created by the project for use by the public.
Currently we make simulation engines, visualization environments, and data sets available.

Contents

	Using OpenWorm Resources
	Simulation engines
	Sibernetic

	Geppetto

	Connectome Engine and Lego Mindstorms robot

	CyberElegans

	Visualization Environments
	Connectome Browser

	WormBrowser (HTML5 and iOS)

	Data sets
	OpenWorm Database

	C. elegans NeuroML model in neuroConstruct

	OpenWorm Spreadsheet data

Simulation engines

Sibernetic

Sibernetic is the code base that currently implements the crawling model.
Sibernetic is a C++ / Python code base by Palyanov, Khayrulin and Vella that has been
created expressly for the purpose of doing research and building the model quickly.

[image: http://i.imgur.com/KSWjCaW.jpg]
More information on running Sibernetic is available online [http://sibernetic.org].

The project page for Sibernetic has information about getting involved
with its development.

Geppetto

Geppetto is a generic multi-algorithm integration platform written in Java and HTML5 by
Cantarelli, Idili, Martinez and Khayrulin whose goal is to enable the world to play with
simulations via their web browser, dramatically reducing the barrier to entry. We are
currently working to port the functionality in Sibernetic into Geppetto, which would
transform the experience of seeing the model from looking at a YouTube video to being able
to play and interact with the model in 3D.

[image: http://www.geppetto.org/images/cn2.png]
More information on running Geppetto is available online [http://geppetto.org].

The project page for Geppetto has information about getting involved in its development with
OpenWorm.

Connectome Engine and Lego Mindstorms robot

To start getting some practical experience playing with dynamics that come from the
connectome, we have simplified it into a project called the ‘connectome engine’ and
integrated its dynamics into a Lego Mindstorms EV3 robot. You can see a movie of
this in action [https://www.youtube.com/watch?v=D8ogHHwqrkI].

[image: http://i.imgur.com/OG7sOAD.jpg]
This is currently in the process of being written up.

CyberElegans

When we first started, our team in Novosibirsk had produced an awesome
prototype of a neuromechanical c. elegans model which they called
‘CyberElegans’. We recently published an
article [http://iospress.metapress.com/content/p61284485326g608/?p=5e3b5e96ad274eb5af0001971360de3e&pi=4]
about it. If you watch the movie that goes along with the
prototype [http://www.youtube.com/watch?v=3uV3yTmUlgo], you can see
the basic components of the loop above in action:

[image: CyberElegans with muscle cells]

Here muscle cells cause the motion of the body of the worm along the
surface of its environment.

[image: Inside the CyberElegans model]

Inside the worm, motor neurons are responsible for activating the
muscles, which them makes the worms move. The blue portions of the loop
diagram above are those aspects that are covered by the initial
prototype. We are now in the process of both adding in the missing
portions of the loop, as well as making the existing portions more
biologically realistic, and making the software platform they are
operating on more scalable.

You can download the binary for the CyberElegans [http://g.ua/MKja]
(Windows only)

This code base is not currently in active development.

Visualization Environments

Connectome Browser

The Connectome browser [http://goo.gl/XGQPX], created by the team at
the Open Source Brain [http://opensourcebrain.org], is a way to
explore the NeuroML connectome produced by the project. You can
investigate the current settings of the dynamics of each neuron, and by
clicking “selection mode” you can click on individual neurons to see
their synaptic partners in 3D. This is built from the Virtual Worm Blender
files [http://caltech.wormbase.org/virtualworm/]

[image: Connectome browser]

WormBrowser (HTML5 and iOS)

Explore the c. elegans in 3D! The
WormBrowser [http://browser.openworm.org] is an interactive virtual
experience of browsing the C. elegans worm anatomy. This is built from
the Virtual Worm Blender files [http://caltech.wormbase.org/virtualworm/]

[image: WormBrowser]

Source code for the web version [https://github.com/openworm/wormbrowser] and an iOS version [https://github.com/openworm/openwormbrowser-ios] are available online. We don’t
currently have active development happening with either, but if you are interested
in helping with the iOS code base, here’s a walkthrough [https://www.youtube.com/watch?v=b5X5fz7pZME]
of how to get started
with the codebase.

Data sets

OpenWorm Database

An web version of the OpenWorm database can be browsed online [http://www.interintelligence.org/openworm/Entities.aspx].

More information about working with the data within it and other data entities
can be found on the data representation project page.

C. elegans NeuroML model in neuroConstruct

The NeuroML conversion of the
Virtual Worm Blender files [http://caltech.wormbase.org/virtualworm/] has been
imported into a neuroConstruct [http://www.neuroConstruct.org]
project. This page
provides instructions for obtaining the latest version of
neuroConstruct, getting the latest CElegans project and
generating/visualizing the cells and connections.

[image: CElegansnC]

More information about working with the data within it and other data entities
can be found on the data representation project page.

OpenWorm Spreadsheet data

We keep a publicly accessible archive of data sets [https://drive.google.com/#folders/0B_t3mQaA-HaMejlrMmpnR2VjN0U]
that we have come across and adapted on Google Drive. We are currently in the process of
consolidating these data into the OpenWorm database. More information about working with
the data within it and other data entities
can be found on the data representation project page.

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	OpenWorm 0.5 documentation

Frequently Asked Questions

Contents

	Frequently Asked Questions
	OpenWorm general
	Why C. elegans?

	What does the real worm do?

	Do you simulate all that?

	So say the virtual organism lays eggs. Are the eggs intended to be new, viable OpenWorms, or is fertilization not a goal?

	Does it need to know how to be a worm to act like a worm?

	Given all that we DON’T know about c. elegans (all the various synaptic strengths, dynamics, gap junction rectification, long-range neuromodulation, etc.), how do you know the model you eventually make truly recapitulates reality?

	Is there only one solution to all those variables in the connectome that will make a virtual c. elegans that resembles a real one, or are there multiple?

	Why not start with simulating something simpler? Are nematodes too complex for a first go at whole organism simulation?

	When do you think the simulation will be “complete”, and which behaviors would that include?

	Currently, what are your biggest problems or needs?

	Where I could read about your “to do’s?”

	How do I know which issues are safe to work on? How do I know I won’t be stepping on any toes of work already going on?

	Do you all ever meet up somewhere physically?

	OpenWorm simulation and modeling
	What is the level of granularity of these models (ie. cells, subcellular, etc.), and how does that play out in terms of computational requirements?

	What’s the data source for your computer simulation of the living worm?

	Has there been previous modeling work on various subsystems illustrating what level of simulation is necessary to produce observed behaviors?

	How are neurons simulated today?

	What does a neuronal simulator do?

	What is the connection between the basic proporties of C. elegans neurons and human neurons?

	What is the level of detail of the wiring diagram for the non-neuron elements?

	How much new electrophysiological data will the project need to achieve its goals?

	How will the parameters of the neurons be inferred from calcium imaging?

	What are you using genetic algorithms in OpenWorm for?

	What will the fitness function be?

	How do you plan to extend its methods from single neurons to multiple neurons?

	Do you need a connectome for these gap junctions as well or should an accurate enough cell model suffice?

	What’s the main differences between the single and multi-compartment models?

	What is NeuroML and what does it represent?

	How is excitation and inhibition in neurons handled in OpenWorm?

	How do I run the NeuroML connectome?

	I generated positions for the connectome in NeuroConstruct and tried to export to NEURON but it said NEURON was not found!

	How does the NemaLoad project relate to OpenWorm?

	What is SPH?

	What are you doing with SPH?

	OpenWorm code reuse
	What are LEMS and jLEMS?

	What is OSGi and how is it being used?

	What is Spring and how is it being used?

	What is Tomcat and how is it being used?

	What is Virgo and how is it being used?

	What is Maven and how is it being used?

	OpenWorm links and resources
	Do you have a website?

	Where can I send my inquiries about the project?

	Where can I find the “worm browser”?

	How do I join the public mailing list?

	Where are downloads located?

OpenWorm general

Why C. elegans?

The tiny worm C. elegans is by far the most understood and studied animal with a brain in all of biology.
It was the first multi-cellular organism to have its genome mapped. It has only ~1000 cells and exactly 302 neurons,
which have also been mapped as well as its “wiring diagram” making it also the first organism to have a complete
connectome produced. This part gets particularly exciting for folks interested in artificial intelligence or
computational neuroscience.

Three different Nobel prizes have been awarded for work on this worm, and it is increasingly being used as a model for
better understanding disease and health relevant to all organisms, including humans. When making a complex computer model,
it is important to start where the data are the most complete.

What does the real worm do?

It has all sorts of behaviors! Some include:

	It finds food and mates

	It avoids toxins and predators

	It lays eggs

	It crawls and there are a bunch of different crawling motions

Do you simulate all that?

We’ve started from a cellular approach so we are building behavior of
individual cells and we are trying to get the cells to perform those
behaviors. We are starting with simple
crawling [https://github.com/openworm/OpenWorm/wiki/Project-overview].
The main point is that we want the worm’s overall behavior to emerge
from the behavior of each of its cells put together.

So say the virtual organism lays eggs. Are the eggs intended to be new, viable OpenWorms, or is fertilization not a goal?

Right now we aren’t addressing the egg laying or development capacity,
however, the worm does have the best known developmental history of any
organism [https://docs.google.com/file/d/0B_t3mQaA-HaMbEtfZHhqUmRIX1E/edit?usp=sharing]
so it would be really interesting to work on a computational development
model.

Does it need to know how to be a worm to act like a worm?

The “logic” part comes from the dynamics of the neurons interacting with
each other. it is a little unintuitive but that’s why makes up how it
“thinks”. So we are simulating those dynamics as well as we can rather
than instructing it what to do when. Of course that will require a good
mechanical model of how CE muscles respond to stimulation.

Given all that we DON’T know about c. elegans (all the various synaptic strengths, dynamics, gap junction rectification, long-range neuromodulation, etc.), how do you know the model you eventually make truly recapitulates reality?

All models are wrong, some models are useful :) We must have the model
make a prediction and then test it. Based on how well the model fits the
available data, we can quantify how well the model recapitulates
reality.

We are currently evaluating the database behind a recent paper on C.
elegans behavioral
analysis [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545781/pdf/pnas.201211447.pdf],
which resides
here [http://wormbehavior.mrc-lmb.cam.ac.uk/index.php], as the
standard we will use to test the model’s external behavior. More on this
here [https://www.youtube.com/watch?v=YdBGbn_g_ls].

As an analogy to what we are aiming for, we are inspired by the work of
the Covert lab in the creation of a whole cell
simulation [https://www.dropbox.com/s/jjzxw5f55z8nf5v/A%20Whole-Cell%20Computational%20Model%20Predicts%20Phenotype%20from%20Genotype%20-%20Karr%20et%20al.%20-%202012.pdf]
that predicts phenotype from genotype at 80% accuracy. This is just a
single cell model, but it has the same challenges of high complexity and
fundamental understanding gaps that must be bridged via good
assumptions.

