
OpenSBLI Documentation
Release 1.0.0

Satya P. Jammy, Christian T. Jacobs, Neil D. Sandham

Jul 05, 2018

Contents

1 Introduction 3
1.1 Overview . 3
1.2 Licensing . 3
1.3 Citing . 3
1.4 Support . 4

2 Getting Started 5
2.1 Dependencies . 5
2.2 Obtaining OPS . 5
2.3 Installing OpenSBLI . 6

3 Defining and Running a Problem 7
3.1 Problem setup . 7
3.2 Equation specification . 8
3.3 Generating and compiling the model code . 8

4 Application: 1D wave propagation 9
4.1 Equations . 9
4.2 Simulation setup . 9
4.3 Running and plotting results . 9

5 Citing 13
5.1 Journal articles . 13
5.2 Datasets . 13

6 Indices and tables 15

i

ii

OpenSBLI Documentation, Release 1.0.0

Contents:

Contents 1

OpenSBLI Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Introduction

1.1 Overview

OpenSBLI is an automatic code generator that expands a set of equations written in Einstein notation, and automati-
cally generates code (in the OPSC language) which performs the finite difference approximation to obtain a solution.
This OPSC code can then be targetted with the OPS library towards specific hardware backends, such as MPI/OpenMP
for execution on CPUs, and CUDA/OpenCL for execution on GPUs.

The main focus of OpenSBLI is on the solution of the compressible Navier-Stokes equations with application to shock-
boundary layer interactions (SBLI). However, in principle, any set of equations that can be written in Einstein notation
may be solved using the code generation framework. This highlights one of the main advantages of such a high-level,
abstract approach to computational model development.

From an implementation perspective, the OpenSBLI codebase is written in the Python (2.7.x) language and depends
on the SymPy library to process the Einstein formulation of the equations. The code generator will then write out
the model code which performs the finite difference approximations in any of the supported languages (currently only
OPSC, although the structure of the codebase is such that other languages can be integrated with minimal effort).

The development of OpenSBLI was supported by EPSRC grants EP/K038567/1 (“Future-proof massively-parallel
execution of multi-block applications”) and EP/L000261/1 (“UK Turbulence Consortium”). It was also supported by
the ExaFLOW project (funded by the European Commission Horizon 2020 Framework grant 671571).

1.2 Licensing

OpenSBLI is released as an open-source project under the GNU General Public License. See the file called LICENSE
for more information.

1.3 Citing

If you use OpenSBLI, please consider citing the papers and other resources listed in the Citing section.

3

https://github.com/opensbli/opensbli
http://www.oerc.ox.ac.uk/projects/ops
http://exaflow-project.eu/
http://www.gnu.org/licenses/gpl-3.0.en.html
citing.html

OpenSBLI Documentation, Release 1.0.0

1.4 Support

The preferred method of reporting bugs and issues with OpenSBLI is to submit an issue via the repository’s issue
tracker. Users can also email the authors Satya P. Jammy and Christian T. Jacobs directly.

4 Chapter 1. Introduction

mailto:S.P.Jammy@soton.ac.uk
mailto:C.T.Jacobs@soton.ac.uk

CHAPTER 2

Getting Started

2.1 Dependencies

You should first ensure that all the core dependencies listed in the README.md file are satisfied. Many of these
packages can be installed either via a package manager such as apt, or via the Python package manager (pip) using

sudo pip install -r requirements.txt

from the OpenSBLI base/root directory.

2.2 Obtaining OPS

In order to target and compile the generated OPSC code, you will need to have OPS available. First, clone the OPS
GitHub repository using

git clone https://github.com/gihanmudalige/OPS.git

and install it by running sudo python setup.py install from within the OPS directory that is created by
the git clone process.

You will then need to set up your OPS-related environment variables, listed below. Note that the values given here
are system-dependent and may need to be adapted depending on where the MPI or HDF5 libraries are installed.
Furthermore, it is assumed that the OPS GitHub repository has been cloned in your home (~) directory.

export OPS_INSTALL_PATH=~/OPS/ops
export OPS_COMPILER=gnu
export MPI_INSTALL_PATH=/usr/
export HDF5_INSTALL_PATH=/usr/

You can include these export commands in your ~/.bashrc file to save typing them out each time you open up a
new terminal.

