
OpenStreetMap.jl Documentation
Release 0.3.0

Ted Steiner

October 02, 2014

Contents

1 Contents 3
1.1 Overview . 3
1.2 Data Types . 4
1.3 Reading OSM Data . 7
1.4 Downloading OSM Data . 8
1.5 Simulating OSM Street Networks . 9
1.6 Working with Data . 9
1.7 Route Planning . 10
1.8 Displaying Maps . 12
1.9 Examples . 15

2 Indices and tables 17

i

ii

OpenStreetMap.jl Documentation, Release 0.3.0

OpenStreetMap.jl is a Julia package that provides basic functionality for parsing, viewing, and working with Open-
StreetMap map data. The package is intended mainly for researchers who want to incorporate this rich, global data
into their work, and has been designed with both speed and simplicity in mind, especially for those who might be new
to Julia.

Contents 1

OpenStreetMap.jl Documentation, Release 0.3.0

2 Contents

CHAPTER 1

Contents

1.1 Overview

This package is provided to give researchers quick and convenient access to OpenStreetMap data in Julia. It provides
means for extracting and classifying map data, basic route planning, and convenient data visualization.

I found comparable tools for Matlab to be painfully slow, and therefore decided to write a new set of functions from
scratch in Julia. Julia provides an excellent platform for quickly and easily working with very large datasets. With
the exception of the plotting tools, the functions in this Julia package run significantly faster than comparable tools
available in Matlab.

1.1.1 Features

The following features are provided:

• Parse an OpenStreetMap XML datafile (OSM files)

• Crop maps to specified boundaries

• Convert maps between LLA, ECEF, and ENU coordinates

• Extract highways, buildings, and tagged features from OSM data

• Filter data by various classes

– Ways suitable for driving, walking, or cycling

– Freeways, major city streets, residential streets, etc.

– Accomodations, shops, industry, etc.

• Draw detailed maps using Julia’s Winston graphics package with a variety of options

• Compute shortest or fastest driving, cycling, and walking routes using Julia’s Graphs package

1.1.2 Package Status

All the functionality that I personally need for my work is now implemented in this package. Therefore, future
updates will depend on GitHub issues (bug reports or feature requests) created by users. Pull requests for additional
functionality are very welcome, as well.

3

OpenStreetMap.jl Documentation, Release 0.3.0

1.2 Data Types

This page gives an overview of the main data types used by OpenStreetMap.jl.

1.2.1 Map Data

These types pertain directly to map elements.

Highway

All roads and paths in OpenStreetMap are generically called “highways.” These types must include a list of nodes that
comprises the path of the highway. All other fields are optional, and are empty strings when missing from the OSM
database.

When a highway is labeled as “oneway,” the road or path is only legally traversable in the order in which the nodes are
listed.

type Highway
class::String # Type of highway
lanes::Int # Number of lanes (1 if unspecified)
oneway::Bool # True if road is one-way
sidewalk::String # Sidewalk classifier, if available
cycleway::String # Cycleway classifier, if available
bicycle::String # Bicycle classifier, if available
name::String # Name, if available
nodes::Vector{Int} # List of nodes

end

“Segments” represent a subset of a highway, and can be used for faster route planning. They begin and end at highway
intersections (see below). Segments can be extracted from a list of roads and intersections using “extractSegments().”

type Segment
node0::Int # Source node ID
node1::Int # Target node ID
nodes::Vector{Int} # List of nodes falling within node0 and node1
class::Int # Class of the segment
parent::Int # ID of parent highway
oneway::Bool # True if road is one-way

end

Feature

“Features” are nodes tagged with additional data. OpenStreetMap.jl currently ignores some of these tags (e.g., crosswalks), but the following feature classes are currently extracted from OSM files:

• amentity

• shop

• building

• craft

• historic

• sport

4 Chapter 1. Contents

OpenStreetMap.jl Documentation, Release 0.3.0

• tourism

Many of these features also have a specified name and class detail (e.g., shop:restaurant). Nodes with no tags are never
made into features.