Is there only one solution to all those variables in the connectome that will make a virtual c. elegans that resembles a real one, or are there multiple?

It is very likely to be multiple, given what we know about the
variability of neuronal networks in
general [https://www.dropbox.com/s/rbab411kf5rb4zh/Similar%20network%20activity%20from%20disparate%20circuit%20parameters.%20-%20Prinz%2C%20Bucher%2C%20Marder%20-%202004.pdf].
One technique to deal with this is to generate multiple models that
work [https://www.dropbox.com/s/05zx02h57vpvvqg/Multiple%20models%20to%20capture%20the%20variability%20in%20biological%20neurons%20and%20networks%20-%20Marder%2C%20Taylor%20-%202011.pdf]
and analyze them under different conditions. What we are after is the
solution space that
works [https://www.dropbox.com/s/hz2pv5cvomvsqez/Complex%20parameter%20landscape%20for%20a%20complex%20neuron%20model.%20-%20Achard%2C%20De%20Schutter%20-%202006.pdf]
(see Fig 6 for an example), rather than a single solution. That said, it
is extremely likely that the solution space is much smaller than the
complete space of possibilities.

Why not start with simulating something simpler? Are nematodes too complex for a first go at whole organism simulation?

Nematodes have been studied far more than simpler multi-cellular organisms, and
therefore more data exist that we can use to build our model. We would
need to get, for example, another connectome and another anatomical 3D
map whereas in C. elegans they already exist. The community of scientists using c. elegans
as their model organism is much larger than communities that studying simpler multi-cellular organisms,
so the effect of the community size also weighed in on the decision.

When do you think the simulation will be “complete”, and which behaviors would that include?

Completion is a functional standard – so it is complete when it fits
all available data about worm behavior. Today, the gold standard for
available data about worm behavior is encapsulated in the WormBehavior
database, described
here [https://www.youtube.com/watch?v=YdBGbn_g_ls]. More information
from the
paper [https://www.dropbox.com/s/tqr3abcrr8dt3bi/A%20database%20of%20Caenorhabditis%20elegans%20behavioral%20phenotypes.%20-%20Yemini%20et%20al.%20-%202013.pdf].

At the moment we are focusing on integrating an electrophysiological
simulation of the nervous system with a elastic matter and fluid
dynamics simulation for how the body of the worm interacts with the
environment. You can read more about this
here [https://github.com/openworm/OpenWorm/wiki/Project-overview]

Once the simulation of the nervous system is driving the physics-enabled
body of the worm around a simulated petri dish, it will be comparable to
the WormBehavior database. The degree of overlap between the simulated
worm and the behavior of real worms will be very interesting to see –
we are very curious to find this out!

Currently, what are your biggest problems or needs?

To make this project move faster, we’d love more help from motivated
folks. Both programmers and experimentalists. We have a lot we want to
do and not enough hands to do it. People who are skeptical about mammal
whole-brain simulations are prime candidates to be enthusiastic about
whole-worm simulations. Read more about ways to help on our
website [http://www.openworm.org/get_involved.html].

Where I could read about your “to do’s?”

We have a set of [high level milestones](https://github.com/openworm/OpenWorm/issues/milestones)
for the modeling direction we are taking up on GitHub. We also have [a master board of all issues](https://waffle.io/openworm/openworm)
across all our GitHub repositories that show a bunch of programming tasks we are working on.

How do I know which issues are safe to work on? How do I know I won’t be stepping on any toes of work already going on?

The high-volume mailing
list [https://groups.google.com/forum/?fromgroups#!forum/openworm-discuss]
is the organizing mechanism of first resort when determining these
questions. If you are interested in helping with an issue but don’t know
if others are working on it, search on the list, and if you don’t see a
recent update, post on the list and ask. The mechanism of second resort
is to ask a question in the comment thread of the GitHub issue. All
contributors are advised to report on their effort on the mailing list
or on the GitHub issue as soon as they start working on a task in order
to let everyone know. As much as possible we avoid doing work that don’t
get exposed through one or both of these mechanisms.

In general, you won’t step on any toes though – multiple people doing
the same thing can still be helpful as different individuals bring
different perspectives on tasks to the table.

Do you all ever meet up somewhere physically?

Subsets of us meet frequently, and there has been one meeting of the core OpenWorm team in Paris in July 2014 [http://blog.openworm.org/post/57193347335/community-updates-from-openworm-in-paris].
We use Google+ hangout to meet face to face virtually every two weeks.

OpenWorm simulation and modeling

What is the level of granularity of these models (ie. cells, subcellular, etc.), and how does that play out in terms of computational requirements?

In order to make this work we have to make use of abstraction in the
computer science sense, so something that is less complex today can be
swapped in for something more complex tomorrow. This is inherent in the
design of the simulation engine we are building

Right now our model of the electrical activity neurons is based on the
Hodgkin Huxley equations. The muscles and the physical body of the worm
are governed by an algorithm known as “smoothed particle hydrodynamics.”
So our initial complexity estimates are based on asking how much CPU
horsepower do we need for these algorithms.

What’s the data source for your computer simulation of the living worm?

There is not a single data source for our simulation; in fact one of our unique challenges is
coming up with new ways to work out how to integrate multiple data sets together. Here is a list
of some of the data sets that we have used so far:

	The Virtual Worm (3D atlas of C. elegans anatomy) [http://caltech.wormbase.org/virtualworm/]

	The c. elegans connectome (wiring diagram of neurons) [http://www.wormatlas.org/neuronalwiring.html]

	Cell list of c. elegans [https://docs.google.com/spreadsheet/pub?key=0Avt3mQaA-HaMdGFnQldkWm9oUmQ3YjZ1LXJ4OHFnR0E&output=html]

	Ion channels used by c. elegans [https://docs.google.com/spreadsheet/pub?key=0Avt3mQaA-HaMdEd6S0dfVnE4blhaY2ZIWDBvZFNjT0E&output=html]

	Database of Worm behavioral phenotypes [http://www.ncbi.nlm.nih.gov/pubmed/23852451]

Has there been previous modeling work on various subsystems illustrating what level of simulation is necessary to produce observed behaviors?

There have been other modeling efforts in C. Elegans and their
subsystems [http://www.artificialbrains.com/openworm#similar], as
well as in academic journal articles. However, the question of “what
level of simulation is necessary” to produce observe behaviors is still
an open question.

How are neurons simulated today?

There are a number of neuronal simulators in
use [http://software.incf.org/software/?getTopics=Computational%20neuroscience&b_start:int=0],
and we have done considerable amount of work on top of one in
particular, the NEURON simulation
environment [http://www.scholarpedia.org/article/Neuron_simulation_environment].

There are a wide variety of ways to simulate neurons, as shown in
figure two [http://i.imgur.com/aRGyCP3.png] of Izhikevich
2004 [http://www.ncbi.nlm.nih.gov/pubmed/15484883].

What does a neuronal simulator do?

It calculates a system of equations to produce a read out of the
changing membrane potential of a neuron over time. Some simulators
enable ion channel dynamics to be included and enable neurons to be
described in detail in space (multi-compartmental models), while others
ignore ion channels and treat neurons as points connected directly to
other neurons. In OpenWorm, we focus on multi-compartmental neuron
models with ion channels.

What is the connection between the basic proporties of C. elegans neurons and human neurons?

C.elegans neurons do not spike (i.e. have action potentials [http://en.wikipedia.org/wiki/Action_potential]),
which makes them different from human neurons. However, the same mathematics that describe the action potential
(known as the Hodgkin-Huxley model [http://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley_model]) also describe
the dynamics of neurons that do not exhibit action potentials. The biophysics of the neurons from either species
are still similar in that they both have chemical synapses [http://en.wikipedia.org/wiki/Chemical_synapse],
both have excitable cell membranes [http://en.wikipedia.org/wiki/Cell_membrane],
and both use voltage sensitive ion channels [http://en.wikipedia.org/wiki/Voltage-gated_ion_channel] to modify
the electrical potential across their cell membranes [http://en.wikipedia.org/wiki/Membrane_potential].

What is the level of detail of the wiring diagram for the non-neuron elements?

There is a map between motor neurons and muscle cells in the published
wiring diagram. There isn’t much of a wiring diagram that touches other
cell types beyond that. There is an anatomical atlas for where they are
located. And you can work out the influence between cells based on
molecular signals (known as peptides).

How much new electrophysiological data will the project need to achieve its goals?

We are hoping that we get neuron by neuron fast calcium imaging of a lot
of neurons.

How will the parameters of the neurons be inferred from calcium imaging?

Basically we will use model optimization / genetic algorithms to search
the parameter space for parameters that are unknown.

What are you using genetic algorithms in OpenWorm for?

Because there are a lot of unknowns in the model, we use genetic
algorithms (or more generally model optimization techniques) to help us
generate many of possible models to match experimental data and then
pick the ones most likely to be correct. Here’s a
paper [https://www.dropbox.com/s/05zx02h57vpvvqg/Multiple%20models%20to%20capture%20the%20variability%20in%20biological%20neurons%20and%20networks%20-%20Marder%2C%20Taylor%20-%202011.pdf]
that describes a process like this.

What will the fitness function be?

Here are
some [https://twitter.com/OpenWorm/status/331818549834285058]
examples [https://twitter.com/OpenWorm/status/336831501222178817]

How do you plan to extend its methods from single neurons to multiple neurons?

This project is all about biting off small workable pieces of the
problem. The plan there is to chain this method. We are starting from a
muscle cell whose example electrophysiology we have. Then we will
approximate the six motor neurons synapsing onto it based on what we
know about its ion channels and whatever more we can gather based on
calcium imaging.Then we will be exploring how to tune the combined
system of the single muscle cell with the 6 motor neurons connected to
it as a network and radiate outwards from there.

Do you need a connectome for these gap junctions as well or should an accurate enough cell model suffice?

The gap junctions are included in the C. elegans connectome.

What’s the main differences between the single and multi-compartment models?

Single compartment models lack sufficient detail to capture the detailed
shape of the neuron or muscle, which has been shown to influence the
dynamics of the cell as a whole. Basically, only multi-compartment
models get close enough to be comparable to real biology.

What is NeuroML and what does it represent?

An introduction to NeuroML is available on their
website [http://neuroml.org/introduction.php]. In short, it is an XML
based description of biological descriptions of neurons.

How is excitation and inhibition in neurons handled in OpenWorm?