5

https://pypi.python.org/pypi/pip
https://github.com/gihanmudalige/OPS
https://github.com/gihanmudalige/OPS

OpenSBLI Documentation, Release 1.0.0

2.3 Installing OpenSBLI

First, clone the OpenSBLI GitHub repository using

git clone https://github.com/opensbli/opensbli.git

You can install OpenSBLI using

sudo make install

from within the base directory of OpenSBLI. Alternatively, particularly for developers of OpenSBLI, you can simply
point your PYTHONPATH environment variable to the OpenSBLI base directory using, for example,

export PYTHONPATH=$PYTHONPATH:~/opensbli

After installation, it is recommended that you run the test suite to check that OpenSBLI is performing as it should by
using

make test

6 Chapter 2. Getting Started

https://github.com/opensbli/opensbli

CHAPTER 3

Defining and Running a Problem

3.1 Problem setup

Essentially, OpenSBLI comprises the following classes and modules (emboldened below), which define the abstraction
employed:

• A Problem defines the physical problem’s dimension, the equations that must be solved, and any accompanying
formulas, constants, etc.

• This Problem comprises many Equations representing the governing model equations and any constitutive
formulas that need to be solved for. The Problem also performs the expansion on these equations and formulas
about the Einstein indices.

• Once the equations are expanded, a numerical Grid of solution points and numerical Scheme s are created in
order to discretise the expanded equations. Several Schemes are available, such as RungeKutta and Explicit for
time-stepping schemes, and Central for central differencing in space. The spatial and temporal discretisation is
handled by the SpatialDiscretisation and TemporalDiscretisation classes, respectively.

• The setting of any boundary conditions and initial conditions are handled by the BoundaryConditions and
GridBasedInitialisation classes.

• The computational steps performed by the discretisation processes are described by a series of Kernel objects.

• All of the above classes come together to form a computational system which is written out as OPSC code.

• All LaTeX writing (mainly for debugging purposes) is handled by the LatexWriter class.

OpenSBLI will expect all these problem-specific settings and configurations (the governing equations, any constitutive
formulas for e.g. temperature-dependent viscosity, what time-stepping scheme is to be used, the boundary conditions,
etc.) to be defined in a separate Python script, which will eventually call the various OpenSBLI code generation
routines. There are several examples provided in the applications (apps) directory of the OpenSBLI package.

7

OpenSBLI Documentation, Release 1.0.0

3.2 Equation specification

Although the equations can be specified at a very abstract level in Einstein notation, certain rules are to be followed
while writing them:

• All equations are written in the form Eq(LHS,RHS), where LHS is the time dependant term in the equation
and RHS are the terms of the equations that are equated to the time dependant governing equation.

• The Einstein indices should be prefixed with an underscore (_) and multiple indices should have multiple un-
derscores. For example, a vector is written as f_i and a tensor is written as f_i_j.

• Derivatives that do not require special handling (e.g. single functions, chain rule applications for multiple
derivatives) should be written in the form Der(f,direction), where f is the function and direction is
the direction.

• Derivatives involving more than one function that needs special handling like the conservative or skew-
symmetric forms of the Navier-Stokes equations are handled using Conservative or Skew, respectively.

• OpenSBLI can handle all standard functions in SymPy (i.e. Kronecker Delta and Levi-Civita terms).

3.3 Generating and compiling the model code

Once defined, users can run the Python script defining the problem’s configuration and generate the code for this
particular problem:

python /path/to/directory/containing/problem_file.py

OpenSBLI will create two files written in the OPSC language: simulation_name_here_block_0_kernel.
h and simulation_name_here.cpp. The latter file will automatically be passed through OPS’s translator to
target the OPSC code towards different backends, e.g. CUDA, MPI, OpenMP, etc; this yields a new file called
simulation_name_here_ops.cpp and various directories corresponding to the different backends. It is this
file that will be compiled to create the model’s executable file. Note that, if OPS’s translator cannot be called by
OpenSBLI, you will need to run it manually using

python ~/OPS/translator/python/c/ops.py simulation_name_here.cpp

Finally, copy across the Makefile from one of the existing apps, and modify the simulation name appro-
priately so that it will compile the source for your simulation setup. To create a serial executable, run make
simulation_name_here_seq. For MPI parallel executution, run make simulation_name_here_mpi.
Similar commands can be run for GPU backends.