type Feature
class::String # Shop, amenity, crossing, etc.
detail::String # Class qualifier
name::String # Name

end

Building

Buildings in OpenStreetMap may optionally have a name and class (though typically buildings are unlabeled). Like
highways, they include a list of nodes.

type Building
class::String # Building type (usually "yes")
name::String # Building name (usually unavailable)
nodes::Vector{Int} # List of nodes

end

Intersection

OpenStreetMap.jl includes an intersection detector. An intersection is a node which is included in at least two high-
ways’ lists of nodes. The intersection object maintains a Set (no duplicates allowed) of highway ids that use that
node.

type Intersection
highways::Set{Int} # Set of highway IDs

end

Region Boundaries

Region boundaries include the minimum and maximum latitude and longitude of a region. While the names of the
types are clearly focused on the LLA coordinate system, Bounds can also be used with ENU coordinates. They will
not work well with ECEF coordinates.

type Bounds
min_lat # Or min_north
max_lat # Or max_north
min_lon # Or min_east
max_lon # Or max_east

end

1.2.2 Point Types

These types give alternative representations for point locations in OpenStreetMap.jl.

Latitude-Longitude-Altitude (LLA) Coordinates

Used to store node data in OpenStreetMap XML files.

1.2. Data Types 5

OpenStreetMap.jl Documentation, Release 0.3.0

type LLA
lat
lon
alt

end

Because OpenStreetMap typically does not store altitude data, the following alias is available for convenience:
LLA(lat, lon) = LLA(lat, lon, 0)

Earth-Centered-Earth-Fixed (ECEF) Coordinates

Global cartesian coordinate system rotating with the Earth.

type ECEF
x
y
z

end

East-North-Up (ENU) Coordinates

Local cartesian coordinate system, centered on a reference point.

type ENU
east
north
up

end

1.2.3 Additional Types

Transportation Network

The Network type is used to represent a street transportation network as a graph. This type nicely encapsulates the
graph data from the user, simplifying the use of Graphs.jl for route planning. Most users will not need to interact with
the internals of these objects.

type Network
g # Incidence graph of streets
v # Dictionary of vertices
v_inv # Inverted list of vertices
w # Edge weights
class # Edge classification

end

Plot Styles

The Style type is used to define custom plot elements. More information on its usage can be found on the Plots
page.

type Style
color::Uint32 # Line color
width::Real # Line width

6 Chapter 1. Contents

OpenStreetMap.jl Documentation, Release 0.3.0

spec::String # Line type
end

style(x, y) = style(x, y, "-")

1.3 Reading OSM Data

OpenStreetMap data is available in a variety of formats. However, the easiest and most common to work with is the
OSM XML format. OpenStreetMap.jl makes reading data from these files easy and straightforward:

getOSMData(filename::String[, nodes=false, highways=false, buildings=false, features=false])
Inputs:

• Required:

– filename [String]: Filename of OSM datafile.

• Optional:

– nodes [Bool]: true to read node data

– highways [Bool]: true to read highway data

– buildings [Bool]: true to read building data

– features [Bool]: true to read feature data

Outputs:

• nodes [false or Dict{Int,LLA}]: Dictionary of node locations

• highways [false or Dict{Int,Highway}]: Dictionary of highways

• buildings [false or Dict{Int,Building}]: Dictionary of buildings

• features [false or Dict{Int,Feature}]: Dictionary of features

These four outputs store all data from the file. highways, buildings, and features are dictionaries indexed by
their OSM ID number, and contain an object of their respective type at each index. “Features” actually represent tags
attached to specific nodes, so their ID numbers are the node numbers. The Highway and Building types both
contain lists of nodes within them.