Inhibition and excitation will be handled via synapses. Different
neurotransmitters and receptors are encoded in our model of the nervous
system. Some of those include Glutamate “excitatory” and GABA
“inhibitory.” We have encoded information about the neurons in the
OpenWorm NeuroML spatial
connectome [https://github.com/openworm/OpenWorm/wiki/C.-Elegans-NeuroML]

How do I run the NeuroML connectome?

Get the connectome NeuroML
project [https://github.com/openworm/OpenWorm/wiki/Running-the-C.-elegans-model-in-neuroConstruct#getting-the-latest-celegans-neuroconstruct-project]
that contains it and load it up in
NeuroConstruct [https://github.com/openworm/OpenWorm/wiki/Running-the-C.-elegans-model-in-neuroConstruct].
Install the NEURON simulation
environment [http://www.neuron.yale.edu/neuron/download] and set the
path to NEURON’s bin directory containing nrniv within neuroConstruct’s
menu (Settings->General Preferences and Project Defaults). After
generating cell positions (easiest to do this with the
PharyngealNeurons_inputs configuration), go to the export tab, the
NEURON subtab, and press ‘create hoc simulation’. Once this is completed
the button will stop being greyed out and the ‘Run simulation’ button
will be available. Clicking this should kick off the simulation run.
Once this is completed, the output from the simulation should tell you
that results are available in a directory named ‘Sim_XX’ where XX will
be a number. Go back to the Visualisation tab and click ‘View Prev Sims
in 3D...” Click on the box with the ‘Sim_XX’ name that applies to the
simulation run you did and press ‘Load Simulation’ at the bottom. Then
at the bottom of the Visualisation screen click ‘Replay’ and the ‘Replay
simulation’. For PharyngealNeurons_inputs, the color changes will be
subtle, but they will be happening.

I generated positions for the connectome in NeuroConstruct and tried to export to NEURON but it said NEURON was not found!

Double check that you have set the path to NEURON’s bin directory
containing nrniv within neuroConstruct’s menu (Settings->General
Preferences and Project Defaults). Just pointing to the root where the
bin directory is located will NOT work.

How does the NemaLoad project relate to OpenWorm?

We both want to see the c. elegans reverse engineered as a means of
understanding nervous systems. We’ve met a few times and David Darlymple
contributes to the project and on the mailing list. We have a different
approach right now, but they are complementary and could be unified down
the road. Both projects have a lot of up front development work that we
are doing now, us mainly in software and integrating data that already
exists and David in building an ambitious experimental set up to collect
a never-before-gathered data set.

What is SPH?

Smoothed Particle
Hydrodynamics [http://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics#Uses_in_solid_mechanics].
More information is available
online. [http://www.zora.uzh.ch/29724/1/Barbara.pdf]

What are you doing with SPH?

We are building the body of the worm using particles that are being
driven by SPH. This allows for physical interactions between the body of
the worm and its environment.

OpenWorm code reuse

What are LEMS and jLEMS?

LEMS (Low Entropy Model Specification) [http://lems.github.io/jLEMS/] is a compact model specification
that allows definition of mathematical models in a transparent machine
readable way. NeuroML 2.0 [http://www.neuroml.org/neuroml2.php] is built on top of LEMS and defines component
types useful for describing neural systems (e.g. ion channels, synapses).
jLEMS [https://github.com/LEMS/jLEMS] is the Java library
that reads, validates, and provides basic solving for LEMS. A utility, jNeuroML [https://github.com/NeuroML/jNeuroML], has been created which bundles jLEMS, and allows any LEMS or NeuroML 2 model
to be executed, can validate NeuroML 2 files, and convert LEMS/NeuroML 2 models to multiple simulator languages (e.g. NEURON,
Brian) and to other formats.

What is OSGi and how is it being used?

OSGi is a code framework that is at the heart of Geppetto. One of the
basic underpinnings of object-oriented
programming [https://en.wikipedia.org/wiki/Object-oriented_programming]
is that code modules should have low coupling– meaning that code in one
part of your program and code in another part of your program should
minimize calling each other. Object oriented languages like Java help to
enable programs to have low coupling at compile time, but it has been
recognized that in order to have true modularity, the idea of low
coupling needed to be extended through to run-time. OSGi is a code
framework in Java that does this. With OSGi, code modules can be turned
on and off at run-time without need for recompile. This provides for an
extremely flexible code base that enables individual modules to be
written with minimal concern about the rest of the code base.

This matters for OpenWorm as we anticipate many interacting modules that
calculate different biological aspects of the worm. So here, each
algorithm like Hodgkin Huxley or SPH can be put into an OSGi bundle in
the same way that future algorithms will be incorporated. Down the road,
this makes it far more likely for others to write their own plugin
modules that run within Geppetto.

What is Spring and how is it being used?

Spring is a code framework being used at the heart of Geppetto. It
enables something called ‘dependency injection’, which allows code
libraries that Geppetto references to be absent at compile time and
called dynamically during run-time. It is a neat trick that allows
modern code bases to require fewer code changes as the libraries it
depends on evolves and changes. It is important for Geppetto because as
it increasingly relies on more external code libraries, managing the
dependencies on these needs to be as simple as possible.

What is Tomcat and how is it being used?

Tomcat is a modern web server that enables Java applications to receive
and respond to requests from web browsers via HTTP, and Geppetto runs on
top of this. It has no OSGi functionality built into it by itself,
that’s what Virgo adds.

Geppetto implements OSGi via a Virgo server which itself runs on top of
Tomcat. It is a little confusing, but the upshot is that Geppetto avoids
having to build components like a web server and focus only on writing
code for simulations.

What is Virgo and how is it being used?

Virgo is a web server that wraps Tomcat and uses OSGi as its core
framework, and Geppetto runs on top of this. On top of the code
modularity framework that OSGi provides, Virgo adds the ability to
receive and respond to requests from web browsers via HTTP. It is
important for Geppetto because it is a web-based application.

What is Maven and how is it being used?

Maven is a dependency management and automated build system for Java
that is used by Geppetto to keep track of all the libraries it uses. If
you are familiar with Make files, Maven provides a more modern
equivalent in the form of a project object model file, or pom.xml.
Whereas Spring is a library that appears in source code, Maven operates
external to a code base, defining how code will get built and what
libraries will be used. Maven enables external code libraries to be
downloaded from the internet upon run time, which helps to avoid the bad
programming practice of checking all your libraries into version control
repositories.

It is important for OpenWorm because as Geppetto increasingly relies on
other code libraries, we need easy ways to manage this.

OpenWorm links and resources

Do you have a website?

http://openworm.org

Where can I send my inquiries about the project?

info@openworm.org

Where can I find the “worm browser”?

http://browser.openworm.org

How do I join the public mailing list?

More info here: http://www.openworm.org/contacts.html

Where are downloads located?

http://www.openworm.org/downloads.html

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	OpenWorm 0.5 documentation

Index

 Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

Resources/running-nc.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

Running the NeuroML connectome in NeuroConstruct

The NeuroML conversion of the Virtual Worm Blender files [http://caltech.wormbase.org/virtualworm/] has been
imported into a neuroConstruct [http://www.neuroConstruct.org]
project.

This page provides instructions for obtaining the latest version of
neuroConstruct, getting the latest CElegans project and
generating/visualising the cells and connections.

Install neuroConstruct and the CElegans project

There is a quick-start zip
file [https://www.dropbox.com/s/xdu1bh5sq2x1nx6/CElegansNeuroConstructBundle-snapshot-20140107.zip]
containing neuroConstruct and the C. elegans connectome project.
Installation instructions are in the file
README.txt [https://github.com/rayner/CElegansNeuroConstructBundle/blob/master/README.txt]
inside the zip file.

If you have any problems installing the quick-start package, please
e-mail openworm-bundle -at- magic-cookie.co.uk with a description of
what went wrong.

If you are a developer, or need the very latest changes, you may prefer
to install from the GitHub repositories instead. See the advanced
installation
instructions [https://github.com/openworm/OpenWorm/wiki/Running-the-C.-elegans-model-in-neuroConstruct#advanced-installation-instructions]
at the end of this page for details.

Open the project

Run neuroConstruct as outlined in the installation instructions (using
ant run or nC.bat/nC.sh). In the main menu select File ->
Open and browse to the location of CElegans.ncx. Select this
file and press Open.

The project may take up to 20 seconds to load. When it does load, try
clicking on one of the cells in the Cell Types in project box, e.g.
ADAL. This will take you to the Cell Types tab and show a summary of
the cell’s electrical properties (note: these are not yet matched to the
real electrophysiological properties of Celegans cells!) and the number
of segments in the cell.

Click on View/edit morphology and this will visualise the cell in
3D, see below.

[image: ADAL]

Generate a network

Now generate a subset network. Go to tab Generate, select
‘PharyngealNeurons_inputs’ from the dropdown and press Generate cell
positions and connections. Now go to tab Visualisation and press
View with Latest Generated Positions selected in the drop down
box. On a Mac, you can hold down the option button, click and drag
downwards to zoom in further than the slider allows.

Alternatively, you can generate a network of all 302 neurons. Go to tab
Generate and select ‘Default Simulation Configuration’ from the
dropdown and press Generate cell positions and connections.

The image below shows the generated full network.

[image: CElegansnC]

Executing the network in NEURON simulation environment.

Install the NEURON simulation
environment [http://www.neuron.yale.edu/neuron/download] and set the
path to NEURON’s bin directory containing nrniv within neuroConstruct’s
menu (Settings->General Preferences and Project Defaults). After
generating cell positions (easiest to do this with the
PharyngealNeurons_inputs configuration), go to the export tab, the
NEURON subtab, and press ‘create hoc simulation’. Once this is completed
the button will stop being greyed out and the ‘Run simulation’ button
will be available. Clicking this should kick off the simulation run.
Once this is completed, the output from the simulation should tell you
that results are available in a directory named ‘Sim_XX’ where XX will
be a number. Go back to the Visualisation tab and click ‘View Prev Sims
in 3D...” Click on the box with the ‘Sim_XX’ name that applies to the
simulation run you did and press ‘Load Simulation’ at the bottom. Then
at the bottom of the Visualisation screen click ‘Replay’ and the ‘Replay
simulation’. For PharyngealNeurons_inputs, the color changes will be
subtle, but they will be happening.

Check the project

In addition to being able to generate and view the project through the
main GUI, a number of Python scripts are provided to test the
configuration of the project. These scripts access functionality in the
Java implementation of neuroConstruct by using
Jython [http://www.jython.org]. More details on the Python interface
to neuroConstruct can be found
here [http://www.neuroconstruct.org/docs/python.html].

A script to test various aspects of the project is CheckProject.py.
Running this generates a number of the Simulation Configurations in
succession and checks that the expected numbers of cells and connections
are created:

cd pythonScripts
~/neuroConstruct/nC.sh -python CheckProject.py

Generate NeuroML from the project

A NeuroML file containing the structure of the cells & all connections
can be generated in two ways:

Through the GUI

After generating the network in the GUI as outlined above, go to tab
Export, click on Generate all NeuroML scripts. To have a single
file with all the NeuroML for cells, channels and network connections,
select Generate single NeuroML Level 3 file.