8 Chapter 3. Defining and Running a Problem

CHAPTER 4

Application: 1D wave propagation

4.1 Equations

This test case solves the numerical solution of the one-dimensional wave equation, written as

𝜕𝜑

𝜕𝑡
+ 𝑐

𝜕𝜑

𝜕𝑥
= 0,

where 𝜑 is the transported quantity and 𝑐 is a known constant representing the wave speed (set to 0.5 m/s in this
simulation).

4.2 Simulation setup

A domain of length 0 ≤ 𝑥 ≤ 1 m is considered, with grid spacing 𝑑𝑥 = 0.001 m, and periodic boundaries. An eighth-
order accurate central differencing scheme is used to spatially discretise the domain, and a third-order Runge-Kutta
timestepping scheme is used to march the equation forward in time.

The initial condition is defined by

𝜑(𝑥, 𝑡 = 0) = sin(2𝜋𝑥).

The simulation was run with a timestep of 𝑑𝑡 = 4× 10−4 s until time 𝑡 = 1 s (i.e. 2,500 iterations).

4.3 Running and plotting results

The simulation can be run sequentially using

python wave.py
cd wave_opsc_code
make wave_seq
./wave_seq

9

OpenSBLI Documentation, Release 1.0.0

or by using the run.py file provided:

python run.py

The state of the solution field at the final iteration will be written to an HDF5 file called wave_2500.h5. This file
can be read, and the results plotted, using

python plot.py

which will generate two figures; one showing the propagation of the initial sine wave (see phi.pdf and Figure phi),
and one showing the error between the analytical solution (i.e. the initial wave translated to the right by 𝑥 = 𝑐𝑡) and
the numerical solution (phi_error.pdf and Figure phi_error).

Fig. 1: The solution field 𝜑 at time 𝑡 = 0 s and 𝑡 = 1 s

10 Chapter 4. Application: 1D wave propagation

OpenSBLI Documentation, Release 1.0.0

Fig. 2: The error between the analytical solution and the numerical solution at time 𝑡 = 1 s.

4.3. Running and plotting results 11

OpenSBLI Documentation, Release 1.0.0

12 Chapter 4. Application: 1D wave propagation

CHAPTER 5

Citing

5.1 Journal articles

• Jacobs, C. T., Jammy, S. P., Sandham N. D. (2017). OpenSBLI: A framework for the automated deriva-
tion and parallel execution of finite difference solvers on a range of computer architectures. Journal of
Computational Science, 18:12-23, DOI: 10.1016/j.jocs.2016.11.001

• Jammy, S. P., Jacobs, C. T., Sandham N. D. (In Press). Performance evaluation of explicit finite difference al-
gorithms with varying amounts of computational and memory intensity. Journal of Computational Science,
DOI: 10.1016/j.jocs.2016.10.015

5.2 Datasets

• Jammy, S. P., Jacobs, C. T., Sandham N. D. (2016). Enstrophy and kinetic energy data from 3D Taylor-
Green vortex simulations. University of Southampton ePrints repository. DOI: 10.5258/SOTON/401892

• Jacobs, C. T., Jammy, S. P., Sandham N. D. (2016). Solution field data from a three-dimensional Taylor-
Green vortex simulation. University of Southampton ePrints repository. DOI: 10.5258/SOTON/402073

• Jacobs, C. T., Jammy, S. P., Sandham N. D. (2016). Solution field data from a one-dimensional wave propa-
gation simulation. University of Southampton ePrints repository. DOI: 10.5258/SOTON/402070

• Jacobs, C. T., Jammy, S. P., Sandham N. D. (2016). Data from a convergence study based on the Method of
Manufactured Solutions. University of Southampton ePrints repository. DOI: 10.5258/SOTON/402072

13

http://dx.doi.org/10.1016/j.jocs.2016.11.001
http://dx.doi.org/10.1016/j.jocs.2016.10.015
http://dx.doi.org/10.5258/SOTON/401892
http://dx.doi.org/10.5258/SOTON/402073
http://dx.doi.org/10.5258/SOTON/402070
http://dx.doi.org/10.5258/SOTON/402072

OpenSBLI Documentation, Release 1.0.0

14 Chapter 5. Citing

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15

	Introduction
	Overview
	Licensing
	Citing
	Support

	Getting Started
	Dependencies
	Obtaining OPS
	Installing OpenSBLI

	Defining and Running a Problem
	Problem setup
	Equation specification
	Generating and compiling the model code

	Application: 1D wave propagation
	Equations
	Simulation setup
	Running and plotting results

	Citing
	Journal articles
	Datasets

	Indices and tables