Example Usage:

nodes, hwys, builds, feats = getOSMData(MAP_FILENAME, nodes=true, highways=true, buildings=true, features=true)‘‘

Usage Notes: Reading data is generally very fast unless your system runs out of memory. This is because LightXML.jl
loads the entire xml file into memory as a tree rather than streaming it. A 150 MB OSM file seems to take up about
2-3 GB of RAM on my machine, so load large files with caution.

1.3.1 Extracting Intersections

A simple function is provided to find all highway ends and intersections:

findIntersections(highways::Dict{Int, Highway})

The only required input is the highway dictionary returned by “getOSMData().” A dictionary of “Intersection” types
is returned, intexed by the node ID of the intersection.

1.3. Reading OSM Data 7

OpenStreetMap.jl Documentation, Release 0.3.0

1.3.2 Working with Segments

Usually routing can be simplified to the problem of starting and ending at a specified intersection, rather than any
node in a highway. In these cases, we can use “Segments” rather than “Highways” to greatly reduce the computation
required to compute routes. Segments are subsets of highways that begin and end on nodes, keep track of their
parent highway, and hold all intermediate nodes in storage (allowing them to be converted back to Highway types for
plotting or cropping). The following functions extract Segments from Highways and convert Segments to Highways,
respectively:

segmentHighways(highways, intersections, classes, levels=Set(1:10))

highwaySegments(segments::Vector{Segment})

Note: By default, segmentHighways() converts only the first 10 levels into segments. If you wish to exclude certain
road classes, you should do so here prior to routing. By default, OpenStreetMap.jl uses only 8 road classes, but only
classes 1-6 represent roads used for typical routing (levels 7 and 8 are service and pedestrian roads, such as parking
lot entrances and driveways). In the United States, roads with class 8 should not be used by cars.

1.4 Downloading OSM Data

Downloading OpenStreetMap data in the form of a .osm file is very easy for a simple square region. However,
OpenStreetMap.org provides so many options that it is sometimes a little hard to understand the simple tasks.

For a simple region, you want to use the “OpenStreetMap Overpass API.” There are a few mirrors available, but I have
had the best luck with the server in Denmark, hence its usage in the example below.

There are a few ways to access the API. Here are a few of them.

1.4.1 OpenStreetMap Interface

On OpenStreetMap.org, there is a big “Export” button at the top. For very small regions, this is the best option, because
the region boundary will be embedded in the file for you (so you don’t have to record it). Just drag the box around
your region and click export. Easy!

If your region is too large, you will usually just get a blank page in your browser without any error messages. If this
happens, there is a link below the “Export” button that says “Overpass API.” This will very conveniently send your
region to the API for an automatic download through that system. Unforunately, this .osm file will not include the
boundary information, so you will not be able to use OpenStreetMap.jl’s convenient getBounds function. Otherwise,
as far as I can tell, it’s the same as clicking the “Export” button.

1.4.2 Overpass API Interface

If you’re not the type to like easy interfaces like dragging a box around your desired region and clicking a button,
then this is the option for you! There are two ways to interact with the API. The syntax is confusing, so we will just
download a simple rectangular region and do everything else happily within Julia.

The easist way to access the API is just directly through the web. The syntax is as follows:

http://overpass-api.de/api/map?bbox=minLon,minLat,maxLon,maxLat

Be sure to replace minLon, etc., with the decimal latitude and longitudes of your bounding box. This will download
the file for you, but it is missing the ”.osm” extension (you can add this yourself, if you’d like). You can use this to
script downloads, but please don’t overload the OpenStreetMap servers, which are donation-supported.

8 Chapter 1. Contents

OpenStreetMap.jl Documentation, Release 0.3.0

1.5 Simulating OSM Street Networks

OpenStreetMap.jl provides some basic street map simulation capabilities. These are hopefully useful for trying things
out, like rouing, in a simple grid with known properties. Only highways can be simulated at this time (not features or
buildings.

The basic premise is just that you make a list of north/south roads according to their classes, and another of east/west
roads. You then give this to the simulator and it gives you back a list of nodes, highways, and the highway classes, all
nicely organized in our OpenStreetMap.jl formats. To keep things simple, all roads are separated by 100 meters from
one another.