Using a Python script

Go to folder pythonScript and run:

~/neuroConstruct/nC.sh -python GenerateNeuroML.py

Regenerate the connectome in NeuroML format

See here for
more details.

Advanced installation instructions

This section describes how to install directly from the GitHub
repositories. If you are a developer, or need the very latest changes,
this may be a better option than using the quick-start bundle.

Install the latest neuroConstruct

First, get the latest version of neuroConstruct from
GitHub [https://github.com/NeuralEnsemble/neuroConstruct/blob/master/INSTALL].
While there are binary installers available on the neuroConstruct
download page, it’s best to use the latest version of this application
from the GitHub repository, as this will most likely be the version in
which the C. elegans project was last saved.

For full details on installing neuroConstruct from GitHub, see here:
https://github.com/NeuralEnsemble/neuroConstruct/blob/master/INSTALL

Contact p.gleeson -at- ucl.ac.uk if there you have any problems with
this.

Getting the latest CElegans neuroConstruct project

The latest CElegans project is being hosted on Github
here [https://github.com/openworm/CElegansNeuroML]. You have a
number of options for getting the project:

A) Zip file with latest project

Get a zipped file with the project
here [https://github.com/openworm/CElegansNeuroML/zipball/master].
Unzip this and go to the CElegans folder.

B) Read only copy of latest project

Install Git [https://help.github.com/articles/set-up-git] and get a
read only clone of the Git repository:

git clone git://github.com/openworm/CElegansNeuroML.git
cd CElegansNeuroML/CElegans

You’ll always be able to retrieve the latest version of the project with

git pull

C) Fork the project

Fork yourself a personal copy of the project repository. Go to
https://github.com/openworm/CElegansNeuroML for more details.

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Community/repositories.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

Repositories

View the full current list [https://github.com/openworm] of repositories on GitHub.

The repositories fall into the following six project areas shown below:

		Neuromechanical modeling with Sibernetic

		Geppetto Simulation Engine

		Movement validation

		Optimization engine

		Data collection and representation

		Community outreach

Neuromechanical Modeling with Sibernetic

		Repository
		Description
		Language

		Smoothed-Particle-Hydrodynamics [https://github.com/openworm/Smoothed-Particle-Hydrodynamics]
		Known as Sibernetic, this is a C++ implementation of the Smoothed Particle Hydrodynamics algorithm for the OpenWorm project.
		C++

		ConfigurationGenerator [https://github.com/openworm/ConfigurationGenerator]
		Generation start scene configuration for PCI SPH solver
		JavaScript

		CyberElegans [https://github.com/openworm/CyberElegans]
		Neuromechanical model of C. Elegans
		C++

Geppetto Simulation Engine

		Repository
		Description
		Language

		org.gepetto [https://github.com/openworm/org.geppetto]
		Geppetto Main Bundle and packaging
		Java

		org.geppetto.solver.sph [https://github.com/openworm/org.geppetto.solver.sph]
		PCI SPH Solver bundle for Geppetto
		Java

		org.geppetto.simulator.jlems [https://github.com/openworm/org.geppetto.simulator.jlems]
		jLEMS based simulator for Geppetto
		Java

		org.geppetto.model.neuroml [https://github.com/openworm/org.geppetto.model.neuroml]
		NeuroML Model Bundle for Geppetto
		Java

		org.geppetto.core [https://github.com/openworm/org.geppetto.core]
		Geppetto core bundle
		Java

		org.geppetto.frontend [https://github.com/openworm/org.geppetto.frontend]
		Geppetto frontend bundle - Web application
		Java

		org.geppetto.testbackend [https://github.com/openworm/org.geppetto.testbackend]
		Geppetto test backend for Geppetto
		Java

		org.geppetto.simulator.sph [https://github.com/openworm/org.geppetto.simulator.sph]
		SPH Simulator bundle for Geppetto
		Java

		org.geppetto.simulation [https://github.com/openworm/org.geppetto.simulation]
		Generic simulation bundle for Geppetto
		Java

		org.geppetto.model.sph [https://github.com/openworm/org.geppetto.model.sph]
		PCI SPH Model Bundle for Geppetto
		Java

		org.geppetto.samples [https://github.com/openworm/org.geppetto.samples]
		Sample simulations for Geppetto
		Descriptive

		org.geppetto.templatebundle [https://github.com/openworm/org.geppetto.templatebundle]
		Template bundle
		Java

Movement Validation

		Repository
		Description
		Language

		movement_validation [https://github.com/openworm/movement_validation]
		A test pipeline that allows us to run a behavioural phenotyping of our virtual worm running the same test statistics the Shafer lab used on their worm data.
		Python

		SegWorm [https://github.com/openworm/SegWorm]
		SegWorm is Matlab code from Dr. Eviatar Yemini built as part of the WormBehavior database (http://wormbehavior.mrc-lmb.cam.ac.uk/)
		Matlab

Optimization Engine

		Repository
		Description
		Language

		HeuristicWorm [https://github.com/openworm/HeuristicWorm]
		
		C++

Data Collection and Representation

		Repository
		Description
		Language

		wormbrowser [https://github.com/openworm/wormbrowser]
		The Worm Browser – a 3D browser of the cellular anatomy of the c. elegans
		Javascript

		openwormbrowser-ios [https://github.com/openworm/openwormbrowser-ios]
		OpenWorm Browser for iOS, based on the open-3d-viewer, which was based on Google Body Browser
		Objective-C

		data-viz [https://github.com/openworm/data-viz]
		Repository for scripts and other code items to create web-based visualizations of data in the project
		Python

		CElegansNeuroML [https://github.com/openworm/CElegansNeuroML]
		NeuroML based C elegans model, contained in a neuroConstruct project
		Java

		Blender2NeuroML [https://github.com/openworm/Blender2NeuroML]
		Conversion script to bring neuron models drawn in Blender into NeuroML format
		Python

		NEURONSimData [https://github.com/openworm/NEURONSimData]
		Graphing voltage data from NEURON sims of C. elegans conectome
		Python

		muscle_model [https://github.com/openworm/muscle_model]
		model of c.elegans muscle in NEURON / Python
		Python

		wormbrowser [https://github.com/openworm/wormbrowser]
		The Worm Browser – a 3D browser of the cellular anatomy of the c. elegans
		Javascript

		openwormbrowser-ios [https://github.com/openworm/openwormbrowser-ios]
		OpenWorm Browser for iOS, based on the open-3d-viewer, which was based on Google Body Browser
		Objective-C

		data-viz [https://github.com/openworm/data-viz]
		Repository for scripts and other code items to create web-based visualizations of data in the project
		Python

Community Outreach

		Repository
		Description
		Language

		org.openworm.website [https://github.com/openworm/org.openworm.website]
		OpenWorm Website
		Python

		OpenWorm [https://github.com/openworm/OpenWorm]
		Project Home repo for OpenWorm Wiki and Project-wide issues
		Matlab

		openworm_docs [https://github.com/openworm/openworm_docs]
		Documentation for OpenWorm
		

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Community/github.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

Using OpenWorm Repositories on GitHub

Contents

		Using OpenWorm Repositories on GitHub
		Repositories

		Accessing GitHub

		Forking GitHub Repositories

		Contributing and Resolving Issues
		Interacting with Issues

		Closing an Issue

		Opening a New Issue

		Posting Gists (gist.github.com)

		Creating or Adding New Repositories

		Licenses on repositories

Making
a contribution of code to the project will first involve
forking one of our repositories ,
making changes, committing them, creating a pull request back to the original repo, and
then updating the appropriate part of documentation.

An alternate way to contribute is to
create a new GitHub repo yourself and begin tackling some issue directly there. We can
then fork your repo back into the OpenWorm organization at a later point in order to
bring other contributors along to help you.

This page contains a list of repositories maintained by the OpenWorm projet on GitHub, provides
simple instructions for how to access GitHub, contribute and resolve issues, opening new issues, and
creating Gists.

Repositories

View the full current list of repositories on GitHub.

Accessing GitHub

To access the OpenWorm organization on GitHub and fully participate on issues, you will first need to create an
account if you do not already have one. Note, you can comment on issues without a GitHub account, however,
we recommend joining to maximize your ability to contribute to OpenWorm. Accounts are free and can be
created on the Github website [https://github.com/].

Forking GitHub Repositories

On GitHub, click the Fork button on a project to create a “copy” that you can then modify independently.

To fork an OpenWorm repository, go to the repository’s page and hit the “Fork” button. GitHub will
copy the repository to your personal repository. You can then
make changes to the repository. Once you are done with the changes, commit them back to your personal account.
Then hit the ‘Pull Request’ button on the repo
page under your account. This will create a pull request asking the OpenWorm team to review, comment and merge
the changes into the original repository. This follows the so-called
‘fork and pull’ model [https://help.github.com/articles/using-pull-requests#fork–pull].

For further details on doing this, check out the
help page from Github [https://help.github.com/articles/fork-a-repo].

Contributing and Resolving Issues

View the complete list of issues on GitHub [https://github.com/organizations/openworm/dashboard/issues]

To find issues that are relevant to your skillset and interest, first browse the list above and look for tags related
to areas of functionality and coding language. Alternatively, you can view a specific repository and the filter by
tags related to the type of issue and coding language. Click on the issue name to open the details. Feel free to explore
and dig around.

Interacting with Issues

Generic information from GitHub [https://github.com/blog/831-issues-2-0-the-next-generation]

Closing an Issue

		Via pull requests [https://github.com/blog/1506-closing-issues-via-pull-requests]

		Via commit messages [https://github.com/blog/1386-closing-issues-via-commit-messages]

Opening a New Issue

After logging into GitHub, select the OpenWorm organization and then click on the repository in which the issue is
located/relevant to. Click on the Issues tab on the menu to the right.

[image: http://i.imgur.com/Rh1uvmn.png]
Next, click on the New Image button in the upper right corner of the screen.

[image: http://i.imgur.com/fvEQOJQ.png]
This will open the interface to create a new issue. You will need to add the following information:

		Name or short description of the issue

		Full description of the issue, including images if available. (See below for more details on formatting the description.)

		Assign team members to the issue if appropriate

		Add a milestone if appropriate

		Add labels to categorize the issue such as what language is being used, issue status (not started, working, etc.) and what function the issue is related to.

[image: http://i.imgur.com/ozkZFsh.png]
Finally, click on Submit New Issue.

Best Practices for OpenWorm

When writing up the description for a given issue, provide as much context and detail as possible. For clarity, we suggest the following format:

		Issue: Summarize the issue at hand and provide links when possible to relevant code, databases and information.

		Motivation: Provide a reasoning for the request and what resolving the issue will fix or what purpose it will serve.

		Steps: Create a list of specific steps that need to be completed to resolve the issue.

Links to relevant code, databases, documentation and related issues are strongly recommended.

Check out this example [https://github.com/openworm/OpenWorm/issues/140] of a clearly written issue that follows best practices.

Posting Gists (gist.github.com)

Gist is a simple way to share snippets and pastes with others. All gists are Git
repositories, so they are automatically versioned, forkable and usable from Git.
You can create a new gist here [https://gist.github.com/].

How to:

		Create Gists [https://help.github.com/articles/creating-gists]

		Embed, Download and Copy Gists [https://help.github.com/articles/embedding-downloading-and-copying-gists]

Read the latest news and updates [https://github.com/blog/search?page=1&q=gis] on Gists at GitHub.

Creating or Adding New Repositories

Already existing repositories can be transferred into the OpenWorm GitHub organization via the “transfer”
mechanism provided by GitHub [https://help.github.com/articles/how-to-transfer-a-repository]. New repositories
can be created [https://help.github.com/articles/create-a-repo] under the OpenWorm GitHub organization by request.

Licenses on repositories

In historical practice, OpenWorm members have chosen to use the MIT open source license [http://opensource.org/licenses/MIT]
for their repositories. The ultimate choice of license is up to the the authors of a given repository, but we would
ask that all OpenWorm repository authors choose some open source license for your repository [http://choosealicense.com/]
and display a LICENSE file in the root of the repository to make it clear how to use it.

An example of using the MIT license for OpenWorm code follows:

The MIT License (MIT)

Copyright (c) 2014 OpenWorm

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Community/membership.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

Membership

Our website has a list of the contributors [http://www.openworm.org/people.html] to
the OpenWorm project. Contributors
who make regular contributions to the project are considered core members. This page
explains the process by which a person becomes a contributor and how a contributor
becomes a core member.

Privileges of core members

		Core members can nominate contributors for core membership
		Core members vote to approve new member nomination (majority wins)

		Core members may vote on decisions during meetings

Qualify as core team

		Qualify as contributor

		Attend at least 4 hangouts over a period of 3 months

		Hangouts can be the general or any other regular hangout conducting OpenWorm work

		Have a github account

		Has been providing regular contributions for at least 3 months

Stay on core team

		Core member can be removed if there is silence for two months

Qualify as a contributor

		Add at least one meaningful contribution of code or data that fits into an OpenWorm goal

into one of the OpenWorm repositories (GitHub, Google Drive, DropBox, etc)

OR

		Add organizational support to the goals of OpenWorm

Stay on as contributor

		Once you are a contributor, you are a contributor forever

Hangouts invite criteria

		Everybody who is a contributor gains the privilege to join the hangouts so that they

can gain core team membership if they want

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Documentation/Sibernetic/elasticity_calc.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

Sibernetic - Elasti forces calculation algorithm

Contents

		Sibernetic - Elasti forces calculation algorithm
		Sсheme

		Reference

This document contains information about

Sсheme

		1
2
3

		 for particle i from particles:
 if i is elastic particle:
 compute forces F elasticity

Reference

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Documentation/Sibernetic/main_data_structures.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

Sibernetic - main data structures

Contents

		Sibernetic - main data structures
		Physical Properties
		position

		velocity

		acceleration

		rho

		elasticConnectionsData

		muscle_activation_signal

		Data structures needed for Neighbour search algorithm
		sortedPosition

		sortedVelocity

		neighborMap

		particleIndex

		particleIndexBack

		gridCellIndex

		gridCellIndexFixedUp

		Membrane handling data buffers
		membraneData

		particleMembranesList

		Reference

This document contains information about main data structures their format
and information how they evolving through the simulation.
Each simulation based on SPH methods [1] is representing with a number of particles which interact with each other through equation of motion.
Each particle in simulation could be described with a bunch of physical qualities every quality is needed for obtaining displacement of particular particle at the step (t+1) from values for step (t).

		For describing 3D vector 4 cells in array is usually using first 3 is for coordinates and 4th is a auxiliary cell also 4 component vector is needed for better vectorization of array. For taking e.g. position vector of particle with some id:

		
[image: x_{id} = position[4 * id + 0]

y_{id} = position[4 * id + 1]

z_{id} = position[4 * id + 2]

p_{id} = position[4 * id + 3]]

NOTATIONS

PARTICLE_COUNT - number of particles in particular simulation

numOfElasticP - number of elastic particles

H - smoothing radius (support radius) “The support radius h is typically chosen so that the average number of neighbors of a particle is around 30-40.” [2]

MAX_NEIGHBOR_COUNT - maximal numbers of neighbors it’s equal to 32.

MAX_MEMBRANES_INCLUDING_SAME_PARTICLE - max number of membranes for one particle it’s equal to 7

XMIN, YMIN, ZMIN - coordinates of lowest point of boundary box usually it equal to 0

XMAX, YMAX, ZMAX - coordinates of highest point of boundary box

Physical Properties

position

Containing information about current positions for all particles. Position buffer is represent as a 1d array with size = 4 * PARTICLE_COUNT * (1 + 1). In first 4 * PARTICLE_COUNT cells of array information about position is stored in next cells information stored information needed for membrane handling [ref to membrane handling algorithm].

velocity

Containing information about current velocities for all particles. Velocity buffer is represent as a 1d array with size = 4 * PARTICLE_COUNT * 2 the same as in position buffer.

acceleration

		Containing information about current accelerations for all particles.

		
[image: a_i m_i = F^{viscosity}_{i} + F^{surfaceTension}_{i} + F^{gravity}_{i} + F^{elasticInteraction}_{i} + F^{muscleForce}_{i} + F^{pressure}_{i}]

[image: F^{elasticInteraction}_{i}, F^{muscleForce}_{i}] could be zero for sure it’s calculating only for muscle fibers and elastic connections between elastic particles.
Acceleration buffer is represent as a 1d array with size = 4 * PARTICLE_COUNT * 3 firs block from 0 to 4 * PARTICLE_COUNT - 1 stores information about impact of ViscosityForces, SurfaceTension, GravityForces, ElasticForces and MuscleForce forces to acceleration of particle second block from 4 * PARTICLE_COUNT to 4 * PARTICLE_COUNT * 2 - 1 storing information about impact of PressureForces force during work of predictive-corrective cycle [3] and last one block storing information about acceleration taking on previous time step it needed for explicit integration methods like LeapFrog [4].

rho

Containing information about density for all particles. Density buffer is represent as a 1d array with size = 2 * PARTICLE_COUNT in first block from 0 to PARTICLE_COUNT - 1 contains current value of density for all particles at the same time second block contains information about predicted value of density for more info see [3].

elasticConnectionsData

List of connection vector. Elastic connection buffer is represent as a 1d array with size = numOfElasticP * MAX_NEIGHBOR_COUNT * 4. For every elastic particle MAX_NEIGHBOR_COUNT connection vector is allocated. Connection vector is a 4 component vector in first cell of which it contains id of particle which connected with this in second cell it contains information about distance between this two particles 3th cell contains info about muscle to which this connection or fiber is belonging.

muscle_activation_signal

Array storing data (activation signals) for an array of muscles.

Data structures needed for Neighbour search algorithm

In next subsection data structures needed for neighbour search algorithm is described [ref on neighbor search alogorithm]

sortedPosition

Array storing information about positions after sorting for more info see [ref on neighbor search alogorithm]. After finish of neighbor search we work with this buffers.

sortedVelocity

Array storing information about velocities after sorting for more info see [ref on neighbor search alogorithm]. After finish of neighbor search we work with this buffers. For every particles

neighborMap

Contains information about neighbors for all particles size = PARTICLE_COUNT * MAX_NEIGHBOR_COUNT * 2. In this map information stored in 2D vectors first component of which is indicate an id of neighbour particle and second stored size of distance length. For every particle MAX_NEIGHBOR_COUNT of such vector is allocated. List of neighbour for particular particle with id = i is equal to sequence of cells in neighborMap with start = i * MAX_NEIGHBOR_COUNT * 2 and end = (i * MAX_NEIGHBOR_COUNT + MAX_NEIGHBOR_COUNT - 1) * 2

particleIndex

List of pairs [CellIndex, particleIndex] needed for neighbor search. Size of particleIndex is equal to PARTICLE_COUNT * 2.

particleIndexBack

List of particleIndex before sorting

gridCellIndex

Buffer with position of in particleIndex from which located in the cell right now gridCellIndex[i] = someNumber, if cell has no particles it’s equal -1. . Size of = gridCellsX * gridCellsY * gridCellsZ
where

[image: gridCellsX = \frac{\left \lfloor \textbf{XMAX} - \textbf{XMIN} \right \rfloor}{H} + 1

gridCellsY = \frac{\left \lfloor \textbf{YMAX} - \textbf{YMIN} \right \rfloor}{H} + 1

gridCellsZ = \frac{\left \lfloor \textbf{ZMAX} - \textbf{ZMIN} \right \rfloor}{H} + 1]

gridCellIndexFixedUp

The same that gridCellIndex but without empty cells.

Membrane handling data buffers

membraneData

Elementary membrane is built on 3 adjacent particles (i,j,k) and should have a form of triangle highly recommended that i-j, j-k and k-i are already connected with springs to keep them close to each other during whole lifetime of the simulation.

particleMembranesList

Potentially any particle can be connected with others via membrane(s) this buffer contains MAX_MEMBRANES_INCLUDING_SAME_PARTICLE integer data cells per particle
each cell can contain -1 in case when no or no more membranes are associated with this particle, or the index of corresponding membrane in membraneData list otherwise.

Reference

		[1]		http://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics

		[2]		http://www.zora.uzh.ch/29724/1/Barbara.pdf

		[3]		(1, 2) PCISPH_algorithm.html

		[4]		http://www.artcompsci.org/vol_1/v1_web/node34.html

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Documentation/Sibernetic/PCISPH_algorithm.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

Sibernetic - PCI SPH algorithm

Contents

		Sibernetic - PCI SPH algorithm
		Sсheme

		Reference

This document contains information about PCI SPH algorithm represent in the works of Barbara Solenthaler [1], [2].