Here is an example:

roads_north = [6,6,4,6,6,3,6,6,4,6,6]
roads_east = [6,3,6,3,6]
nodes, highways, highway_classes = simCityGrid(roads_north,roads_east)

1.6 Working with Data

This page gives details on the functions provided by OpenStreetMap.jl for working with OSM data.

1.6.1 Cropping Maps

OSM XML files do not provide sharp edges on boundaries. Also, it is often the case that one wants to focus on one
subregion of a large OSM file. A cropping function is provided for these cases:

function cropMap!(nodes::Dict,
bounds::Bounds;
highways=nothing,
buildings=nothing,
features=nothing,
delete_nodes::Bool=true)

1.6.2 Classifying Map Elements

OpenStreetMap.jl can classify map elements according to the following schemes: * Roadways [8 levels] * Cycleways
[4 levels] * Walkways [4 levels] * Building Types [5 levels] * Feature Types [7 levels]

Each of these schemes classifies map elements using their OSM tags according to multiple levels. The definitions of
these levels is encoded in classes.jl.

The following functions take their respective map element lists as the single parameter and output a classification
dictionary of type Dict{Int,Int}. The keys of the dictionary are the highway ID numbers, and the values
provide the classification of that map element.

• roadways(highways)

• walkways(highways)

• cycleways(highways)

• classify(buildings)

• classify(features)

These classification dictionaries can be used for both route planning and map plotting.

1.5. Simulating OSM Street Networks 9

OpenStreetMap.jl Documentation, Release 0.3.0

1.6.3 Converting Map Coordinate Systems

OpenStreetMap.jl is capable of converting map data between LLA, ECEF, and ENU coordinates (see “Data Types”)
for definitions of these standard coordinates. Because point location data is ONLY stored in the nodes dictionary
(type Dict{Int,Point-Type}), only this object needs to be converted. Note that Bounds objects also need to be
converted, although they don’t technically store map data. The following functions can be used to convert between
coordinate systems:

• lla2ecef(nodes::Dict{Int,LLA})

• ecef2lla(nodes::Dict{Int,ECEF})

• ecef2enu(nodes::Dict{Int,ECEF}, reference::LLA)

• lla2enu(nodes::Dict{Int,LLA}, reference::LLA)

East-North-Up coordinates require an additional input parameter, reference, which gives the origin of the ENU
coordinate system. LLA and ECEF coordinates both have their origins fixed at the center of the earth.

Coordinate System Selection

An effort has been made to allow users to work in the coordinate system of their choice. However, often times a
specific coordinate system might not make sense for a given task, and thus functionality has not been implemented for
it. Below are a few examples:

• Map cropping and plotting do not work in ECEF coordinates (these operations are fundamentally 2D operations,
which is convenient only for LLA and ENU coordinates)

• Route planning does not work in LLA coordinates (spherical distances have note been implemented)

1.7 Route Planning

OpenStreetMap.jl provides a user-friendly interface to the Graphs.jl package for route planning on transportation
networks. Either shortest or fastest routes may be computed using Dijkstra’s algorithm.

1.7.1 Transportation Network

In order to plot routes within the map, the streets must first be converted into a transportation network using
createGraph():

createGraph(nodes, highways, classes, levels)

Inputs:

• nodes [Dict{Int,ENU} or Dict{Int,ECEF}]: Dictionary of node locations

• highways [Dict{Int,Highway}]: Dictionary of highways

• classes [Dict{Int,Int}]: Dictionary of highway classifications

• levels [Set{Integer}]: Set of highway classification levels allowed for route planning

Output:

• Network type, containing all data necessary for route planning with Graphs.jl

A transportation network graph can alternatively be created using highway “segments” rather than highways. These
segments begin and end at intersections, eliminating all intermediate nodes, and can greatly speed up route planning.