Sсheme

For simulating incompressible liquid PCI SPH method was realized represent in [1], [2]. Main feature of PCI SPH algorithm includes in using Predicted-Corrector schema
“To avoid the time step restriction of WCSPH we propose to use a prediction-
correction scheme based on the SPH algorithm (PCISPH). In our method, the
velocities and positions are temporarily forwarded in time and the new particle
densities are estimated. Then, for each particle, the predicted variation from the
reference density is computed and used to update the pressure values, which in
turn enter the recomputation of the pressure forces. Similar to a Jacobi iteration
for linear systems, this process is iterated until it converges, i.e. until all particle density fluctuations are smaller than a user-defined threshold η (for example 1%). Note that this is a nonlinear problem since we include collision handling and updated kernel values in our iteration process. As a final step, the velocities and positions of the next physics update step are computed.”[2].
Also we include calculation of elastic forces for elastic particle - this force calculates by the next way for every elastic particle it takes a set of elastic connections after that
The PCISPH method is illustrated in scheme below:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

		while animation
 for particle i from particles # see [ref on neighbor search algorithm]
 find neighbor (i, t) # fill up neighborMap see [ref on main data structures]
 for particle i from particles:
 compute forces F viscosity, gravity, surface tension (i,t)
 initialize pressure p(t)=0
 initialize pressure force F pressure = 0.0
 for particle i from particles:
 if i is elastic particle:
 compute forces F elasticity
 while rho_error(t+1) >= 3% or iter <= minIteration
 for particle i from particles
 predict velocity v_i(t+1) # predicted velocity from predicted
 #acceleration which was taken from
 #predicted value of pressure force.
 #This value is storing in temp variables
 predict position x_i(t+1) # predicted position storing from
 #predicted value of velocity in temp variables
 for particle i from particles
 predict density rho_i(t + 1) # predicted density storing in temp variables
 predict density variation rho_error(t + 1)
 update pressure p_i(t) += f(rho_error(t + 1))
 for particle i from particles
 compute pressure force F_i pressure(t)
 for particle i from particles
 calculate boundary interaction
 calculate membrane interaction
 compute new velocity_i(t + 1)
 compute new position_i(t + 1)

minIteration usually it equal to 3.
Due to changing and predicting value of pressure value of acceleration and velocity could changing too also as well as position value which storing in special data buffer. From this it possible that it necessary to calculate new list of neighbors but for increasing an efficiency in algorithm current neighbors list is using. “This approximation leads to small errors in the density and pressure estimates. In the case of density overestimation the final real densities show lower fluctuations than the requested threshold 3%. In the opposite case – density underestimation – the correction loop might be aborted prematurely. Such situations are not yet handled in the current implementation but can be avoided by using sufficiently small time steps, or by recomputing the neighborhoods in these particular situations” [2]. For handling of boundary interaction we use algorithm represented here [3]. How elastic forces is calculating see here. Description handling of membrane interaction you can find here.

Reference

		[1]		(1, 2) http://www.zora.uzh.ch/29724/1/Barbara.pdf

		[2]		(1, 2, 3, 4) http://graphics.ethz.ch/~sobarbar/papers/Sol09/Sol09.pdf

		[3]		http://cg.informatik.uni-freiburg.de/publications/2010_VRIPHYS_boundaryHandling.pdf

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Documentation/Sibernetic/how_to_run.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

Sibernetic - documentation how to run instruction

Contents

		Sibernetic - documentation how to run instruction
		Linux

		Windows

		Mac OS

		Options
		General options

		Main modes

Clone Sibernetic repository from github on your machine:

git clone https://github.com/openworm/Smoothed-Particle-Hydrodynamics.git

Or download zip archive [https://github.com/openworm/Smoothed-Particle-Hydrodynamics/archive/master.zip].
If you want to work with worm bory model you need switch to WormBodySimulation branch after cloning

git checkout WormBodySimulation

Or download zip archive [https://github.com/openworm/Smoothed-Particle-Hydrodynamics/archive/WormBodySimulation.zip].

Linux

		Install OpenCL on Ubuntu. OpenCL drivers depend on devices on which you’re planning to run Sibernetic.

		
		AMD OpenCL drivers [http://developer.amd.com/redirect/?newPage=http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-tools-sdks/amd-accelerated-parallel-processing-app-sdk/]

		Intel OpenCL Drivers [https://software.intel.com/en-us/articles/opencl-drivers]

		Nvidia OpenCL Drivers [https://developer.nvidia.com/opencl]

Install instructions for Ubuntu can be found here [http://develnoter.blogspot.co.uk/2012/05/installing-opencl-in-ubuntu-1204.html]. This step often causes problems, contact the openworm-discuss mailing list if you encounter issues.

Navigate to the project folder and run:

make clean
make all

Than run Sibernetic:

./Release/Sibernetic

Windows

		Install OpenCL on Windows. OpenCL drivers depend on devices on which you’re planning to run Sibernetic.

		
		AMD OpenCL drivers [http://developer.amd.com/redirect/?newPage=http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-tools-sdks/amd-accelerated-parallel-processing-app-sdk/]

		Intel OpenCL Drivers [https://software.intel.com/en-us/articles/opencl-drivers]

		Nvidia OpenCL Drivers [https://developer.nvidia.com/opencl]

Root folder of project contains solution and project files for run in Microsoft Visual Studio you can build Sibernetic from src.

Mac OS

OpenCL drivers should be on your Mac OS already.
Stay in the top-level folder and run:

make clean -f makefile.OSX
make all -f makefile.OSX

Options

Non argument options that are run Sibernetic in simple mode with graphics

General options

-no_g run Sibernetic without graphics

device= indicates what device is more priority for run simulation. Value could be equal to CPU or GPU.

Main modes

-l_to allow you load information about evolution of system through the simulation. Sibernetic’s creating three files in ./buffers folder if you haven’t one we recommended to create:

		connection_buffers.txt - it need to store information about conection among of elastic partciles

		membranes_buffer.txt - it need to store information about membranes

		position_buffer.txt - it need to store information current position all of the non boundary particles it save information to this file every 10 steps of simulation. You shoulld remember that than more info you want to store than bigger output file is.

-l_from allow to run simulation from stored files. In this case Sibernetic doesn’t use any OpenCL devices.

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Projects/Movement/features.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

List of Movement Features

One source for features is listed at:

http://www.nature.com/nmeth/journal/v10/n9/extref/nmeth.2560-S3.xlsx

A csv copy is availabe here

NOTE: We are currently going through the information from Yemini et al
and compiling the lists seen below.

TODOS

		Eventually it would be nice to have a list and some illustration via
data

		Include other sources ...

Morphology Features

		Length - (um) skeleton length

		Width - (um) average width of subsection in microns

		head, midbody, tail

		Area - (um^2) # of pixels within contour converted to um^2

		Area/Length

		Width/Length

Posture Features

		Bends

		Bend Count

		Eccentricity

		Amplitude

		Wavelength

		Track Length

		Coils

		Eigen Projections

		Orientation

Motion Features

		Velocity

		Motion States

		Crawling

		Foraging

		Turns

Path Features

		Range

		Dwelling

		Curvature

OLD LIST

NOTE: Some of these still need to be included above ... A brief list
(not yet exhaustive): - egg laying - omega bends - pirouettes - coiled
shapes - defecation

Sources

		Yemini, E., Jucikas, T., Grundy, L. J., Brown, A. E. X. & Schafer, W.
R. A database of Caenorhabditis elegans behavioral phenotypes. Nature
methods (2013). doi:10.1038/nmeth.2560

In particular see:

http://www.nature.com/nmeth/journal/v10/n9/extref/nmeth.2560-S1.pdf

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

releases.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

Past Releases

Release 4 (1st Half of 2013) January - July 2013

		OpenWorm website update - milestone [https://github.com/openworm/OpenWorm/issues?milestone=10&state=closed]
		completely renewed version of the website using bootstrap

		Tuning neurons based on real worm recordings - milestone [https://github.com/openworm/OpenWorm/issues?milestone=16&state=closed]
		plotted some calcium traces from Leifer’s lab

		Ion Channel and Neuropeptide database - milestone [https://github.com/openworm/OpenWorm/issues?milestone=16&state=closed]
		Defined known neuropeptides for each neuron

		Data visualization experiments - milestone [https://github.com/openworm/OpenWorm/issues?milestone=8&state=closed]
		hive plots of connectome - poster at Neuroinformatics 2013

		D3JS experiments

		Submit a perspectives paper on OpenWorm - milestone [https://github.com/openworm/OpenWorm/issues?milestone=9&state=closed]
		drafted and submitted to frontiers - review process ongoing

		Synapse position crowdsourcing - milestone [https://github.com/openworm/OpenWorm/issues?milestone=11&state=closed]

		C++ Fluid mechanics engine improvements - milestone [https://github.com/openworm/OpenWorm/issues?milestone=2&state=closed]
		independent bundles of contracting elastic matter

		impermeable surfaces

		bug fixes on liquid and elastic matter

		renamed C++ implementation to Sibernetic

		Integration of membrane electrophysiology and muscle cell mechanics - milestone [https://github.com/openworm/OpenWorm/issues?milestone=1&state=closed]
		poster at CNS 2013

		Geppetto platform: 1st release - milestone [https://github.com/openworm/OpenWorm/issues?milestone=4&state=closed] / release [https://github.com/openworm/org.geppetto/releases/tag/v0.0.2-alpha]
		basic simulation file XML specification

		simulation lifecycle and basic interaction
		load / start / stop / reset

		WebGL frontend visualization
		particle systems

		ball-stick morphologies

		camera controls: rotation / zoom / panning

		Multi-user support
		multiple-users can observe the same simulation

		Tooling and scripts to facilitate deployment / install etc.

		Geppetto plugin: single-compartment neuronal simulator - milestone [https://github.com/openworm/OpenWorm/issues?milestone=3&state=closed]

		Geppetto plugin: fluid mechanics solver - milestone [https://github.com/openworm/OpenWorm/issues?milestone=14&state=closed]
		ported C++ version to Java for liquid and elastic matter support

		porting validation - milestone [https://github.com/openworm/OpenWorm/issues?milestone=18&state=open]
		unit testing infrastructure to validate codebase

Journal clubs
Posts
Media Coverage

Release 3 (completed) May 2012 - November 2012

This release, among many acheivements, we accomplished the following:

		Published a paper

		Made several presentations

		Interacted with lots of folks doing community building

		Got mentioned, pointed to, or referenced in several interesting articles

		Built and advanced several code products

Detailed release notes from this release can be found online [https://docs.google.com/a/metacell.us/document/d/1cg1YnKI92tN9HZeXachTfpRlKP10OuJhXlRBabeTnuI/pub]

Our second release pointed us in a good direction for the future, and provided some [http://browser.openworm.org exciting products]. In release 3, we worked to develop additional products that are more easily used by the outside world.

EPIC-1: As a user, I want to be able to mark synapses and have them integrated into the model

The user will be able to contribute to a shared knowledge space of the positions and identities of c. elegans synapses using an installation of CATMAID. This is important because the c. elegans connectome does not currently incorporate synapse positions at all.

EPIC-2: As a developer, I want to launch the simulation engine on Amazon AWS

This could be implemented with an auto-configuration system like Fabric [http://docs.fabfile.org/en/1.8/] that automatically launches AWS instances and runs an installation script on it. This way we can control what OS / drivers are used on the target system.

EPIC-3: As a user, I want to be able to see the body of the worm moving and changing color, driven by activity of the simulation engine (Simplified Worm)

It is important the outside users can see a visual representation of the simulation engine so that they can get a sense of what is going on with the project.

EPIC-4: As a user, I want to be able to run a simulation that includes muscle cell physics as well as muscle cell membrane excitability

EPIC-5: As a scientist, I want a detailed written summary of the physiology we intend to include in the model

This is a document written as prose that summarizes the physiological data that is known.. This should structure the information that currently exists and show where the gaps of knowledge are.

This is important because we want to build cells which are conductance based models. At the moment we don’t know all the channels. This allows others to contribute what they know about this.

EPIC-6: As a user, I want to see the optimized data matching the experimental results

This should enable the parameters of the muscle cell to be tuned with respect to real data.

EPIC-7: As a user, I want to see a WebGL visualization of Smoothed Particle Hydrodynamics [http://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics]

We want to be able to run the Smoothed Particle Hydrodynamics demos so we can see them through the browser.

Presentation update

Release 2 (completed) October 2011 to April 2012

Our major goal for this release was to integrate the work we have done in release one to do a detailed simulation of a body wall muscle cell, MDL08 (pictured below). While we did not complete all of the epics we set out for ourselves, we made significant progress in all of them, and learned a lot in the process. See the Roadmap [https://github.com/openworm/OpenWorm/wiki/Roadmap] for more information on where we are now.

This muscle cell receives input from 8 motor neurons:

		AS01

		AS02

		DA01

		DA02

		DB01

		DD01

		SMDDL

		SMDDR

We want to combine the physical simulator, running PCI SPH, that should model the walls of the muscle cell and the force pulling on those walls when the muscle is active, with the cell membrane excitability simulator, (e.g., the Hodgkin Huxley simulator). In order to ensure that our simulation is returning results that match reality, we will tune the significant number of parameters in our simulation using a genetic algorithm.

Component: Genetic Algorithm

EPIC-1 As a user, I want to use a genetic algorithm to fit the parameters of the muscle cell and motor neurons to real data
Component: Simulation Engine

EPIC-2 As a user, I want to run a model developed in NeuroML on our simulation engine to be able to run NeuroML models on the Amazon cloud

EPIC-3 As a user, I want to be able to run a simulation that includes muscle cell physics as well as muscle cell membrane excitability.

Component: Worm Browser

EPIC-4 As a user of the simulation engine, I want a browser-based visualization to show me the muscle cell output

Component: Database

EPIC-5 As a model builder, I want the best definition of the muscle cell model and motor neurons

EPIC-6 As a model builder, I want to have a target output of the muscle cell.

Component: Website

EPIC-7 As a visitor to openworm.org, I want to be impressed with the professionalism of the project and want to contribute

Component: Kickstarter

EPIC-8 As an open worm team member, I want to launch a fundraising campaign to raise money for the project

Release 1 (completed) May 2011 - September 2011

We have set a completed a successful release 1 in September. It included the following features:

		Multi-algorithm simulation engine

		Create a generic architecture for combining algorithms operating at different time scales on different models

		Create conductance-based simulator [http://www.scholarpedia.org/article/Conductance-based_models] using OpenCL [http://en.wikipedia.org/wiki/OpenCL]

		Create a smoothed particle hydrodynamics (SPH) [http://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics] simulator

		Use the simulation engine architecture to combine these two algorithms to prove its generality and ability to cross algorithmic domains

		Neuron database

		Use the Virtual Worm [http://caltech.wormbase.org/virtualworm/] Blender files to create a NeuroML compartmental description of the 302 neurons

		Combine knowledge about the synaptic structure of the neuronal network [http://www.wormatlas.org/neuronalwiring.html] with the compartmental description

		Combine knowledge about the ion channel structure of the neuronal network with the compartmental description

		Worm browser

		Build a 3D interactive visualization of the Virtual Worm Blender files, akin to the Google Body Browser [http://www.zygotebody.com/]

Simulation Engine

		As a developer, I would like a simulation engine prototype that provides a design proof of concept

		As a developer, I want an alpha kernel for neuronal simulation for the prototype.

		As a developer, I want a first draft of a simulation engine design

		As a product manager, I want to see a working prototype of the SPH algorithm working with the existing CyberElegans [http://www.youtube.com/watch?v=Ek49JSAiKjY] code

		As a product manager, I want a initial test implementation example of the SPH algorithm implemented as a solver

		As a developer, I want a simple test harness to function as client for the simulation engine prototype to ensure everything is working.

		As a developer, I would like to have a prototype of a solver service, using the HH OpenCL alpha kernel.

Neuron Database

		As a developer, I want the Virtual Worm Blender files to include details about synapses so simulatable NeuroML can be produced

		As a developer, I want to be able to convert the Virtual Worm meshes for neurons into complete simulation ready NeuroML descriptions of the neurons

Worm Browser

		As a user I want to visualize 3D models of the worm in the browser

		As a user, I want to have GUI controls to zoom in and out of the worm

		As a user, I want to drag the worm using “cylindrical mouse orbit” like google body browser

		As a product manager, I want an example of a Unity3D web player that can visualize the Virtual Worm blender files to mitigate risk

		As a developer, I want to have the 3D models of the worm prepared in a suitable format so they can be visualized in the Web Browser

		As a user, I want to use a slider to smoothly make systems in the worm transparent

		A more complete document describing our plans for release 2 is available.

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Projects/Movement/Data/worm_movement_data.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

Worm Movement Data

This section is meant to contain descriptions of different data
sources that have been made available to us regarding movement data.

MRC_HDF5 - Data from Dr William Schafer’s lab at the
MRC Laboratory of Molecular Biology

		Related Papers

		Worm File Structure

		Definitions within Worm Movement Data

		General Idea

		Specifics

		info

		Details

		worm description

		Concepts

		Fields

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Projects/Movement/Data/MRC_HDF5/info_structure_documentation.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

info

Contains experimental annotation.

Details

		wt2: Short for Worm Tracker 2
		tracker: ‘2.0.4’

		hardware: ‘2.0’

		analysis: ‘2.0’

		annotations: []

		video:
		length:
		frames: 26979

		time : 898.401

		resolution:
		fps : 30.03

		height: 480

		width : 640

		micronsPerPixels:
		x: -4.38109

		y: 4.38109

		fourcc: ‘mjpg’ - codec identifier

		annotations:
		frames: [1x26979] double, status codes for each frame. See reference for definition of these codes.

		reference: [1x15] <- I think the 15 is an exhaustive list of all ids, a few examples of this are shown below
		reference(1) =>
		id: 1 - this # matches with the # above in frames

		function: ‘segWorm:Success’

		message : ‘The worm was successfully segmented.’

		reference(2) =>
		id: 2

		function: ‘segWorm:DroppedFrame

		message: ‘The video frame was dropped’

		experiment:
		worm:
		genotype: ‘acc-4(ok2371)III’

		gene: ‘acc-4’

		allele: ‘ok2371’

		strain: ‘RB1832’

		chromosome: ‘III’

		ventralSide: ‘anticlockwise’ OR ‘clockwise’

		agarSide: ‘left’ -> side of the body touching the agar

		sex: ‘hermaphrodite’

		age: ‘young adult’

		habituation: ‘30 minutes’

		annotations: [] -> similar to annotations example above

		environment:
		timestamp: ‘2011-08-11 11:58:57.0’

		food: ‘OP50’

		illumination: ‘627nm’ -> peak wavelength

		temperature: ‘22C’

		chemicals: []

		arena: ‘low-peptone NGM plate’

		tracker: ‘1’ -> numerical id from 1 - 8, presumably this references a specific hardware rig which they have

		annotations: []

		files:
		video: [1x104] char -> .avi

		vignette: [1x128] char -> .info.xml.vignette.dat -> a correction for video vignetting

		info: [1x115] char -> .info.xml -> tracking information like microns/pixels

		stage: [1x114] char -> .log.csv -> logs stage movements

		directory: [1x51] char -> base path for these files

		computer: [1x17] char ex. -> PC207-13/10.3.1.69

		lab:
		name: ‘William R Schafer’

		experimenter: ‘Laura Grundy’

		address: ‘Room S220 (left and mid bay), MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK’

		annotations: []``

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Projects/Movement/ProgressReport_2013_09_04.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

Worm Behavior Database

		Date: 2013-09-04

		Author: Jim Hokanson

The following describes current progress regarding the worm behavior
database.

Brief Summary

Data has provided to us by Dr William Schafer’s lab at the MRC
Laboratory of Molecular Biology. It is currently unclear what if any
update mechanisms will be in place when more experiments are added to
the current collection.

A few gists have been provided which demonstrate how to work with the
data.

Data Source

I’ve tried to start documenting this data source at:
https://github.com/JimHokanson/openworm_docs/blob/master/Movement/Data/MRC_HDF5.md

If we ever get data from other groups the idea would be to document
these in the same folder. The documentation location might change once a
more official documentation strategy is in place.

Data Contents

The data contents are described in links on the data source page:
https://github.com/JimHokanson/openworm_docs/blob/master/Movement/Data/MRC_HDF5.md#worm-file-structure

The documentation has been started but the descriptions are currently
incomplete.

Data Analysis

Significant data analysis has yet to begin. Look for more issues to be
started on this topic.

Current Coding Efforts

This code traverses the structure, plots each field, and saves the plot
to disk. https://gist.github.com/PeterMcCluskey/6418155

Plot of movement https://gist.github.com/JimHokanson/6425605

A little bit of code on understanding a Matlab structure array as seen
by h5py: https://gist.github.com/JimHokanson/6420348

Reference Code

Dr. Schafer’s lab has also shared their analysis code (in Matlab) which
takes a video and creates the information that is stored in the data
files. Given the documentation available on the file format, it might
not be needed. Nevertheless this is available at:
https://github.com/openworm/SegWorm

As is the code itself can not be run due to missing dependencies.

There is also a branch which is attempting to make the code a bit more
readable and to convert most of the code into using objects:
https://github.com/JimHokanson/SegWorm/tree/classes

Currently this branch requires code which can be found at:
https://github.com/JimHokanson/matlab_standard_library

Both versions also require the Image Toolbox and possibly the Statistics
Toolbox.

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Projects/Movement/Data/MRC_HDF5.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

 Data Source :

ftp://anonymous@ftp.mrc-lmb.cam.ac.uk/pub/tjucikas/wormdatabase/results-12-06-08/Laura
Grundy [ftp://anonymous@ftp.mrc-lmb.cam.ac.uk/pub/tjucikas/wormdatabase/results-12-06-08/Laura%20Grundy]

First GitHub Issue [https://github.com/openworm/OpenWorm/issues/82]

ftp details

The data itself is a structure stored in Matlab’s version of HDF5. For
the most part the structure is straightforward.