10 Chapter 1. Contents

OpenStreetMap.jl Documentation, Release 0.3.0

createGraph(nodes, segments, intersections)

Inputs:

• nodes [Dict{Int,ENU} or Dict{Int,ECEF}]: Dictionary of node locations

• segments [Vector{Segment}]: Vector of segments

• intersections [Dict{Int,Intersection}]: Dictionary of intersections, indexed by node ID

Output:

• Network type, containing all data necessary for route planning with Graphs.jl

1.7.2 Shortest Routes

Compute the route with the shortest total distance between two nodes.

shortestRoute(network, node0, node1)

Inputs:

• network [Network]: Transportation network

• node0 [Int]: ID of start node

• node1 [Int]: ID of finish node

Outputs:

• route_nodes [Vector{Int}]: Ordered list of nodes along route

• distance [Float64]: Total route distance

1.7.3 Fastest Routes

Given estimated typical speeds for each road type, compute the route with the shortest total traversal time between
two nodes.

fastestRoute(network, node0, node1, class_speeds=SPEED_ROADS_URBAN)

Inputs:

• network [Network]: Transportation network

• node0 [Int]: ID of start node

• node1 [Int]: ID of finish node

• class_speeds [Dict{Int,Real}]: Traversal speed (km/hr) for each road class

Outputs:

• route_nodes [Vector{Int}]: Ordered list of nodes along route

• route_time [Float64]: Estimated total route time

Note 1: A few built-in speed dictionaries are available in speeds.jl. Highway classifications are defined in
classes.jl.

Note 2: Routing does not account for stoplights, traffic patterns, etc. fastestRoute merely weights each edge by
both distance and typical speed.

1.7. Route Planning 11

OpenStreetMap.jl Documentation, Release 0.3.0

1.7.4 Route Distance

It is often of use to compute the total route distance, which is not returned by fastestRoute(). An additional
function is available for this purpose:

distance(nodes, route)

Inputs:

• nodes [Dict{Int,ENU} or Dict{Int,ECEF}]: Dictionary of node locations

• route [Vector{Int}]: Ordered list of nodes along route

Outputs:

• distance [Float64]: Total route distance

For added convenience, distance() is additionally overloaded for the following inputs, all of which return a Eu-
clidean distance:

distance(nodes::Dict{Int, ECEF}, node0::Int, node1::Int)

distance(loc0::ECEF, loc1::ECEF)

distance(nodes::Dict{Int, ENU}, node0::Int, node1::Int)

distance(loc0::ENU, loc1::ENU)

distance(x0, y0, z0, x1, y1, z1)

1.7.5 Edge Extraction

shortestRoute() and fastestRoute() both return a list of nodes, which comprises the route.
routeEdges() can then convert this list of nodes into the list of edges, if desired:

routeEdges(network::Network, route::Vector{Int})

The output is a list of edge indices with type Vector{Int}.

1.8 Displaying Maps

OpenStreetMap.jl includes a single plotting function. This function has numerous options, allowing a great deal of
flexibility when displaying maps:

function plotMap(nodes;
highways=nothing,
buildings=nothing,
features=nothing,
bounds=nothing,
intersections=nothing,
roadways=nothing,
cycleways=nothing,
walkways=nothing,
feature_classes=nothing,
building_classes=nothing,
route=nothing,
highway_style::Style = Style(0x007CFF, 1.5, "-"),
building_style::Style = Style(0x000000, 1, "-"),
feature_style = Style(0xCC0000, 2.5, "."),
route_style = Style(0xFF0000, 3, "-"),

12 Chapter 1. Contents

OpenStreetMap.jl Documentation, Release 0.3.0

intersection_style::Style = Style(0x000000, 3, "."),
width::Integer=500,
fontsize::Integer=0,
km::Bool=false,
realtime::Bool=false)

The function, plotMap(), has a single required input: nodes. However, providing plotMap() with only the list
of nodes will result in an empty plot. The user then has the choice between a variety of plotting options. It is important
to note that this function is designed for convenience rather than speed. It is highly recommended that a Bounds object
is input, as this is used to provided plot scaling.