Two exceptions are: - object arrays
https://gist.github.com/JimHokanson/6420348 - strings: More info to
follow

Related Papers

Yemini E, Jucikas T, Grundy LJ, Brown AEX, Schafer WR (2013) A database
of Caenorhabditis elegans behavioral phenotypes. Nature methods.
http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.2560.html

Worm File Structure

The data file contains two structures:

		info

		worm

Documentation of these structures is well described in Ev Yemini’s
thesis and in the supplemental section of the nature methods paper
(linked above)

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Projects/Movement/Data/MRC_HDF5/ftp_structure.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

General Idea

The following describes the way that data files are stored on the FTP
server.

NOTE: As of late August 2013 we are discussing possible mirroring of the
data to improve access. In other words, this interface may to change.

Specifics

When present, the first subdirectory is the gene name (e.g., “unc-8”);
otherwise, for wild isolates and N2 the subdirectory is “gene_NA”.

When present, the next subdirectory is the allele (e.g., “n491n1192”);
otherwise, for wild isolates and N2 the subdirectory is “allele_NA”.

The subdirectory thereafter is the strain name (e.g., “AQ2947” is the
Schafer lab copy of the CGC’s N2). The strain name is always present.

Beyond this point the subdirectories describe whether the worm is on
food (“on_food” or “off_food” – only a small subset of N2s and MECs
were done off food). The sex (“XX” or “XO” – the only males are N2).
Whether a habituation period was observed (“30m_wait” or “no_wait” –
25 N2 experiments were done with no habituation and recorded for 2 hours
straight; otherwise, we always observed a 30 minute habituation period).

At the end the subdirectories become far less meaningful to you. They
indicate the ventral side (“L” = anti-clockwise or “R” = clockwise –
this can be confusing due to the orientation of the video vs. the
experimenter’s annotation). The tracker we used (1 through 8). The date
(YYYY-MM-DD___HH_MM_SS). And, finally, the experiment’s filename.
The actual feature files contain further annotations (e.g., the room we
used, the frame rate, ...).

Here are 2 examples:

unc-8(n491n1192)
ftp://anonymous@ftp.mrc-lmb.cam.ac.uk/pub/tjucikas/wormdatabase/results-12-06-08/Laura%20Grundy/unc-8/n491n1192/MT2611/on_food/XX/30m_wait/L/tracker_2/2010-03-19_09_14_57/unc-8%20(rev)%20on%20food%20R_2010_03_1909_14_57_22features.mat

CB4856 - the famous Hawaiian wild isolate
ftp://anonymous@ftp.mrc-lmb.cam.ac.uk/pub/tjucikas/wormdatabase/results-12-06-08/Laura%20Grundy/gene_NA/allele_NA/CB4856/on_food/XX/30m_wait/L/tracker_1/2010-11-25_11_33_52/399%20CB4856%20on%20food%20R_2010_11_2511_33_52_11features.mat

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Projects/Movement/Data/MRC_HDF5/worm_structure_documentation.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

worm description

		NOTE: Currently a description of the fields can be found at:
https://github.com/openworm/SegWorm/blob/master/Worms/Features/wormFileSummary.m

		Description of the processing steps can be found in:

		Ev Yemini’s PhD thesis

		The supplemental material in this paper:
http://www.nature.com/nmeth/journal/v10/n9/full/nmeth.2560.html#supplementary-information

		Unless stated otherwise the dimensions are [1 x n_frames]

		lengths are in microns

		areas in microns^2

		NaN values present to indicate dropouts (why do these occur?)

Concepts

Bending :

Skeleton : Set of midpoints between each pairing of outside pixels.

This allows for easier computations on the movement of the worm,
rather than looking at the contour.

Fields

		These fields are all in the “worm” structure

		Field depth is indicated by indentation level of the leading hyphen.
For example:

worm.morphology.length worm.morphology.width.head worm.morphology.width.midbody worm.morphology.width.tail worm.morphology.area

		a size indication [n x m] that is attached to a name which has child
properties indicates that the entry is a structure array, For
example:


````



		locomotion:
		motion:
		forward:
		frames: [1x69]


		start : 10422


		end : 10470


		time : 1.6317


		interTime : NaN


		interDistance: NaN
Note from above this means:
worm.locomotion.motion.forward.frames
The values shown in this case are an example, such as from
frames(1)























frames(1).start = 10422
frames(1).end = 10470
````


		The structure array entries typically refer to events (epochs) which
do not occur for every frame, but rather occur occasionally
throughout the recording (or not at all)

- morphology: Units are um or um^2 or um/um, lengths are [1 x nFrames], NaN are observed - length: [1 x nFrames] Head to tail length? - width: - head : [1 x nFrames] - midbody: [1 x nFrames] - tail : [1 x nFrames] - area: [1 x nFrames] "area" within its contours - areaPerLength: [1 x nFrames] REDUNDANT INFO :/ - widthPerLength: [1 x nFrames] midbody/length -> REDUNDANT INFO :/ - posture: - bends: (degrees, inside angle is + dorsal, - ventral) - head: - mean: [1 x nFrames] - stdDev: [1 x nFrames] - neck: - mean: - stdDev: - midbody: - mean: - stdDev: - hips: - mean: - stdDev: - tail: - mean: - stdDev: - amplitude: ??? - max: - ratio: - wavelength: - primary: [1x26979] double - secondary: [1x26979] double - tracklength: [1x26979] double - eccentricity: [1x26979] double - kinks: Bend Counts - coils: - frames: - start : 10422 - end : 10470 - time : 1.6317 - interTime : NaN - interDistance: NaN - frequency: 0.00111309 - timeRatio: 0.00181623 - directions: - tail2head: [1x26979] - head : [1x26979] - tail : [1x26979] - skeleton: Note, worm is normalized to 49 points - x: [49 x n_frames] - y: [49 x n_frames] - eigenProjection: [6x26979] The eigenprojection is computed from the worm's bend angles (low frequency???) The eigenvectors for these projections come from a set of wild-type worms (source on this - nature methods supplemental????) - locomotion: - motion: - forward: - frames: [1x69] - start: 0 - end: 607 - time: 20.2464 - distance: 4193.92 - interTime: 1.3653 - interDistance: 15.6651 - frequency: 0.074577 - ratio: - time: 0.834167 - distance: 0.898035 - backward: - frames: [1x28] - start: 842 - end: 876 - time: 1.1655 - distance: 239.056 - interTime: 6.1938 - interDistance: 872.12 - frequency: 0.0311665 - ratio: - time: 0.0724638 - distance: 0.0901222 - paused: - frames: [1x15] - start: 609 - end: 647 - time: 1.2987 - distance: 12.5074 - interTime: 16.983 - interDistance: 2857.6 - frequency: 0.0166963 - ratio: - time: 0.0164943 - distance: 0.00116571 - mode: [1x26979] double - velocity: - headTip: - speed: [1x26979] double - direction: [1x26979] double - head: - speed: [1x26979] double - direction: [1x26979] double - midbody: - speed: [1x26979] double - direction: [1x26979] double - tail: - speed: [1x26979] double - direction: [1x26979] double - tailTip: - speed: [1x26979] double - direction: [1x26979] double - bends: (degrees, inside angle is + dorsal, - ventral) - foraging: ????? - amplitude: - angleSpeed: - head: - amplitude: [1x26979] double - frequency: [1x26979] double - midbody: - amplitude: [1x26979] double - frequency: [1x26979] double - tail: - amplitude: [1x26979] double - frequency: [1x26979] double - turns: - omegas: - frames: [] - frequency: [] - timeRatio: [] - upsilons: - frames: [41x1] - start: 1101 - end: 1116 - time: 0.5328 - interTime: 35.7975 - interDistance: 5385.61 - isVentral: [1x1] logical - frequency: 0.0456367 - timeRatio: 0.0947033 - path: - range: [1x26979] double - duration: - arena: - height: 297 - width: 245 - min: - x: 8401.06 - y: 8631.52 - max: - x: 19886.6 - y: 22565.2 - worm: - indices: [9200x1] double - times: [9200x1] double - head: - indices: [6856x1] double - times: [6856x1] double - midbody: - indices: [7319x1] double - times: [7319x1] double - tail: - indices: [4821x1] double - times: [4821x1] double - coordinates: - x: [1x26979] double - y: [1x26979] double - curvature: [1x26979] double

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

Projects/Movement/Data/MRC_HDF5/definitions.html

 Navigation

 		
 index

 		OpenWorm 0.5 documentation »

Definitions within Worm Movement Data

This is just a raw list. At some point it will need to be expanded and
perhaps linked to other places which discuss the specifics in better
detail.

1 muscle

		1/48 of contour

		1/24 of skeleton

		23-24 muscles per worm

		Head & tail

		each occupies 1/6 of the total body

		Length

		computed from the skeleton by converting chain-code pixel length
(Freeman chain code, TODO: insert description) to microns

		Width

		?? computed from skeleton?? or contour?

		Angles

		supplementary angles used relative to those formed by angle between
muscle segments

thus when the worm is straight, the angle is 0
on contour:

		inner sections are negative

		outer sections are positive

on skeleton:

		+dorsal

		-ventral

		High frequency bends

		angle formed between two muscle segments at each point along contour
and skeleton

		Low frequency bends

		angle formed by points two muscle segments away from vertex muscle
point

half the spatial sampling rate of high-frequency bends

		Chunks

		small segment of video wherein all worm shapes are aligned to share
the same head-to-tail orientation

 © Copyright 2013, OpenWorm.
 Created using Sphinx 1.2.2.

_images/math/a3c70181a3a621dfd761375cdb4e8eeb5770cd42.png
IScosity |y prSUrfacelension | phgravi) lasticInteraction iscleForce Ssure
e + F7 + F? + FT +
F F F Fel + F FPr
7 5

_images/math/c1726384788b72a2d3ef1c6aca32ec5da3a4c1b2.png
Felasticinteraction - prmuscleforce

_images/math/f8e4e034f6ff58a6a897c5612ee29f105c2e95bb.png
Tid = position|4 * 1d + 0]
yia = position[4 x id + 1]
2 = position[4 x id + 2]
pid = position[4 *id + 3

_images/math/6a1424b6c9fe89f77d2a73d5e6e529e6a871ad65.png
[XMAX — XMIN|

gridCellsX = = +1

ridcasy - YMAX= Yo
ZMAX — ZMIN

gridCellsZ = [ZMAX —ZMIN]

H

_static/minus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/up.png

_static/plus.png

_static/down.png

_static/up-pressed.png

_static/down-pressed.png