The following subsecions step through some of the plotting options. Essentially, the user builds up a series of “layers”
through providing multiple inputs.

1.8.1 Data Inputs

These parameters provided the actual data to be plotted.

• nodes [Dict{Int,LLA} or Dict{Int,ENU}]: List of all point locations

• features [Dict{Int,Feature}]: List of features to display

• buildings [Dict{Int,Building}]: List of buildings to display

• highways [Dict{Int,Highway}]: List of highways to display

• intersections [Dict{Int,Intersection}]: List of highway intersections

• route [Vector{Int} or Vector{Vector{Int}}]: List of nodes comprising a highway route OR a list
of lists of routes (if multiple routes are to be displayed).

1.8.2 Data Classifiers

These parameters classify the map elements according to a layer specification. When these parameters are passed to
plotMap(), only the classified map elements are plotted (all map elements not in these dictionaries are ignored).

• roadways: Dictionary of highway types suitable for driving

• cycleways: Dictionary of highway types suitable for cycling

• walkways: Dictionary of highway types suitable for walking

• building_classes: Dictionary of building classifications

• feature_classes: Dictionary of feature classifications

Note 1: These layers use their own Layer dictionaries, containing one Style type for each element classification
level, to define plotting styles. Therefore, any additional style inputs related to these classifiers will be ignored without
any explicit warnings to the user.

Note 2: Using multiple highway classifiers on one plot may cause them to overlap and occlude one another. The
ordering, from bottom to top, is roadways, cycleways, walkways.

1.8.3 Plot Display Options

• bounds [Bounds]: X and Y axes limits of plot, also used to compute appropriate plot aspect ratio

• width [Integer]: Width of the plot, in pixels

1.8. Displaying Maps 13

OpenStreetMap.jl Documentation, Release 0.3.0

• fontsize [Integer]: Fontsize of axes labels. If 0, let Winston decide (default). Use this if you need
consistency amongst many plots.

• km [Bool]: If nodes is in ENU coordinates, converts plot axes to use kilometers rather than meters

• realtime [Bool]: When true, elements are added to the map individually (this drastically slows down plot-
ting, but is fun to watch)

1.8.4 Plot Customization

The following optional inputs allow the user to customize the map display.

• highway_style [Style or Dict{Int,Style}]: See note 3 below.

• building_style [Style]: See note 3 below.

• feature_style [Style or Dict{Int,Style}]: See note 3 below.

• route_style [Style or Vector{Style}]: Use an vector of Style types to plot multiple routes with
different appearances.

• intersection_style [Style]

These inputs all take a Style type, which is constructed as follows:

style = OpenStreetMap.Style(color, width, spec)

For example:

highway_style = OpenStreetMap.Style("b", 1.5, "-")
feature_style = OpenStreetMap.Style(0xf57900, 2, ".")

Note 1: color must be a hex color code.

Note 2: spec is a line specification code used by Winston.jl. Common examples are the following:

• "-": Solid line

• ".": Filled, square points

• "o": Open, round points

Note 3: For highways, buildings, and features, if an additional classifier is input (e.g., roadways), the respective
style input must be a dictionary of styles, with type Dict{Int,Style}, with a style given for each classification.
This dictionary is called a “layer” in OpenStreetMap terminology, and defines how a specific map layer is displayed.
The default layers are defined as constants in layers.jl.

1.8.5 Saving Map Images

plotMap() returns the Winston.FramedPlot object. This allows the user to futher modify the plot or save it
using the file function available from Winston.jl with the desired aspect ratio.

Example of saving a plot as an image in png, eps, and pdf formats:

p = plotMap(nodes,bounds=bounds,highways=highways)
width = 500
xrange = bounds.max_lon - bounds.min_lon
yrange = bounds.max_lat - bounds.min_lat
aspect_ratio = xrange / yrange
height = int(width / aspect_ratio)
Winston.file(p,"filename.png","width",width,"height",height)

14 Chapter 1. Contents

OpenStreetMap.jl Documentation, Release 0.3.0

Winston.file(p,"filename.eps","width",width,"height",height)
Winston.file(p,"filename.pdf","width",width,"height",height)

1.9 Examples

Read data from an OSM XML file:

nodes, hwys, builds, feats = getOSMData(MAP_FILENAME, nodes=true, highways=true, buildings=true, features=true)

println("Number of nodes: $(length(nodes))")
println("Number of highways: $(length(hwys))")
println("Number of buildings: $(length(builds))")
println("Number of features: $(length(feats))")

Define map boundary and crop:

bounds = OpenStreetMap.Bounds(42.365, 42.3675, -71.1, -71.094)

cropMap!(nodes, bounds, highways=hwys, buildings=builds, features=feats, delete_nodes=false)

Find highway intersections:

inters = findIntersections(hwys)

println("Found $(length(inters)) intersections.")

Extract map components and classes:

roads = roadways(hwys)
peds = walkways(hwys)
cycles = cycleways(hwys)
bldg_classes = classify(builds)
feat_classes = classify(feats)

Convert map nodes to ENU coordinates:

reference = OpenStreetMap.centerBounds(bounds)
nodesENU = lla2enu(nodes, reference)
boundsENU = lla2enu(bounds, reference)

Create transportation network:

network = createGraph(nodesENU, hwys, roads, Set(1:8))

println("Graph formed with $(Graphs.num_vertices(network.g)) vertices and $(Graphs.num_edges(network.g)) edges.")

Route planning:

loc_start = OpenStreetMap.ENU(-5000, 5500, 0)
loc_end = OpenStreetMap.ENU(5500, -4000, 0)

node0 = nearestNode(nodesENU, loc_start, network.v_inv)
node1 = nearestNode(nodesENU, loc_end, network.v_inv)
shortest_route, shortest_distance = shortestRoute(network, node0, node1)

fastest_route, fastest_time = fastestRoute(network, node0, node1)
fastest_distance = distance(nodesENU, fastest_route)

1.9. Examples 15

OpenStreetMap.jl Documentation, Release 0.3.0

println("Shortest route: $(shortest_distance) m (Nodes: $(length(shortest_route)))")
println("Fastest route: $(fastest_distance) m Time: $(fastest_time/60) min (Nodes: $(length(fastest_route)))")

Display shortest and fastest routes:

fignum_shortest = plotMap(nodesENU, highways=hwys, bounds=boundsENU, roadways=roads, route=shortest_route)

fignum_fastest = plotMap(nodesENU, highways=hwys, bounds=boundsENU, roadways=roads, route=fastest_route)

Display classified roadways, buildings, and features:

fignum = plotMap(nodesENU,
highways=hwys,
buildings=builds,
features=feats,
bounds=boundsENU,
width=1000,
feature_classes=feat_classes,
building_classes=bldg_classes,
roadways=roads)

Winston.savefig("osm_map.png")

Note: Winston currently distorts figures slightly when it saves them. Therefore, whenever equal axes scaling is
required, export figures as EPS and rescale them as necessary.

16 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

17

OpenStreetMap.jl Documentation, Release 0.3.0

18 Chapter 2. Indices and tables

Index

C
createGraph() (built-in function), 10

D
distance() (built-in function), 12

F
fastestRoute() (built-in function), 11
findIntersections() (built-in function), 7

G
getOSMData() (built-in function), 7

H
highwaySegments() (built-in function), 8

R
routeEdges() (built-in function), 12

S
segmentHighways() (built-in function), 8
shortestRoute() (built-in function), 11

19

	Contents
	Overview
	Data Types
	Reading OSM Data
	Downloading OSM Data
	Simulating OSM Street Networks
	Working with Data
	Route Planning
	Displaying Maps
	Examples

	Indices and tables

